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ABSTRACT

The Rayleigh-Taylor instability is one of the most common and well studied phenomena in
fluid dynamics. Despite research dating to the late 19th century, the non-linear dynamics
of the interfacial instability are still not fully understood, particularly in the case when the
two fluids have nearly the same density. It was recently demonstrated in this, the low-
Atwood regime, that the idealized single-mode problem departs from established potential
flow models in the form of a re-acceleration beyond the predicted terminal interface velocity.
This thesis is an attempt to model that re-acceleration and, more broadly, the late time
dynamics of the single-mode low-Atwood Rayleigh-Taylor instability.

The approach taken here is based on buoyancy-drag models, which express a force balance
between buoyancy and parasitic drag. The dynamical buoyancy-drag model is supplemented
with a mixing model that dilutes the buoyant force over time. These models are written
deliberately generally, with 8 unique coefficients. Three of these coefficients are solved for
by equating the early time behavior with that of well established linear theories. The re-
maining 5 coefficients are estimated by relating them to drag coefficients, friction factors,
and geometric ratios in the interface shape.

To evaluate the model and compute the 5 unknown coefficients more precisely, a set
of direct numerical simulations are performed over the relevant parameter space. These
simulations are first validated against experimental data. Then they are shown to converge
and their resolutions are chosen such as to minimize computational cost given the accuracy
scale of the model. The 5 coefficients are fit to the resulting data set, and the model achieves
better than 2% error in the bubble height and 4% error in the volume of mixed fluid. Three
coefficients are nominally independent of the parameterization of the problem, while two are

shown to vary with the Rayleigh number and the diffusivity.

xiii



CHAPTER 1
INTRODUCTION

1.1 Formal definition

The Rayleigh-Taylor instability occurs when the pressure and density gradients are in oppo-
sition [50]:

(VP)(Vp) <0 (1.1)

The canonical example of the Rayleigh-Taylor instability is a heavy fluid superposed over a
lighter one in a gravitational field. The standard terminology is based on this case.
Consider a horizontal planar interface at z = 0 between two fluids of densities p;, > py,
corresponding to the density of the heavier and lighter fluid, respectively. The denser fluid
is at z > 0 and the lighter at z < 0, and a gravitational acceleration —gz. In equilibrium,

the pressure must balance the gravitational force:

—prgz+C if z>0
P(z,y,z) = (1.2)

—pigz +C  else

A small perturbation is introduced, moving some heavy fluid below the interface and some
light fluid above it but preserving the horizontal stratification of the pressure. The forcing

on the heavier fluid below the interface is then:

ZF:—VP—i—Fg:plg—phg<O, (1.3)

so the heavier fluid is forced downwards through the lighter fluid, forming structures called

spikes. Conversely, the forcing on the lighter fluid above the interface is:

Y F=-VP+Fy=pg—ppg>0, (1.4)
1



so the lighter fluid is forced upwards through the heavier fluid, forming structures called

bubbles. Perturbations in the interface grow, so the configuration is unstable.

1.2 Instances and motivation

The Rayleigh-Taylor instability is present in both natural and constructed systems at many

scales. This section describes a few such systems of particular importance.

Type Ia Supernovae In Type la supernovae (SNe Ia), a white dwarf spontaneously ignites
as its mass crosses the Chandrasekhar mass due to accretion from another source. The
thermonuclear flame originates near the center of the star and burns outward [43]. The hot
ash trailing the flame is lighter than the fuel, creating a Rayleigh-Taylor (RT) unstable flame
front [63]. The primary RT instability and secondary Kelvin-Helmholtz instabilities wrinkle
the flame front, enhancing mixing, burn rate, and flame speed [22]. These properties affect
the rate of energy release and ejecta velocity, which can be observed. The use of SNe Ia as

standard candles underlines interest in their description.

Salt fingers and the thermohaline staircase Salt fingers are an instance of the Rayleigh-
Taylor instability set up by a difference in the diffusivity of two mass carriers [54, 34]. Con-
sider a fluid in which the density perturbation is a linear combination of two fields. Let one
of the fields have a stabilizing gradient and the other a destabilizing one. The combined
system is unstable if the destabilizing field is less diffusive than the stabilizing one. A parcel
of fluid perturbed from its equilibrium height will equilibrate with the stabilizing field before
the destabilizing one, resulting in a buoyant force that pushes the parcel further from vertical
equilibrium.

In the oceanic case, the stabilizing field is temperature and the destabilizing field is
salinity. Near the surface, evaporation perturbs the salinity field creating parcels of salty

dense fluid. As they sink, the parcels cool more quickly than they diffuse salt, further
2



increasing their density. This flow drives tall vertical convective cells, called salt fingers,
that mix the oceans.

The same doubly diffusive buoyant process drives short broad convective cells at greater
depths. Observed as thermohaline staircase [55], a series of sharp steps in the salinity and
temperature versus depth, these cells occur at depths greater than a kilometer and extend

for thousands of square miles.

Inertial confinement fusion Inertial confinement fusion (ICF) is a fusion technique that
confines hot dense plasma temporarily via an implosion rather than magnetic field lines.
In ICF, cryogenic deuterium is coated with a plastic ablator forming very small hollow
spheres, or microcapsules. The microcapsules are positioned in a cylindrical hohlraum. The
hohlraum interior is illuminated with a high energy burst of laser light and radiates x-rays
into its interior. This x-ray radiation is absorbed by the plastic ablator causing it to rapidly
expand and blow off the microcapsule, creating an implosion in the hydrogen fuel [41].

The implosion is not perfectly uniform; the x-ray radiation is not isotropic and there are
asymmetries in the microcapsule. The resulting perturbations are Rayleigh-Taylor unstable:
the dense plastic ablator is being accelerated through lighter hydrogen fuel. The carbon in
the ablator is much better at radiating energy than the hydrogen, so Rayleigh-Taylor mixing

cool the fuel, preventing ignition [18].

1.3 Terminology

In this section, we introduce common Rayleigh-Taylor terminology that will be used through-

out the thesis.

Atwood number The Atwood number characterizes the density contrast:

P1 — P2
A= € (~1,1), 1.5
p1+ P2 ( ) (15)

3



where p1 > po corresponds to positive Atwood number. Negative Atwood numbers result in
stable oscillating interfaces. There are three distinct regimes of unstable Atwood numbers:
high, low, and moderate.

At high Atwood number, e.g. air and water, the flow is approximated in the limit of unit
Atwood number. The internal dynamics of the light fluid are decoupled from the heavy fluid,
and the transfer of momentum through the interface into the dense fluid can be neglected.
In this regime, the flow of the dense fluid is nearly irrotational and potential flow models are
reasonably accurate. The high Atwood regime requires the Atwood number to be at least
one half.

At low Atwood number, e.g. salt water and fresh water, the flow is approximated in the
limit of zero Atwood number. The governing equations can be simplified via the Boussinesq
approximation: only terms with the product of the Atwood number and acceleration remain.
The behavior of the rising fluid, i.e. bubbles, and falling fluid, i.e. spikes, are symmetric given
symmetric initial conditions. It is often possible to treat the true two-phase problem as a
single phase with an active scalar. The valid range of Atwood numbers for the Boussinesq
approximation is problem dependent [40], but typically taken to be less than A = 0.10.

At moderate Atwood number, e.g. oil and water, not only is enough vorticity is generated
to undermine potential low models but also the density difference breaks the Boussinesq
approximation and bubble-spike symmetry. These are truly two-phase problems in that the

fluids are strongly coupled and have different governing parameters, e.g. viscosity.

Boussinesq approximation When the density contrast, Ap, is small compared to the
average density p, then the contrast can be neglected except when multiplied by the acceler-
ation, as in Ag. This is known as the Boussinesq approximation and has the primary effect

of neglecting differences in the inertia of the two fluids.



Uniform constant property In the spirit of the Boussinesq approximation, which ne-
glects differences in the inertia of the two fluids, one can further assume the two fluids share
all other material properties, such as viscosity. When the flow is both Boussinesq and has
uniform constant properties, the density can be modeled as an active scalar with a buoyant

forcing term.

Miscible interface In most cases where the Boussinesq and uniform constant property
approximations are valid, the interface between the two fluids is miscible. For example,
low-concentration solutions in a common solvent have interfaces governed by a diffusion
coefficient, D, and small temperature gradients are governed by a thermal diffusivity «.
In the limit where D or a goes to zero, the interface is immiscible but there is no surface
tension. If there is no surface tension, the active scalar is governed by an advection-diffusion

equation.

Incompressible The problem is said to be incompressible when each of the two fluids are.
Formally, this means the flow is divergence free, V - u = 0. In simulations, incompressibility
has the effect of integrating out acoustic waves, significantly reducing the need to resolve

small time-scales in the flow.

Single-mode The single mode Rayleigh-Taylor instability constrains the initial perturba-
tion of the interface to a single pure spatial frequency. In 3D, this typically implies two
orthogonal wavevectors with the same wavelength. For the miscible uniform constant prop-

erty Boussinesq Rayleigh-Taylor instability, the single mode initial condition is:

z + ag cos(2mz/N) COS(QWy/)\)) 7 (1.6)

d(x,y,z,t =0) =erf< 5

where aq is the perturbation height, A is the wavelength, and ¢ is the interface thickness.

Typically, the perturbation height and interface thickness are chosen to initially be much
5



smaller than the wavelength, ag,d << .

Multi-mode The multi-mode Rayleigh-Taylor instability generically refers to the presence
of more than one, and often many, wavelengths in the initial condition. Experimentally, the
multi-mode initial condition is usually ‘natural‘, in the sense that it is not deliberately
perturbed and instead is due to natural noise sources. Computationally, the multi-mode
condition is written as a sum of single modes with spectra zg(k) ~ |k|~P for p = 2, 3/2, or

other rational factors. These modes are randomized within the spectral envelope.

Governing equations Given a miscible interface between two Boussinesq, uniform con-
stant property incompressible fluids, the governing equations can be recast in terms of an

active scalar:

%ﬂLu-Vu: vV2u — VP — Agpz, (1.7)
%ﬁﬂpv¢:Dv%, (1.8)

V-u=0, (1.9)

where u is the fluid velocity, ¢ is the active scalar that represents small mass differences, and
the acceleration is aligned vertically with 2.
These equations have three governing parameters: (Ag), v, and D. In the single-mode

case, the dominant length scale is A, which supports the construction of two dimensionless

numbers:
Ag\3
Grashof = 52 : (1.10)
Schmidt = = (1.11)
midt = o )

If the initial and boundary conditions have no other length scales, e.g. the initial interface

is a thin low-amplitude perturbation, i.e. ag,d << 1, then these two parameters uniquely

6



identify the system.

It is convenient to introduce another dimensionless number, the Rayleigh number:

Ag)3
vD '’

Rayleigh = Grashof - Schmidt = (1.12)

with which many mixing-related quantities scale. The three dimensionless numbers are
abbreviated Gr, Sc, and Ra, respectively.

It is difficult to define a Reynolds number in the absence of a velocity parameter. The
square root of the Grashof number, which has the same scaling with the viscosity, is used

instead. It is sometimes called the perturbation Reynolds number, Re, = v/ Gr.

Bubble height and spike depth The bubble height refers to the distance beyond the
initial interface that the bubble front has traveled, as a function of time. The standard
experimental definition projects the density onto a line normal to the initial interface and
defines the front interface as the point at which the density is at its 99th or 95th percentile.

More formally:

Hyle] = sup {z : /ﬁ(x,y,z)dxdy <(1—¢) /ﬁ(m,y, oo)dxdy} : (1.13)

where p is the deviation from the mean density, p = p — p, and € is either 0.05 or 0.01 for
the 95th and 99th percentile definitions, respectively.

If the fluids are miscible, this definition depends on the rate of diffusion across the
interface. To avoid dependence on diffusion across the interface, we can base the bubble
height on a measurement of the equi-molar interface, which is stationary under diffusion. To

pick out the interface, we take a span-wise maximum instead of a span-wise sum:

H,, = sup {z : H%%/Xﬁ(:c,y, z) < 0} . (1.14)

)



However, diffusive mixing across the sides of an elongated bubble dilute as it grows. This
dilution, which is observed as a linear profile in the span-wise maximum instead of an error
function profile, can dip below p = 0, at which point the growth of H,, is also influenced by
mixing.

In the absence of this affect, H,, tracks not only the equi-molar surface but also the
inflection point in the profile max; , p. This inflection point closely tracks the equi-molar
surface at low diffusivity but is robust to diffusion across the bubble, remaining in the center
of the error function region of the maximum density profile. Formally, this definition is:

d2
H; :sup{z : @Igzxﬁ(x,y,z) :O}. (1.15)
Equivalent definitions can be given for the spike depth. If the flow is Boussinesq and the

initial condition is symmetric, the bubble height and spike depth can be averaged.

Mixing width In some application, the interpenetration of the two fluids is secondary to
their mixing. To measure the mixed-ness of the flow, we map the pure fluids to unity, mixed

fluids to zero, and integrate. First, we define a normalized scalar measure of the density as:

_2p—12p
P11 — P2

e[-1,1], (1.16)
then the purity of a fluid volume is |¢|. The mix volume is simply the integral:

o(t) = / (1~ |6(z,y 2 1)) dV. (1.17)

and the mixing width § = © /A, where A is the span-wise extent of the volume integral.



1.4 Note on the structure of the dissertation

This thesis contains three standalone papers, which are reproduced following a review of the
state of modeling the Rayleigh-Taylor instability. They are logically ordered from the top
down.

Chapter 3 contains a new buoyancy-drag model developed to describe the late time
behavior in the low-Atwood, moderate Grashof case. It contains model coefficients that are
fit to a data set of direct numerical simulations.

Chapter 4 validates those direct numerical simulations against experimental data from
Wilkinson and Jacobs [62]. This establishes that the simulations contain the physical pro-
cesses responsible for re-acceleration and other unexplained late-time phenomena. The paper
takes advantage of the generality of numerical data to explore features of the flow that were
not available to the original experiment, namely pressure driven secondary flows in the mid-
plane and the interaction of the bubbles with one another.

Chapter 5 [27] contains a performance and convergence study of the numerical method
and simulation software with the single mode Rayleigh-Taylor problem as a benchmark. The
NekBox code, which was specialized specifically to this project, is shown to be an efficient
tool for performing these calculations. Furthermore, the resolution is selected such that the
simulation error is an order smaller than the expected model error, which ensures that the
flow is sufficiently but not overly resolved. Maxwell Hutchinson authored all of sections 2

and 4 and the majority of sections 1 and 5.



CHAPTER 2
BACKGROUND

The study of the Rayleigh-Taylor instability (RTI) is primarily interested in evolution of the
interface, that is the rate of penetration of the light fluid into the dense one and vice versa.
While the volumetric mixing rate is relevant in some contexts, most flows have relatively
low diffusivity, i.e., high Prandtl and Schmidt number, so mixing is dominated by transport
rather than diffusion. In this section, we review approaches to modeling the evolution of the

interface and experimental efforts to validate those models.

2.1 Linear and weakly non-linear models

The earliest models of the Rayleigh-Taylor instability were based on a linearization of the
governing equations around small perturbations in the interface. Recently, with the aid of
computational algebra, it has become possible to retain higher order terms in the expan-
sion, demonstrating mode coupling and saturation amplitudes. However, even high order

expansions fail as the interface loses analyticity.

2.1.1 Lord Rayleigh’s linear model

Lord Rayleigh considered a sinusoidal perturbation of an incompressible, inviscid, immiscible,
quiescent stratified interface [35]. When the amplitude is small compared to the wavelength,
the continuity and momentum equations can be linearised:
_ o | du ~ N
(P+p) |y +uVul ==VP+g(p+p), (2.1)
V.u=0, (2.2)
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where u, p, P are the perturbation velocity, density, and pressure. They are small and their
products neglected. The solution is sinusoidal with an exponential exponential with a growth
rate:

w ~ ehTe=hzt ~% = Agk, (2.3)

where w is the vertical component of the velocity, g is the acceleration experienced by the
fluid, and k£ = 27/ is the wave-number of the perturbation. Positive Atwood numbers
correspond to unstable density stratifications, which grow exponentially. Negative Atwood

numbers correspond to stable density stratifications, which oscillate.

2.1.2  Viscous and diffusive linear models

Chandrasekhar [7] and Hide [23] generalized the linear theory to viscous fluids by including
an isotropic incompressible Newtonian shear stress. Chandrasekhar worked out the uniform
constant property case, 1 = 2, and Hide included an approximate combination of distinct

viscosities. Here, we are concerned with the simpler uniform constant property case:

v =/ Agk + v2k4 — vE?, (2.4)

where v is the kinematic viscosity. Note that the viscous growth rate has a fastest growing
mode at finite wavenumber and that all wavenumbers have positive growth rates.
LeLevier et al. [33] generalized the linear theory to continuous density gradients, specif-

ically exponentially smoothed profiles for the form p + eTHzg§ p:

AgkK
=/ . 9.
TVEkr K (2:5)

Duff et al. [15] generalized the linear theory to miscible interfaces and incorporated Chan-

drasekhar and Hide’s viscous theories, producing an combined expression for the growth
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rate:

v = \/—gy(igl;ia) + 12k — (v + D)K?, (2.6)

where 0 is the instantaneous interface thickness, D is the diffusivity, and ¢ is a function of
the Atwood number and the product of the wavenumber and the interface thickness. For
ko << 1land A << 1,9 ~ 14 kdé/\/m. Note that for D > 0 there is a wavenumber cutoff
above which the growth rate is negative, i.e., the perturbation decays.

In the uniform constant property case, 6 = 2v/ Dt, introducing a time-dependence on the

linear stability:

+2k% — (v + D)2, (2.7)

Agk
")/ =
1+ \2/—’%\/17@ + o)
where g is defined by the initial interface thickness:

52
to = -0
0 4D’

where § is the initial interface thickness.

2.1.8 Weakly nonlinear expansions

Jacobs and Catton provide a third order weakly non-linear theory for the inviscid unit
Atwood Rayleigh-Taylor instability [30]. Their weakly non-linear theory is primarily used to
compare linear growth rates across a variety of perturbation symmetries in 3D. Hexagonal
and axi-symmetric perturbations are found to grow faster than rectangular perturbations.

Berning and Rubenchik extend the theory to arbitrary Atwood immiscible flows at any
higher order, but analyze only the third order expansion [5]. They perform a similar geomet-
ric comparison to Jacobs and Catton, but also use the harmonic couplings to characterize
linear saturation.

The perturbation expansion has been taken to at least the 10th order by Liu et al. [59].
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However, there is limited progress to be made with such expansions, as singularities with
branching point structures develop at moderate bubble displacements [5]. Put another way,
the interface and velocity potentials are not analytic in the span-wise position, e.g., when

the interface rolls up.

2.2 Potential flow models

The next class of models to be applied to the Rayleigh-Taylor instability are potential flow
models. These models assume that little vorticity is generated and that it is confined to
the interface, which is true at high Atwood numbers. At moderate and low Atwood num-
bers, there is significant generation and transport of vorticity via, for example, the Kelvin-

Helmholtz instability, so these models break down.

2.2.1 Layzer’s unit Atwood model

One of the first potential flow models is due to Layzer [32]. Layzer’s model is of an bubble
with p = 0 rising in a fluid of density p = 1, which is unit Atwood number. The bubble and
fluid are assumed to be incompressible and inviscid. The flow begins at rest, so there is no
initial vorticity. Layzer claims the flow will therefore continue to be irrotational, because the
viscous generation term of the vorticity equation is zeroed for inviscid, incompressible flows.

Since the flow is inviscid and irrotational, Layzer uses the potential flow technique, writing

the velocity as the gradient of a scalar potential:
v=Vo, (2.9)

where v is the velocity and & is the scalar potential. Incompressibility zeroes the Laplacian

of the potential:
V2o = 0. (2.10)
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A Bernoulli equation is used model the interface:

£ty = St 1),
9 2
- % ((g—f) (n(r,t),r,) + (%—f) (n(r, ), 7, t>> = gn(r;t),

where n(r, t) is the height of the interface, g is the gravitational acceleration, and f(¢) is an

(2.11)

arbitrary function of time but not space. The flow is axially symmetric with a vanishing

radial component at transverse walls and vanishing vertical component far away from the

bubble:

0P od
W(z, R,t) =0, g(ioo, r,t) =0. (2.12)

Finally, the fluid advects the interface:

dn o o dn,

o (r,t) = 5(77(7’, t),rt) — EW(T’ t),r, t)% r,t), (2.13)

The bubble accelerates to a terminal velocity. That velocity, in two and three dimensions,

1 /gR [gR

where f3; is the first root of the first order Bessel function of the first kind: Jy (/1) = 0. This

1s:

velocity agrees with experimental results that were available to Layzer, e.g. those by Davies

and Taylor [8].

2.2.2 Goncharov’s high Atwood model

Goncharov extends the Layzer model to include two fluids of arbitrary density difference. In
doing so, he makes a different choice of simplifying approximation for the Bernoulli equa-

tion [19]. The consideration of a second fluid with non-zero density turns the Bernoulli
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equation Equation 2.11 into a difference:

£ =p1 S r,),7,0) = oo 2 0 0),7,)

-y ((8;;1)2<n< 0,r0) + (%)2<n<m)mt>>

. ((?) 070+ (%22 0. t))

—gp1n(r,t) + gpan(r,t).

(2.15)

The Goncharov model keeps the free-slip boundary condition between the two fluids, which
is exact only for A = 1 and a reasonable approximation for p;/py >> 1. In this respect,

Goncharov’s model should be reasonable for high-Atwood, nearly inviscid flows. The terminal

/| 2A g 1.02 | Ag\
=1.02 == . 2.1
v 0 1+4Ak o V14 A (2.16)

Similar potential flow models were introduced by Sohn [52] and Abarzhi et al. [2], with

velocity predicted is:

similar results.

2.3 Buoyancy-drag models

Buoyancy-drag models were developed concurrently with potential flow models, in part to
provide a physical interpretation for their results. They balance buoyant and parasitic forces
related to the geometry of a model bubble. Historically, buoyancy-drag models have had
only 1 or 2 adjustable parameters, so they are evaluated more on their ability to reproduce
specific features of the flow, e.g., the terminal velocity, rather than the full time-history.

Here, we focus on models applicable to single-mode non-interacting bubbles.
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2.8.1 Bubble model of Davies and Taylor

Early experiments on the Rayleigh-Taylor instability by Davies and Taylor [8] were performed
by measuring the dynamics of large bubbles of gas rising through a dense liquid. In their
analysis, they relate the terminal velocity of the bubble to a drag coefficient, implicitly

defining a buoyancy-drag model of the form:
: 2l 9
vpV = pgV — Cprd 2PV (2.17)

where v is the gas bubble velocity, p is the density of the liquid, g is the gravitational
acceleration, V is the bubble volume, Cj is a drag coefficient, and d is the bubble diameter.

The coefficient C; was found to take values between 0.52 and 1.37.

2.3.2  Tube model of Dimonte and Schneider

Dimonte and Schneider develop a buoyancy-drag model for tube-shaped bubbles [12, 11]
based on Davies and Taylor’s model, Equation 2.17. They let the ratio of the area to the
volume go with the inverse bubble height, A/V ~ 1/h. They also add a rescaling of the

buoyant term by [, attributed to Youngs:

2
. v
vy = BAg — th—’;, (2.18)

where vy, is the bubble velocity, < 1 accounts for the relatively smaller buoyant portion
of the bubble due to entrainment, C; is a drag coefficient, and h;, is the bubble height. A
and C; depend on the Atwood number, but Dimonte proposes § = 1/2 and Cy = 2 for
A << 1 [13]. However, the model is stated to apply to self-similar bubble fronts, in which
hy ~ D.
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2.3.8  Self-similar model of Oron

A model by Oron et al. also rescales the bubble mass [44]:

. O, .
(p1 + Cap2)h = (p2 — p1)g — Tdthzfl, (2.19)

where pg > p1 are the densities of the two fluids, C, is an added mass coefficient, h is the
height of the bubble, g is the gravitational acceleration, Cj; is a drag-like coefficient, and
A is a characteristic length. The use of A, which is time-independent, implies the model is
directed at self-similar flow. The values of C'; and C; are assumed to be Atwood independent

and set to agree with Layzer’s theory:

Co=1,  Cy=2m (2.20)

2.4 Problems with single mode Rayleigh-Taylor modeling

Simulations by Ramaprabhu et al. [48] have shown that, after stagnating at a constant ve-
locity in agreement with the potential flow models, low-Atwood bubbles re-accelerate to ve-
locities nearly twice the potential flow limit. The stagnation and re-acceleration phenomena
were confirmed experimentally by Wilkinson and Jacobs [62]. Modeling the stagnation and
re-acceleration phases is the primary open problem in the low Atwood single-mode Rayleigh-
Taylor instability. The desire to describe this re-acceleration process, quantitatively, is the
motivation for this thesis.

First, though, I will give three qualitative explanations for why re-acceleration should
have been expected: one based on the pressure balance, one based on the assumptions of po-
tential low models, and another by identifying a historical inconsistency in the development

of buoyancy-drag models.
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2.4.1 Pressure in the single-mode RTI

If there is a terminal velocity regime, can it be due to form drag? In other words, can we
have terminal velocity without viscosity? Let v — 0 and consider a fluid element lying on the
axis of a bubble or spike at terminal velocity. By symmetry, it will only have a z-component

of the velocity. The z-forces must balance:

gt = =, (2.21)

where ¢ represents the mass. In the falling spike, the pressure would be decreasing with z.
In the rising bubble, the pressure would be increasing with z. There would necessarily be a
pressure gradient between the head of the bubble and the tail of the spike, and vice versa.
As the bubble aspect ratio exceeded unity, the span-wise pressure gradient would exceed
the gravitational forcing. The resulting span-wise flow would rapidly mix the two fluids,
destroying the bubble and spike.

The form of the bubble and spike require the pressure to be reasonably homogeneous span-
wise. Only at the bubble and spike tips do we observe a span-wise flow: the displacement
of stationary fluid by the tip. In other words, the pressure drag is highly localized to the
bubble and spike tips but cannot affect the flow in the stems of the bubbles and spikes. If
the flow is terminal, then it must be attenuated predominately by viscous drag, which can

act along the sidewalls, that is the stem, of the bubbles and spikes.

2.4.2  Departure from potential flow

The assumption that the flow is irrotational applies only at high Atwood number. At mod-
erate and low Atwood numbers, the interface between the light and the dense fluid is a shear
layer that generates vorticity. If the viscosity is low enough, secondary Kelvin-Helmholtz

instabilities develop in the shear layer and transport vorticity into the center of the bubble.
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While it is not obvious that vorticity should cause re-acceleration, it is clear that the flow
is not irrotational, even away from the fluid interface, and therefore cannot be accurately

modeled by potential flow.

2.4.3 Historical inconsistency in buoyancy-drag models

Buoyancy-drag models contain a buoyant term that goes with the bubble’s volume and
a form drag term that goes with the bubble’s span-wise area. The model was originally
developed to describe multi-mode self-similar flow, in which there is only one length scale,
the dominant wavelength A\. Consequently, the ratio of the volume to the surface area is
AL, vielding a terminal velocity as a function of .

However, the single-mode RTI has two length scales: in addition to the wavelength A
there is the bubble height, h. In other words, single-mode RTI bubbles are cylindrical
instead of spherical with an axis length that goes with the bubble height. The ratio of the
volume to surface area is =1, not A™1, so force balance occurs when h o~ Vvh, which is
not terminal. Only by introducing a drag term that goes with the height h, such as skin
drag, can a terminal velocity be recovered. This terminal velocity would be a function of

the viscosity, and therefore cannot be described by potential flow.

2.5 Related work aimed at modeling stagnation and

re-acceleration

Since re-acceleration was observed experimentally, multiple attempts have been made to

capture re-acceleration in the models.
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2.5.1 Vortex ring correction of Ramaprabhu

Ramaprabhu et al. [47] attribute the reacceleration to the formation of a vortex ring at the
bubble tip. They add a term to their buoyancy-drag model representing the centrifugal force

per unit volume:
wiR _ Capv”
4 a7

(P29 — p19) + p1 (2.22)

where w is the average vorticity in the bubble tip. The model does not provide an evolution
equation for wq; it is measured from simulations ad hoc making the model descriptive but
not predictive. The model agrees qualitatively, but not quantitatively, from the onset of
stagnation at bubble height h/\ &~ 0.5 through re-acceleration at h/A ~ 2.0, but doesn’t
capture linear growth at early times or the dynamics at late times. Furthermore, they
compare the vortex ring model to simulations using two different codes; the two codes
disagree quantitatively over the re-acceleration regime and disagree qualitatively over what

follows 1it.

2.6 Vorticity and viscosity in potential flow

Banerjee et al. attempt to describe re-acceleration by adding viscous and vortical effects to a
potential flow model [3]. Similar to the vortex ring correction to buoyancy-drag, the vorticity
is an input to the potential low model. Instead of using data from simulations, Banerjee et
al. write the vorticity as an analytic function of time independent of the Atwood number.
The resulting dynamics have a single re-acceleration phase before reaching an asymptotic

terminal velocity.
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CHAPTER 3
DATA-DRIVEN MODELING OF THE LOW-ATWOOD
SINGLE-MODE RAYLEIGH-TAYLOR INSTABILITY

3.1 Abstract

The Rayleigh-Taylor instability (RTI) pervades classical fluid dynamics and is essential to
a diversity of phenomena, e.g., salt fingers, thermonuclear flames, and inertial confinement
fusion, but remains poorly understood in dissipative systems. Recently, the single-mode RTI
has shown experimentally and numerically to deviate from established potential flow models
when the Atwood number was less than 1/2. Attempts to explain the deviation, termed re-
acceleration, have been ad hoc and hindered by a dearth of data at late times and high aspect
ratios. This paper present buoyancy-drag and mixing models that include dissipative terms
and match the linear theory. To inform the model, a numerical experiment is performed,
simulating a range of Grashof and Schmidt numbers and reaching bubble heights 34x the
bubble width. The model coefficients are estimated by physical argument and then fit to
the numerical results. The model error is less than 2% for the bubble height and 4% for
the volume of mixed fluid. An attempt is made to interpret variations in the fit parameters
with the Rayleigh and Schmidt numbers, where present, but it is hindered by many of the
simulations interacting with the boundaries. Simulations in higher aspect ratio domains

would improve the model.

3.2 Introduction

The Rayleigh-Taylor instability has been the subject of considerable study since its charac-
terization by Lord Rayleigh in the 19th century [35]. Despite this, many aspects of the non-

linear growth remain poorly understood. Analytic models based on potential flow have been
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reasonably effective for flows with a large density jump, i.e. an Atwood number, Ap/ > p,
near unity [32, 32]. However, recent experiments at low Atwood number have demonstrated
a significant departure from the potential flow limit: Rayleigh-Taylor bubbles are seen accel-
erating past the terminal velocity predicted by potential flow models [62]. The acceleration
persists beyond times which are experimentally accessible, so numerous efforts have been
made to compute the late time flow numerically [47, 61]. Ultimately, the goal is to use
these numerical experiments to inform a simple model that captures the key features and
mechanisms of the flow, as potential flow models do for high Atwood number flows.

This study concerns the dynamics of the single-mode Rayleigh-Taylor instability (sm-
RTI), where the interface between a heavy fluid and a light fluid is perturbed with a single
wavelength A and corresponding wavenumber k. If the Atwood number is low, then at early

times the interface grows exponentially with a rate given by a linear approximation [15]:

Agk 2
= — 29 L2 (4 D2, 3.1
¥ \/1+7r_1/2k5 ( ) (3.1)

where A is the Atwood number, ¢ is the local acceleration, ¢ is the interface thickness, v is the
kinematic viscosity, and D is the diffusivity. As the amplitude approaches the wavelength,
the linear growth saturates. At unit Atwood number, the non-linear regime is described
by potential flow, in which Layzer [32] found the interface approaches a terminal velocity
proportional to the root of the acceleration and wavelength: vy ~ \/gA: Potential flow

models have been extended to A < 1, with the most successful model by Goncharov [19]:

1 AgA

v = ﬁ 1—1-—14 (3.2)

Experiments by Wilkinson and Jacobs [62] show that after reaching the velocity given by
Equation 3.2, low Atwood bubbles unexpectedly accelerate a second time. This is termed ‘re-

acceleration, with the terminal velocity replaced by a ‘stagnation velocity‘. Re-acceleration
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was not present in popular potential flow and buoyancy-drag models, and attempts to capture
re-acceleration have been the emphasis of recent model development in the low Atwood
number regime.

Experiments have thus far been unable to observe more than the onset of the re-acceleration
phase. Therefore, the community has turned to numerical studies to compute late-time dy-
namics. At least two such efforts have been undertaken, one by Ramaprabhu et al. [47]
and one by Wei and Livescu [61], leading to slightly different conclusions. In the study by
Ramaprabhu, the flow accelerates to around twice the stagnation velocity and then deceler-
ates back to the stagnation velocity, indicating that re-acceleration may be a transient. In
the study by Wei and Livescu, the flow re-accelerates and then breaks up into many small
pockets of buoyant fluid, which themselves continue to accelerate at nearly a fixed rate.

Buoyancy-drag models have been proposed for the multi-mode and single-mode dynamics
of the bubble front. They balance the buoyant force of the bubble with a drag force to
predict the front velocity as a function of the characteristic length. Ramaprabhu proposes
an additional forcing term based on the development of a vortex ring at the bubble tip, but
relies on observation of the mean vorticity experimentally or in numerical simulations. There
is a need for a predictive model for re-acceleration that relies only on the initial conditions.

In Section 3.3, we propose a simple buoyancy-drag model for the dynamics of the smRTT.
In Section 3.4, we present a battery of numerical trials. In Section 3.5, we describe the
regimes present in late time bubble trajectories. In Section 3.6, we fit the unconstrained
model coefficients to the numerical results.. Finally, in Section 3.7, we assess the current

state of smRTI and highlight outstanding questions.
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3.3 Simple model

We base our model on the buoyancy-drag models of [44]:
(p1 + p2)Vh = (p2 — p1)gV — Ch?pA, (3:3)

where py and pg are the densities of the light and heavy fluid, V is the characteristic volume
of the bubble ¢ is the acceleration, C' is a drag-like coefficient, and A is the characteristic
cross sectional area of the bubble. Making the Boussinesq approximation, p; & p9 yields:

A

B:Ag—giﬂv

(3.4)

In the self-similar regime there is only one length scale, so A/V ~ 1/\. However, in the
single-mode regime that is the focus of this study, the bubbles are elongated, producing
two length scales: a span-wise scale A and a stream-wise scale h. Therefore, for the smRTI

AV ~ % and the model of Oron et al. yields unbounded velocities:

. C h?

Because the strength of the form drag relative to buoyancy decreases at high aspect ratio,

we must consider other drag terms, such as skin drag, that grow at least linearly with h.

3.3.1 Dynamics

We begin by listing the external forces the bubble experiences. The first is the buoyant force:

Fy = CoAg\2h, (3.6)
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where Cj is an unknown coefficient. The next is the form drag:

Fy = C1\%1h?, (3.7)
where (' is similar to a drag coefficient. The next is the viscous, or skin, drag:

Fys = Cyvhh, (3.8)

where C9 is another unknown coefficient and v is the kinematic viscosity.

To complete the dynamic equation, we must characterize the inertia of the bubble. The
bubble is roughly cylindrical with a height k, so we expect an inertial term of the form A\2h.
However, consider the limit of ~ — 0. Here, streamlines must extend from bubble to spike,
which has a characteristic separation A for an inertial term of the form A3. Therefore, we

expect the inertia to be a mix of a term that goes as A2h and one that goes as A\3:
I = C50%h + Oy 3, (3.9)

where ('3 and Cy4 are two more unknown coefficients.

The complete dynamic equation is:

. CoAg\’h — C1\2h2 — Covhh

h 3.10
03)\2h + Oy 3 ( )
Without loss of generality, we can let Cy = 1 and simplify:
. Agh — Cyh? — Cov(h/X2)h

Csh + Cy\
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We can nondimensionalize by defining a dimensionless length and time:
h
= — =14/t 3.12
e=v, T : (3.12)

which simplifies:
z—C13% — CQGr_1/222
Cs3z + Cy

Z =

, (3.13)

where the derivative is with respect to 7 and Gr = Aog)\3u_2 is the Grashof number.

3.3.2  Mixing

As the bubble height grows, the velocity approaches a terminal value specified by the balance
between buoyancy and skin drag. At terminal velocity, the flux of pure fluid into the bubble
is bounded. However, the interfacial mixing continues to grow with the interfacial area,
which grows with h. Therefore, for any finite diffusivity, the bubble will ultimately diffuse
away. For this reason, we must include the effects of interfacial mixing, at least to the first
order.

The quantity of mixed fluid, m is computed directly from the time, bubble height, diffu-
sivity, and initial interface thickness. The quantity of mixed fluid is defined as the integral

of the absolute value of the scalar:

mi#) = / (1= abs[(z, y, 2 1)]) V. (3.14)

where we assume the mean scalar is zero, [ ¢dV = 0.
We approximate the volume integral by a 1D integral across the interface multiplied by

the surface area:

m(t) ~ / (1= abs [y (r)]) dr, (3.15)
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where S is the surface area and ¢; is a model 1D scalar profile:

$1(r) = % (erf [g} —erf [T . dD , (3.16)

where ¢ is the interface width and d is the diameter of the bubble.

The surface area has contributions from the bubble tip and side walls:
S = ((16)\2 + cg,m) , (3.17)

where C5 and Cg are unknown coefficients. Cl scales the perimeter of span-wise slices of the
bubble while Cg rescales bubble tip.

To the first order, the diameter is half the wavelength: d ~ \/2. However, the cylindrical
bubbles do not always fill the span-wise domain. This can be seen by values of C5 that are
below 4, the value corresponding to space-filling rectangular bubbles. Therefore, we adjust

the diameter using C':
_ACs

d=—-—. 1
W (3.18)

The interface width is modeled by simple 1D diffusion:

5(t) = 24/D(t + to), (3.19)

where ¢ is chosen to match §(0) to the initial condition.

We perform the integral through the bubble:

/ CZZ 0 -loir= = (1-o0 [-5])

]

The mixed mass must still be connected to the dynamics equation via the Atwood num-

(3.20)
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ber:

A= A (1 - %) : (3.21)

where Ay is the pure Atwood number and V' is the volume of the bubble. As in the dynamics

equation, we define the volume as a mixture of A3 and A\2h terms:
V= ((18)\3 + 07)\2h> , (3.22)

where C'7 and Cyg scale the volume analogously to C5 and Cg.

The volume of mixed fluid, m(t), can be measured directly in the simulations. This
gives meaning to the value of m(¢) independent of the ratio m(t)/V. Therefore, unlike in
the dynamics, where a coefficient could be discarded without loss of generality, all four of
Cs, Cg, C7 and Cg are necessary. The overall scale factor cannot be removed if we want to

compare to mixed volume measurements.

3.3.3  Coefficient constraints

First, consider the limit where D =0, v = 0, and h — 0. The dynamical equation becomes

. A
i Ag

= 2
04)\h, (3.23)

which matches Rayleigh’s original linear stability analysis if
Cy=1/(2m). (3.24)
When v > 0, the growth rate h is given by Duff’s linear theory:

2
h = <\ [ Agk + v2k4 — yk2> h, (3.25)
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where k = 27/ is the wavenumber. Setting this equal to Equation 3.23 yields:

1+ 22 (\/1+m2+x)
- o2 ’

832 [(27)3
= = 3.27
v Ag\3 Gr ’ (3:27)

Next, consider the initial quantity of mixed mass for small sharp interfaces, §(0), ag — 0.

Cy

(3.26)

where,

and Gr is the Grashof number.

We assume the initial condition is an error function profile:

o 2025
M(t=0 :)\2/ af 2] = 222, (3.28)
( ) e [5 ] LS
Equating this to the product of Equation 3.17 and Equation 3.20:
2026 CgA?o
=27 (3.29)
NS VT

which implies that Cg = 2.
Next, consider the limit when 6 — 0 and h — 0. In the linear theory, the Atwood number

is rescaled:

Ag ko
A=—2 = Ag(1-—=—). 3.30
1+ 7 12ks 0( ﬁ+k6> (3.30)

We equate this to Equation 3.21:

216 G 0
AT +2m6/A)  Cya/m

(3.31)

or

Cs  2mym

Cs T +2m6/\ (3:32)
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The variable ¢ is associated with the mixing model, not the dynamics, so it would be conve-
nient to have C's independent of §. We've defined Cg = 2 in the limit of §(0), ag — 0, so we

can add a term that goes to zero at § = 0:

2

Co = 14270/ N (3:33)
which constrains Cg to be:
1
S 34
Cy 5 (3.34)

which is the same as Cy in the inviscid case.

3.3.4  Coefficient estimation

The parameter C7 scales the form drag and serves as a drag coefficient. Because we have let
Cp = 1, the force balance is really aggregated over two rising bubbles and two falling spikes,
each with diameter A/2. Therefore, we multiply the force on a single bubble of diameter \/2

by 4. Now, we relate C' to the drag coefficient C; in the drag equation:
C1A2h2 = 20,402, (3.35)

where A is the cross sectional area, so C can be estimated using drag coefficients of similar
objects:

C) = 206%, (3.36)

where A ~ (\/2)2. Initially, the bubble tip is a flat plate, which has Cy; = 1.28. At
late times, the bubble is closer to an elongated cylinder, which has C; = 0.82, but with a
somewhat streamlined tip, which further reduces drag. We expect C| = 0.64, but possibly
much smaller if the bubble takes a streamlined shape. However, if the bubble spreads to

have a diameter greater than \/2, C could be greater than 0.64.
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|

(a) Scalar ¢ (b) Vertical component of the velocity, w

Figure 3.1: Slices of the scalar and vertical component of the velocity at early times and
high Grashof number. The arrows indicate the dependence of the model terms on different
span-wise length scales, and are identical in both figures. (1 is related to the maximum cross
sectional diameter of the bubble in the velocity field. C is related to the nominal side-wall
diameter of the bubble in the velocity field. C' is related to the nominal side-wall diameter
of the bubble in the scalar field. ¢ is related to the interface thickness in the scalar field.
The slice is in the plane x = y, which passes through only bubble centers.
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Next, consider the limit when A — oo and D = 0: The dynamical equation becomes

. Apg — Cov(1/N)h

h 3.37
03 Y ( )
which leads to a terminal velocity of
. Aggh?
h= 3.38
Cov '’ (3:38)
or a nondimensional velocity, i.e., Froude number,
d VG
Fr=" =Y (3.39)

T dr O

The case of extended bubbles and spikes affected only by viscous drag is highly analogous
to flow through a square duct. The pressure drop, Ap, along a duct is given by the Darcy-
Weisbach formula:

fpv’L

Ap=1D~2~ 4
p= (3.40)

where L is the length of the duct, v is the mean velocity, d is the hydraulic diameter, and

fp is the Darcy friction factor. In our case, L = h, v = h, and Ap = Apgh, so

fp h?
Ag = ——. 3.41
9="5 (3.41)

For laminar flows in circular pipes, fp = fp = 64/Re, so

h
Ag = ;—iwuﬁ (3.42)
The hydraulic diameter d = \/2, so
. [ Agg\?
h="——. 4
fp 1280 (343)
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This gives an estimate for Coy:

Cy ~ 128§—D, (3.44)

D
where the ratio fp/fp is affected by the geometry and departure from laminar flow. For
example, for square ducts fp/fp ~ 0.889, so Cy ~ 114 [17].

The product of the coefficient C5 and Ah gives the interfacial area of the side of the
bubble. Therefore, C5 captures information both about the bubble shape and the bubble
diameter. If the bubbles had diameter A/2 and were smooth and rectangular, then Cj = 4.
If the bubble has a lower surface area shape, e.g., cylindrical, or is thinner, then C5 < 4.

These diameters, along with the relevant span-wise length scales in the preceding co-
efficients, are sketched in Figure 3.1. The diameter associated with C' is defined as the
entrainment width at the bubble tip, in contrast to the width at the bubble center used
for (9. The diameter associated with Cf is defined similarly to Co, but with respect to
the scalar interface. The interface width ¢ also depends on the scalar representation of the

bubble.

3.4 Numerical experiments

To evaluate the simple model of Section 3.3, we conduct a battery of direct numerical simu-
lations. The novel components of the simple model, i.e., viscous drag and mixing, are most
pronounced at late times. We primarily direct our effort at simulating higher aspect ratio
domains to allow the bubble to reach a dissipative flow.

The numerical experiments simulate the incompressible Navier-Stokes equations with the

Boussinesq approximation:

% +u-Vu=vViu—VP+ Agp, (3.45)
aa—f +u-Vo=DV?¢, (3.46)
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where u is the velocity, v is the kinematic viscosity, P is the pressure, ¢ the nondimensional
density, and D is the diffusivity of ¢.
The initial conditions are quiescent, with a horizontal interface perturbed by a product

of cosine functions and smeared by an error function:

z + ag cos(2m(x /X)) cos(2m(y/N)) )) 7 (3.47)

¢(x,y,z,t:0):erf( 5

where ag is the initial amplitude and ¢ is the initial interface thickness. Both ag and 0 are
taken to be small enough to minimize their effects on the solution, 0.01 and 1/128, respec-
tively. The governing equations and initial condition have four dimensional parameters: v,
D, Ag, . These are combined into 2 nondimensional numbers, the Grashof number and the
Schmidt number:

B Apg\3 v

, Sc=—. (3.48)

G
g D

2
The Grashof number serves the role of a Reynolds number for instability problems without
a consistent characteristic velocity. For this reason, the root of the Grashof number is

sometimes called the perturbation Reynolds number [61]:

The domain is [0.5,0.5,64] and rotated 45 degrees in the span-wise plane to model A\ =

\/5, transforming the initial condition to:

z + ag cos(m(x +y)) cos(m(z — y)) )) ) (3.50)

¢(I,y,z,t=0)=erf< 5

This is done so the span-wise boundaries at x = {0,0.5} and y = {0,0.5} are symmetric.
The length of the domain is 64/v/2 ~ 45.2 wavelengths with no-slip walls at the top and

bottom. Based on a previous validation of the smRTI with no-slip boundaries, we expect
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the bubble to be unaffected by the top and bottom walls until it reaches 75% of the height,
or about 17\. This provides significantly more data than the h < 4\ results of Ramaprabhu
et al. [47].

The model introduced in Section 3.3 assumes the bubbles and spikes are coherent struc-
tures, that is they travel at some velocity and have a well defined interface. As the Grashof
number increases and the bubbles and spikes break up, they depart from the assumptions of
the model. On the other hand, at low Grashof number and finite diffusivity, diffusion moves
the ¢ = 0 interface, as opposed to simply transporting the scalar across it, which also departs
from the model assumptions. For these reasons, we restrict our study to an intermediate
range of Grashof numbers: those which are large enough to sustain bubble dynamics while
not being so large as to break the bubbles apart. This range has been identified empirically
to be approximately 6 x 102 < Gr < 6 x 10° for Schmidt numbers greater than 1.

The number of spatial samples needed to resolve the advection-diffusion equation for
the scalar goes with the Peclet number to the third power. It is prohibitively expensive to
perform calculations at high Schmidt numbers and high Grashof numbers.

Simulations are performed with the NekBox version [26] of the Nek5000 code [16], which
has been previously validated against single-mode Rayleigh-Taylor experiments [24, 62]. The
spectral element method implemented by NekBox has purely dispersive errors and converges
exponentially with the spectral order [10]. The resolution parameters, the number of spectral
elements, the order of the spectral elements, and the time step were chosen to achieve an

accuracy of 1074 in the bubble aspect ratio [27].

3.4.1 Observables

Bubble height For miscible RTI, the shape of the scalar field is due to a combination of
advection in the bubble and diffusion across the interface. We can assume an error function-

like profile across the interface at the bubble tip, but diffusion across the bubble sidewalls
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Figure 3.2: Comparison of height metrics at Gr = 4.8 x 10* and Sc = 1.
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results in a linear profile in both the span-wise mean and maximum of the scalar. To separate
the definition of the bubble tip from sidewall mixing, which is incorporated by the decreasing
effective Atwood number, we introduce a new definition: the bubble tip is defined as the
inflection point in the span-wise maximum scalar profile. For the symmetric case, this span-
wise maximum of the scalar is equivalent to the value along the bubble axis. While mixing
leads to a linear decay behind the bubble tip, the profile remains sharp near the bubble tip,
decoupling the position of the inflection point from the sidewall mixing.

This definition of the bubble height is compared to two more traditional definitions,
based on a cutoff in the mean or maximum profiles, in Figure 3.2. At early times, the
definition based on the mean profile grows diffusively. At late times, the definition based
on the max profile kinks as the linear part of the profile crosses zero and then stagnates.
The definition based on the inflection avoids both breakdowns while agreeing with the two

traditional definitions within each of their valid ranges.

Mixed volume The scalar is normalized such that ¢ € [~1,1] and the average ¢ = 0.
The purity of the fluid is therefore |¢| and the volume of mixed fluid is given by a simple

integral:

M(1) = / (1~ |6(z,y,2))) dV (3.51)

3.5 Growth stages through late times

Single mode experiments have been limited to bubble heights of 1.8\ [62]. Simulations have
reached in 4\ in 3D [47] and 9 in 2D [61]. Here, we present trajectories that continue up
to 17\, for example Figure 3.3. However, the more dissipative bubbles stop rising at lower
aspect rations, for example Figure 3.4. Plotted with the nondimensional bubble height, h /X,

and nondimensional mixed volume, M/ A3 is the nondimensional velocity, or Froude number,
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Figure 3.3: Bubble Froude number vs. nondimensional bubble height for Ra = 10575 8¢ = 4,
simulation vs. model with successive terms enabled: first Cy, Cg and Cg, then C3, then Cf,
then (9, and finally C5 and C7. The dashed vertical lines divide the trajectory into three
regimes: linear growth for H/\ < 0.05, saturation until H/\ & 8, and viscosity beyond that.
The stagnation and re-acceleration transients are seen beginning at H/A = 0.5 and ending
by H/A = 1.5.
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Figure 3.4: Bubble Froude number vs. nondimensional bubble height for Ra = 10%5 8¢ = 8,
simulation vs. model with successive terms enabled: first Cy, Cg and Cg, then C3, then C,
then (9, and finally C5 and C7. Dashed vertical lines divide the trajectory into four regimes:
linear growth for H/\ < 0.05, saturation until H/\ ~ 0.1, viscosity until H/X ~ 1.3, and
diffusion beyond that. The stagnation and re-acceleration transients, seen in Figure 3.3, are
suppressed by the viscous regime, which onsets before the transient begins at H/\ = 0.5.
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which is defined as:
v

Fr = : 3.52
r= o (3.52)
The dissipation in the bubble is characterized by the Rayleigh number:
Ra — Grse — 409X (3.53)
a = Gr3c = .
vD

In the spirit of recent analyses [47, 61], we try to identify distinct growth regimes. To do
so, we consider the behavior of the simple model with coefficients set to zero. Initially, only
Cy, Cg, and Cg affect bubble dynamics. The growth is exponential, with a rate in agreement
with the linear theory, so we term this the linear regime. As the bubble grows, the C3 term
reduces the growth rate to a limiting value of Ag/C3. Because this represents the transition
from exponential growth to free-fall, we term it the saturation regime. The C'| term has the
same qualitative effect as the Cg term, so it doesn’t distinguish a unique regime. The C9
term does impose a limiting velocity scale, so it departs significantly from the C3 dynamics
in the viscous regime. Finally, the C5 term, balanced by the C7 term, mixes the fluid and
reduces the effective Atwood number in the diffusive regime. Because the relative onset of
the viscous and diffusive regimes depends on the Schmidt number, they are grouped together
into the dissipative regime. Ultimately, the bubble stops rising. The bubble height at this

point, which is also the maximum bubble height, is called the penetration depth.

3.5.1 FExponential growth

When the amplitude is small and the interface is thin, the linear theory and numerical results
identify exponential growth: h = ~2h. Similarly, in the limit h,d — 0, the simple model

yields a growth rate:

v = Aogh : (3.54)
2wCy(1 + Cg/Ceml/2k6)
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which differs from the linear theory by the absence of a —DE? term. This is the only term
that can cause unstable interfaces to decay, i.e., 7 < 0 for positive Atwood numbers. In the
simple model, all unmixed bubbles grow while in the linear theory highly diffusive bubbles
decay.

The other terms, i.e. , those scaled by C7,Cs,Cs,Cs and C7, can be omitted while the

description of the exponential growth is unaffected.

3.5.2  Saturation regime

The exponential growth saturates as the bubble height increases. In the simple model, this

captured by the C3 term:

i = Ag , (3.55)
(C3h + C4N)(1 + 08/06W1/2/€5)

which becomes significant when h ~ CyA/C3. We will find in the following section that Cj
takes a value of about 1, so, omitting viscous corrections, saturation halves the growth rate
at h ~ \/(2m).

The definition of the start of the saturation regime is somewhat arbitrary. Here, we
propose the definition h/A < 0.05 as it is where the exponential and saturated plots of the
Froude number versus height visually deviate. The important thing is that this threshold is
independent of Ag, the Grashof number, and the Rayleigh number. Within the saturation

regime, the acceleration takes a limiting value of Ag, defining a saturation velocity:

vs ~ /Agh. (3.56)
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3.5.3  Viscous regime

As the bubble grows, so does its surface area. The viscous drag, which scales linearly with
the bubble height and bubble velocity, ultimately balances the buoyancy to limit the velocity,
as in Equation 3.38. The scaling of the onset of this regime can be found by equating the

saturation velocity and the viscous velocity:

Ag\?
VAgh ~ gT. (3.57)

Solving for A/ yields:
hy  Aghd

A 12

Gr, (3.58)

where h, is the onset of the viscous regime.
As in the saturation case, the particular definition of the onset is arbitrary. Here, we

will define h, such that when h, /A = 0.5, the viscous velocity has the potential flow value:

vy = W_l/Z\/Ag/\. This works out to be:

h
W _ LQGr ~ 4.7 x 107°Cr, (3.59)
A 43

where we've let U9 = 128, the nominal value from Poiseuille flow.

3.5.4  Diffusive regime

The rate of diffusion across the surface of the bubble also scales with the bubble height.
When the viscous drag limits the bubble’s velocity, the flux of pure fluid into the bubble,
which goes as the velocity, is unable to match the flux of mixed fluid through the interface.
Mixing dilutes the buoyant fluid, reducing the effective Atwood number and therefore the
bubble velocity. Ultimately, the effective Atwood number reaches zero and eventually the

bubble stops rising.
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Figure 3.5: Penetration depth, nondimensionalized, vs. the Rayleigh and Schmidt numbers.
The dashed line separates completed from incomplete trajectories, which are clipped at

h/\ = 23.
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The penetration depth is the maximum height of the bubble, which is the height of
the bubble at the stopping condition of this analysis. We can estimate the scaling of the
penetration depth as the product of a characteristic velocity with a characteristic time-scale.

The late-time velocity is the viscous velocity, v,, while the time scale is given by diffusion:

/\2
Combining and nondimensionalizing yields:
h(co)  Agh3
p— p— . 1
) o) Ra, (3.61)

so the penetration depth should go linearly with the Rayleigh number.

The penetration depth is plotted as a function of Rayleigh and Schmidt number in Fig-
ure 3.5, and, indeed, depends strongly on the Rayleigh number before being clipped by the
top walls. Furthermore, the relationship to the Rayleigh number is linear over the cases
shown here, as shown in Figure 3.6.

We can use a similar analysis to define the onset of the diffusive regime when the interface
width is a quarter wavelength, 6 = A/8, which is a quarter of the nominal bubble diameter.

This results in a bubble height:

hp 1

— ~6.1x107° .62
3 12802Ra 6.1 x 10" °Ra, (3.62)

where we've again let Cp = 128.

The ratio of the diffusive to viscous heights, Equation 3.62 and Equation 3.59, respec-
tively, is linear with the Schmidt number, or about 1.3Sc. For Sc > 1, the portion of the
trajectory that is governed by viscosity alone increases with the Schmidt number. However,

for Sc < 1 the diffusive regime dominates the viscous regime entirely.
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Gr Ra Sc \ Cq Co Csy Cr Cs \ Ey4 En

6.9 -10° 1.4 -108 2 0.46 136.3 1.00 1.05 3.18 0.74% 2.04%
6.9 -10° 6.9-10° 1 0.45 146.7 1.00 1.14 2.48 0.49% 1.33%
1.7 -10° 6.9 -10° 4 0.47 201.9 1.00 3.16 3.29 0.43% 1.02%
1.7 - 105 3.5-10° 2 0.41 197.3 1.00 2.48 2.70 0.34% 0.55%
1.7 -10° 1.7-10° 1 0.38 179.8 1.00 1.73 2.39 0.30% 0.24%
4.3-104 3.5-10° 8 0.30 161.1 1.00 2.49 3.86 0.29% 0.24%
4.3-10% 1.7 -10° 4 0.28 147.9 1.00 2.01 3.14 0.26% 0.18%
4.3-104 8.7-10% 2 0.39 99.0 1.00 1.28 2.57 0.25% 1.42%
4.3-10% 4.3-104 1 0.00 96.5 1.54 1.02 2.27 0.14% 1.22%
1.1-10% 1.7 - 10° 16 0.00 158.8 1.00 2.65 3.63 0.15% 1.54%
1.1-10% 8.7-10% 8 0.46 111.0 1.00 1.44 2.72 0.37% 3.46%
1.1-10% 4.3-10% 4 0.54 79.4 1.00 1.10 2.40 0.33% 3.68%
1.1-10% 2.2-10% 2 0.00 82.4 2.03 1.04 2.36 0.09% 1.50%
1.1-10% 1.1-10% 1 1.05 119.2 2.94 1.00 2.26 2.87% 1.24%
2.7-103 8.7-10% 32 1.22 85.0 1.02 1.42 2.83 0.38% 2.77%
2.7-103 4.3.10% 16 0.56 72.7 1.20 1.08 2.44 0.75% 3.67%
2.7-103 2.2-10% 8 0.19 69.9 2.41 1.07 2.45 0.25% 2.32%
2.7-103 1.1-10% 4 0.91 68.2 3.23 1.00 2.40 1.12% 1.12%
6.8 - 102 4.3-10% 64 1.63 65.7 2.44 1.12 2.57 0.40% 2.91%
6.8 - 102 2.2-10% 32 0.52 66.9 3.94 1.07 2.49 0.55% 2.46%
6.8 - 102 1.1-10%* 16 0.00 69.5 9.10 1.00 2.47 0.22% 0.95%

Table 3.1: Simulation conditions, fit coefficients, and relative errors.

3.5.5 Stagnation and re-acceleration

Absent from the previous discussion is the stagnation and re-acceleration of the bubble
around h/A = 1, as seen in Figure 3.3. There are no terms in the buoyancy-drag model
capable of producing an inflection point in the Froude number vs. bubble height, so stagna-
tion and re-acceleration cannot be controlled by turning a model coefficient on or off. This
suggests that the buoyancy-drag model is missing a term.

However, the buoyancy-drag model does have a limiting velocity, the viscous velocity vy,.
When the viscous velocity is near or below the stagnation velocity, Fr ~ w1/ 2 saturation
and re-acceleration are suppressed. Otherwise, stagnation and re-acceleration temporarily

interrupt the saturation regime. The stagnation and re-acceleration is a transient regime

that only occurs at sufficiently high Grashof numbers.
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3.6 Model fit coefficients

3.6.1 Fitting

The mixing model defines the quantity of mixed fluid, m(t), as an analytic function:

{H(t),6(0),\,D,C5} — mf(t), (3.63)

where H(t) is the bubble height, §(0) is the initial interface thickness, A is the wavelength,
D is the diffusivity, and Cj is a mixing coefficient. The values of H(t), 6(0), A, and D are

taken from the numerical experiments, allowing for the definition of an mixing error:

Ep = |lm [C5] = M ()]s, (3.64)

where M(t) is the reference value from the numerical experiments. To compute Cf, the
error is minimized under the constraint C'5 > 0. The fitting problem is non-linear but 1D
dimensional, so it can be solved with a sequential least squares minimizer, which finds local
minima, wrapped with a basin hopping scheme, which samples across the local minima [58].

The dynamics model defines the bubble height, h(t), as the solution to an ordinary dif-
ferential equation. The dynamics model is integrated using the variable-coefficient ordinary
differential equation (VODE) solver for stiff systems, creating a map from the dynamics

coefficients to the height:

(1(0),8(0), \, v, D, {CY} — h(t), (3.65)

where h(0) is the initial bubble height, §(0) is the initial interface thickness, A is the wave-
length, v is the kinematic viscosity, D is the diffusivity, and {C'} are the model coefficients.

5(0), A, v, and D are taken from the simulation while Cj is taken from independently fitting
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the mixing model, allowing for the definition of a dynamics error:
Eq=||h[C1,C2,C3,C7] = H(t)|l, (3.66)

where H(t) is the reference value from the numerical experiments. The non-linear global
minimization problem is solved with the covariance matrix adaptation evolution strategy
(CMA-ES). CMA-ES iteratively refines a sample distribution that evolves towards the global
optimum. Computing the model error is very inexpensive compared to the simulations, so
we choose a broad initial distribution with a large population size. The stochastic solution
is polished with a sequential least-squares local minimization.

However, the high Rayleigh trajectories are incomplete, in that the trajectory is truncated
when the bubble gets close to the top wall, leading to under-constrained systems. Therefore,

we regularize the fit by adding a term to the model error:

R:ﬁ"% : (3.67)

2

where 3 is the regularization parameter, C is the vector of model coefficients, and C are
the coefficient estimates. Although the buoyancy-drag model is non-linear, this L2 regu-
larization can be thought of as a Tikhonov regularization [49] or ridge regression [38]. The
regularization parameter is chosen to be an order smaller than the model error, 5 = 0.1E;. If
the regularized dynamic error ends up lower than the unregularized error, the unregularized
problem must not have converged to the local minima. In those cases, the unregularized fit
is repeated with the regularized coefficient values as a starting seed. Then the regularized fit
is repeated with the updated definition. In this way, the two types of fits are iterated until
consistency is reached.

The fitting process defines a mapping from the Grashof and Schmidt numbers to the
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model coefficients and model errors:

(GI‘, SC) — (Cla 027 037 057 077 Emv Ed) (368>

The rest of this section explores the relationships in this mapping.

3.6.2 Scope of the models

The proposed models aim to describe the mixing and dynamics in rising Rayleigh-Taylor
bubbles and falling Rayleigh-Taylor spikes. The symmetry of the governing equations equates
the spike behavior to that of the bubbles, so we will omit spikes from the following discussions.
In highly viscous and diffusive cases, the bubbles may not reach late time highly non-linear
dynamics. For this analysis, a bubble is considered to be covered by the model only if its
height exceeds its wavelength before it stops rising. Experiments which do not meet that
condition are discarded.

The bubble grows until mixing dilutes its buoyancy sufficiently for it to stop rising. After
this point, it slowly recedes due to diffusing across the bubble tip. The model does not
account for this diffusive effect, which moves move the center of the interface rather than
just broadened it, so bubble trajectories are clipped beyond the point at which the bubble
velocity is zero. The height at that point in the trajectory is maximal and is called the
penetration depth.

The penetration depth increases with Rayleigh number. For high Rayleigh number cases,
the bubble continues to grow until it beings to interact with the top boundary, given the finite
computational domain. Based on previous validation studies [24], we clip the trajectory when
the bubble height reaches 75% of the domain height. Experiments in which this clipping
occurs are incomplete. Those cases should be re-simulated with a larger computational

domain, at greater computational cost, to collect trajectories which reach their penetration
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depth.

However, there is still information in the incomplete experiments. In the following sec-
tions, incomplete experiments will be marked as such, but the trend in the complete experi-
ments is often seen to continue smoothly into incomplete ones. Though not definitive, those
suggest that the data present in the incomplete experiments is sufficient to constrain the
corresponding characterization of the flow. Conversely, in some cases the behavior in the in-
complete experiments departs from that in the complete ones. In those cases, it is difficult to
differentiate between Rayleigh-dependent behavior and the side-effects of underconstrained
fitting.

It should be noted that the computational cost of a complete trajectory goes as:
Gr*Ra? max(1,Sc?). (3.69)

The fourth power of the Grashof and Schmidt numbers come from stability constraints: three
from the spectral constraint and 1 from the explicit time-stepping constraint. The square of
the Rayleigh number comes from the penetration depth, which both increases the length of
the domain and the number of time-steps taken. For Sc > 1, the cost simplifies to Ra%. For
the runs in this study, the cheapest incomplete trajectories will cost 64x more than most
expensive completed ones. The most expensive incomplete trajectory, at Ra ~ 1.4 x 105,

will cost over 109 x more than cheapest completed one.

3.6.83 Accuracy of the models

The accuracy is characterized by the mixing and dynamics model errors relative to the
maximum mix volume and bubble height, respectively. The relative model errors are plotted
versus the Rayleigh and Schmidt numbers in Figure 3.8. In both models, the nominal error

is less than 5%, but the two errors have differing structures.
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Figure 3.8: Relative model errors versus Rayleigh and Schmidt numbers. Experiments on
the left side of the dashed line completed when the bubble stopped rising. Experiments on
the right side of the dashed line are incomplete, having approached the vertical boundaries
of the simulated domain.

The relative mixing error is about 3% for the complete experiments, with generally greater
relative error at greater Rayleigh and Schmidt numbers. Among the incomplete experiments,
relative error decreases with Rayleigh number before increasing again. This is likely due
to the incompleteness; the greater error above Ra = 100 suggests that the overall trend is
increasing. Overall, the relationship between the accuracy of the mixing model, the Rayleigh,
and Schmidt numbers is not fully determined.

The relative dynamics error is about 1%, with the exception of the unit Schmidt Ra ~ 104
case. The mixing error for the outlying case is typical, so the error cannot be attributed to the
treatment of mixing. This case will be considered more in the following sections. Outliers
aside, the relative error decreases with Schmidt number and Rayleigh number, both for
complete and incomplete trajectories. This indicates the dynamics model is most accurate,
at least relative to the mixing height, when there is less mixing and drag. Another factor is
re-acceleration, which adds some relatively constant error that is amortized more when the

penetration depth is greater.
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Figure 3.9: Best fit for C versus Rayleigh and Schmidt numbers. Experiments on the left
side of the dashed line completed when the bubble stopped rising. Experiments on the right
side of the dashed line are incomplete, having approached the vertical boundaries of the
simulated domain.

3.6.4 Fit coefficients

The proposed model has 5 undetermined parameters. In each case, we estimate the value a
priori by physical arguments. Then, the estimates are used as the starting point for fitting,

i.e., minimization of the model error over the scope of the model.
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Form drag coefficient, C}

The coefficient 7 is related to the drag coefficient C; by Equation 3.36. Therefore we expect
it to take a value around or less than 0.64, which corresponds to the drag coefficient of a flat
plate and a surface area A = \2.

The C'1 term is most influential early in the flow, so we expect it to be well constrained
even in the incomplete trajectories. However, the C] term is qualitatively redundant with
the C'3 inertial term, as they both bound the acceleration but not the velocity. Similarly,
viscous drag is weak but still present at early times. It is possible that late-time effects that
influence C9 could have an indirect effect on the value of C].

The fit values of (' are plotted versus the Rayleigh and Schmidt numbers in Figure 3.9.
The majority of trajectories are closely grouped between 0.3 and 0.6, which fits the drag
coefficient rationale. However, there are outliers both at C; = 0 and C7 > 0.9. These
outliers are troubling because each type occurs at both high and low Schmidt number and
at low to moderate Rayleigh numbers. There is no clear pattern, but there are no outliers

at the high Rayleigh number.

Skin drag coefficient, Cs

The coefficient (9 scales the viscous drag. As with ('], C9 can be related to a standard
measure of drag, in this case the Darcy friction factor, which provides an estimate of 113.
The Cy term is linear with & and A, so its influence is greatest at moderate to late times.
Therefore, values of C9 taken from incomplete trajectories should be taken with a grain of
salt.

The fit values of C9 are plotted versus the Rayleigh and Schmidt numbers in Figure 3.10.
For the completed trajectories, C is about 60 and grows slightly with the Grashof number
while being nearly independent of the diffusivity. At higher Rayleigh numbers the incomplete
trajectories also show C9 growing with Grashof number, but the effect is much stronger.
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Figure 3.10: Best fit for Cy versus Rayleigh and Schmidt numbers. Experiments on the
left side of the dashed line completed when the bubble stopped rising. Experiments on the
right side of the dashed line are incomplete, having approached the vertical boundaries of
the simulated domain.
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There is weaker growth as the diffusivity decreases. Finally, at the highest Grashof numbers
the C9 coefficient moderates again.

The presence of a positive relationship between C9 and the Grashof number in both
the complete and incomplete trajectories suggests it is a real effect, though its strength is
unclear. The relationship between C9 and the diffusivity is much weaker and could disappear
as the high Rayleigh trajectories are completed.

One possible mechanism for increasing C'o with increasing Grashof number is the de-
velopment of small amplitude Kelvin-Helmholtz structures on the bubble surface. These
structures are suppressed at low Grashof number and grow more rapidly at higher Grashof
number. They would enhance the transport of momentum across the bubble interface,

thereby increasing the viscous drag coefficient.

Inertial coefficient, Cs

The coefficient Cg gives the ratio of the inertial height to the buoyant height. For C's = 1, the
maximum bubble acceleration is Ag while C3 > 1 represents the entrainment of neutrally
or anti-buoyant fluid that contributes to the inertia but not the forcing. Mixing, which
also reduces the ratio of the forcing to the inertia, is accounted for explicitly with the Cj
coefficient and fit independently to the mixed volume observable, which prevents it from
compensating for entrainment. The C3 term is linear with the height, so its influence is
most pronounced at greater values of the height.

The fit values of C'3 are plotted versus the Rayleigh and Schmidt numbers in Figure 3.11.
The majority of trajectories have ('3 = 1, indicating that entrainment is not significant.
For completed low Rayleigh high Schmidt flows C'3 increases to a value of 9.1. However,
the nominal value of 1 is recovered within the completed trajectories. Because the Cjg
term depends on the height, it is relatively underconstrained at lower Rayleigh numbers.

If the model values of Cy, Cg, or Cg are incorrect, the Cg term has the greatest ability to
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Figure 3.11: Best fit for C3 versus Rayleigh and Schmidt numbers. Experiments on the
left side of the dashed line completed when the bubble stopped rising. Experiments on the
right side of the dashed line are incomplete, having approached the vertical boundaries of
the simulated domain.
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Figure 3.12: Best fit for C5 versus Rayleigh and Schmidt numbers. Experiments on the
left side of the dashed line completed when the bubble stopped rising. Experiments on the
right side of the dashed line are incomplete, having approached the vertical boundaries of
the simulated domain.

compensate for the error when the height and velocity are small. However, the height is
still small, so C'3 would have to change significantly. The author believes that C3 = 1 is
therefore the nominal value, but there is a breakdown in the model at low Rayleigh numbers

that is influencing the fit of C'3. Identifying and correcting this model breakdown would be

expected to recover Cg at low Rayleigh number.
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Interfacial area coefficient, Cf

The parameter C5 gives the ratio of the span-wise circumference of the scalar interface to
the wavelength. If the bubble were rectangular in cross section with diameter \/2, then
C5 = 4. If the bubble had a circular cross section with diameter A/2, then C5 ~ 7. If the
bubble diameter is less than a half-wavelength, then C5 < w. The mixing width ¢ increases
with time, so the Cx term is most influential at late times. Therefore, the values of C5 in
the incomplete trajectories should be taken with a grain of salt.

The fit values of C5 are plotted versus the Rayleigh and Schmidt numbers in Figure 3.12.
Among the completed trajectories, C5 is a much stronger function of the Schmidt number
than the Rayleigh number, increasing in both. The values are between 2 and 3, indicate
a thinning of the bubble that decreases the mix rate by reducing surface area and total
quantity of pure light fluid transported into the dense fluid.

The incomplete trajectories contain richer behavior, with a local maximum at Ra = 1055
and Sc = 8. In aggregate, higher Rayleigh number trajectories have increasing C5 with
decreasing diffusivity. The dependence on the Grashof number is peaked at Gr ~ 4.3 x 10%.
The increasing C5 with increasing Schmidt number in the completed trajectories is consistent
with these two effects, which can be seen the smoothness of Figure 3.12.

A possible mechanism for increasing C's with decreasing diffusivity is the development of
structures on the scalar interface the increase the effective surface area. This is related to the
Kelvin-Helmholtz structures proposed to explain increasing C with Grashof number, but
with additional dependence on the diffusivity which can otherwise smear out the structures.

Another possible mechanism is a change in the bubble diameter. Higher Grashof number
bubbles have thinner momentum boundaries, allowing more buoyant fluid to flow freely
through the stem of the bubble. This sustains the bubble diameter at late times, while more
viscous bubbles can thin. This would explain an increase of C5 with the Grashof number.

The author has no mechanism by which to explain the local maximum value and expect
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Figure 3.13: Best fit for C7 versus Rayleigh and Schmidt numbers. Experiments on the
left side of the dashed line completed when the bubble stopped rising. Experiments on the
right side of the dashed line are incomplete, having approached the vertical boundaries of
the simulated domain.

it to disappear with trajectory completion by default. It would be very interesting if it

remained, and further motivates completing the high Rayleigh number trajectories.

Pure fluid coefficient, C%

Similar to C3, C7 gives the ratio of the buoyant volume to the maximal mixed volume. A

value of C7 = 1 implies the effective Atwood number is zeroed when M(t) = A\?h. Values

greater than one imply that some portion of the positively buoyant fluid that would be in

bubble has become entrained into the neighboring spike, allowing M (t) > A2h while retaining
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net buoyancy.

The fit values of C'7 are plotted versus the Rayleigh and Schmidt numbers in Figure 3.13.
The complete trajectories all have C7 =~ 1, while the incomplete trajectories at higher
Rayleigh numbers have increasing C7. It is possible that at higher Rayleigh numbers some
volume of light fluid detaches from the bubble and is transported into the spike. However,
it is more likely that in the incomplete cases C7, which influences the dynamics most at
high mixing volumes, is underconstrained. In that case, we would expect C7 =~ 1 with
no dependence on the Grashof, Rayleigh, or Schmidt numbers when the trajectories are

completed.

3.7 Conclusions

We have proposed a simple ODE model for the growth of single mode Rayleigh-Taylor
bubbles and spikes at low Atwood number. The model targets an intermediate range of
Grashof numbers and high Rayleigh numbers, in which the single mode perturbation grows
into an array of coherent bubbles and spikes. The dynamics of the bubbles are described in
terms of buoyancy, viscous drag, and form drag. The buoyant force is scaled by a mixing
factor related to the volume faction of mixed fluid within the bubble, which is modeled by
diffusion across the bubble’s interface.

We have presented high fidelity spectral element simulations that reach later times and
higher aspect ratios than previously available. The trajectory of the bubble can be roughly
divided into regimes based on which terms in the model must be included The first regime
is exponential growth, which requires only the Cy4, Cg, and Cg terms, each of which is set by
the linear theory. Next is the saturation regime, which adds the ('3 inertial term and onsets
around h = 0.05\. The C; form drag term can be added for better agreement, but doesn’t
change the dynamics qualitatively. Next is the viscous regime, which adds the 'y skin drag

term and onsets around 10~4Gr. The last is the diffusive regime, which adds the C5 and C7
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mixing terms and onsets around 10~*Ra.

The model proposed here is unable to describe stagnation and re-acceleration seen at
higher Grashof numbers. However, the model is very accurate both before and after stag-
nation and re-acceleration, respectively. This demonstrates stagnation and re-acceleration
to be transients in the flow, occurring around h = A, suggesting that the physical processes
that lead to them are initially absent, grow to some critical extent, and then decay relative
to the magnitude of other processes. The bubble tip vortex ring is a strong candidate, as
suggested by others [3, 47]. The model could be extended to account for the build-up of
vorticity at the bubble tip.

The viscous drag, which is absent in other buoyancy-drag models, is essential to recovering
terminal behavior at high aspect ratios and low diffusivity. Without viscous drag or mixing,
the buoyant force grows with the aspect ratio while the form drag does not, leading to
unbounded bubble velocity. In practice, as the velocity grows at high Reynolds number, the
bubble interface breaks up leading to enhanced turbulent mixing. At moderate Reynolds
number, viscosity bounds the bubble velocity, generally above the bound given by potential
flow theories.

For any non-zero diffusivity, mixing reduces the buoyant force and the bubble ultimately
stops rising. The penetration depth, i.e. the height of the bubble when it stops, scales linearly
with the Rayleigh number. The relation implicitly defines a critical Rayleigh number below
which the bubbles do not rise: Ra. =~ 1500.

The proposed model has 8 descriptive parameters, 3 of which are constrained by the
linear theory. These three are the C4\3 term in the inertia, the CgAZ term in the surface
area, and the C’g)\3 term in the bubble volume. The presence of the C4 term demonstrates
that the volume of fluid that begins to circulate at early times is independent of the bubble
height. C}y is an increasing function of the viscosity, indicating that the viscous entrainment

increases this volume, resulting in the reduction in growth rate predicted by the linear theory.
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The physical interpretation of the five remaining parameters provides a prior for their
value. Those parameters are similar to a drag coefficient, a friction factor, and three geo-
metric ratios. The C7 term is estimated by relation to the drag coefficient of a flat plate.
The C9 term is estimated by relation to the Darcy friction factor in a square duct. The
Cs term is estimated as unity such that the inviscid immiscible acceleration is Ag. The Cy
term is estimated as unity such that the fully mixed Atwood number is zero. The C5 term
is estimated as 7, which corresponds to cylindrical bubbles with diameter A/2.

To calculate the 5 unconstrained model parameters, we fit the model to a battery of
direct numerical simulations at moderate Grashof number, high Rayleigh number, and high
aspect ratio. The simulations provide trajectories for the bubble height and volume of mixed
fluid. The single mixing parameter is fit directly to mixed fluid measurements from numerical
simulations. The remaining four parameters are fit with L2 regularization around the prior
estimates. The resulting model reproduces simulated trajectories with relative errors in the
bubble height less than 2% and in the volume of mixed fluid less than 4%.

The C'5 and C'7 coefficients, which scale the height in the denominator of Equation 3.11
and Equation 3.21, respectively, take values very near unity except for the lowest Rayleigh
numbers, in the case of Cg and the incomplete trajectories, in the case of C'7. The C drag-
type coefficient is typically between 0.3 and 0.6, with outliers at zero and above 0.9. The
author has no direct explanation for the outliers and suggest they are indirectly caused by
other early-time breakdowns in the model. It is conceivable that adding a vortical term,
which would be most pronounced at early times, would align these cases with nominal
range of values. The (9 friction factor-type coefficient is an strongly increasing function
of the Grashof number and weakly increasing function of the Schmidt number, suggesting
that shear instabilities could be enhancing the transport of momentum and consequently
the drag. Similarly, the Cs mixing area coefficient is decreasing with diffusivity, suggesting

the development of structure on the interface is smoothed in the diffusive cases. The Cj
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coefficient has a peaked dependence on the Grashof number, with a local maximum internal
to the simulated trajectories. The author has no explanation.

While the simple model is sufficient to describe coherent, steady bubbles and spikes at
low Atwood numbers and high Peclet numbers, few real flows fall within this regime. In this
regard, the simple model proposed here is just one example of a general approach to defining
models as a general force balance with coefficients based on limiting cases and simulation
data.

The data presented here is a relatively sparse sample of Rayleigh-Schmidt space, intended
to explore the efficacy and sensitivity of the model and its coefficients on the governing
parameters of the problem. The model is predictive, in that it can predict the trajectory
of the bubble from the initial condition. However, the model is sensitive to variations in
the model coefficients, particularly Co, and Cf, that themselves depend on the Rayleigh and
Schmidt numbers.. To predict a bubble trajectory for a case within the convex hull of the
parameter space explored here, but not at one of those points, the coefficients would need to
be interpolated. For accurate interpolation, the parameter space should be more thoroughly

sampled and the interpolation cross-validated.

3.8 Acknowledgements

M. H. acknowledges helpful conversations with Robert Rosner, Aleksandr Obabko, and es-
pecially Elizabeth Hicks, and the support of a Department of Energy Computational Science
graduate fellowship.

For computer time, this research partially used the resources of the Supercomputing
Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi
Arabia. This research used resources of the Argonne Leadership Computing Facility, which

is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

63



CHAPTER 4
DIRECT NUMERICAL SIMULATION OF SINGLE MODE
THREE-DIMENSIONAL RAYLEIGH-TAYLOR
EXPERIMENTS

4.1 Abstract

The single-mode Rayleigh-Taylor instability (smRTT) is well defined, poorly understood, and
applicable to many fluid flows directly and through its relationship to multi-mode Rayleigh-
Taylor models. This study reproduces three low-Atwood smRTI experimental runs (Wilkin-
son and Jacobs, 2007) in a specialized version of the Nek5000 spectral element code. The
simulations use the initial amplitude, wavelength, acceleration, Atwood number, and vis-
cosity from the three specific experiments and impose no-slip and no-flux boundaries on
the velocity and scalar, respectively. The simulations are shown to reproduce the linear,
saturation, stagnation, and re-acceleration phases of the smRTI seen in the experiments.
Additionally, access to the full velocity and scalar fields demonstrates three different finite
size effects: wall drag, wall lift, and a long wavelength mode along the diagonal. One of the
simulations is extended by a factor of two in the vertical direction and the resulting late-
time dynamics reach Froude numbers around 1.8, higher than previously reported. Finally,
inspection of the span-wise flow reveals secondary flows of the first kind that transport the
scalar from the bubble-spike interfaces into the bubble and spike centers. The agreement
between simulations and experiments inspires confidence in the spectral element method for

studying the Rayleigh-Taylor instability.
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4.2 Introduction

The Rayleigh-Taylor instability occurs when a denser fluid is supported by a lighter one.
Low-amplitude perturbations in the interface between the two fluids grow exponentially
with a rate that is well modeled by linear stability analysis [15]:

Agk
v = —5—+u%&—ow+Dm% (4.1)

where g is the local acceleration, k is the wave-number, v is the kinematic viscosity, D is the

diffusivity, A is the Atwood number, which characterizes the density difference:

A=Pr— Pl (4.2)
Ph+ Pl

and 1 describes the effect of the interface thickness and is a function of A, k, and the

thickness . In the low Atwood number limit:

¢:1+€%. (4.3)

At larger amplitudes, the perturbations grow non-linearly with the light fluid rising
through the heavier fluid in ‘bubbles’ and the heavy fluid falling through the lighter fluid in
‘spikes.” Early experiments by Davies and Taylor [8] and potential flow models by Layzer [32]
for A =~ 1 suggested that the bubbles reach a terminal velocity, and later experiments by
Dimonte and Schneider [12], also at A ~ 1, showed that dense spikes free-fall. On the other
hand, recent experiments by Wilkinson and Jacobs [62] and simulations by Ramaprabhu
et al. [48, 47|, Wei and Livescu [61], and others [53] show that, at Atwood numbers less
than one half, the constant velocity regime is followed by a re-acceleration regime in which
the velocity doubles. The dynamics beyond re-acceleration have not been established, with
Ramaprabhu et al. observing a return to the velocity of potential flow [19] while Wei and

65



Livescu report continued constant acceleration.

Here, we consider the low-Atwood number limit. The Boussinesq approximation, which
ignores density differences that don’t multiply the gravitational acceleration, simplifies the
governing equations to a single incompressible phase with an active scalar representing the

buoyancy:

D
Ft=—VP+ vV2u — AGo, (4.4)
D 2

~b=0D

570 =DV,

where w is the velocity, P is the pressure, and ¢ is the scalar that controls the density gradient.
Without loss of generality, we define —1 < ¢ < 1. These equations have a symmetry under
inversion of the scalar and acceleration, ¢ — —¢,g — —g, so we know the bubbles and
spikes have the same dynamics given the same initial conditions. The parameter space of

the equations are described by two nondimensional numbers: the Grashof number,

Ag)3
Gr = B (4.5)
where A is a characteristic length, and the Schmidt number,
v
Sc = —. 4.6
=7 (4.6)

We approximate the governing equations numerically using the spectral element method
(SEM) [10]. The SEM converges exponentially with respect to spectral order and has purely
dispersive errors, making it a natural method for direct numerical simulations of mixing
problems. Unlike pseudo-spectral methods, it handles no-slip boundaries and can evenly
sample the interior of the domain. We use a specialized version of the Nek5000 community

code, NekBox [26], customized specifically to study the low Atwood number Rayleigh-Taylor
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instability. NekBox restricts the domain to a tensor product of orthogonal bases and employs
fast spectral coarse preconditioners for the pressure Poisson equation. It is roughly an order
of magnitude faster than the more general Nek5000.

It is the goal of this study to validate direct numerical simulations of the low-Atwood
single mode Rayleigh-Taylor instability in NekBox against the best available experimental
data, that from Wilkinson and Jacobs [62]. In the future, we will apply the same numerical
methods to the broader question of the late-time dynamics of the low Atwood smRTT.

In Section 4.3, we review the spectral element method and describe the numerical pa-
rameters of the simulations. In Section 4.4, we compare the numerical and experimental
results, extend the domain in extent and time to reach higher aspect ratios, and introduce
new behavior in the span-wise flow. In Section 4.5, we discuss the validity of our methods
for simulating Rayleigh-Taylor flows, the limits of wall-bounded single mode experiments,

and the implications of secondary flows to mixing.

4.3 Numerical methods

4.3.1 Spectral element formulation

The governing equations, Equation 4.4, are discretized using the spectral element method [10].
The domain is first divided into cubic elements. Each element is represented by a tensor
product of n3 Gauss-Lobatto-Legendre (GLL) quadrature points of order p = n — 1. The
elements are coupled by continuity at the shared points on their faces.

Time is discretized with a 3rd order backwards difference formula (BDF3). The linear
and non-linear terms are split, and the non-linear convection operator is extrapolated with a
3rd order scheme that sets the 3rd derivative at the extrapolated point to zero (EX3). The
full discrete system is 3rd order in time, pth order in space, and has purely dispersive errors.

Initially, no filtering is applied. Filtering is applied when the scalar field ¢ exhibits
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Figure 4.1: Initial condition, ¢(x,y,0,0), for 4.5 mode simulation. The bubbles are logically
separated by the solid grid and each unique bubble is labeled.

small scale oscillations on what should otherwise be smooth steep boundaries. For Schmidt
numbers greater than or equal to unity, the scalar field is less numerically stable than the
velocity, so instability in the scalar precedes instability in the velocity. The filter attenuates
the highest frequency mode of the velocity and scalar fields within each element by 5% at

each time-step.
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Modes Grashof Schmidt Aspect

2.5 5.12 x 106 7.0 0.037
3.5 3.98 x 106 3.5  0.025
4.5 4.66 x 10° 1.0 0.041
4.5 4.66 x 10° 35  0.041

Table 4.1: Parameters of simulations. The aspect ratio is defined with respect to the
quiescent amplitude, ag, from Equation 4.8. The last row is the simulation that extends the
tank by a factor of two in the vertical direction.

4.8.2  Simulation setup

Three simulations were conducted to reproduce experiments with 2.5, 3.5, and 4.5 modes
across the diagonal. Then, an extension of the 4.5 mode experiment with twice the vertical
extent was performed. Finally, a 4.5 mode calculation with periodic boundary conditions
and unit Schmidt number was performed as a reference for comparing the growth of the
bubbles in the wall-bounded flows.

The boundary conditions for the non-periodic simulations are no-slip for the velocity and
no-flux (insulating) for the scalar. The initial conditions for the velocity are quiescent. The
initial conditions for the scalar are the product of two cosines smeared by an error function

in the z-direction:
z + ag cos(kzx) cos(kyy)
5 Y

o(z,y,2,0) = erf (4.7)

where qq is the initial amplitude, k; and ky are the wave-numbers in the x and y directions,
respectively, and 4 is the interface thickness. In our case, ky = ky. An example initial
condition is plotted in Figure 4.1. By symmetry, we know that the average scalar is zero,
H; ; = Hj;, and that the spike dynamics are identical to the bubbles.

The Atwood number, local acceleration, and initial amplitude where taken from exper-
imental measurements by Wilkinson and Jacobs [62, 31]. In the experiment, the interface

has a non-zero initial velocity and the bulk flow is not measured. Instead of trying to model
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the bulk flow, we used the linear theory, Equation 4.1, to transform the flow to quiescence.

Specifically, the system

H = agcosh (y(t —tg)) (4.8)

V = agy cosh (1(t — to))

where H and V' were the experimental measures of the initial interface height and velocity,
respectively, is solved for ag and tg, the quiescent amplitude and time. The quiescent am-
plitude is used for the simulations. The experiments to reproduce were selected such that
solutions to Equation 4.8 existed and the bubble reached the greatest heights.

The viscosity is matched to the experimental fluids, but the diffusivity is not. The
Schmidt number in the experiments is in excess of 1000. The computational cost of the
simulation goes with the Schmidt number to the 4th power, so directly simulating such high
Schmidt number was not possible. Instead, the Schmidt number was varied in the range of
1 to 7 to gain a qualitative understanding of its influence on the flow.

It should be noted that, while the Atwood number was used to scale the local acceleration,
the Boussinesq approximation implies that the Atwood number has been taken to zero while
keeping the product Ag fixed. The generally accepted Boussinesq limit is A = 0.05, which
is three times smaller than the Atwood number in this case. Previous simulations directed
at single-mode re-acceleration have been performed at A > 0.15, so it is not known whether
re-acceleration persists in the limit as A — 0.

The three simulations reproducing experimental runs are conducted on the Mira super-
computer at Argonne Leadership Computing Facility (ALCF). The resolution and time-step
was chosen to ensure numerical stability: a 256 x 256 x 512 mesh of 7th order elements for
11,509,170,176 degrees of freedom. The simulation was distributed over 524,288 cores and
1,048,576 MPI processes. 64 outputs were written to disk, each 6/8ths of a TiB. The number

of elements and degrees of freedom are doubled for the extension to twice the vertical extent.
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4.3.8 Post-processing

The simulation outputs the velocity, pressure, and scalar fields at the Gauss-Lobatto-Legendre
points in double precision. They are post-processed into low-dimensional observables: the
bubble height and two-dimensional slices of the velocity, vorticity, pressure, and scalar
through the horizontal mid-plane and vertical diagonal. Post-processing is performed us-
ing the ‘nek-analyze’ post-processing framework, which implements a MapReduce-like [9]

backend for parallel, out-of-core analysis.

The bubble height is defined as:

H = sup {z : Igruyn o(z,y,2) < 0} , (4.9)

)

which avoids measuring the diffusive growth by tracking the center of the interface profile
instead of the ends. The bubble velocity is found by fitting a cubic spline to H(t) and
differentiating.

The height of individual bubbles, H; ;, is found by restricting miny y in Equation 4.9 to
the span-wise square of diagonal length A\ centered on the bubble in the i-by-j-th position.

The bubble domains and labels are shown in Figure 4.1.

4.4 Results

4.4.1 Validation

Linear growth rate

We compute the growth rate from the bubble height at the first simulation output time:

1 h(ty)
v R Eacosh (W&)) : (4.10)
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Modes Theory Simulation Aspect ratio

2.5 12.94 12.96 0.089
3.5 22.24 22.24 0.098
4.5 12.10 11.05 0.124
4.5 12.31 11.52 0.128

Table 4.2: Growth rate: linear theory vs. simulation. Theoretical values are calculated as
in Equation 4.1. Simulation values are calculated as in Equation 4.10. The aspect ratio is
shown for the second sample, h1/A. Note the difference in Schmidt number between the two
4.5 mode cases.

and collect the results in Table 4.2. Because the simulations targeted the non-linear regime,
the height is not available until characteristic time 7 = ty ~ 2 and aspect ratio h/\ =~
0.1. Therefore, we expect the simulation value to be below the theoretical value given by
Equation 4.1 due to saturation.

The agreement is good, with only the lower Grashof, higher aspect ratio 4.5 mode calcu-
lation deviating more than a part in one hundred. The 2.5 mode simulation outperforms the
theory slightly. This could be due to the long-wavelength finite size effect discussed later,

which is stronger for fewer modes in the finite domain.

Froude number

The experiments observe only the diagonal plane and measure the height with respect to the
most internal bubble. Therefore, we plot in Figure 4.2 the nondimensional velocity, i.e., the

Froude number, of the central bubble alone:

()

VAgA

Fr = (4.11)

In each case, the simulation exhibits the same qualitative behavior as the experiment: expo-
nential growth saturating to a stagnation velocity around Goncharov’s theoretical value of

Fr = 71/2 [19]. In cases where the simulation and experimental data extend in time, the
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Figure 4.2: Froude number vs. height, nondimensionalized by the wavelength. Lines are
the derivative of cubic splines through simulation outputs. Points are from experiment via
direct measurement of the bubble velocity [31]. The dotted horizontal line is positioned at
Goncharov’s theoretical value of 7—1/2 [19].
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Figure 4.3: Bubble height vs. time, nondimensionalized by the wavelength and linear growth
rate, respectively. Lines are cubic splines through simulation outputs. Points are from
experiment [31]. The points are shifted in time to minimize the square deviation from the
spline summed over the plotted points.
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beginnings of re-acceleration are also seen.

The 2.5 mode case exhibits peculiar behavior, with two inflection points around aspect
ratio /A = 0.2. This is not an issue with the splines, as can be seen in Figure 4.3, which
plots the nondimensional height vs. nondimensional time without splines. The 2.5 mode
case, which has the highest Grashof and Schmidt numbers, went unstable. Upon inspection,
the 5% filtering was unable to suppress the oscillations in the scalar field. This simulation
could be retried with greater resolution, but, given the stability of the 3.5 mode case, the
computational cost would be up to 43x greater, which is why it was not repeated in this

study.

4.4.2 FEzxtension

Given the agreement between the simulations and the experiment, we can use the simulations
to explore the flow in ways that are not readily accessible experimentally. In this study, we
extend the subject cases and analysis in three ways. First, we calculate the height of each
bubble in the tank individually and use the results to study finite size effects. Second, we
extend the 4.5 mode experiment by a factor of two in the vertical extent of the domain and
simulation time to delay interaction with the top boundary and reach later times and larger
bubble heights. Finally, we consider the span-wise, vs. stream-wise, flow by taking slices of
the midplane and observing pressure driven secondary flows. These three extensions are a

small sample of the types of observations that are available numerically.

Wall effects

The individual bubble heights for the 4.5 mode case are computed as in Equation 4.9, but
restricted to the span-wise domain nearest to the bubble tip, which is marked in Figure 4.1.
The bubble Froude numbers are plotted in Figure 4.4, alongside the aggregate and purely

periodic values.
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Figure 4.4: Froude number as a function of height, nondimensionalized by the wavelength,
by bubble in the 4.5 mode simulation. Solid line is from the height defined as the maximum
taken over the entire span-wise domain. Dotted line is the periodic reference calculation.
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Figure 4.5: Ratio of wall-bounded bubble height to periodic bubble height in the 4.5 mode
simulation.
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Figure 4.6: Spatial distribution of bubble heights at three times, with red denoting greater
bubble heights and blue denoting lesser bubble heights. The first time is when the ratio of
the wall-bounded to periodic bubble height is at a minimum, which is during the transition
from linear to non-linear growth; a long wavelength mode is seen across the diagonal. The
second time is taken from the stagnation phase; the long wavelength mode is still present.
The third time is taken from the end of the simulation; the central bubbles are being squeeze
significantly ahead of the bubbles near the wall.
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There are at least three mechanisms by which the walls divert the flow from its fully-
periodic preference. The first is that the no-slip boundaries that pass along the diagonal
of the boundary bubbles and spikes create a boundary layer that viscously damps vertical
flow. The second is that the pressure gradient from the boundary layer pushes the boundary
bubbles and spikes towards the interior of the domain. These two effects have been studied
independently in the context of multi-phase bubbles rising near walls [56], and are character-
ized as wall drag and lift forces. Finally, the finite nature of the span-wise lattice of bubbles
and spikes, coupled with the vertical symmetry condition that the total bubble volume must
equal the total spike volume, breaks one of the 4-fold symmetries of the infinite cubic lattice
causing a local aggregation of spikes in the (0,0) corner and of bubbles in the (4,4) corner.
The local aggregation sets up one low-amplitude long-wavelength mode across the diagonal.

These three mechanisms promote and penalize the growth of different bubbles in the finite
lattice, allowing us to infer the relative magnitudes of the effects based on the performance
of the bubbles compared to their periodic counterparts. The wall drag penalizes the growth
of bubbles that contain a boundary: the bubbles in the 4th column. Because the effect also
penalizes the growth of the spikes that contain boundaries, it should encourage the growth
of the bubbles adjacent to those spikes: those in the Oth row. The effect should alternate
and diminish towards the interior of the domain. The wall lift pushes bubbles and spikes
at the boundary towards the interior. This reduces the form drag on the interior bubbles
by increasing the pressure on their trailing edges. When adjacent bubbles actually touch,
skin drag is also reduced. Overall, wall lift promotes the growth of the interior bubbles.
Finally, the long-wavelength mode promotes growth of bubbles in the bubble heavy corner
and penalizes growth of bubbles in the spike heavy corner.

The spatial distribution of the bubble heights can be seen in Figure 4.6 and the heights
relative to the periodic bubble can be seen in Figure 4.5. At moderate times, the (4,4) bubble

leads and the (0, 0) bubble trails, indicating that the long-wavelength mode due to symmetry

78



Figure 4.7: Bubble velocity and bubble height vs. time, nondimensionalized by the wave-
length and linear growth rate, for 4.5 mode simulations and experiment. Lines are from
simulation output, one case with the same vertical extent as the simulation and in the other
with twice that vertical extent. Points are from experiment via direct measurement of the
bubble velocity and bubble height. The dotted horizontal line is positioned at Goncharov’s
theoretical value of 7 1/2 [19]. The solid vertical line marks the greatest bubble height
reached in any of the experiments by Wilkinson and Jacobs [62].

breaking is the dominant effect. Additionally, all of the bubbles under-perform their periodic
counterpart, indicating that the wall drag has damped the overall flow but with less spatial
dependence than the long-wavelength mode. At late times, the central (2,2), (2,1) bubbles
are accelerated while the edge bubbles break down, indicating the growing importance of
the wall lift effect. The wall lift ultimately leads to bubble collisions that destroy the bubble

lattice, enhance mixing, and break down the flow.

Late-time behavior

The 4.5 mode simulation was repeated with twice the vertical extent and simulation time.

Additionally, the Schmidt number was increased from 1 to 3.5 to reduce late-time mixing not

present in high Schmidt number experiments. Figure 4.7 compares the short unit-Schmidt

and long moderate-Schmidt trajectories, which are widely in agreement. The reduction in

bubble acceleration around aspect ratio h/A = 2 is present in both the short and the long
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Figure 4.8: Froude number as a function of height, nondimensionalized by the wavelength,
by bubble in the 4.5 mode simulation with extended vertical extent. Solid line is from the
height defined as the maximum taken over the entire span-wise domain. Dotted line is
the periodic reference calculation. The dotted horizontal line is positioned at Goncharov’s
theoretical value of 7 1/2 [19]. The solid vertical line marks the greatest bubble height
reached in any of the experiments by Wilkinson and Jacobs [62].

simulations, so it is unlikely to be due to the vertical domain boundaries. It is not, however,
present in the periodic calculation, so it could be a wall effect.

Figure 4.8 mimics Figure 4.4 but for the late-time case. The periodic reference trajectory,
calculated with the original domain size, rapidly decays after reaching a maximum around
aspect ratio h/\ = 2.5 due to interactions with the top of the domain. Its maximum Froude
number is around 1.2, consistent with previous calculations. The central bubbles in the
extended late-time run continue to experience constant acceleration past aspect ratio 3 and
Froude number 1.2, with the (1,1) bubble continuing to aspect ratio 5 and Froude number
1.8.

The decay of the velocity of the periodic reference bubble around h/A\ = 2.5 suggests the
late-time simulations would interact with the top boundary around h/A = 5. In fact, this
is exactly when the (1,1) and (2,2) bubbles begin to decay. However, the bubbles closer to
the boundaries break down much earlier. The (4,4) bubble, for example, reaching maximum
Froude number around h/A = 2.75. We can infer that the wall lift that drives the boundary
bubbles into the interior bubbles destroys the periodic ordering. It is not clear if the decay

of the interior bubbles at A/ = 5 is due to the top boundary or the wall lift destroying the
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Figure 4.10: Secondary flow in the horizontal mid-plane. Background color is the vertical
component of the vorticity. Contours are lines of constant pressure.

periodic ordering.

Secondary flow

In addition to the bubble height and vertical slices in the diagonal plane, we observe the

horizontal mid-plane. The span-wise scalar field, ¢(x,y,0), exhibits plume structures that

Figure 4.11: Dynamic pressure in the horizontal mid-plane.
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penetrate the bubble faces, as seen in Figure 4.9. The cause of these plumes is advection by
secondary flows, as seen in Figure 4.10. Overlaying the pressure with the span-wise velocity
reveals it to be secondary flow of the first kind: secondary flow due to span-wise pressure
gradients. The span-wise pressure gradient comes from the dynamic pressure of the rising
and falling bubbles and spikes, in contrast to the stationary points at their interfaces.

The secondary flow advects mixed fluid from the interface into the centers of the bubbles
and spikes. Enhanced mixing reduces the effective Atwood number of the bubbles and spikes,
but the magnitude of this effect is not clear. As a secondary flow of the first kind, this mixing

mode is present even at low Reynolds numbers.

4.5 Conclusions

The simulations described here reproduce the growth rate, stagnation velocity, and re-
acceleration of the low-Atwood single mode Rayleigh Taylor instability for three experimen-
tal runs by Wilkinson and Jacobs. These reproductions inspire confidence not only in the
NekBox code, but also in the Boussinesq approximation for A = 0.15 and the low-Schmidt
approximation.

In wall-bounded flows, the bubbles and spikes nearest to the no-slip boundaries experience
lift and drag forces that slow their non-linear growth and push them towards their inner
neighbors. There is an additional effect due to the finite domain breaking one of the 4-fold
symmetries from the purely periodic problem. In the wall-bounded initial condition, one
corner of the domain has an excess of bubbles while the opposite has an excess of spikes.
This sets up a long-wavelength mode across the diagonal that encourages bubble growth in
one corner and discourages it in the other.

Ultimately, the bubble-bubble and spike-spike collisions may destroy the single-mode
ordering of the flow at aspect ratio 5, but the onset of velocity decay may alternatively

be due to the upper boundary. If the decay is due to collisions, it would limit the use of
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wall-bounded flows as proxies for periodic flows to moderate aspect ratios. The ability of
wall-bounded flows to approximate periodic ones at high aspect ratio warrants further study.

In addition to causing collisions, the growing boundary layer squeezes the flow in the
span-wise direction, accelerating it past its fully-periodic trajectory in the stagnation and
re-acceleration phases.

The inner bubbles experience near constant acceleration from aspect ratio 2 to aspect
ratio 5, with a maximum Froude number of 1.8. This contrasts results by Ramaprabhu et
al. [47] that show saturation post-reacceleration at Fr &~ 1. The saturation could be explained
by excess mixing or the finite size of the domain, which extends to h/A = 6 in their case and
9 in ours. Alternatively, the acceleration could be artificially sustained by the wall lift force
pushing the boundary bubbles into the interior ones.

Single-mode Rayleigh-Taylor flows develop span-wise pressure gradients with local min-
ima in bubble and spike centers and local maxima in bubble and spike corners. The pressure
drives secondary flows of the first kind in the form of vortex quads centered on bubble-spike
interface centers. These span-wise flows mix the fluid across otherwise laminar interfaces,

perturbing the scalar profiles.
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CHAPTER 5
EFFICIENCY OF HIGH ORDER SPECTRAL ELEMENT
METHODS ON PETASCALE ARCHITECTURES

MAXWELL HUTCHINSON, ALEXANDER HEINECKE, HANS PABST, GREG
HENRY, MATTEO PARSANI, AND DAVID KEYES

5.1 Abstract

High order methods for the solution of PDEs expose a trade-off between computational cost
and accuracy on a per degree of freedom basis. In many cases, the cost increases due to
higher arithmetic intensity while affecting data movement minimally. As architectures tend
towards wider vector instructions and expect higher arithmetic intensities, the best order for
a particular simulation may change.

This study highlights preferred orders by identifying the high order efficiency frontier
of the spectral element method implemented in Nek5000 and NekBox: the set of orders
and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s
order-dependent computational kernels and demonstrate exceptional hardware utilization
by hardware-aware implementations. Then, we perform production-scale calculations of the
nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based
supercomputers to highlight the influence of the architecture. Accuracy is defined with
respect to physical observables, and computational costs are measured by the core-hour
charge of the entire application. The total number of grid points needed to achieve a given
accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q),
polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively.
Taken together, these observations lead to a strong preference for high order discretizations

that use fewer degrees of freedom. From a performance point of view, we demonstrate up
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to 60% full application bandwidth utilization at scale and achieve ~ 1 PFlop/s of compute

performance in Nek’s most flop-intense methods.

5.2 Introduction

The solution of partial differential equations (PDEs) is a core problem in HPC, with par-
ticular application to computational materials science and fluid dynamics. PDEs are solved
by discrete approximation: space and time are sampled and the PDEs is translated into a
relation on those samples. From a mathematical point of view, these approximations are
characterized by stability conditions and convergence rates. Schemes which do not satisfy
stability conditions usually fail catastrophically with values that diverge to infinity. The
convergence rate describes the relationship between the resolution and the error. For a char-
acteristic inter-sample spacing h, a method is of order p if the error goes as hP. High order
methods are schemes with convergence rates higher than third order [60], many of which
expose the order as a user input.

From a computational point of view, the approximations are characterized by sparsity,
locality, and arithmetic intensity. As the order increases, the sparsity and locality typically
decrease while the arithmetic intensity increases. The improved convergence rates are ‘paid
for” with more floating point operations (FLOP), on a per sample basis, while, for a given
error tolerance, the number of samples can be decreased. The relationship between these
computational characteristics and computational cost is complicated by features common to
modern architectures: vector instructions, deep caches, and arithmetic-to-data movement
imbalance.

Here, we explore the relationship between order, accuracy, cost, and architecture. We
identify the user-facing properties of high order methods: the accuracy in observables, time
to solution, resource usage, and required scale. We also identify the user-defined inputs: the

physical problem, the order, the total number of samples, the number of processors, and the
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computer architectures. To make the study more practical, we focus on the specific task of
optimizing a study of the single-mode Rayleigh-Taylor instability (smRTI) as a parameter
sweep over Grashof and Prandtl numbers. This is a high throughput use-case, where the
relevant cost is resource usage and scale is fixed with respect to the size of the problem and
assumed to not be a limitation. This leaves us with the accuracy and resource usage versus
the order, number of samples, and computer architectures.

We select the NekBox version of the Nek5000 code (together: Nek), which implements
the spectral element method (SEM) [46] with tunable order, is known to scale to a million
ranks [42], and has been used for Rayleigh-Taylor problems in the past [25]. NekBox takes
advantage of static, uniform meshes to solve the coarse part of the preconditioner with FFTs
or DCTs, improving efficiency and scalability. We extract representative order-dependent
kernels from Nek and analyze their performance on BlueGene/Q and Cray XC40 supercom-
puters.

We also conduct a set of application benchmarks to measure the cost and accuracy. The
cost is computed in core-hours, in the same way most users are charged. The accuracy is
computed with respect to the smRTT’s bubble height and mix volume, which are the most
common observables studied in the smRTT community. The benchmarks vary the order and
total number of samples, and are conducted on the Mira and Shaheen XC40 supercom-
puters at Argonne Leadership Computing Facility (ALCF) and KAUST Supercomputing

Laboratory (KSL), respectively.

5.2.1 Outline

In Section 5.3, we review the SEM as implemented in Nek. In Section 5.4, we introduce
LIBXSMM for hardware-aware implementation of Nek’s performance critical kernels, and
demonstrate their performance in isolation. In Section 5.5, we perform a convergence/per-

formance study of SEM discretizations for the smRTI problem and present full-application
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performance at scale. Section 5.6 concludes with a discussion of preferred orders on the

BlueGene/Q and Cray XC40 supercomputers.

5.3 Nek’s Computational Core

5.83.1 Governing equations and time-splitting

Nek5000 and NekBox solve the incompressible Navier—Stokes and continuity equations:

1
%?JruVu:_;VerVVQquf Vou=0, (5.1)

where u is the flow velocity, p is the fluid density, p is the pressure, v is the kinematic viscosity,
and f consists of user-defined forcing terms. Additionally, Nek can solve advection-diffusion

equations for scalars, such as the temperature or mass fraction:

BloY
% +u- Ve = V26 + g, (5.2)

where ¢; is the scalar value, «; is the diffusivity, and ¢; is a user-defined source term, each
for the ith scalar.
The time derivative is discretized with a backward difference formula (BDF), within

which the nonlinear and forcing terms are extrapolated (EX):

B; . 1 n . i
> K;Mu? - —;Dipn +vKuf +) a; [Mf[‘ I (Cuy)" T, (5.3)
Jj=0 j=1

where M is the mass matrix, C' is the convection matrix, K is the stiffness matrix, D is the
gradient matrix, i € {1,2,3} are the spatial dimension indexes, n is the time level index,

and k is the formal order of accuracy of the BDF/EX scheme. The pressure is decoupled
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from the new velocity, u", by taking the divergence:
n .
j=1

where F" = Mf" — (Cu;)", which results in the Poisson pressure equation. Finally, the

pressure is incorporated back into Equation 5.3:

(5.5)

k
bo p e b
K =M n_ _ D2 J JMTL]
o g = =D+ 3 o™+ Franan ]

which results in three Helmholtz velocity equations.
These steps are the core of Nekb000 and NekBox: the explicit calculation of right-hand
sides, a Poisson solver for the pressure, Equation 5.4, and a Helmholtz solver for the three

components of the velocity, Equation 5.5.

5.3.2  Spectral element method

Nek5000 and NekBox implement SEM: a two-level discretization constructed from tensor
products of Gauss-Lobatto-Legendre (GLL) quadrature points within elements and continu-

ity across elements, forming a mesh. Fields are represented as

u(w,y,z Zzzuz,jke hj(y)hi(2), (5.6)

i=0 j=0 k=0

where p is the polynomial order of the method, e(z,y, z) is the index of the element in
the mesh, and h;(x) is the ith Lagrange polynomial through the GLL points of element e.
The choice of Lagrange polynomials leads to diagonal mass matrices and related geometric
factors. The spectral basis within each element enjoys exponential convergence with respect
to the polynomial order. GLL points do not sample space uniformly, so concatenating

elements is more effective at reducing grid spacing than increasing spectral order. Many
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small elements are also better able to match complex geometries than fewer larger ones. The
spectral element method is able to satisfy both the demand for geometric flexibility with
quasi-uniform coverage and spectral convergence, but the particular choice of the spectral
order versus the number of elements can be difficult to optimize.

In SEM, operators are written as the product of a local operator and direct stiffness
summation, which enforces continuity at the shared element boundaries. The local operators

are decomposed into tensor products of 1D operators. The general form of an operator A is:

A= (Ap x Iy x 1) + (Iz x Ay x 1) + (Iz x Iy x A;), (5.7)

where Ay, Ay, A, are 1D projections of the operator A and I is the identity matrix. In this
way, linear operators from RNVXNXN _y RNXNXN cap be evaluated in O(N*) operations
instead of O(N) [57]. This reduces the arithmetic intensity of operator evaluation in SEM
to O(p).

5.3.3  Computational profile

The spectral element method, as implemented in Nek5000 and NekBox, spends its time in
three computational motifs: sparse communication, vector-vector, and matrix-matrix. The
sparse communication comes from the direct stiffness summations and the coarse part of
the pressure preconditioner. The vector-vector workload comes from inner products in the
solvers and frequent rescaling by geometric factors, which are shaped like the diagonal mass
matrix. The matrix-matrix workload comes from local operator evaluation.

The direct-stiffness summation is handled by a stand-alone library [29, 45]. In Nek, the
pressure solve takes roughly 30% of the run-time, distributed between operator application,
inner products, and the preconditioner. The preconditioner is multigrid with a local additive

Schwarz part and the global coarse part [36]. In NekBox, the coarse part of the pressure
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preconditioner is solved directly with FF'T's or fast cosine transforms, and typically takes less
than 5% of the total runtime. Local communication makes up a small portion of NekBox’s
run time at moderate numbers of points per processor, and Nek5000 and NekBox weak scale
effectively to millions of ranks [25].

The efficiency of the vector-vector computation is generally left to the compiler, aided
by aggressive loop merging in the solvers. For architectures that support them, the compiler
needs help issuing non-temporal stores, which are performance optimal only if the working
set is larger than the last level cache. These stores are used in parts of the solver and local
element evaluation, and are discussed further in Section 5.4.

Matrix-matrix is the most accessible and performance critical portion of the workload.
In particular, it is the only part of Nek that depends on the order, holding the total degrees
of freedom (DOFs) fixed.

5.3.4  Order-dependent kernels

There are two matrix-matrix routines that sit inside of the iterative solvers: the Helmholtz
operator and a basis transformation.

The Helmholtz operator is found on the left-hand side of Equation 5.4 and Equation 5.5:

Hu = (h1 K + hoM)u,

where the special case of hg = 0 is the Poisson operator.

1: procedure LOCAL HELMHOLTZ OPERATOR(Hu,u, hy, ha)

2: (Hu)ijr < (Ga)ijgk * > (Kz)iiujk > matrix-multiply size (p?, p, p)

3: for k=0— pdo

4: (Hu)i g += (Gy)ijk* Y (Ky)jitisk > matrix-multiply size (p, p, p)

5: end for

6: (Hu)i gk +=(G2)ijk * > (K ) kit > matrix-multiply size (p, p?, p)
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T (Hu)ijg += h1(Hu)ijk + haMi jxui jk
8: end procedure
G is a constant diagonal matrix derived from geometric terms and subscripts within paren-
thesis refer to spatial directions. Matrix sizes are given in BLAS notation: rows in result,
columns in result, inner dimension.
The basis transformation is used to diagonalize the local Poisson operator in the over-
lapping Schwarz preconditioner, to restrict and interpolate the solution and residual in the

multigrid preconditioner, and to dealias the convection operator.
1: procedure TRANSFORM (v, u)

2: figr < ZZ(Ax)i,luhj,k > matrix-multiply size (p2,p,p)

3: for k=0—pdo

4: Gijk Zl(Ay)j,lfi,l,k > matrix-multiply size (p, p, p)
5: end for
6: Vi gk ZZ(AZ)k,lgz‘,j,l > matrix-multiply size (p,pz,p)

7: end procedure

5.4 Kernel Analysis and Optimization

5.4.1 Small Matrix Multiplications

The implementation of fast matrix multiplications, i.e., the BLAS library’s GEMM routines,
and dense linear algebra more generally is one of computer science’s best studied fields.
However, large matrices [20] have been the primary focus and, as a result, vendor-tuned
BLAS implementations do not provide optimal performance when used for the small GEMMs
in Nek. Several BLAS libraries recently introduced so-called batched interfaces to speed-up
series of independent and small multiplications by exploiting parallelism and amortizing

calling overheads [28]. As Nek performs dependent GEMMs within each element, batched

91



execution would necessarily be inter-element, inhibiting important caching optimization and
consuming significantly more memory bandwidth. Therefore, most of Nek’s computer science
related work was devoted on speeding up small GEMMs [51]. Parts of Nek5000 and the
related NekCEM codes have been independently ported to OpenACC [37, 45] to speed-up
small GEMMs.

Today, Nek5000 and NekBox ship with a FORTRAN-based matrix-matrix implementa-
tion called mxm_std. By default, mxm_std explicitly defines multiple interfaces correspond-
ing to values of the inner dimension k, and provides unrolled FORTRAN primitives to the
compiler. For IBM’s BlueGene series, common sizes are manually implemented for best per-
formance in FORTRAN assembly-intrinsics in mxm_bgqg. Similarly, mxm_std features some
special case optimizations targeting AMD’s Opteron processor, which is used in the United
States’ largest system, Titan, at Oak Ridge National Laboratory.

In order to ensure the best possible performance on a range of modern Intel processors,
featuring different versions of Advance Vector Extensions (AVX) instructions, we would
need to conduct a long and complicated tuning effort of Nek’s mxm_std akin to the narrow
customizations already present. Instead, we integrated an early prototype of the LIBXSMM
library [1, 21] into NekBox. LIBXSMM provides highly-optimized single-threaded small
matrix-multiplication routines tuned for all recent Intel processors. It is already successfully
used in the quantum chemistry application CP2K and high-order finite element seismic wave
equation solver SeisSol [6].

In contrast to mxm_std, LIBXSMM creates a specific kernel implementation for each
small matrix multiplication size and optimizes that kernel specifically for each set of vector
extensions. Each kernel is composed from a priori known and best-performing basic blocks.
Remainder handling can be performed either explicitly by application-side padding or inter-
nally by slightly less efficient fill-in basic blocks. We rely on the latter in our integration of
LIBXSMM into NekBox.
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Listing 5.1: Integration of LIBXSMM into NekBox’s element-local Helmholtz operator.
xmml, xmm2, xmm3 are persistent functions pointers to amortize LIBXSMM'’s dispatch-
ing overhead. The 1ibxsmm dispatch call JITs the requested kernel and populates the
persistent function pointers.

logical, save :: init = .false.
type (LIBXSMM_DMM_FUNCTION), save :: xmml, xmm2, xmm3

! lazy initialization of function-private function pointers

! to eliminate dispatching overhead

if (.not. init) then
call libxsmm_dispatch(xmml, nx, ny*nz, nx, 1.0_dp, 0.0_dp)
call libxsmm_dispatch (xmm2, nx, ny, ny, 1.0_dp, 0.0_dp)
call libxsmm_dispatch (xmm3, nx*ny, nz, nz, 1.0_dp, 0.0_dp)
init = .true.

endif

! element-local operation
call libxsmm_call (xmml, C_LOC (wddx), C_LOC(u(l,1,1)), C_LOC(workl))
do iz=1,nz
call libxsmm_call (xmm2, C_LOC(u(l,1,iz)), C_LOC (wddyt), C_LOC(work2(1l,1,iz)))
enddo
call libxsmm_call (xmm3, C_LOC(u(l,1,1)), C_LOC(wddzt), C_LOC (work3))

! element update
au(:,:,:) = hlx ( worklxgx + work2xgy + work3*gz ) + h2xbx*u

We leverage LIBXSMM'’s experimental just-in-time (JIT) compilation feature to adapt
at runtime to Nek’s spectral order. The JIT feature generates a small matrix multiplication
when its size is requested for the first time and caches compiled code until the application
process is terminated. Additionally, LIBXSMM can expose the function pointer to the
application to bypass future dispatches when call patterns are simple.

As an example, we provide the integration of LIBXSMM into NekBox’s local Helmholtz
kernel from Section 5.3.4 in Listing 5.1. This fragment is called within a loop over elements
that is typically long enough to amortize overheads. When entering the element-local op-
erator for the very first time, we request the required kernels from the LIBXSMM library,
which JIT compiles them internally, and store the corresponding functions pointers into
persistent variables to avoid dispatching in subsequent calls. Compared to the pseudo-code
fragment, cf. 5.3.4, we use temporary buffers to separate matrix-matrix from vector-vector
operations, which are performed in one step at the end of each element. The other common

matrix-matrix motifs, basis transformation in particular, are optimized analogously.

93



5.4.2  Enhancing Element Update Performance by Streaming Stores

Caches in Intel processors are designed as write-back caches with read-for-ownership (RFO).
Therefore, writing to a vector in main memory costs two operations: a load into the cache
and the write. Nek performs many such element updates, cf. Listing 5.1, and long vector
updates in linear solvers. Compiling the Helmholtz element update leads to 5 streams being
explicitly read (gx, gy, gz, b, u), one RFO of au and one write of au. As we stream
through all elements the RFOs are harmful for two reasons: a) they consume bandwidth
and therefore can cause a ~ 16% performance drop; and b) they unnecessarily occupy cache
space and might evict useful data.

Since the SSE2 instruction set, the Intel architecture offers so-called non-temporal stores
(NTS). These special instructions write data directly into main memory without generat-
ing RFOs and consuming cache. They operate best when being executed on vector-length
aligned addresses, as cache-line splits are impossible. The compiler cannot fulfill the align-
ment requirement for all orders, because Nek stores field data compactly, which prohibits
semi-automatic generation of NTS. Therefore, we implemented a FORTRAN interface mod-
ule with a C-backend and x86 intrinsics that applies loop-peeling to leverage NTS for the
majority of stores in long, potentially unaligned updates. This module covers the important
kernels of Nek by offering NTS-enhanced primitives to: a) set an ld-array to a fixed value
b) copy an ld-array c¢) multiply component-wise an 1d array, and d) perform the Helmholtz
element update, including the special case of the Poisson operator, hg = 0. For case b),

Listing 5.2 depicts Intel AVX2 code.

5.4.8  Discussion of Performance Reproducers

In order to analyze the performance of LIBXSMM integration and the NTS module, we have

implemented standalone reproducers of the identified small matrix multiplication motifs.

They are included in the LIBXSMM library as examples and performance tests. In contrast
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Listing 5.2: Loop peeling approach including determining the middle section for which
aligned N'TS instructions can be used.

void stream_vector_copy( const doublex i_a,
doublex io_c,
const int i_length) {
int 1_n = 0;
int 1_trip_prolog
int 1_trip_stream

0;
0;

/#* init the trip counts to determine aligned middle section x/
stream_init ( i_length, (size_t)io_c, &l_trip_prolog, &l_trip_stream );

/# run the prologue #*/

for ( ; 1_n < 1_trip_prolog; 1_n++ ) {
io_c[l_n] = i_all_n]l;

}

/# run the bulk, using streaming stores x/

for ( ; 1_n < 1_trip_stream; 1_n+=8 ) {
_mm256_stream_pd( &(io_c[l_n]), _mm256_loadu_pd(&(i_a[l_n])) ) ;
_mm256_stream_pd( &(io_c[l_n+4]), _mm256_loadu_pd(&(i_al[l_n+4]1)) );

}
/% run the epilogue */
for ( ; 1_n < i_length; 1_n++ ) {
io_c[l_n] = i_all_n];
}
}

to NekBox, they are parallelized via OpenMP instead of MPI, but the performance agrees
within 10% of a full NekBox execution at scale. We used a single node of the Cray XC40
and BlueGene/Q, cf. Section 5.5.1, for generating performance data in this section.

Figure 5.1 compares the performance of Intel MKL 11.2.1, Nek’s own mxm_std, and
LIBXSMM with and without non-temporal stores. For all element sizes, LIBXSMM offers
the best performance, but the difference for orders < 16 are very small as the execution is
heavily memory bandwidth bound. A significant boost is possible by leveraging NTS: we
are able to sustain 100% of the STREAM triad bandwidth (101.6 GiB/s) up to an element
size of 16. For larger problems, the small GEMM performance is more important. Here
LIBXSMM is up to 2x faster than mxm_std und up to 40% faster than Intel MKL.

In case of very low orders the benefit of NTS is greater than 16%, which we attribute to
NTS avoiding cache pollution. For medium sized orders we exactly see the expected 16%,
and large problems have additional bandwidth available such that RFOs are less harmful.

The performance numbers for the basis transformation on Shaheen are comparable to
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Figure 5.1: Performance of the Helmholtz reproducer running on a single node of Shaheen
for different implementation of small matrix multiplications. NTS denotes the usage of the
non-temporal store optimized module.

the Helmholtz operator and therefore not plotted. To summarize them, LIBXSMM-based
GEMMs are the fastest and, due to higher computational demand, NTS are only important
of for very small 1d sizes. LIBXSMM is able to achieve 50% of maximum floating-point
performance for moderate orders. LIBXSMM ranges from 4x faster than mxm_std and
Intel MKL at the smallest order to 40% faster at the largest.

The performance of the Helmholtz kernel is representative of the basis transformations
kernel on Mira as well. To compare with Shaheen, Figure 5.2 repeats the Helmholtz operator
reproducer experiment on a single node of Mira. IBM ESSL version 5.1.1 is used as the vendor
library in place of Intel MKL. In place of LIBXSMM, mxm_bgq, which features QPX SIMD
instructions, is used for the sizes that it supports. When no QPX implementation is available,
mxm_bgq falls back to mxm_std. Up to element size 16, Nek’s mxm_std and mxm_bgqg
libraries are a better choice compared to IBM ESSL. For larger element sizes (except 22
and 24) the performance is comparable. However, the fraction of available bandwidth used
is significantly worse than on Shaheen. Even at high element sizes, Shaheen is at 80%
bandwidth utilization with LIBXSMM and 50% without, whereas Mira runs at 17%. The
relative efficacy of mxm bgg on Mira, where available, highlights the strength of LIBXSMM:
the ability to automatically issue the best available vector instructions at any size.

Figure 5.3 depicts corresponding performance numbers for the basis transformation re-
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Figure 5.2: Performance of the Helmholtz operator reproducer running on a single node of
Mira for different implementation of small matrix multiplications.

producer in three use cases: a) unitary transformation from element size to element size,
b) prolongation/dealiasing from 1d size to (3/2) the element size, and c) restriction/aliasing
from 1d size to (2/3) the element size. Note that the (3/2) factor implies some dimensions
are significantly larger then the element size shown on the x-axis.

As with the Helmholtz reproducer, the LIBXSMM-based executions are the fastest and
due to higher computational demand; NTS are only important of for very small 1d sizes.
LIBXSMM is able to achieve 50% of maximum floating-point performance for medium sized
orders In direct comparison to mxm_std and Intel MKL, the speed-up of LIBXSMM varies

between close to 4x at very small order to roughly 40% at very large order.

5.5 Scenarios and Performance

5.5.1 Architectures

We run on two supercomputers: Mira at the ALCF and Shaheen XC40 at the KSL. Mira
is a IBM BlueGene/Q with 49,152 nodes. Each node has 16 cores with 4 hardware threads
per core and can support 204.8 GFLOPS and 30 GiB/s main memory bandwidth, measured
by [39]. Shaheen is a Cray XC40 with 6144 nodes. FEach node has two Intel® Xeon®
E5-2698v3 (code-named Haswell) processors with 16 cores each and can support around

1177.6 GFLOPS and 101.6 GiB/s main memory bandwidth, measured by [39]. Shaheen’s
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Figure 5.3: Performance of the basis transformation reproducers using different implemen-
tation for the small matrix multiplications. N'TS denotes the usage of the aforementioned
non-temporal store optimized module. The top plot shows the diagonalization in the local
Poisson operator, the middle one the prolongation and the bottom one the restriction case.

cores therefore have 2.9x the floating point and 1.7x the memory bandwidth of Mira’s

BlueGene/Q cores.

5.5.2  Single mode Rayleigh-Taylor instability

The Rayleigh-Taylor instability (RTI) occurs when the pressure and density gradients point
in opposite directions, as in the canonical case of a heavy fluid supported on top of a lighter
fluid in a gravitational field. The Rayleigh-Taylor growth rate is an increasing function of
the wave-number, up to a viscous cutoff, making the smallest scales grow fastest. Because
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energy is pumped into the system at small scales, the RTT is notoriously difficult to model
numerically [14].

The RTI describes how the dense fluid is pushed through and mixes with lighter fluid.
This dynamic mixing process is essential to the behavior of flows found in exploding stars [4],
the oceans and atmosphere [34], and inertial confinement fusion. In the latter case, dense
plastic ablator is pushed into and mixed with the lighter hydrogen fuel. The carbon-laden
ablator radiates energy much more quickly than the fuel, reducing hot-spot temperature and
preventing ignition. The study of the RTT and related mixing is a priority research direction
for inertial confinement fusion performance [18].

Nek5000 and NekBox [26] are used to model the incompressible Boussinesq equations,

which approximate the RTT at low density contrasts:

ou

e +u-Vu=—-Vp+vViu+gl (5.8)
T
%—t +u-VT =aVT (5.9)

V-u=0, (5.10)

where T is a scalar that can be interpreted as a temperature, in which case « is the thermal
diffusivity and ¢ is the product of the gravitational acceleration and the thermal expansion
coefficient.

The single-mode Rayleigh-Taylor instability (smRTI) restricts the initial perturbation of
the interface to be sinusoidal, and is generally considered in periodic span-wise boundary

conditions:
z + ag cos(2mx/X) cos(2my /\)

T(x,y,2,0)=A-erf 5 ,

(5.11)

where A € (0,1] is the Atwood number, A is the wavelength, aq is the initial interface
amplitude, and ¢ is the initial interface width. This simplification allows the problem to be

defined by only two dimensionless numbers in the limit of ag,d — 0, the Grashof number
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(Gr) and the Prandtl number (Pr):

_Agh®

2

v

Gr Pr=
«Q

(5.12)

Y

Even under these simplifications, the late-time behavior is not well understood. Experi-
ments are prone to spurious low-wavelength modes that dominate the dynamics at late times,
while the cost of direct numerical simulations is quadratic with the domain’s aspect ratio.

It would be valuable to systematically sample the Grashof-Prandtl space with high fidelity
simulations at late-time/high-aspect-ratio to better inform experimental design and model
development. Such a study would be very expensive, so it is important to select a cost-
minimizing strategy.

We take this problem, the selection of a cost-minimizing strategy for the late-time smRTT,
as our motivation. In addition to the isolated reproducers discussed in Section 5.4, we present
NekBox application benchmarks based on smRTT with typical Nek settings. The aim of these
benchmarks is to identify minimum cost discretizations that attain a given accuracy.

The benchmarks are conducted for combinations of the element size taken from

{4,6,8,10,12,14, 16, 32}, (5.13)

and span-wise mesh size taken from

{2,4,8,12,16,24, 32,48, 64, 96, 128} (5.14)

The total number of points ranges from around 1 million to 4 billion. The problem is weak-
scaled: the number of elements per rank is chosen as to consume approximately half of
the available main memory, or around 16k and 262k points per rank on Mira and Shaheen,

respectively. The problems are constrained to fill an integer number of nodes, which puts a
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Figure 5.4: Scalar, vertical component of the velocity, vorticity component out of the plane,
and pressure fields at end of simulation. The color scales are dimensionless, linear, and
centered at the mean value over the image.

lower bound on the mesh size and excludes some cases that would partially fill nodes. The
domain is a box with dimension [0,0.5]% x [~1,1], and the elements are cubic. The span-
wise boundary conditions are symmetric and the vertical boundary conditions are no-slip in
velocity and no-flux (insulating) in the scalar. The initial condition is stationary in velocity
with a scalar given by Equation 5.11, the Grashof number is 17,324, and the Prandtl number
is 1. The timestep is calculated based on a Courant number of 0.4, which scales linearly with
the number of elements and quadratically with the size of the element due to the spacing of
the GLL nodes. The Courant condition is defined only in a linear limit, so during the initial
exponential growth regime the Courant number is computed using the stagnation velocity,

Outputs are written at regular intervals in simulated time, constant across problem sizes.
Therefore, smaller problems perform a greater share of I/0O, as is the common case in CFD.
Nekb5000 and NekBox write separate files for separate ranks. The number of ranks that

participate in I/O is a fixed proportion of the total number of ranks.
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Figure 5.5: Weak scaling of bandwidth on Shaheen and Mira. In (a), Circles and crosses
indicate memory bandwidth per core on Shaheen and Mira, respectively, vs. the problem
size labeled by element size. In (b), the ratio of the bandwidths are shown vs. element size
for common discretizations. The solid line indicates ratio of STREAM memory bandwidth.

Slices of the end of the simulation are shown in Figure 5.4. Two observables are calculated
in post-processing: the bubble height and the mix volume:

H:sup{z:min T(x,y,z) <T0}, @:/|T—T0|dV, (5.15)
z,y

where Tp is the volumetric average temperature. These two observables are common to
smRTT models and lie at opposite ends of the locality spectrum: the bubble height is defined
by the neighborhood of the bubble tip while the mix volume is an integral over the entire

domain. The root mean square error in each observable is computed over all the outputs.
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5.5.8 Twime to accuracy

For each simulation, we compute the FLOP rate and aggregate memory bandwidth. NekBox
includes explicit FLOP and memory operation counters and timers in the most performance
critical regions of the code. Memory operations are counted assuming single-element inter-
mediate data stays in cache, and therefore does not contribute to main memory bandwidth.
These counters are consistent with those used in the reproducers. The whole application
is not covered, so the counters can be considered lower bounds on the whole-application
performance.

The attained memory bandwidth per core on Shaheen and Mira are plotted in Figure 5.5.
On Shaheen, bandwidth is constant with respect to the number of elements and a weak
function of the order, ranging from around 65 to 75% of peak. On Mira, bandwidth is still
constant with respect to the scale, but varies more strongly with polynomial order, especially
at orders greater than 16 and those not divisible by 4. It ranges from around 15 to 50%
of peak. The mxm bgqg library, discussed in Section 5.4, is used, resulting in performance
spikes at QPX-supported orders, e.g., 8.

The accuracy is plotted versus the computational cost for a variety of discretizations in
Figure 5.6. The error in bubble height and mix volume are strongly correlated, so only the
error in the height is plotted. As expected, doubling the spectral order while keeping the
number of elements fixed, e.g., (4,32) — (8,32) and (8,8) — (16, 8), significantly improves
the accuracy, but also increases the cost by 16-32x. The first 8x is due to an increase in the
number of degrees of freedom, the next 2x is due to the shorter timestep, and, when compute-
bound, the final 2x is due to an increase in the floating point load. Doubling the spectral
order while keeping the number of points fixed, e.g., (16,8) — (32,4) and (8,8) — (16,4),
increases the cost by 2-4x, as expected, but also improves the accuracy. Doubling the
spectral order while halving the number of points in each direction, e.g., (8,32) — (16,38)

and (14,16) — (28,4), reduces the cost by 4-8x while maintaining or slightly improving the

103



Il -
Il — 1,

’ 21 25 2-' 23 2& 27 25 25 2D 21 2'? 2'3 zl-l 2'3 26 2'7 25 25 2].0 211 212
Cost (core hr) Cost (core hr}
(a) Shaheen (b) Mira

Figure 5.6: Error with respect to bubble height, Equation 5.15, vs. the computational cost,
in processor hours, on Shaheen (a) and Mira (b). Points are labeled as (p+ 1, e) pairs, where
p is the order, p + 1 is the element size, and e is the number of elements in one dimension.
More runs are present on Mira due to the smaller BGQ nodes evenly dividing more problem

sizes.
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Figure 5.7: Strong scaling (left) and weak scaling (right) on Shaheen on up to 131,072 cores
(2/3) of the full 7 PFLOPS machine using an element size of 32. To avoid log plots we show
per-core performance.

accuracy.

We define the efficiency frontier as the set of discretizations that minimize computational
cost for fixed accuracy or, equivalently, minimize error given fixed computational cost. The
efficiency frontiers on Mira and Shaheen are comprised of discretizations with very high
orders, given our constraints. The most efficient schemes are those with element size greater

than 16, except for very low accuracy simulations.

5.5.4  Whole application performance

To date, our largest calculation on Shaheen occupied 131,072 cores, as depicted in Fig. 5.7 for
element size 32. NekBox achieved 197 TiB/s memory bandwidth and 290 TFLOPS in weak
scaling. This corresponds to 47.8% of peak memory bandwidth sustained over the entire
application at high order. In case of strong scaling these numbers are slightly lower with 130
TiB/s and 195 TFLOPS. However, the Helmholtz operator, as the most compute intense sub-
routine, is able to achieve up to 0.94 PFLOPS in strong and 1.33 PFLOPS in weak-scaling
on 131,072 cores. We also consider 65,536 cores runs, occupying 1/3 of Shaheen. These runs
achieved at least 135.6 TiB/s memory bandwidth and 184.9 TFLOPS. This corresponds
to 67.5% of peak memory bandwidth sustained over the entire application at high order.
Finally, extrapolating to full machine, NekBox would reach at least 406.8 TiB/s and 554.6

TFLOPS. At the same scale, a weak scaling of the Helmholtz operator would result into
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1.9 PFLOPS out of 7PFLOPS performance.

5.6 Conclusion

NekBox enhanced by LIBXSMM generated kernels on Shaheen XC40 executes the perfor-
mance critical, order-dependent components of Nek above 80% of peak memory bandwidth.
For comparison, compiled code on the BlueGene/Q architecture is only able to reach 50% of
peak and for many polynomial orders operates around 30%. Therefore, despite only having
1.7x the memory bandwidth, Shaheen’s cores outperform Mira’s cores by 3-6x, with the
greatest improvement at high order and for sizes that are not divisible by the vector width,
4 in this case. NekBox is able to scale 67.5% utilization rates to 65,536 cores on Shaheen.

For the smRTI, the efficiency frontier, i.e., the discretizations that minimize cost given
accuracy or minimize error given cost, have polynomial orders between 15 and 31, higher
than are typically used in spectral element schemes. The presence of high order schemes
on the efficiency frontier can be understood by the combination of two effects. First, the
increase in arithmetic intensity is hidden by the imbalance between floating point capabilities
and memory bandwidth, providing high order at no marginal cost on a per time step basis.
Second, higher order schemes with fewer degrees are freedom are more accurate than lower
order schemes with more degrees of freedom. It is generally possible to maintain accuracy
by increasing the order while decreasing the total degrees of freedom, and, consequently the
total cost.

Generally the order should be chosen to be at least large enough to saturate the floating
point capabilities of the architecture in the order-dependent kernels, because increasing the
order to that point significantly improves accuracy at no marginal computational cost. On
BlueGene/Q, this mark is polynomial order 15, while on the Cray XC40 it is 31.

For many problems and observables, the calculation may additionally benefit from in-

creasing the order until just before single-element operations spill out of cache. The im-
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provement in accuracy is exponential with the polynomial order, so the degrees of freedom
needed to achieve a level of accuracy can decrease. The increase in the cost with respect
to order for compute-bound orders is linear, so if the decrease in the number of degrees of
freedom needed is super-linear, the net result is a less expensive calculation. Usage in this
way, which exceeds the largest element sizes that we ran on Shaheen, warrants further study.
More generally, high order methods with high locality, the structured elements in SEM
being only one example, are able to take advantage of wider vectors and higher compute
to memory ratios to reach higher order at little to no marginal cost on a per-step basis.
However, increases in cost can come in through coupling to the choice of time-step and an
increase in iteration counts in the solvers. These increases can often be mitigated by reducing
the total number of degrees of freedom, relative to an equivalent lower-order calculation.
The next generation will include supercomputers featuring the Xeon Phi processor code-
named Knights Landing, e.g., Cori at NERSC with more than 20 PFLOPS. As the ar-
chitecture continues to evolve, we can see that updated node-level optimizations and order-
sensitivity studies are key to helping scientists continue to perform large scale, high efficiency

simulations.
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CHAPTER 6
CONCLUSIONS

The following sections summarize the main contributions made by this thesis to the study
of the Rayleigh-Taylor instability. The last section discusses questions that this thesis has

been unable to address but could be fruitful avenues of future study.

6.1 New model for low-Atwood single mode

I have presented a simple model for the low-Atwood single mode Rayleigh-Taylor instability.
The model has two components: an ordinary differential equation for the bubble height
based on buoyancy and drag and an analytic expression for the volume of mixed fluid as a
function of the bubble height, wavelength, time, and initial interface thickness. The model
components are coupled by an analytic expression for the effective Atwood number as a
function of the pure Atwood number, bubble height, wavelength, and volume of mixed
fluid. The model components are separable in that changes to the mixing model formulation
shouldn’t significantly affect the dynamics model so long as the changed model is accurate,
and vice versa.

The model has 8 unique coefficients. Three of the coefficients can be solved for by
constraining the model to match the linear theory, i.e., the limit of small amplitude bubbles
and thin interfaces. The remaining 5 parameters can be estimated by physical arguments.
One is related to a form drag coefficient. Another is related to a friction factor. Two give
the ratios of alternative definitions of bubble volumes, e.g., based on the scalar versus the
velocity, and are nominally unity. The last scales the scalar interface surface area and is
related to the shape of the bubble, e.g., cylindrical vs rectangular.

The estimation of the model coefficients is insufficient to evaluate the model’s accuracy,

both qualitatively in the representation of known features of the flow and quantitatively in its
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predictiveness of the bubble height and mixed volume as a function of time. Neither does the
model formulation establish the accuracy of the coefficient estimates or their independence
of Grashof and Schmidt numbers. To answer these questions, we turn to direct numerical
simulations to generate a dataset of low-Atwood single mode Rayleigh-Taylor experiments

over a range of Grashof and Schmidt numbers.

6.2 Validation of DNS

Before performing the direct numerical simulations, their methodology is validated against
experimental data from drop tower experiments of Wilkinson and Jacobs [62]. The simu-
lations solve the incompressible Navier—Stokes equations for a single fluid. The density is
modeled with the Boussinesq approximation, turning it into an active scalar coupled to the
flow via the advection-diffusion equation. The incompressible Navier-Stokes and advection-
diffusion equations are solved with the spectral element method (SEM). The method is
implemented in the NekBox code, a descendant of Nek5000 specifically tuned for box ge-
ometries.

The simulations make three key approximations. First, the Boussinesq approximation,
which is equivalent to the limit of zero Atwood number for the fixed product of the Atwood
number and local acceleration, Ag. The experiments have Atwood numbers around 0.15,
which is greater than the generally accepted Boussinesq range. Second, the experiments
were miscible but with Schmidt numbers greater than 1000. For Schmidt numbers greater
than unity, the cost of the simulation goes with the Schmidt number to the fourth power.
Therefore, the simulations were performed with Schmidt numbers of 1, 3.5, and 7. Finally,
the experiments established an initial perturbation by exciting a standing wave in a stable
density stratification. However, only the initial interface amplitude and velocity were mea-
sured. These measurements where transformed into a quiescent initial condition by assuming

the early time dynamics of the linear theory. If the single mode dynamics depend on the
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initial condition, this could be a substantial approximation.

The simulations were in agreement with the experiments, both qualitatively with respect
to the presence of stagnation and re-acceleration, and quantitatively with respect to the
stagnation velocity and bubble height at the onset of re-acceleration. The highest Grashof
number simulation was unstable, which helped characterize the resolution requirements for
the simulation. The Boussinesq approximation, low Schmidt number approximation, and
linear initial condition approximations preserve the re-acceleration phenomena. More gen-
erally no physical processes beyond the incompressible Navier-Stokes with an active scalar
are necessary to produce stagnation and re-acceleration, so they can be studied with the
spectral element method in NekBox.

In addition to validation, one of the simulations was repeated in a tank with twice the
vertical extent to study late time dynamics and the interaction with the tank boundaries.
Three distinct effects of the finite size tank were observed. First, the initial condition had a
long-wavelength mode imposed along the diagonal that preferred the growth of bubbles in
one corner and spikes in the opposite corner. Second, the bubbles and spikes adjacent to
the walls experienced drag along the walls. Third, the bubbles and spikes lifted off the walls
towards the center of the tank, which squeezed the interior bubbles forward.

These boundary interactions limit the bubble height that can be reached in drop-tank
experiments to about one tank diameter. The technique used by Wilkinson and Jacobs to
drive the initial standing wave suffers from attenuation at high wave-numbers and is limited
to 4.5 modes across the diagonal. Together, these limit the bubble aspect ratio, A/, to 5 to
10, at which point the high Grashof bubbles in the experiment are still accelerating. To ex-
perimentally access the late-time dynamics of periodic arrays of bubbles requires techniques

to drive initial perturbations with many more modes.
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6.3 Convergence and performance

The calculations required to generate data to fit the model are very expensive. The cost of
simulating a trajectory until the bubble stops rising goes with the Rayleigh number to the
6th power. Of the Rayleigh numbers within the scope of the model, less than half in log-space
are practical to complete. Therefore, it is important not only to improve the performance of
the method but also to avoid over-resolving the flow.

The spectral element method has two resolution parameters: the size of the mesh of
elements and the polynomial order of each element. Those two parameters were optimized
empirically. A test case was designed at high Rayleigh number and unit Schmidt number,
but with a shorter vertical extent than the full problem. For each of many combinations of
mesh resolution and polynomial order, the flow was evolved to a fixed time corresponding
to a nondimensional bubble height h/A ~ 1. The error in the bubble height and mixed
volume was compared to the computational cost. It was found that very high spectral
orders, between 19 and 31, provided the highest accuracy for a given computational cost or,
conversely, were the lowest cost for fixed accuracy.

Production simulations were performed at polynomial order 31, with a mesh size depen-
dant on the Grashof and Schmidt numbers. Based on the results of the simulations, we

estimate the cost of a complete trajectory as:

fr~354%x10723Ra®  core hours, (6.1)

where core hours are based on Shaheen XC40 at the King Abdullah University of Science
and Technology (KAUST).
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6.4 Flow regimes

The terms in the model naturally divide the flow into four regimes: the exponential growth
regime, the saturation regime, the viscous regime, and the diffusive regime. The onset of
each regime with respect to the bubble height can be estimated by scaling arguments. The
exponential growth regime is governed by the linear theory and well studied. The linear
growth saturates at a fixed aspect ratio, taken here to be h/\ = 0.05, independent of the
Rayleigh and Schmidt numbers. The saturation limits the acceleration to Ag/Cs, with
C3 =~ 1. The acceleration is damped somewhat by the form drag, but still with constant
acceleration. As the bubble elongates, viscous drag on the side walls imposes a terminal
velocity scale Ag\2 /Co. The onset of the viscous regime scales with the Grashof number,
h/\ ~ Gr. As the bubble slows, the inflow of pure fluid falls behind the mixing of fluid
across the interface. The mixing reduces the effective Atwood number, slowing the bubble
until it stops rising. This is the diffusive regime. The onset scales with the Rayleigh number,
h/\ ~ Ra. Similarly, the maximum height of the bubble, i.ethe penetration depth, scales
linearly with the Rayleigh number. The relationship is h(co)/A = 2.41 x 10~*Ra — 0.36,

defining a critical Rayleigh number, Ra. = 1500, below which the bubble does not rise.

6.5 Model coefficients

The 5 unconstrained model parameters were fit to the numerical trajectories. First, the
mixing coefficient C was fit directly to the mixed volume. Then, given C%, the remaining
four coefficients were fit with L2 regularization about the parameter estimates.

The C5 and C7 terms take a nominal value of 1, with outliers at the lowest Rayleigh
numbers, in the case of ('3, and incomplete trajectories, in the case of C';. The parameter
dependence of ('3 is postulated to be due to model breakdowns in highly dissipative cases.

The parameter dependence of C7 is expected to disappear as the high Rayleigh trajectories
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are completed.

The C'1 drag-type coeflicient takes nominal values between 0.3 and 0.6. There are outliers
at zero and greater than 0.9, at low to moderate Rayleigh number and both low and high
Schmidt number. The cause of these outliers is a mystery; the majority of trajectories are
consistently within the nominal range.

The C9 friction factor-type coefficient clearly varies across the parameter space. It is a
strongly increasing function of the Grashof number and a weakly increasing function of the
Schmidt number. A possible explanation is the development of shear instabilities along the
bubble sides that enhance the transport of momentum out of the bubble. These instabilities
would be strongest at high Grashof number and could be stabilized somewhat by low Schmidt
numbers.

Similarly, the C5 mixing coefficient varies with the diffusivity and Grashof number. It
is a strongly decreasing function of diffusivity and is peaked with respect to the Grashof
number. Similar to the development of momentum structures at high Grashof number, the
low diffusivity cases could develop scalar structures on the interface that enhance mixing.
The dependence on the Grashof number is mysterious; it is not clear what would cause peaked
behavior. However, the mixing coefficient captures shape information that could depend
on the viscosity and shear instabilities would transport the scalar just as they transport

momentum.

6.6 Open problems

The stagnation and re-acceleration transient is not captured by the proposed buoyancy-drag
model. Specifically, the model is unable to produce an inflection point at finite amplitude,
while the stagnation and re-acceleration transient has two. This suggests the model is
incomplete. Vorticity, specifically the development of a vortex ring at the bubble tip, isn’t a

part of the buoyancy-drag model and is a strong candidate for the missing term.
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The majority of the simulations that have been performed are incomplete in that the
bubble begins to interact with the top boundary before it stops rising. The truncation of
the dynamics may affect the fit coefficients. In particular, the C9, C5, and C7 terms are
the most important to the dynamics at late times, so the fit values from clipped trajectories
come with a grain of salt. These cases should be completed by simulation in domains with
greater aspect ratios. The cost of completing each of the next set of simulations presented
here is about 15 million core-hours on Shaheen XC40.

There are experiments and simulations that could be performed to isolate the effects
of subsets of the model parameters. These experiments deviate from the standard low-
amplitude thin interface single-model initial condition but should still be covered by the
model. For example, the value of the C'3 term is greatest at late times but the forces are
nearly balanced by that point, weakening its influence. To isolate it, the pure Atwood
number could be spontaneously doubled, throwing the numerator of the dynamics model
out of balance and accelerating the bubble. The rate of that acceleration would depend
strongly on C3. The experimental equivalent of this procedure would be to rapidly increase
the local acceleration.

Recent work on the single-mode instability has focused on cubic lattices of bubbles and
spikes. Weakly non-linear theories have shown that a hexagonal lattice grows more rapidly, at
least at early times. The lattice should affect the bubble geometry, so it would be interesting
to compute the variation of the parameters across lattices and search for simple relations
between them. It would also be interesting to see how the onset of the stagnation and
reacceleration, around h/A = 1/2 and 1 for the cubic lattice, respectively, depends on the

lattice type.
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