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ABSTRACT

Statistical minimax theory is a fundamental quantity used to assess the difficulty of various

statistical tasks. We consider two variants on traditional minimax theory to alleviate some

of its deficiencies. The first variant, a constrained form of minimax theory, puts computa-

tional constraints on the procedures and leads to minimax complexities that are achievable

by computationally efficient methods. We illustrate this by an example of nonparametric

estimation with storage constraint. We show how the minimax risk varies with the number

of bits that is allowed to be used to represent the estimate. This establishes the Pareto op-

timal minimax tradeoff between storage and risk under quantization constraints for Sobolev

spaces. As for the second variant, we extend the traditional minimax analysis by introducing

a localized form of minimax complexity for individual instances. The formulation is based

on the “hardest local alternative.” As an example, we derive the local minimax complexity

for stochastic optimization of convex functions. The local minimax complexity is expressed

in terms of a localized and computational analogue of the modulus of continuity. We show

how the computational modulus of continuity can be explicitly calculated in concrete cases,

and relates to the curvature of the function at the optimum. We also prove a superefficiency

result that demonstrates it is a meaningful benchmark, acting as a computational analogue

of the Fisher information in statistical estimation. The nature and practical implications of

the results are demonstrated in simulations.
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CHAPTER 1

INTRODUCTION

I am prepared for the worst, but hope for the best. (Benjamin Disraeli)

Minimax theory acts as the cornerstone of many statistical analyses. Typically, it is

used to quantify the hardness of a set of statistical problems, such as estimation, testing,

and optimization. For any procedure that is designed to complete the particular statistical

task, we look at its worst-case performance when applied to the set of problems. Then the

procedure that has the best worst-case performance gives the minimax risk or complexity of

the problem. Although such worst-case analyses have gained in popularity and been of great

importance, their usage has also been criticized due to some deficiencies of the formulation.

1.1 Minimax Analyses

Before we proceed to present the modifications of minimax theory, we set the stage by

giving a brief review of minimax analysis in its full generality. Suppose that there exists

some data generating mechanism P drawn from P . Such P could be a family of probability

distributions, or a class of stochastic oracles. The data generating mechanism P , upon

being queried, returns a random variable or vector. For example, when P is a probability

distribution, then a total number of n queries give us n samples from the distribution; when

P is some stochastic oracle, it returns samples depending on its underlying parameter as well

as the query input. We call a mapping θ : P → Θ a parameter of P and our goal is to estimate

the parameter θ(P ) for the underlying P . We will simply write θ as the parameter when its

dependence on P is clear from the context. Suppose that An is the collection of procedures

that make up to n queries to the data generating mechanism P . In the most common case

where P is a probability distribution, An is simply the set of estimators of θ measurable

with respect to n i.i.d. data points. In order to assess the quality of any procedure, we
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define err : An ×Θ→ [0,∞) to be some error measure of using A ∈ An to estimate θ. The

associated risk is simply the expected error EP err(A, θ(P )), where the expectation is taken

with respect to P and possibly the randomness in the procedure A. We can then rank the

procedures by their worst-case risk with P ranging in P , i.e., supP∈P EP err(A, θ(P )). The

minimax risk is defined as this worst-case risk of the optimal procedure

Rn(P) = inf
A∈An

sup
P∈P

EP err(A, θ(P )). (1.1)

When each P ∈ P can be indexed by the parameter θ, we will write

Rn(Θ) = inf
A∈An

sup
θ∈Θ

Eθ err(A, θ). (1.2)

Let us first consider two illustrative examples of this definition and related results from

two different areas.

Example 1.1.1 (Normal means estimation). Let n be a positive integer. Suppose that

Xi
ind.∼ N (θi, σ

2
n) for i = 1, 2, . . . , n.

We assume the variance σ2
n = σ2/n is known and would like to estimate the means θ =

(θ1, . . . , θn). Suppose that the mean vector is known to be contained in Θn(c) = {θ ∈ Rn :∑n
i=1 θ

2
i ≤ c2}, the `2 ball in Rn centered at the origin with radius c. This estimation

problem corresponds to the afore-defined setup with a data generating mechanism P , which

at the ith query returns Xi ∼ N (θi, σ
2
n), and P contains all such P with θ ∈ Θn(c). Consider

the `2 loss as our error measure, i.e., err(θ̂, θ) = ‖θ − θ̂‖2. Thus, the minimax risk for this

estimation problem can be written as

Rn(Θn(c)) = inf
θ̂

sup
θ∈Θn(c)

Eθ ‖θ − θ̂‖22. (1.3)
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The infimum is taken over all estimators θ̂ that are measurable with respect to the data

(X1, . . . , Xn). This normal means model is a centerpiece of nonparametric estimation. It

arises naturally when representing an estimator in terms of an orthogonal basis; see Brown

and Low (1996a) and Johnstone (2015). Pinsker (1980) show that

lim inf
n→∞ Rn(Θn(c)) =

σ2c2

σ2 + c2
. (1.4)

Note that the maximum likelihood estimator, which, in this case, is the sample (X1, . . . , Xn)

itself has a risk of σ2, regardless of θ. Therefore, the MLE is not minimax for the parameter

space Θn(c). In fact, appropriate amount of shrinkage on the MLE, which trades bias for

less variance, can be proved to be minimax optimal in this case.

A more interesting case is to estimate the mean vector from a Sobolev ellipsoid. A

Sobolev ellipsoid of order m and radius c is defined as

Θ(m, c) =

θ ∈ `2 :
∞∑
j=1

a2
jθ

2
j ≤ c2

 (1.5)

with aj = (πj)m. Suppose that our model is still given by

Xj ∼ N (θj , σ
2
n) for j = 1, 2, . . . (1.6)

where σ2
n = σ2/n. Note that a slight difference is that here we have an infinite sequence of

data as well as mean components. Still, n is our effective sample size, as this formulation

arises from settings where we have noisy evaluations of a function at n evenly spaced loca-

tions. The Sobolev ellipsoid comes up when we convert the observations to an orthonormal

basis, and assume that the function satisfies certain smoothness conditions. The minimax

risk for estimating the normal mean vector in a Sobolev ellipsoid can be then formulated as

Rn(Θ(m, c)) = inf
θ̂

sup
θ∈Θ(m,c)

Eθ‖θ − θ̂‖22. (1.7)

3



It is shown in Pinsker (1980) that

lim inf
n→∞ n

2m
2m+1Rn(Θ(m, c)) =

Åσ
π

ã 2m
2m+1

c
2

2m+1

Å m

m+ 1

ã 2m
2m+1

(2m+ 1)
1

2m+1 . (1.8)

This is referred to as Pinsker’s Theorem, which characterizes the convergence rate and leading

constant of the nonparametric estimation problem to a constant level. However, we must

notice that here as the mean vector has infinite length, so the minimax optimal estimator

could possibly take up very large or theoretically infinite storage.

Example 1.1.2 (First-order stochastic convex optimization). Let F be a collection of Lip-

schitz convex functions defined on a compact convex set C ⊂ Rd. Given a function f ∈ F ,

our goal is to find a minimum point, x∗f ∈ arg minx∈C f(x). However, our knowledge about

f can only be gained through a first-order oracle P . The oracle, upon being queried with

x ∈ C, returns f ′(x) + ξ, where f ′(x) is a subgradient of f at x and ξ ∼ N (0, σ2Id). In our

previous setup of minimax analyses, the corresponding family P in this case contains such

stochastic oracles for functions f in F . Consider optimization algorithms that make a total

of n queries to this first-order oracle, and let An be the collection of all such algorithms. For

A ∈ An, the ith query point xi is a random vector measurable with respect to the previous

query points x1, . . . , xi−1 and the previous query responses Y1, . . . , Yi−1. Denote by x̂A the

output of the algorithm A, which is the estimated minimum point of the underlying function.

We can consider either a function value error, err(A, f) = f(x̂A) − infx∈C f(x), or a point

value error err(A, f) = infy∈arg min f(x) ‖y − x̂A‖. Either way, the minimax complexity can

be defined as

Rn(F) = inf
A∈An

sup
f∈F

Ef err(A, f). (1.9)

The expectation Ef denotes the average with respect to the randomness introduced by the

oracle and any additional randomness injected by the algorithm itself. The minimax risk

Rn(F) characterizes the hardness of the entire class F . Nemirovsky and Yudin (1983) show

that for the function value error, the minimax complexity Rn(F) scales as O(1/
√
n) when F

4



contains all Lipschitz convex functions. They also show that for the set of strongly convex

functions the minimax complexity decreases at a faster rate O(1/n). The classical results

indicate that strongly convex functions are relatively easy to optimize.

1.2 Deficiencies and Variants

Although minimax analyses have gained in popularity and are of great importance in many

fields, there are always some critiques against the usage of this notion as a characterization

of the hardness of the task. Among all the critiques, the following two are probably the most

common, one against its optimism, and the other, on the contrary, against its pessimism.

First, traditional minimax analyses are optimistic, in the sense that, any procedure is

included for consideration as long as it is measurable with respect to the data, regardless

of the computation, storage, or communication cost. Consequently, the optimal procedure

that achieves the minimax risk can be practically infeasible, hence leaving the benchmark

meaningless. For example, it can allow algorithms that scale arbitrarily fast with the problem

dimension and sample size. It is of interest to consider procedures that have polynomial-time

complexity and ask what is the optimal procedure amongst them. Moreover, it assumes that

the algorithm, or the final estimator produced by the algorithm, can use an infinite amount

of space for storage or representation. Oftentimes, such resources are limited by the storage

space or the precision of the computation system. It is then again interesting to understand

how much is lost if we limit our choice to those procedures with storage constraints. In the

first part of the thesis, we will introduce a constrained form of minimax analyses, in which

the infimum is taken over those procedures satisfying certain conditions. We will give a

brief review in Chapter 2 before delving into a concrete examples. We build on the normal

means estimation problem described in Example 1.1.1 and consider estimation problems with

storage constraints in Chapter 3.

On the other hand, another criticism of the theory is that the minimax benchmark is too

pessimistic. In fact, minimax analyses quantify the hardness of a family of problems. For

5



a particular problem that is of interest, it can belong to multiple families whose minimax

complexities can be quite different. It is not immediately clear how well we should expect

or hope to solve individual problems by applying such worst-case analyses. We consider a

definition of “local” minimax risk by looking at the hardest local alternative. Such a two-

point formulation becomes meaningful benchmark only if some criteria can be shown, such

as achievability by adaptive algorithms, superefficiency, etc. We give a brief introduction of

the formulation and the criteria in Chapter 4. In Chapter 5, we illustrate the application of

the framework in the context of stochastic convex optimization.
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Part I

Constrained Forms of Minimax

Theory



CHAPTER 2

CONSTRAINED FORMS OF MINIMAX THEORY:

INTRODUCTION AND RELATED WORK

Statistical minimax theory quantifies the hardness of many statistical tasks. It is based

on a saddle point formulation where the statistician chooses a procedure to minimize the

worst-case performance of the procedure when applied to the all the problem instances. The

minimax risk or complexity thus defined can sometimes underestimate the real difficulty of

the problem, as the procedure that achieves the minimax risk can be unrealistic. The only

requirement on the procedure in the traditional minimax formulation is that it is measurable

with respect to the data available at the time of making final decision. Consequently this

allows the use of procedures that can be practically infeasible due to computational reasons.

For example, the maximum likelihood estimator for some model with combinatorial assump-

tions such as sparsity has exponential computational complexity as it usually requires an

enumeration of all combinations of features which scales exponentially with the dimension.

Nonparametric estimation problems, on the other hand, usually take up very large amount of

space to store and represent the estimates, due to the assumption of an infinite dimensional

truth. It is then natural to ask if we limit ourselves to procedures that are computationally

efficient, how much harder will the problem become. To put it more explicitly, we write the

constrained form of minimax risk as

Rn(P ;B) = inf
A∈An: C(A)≤B

sup
P∈P

EP err(A, θ(P ))

where we use the notation from Chapter 1, and C(A) denotes the computational cost of

procedure A, such as running time, number of floating point operations, number of bits

used to store or construct the procedure, etc. Here we only consider the procedures whose

computational cost fall within a budget B. It is of interest and importance to understand

the role of the constraint and how the budget B influences the minimax risk.
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The quest of the constrained forms of minimax analyses can be viewed as an approach

to understand the tradeoff between statistical accuracy and computational efficiency. With

the recent development of large-scale and high-dimensional statistical analyses, computation

becomes too significant a component to be ignored, making it more urgent and important

to understand this tradeoff. In the recent decade, there have been an increasing number of

work devoted to characterize such tradeoff.

Many studies have been focusing on the tradeoff between statistical risk and computa-

tional runtime. One approach to examine the relationship is to study different procedures

with different statistical accuracies and computational runtimes. Chandrasekaran and Jor-

dan (2013) describe a computational framework based on convex relaxation, which does this

in a principled way. Thus, to achieve a desired risk, various methods with different level

of relaxation leads to different computational complexity and require different number of

samples. Figure 2.1 is a replicate of a plot in Chandrasekaran and Jordan (2013), which

characterizes the phenomenon. On the computation-sample plane, each point corresponds

to a procedure that require a certain runtime and a certain number of samples to achieve the

desired risk. We would expect that for a specific statistical task there is a feasible region on

this plane. Designing a sequence of algorithms with various computation and sample com-

plexities is like probing the feasible region. In addition to using convex relaxation to study

the tradeoff, Bruer et al. (2014) analyze the tradeoff between time and data by aggressively

smoothing the optimization problem, and Lucic et al. (2015) using k-means to describe the

data. Other than such analyses using a particular set of techniques to trade off accuracy for

computation, many other studies of algorithms for statistical inference can be thought of as

revealing feasible points on the plane. For example, in the sparse PCA problem where one

tries to recover the k-sparse principle component of a p-dimensional multivariate distribution

based on i.i.d. samples, various algorithms are studied. The statistically optimal procedure

searches through all possible combinations; it requires
Äp
k

ä
many operations, and k log(p−k)

many samples to be able to recover the truth principle component. A computationally more

9
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Computational lower bound

Figure 2.1: Replicate of Figure 1 in Chandrasekaran and Jordan (2013). Tradeoff between
the runtime and sample complexity in a parameter estimation problem. The risk is assumed
to be fixed to some desired level, and the points in the plot refer to different procedures
that require a certain runtime and a certain number of samples to achieve the desired risk.
The vertical and horizontal lines refer to lower bounds in sample complexity and in runtime,
respectively.

efficient method based on thresholding requires only np log p many operations, but needs

k2 log(p − k) samples (Johnstone and Lu, 2012). We thus locate two points in the feasible

region for this problem.

Despite all the fruitful results on the tradeoff between time and data, few negative results

have been proved. That is, it is hard to give a sharp characterization of the Pareto frontier

of the feasible region. Hence, we seldom understand the optimality of a procedure – whether

it is the optimal amongst the ones with the same or less amount of computation resources.

Getting such negative results is equivalent to drawing the boundary of the feasible region.

Any procedures that are exactly on the boundary are in some sense optimal; those in the

interior are sub-optimal – we could be better off by either spending less computational

resource, or collecting less samples, or both. See Figure 2.2. One of the few examples of such
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Figure 2.2: Pareto optimal frontier of the computation and sample complexity tradeoff. An
algorithm is optimal if its corresponding point falls on the frontier.

negative results is given in Berthet and Rigollet (2013) and Wang et al. (2014), in which it

is shown that for the sparse PCA problem k2 log p is actually the best sample complexity if

we restrict our choices to the procedures that have a polynomial runtime. Similar work that

shows such a “computational barrier” include Ma et al. (2015) for sub-matrix detection, and

Gao et al. (2014) for sparse CCA, amongst others. However, we must note that such results

are not enough to fully characterize the Pareto curve, and neither does it gives an explicit

form of the time-constrained minimax risk. In fact, it seems a hard task and requires some

unconventional techniques.

In some other problems, it is in fact possible to get a sharp characterization of the

computational-statistical tradeoff in terms of constrained minimax risk. In a expository ar-

ticle, Wainwright (2014) gives three examples of such constrained minimax risks, including

communication-constrained distributed estimation (Zhang et al., 2013), privacy-constrained

estimation (Duchi et al., 2013), and results on polynomial-time sparse regression (Zhang

11



et al., 2014). Zhu and Lafferty (2014) and Zhu and Lafferty (2015) give explicit formula for

the storage constrained minimax risks for Gaussian sequence estimation in different param-

eter families.
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CHAPTER 3

STATISTICAL ESTIMATION WITH STORAGE

CONSTRAINTS

3.1 Introduction

In this chapter we introduce a minimax framework for statistical estimation under storage

constraints. In the classical statistical setting, the minimax risk for estimating a function f

from a function class F using a sample of size n places no constraints on the estimator f̂n,

other than requiring it to be a measurable function of the data. However, if the estimator is

to be constructed with restrictions on the computational resources used, it is of interest to

understand how the error can degrade. Letting C(f̂n) ≤ Bn indicate that the computational

resources C(f̂n) used to construct f̂n are required to fall within a budget Bn, the constrained

minimax risk is

Rn(F , Bn) = inf
f̂n:C(f̂n)≤Bn

sup
f∈F

R(f̂n, f).

Minimax lower bounds on the risk as a function of the computational budget thus determine

a feasible region for computation constrained estimation, and a Pareto optimal tradeoff for

risk versus computation as Bn varies.

In this chapter we treat the case where the complexity C(f̂n) is measured by the storage

or space used by the procedure. Specifically, we limit the number of bits used to represent

the estimator f̂n. We focus on the setting of nonparametric regression under standard

smoothness assumptions, and study how the excess risk depends on the storage budget Bn.

We view the study of quantized estimation as a theoretical problem of fundamental in-

terest. But quantization may arise naturally in future applications of large scale statistical

estimation. For instance, when data are collected and analyzed on board a remote satellite,

the estimated values may need to be sent back to Earth for further analysis. To limit com-

munication costs, the estimates can be quantized, and it becomes important to understand

13



what, in principle, is lost in terms of statistical risk through quantization. A related scenario

is a cloud computing environment where data are processed for many different statistical

estimation problems, with the estimates then stored for future analysis. To limit the storage

costs, which could dominate the compute costs in many scenarios, it is of interest to quantize

the estimates, and the quantization-risk tradeoff again becomes an important concern. A

related problem is to distribute the estimation over many parallel processors, and to then

limit the communication costs of the submodels to the central host. Estimates are always

quantized to some degree in practice. But to impose energy constraints on computation,

future processors may limit precision in arithmetic computations more significantly (Galal

and Horowitz, 2011); the cost of limited precision in terms of statistical risk must then be

quantified.

We study risk-storage tradeoffs in the normal means model of nonparametric estimation

assuming the target function lies in a Sobolev space. The problem is intimately related

to classical rate distortion theory (Gallager, 1968), and our results rely on a marriage of

minimax theory and rate distortion ideas. We thus build on and refine the connection

between function estimation and lossy source coding that was elucidated in David Donoho’s

1998 Wald Lectures (Donoho, 2000).

We work in the Gaussian white noise model

dX(t) = f(t)dt+ εdW (t), 0 ≤ t ≤ 1, (3.1)

where W is a standard Wiener process on [0, 1], ε is the standard deviation of the noise,

and f lies in the periodic Sobolev space W̃ (m, c) of order m and radius c. (We discuss the

nonperiodic Sobolev space W (m, c) in Section 3.4.) In this classical setting, the minimax

risk of estimation

Rε(m, c) = inf
f̂ε

sup
f∈W̃ (m,c)

E‖f − f̂ε‖22

14



is well known to satisfy

lim
ε→0

ε−
4m

2m+1Rε(m, c) =

(
c2(2m+ 1)

π2m

) 1
2m+1 Å m

m+ 1

ã 2m
2m+1

, Pm,c (3.2)

where Pm,c is Pinsker’s constant (Nussbaum, 1999). The constrained minimax risk for

quantized estimation becomes

Rε(m, c,Bε) = inf
f̂ε,C(f̂ε)≤Bε

sup
f∈W̃ (m,c)

E‖f − f̂ε‖22

where f̂ε is a quantized estimator that is required to use storage C(f̂ε) no greater than Bε

bits in total. Our main result identifies three separate quantization regimes.

• In the over-sufficient regime, the number of bits is very large, satisfying Bε � ε−
2

2m+1

and the classical minimax rate of convergence Rε � ε
4m

2m+1 is obtained. Moreover, the

optimal constant is the Pinsker constant Pm,c.

• In the sufficient regime, the number of bits scales as Bε � ε−
2

2m+1 . This level of

quantization is just sufficient to preserve the classical minimax rate of convergence,

and thus in this regime Rε(m, c,Bε) � ε
4m

2m+1 . However, the optimal constant degrades

to a new constant Pm,c+Qm,c,d, where Qm,c,d is characterized in terms of the solution

of a certain variational problem, depending on d = limε→0Bεε
2

2m+1 .

• In the insufficient regime, the number of bits scales as Bε � ε−
2

2m+1 , with however

Bε →∞. Under this scaling the number of bits is insufficient to preserve the unquan-

tized minimax rate of convergence, and the quantization error dominates the estimation

error. We show that the quantized minimax risk in this case satisfies

lim
ε→0

B2m
ε Rε(m, c,Bε) =

c2m2m

π2m .
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Thus, in the insufficient regime the quantized minimax rate of convergence is B−2m
ε ,

with optimal constant as shown above.

By using an upper bound for the family of constants Qm,c,d, the three regimes can be

combined together to view the risk in terms of a decomposition into estimation error and

quantization error. Specifically, we can write

Rε(m, c,Bε) ≈ Pm,c ε
4m

2m+1︸ ︷︷ ︸
estimation error

+
c2m2m

π2m B−2m
ε︸ ︷︷ ︸

quantization error

.

When Bε � ε−
2

2m+1 , the estimation error dominates the quantization error, and the usual

minimax rate and constant are obtained. In the insufficient case Bε � ε−
2

2m+1 , only a slower

rate of convergence is achievable. When Bε and ε−
2

2m+1 are comparable, the estimation error

and quantization error are on the same order. The threshold ε−
2

2m+1 should not be surprising,

given that in classical unquantized estimation the minimax rate of convergence is achieved by

estimating the first ε−
2

2m+1 Fourier coefficients and simply setting the remaining coefficients

to zero. This corresponds to selecting a smoothing bandwidth that scales as h � n−
1

2m+1

with the sample size n.

At a high level, our proof strategy integrates elements of minimax theory and source

coding theory. In minimax analysis one computes lower bounds by thinking in Bayesian

terms to look for least-favorable priors. In source coding analysis one constructs worst case

distributions by setting up an optimization problem based on mutual information. Our quan-

tized minimax analysis requires that these approaches be carefully combined to balance the

estimation and quantization errors. To show achievability of the lower bounds we establish,

we likewise need to construct an estimator and coding scheme together. Our approach is to

quantize the blockwise James-Stein estimator, which achieves the classical Pinsker bound.

However, our quantization scheme differs from the approach taken in classical rate distortion

theory, where the generation of the codebook is determined once the source distribution is
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known. In our setting, we require the allocation of bits to be adaptive to the data, using

more bits for blocks that have larger signal size. We therefore design a quantized estimation

procedure that adaptively distributes the communication budget across the blocks. Assum-

ing only a lower bound m0 on the smoothness m and an upper bound c0 on the radius c of

the Sobolev space, our quantization-estimation procedure is adaptive to m and c in the usual

statistical sense, and is also adaptive to the coding regime. In other words, given a storage

budget Bε, the coding procedure achieves the optimal rate and constant for the unknown m

and c, operating in the corresponding regime for those parameters.

In the following section we establish some notation, outline our proof strategy, and present

some simple examples. In Section 3.3 we state and prove our main result on quantized mini-

max lower bounds, relegating some of the technical details to an appendix. In Section 3.4 we

show asymptotic achievability of these lower bounds, using a quantized estimation procedure

based on adaptive James-Stein estimation and quantization in blocks, again deferring proofs

of technical lemmas to the supplementary material. This is followed by a presentation of

some results from experiments in Section 3.5, illustrating the performance and properties of

the proposed quantized estimation procedure.

3.2 Quantized estimation and minimax risk

Suppose that (X1, . . . , Xn) ∈ Xn is a random vector drawn from a distribution Pn. Consider

the problem of estimating a functional θn = θ(Pn) of the distribution, assuming θn is re-

stricted to lie in a parameter space Θn. To unclutter some of the notation, we will suppress

the subscript n and write θ and Θ in the following, keeping in mind that nonparametric

settings are allowed. The subscript n will be maintained for random variables. The minimax

`2 risk of estimating θ is then defined as

Rn(Θ) = inf
θ̂n

sup
θ∈Θ

Eθ‖θ − θ̂n‖2

17



where the infimum is taken over all possible estimators θ̂n : Xn → Θ that are measurable

with respect to the data X1, . . . , Xn. We will abuse notation by using θ̂n to denote both

the estimator and the estimate calculated based on an observed set of data. Among numer-

ous approaches to obtaining the minimax risk, the Bayesian method is best aligned with

quantized estimation. Consider a prior distribution π(θ) whose support is a subset of Θ.

Let δ(X1:n) be the posterior mean of θ given the data X1, . . . , Xn, which minimizes the

integrated risk. Then for any estimator θ̂n,

sup
θ∈Θ

Eθ‖θ − θ̂n‖2 ≥
∫

Θ
Eθ‖θ − θ̂n‖2dπ(θ) ≥

∫
Θ
Eθ‖θ − δ(X1:n)‖2dπ(θ).

Taking the infimum over θ̂n yields

inf
θ̂n

sup
θ∈Θ

Eθ‖θ − θ̂n‖2 ≥
∫

Θ
Eθ‖θ − δ(X1:n)‖2dπ(θ) , Rn(Θ;π).

Thus, any prior distribution supported on Θ gives a lower bound on the minimax risk, and

selecting the least-favorable prior leads to the largest lower bound provable by this approach.

Now consider constraints on the storage or communication cost of our estimate. We

restrict to the set of estimators that use no more than a total of Bn bits; that is, the

estimator takes at most 2Bn different values. Such quantized estimators can be formulated

by the following two-step procedure. First, an encoder maps the data X1:n to an index

φn(X1:n), where

φn : Xn → {1, 2, . . . , 2Bn}

is the encoding function. The decoder, after receiving or retrieving the index, represents the

estimates based on a decoding function

ψn : {1, 2, . . . , 2Bn} → Θ,

mapping the index to a codebook of estimates. All that needs to be transmitted or stored

18



is the Bn-bit-long index, and the quantized estimator θ̂n is simply ψn ◦ φn, the composition

of the encoder and the decoder functions. Denoting by C(θ̂n) the storage, in terms of the

number of bits, required by an estimator θ̂n, the minimax risk of quantized estimation is

then defined as

Rn(Θ, Bn) = inf
θ̂n,C(θ̂n)≤Bn

sup
θ∈Θ

Eθ‖θ − θ̂n‖2,

and we are interested in the effect of the constraint on the minimax risk. Once again, we

consider a prior distribution π(θ) supported on Θ and let δ(X1:n) be the posterior mean of

θ given the data. The integrated risk can then be decomposed as

∫
Θ
Eθ‖θ − θ̂n‖2dπ(θ) = E‖θ − δ(X1:n) + δ(X1:n)− θ̂n‖2

= E‖θ − δ(X1:n)‖2 + E‖δ(X1:n)− θ̂n‖2
(3.3)

where the expectation is with respect to the joint distribution of θ ∼ π(θ) and X1:n | θ ∼ Pθ,

and the second equality is due to

E〈θ − δ(X1:n), δ(X1:n)− θ̂n〉

= E
Ä
E
Ä
〈θ − δ(X1:n), δ(X1:n)− θ̂n〉 |X1:n

ää
= E

Ä
〈E(θ − δ(X1:n) |X1:n),E(δ(X1:n)− θ̂n |X1:n)〉

ä
= E

Ä
〈0,E(δ(X1:n)− θ̂n |X1:n)〉

ä
= 0,

using the fact that θ → X1:n → θ̂n forms a Markov chain. The first term in the decomposition

(3.3) is the Bayes risk Rn(Θ;π). The second term can be viewed as the excess risk due to

quantization.

Let Tn = T (X1, . . . , Xn) be a sufficient statistic for θ. The posterior mean can be

expressed in terms of Tn and we will abuse notation and write it as δ(Tn). Since the
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quantized estimator θ̂n uses at most Bn bits, we have

Bn ≥ H(θ̂n) ≥ H(θ̂n)−H(θ̂n | δ(Tn)) = I(θ̂n; δ(Tn)),

where H and I denote the Shannon entropy and mutual information, respectively. Now

consider the optimization

inf
P (· | δ(Tn))

E‖δ(Tn)− θ̃n‖2

such that I(θ̃n; δ(Tn)) ≤ Bn

where the infimum is over all conditional distributions P (θ̃n | δ(Tn)). This parallels the defi-

nition of the distortion rate function, minimizing the distortion under a constraint on mutual

information (Gallager, 1968). Denoting the value of this optimization by Qn(Θ, Bn; π), we

can lower bound the quantized minimax risk by

Rn(Θ, Bn) ≥ Rn(Θ;π) +Qn(Θ, Bn; π).

Since each prior distribution π(θ) supported on Θ gives a lower bound, we have

Rn(Θ, Bn) ≥ sup
π

ß
Rn(Θ;π) +Qn(Θ, Bn; π)

™
and the goal becomes to obtain a least favorable prior for the quantized risk.

Before turning to the case of quantized estimation over Sobolev spaces, we illustrate this

technique on some simpler, more concrete examples.

Example 3.2.1 (Normal means in a hypercube). Let Xi ∼ N (θ, σ2Id) for i = 1, 2, . . . , n.

Suppose that σ2 is known and θ ∈ [−τ, τ ]d is to be estimated. We choose the prior π(θ) on
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θ to be a product distribution with density

π(θ) =
d∏
j=1

3

2τ3

Ä
τ − |θj |

ä
+

2
.

It is shown in Johnstone (2015) that

Rn(Θ;π) ≥ σ2d

n

τ2

τ2 + 12σ2/n
≥ c1

σ2d

n

where c1 = τ2

τ2+12σ2
. Turning to Qn(Θ, Bn; π), let T (n) = (T

(n)
1 , . . . , T

(n)
d ) = E(θ|X1:n) be

the posterior mean of θ. In fact, by the independence and symmetry among the dimensions,

we know T1, . . . , Td are independently and identically distributed. Denoting by T
(n)
0 this

common distribution, we have

Qn(Θ, Bn; π) ≥ d · q(Bn/d)

where q(B) is the distortion rate function for T
(n)
0 , i.e., the value of the following problem

inf
P (T̂ |T (n)

0 )

E(T
(n)
0 − “T )2

such that I(“T ;T
(n)
0 ) ≤ B.

Now using the Shannon lower bound (Cover and Thomas, 2006), we get

Qn(Θ, Bn; π) ≥ d

2πe
· 2h(T

(n)
0 ) · 2−

2Bn
d .

Note that as n → ∞, T
(n)
0 converges to θ in distribution, so there exists a constant c2

independent of n and d such that

Rn(Θ, Bn) ≥ c1
σ2d

n
+ c2d 2−

2Bn
d .
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This lower bound intuitively shows the risk is regulated by two factors, the estimation error

and the quantization error; whichever is larger dominates the risk. The scaling behavior

of this lower bound (ignoring constants) can be achieved by first quantizing each of the d

intervals [−τ, τ ] using Bn/d bits each, and then mapping the mle to its closest codeword.

Example 3.2.2 (Binomial). Let Xi ∼ Bern(θ) be independent samples from a Bernoulli

distribution, for i = 1, 2, . . . , n, and take π(θ) = 1 to be the uniform prior on [0, 1]. Then

Tn = Xn and

δ(Tn) =
n

n+ 2
Xn +

2

n+ 1
· 1

2

with I(θ̃n, δ(Tn)) = I(θ̃n, Xn). In this case it can be shown that

Rn(Θ, Bn) ≥ c1
n

+ c2H
−1
Ç

1− Bn
n

å
for constants c1 and c2, where H−1 is the inverse of the binary entropy function on [0, 1

2 ].

Example 3.2.3 (Gaussian sequences in Euclidean balls). In the example shown above, the

lower bound is tight only in terms of the scaling of the key parameters. In some instances,

we are able to find an asymptotically tight lower bound for which we can show achievability

of both the rate and the constants. Estimating the mean vector of a Gaussian sequence with

an `2 norm constraint on the mean is one of such case, as we showed in previous work (Zhu

and Lafferty, 2014).

Specifically, let Xi ∼ N (θi, σ
2
n) for i = 1, 2, . . . , n, where σ2

n = σ2/n. Suppose that

the parameter θ = (θ1, . . . , θn) lies in the Euclidean ball Θn(c) =
¶
θ :
∑n
i=1 θ

2
i ≤ c2

©
. Fur-

thermore, suppose that Bn = nB. Then using the prior θi ∼ N (0, c2) it can be shown

that

lim inf
n→∞ Rn(Θn(c), Bn) ≥ σ2c2

σ2 + c2
+
c42−2B

σ2 + c2
.

The asymptotic estimation error σ2c2/(σ2 + c2) is the well-known Pinsker bound for the

Euclidean ball case. As shown in Zhu and Lafferty (2014), an explicit quantization scheme
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can be constructed that asymptotically achieves this lower bound, realizing the smallest

possible quantization error c42−2B/(σ2 + c2) for a budget of Bn = nB bits.

The Euclidean ball case is clearly relevant to the Sobolev ellipsoid case, but new coding

strategies and proof techniques are required. In particular, as will be made clear in the

sequel, we will use an adaptive allocation of bits across blocks of coefficients, using more bits

for blocks that have larger estimated signal size. Moreover, determination of the optimal

constants requires a detailed analysis of the worst case prior distributions and the solution

of a series of variational problems.

3.3 Quantized estimation over Sobolev spaces

Recall that the Sobolev space of order m and radius c is defined by

W (m, c) =
ß
f ∈ [0, 1]→ R : f (m−1) is absolutely continuous and∫ 1

0
(f (m)(x))2dx ≤ c2

™
.

The periodic Sobolev space is defined by

W̃ (m, c) =
{
f ∈ W (m, c) : f (j)(0) = f (j)(1), j = 0, 1, . . . ,m− 1

}
. (3.4)

The white noise model (3.1) is asymptotically equivalent to making n equally spaced observa-

tions along the sample path, Yi = f(i/n)+σεi, where εi ∼ N (0, 1) (Brown and Low, 1996a).

In this formulation, the noise level in the formulation (3.1) scales as ε2 = σ2/n, and the rate

of convergence takes the familiar form n−
2m

2m+1 where n is the number of observations.

To carry out quantized estimation we now require an encoder

φε : R[0,1] → {1, 2, . . . , 2Bε}
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which is a function applied to the sample path X(t). The decoding function then takes the

form

ψε : {1, 2, . . . , 2Bε} → R[0,1]

and maps the index to a function estimate. As in the previous section, we write the compo-

sition of the encoder and the decoder as f̂ε = ψε ◦φε, which we call the quantized estimator.

The communication or storage C(f̂ε) required by this quantized estimator is no more than

Bε bits.

To recast quantized estimation in terms of an infinite sequence model, let (ϕj)
∞
j=1 be the

trigonometric basis, and let

θj =
∫ 1

0
ϕj(t)f(t)dt, j = 1, 2, . . . ,

be the Fourier coefficients. It is well known (Tsybakov, 2008) that f =
∑∞
j=1 θjϕj belongs

to W̃ (m, c) if and only if the Fourier coefficients θ belong to the Sobolev ellipsoid defined as

Θ(m, c) =

θ ∈ `2 :
∞∑
j=1

a2
jθ

2
j ≤

c2

π2m

 (3.5)

where

aj =


jm, for even j,

(j − 1)m, for odd j.

Although this is the standard definition of a Sobolev ellipsoid, for the rest of the paper we

will set aj = jm, j = 1, 2, . . . for convenience of analysis. All of the results hold for both

definitions of aj . Also note that (3.5) actually gives a more general definition, since m is

no longer assumed to be an integer, as it is in (3.4). Expanding with respect to the same

orthonormal basis, the observed path X(t) is converted into an infinite Gaussian sequence

Yj =
∫ 1

0
ϕj(t) dX(t), j = 1, 2, . . . ,
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with Yj ∼ N (θj , ε
2). For an estimator (θ̂j)

∞
j=1 of (Yj)

∞
j=1, an estimate of f is obtained by

f̂(x) =
∞∑
j=1

θ̂jϕj(x)

with squared error ‖f̂ − f‖22 = ‖θ̂ − θ‖22. In terms of this standard reduction, the quantized

minimax risk is thus reformulated as

Rε(m, c,Bε) = inf
θ̂ε,C(θ̂ε)≤Bε

sup
θ∈Θ(m,c)

Eθ‖θ − θ̂ε‖22. (3.6)

To state our result, we need to define the value of the following variational problem:

Vm,c,d , (3.7)

max
(σ2,x0)∈F(m,c,d)

∫ x0
0

σ2(x)

σ2(x) + 1
dx+ x0 exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)

where the feasible set F(m, c, d) is the collection of increasing functions σ2(x) and values x0

satisfying

∫ x0
0

x2mσ2(x)dx ≤ c2

σ4(x)

σ2(x) + 1
≥ exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)
for all x ≤ x0.

The significance and interpretation of the variational problem will become apparent as we

outline the proof of this result.

Theorem 3.3.1. Let Rε(m, c,Bε) be defined as in (3.6), for m > 0 and c > 0.

(i) If Bεε
2

2m+1 →∞ as ε→ 0, then

lim inf
ε→0

ε−
4m

2m+1Rε(m, c,Bε) ≥ Pm,c

where Pm,c is Pinker’s constant defined in (3.2).

25



(ii) If Bεε
2

2m+1 → d for some constant d as ε→ 0, then

lim inf
ε→0

ε−
4m

2m+1Rε(m, c,Bε) ≥ Pm,c + Qm,c,d = Vm,c,d

where Vm,c,d is the value of the variational problem (3.7).

(iii) If Bεε
2

2m+1 → 0 and Bε →∞ as ε→ 0, then

lim inf
ε→0

B2m
ε Rε(m, c,Bε) ≥

c2m2m

π2m .

In the first regime where the number of bits Bε is much greater than ε−
2

2m+1 , we recover

the same convergence result as in Pinsker’s theorem, in terms of both convergence rate and

leading constant. The proof of the lower bound for this regime can directly follow the proof

of Pinsker’s theorem, since the set of estimators considered in our minimax framework is a

subset of all possible estimators.

In the second regime where we have “just enough” bits to preserve the rate, we suffer a

loss in terms of the leading constant. In this “Goldilocks regime,” the optimal rate ε−
4m

2m+1

is achieved but the constant in front of the rate is Pinsker’s constant Pm,c plus a positive

quantity Qm,c,d determined by the variational problem.

While the solution to this variational problem does not appear to have an explicit form, it

can be computed numerically. We discuss this term at length in the sequel, where we explain

the origin of the variational problem, compute the constant numerically and approximate it

from above and below. The constants Pm,c and Qm,c,d are shown graphically in Figure 3.1.

Note that the parameter d can be thought of as the average number of bits per coefficient used

by an optimal quantized estimator, since ε−
2

2m+1 is asymptotically the number of coefficients

needed to estimate at the classical minimax rate. As shown in Figure 3.1, the constant for

quantized estimation quickly approaches the Pinsker constant as d increases—when d = 3

the two are already very close.
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Figure 3.1: The constants Pm,c+Qm,c,d as a function of quantization level d in the sufficient

regime, where Bεε
2

2m+1 → d. The parameter d can be thought of as the average number of

bits per coefficient used by an optimal quantized estimator, because ε−
2

2m+1 is asymptotically
the number of coefficients needed to estimate at the classical minimax rate. Here we take
m = 2 and c2/π2m = 1. The curve indicates that with only 2 bits per coefficient, optimal
quantized minimax estimation degrades by less than a factor of 2 in the constant. With 3
bits per coefficient, the constant is very close to the classical Pinsker constant.

In the third regime where the communication budget is insufficient for the estimator to

achieve the optimal rate, we obtain a sub-optimal rate which no longer depends explicitly

on the noise level ε of the model. In this regime, quantization error dominates, and the risk

decays at a rate of B−
1
2m no matter how fast ε approaches zero, as long as B � ε−

2
2m+1 .

Here the analogue of Pinsker’s constant takes a very simple form.

Proof of Theorem 3.3.1. Consider a Gaussian prior distribution on θ = (θj)
∞
j=1 with θj ∼

N (0, σ2
j ) for j = 1, 2, . . . , in terms of parameters σ2 = (σ2

j )∞j=1 to be specified later. One

requirement for the variances is
∞∑
j=1

a2
jσ

2
j ≤

c2

π2m .

We denote this prior distribution by π(θ;σ2), and show in Section 3.7 that it is asymptotically
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concentrated on the ellipsoid Θ(m, c). Under this prior the model is

θj ∼ N (0, σ2
j )

Yj | θj ∼ N (θj , ε
2), j = 1, 2, . . .

and the marginal distribution of Yj is thus N (0, σ2
j + ε2). Following the strategy outlined in

Section 3.2, let δ denote the posterior mean of θ given Y under this prior, and consider the

optimization

inf E‖δ − θ̃‖2

such that I(δ; θ̃) ≤ Bε

where the infimum is over all distributions on θ̃ such that θ → Y → θ̃ forms a Markov chain.

Now, the posterior mean satisfies δj = γjYj where γj = σ2
j /(σ

2
j + ε2). Note that the Bayes

risk under this prior is

E‖θ − δ‖22 =
∞∑
j=1

σ2
j ε

2

σ2
j + ε2

.

Define

µ2
j , E(δj − θ̃j)2.

Then the classical rate distortion argument (Cover and Thomas, 2006) gives that

I(δ; θ̃) ≥
∞∑
j=1

I(γjYj ; θ̃j)

≥
∞∑
j=1

1

2
log+

Ñ
γ2
j (σ2

j + ε2)

µ2
j

é
=
∞∑
j=1

1

2
log+

Ñ
σ4
j

µ2
j (σ

2
j + ε2)

é
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where log+(x) = max(log x, 0). Therefore, the quantized minimax risk is lower bounded by

Rε(m, c,Bε) = inf
θ̂ε,C(θ̂ε)≤Bε

sup
θ∈Θ(m,c)

E‖θ − θ̂ε‖2 ≥ Vε(Bε,m, c)(1 + o(1))

where Vε(Bε,m, c) is the value of the optimization

max
σ2

min
µ2

∞∑
j=1

µ2
j +

∞∑
j=1

σ2
j ε

2

σ2
j + ε2

such that
∞∑
j=1

1

2
log+

Ñ
σ4
j

µ2
j (σ

2
j + ε2)

é
≤ Bε

∞∑
j=1

a2
jσ

2
j ≤

c2

π2m

(P1)

and the (1 + o(1)) deviation term is analyzed in the supplementary material.

Observe that the quantity Vε(Bε,m, c) can be upper and lower bounded by

max
ß
Rε(m, c), Qε(m, c,Bε)

™
≤ Vε(m, c,Bε) ≤ Rε(m, c) +Qε(m, c,Bε) (3.8)

where the estimation error term Rε(m, c) is the value of the optimization

max
σ2

∞∑
j=1

σ2
j ε

2

σ2
j + ε2

such that
∞∑
j=1

a2
jσ

2
j ≤

c2

π2m

(R1)

and the quantization error term Qε(m, c,Bε) is the value of the optimization

max
σ2

min
µ2

∞∑
j=1

µ2
j

such that
∞∑
j=1

1

2
log+

Ñ
σ4
j

µ2
j (σ

2
j + ε2)

é
≤ Bε

∞∑
j=1

a2
jσ

2
j ≤

c2

π2m .

(Q1)
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The following results specify the leading order asymptotics of these quantities.

Lemma 3.3.2. As ε→ 0,

Rε(m, c) = Pm,c ε
4m

2m+1 (1 + o(1)).

Lemma 3.3.3. As ε→ 0,

Qε(m, c,Bε) ≤
c2m2m

π2m B−2m
ε (1 + o(1)). (3.9)

Moreover, if Bεε
2

2m+1 → 0 and Bε →∞,

Qε(m, c,Bε) =
c2m2m

π2m B−2m
ε (1 + o(1)).

This yields the following closed form upper bound.

Corollary 3.3.4. Suppose that Bε →∞ and ε→ 0. Then

Vε(m, c,Bε) ≤
(
Pm,c ε

4m
2m+1 +

c2m2m

π2m B−2m
ε

)
(1 + o(1)). (3.10)

In the insufficient regime Bεε
2

2m+1 → 0 and Bε → ∞ as ε → 0, equation (3.8) and

Lemma 3.3.3 show that

Vε(m, c,Bε) =
c2m2m

π2m B−2m
ε (1 + o(1)).

Similarly, in the over-sufficient regime Bεε
2

2m+1 →∞ as ε→ 0, we conclude that

Vε(m, c,Bε) = Pm,c ε
4m

2m+1 (1 + o(1)).

We now turn to the sufficient regime Bεε
2

2m+1 → d. We begin by making three obser-

vations about the solution to the optimization (P1). First, we note that the series (σ2
j )∞j=1
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that solves (P1) can be assumed to be decreasing. If (σ2
j ) were not in decreasing order, we

could rearrange it to be decreasing, and correspondingly rearrange (µ2
j ), without violating

the constraints or changing the value of the optimization. Second, we note that given (σ2
j ),

the optimal (µ2
j ) is obtained by the “reverse water-filling” scheme (Cover and Thomas, 2006).

Specifically, there exists η > 0 such that

µ2
j =


η if

σ4
j

σ2
j + ε2

≥ η

σ4
j

σ2
j + ε2

otherwise,

where η is chosen so that

1

2

∞∑
j=1

log+

Ñ
σ4
j

µ2
j (σ

2
j + ε2)

é
≤ Bε.

Third, there exists an integer J > 0 such that the optimal series (σ2
j ) satisfies

σ4
j

σ2
j + ε2

≥ η, for j = 1, . . . , J and σ2
j = 0, for j > J,

where η is the “water-filling level” for (µ2
j ). Using these three observations, the optimization

(P1) can be reformulated as

max
σ2,J

Jη +
J∑
j=1

σ2
j ε

2

σ2
j + ε2

such that
1

2

J∑
j=1

log+

Ñ
σ4
j

η(σ2
j + ε2)

é
= Bε

J∑
j=1

a2
jσ

2
j ≤

c2

π2m

(σ2
j ) is decreasing and

σ4
J

σ2
J + ε2

≥ η.

(P2)
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To derive the solution to (P2), we use a continuous approximation of σ2, writing

σ2
j = σ2(jh)h2m+1

where h is the bandwidth to be specified and σ2(·) is a function defined on (0,∞). The

constraint that
∑∞
j=1 a

2
jσ

2
j ≤

c2

π2m
becomes the integral constraint

∫ ∞
0

x2mσ2(x)dx ≤ c2

π2m .

We now set the bandwidth so that h2m+1 = ε2. This choice of bandwidth will balance the

two terms in the objective function, and thus gives the hardest prior distribution. Applying

the above three observations under this continuous approximation, we transform problem

(P2) to the following optimization:

max
σ2,x0

x0η +
∫ x0

0

σ2(x)

σ2(x) + 1
dx

such that
∫ x0

0

1

2
log+

(
σ4(x)

η(σ2(x) + 1)

)
= d

∫ x0
0

x2mσ2(x)dx ≤ c2

π2m

σ2(x) is decreasing and
σ4(x)

σ2(x) + 1
≥ η for all x ≤ x0.

(P3)

Note that here we omit the convergence rate h2m = ε
4m

2m+1 in the objective function. The

asymptotic equivalence between (P2) and (P3) can be established by a similar argument to
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Theorem 3.1 in Donoho (2000). Solving the first constraint for η yields

max
σ2,x0

∫ x0
0

σ2(x)

σ2(x) + 1
dx+ x0 exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)

such that
∫ x0

0
x2mσ2(x)dx ≤ c2

π2m

σ2(x) is decreasing

σ4(x)

σ2(x) + 1
≥ exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)

for all x ≤ x0.

(P4)

The following is proved using a variational argument in the supplementary material.

Lemma 3.3.5. The solution to (P4) satisfies

1

(σ2(x) + 1)2 + exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)
σ2(x) + 2

σ2(x)(σ2(x) + 1)
= λx2m

for some λ > 0.

Fixing x0, the lemma shows that by setting

α = exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)

we can express σ2(x) implicitly as the unique positive root of a third-order polynomial in y,

λx2my3 + (2λx2m − α)y2 + (λx2m − 3α− 1)y − 2α.

This leads us to an explicit form of σ2(x) for a given value α. However, note that α still

depends on σ2(x) and x0, so the solution σ2(x) might not be compatible with α and x0. We

can either search through a grid of values of α and x0, or, more efficiently, use an iterative

method to find the pair of values that gives us the solution. We omit the details on how to

calculate the values of the optimization as it is not main purpose of the paper.
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To summarize, in the regime Bεε
2

2m+1 → d as ε→ 0, we obtain

Vε(m, c,Bε) = (Pm,c + Qm,c,d) ε
4m

2m+1 (1 + o(1)),

where we denote by Pm,c + Qm,c,d the values of the optimization (P4).

3.4 Achievability

We now show that the lower bounds in Theorem 3.3.1 are achievable by a quantized estimator

using a random coding scheme. The basic idea of our quantized estimation procedure is to

conduct blockwise estimation and quantization together, using a quantized form of the Stein

estimator.

Before we set the stage for the quantized form of James-Stein estimator, let us first look

at a class of simple procedures. Suppose that θ̂ = θ̂(X) is an estimator of θ ∈ Θ(m, c)

without quantization. We assume that θ̂ ∈ Θ(m, c), as projection always reduces mean

squared error. To design a B-bit quantized estimator, let Θ̌ be the optimal δ-covering of the

parameter space Θ(m, c) such that |Θ̌| ≤ 2B , that is,

δ = δ(B) = inf
Θ̌⊂Θ:|Θ̌|≤2B

sup
θ∈Θ

inf
θ′∈Θ̌

‖θ − θ′‖.

The quantized estimator is then defined to be

θ̌ = θ̌(X) = arg min
θ′∈Θ̌

‖θ̂(X)− θ′‖.

Now the mean squared error

Eθ‖θ̌ − θ‖2 = Eθ‖θ̌ − θ̂ + θ̂ − θ‖2 ≤ 2Eθ‖θ̂ − θ‖2 + 2Eθ‖θ̌ − θ̂‖2 ≤ 2 sup
θ′

Eθ′‖θ̂ − θ′‖2 + 2δ(B)2.

If we pick θ̂ to be the minimax estimator for Θ, the first term here gives the minimax
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risk for estimating θ in the parameter space Θ. The second term is closely related to the

metric entropy of the parameter space Θ(m, c). In fact, for the Sobolev ellipsoid Θ(m, c), it is

shown in Donoho (2000) that δ(B)2 = c2m2m

π2m
B−2m(1+o(1)) as B →∞. Thus, with an extra

constant factor of 2, the mean squared error of this quantized estimator is decomposed into

the minimax risk for Θ and an error term due to quantization. In addition to the fact that

the aforementioned procedure does not achieve the exact lower bound of the minimax risk

for the constrained estimation problem, it is not clear how such an ε-net can be generated.

In what follows we will describe a quantized estimation procedure which we will show to

achieve the lower bound up to exact constants, and also adapt to the unknown parameters.

We begin by defining the block system to be used, which is usually referred to as the

weakly geometric system of blocks (Tsybakov, 2008). Let Nε = b1/ε2c and ρε = (log(1/ε))−1.

Let J1, . . . , JK be a partition of the set {1, . . . , Nε} such that

K⋃
k=1

Jk = {1, . . . , Nε}, Jk1 ∩ Jk2 = ∅ for k1 6= k2,

and min{j : j ∈ Jk} > max{j : j ∈ Jk−1}.

Let Tk be the cardinality of the kth block and suppose that T1, . . . , Tk satisfy

T1 = dρ−1
ε e = dlog(1/ε)e,

T2 = bT1(1 + ρε)c,
...

TK−1 = bT1(1 + ρε)
K−2c,

TK = Nε −
K−1∑
k=1

Tk.

(3.11)

For an infinite sequence x ∈ `2, denote by x(k) the vector (xj)j∈Jk ∈ RTk . We also write

jk =
∑k−1
l=1 Tl + 1, which is the smallest index in block Jk. The weakly geometric system of

blocks is defined such that the size of the blocks does not grow too quickly (the ratio between
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the sizes of the neighboring two blocks goes to 1 asymptotically), and that the number of the

blocks is on the logarithmic scale with respect to 1/ε (K . log2(1/ε)). See Lemma 3.7.3.

We are now ready to describe the quantized estimation scheme. We first give a high-level

description of the scheme, and then the precise specification. In contrast to rate distortion

theory, where the codebook and allocation of the bits are determined once the source distri-

bution is known, here the codebook and allocation of bits are adaptive to the data—more

bits are used for blocks having larger signal size. The first step in our quantization scheme

is to construct a “base code” of 2Bε randomly generated vectors of maximum block length

TK , with N (0, 1) entries. The base code is thought of as a 2Bε × TK random matrix Z;

it is generated before observing any data, and is shared between the sender and receiver.

After observing data (Yj), the rows of Z are apportioned to different blocks k = 1, . . . , K,

with more rows being used for blocks having larger estimated signal size. To do so, the

norm ‖Y(k)‖ of each block k is first quantized as a discrete value Šk. A subcodebook Zk is

then constructed by normalizing the appropriate rows and the first Tk columns of the base

code, yielding a collection of random points on the unit sphere STk−1. To form a quantized

estimate of the coefficients in the block, the codeword Ž(k) ∈ Zk having the smallest angle to

Y(k) is then found. The appropriate indices are then transmitted to the receiver. To decode

and reconstruct the quantized estimate, the receiver first recovers the quantized norms (Šk),

which enables reconstruction of the subdivision of the base code that was used by the en-

coder. After extracting for each block k the appropriate row of the base code, the codeword

Ž(k) is reconstructed, and a James-Stein type estimator is then calculated.

The quantized estimation scheme is detailed below.

Step 1. Base code generation.

1.1. Generate codebook Sk =
¶»

Tkε
2 + iε2 : i = 0, 1, . . . , sk

©
where sk =†

ε−2c(jkπ)−m
£
, for k = 1, . . . , K.

1.2. Generate base code Z, a 2B × TK matrix with i.i.d. N (0, 1) entries.
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(Sk) and Z are shared between the encoder and the decoder, before seeing any

data.

Step 2. Encoding.

2.1. Encoding block radius. For k = 1, . . . , K, encode

Šk = arg min {|s− Sk| : s ∈ Sk} where

Sk =



»
Tkε

2 if ‖Y(k)‖ <
»
Tkε

2»
Tkε

2 + c(jkπ)−m if ‖Y(k)‖ >
»
Tkε

2 + c(jkπ)−m

‖Y(k)‖ otherwise.

2.2. Allocation of bits. Let (b̃k)Kk=1 be the solution to the optimization

min
b̄

K∑
k=1

(Š2
k − Tkε

2)2

Š2
k

· 2−2b̄k

such that
K∑
k=1

Tk b̄k ≤ B, b̄k ≥ 0.

(3.12)

2.3. Encoding block direction. Form the data-dependent codebook as follows.

Divide the rows of Z into blocks of sizes 2dT1b̃1e, . . . , 2dTK b̃Ke. Based on the

kth block of rows, construct the data-dependent codebook Z̃k by keeping only

the first Tk entries and normalizing each truncated row; specifically, the jth

row of Z̃k is given by

Z̃k,j =
Zi,1:Tk

‖Zi,1:Tk‖
∈ STk−1

where i is the appropriate row of the base code Z and Zi,1:t denotes the first

t entries of the row vector. A graphical illustration is shown below in Figure

3.2.
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With this data-dependent codebook, encode

Ž(k) = arg max{〈z, Y(k)〉 : z ∈ Z̃k}

for k = 1, . . . , K.

Z̃1

Z̃2

Z̃K

2dT1 b̃1e

2dT2 b̃2e

2dTKb̃Ke

2B

TK

Figure 3.2: An illustration of the data-dependent codebook. The big matrix represents the

base code Z, and the shaded areas are (Z̃k), sub-matrices of size Tk × 2dTk b̃ke with rows

normalized.

Step 3. Transmission. Transmit or store (Šk)Kk=1 and (Ž(k))
K
k=1 by their corresponding

indices.

Step 4. Decoding & Estimation.

4.1. Recover (Šk) based on the transmitted or stored indices and the common

codebook (Sk).

4.2. Solve (3.12) and get (b̃k). Reconstruct (Z̃k) using Z and (b̃k).

4.3. Recover (Ž(k)) based on the transmitted or stored indices and the reconstructed

codebook (Z̃k).
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4.4. Estimate θ(k) by

θ̌(k) =
Š2
k − Tkε

2

Šk

√
1− 2−2b̃k · Ž(k).

4.5. Estimate the entire vector θ by concatenating the θ̌(k) vectors and padding

with zeros; thus,

θ̌ =
(
θ̌(1), . . . , θ̌(K), 0, 0, . . .

)
.

The following theorem establishes the asymptotic optimality of this quantized estimator.

Theorem 3.4.1. Let θ̌ be the quantized estimator defined above.

(i) If Bε
2

2m+1 →∞, then

lim
ε→0

ε−
4m

2m+1 sup
θ∈Θ(m,c)

E‖θ − θ̌‖2 = Pm,c.

(ii) If Bε
2

2m+1 → d for some constant d as ε→ 0, then

lim
ε→0

ε−
4m

2m+1 sup
θ∈Θ(m,c)

E‖θ − θ̌‖2 = Pm,c + Qd,m,c.

(iii) If Bε
2

2m+1 → 0 and B(log(1/ε))−3 →∞, then

lim
ε→0

B2m sup
θ∈Θ(m,c)

E‖θ − θ̌‖2 =
c2m2m

π2m .

The expectations are with respect to the random quantized estimation scheme Q and the

distribution of the data.

We pause to make several remarks on this result before outlining the proof.
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Remark 3.4.1.1. The total number of bits used by this quantized estimation scheme is

K∑
k=1

dTk b̃ke+
K∑
k=1

logdε−2c(jkπ)−me ≤
K∑
k=1

dTk b̃ke+
K∑
k=1

logdε−2ce

≤ B +K + 2Kρ−1
ε +K logdce

= B +O((log(1/ε))3),

where we use the fact that K . log2(1/ε2) (See Lemma 3.7.3). Therefore, as long as

B(log(1/ε))−3 → ∞, the total number of bits used is asymptotically no more than B, the

given communication budget.

Remark 3.4.1.2. The quantized estimation scheme does not make essential use of the param-

eters of the Sobolev space, namely the smoothness m and the radius c. The only exception

is that in Step 1.1 the size of the codebook Sk depends on m and c. However, suppose that

we know a lower bound on the smoothness m, say m ≥ m0, and an upper bound on the

radius c, say c ≤ c0. By replacing m and c by m0 and c0 respectively, we make the code-

book independent of the parameters. We shall assume m0 > 1/2, which leads to continuous

functions. This modification does not, however, significantly increase the number of bits; in

fact, the total number of bits is still B + O(ρ−3
ε ). Thus, we can easily make this quantized

estimator minimax adaptive to the class of Sobolev ellipsoids {Θ(m, c) : m ≥ m0, c ≤ c0},

as long as B grows faster than (log(1/ε))3. More formally, we have

Corollary 3.4.2. Suppose that Bε satisfies Bε(log(1/ε))−3 → ∞. Let θ̌′ be the quantized

estimator with the modification described above, which does not assume knowledge of m and

c. Then for m ≥ m0 and c ≤ c0,

lim
ε→0

supθ∈Θ(m,c) E‖θ − θ̌′‖2

inf
θ̂,C(θ̂)≤B supθ∈Θ(m,c) E‖θ − θ̂‖2

= 1,

where the expectation in the numerator is with respect to the data and the randomized coding

scheme, while the expectation in the denominator is only with respect to the data.
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Remark 3.4.2.1. When B grows at a rate comparable to or slower than (log(1/ε))3, the

lower bound is still achievable, just no longer by the quantized estimator we described above.

The main reason is that when B does not grow faster than log(1/ε)3, the block size T1 =

dlog(1/ε)e is too large. The blocking needs to be modified to get achievability in this case.

Remark 3.4.2.2. In classical rate distortion (Cover and Thomas, 2006; Gallager, 1968), the

probabilistic method applied to a randomized coding scheme shows the existence of a code

achieving the rate distortion bounds. According to Theorem 3.3.1, the expected risk, aver-

aged over the randomness in the codebook, similarly achieves the quantized minimax lower

bound. However, note that the average over the codebook is inside the supremum over the

Sobolev space, implying that the code achieving the bound may vary over the ellipsoid. In

other words, while the coding scheme generates a codebook that is used for different θ, it

is not known whether there is one code generated by this randomized scheme that is “uni-

versal,” and achieves the risk lower bound with high probability over the ellipsoid. The

existence or non-existence of such “universal codes” is an interesting direction for further

study.

Remark 3.4.2.3. We have so far dealt with the periodic case, i.e., functions in the periodic

Sobolev space W̃ (m, c) defined in (3.4). For the Sobolev space W (m, c), where the functions

are not necessarily periodic, the lower bound given in Theorem 3.3.1 still holds, since W̃ (m, c)

is a subset of the larger class W (m, c). To extend the achievability result to W (m, c), we

again need to relate W (m, c) to an ellipsoid. Nussbaum et al. (1985) shows using spline

theory that the non-periodic space can actually be expressed as an ellipsoid, where the

length of the jth principal axis scales as (π2j)m asymptotically. Based on this link between

W (m, c) and the ellipsoid, the techniques used here to show achievability apply, and since

the principal axes scale as in the periodic case, the convergence rates remain the same.

Proof of Theorem 3.4.1 We now sketch the proof of Theorem 3.4.1, deferring the full

details to Section 3.7. To provide only an informal outline of the proof, we shall write
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A1 ≈ A2 as a shorthand for A1 = A2(1+o(1)), and A1 . A2 for A1 ≤ A2(1+o(1)), without

specifying here what these o(1) terms are.

To upper bound the risk E‖θ̌ − θ‖2, we adopt the following sequence of approximations

and inequalities. First, we discard the components whose index is greater than N and show

that

E‖θ̌ − θ‖2 ≈ E
K∑
k=1

‖θ̌(k) − θ(k)‖
2.

Since Šk is close enough to Sk, we can then safely replace θ̌(k) by θ̂(k) =
S2
k−Tkε

2

Sk

√
1− 2−2b̃(k) ·

Ž(k) and obtain

≈ E
K∑
k=1

‖θ̂(k) − θ(k)‖
2.

Writing λk =
S2
k−Tkε

2

S2
k

, we further decompose the risk into

= E
K∑
k=1

Å
‖θ̂(k) − λkY(k)‖

2 + ‖λkY(k) − θ(k)‖
2

+ 2〈θ̂(k) − λkY(k), λkY(k) − θ(k)〉
ã
.

Conditioning on the data Y and taking the expectation with respect to the random codebook

yields

. E
K∑
k=1

(
(S2
k − Tkε

2)2

S2
k

2−2b̃k + ‖λkY(k) − θ(k)‖
2

)
.

42



By two oracle inequalities upper bounding the expectations with respect to the data, and

the fact that b̃ is the solution to (3.12),

. min
b∈Πblk(B)

K∑
k=1

Ñ
‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k +

‖θ(k)‖2Tkε2

‖θ(k)‖2 + Tkε
2

é
.

Showing that the blockwise constant oracles are almost as good as the monotone oracle, we

get for some B′ ≈ B

. min
b∈Πmon(B′), ω∈Ωmon

N∑
j=1

Ñ
θ4
j

θ2
j + ε2

2−2bj + (1− ωj)2θ2
j + ω2

j ε
2

é
,

where Πblk(B), Πmon(B) are the classes of blockwise constant and monotone allocations

of the bits defined in (3.18), (3.19), and Ωmon is the class of monotone weights defined in

(3.21). The proof is then completed by Lemma 3.7.8 showing that the last quantity is equal

to Vε(m, c,B).

3.5 Experiments

Here we illustrate the performance of the proposed quantized estimation scheme. We use

the function

f(x) =
»
x(1− x) sin

Ç
2.1π

x+ 0.3

å
, 0 ≤ x ≤ 1,

which we shall refer to as the “damped Doppler function,” shown in Figure 3.3 (the gray

lines). Note that the value 0.3 differs from the value 0.05 in the usual Doppler function used

to illustrate spatial adaptation of methods such as wavelets. Since we do not address spatial

adaptivity in this paper, we “slow” the oscillations of the Doppler function near zero in our

illustrations.

We use this f as the underlying true mean function and generate our data according to
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Figure 3.3: The damped Doppler function (solid gray) and typical realizations of the estima-
tors under different noise levels (n = 500, 5000, and 50000). Three estimators are used: the
blockwise James-Stein estimator (dashed black), and two quantized estimator with budgets
of 5 bits (dashed red) and 30 bits (dashed blue). The 5-bit budget appears to be “sufficient”
in the first setting but “insufficient” in the latter two, while the 30-bit one changes from
“over-sufficient” to “sufficient” and finally “insufficient.”

the corresponding white noise model (3.1). Recall that the white noise model is defined as

dX(t) = f(t)dt+ εdW (t), 0 ≤ t ≤ 1.
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Figure 3.4: Risk versus effective sample size n = 1/ε2 for estimating the damped Doppler
function with different estimators. The dashed line represents the risk of the blockwise
James-Stein estimator, and the solid ones are for the quantized estimators with different
budgets. The budgets are 5, 10, 15, 20, 25, and 30 bits, corresponding to the lines from top
to bottom. The two plots are the same curves on the original scale and the log-log scale.

We apply the blockwise James-Stein estimator, as well as the proposed quantized estimator

with different communication budgets. We also vary the noise level ε and, equivalently, the

effective sample size n = 1/ε2.

We first show in Figure 3.3 some typical realizations of these estimators on data generated

under different noise levels (n = 500, 5000, and 50000 respectively). To keep the plots
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succinct, we show only the true function, the blockwise James-Stein estimates and quantized

estimates using total bit budgets of 5 and 30 bits. We observe, in the first plot, that both

quantized estimates deviate from the true function, and so does the blockwise James-Stein

estimates. This is when the noise is relatively large and any quantized estimates work

similarly poorly no matter how large a budget is given. Both 5 bits and 30 bits seems to

be “sufficient/over-sufficient” here. In the second plot, the blockwise James-Stein estimate

is close to the quantized estimate with a budget of 30 bits while with a budget of 5 bits

it fails to capture the fluctuations of the true function. Thus, a budget of 30 bits is still

“sufficient,” but 5 bits apparently becomes “insufficient.” In the third plot, the blockwise

James-Stein estimate gives a better fit than the two quantized estimates, as both budgets

become “insufficient” to achieve the optimal risk.

Next, in Figure 3.4 we plot the risk as a function of sample size n, averaging over 2000

simulations. Note that the bottom plot is the just the first plot on a log-log scale. In this

set of plots, we are able to observe the phase transition for the quantized estimators. For

relatively small values of n, all quantized estimators yield a similar error rate, with risks

that are close to (or even smaller than) that of the blockwise James-Stein estimator. This

is the over-sufficient regime—even the smallest budget suffices to achieve the optimal risk.

As n increases, the curves start to separate, with estimators having smaller bit budgets

leading to worse risks compared to the blockwise James-Stein estimator, and compared to

estimators with larger budgets. This can be seen as the sufficient regime for the small-

budget estimators—the risks are still going down, but at a slower rate than optimal. The

six quantized estimators all end up in the insufficient regime—as n increases, their risks stay

constant, while the risk of the blockwise James-Stein estimator continues to decrease.

3.6 Related work and future directions

Concepts related to quantized nonparametric estimation appear in multiple communities.

As mentioned in the introduction, Donoho’s 1997 Wald Lectures (on the eve of the 50th
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anniversary of Shannon’s 1948 paper), drew sharp parallels between rate distortion, metric

entropy and minimax rates, focusing on the same Sobolev function spaces we treat here. One

view of the present work is that we take this correspondence further by studying how the risk

continuously degrades with the level of quantization. We have analyzed the precise leading

order asymptotics for quantized regression over the Sobolev spaces, showing that these rates

and constants are realized with coding schemes that are adaptive to the smoothness m and

radius c of the ellipsoid, achieving automatically the optimal rate for the regime correspond-

ing to those parameters given the specified communication budget. Our detailed analysis is

possible due to what Nussbaum (Nussbaum, 1999) calls the “Pinsker phenomenon,” refer-

ing to the fact that linear filters attain the minimax rate in the over-sufficient regime. It

will be interesting to study quantized nonparametric estimation in cases where the Pinsker

phenomenon does not hold, for example over Besov bodies and different Lp spaces.

Many problems of rate distortion type are similar to quantized regression. The standard

“reverse water filling” construction to quantize a Gaussian source with varying noise levels

plays a key role in our analysis, as shown in Section 3.3. In our case the Sobolev ellipsoid is

an infinite Gaussian sequence model, requiring truncation of the sequence at the appropriate

level depending on the targeted quantization and estimation error. In the case of Euclidean

balls, Draper and Wornell (2004) study rate distortion problems motivated by communication

in sensor networks; this is closely related to the problem of quantized minimax estimation

over Euclidean balls that we analyzed in Zhu and Lafferty (2014). The essential difference

between rate distortion and our quantized minimax framework is that in rate distortion the

quantization is carried out for a random source, while in quantized estimation we quantize

our estimate of the deterministic and unknown basis coefficients. Since linear estimators are

asymptotically minimax for Sobolev spaces under squared error (the “Pinsker phenomenon”),

this naturally leads to an alternative view of quantizing the observations, or said differently,

of compressing the data before estimation.

Statistical estimation from compressed data has appeared previously in different commu-
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nities. In Zhou et al. (2009) a procedure is analyzed that compresses data by random linear

transformations in the setting of sparse linear regression. Zhang and Berger (1988) study

estimation problems when the data are communicated from multiple sources; Ahlswede and

Csiszár (1986) consider testing problems under communication constraints; the use of side

information is studied by Ahlswede and Burnashev (1990); other formulations in terms of

multiterminal information theory are given by Han and Amari (1998); nonparametric prob-

lems are considered by Raginsky (2007). In a distributed setting the data may be divided

across different compute nodes, with distributed estimates then aggregated or pooled by

communicating with a central node. The general “CEO problem” of distributed estimation

was introduced by Berger et al. (1996), and has been recently studied in parametric settings

in Zhang et al. (2013) and Garg et al. (2014). These papers take the view that the data

are communicated to the statistician at a certain rate, which may introduce distortion, and

the goal is to study the degradation of the estimation error. In contrast, in our setting we

can view the unquantized data as being fully available to the statistician at the time of esti-

mation, with communication constraints being imposed when communicating the estimated

model to a remote location.

Finally, our quantized minimax analysis shows achievability using random coding schemes,

which are not computationally efficient. A natural problem is to develop practical coding

schemes that come close to the quantized minimax lower bounds. In our view, the most

promising approach currently is to exploit source coding schemes based on greedy sparse

regression Venkataramanan et al. (2013), applying such techniques blockwise according to

the procedure we developed in Section 3.4.

3.7 Proofs of technical results

In this section, we provide proofs for Theorems 3.3.1 and 3.4.1.
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3.7.1 Proof of Theorem 3.3.1

We first show

Lemma 3.7.1. The quantized minimax risk is lower bounded by Vε(m, c,Bε), the value of

the optimization (P1).

Proof. As will be clear to the reader, Vε(m, c,Bε) is achieved by some σ2 that is non-

increasing and finitely supported. Let σ2 be such that

σ2
1 ≥ · · · ≥ σ2

n > 0 = σn+1 = . . . ,
n∑
j=1

a2
jσ

2
j =

c2

π2m ,

and let

Θn(m, c) = {θ ∈ `2 :
n∑
j=1

a2
jθ

2
j ≤

c2

π2m , θj = 0 for j ≥ n+ 1} ⊂ Θ(m, c).

For τ ∈ (0, 1), write s2
j = (1 − τ)σ2

j and let πτ (θ;σ2) be a the prior distribution on θ such

that

θj ∼ N (0, s2
j ), j = 1, . . . , n,

P(θj = 0) = 1, j ≥ n+ 1.

We observe that

Rε(m, c,Bε) ≥ inf
θ̂,C(θ̂)≤Bε

sup
θ∈Θn(m,c)

E‖θ − θ̂‖2

≥ inf
θ̂,C(θ̂)≤Bε

∫
Θn(m,c)

E‖θ − θ̂‖2dπτ (θ;σ2)

≥ I − r
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where I is the integrated risk of the optimal quantized estimator

I = inf
θ̂,C(θ̂)≤Bε

∫
Rn⊗{0}∞

E‖θ − θ̂‖2dπτ (θ;σ2)

and r is the residual

r = sup
θ̂∈Θ(m,c)

∫
Θ(m,c)

E‖θ − θ̂‖2dπτ (θ;σ2)

where Θ(m, c) = (Rn⊗{0}∞)\Θn(m, c). As shown in Section 3.3, limτ→0 I is lower bounded

by the value of the optimization

min
µ2

∞∑
j=1

µ2
j +

∞∑
j=1

σ2
j ε

2

σ2
j + ε2

such that
∞∑
j=1

1

2
log+

Ñ
σ4
j

µ2
j (σ

2
j + ε2)

é
≤ Bε.

It then suffices to show that r = o(I) as ε→ 0. Let dn = supθ∈Θn(m,c) ‖θ‖. We have

r = sup
θ̂∈Θ(m,c)

∫
Θn(m,c)

E‖θ − θ̂‖2dπτ (θ;σ2)

≤ 2
∫

Θn(m,c)
(d2
n + E‖θ‖2)dπτ (θ;σ2)

= 2
Å
d2
n P (θ /∈ Θn(m, c)) +

Ä
P(θ /∈ Θn(m, c))E‖θ‖4

ä1/2ã
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where we use the Cauchy-Schwarz inequality. Noticing that

E‖θ‖4 = E
ÇÅ n∑

j=1

θ2
j

ã2
å

=
∑
j1 6=j2

E(θ2
j1)E(θ2

j2) +
n∑
j=1

E(θ4
j )

≤
∑
j1 6=j2

s2
j1s

2
j2 + 3

n∑
j=1

s4
j

≤ 3
Å n∑
j=1

s2
j

ã2
≤ 3d4

n,

we obtain

r ≤ 2d2
n

(
P (θ /∈ Θn(m, c)) +

»
3P (θ /∈ Θn(m, c))

)
≤ 6d2

n

»
P (θ /∈ Θn(m, c)).

Thus, we only need to show that
»
P (θ /∈ Θn(m, c)) = o(I). In fact,

P(θ /∈Θn(m, c))

= P

Ñ
n∑
j=1

a2
jθ

2
j >

c2

π2m

é
= P

Ñ
n∑
j=1

a2
j (θ

2
j − E(θ2

j )) >
c2

π2m − (1− τ)
n∑
j=1

a2
jσ

2
j

é
= P

Ñ
n∑
j=1

a2
j (θ

2
j − E(θ2

j )) >
τc2

π2m

é
= P

Ñ
n∑
j=1

a2
js

2
j (Z

2
j − 1) >

τ

1− τ

n∑
j=1

a2
js

2
j

é
where Zj ∼ N (0, 1). By Lemma 3.7.2, we get

P(θ /∈ Θn(m, c)) ≤ exp

Ñ
− τ2

8(1− τ)2

∑n
j=1 a

2
js

2
j

max1≤j≤n a2
js

2
j

é
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For the σ2 that achieves Vε(m, c,Bε), we have that
»
P(θ /∈ Θn(m, c)) = o(I).

Lemma 3.7.2 (Lemma 3.5 in Tsybakov (2008)). Suppose that X1, . . . , Xn are i.i.d. N (0, 1).

For t ∈ (0, 1) and ωj > 0, j = 1, . . . , n, we have

P

Ñ
n∑
j=1

ωj(X
2
j − 1) > t

n∑
j=1

Xj

é
≤ exp

Ñ
−

t2
∑n
j=1 ωj

8 max1≤j≤n ωj

é
.

Proof of Lemma 3.3.2. This is in fact Pinsker’s theorem, which gives the exact asymptotic

minimax risk of estimation of normal means in the Sobolev ellipsoid. The proof can be found

in Nussbaum (1999) and Tsybakov (2008).

Proof of Lemma 3.3.3. As argued in Section 3.3 for the lower bound in the sufficient regime,

optimization problem (Q1) can be reformulated as

max
σ2,J

Jη

such that
1

2

J∑
j=1

log+

Ñ
σ4
j

η(σ2
j + ε2)

é
≤ Bε

J∑
j=1

a2
jσ

2
j ≤

c2

π2m

(σ2
j ) is decreasing and

σ4
J

σ2
J + ε2

≥ η.

(Q2)

Now suppose that we have a series (σ2
j ) which satisfies the last constraint and is supported
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on {1, . . . , J}. By the first constraint, we have that

Jη = J exp

Ç
−2Bε

J

åÑ J∏
j=1

σ4
j

σ2
j + ε2

é 1
J

≤ J exp

Ç
−2Bε

J

åÑ J∏
j=1

σ2
j

é 1
J

= J exp

Ç
−2Bε

J

åÑ J∏
j=1

a2
jσ

2
j

é 1
J
Ñ

J∏
j=1

a−2
j

é 1
J

≤ exp

Ç
−2Bε

J

åÑ J∑
j=1

a2
jσ

2
j

éÑ
J∏
j=1

a−2
j

é 1
J

≤ c2

π2m exp

Ç
−2Bε

J

åÑ J∏
j=1

a−2
j

é 1
J

=
c2

π2m

Ç
exp

Ç
Bε
m

å
J !

å−2m
J
. (3.13)

This provides a series of upper bounds for Qε(m, c,Bε) parameterized by J . Minimizing

(3.13) over J , we obtain that the optimal J satisfies

JJ

J !
< exp

Ç
Bε
m

å
≤ (J + 1)J+1

(J + 1)!
. (3.14)

Denote this optimal J by Jε. By Stirling’s approximation, we have

lim
ε→0

Bε/m

Jε
= 1,

and plugging this asymptote into (3.13), we get as ε→ 0

c2

π2m

Ç
exp

Ç
Bε
m

å
Jε!

å−2m
Jε ∼ c2

π2mJ
−2m
ε ∼ c2m2m

π2m B−2m
ε .

This gives the desired upper bound (3.9).

Next we show that the upper bound (3.9) is asymptotically achievable when Bεε
2

2m+1 → 0
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and Bε →∞. It suffices to find a feasible solution that attains (3.9). Let

σ̃2
j =

c2/π2m

Jεa2
j

, j = 1, . . . , Jε.

Note that the entire sequence of (σ̃2
j )Jεj=1 does not qualify for a feasible solution, since the

first constraint in (Q2) won’t be satisfied for any η ≤ σ̃4Jε
σ̃2Jε+ε2

. We keep only the first J ′ε

terms of (σ̃2
j ), where J ′ε is the largest j such that

σ̃4
j

σ̃2
j + ε2

≥ σ̃2
Jε . (3.15)

Thus,

J ′ε∑
j=1

1

2
log+

à
σ̃4j

σ̃2j+ε2

σ̃2
Jε

í
≤

J ′ε∑
j=1

1

2
log+

Ñ
σ̃2
j

σ̃2
Jε

é
≤

Jε∑
j=1

1

2
log+

Ñ
σ̃2
j

σ̃2
Jε

é
≤ Bε,

where the last inequality is due to (3.14). This tells us that setting η = σ̃2
Jε

leads to a feasible

solution to (Q2). As a result,

Qε(m, c,Bε) ≥ J ′εσ̃
2
Jε . (3.16)

If we can show that J ′ε ∼ Jε, then

J ′εσ̃
2
Jε ∼ Jεσ̃

2
Jε ∼

c2m2m

π2m B−2m
ε . (3.17)

To show that J ′ε ∼ Jε, it suffices to show that aJ ′ε ∼ aJε . Plugging the formula of σ̃2
j into

(3.15) and solving for a2
J ′ε

, we get

a2
J ′ε
∼
− c2

π2mJε
+

Ã
(

c2

π2mJε
)2 + 4

c2

π2mJε
ε2a2

Jε

2ε2 ∼ a2
Jε
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where the last equivalence is due to the assumption Bεε
2

2m+1 → 0 and L’Hôpital’s rule.

Proof of Lemma 3.3.5. Suppose that σ2(x) with x0 solves (P4). Consider function σ2(x) +

ξv(x) such that it is still feasible for (P4), and thus we have

∫ x0
0

x2mv(x)dx ≤ 0.

Now plugging σ2(x) + ξv(x) for σ2(x) in the objective function of (P4), taking derivative

with respect to ξ, and letting ξ → 0, we must have

∫ x0
0

v(x)

(σ2(x) + 1)2dx+x0 exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)
1

x0

∫ x0
0

2v(x)

σ2(x)
− v(x)

σ2(x) + 1
dx ≤ 0,

which, after some calculation and rearrangement of terms, yields

∫ x0
0

v(x)

(
1

(σ2(x) + 1)2 + exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)
σ2(x) + 2

σ2(x)(σ2(x) + 1)

)
dx ≤ 0.

Thus, we obtain that, for some λ

1

(σ2(x) + 1)2 + exp

(
1

x0

∫ x0
0

log
σ4(x)

σ2(x) + 1
dx− 2d

x0

)
σ2(x) + 2

σ2(x)(σ2(x) + 1)
= λx2m.

3.7.2 Proof of Theorem 3.4.1

Now we give the details of the proof of Theorem 3.4.1. For the purpose of our analysis, we

define two allocations of bits, the monotone allocation and the blockwise constant allocation,

Πblk(B) =

(bj)
∞
j=1 :

∞∑
j=1

bj ≤ B, bj = b̄k for j ∈ Jk, 0 ≤ bj ≤ bmax

 , (3.18)

Πmon(B) =

(bj)
∞
j=1 :

∞∑
j=1

bj ≤ B, bj−1 ≥ bj , 0 ≤ bj ≤ bmax

 , (3.19)

55



where bmax = 2 log(1/ε). We also define two classes of weights, the monotonic weights and

the blockwise constant weights,

Ωblk =
¶
(ωj)

∞
j=1 : ωj = ω̄k for j ∈ Jk, 0 ≤ ωj ≤ 1

©
, (3.20)

Ωmon =
¶
(ωj)

∞
j=1 : ωj−1 ≥ ωj , 0 ≤ ωj ≤ 1

©
. (3.21)

We will also need the following results from Tsybakov (2008) regarding the weakly geometric

system of blocks.

Lemma 3.7.3. Let {Jk} be a weakly geometric block system defined by (3.11). Then there

exists 0 < ε0 < 1 and C > 0 such that for any ε ∈ (0, ε0),

K ≤ C log2(1/ε),

max
1≤k≤K−1

Tk+1

Tk
≤ 1 + 3ρε.

We divide the proof into four steps.

Step 1. Truncation and replacement

The loss of the quantized estimator θ̌ can be decomposed into

‖θ̌ − θ‖2 =
K∑
k=1

‖θ̌(k) − θ(k)‖
2 +

∞∑
j=N+1

θ2
j ,

where the remainder term satisfies

∞∑
j=N+1

θ2
j ≤ N−2m

∞∑
j=N+1

a2
jθ

2
j = O(N−2m).

If we assume that m > 1/2, which corresponds to classes of continuous functions, the re-

mainder term is then o(ε2). If m ≤ 1/2, the remainder term is on the order of O(ε4m), which

is still negligible compared to the order of the lower bound ε
4m

2m+1 . To ease the notation, we
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will assume that m > 1/2, and write the remainder term as o(ε2), but need to bear in mind

that the proof works for all m > 0. We can thus discard the remainder term in our analysis.

Recall that the quantized estimate for each block is given by

θ̌(k) =
Š2
k − Tkε

2

Šk

√
1− 2−2b̃k Ž(k),

and consider the following estimate with Šk replaced by Sk

θ̂(k) =
S2
k − Tkε

2

Sk

√
1− 2−2b̃k Ž(k).

Notice that

‖θ̂(k) − θ̌(k)‖ =

∣∣∣∣∣∣ Š
2
k − Tkε

2

Šk
−
S2
k − Tkε

2

Sk

∣∣∣∣∣∣
√

1− 2−2b̃k‖Ž(k)‖

≤
∣∣∣∣∣ ŠkSk + Tkε

2

ŠkSk

∣∣∣∣∣ ∣∣∣Šk − Sk∣∣∣
≤ 2ε2

where the last inequality is because ŠkSk ≥ Tkε
2 and

∣∣∣Šk − Sk∣∣∣ ≤ ε2. Thus we can safely

replace θ̌(k) by θ̂(k) because

‖θ̌(k) − θ(k)‖
2

= ‖θ̌(k) − θ̂(k) + θ̂(k) − θ(k)‖
2

≤ ‖θ̌(k) − θ̂(k)‖
2 + ‖θ̂(k) − θ(k)‖

2 + 2‖θ̌(k) − θ̂(k)‖‖θ̂(k) − θ(k)‖

= ‖θ̂(k) − θ(k)‖
2 +O(ε2).

Therefore, we have

E‖θ̌ − θ‖2 = E
K∑
k=1

‖θ̂(k) − θ(k)‖
2 +O(Kε2).

57



Step 2. Expectation over codebooks

Now conditioning on the data Y , we work under the probability measure introduced by the

random codebook. Write

λk =
S2
k − Tkε

2

S2
k

and Z(k) =
Y(k)

‖Y(k)‖
.

We decompose and examine the following term

Ak = ‖θ̂(k) − θ(k)‖
2

= ‖θ̂(k) − λkSkZ(k) + λkSkZ(k) − θ(k)‖
2

= ‖θ̂(k) − λkSkZ(k)‖
2︸ ︷︷ ︸

Ak,1

+ ‖λkSkZ(k) − θ(k)‖
2︸ ︷︷ ︸

Ak,2

+ 2〈θ̂(k) − λkSkZ(k), λkSkZ(k) − θ(k)〉︸ ︷︷ ︸
Ak,3

.

To bound the expectation of the first term Ak,1, we need the following lemma, which bounds

the probability of the distortion of a codeword exceeding the desired value.

Lemma 3.7.4. Suppose that Z1, . . . , Zn are independent and each follows the uniform dis-

tribution on the t-dimensional unit sphere St−1. Let y ∈ St−1 be a fixed vector, and

Z∗ = arg min
z∈Z1:n

∥∥∥∥»1− 2−2bz − y
∥∥∥∥2
.

If n = 2qt, then

E
∥∥∥∥»1− 2−2qZ∗ − y

∥∥∥∥2
≤ 2−2q (1 + ν) + 2e−2t

where

ν =
3 log t+ 5

t− 3 log t− 6
.
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Observe that

Ak,1 =
∥∥∥θ̂(k) − λkSkZ(k)

∥∥∥2

=

∥∥∥∥∥λkSk
√

1− 2−2b̃k Ž(k) − λkSkZ(k)

∥∥∥∥∥
2

= λ2
kS

2
k

∥∥∥∥∥
√

1− 2−2b̃k Ž(k) − Z(k)

∥∥∥∥∥
2

.

Then, it follows as a result of Lemma 3.7.4 that

E
(
Ak,1 |Y(k)

)
≤

(S2
k − Tkε

2)2

S2
k

Å
2−2b̃k(1 + νε) + 2e−2Tk

ã
≤

(S2
k − Tkε

2)2

S2
k

Å
2−2b̃k(1 + νε) + 2e−2T1

ã
≤

(S2
k − Tkε

2)2

S2
k

2−2b̃k(1 + νε) +
2c2

(jkπ)2m ε
2,

where νε = 3 log T1−5
T1−3 log T1−6 . Since Ak,2 only depends on Y(k), E

(
Ak,2 |Y(k)

)
= Ak,2. Next we

consider the cross term Ak,3. Write γk =
〈θ(k),Y(k)〉
‖Y(k)‖2

and

Ak,3 = 2
〈
θ̂(k) − λkSkZ(k), λkSkZ(k) − θ(k)

〉
= 2

〈
θ̂(k) − λkSkZ(k), γkY(k) − θ(k)

〉
︸ ︷︷ ︸

Ak,3a

+ 2
〈
θ̂(k) − λkSkZ(k), λkSkZ(k) − γkY(k)

〉
︸ ︷︷ ︸

Ak,3b

.

The quantity γk is chosen such that 〈Y(k), γkY(k) − θ(k)〉 = 0 and therefore

Ak,3a = 2
〈
θ̂(k) − λkSkZ(k), γkY(k) − θ(k)

〉
= 2

Æ
ΠY ⊥

(k)
(θ̂(k) − λkSkZ(k)), γkY(k) − θ(k)

∏
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where ΠY ⊥
(k)

denotes the projection onto the orthogonal complement of Y(k). Due to the choice

of Ž(k), the projection ΠY ⊥
(k)

(θ̂(k)−λkSkZ(k)) is rotation symmetric and hence E
(
Ak,3a |Y(k)

)
=

0. Finally, for Ak,3b we have

E
(
Ak,3b |Y(k)

)
≤ 2‖λkSkZ(k) − γkY(k)‖E

(
‖θ̂(k) − λkSkZ(k)‖ |Y(k)

)
≤ 2‖λkSkZ(k) − γkY(k)‖

…
E
(
‖θ̂(k) − λkSkZ(k)‖2 |Y(k)

)
≤ 2‖λkSkZ(k) − γkY(k)‖

Ã
(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +
2c2

(jkπ)2m ε
2.

Combining all the analyses above, we have

E
(
Ak |Y(k)

)
≤

(S2
k − Tkε

2)2

S2
k

2−2b̃k(1 + νε) +
2c2

(jkπ)2m ε
2 + ‖λkSkZ(k) − θ(k)‖

2

+ 2‖λkSkZ(k) − γkY(k)‖

Ã
(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +
2c2

(jkπ)2m ε
2,

and summing over k we get

E
Ä
‖θ̌ − θ‖2 |Y

ä
≤

K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̃k(1 + νε) +
K∑
k=1

‖λkSkZ(k) − θ(k)‖
2

+ 2
K∑
k=1

‖λkSkZ(k) − γkY(k)‖

Ã
(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(ε2) +O(Kε2).

(3.22)

Step 3. Expectation over data

First we will state three lemmas, which bound the deviation of the expectation of some

particular functions of the norm of a Gaussian vector to the desired quantities. The proofs

are given in Section 3.7.2.
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Lemma 3.7.5. Suppose that Xi ∼ N (θi, σ
2) independently for i = 1, . . . , n, where ‖θ‖2 ≤

c2. Let S be given by

S =



√
nσ2 if ‖X‖ <

√
nσ2

√
nσ2 + c if ‖X‖ >

√
nσ2 + c

‖X‖ otherwise.

Then there exists some absolute constant C0 such that

E
(
S2 − nσ2

S
− 〈θ,X〉
‖X‖

)2

≤ C0σ
2.

Lemma 3.7.6. Let X and S be the same as defined in Lemma 3.7.5. Then for n > 4

E
(S2 − nσ2)2

S2 ≤ ‖θ‖4

‖θ‖2 + nσ2 +
4n

n− 4
σ2.

Lemma 3.7.7. Let X and S be the same as defined in Lemma 3.7.5. Define

θ̂+ =

(
‖X‖2 − nσ2

‖X‖2

)
+

X, θ̂† =
S2 − nσ2

S‖X‖
X.

Then

E‖θ̂† − θ‖2 ≤ E‖θ̂+ − θ‖2 ≤
nσ2‖θ‖2

‖θ‖2 + nσ2 + 4σ2.

We now take the expectation with respect to the data on both sides of (3.22). First, by

the Cauchy-Schwarz inequality

E

Ñ
‖λkSkZ(k) − γkY(k)‖

Ã
(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(ε2)

é
≤
√
E‖λkSkZ(k) − γkY(k)‖2

Ã
E
(

(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(ε2)

)
.

(3.23)
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We then calculate

√
E‖λkSkZ(k) − γkY(k)‖2

=

Õ
E

∥∥∥∥∥∥S
2
k − Tkε2

Sk

Y(k)

‖Y(k)‖
−
〈θ(k), Y(k)〉
‖Y(k)‖

Y(k)

‖Y(k)‖

∥∥∥∥∥∥
2

=

Õ
E

Ñ
S2
k − Tkε2

Sk
−
〈θ(k), Y(k)〉
‖Y(k)‖

é2

≤ C0ε,

where the last inequality is due to Lemma 3.7.5, and C0 is the constant therein. Plugging

this in (3.23) and summing over k, we get

K∑
k=1

E

Ñ
‖λkSkZ(k) − γkY(k)‖

Ã
(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(ε2)

é
≤ C0ε

K∑
k=1

Ã
E
(

(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(ε2)

)

≤ C0

√
Kε

Õ
E

K∑
k=1

(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(Kε2).

Therefore,

E‖θ̌ − θ‖2

≤ E
K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̃k

︸ ︷︷ ︸
B1

(1 + νε) + E
K∑
k=1

‖λkSkZ(k) − θ(k)‖
2

︸ ︷︷ ︸
B2

+ C0

√
Kε

Õ
E

K∑
k=1

(S2
k − Tkε2)2

S2
k

2−2b̃k(1 + νε) +O(Kε2)

+O(Kε2).

Now we deal with the term B1. Recall that the sequence b̃ solves problem (3.12), so for any
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sequence b ∈ Πblk

K∑
k=1

(Š2
k − Tkε

2)2

Š2
k

2−2b̃k ≤
K∑
k=1

(Š2
k − Tkε

2)2

Š2
k

2−2b̄k .

Notice that

∣∣∣∣∣∣(Š
2
k − Tkε

2)2

Š2
k

−
(S2
k − Tkε

2)2

S2
k

∣∣∣∣∣∣ =
∣∣∣Š2
k − S

2
k

∣∣∣
∣∣∣∣∣∣ Š

2
kS

2
k − Tkε

2

Š2
kS

2
k

∣∣∣∣∣∣ = O(ε2)

and thus,
K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̃k ≤
K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̄k +O(Kε2).

Taking the expectation, we get

E
K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̃k ≤
K∑
k=1

E
(S2
k − Tkε

2)2

S2
k

2−2b̄k +O(Kε2).

Applying Lemma 3.7.6, we get for Tk > 4

E
(S2
k − Tkε

2)2

S2
k

≤
‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 +

4Tk
Tk − 4

ε2

and it follows that

E
K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̃k ≤
K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k +O(Kε2).

Since b ∈ Πblk is arbitrary,

E
K∑
k=1

(S2
k − Tkε

2)2

S2
k

2−2b̃k ≤ min
b∈Πblk

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k +O(Kε2).
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Turning to the term B2, as a result of Lemma 3.7.7 we have

‖λkSkZ(k) − θ(k)‖
2 ≤

‖θ(k)‖2Tkε2

‖θ(k)‖2 + Tkε
2 + 4ε2.

Combining the above results, we have shown that

E‖θ̌ − θ‖2 ≤M +O(Kε2) + C0

√
Kε
»
M +O(Kε2) (3.24)

where

M = (1 + νε) min
b∈Πblk(B)

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k +

K∑
k=1

‖θ(k)‖2Tkε2

‖θ(k)‖2 + Tkε
2

= (1 + νε) min
b∈Πblk(B)

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k

+ min
ω∈Ωblk

K∑
k=1

(
(1− ω̄k)2‖θ(k)‖

2 + ω̄2
kTkε

2
)
.

Step 4. Blockwise constant is almost optimal

We now show that in terms of both bit allocation and weight assignment, blockwise constant

is almost optimal. Let’s first consider bit allocation. Let B′ = 1
1+3ρε

(B − T1bmax). We are

going to show that

min
b∈Πblk(B)

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k ≤ min

b∈Πmon(B′)

N∑
j=1

θ4
j

θ2
j + ε2

2−2bj .

In fact, suppose that b∗ ∈ Πmon(B′) achieves the minimum on the right hand side, and

define b? by

b?j =


maxi∈Bk b

∗
i j ∈ Bk

0 j ≥ N

.
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The sum of the elements in b? then satisfies

∞∑
j=1

b?j =
K−1∑
k=0

Tk+1 max
j∈Bk+1

b∗j

= T1b
?
1 +

K−1∑
k=1

Tk+1 max
j∈Bk+1

b∗j

≤ T1bmax +
K−1∑
k=1

Tk+1

Tk

∑
j∈Bk

b∗j

≤ T1bmax + (1 + 3ρε)
K−1∑
k=1

∑
j∈Bk

b∗j

≤ T1bmax + (1 + 3ρε)B
′

= B,

which means that b? ∈ Πblk(B). It then follows that

min
b∈Πblk(B)

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k

≤
K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄?k

≤
K∑
k=1

∑
j∈Bk

θ4
j

θ2
j + ε2

2
−2b?j (3.25)

≤
N∑
j=1

θ4
j

θ2
j + ε2

2
−2b∗j

= min
b∈Πmon(B′)

N∑
j=1

θ4
j

θ2
j + ε2

2−2bj ,

where (3.25) is due to Jensen’s inequality on the convex function x2

x+ε2

(
1
Tk
‖θ(k)‖2

)2

1
Tk
‖θ(k)‖2 + ε2

≤ 1

Tk

∑
j∈Bk

θ4
j

θ2
j + ε2

.
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Next, for the weights assignment, by Lemma 3.11 in Tsybakov (2008), we have

min
ω∈Ωblk

K∑
k=1

(
(1− ω̄k)2‖θ(k)‖

2 + ω̄2
kTkε

2
)

≤ (1 + 3ρε)

Ñ
min

ω∈Ωmon

K∑
k=1

Ä
(1− ωj)2θ2

j + ω2
j ε

2
äé

+ T1ε
2.

(3.26)

Combining (3.7.2) and (3.26), we get

M = (1 + νε) min
b∈Πblk(B)

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k

+ min
ω∈Ωblk

K∑
k=1

(
(1− ω̄k)2‖θ(k)‖

2 + ω̄2
kTkε

2
)

≤ (1 + νε) min
b∈Πblk(B)

K∑
k=1

‖θ(k)‖4

‖θ(k)‖2 + Tkε
2 2−2b̄k

+ (1 + 3ρε) min
ω∈Ωmon

K∑
k=1

(
(1− ω̄k)2‖θ(k)‖

2 + ω̄2
kTkε

2
)

+ T1ε
2

≤ (1 + νε)

Ç
min

b∈Πmon(B′)

N∑
j=1

θ4
j

θ2
j + ε2

2−2bj

+ min
ω∈Ωmon

N∑
j=1

Ä
(1− ωj)2θ2

j + ω2
j ε

2
ä å

+ T1ε
2.

Then by Lemma 3.7.8,

M ≤ (1 + νε)Vε(m, c,B
′) + T1ε

2.

which, plugged into (3.24), gives us

E‖θ̌ − θ‖2 ≤ (1 + νε)Vε(m, c,B
′) +O(Kε2)

+ C0

√
Kε
»

(1 + νε)Vε(m, c,B′) +O(Kε2).

Recall that

νε = O

Ç
log log(1/ε)

log(1/ε)

å
, K = O(log2(1/ε)),
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and that

lim
ε→0

B′

B
= lim
ε→0

1

1 + 3ρε

Ç
1− T1bmax

B

å
= 1.

Thus,

lim
ε→0

Vε(m, c,B
′)

Vε(m, c,B)
= 1.

Also notice that no matter how B grows as ε→ 0, Vε(m, c,B) = O(ε
4m

2m+1 ). Therefore,

lim
ε→0

E‖θ̌ − θ‖2

Vε(B,m, c)

≤ lim
ε→0

Ñ
(1 + νε)

Vε(B
′,m, c)

Vε(B,m, c)
+

O(Kε2)

V (B,m, c)

+ C0

Ã
(1 + νε)

Kε2

Vε(B,m, c)

Vε(B′,m, c)
Vε(B,m, c)

+

(
O(Kε2)

Vε(B,m, c)

)2
é

= 1

which concludes the proof.

Lemma 3.7.8. Let V1 be the value of the optimization

max
θ

min
b

N∑
j=1

Ñ
θ4
j

θ2
j + ε2

2−2bj +
θ2
j ε

2

θ2
j + ε2

é
such that

N∑
j=1

bj ≤ B, bj ≥ 0,
J∑
j=1

a2
jθ

2
j ≤

c2

π2m ,

(A1)

and let V2 be the value of the optimization

max
θ

min
b,ω

N∑
j=1

Ñ
θ4
j

θ2
j + ε2

2−2bj + (1− ωj)2θ2
j + ω2

j ε
2

é
such that

N∑
j=1

bj ≤ B, bj−1 ≥ bj , 0 ≤ bj ≤ bmax, ωj−1 ≥ ωj ,

J∑
j=1

a2
jθ

2
j ≤

c2

π2m .

(A2)
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Then V1 = V2.

Proof of Lemmas

Proof of Lemma 3.7.4. Let ζ(t) be a positive function of t to be specified later. Let

p0 = P
Å∥∥∥∥»1− 2−2qZ1 − y

∥∥∥∥ ≤ 2−q(1 + ζ(t)−1)
ã
.

Using a result from Sakrison (1968), p0 can be bounded by

p0 ≥
Γ( t2 + 1)

πtΓ( t+1
2 )

2−q(t−1)(1 + ζ(t)−1)t−1.

We obtain that

E
∥∥∥∥»1− 2−2bZ∗ − y

∥∥∥∥2

≤ 2−2q(1 + ζ(t)−1)2 + 2P
Å∥∥∥∥»1− 2−2bZ∗ − y

∥∥∥∥ > 2−q(1 + ζ(t)−1)
ã

≤ 2−2q(1 + 2ζ(t)−1) + 2(1− p0)n.

To upper bound (1− p0)n, we consider

log ((1− p0)n) = n log(1− p0) ≤ −np0

≤ −2qt
Γ( t2 + 1)

πtΓ( t+1
2 )

2−q(t−1)(1 + ζ(t)−1)t−1

≤ −2q
Γ( t2 + 1)

πtΓ( t+1
2 )

(1 + ζ(t)−1)
(ζ(t)+1) t−1

ζ(t)+1

≤ −
√

2π( t2)
t
2+1

2 e−
t
2

πte( t2 −
1
2)

t
2 e−( t2−

1
2 )
e

t−1
ζ(t)+1

= − 1√
πe3

t−
1
2

Å t

t− 1

ã t
2
e

t−1
ζ(t)+1

≤ − 1√
πe
t−

1
2 e

t−1
ζ(t)+1
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where we have used the Stirling’s approximation

√
2πzz+1/2e−z ≤ Γ(z + 1) ≤ ezz+1/2e−z.

In order for (1− p0)n ≤ e−2t to hold, we need

−2t = − 1√
πe
t−

1
2 e

t−1
ζ(t)+1 ,

which leads to the choice of ζ(t)

ζ(t) =
t− 1

log(2
√
πet

3
2 )
− 1.

Observing that

2ζ(t)−1 ≤ 3 log t+ 5

t− 3 log t− 6

completes the proof.

Proof of Lemma 3.7.5. We first claim that

E
(
S2 − nσ2

S
− 〈θ,X〉
‖X‖

)2

≤ E
(
‖X‖2 − nσ2

‖X‖
− 〈θ,X〉
‖X‖

)2

.

In fact, writing Er(·) for the conditional expectation E(· | ‖X‖ = r), it suffices to show that

for r <
√
nσ2 and r >

√
nσ2 + c

Er
(
S2 − nσ2

S
− 〈θ,X〉
‖X‖

)2

≤ Er
(
‖X‖2 − nσ2

‖X‖
− 〈θ,X〉
‖X‖

)2

.

When r <
√
nσ2, it is equivalent to

Er
Ç〈θ,X〉
‖X‖

å2

≤ Er
(
〈θ,X〉
‖X‖

− ‖X‖
2 − nσ2

‖X‖

)2
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It is then sufficient to show that Er〈θ,X〉 ≥ 0. This can be obtained by following a similar

argument as in Lemma A.6 in Tsybakov (2008). When r >
√
nσ2 + c, we need to show that

Er

Ñ
(
√
nσ2 + c)2 − nσ2
√
nσ2 + c

− 〈θ,X〉
‖X‖

é2

≤ Er
(
‖X‖2 − nσ2

‖X‖
− 〈θ,X〉
‖X‖

)2

,

which, after some algebra, boils down to

(
√
nσ2 + c)2 − nσ2
√
nσ2 + c

+
r2 − nσ2

r
≥ 2

r
Er〈θ,X〉.

This holds because

r

Ñ
(
√
nσ2 + c)2 − nσ2
√
nσ2 + c

+
r2 − nσ2

r
− 2

r
Er〈θ,X〉

é
≥ ‖θ‖2 + r2 − nσ2 − 2Er〈θ,X〉

≥ Er‖X − θ‖2 − nσ2

≥ 0

where we have used the assumption that r >
√
nσ2 + c, ‖θ‖ ≤ c and that

Er‖X − θ‖ ≥ Er‖X‖ − ‖θ‖ ≥
»
nσ2.

Now that we have shown (3.7.2) and noting that

E
(
‖X‖2 − nσ2

‖X‖
− 〈θ,X〉
‖X‖

)2

= σ2E
(
‖X/σ‖2 − n
‖X/σ‖

− 〈θ/σ,X/σ〉
‖X/σ‖

)2

,

we can assume thatX ∼ N(θ, In) and equivalently show that there exists a universal constant

C0 such that

E
(
‖X‖2 − n
‖X‖

− 〈θ,X〉
‖X‖

)2

≤ C0
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holds for any n and θ. Letting Z = X − θ and writing ‖θ‖2 = ξ, we have

E
(
‖X‖2 − n
‖X‖

− 〈θ,X〉
‖X‖

)2

= E
(
‖Z + θ‖2 − n− ξ
‖Z + θ‖

− 〈θ, Z〉
‖Z + θ‖

)2

≤ 2E
(
‖Z + θ‖2 − n− ξ
‖Z + θ‖

)2

+ 2E
Ç 〈θ, Z〉
‖Z + θ‖

å2

≤ 2E‖Z + θ‖2 − 4(n+ ξ) + 2E
(n+ ξ)2

‖Z + θ‖2
+ 2E

Ç 〈θ, Z〉
‖Z + θ‖

å2

≤ 2(n+ ξ)− 4(n+ ξ) + 2
(n+ ξ)2

n+ ξ − 4
+ 2E

Ç 〈θ, Z〉
‖Z + θ‖

å2

=
8(n+ ξ)

n+ ξ − 4
+ 2E

Ç 〈θ, Z〉
‖Z + θ‖

å2

.

where the last inequality is due to Lemma 3.7.9. To bound the last term, we apply the

Cauchy-Schwarz inequality and get

E
Ç 〈θ, Z〉
‖Z + θ‖

å2

≤
√
E

1

‖Z + θ‖4
E〈θ, Z〉4

≤

Ã
3(n− 4)ξ2

(n− 6)(n+ ξ − 4)(n+ ξ − 6)

where the last inequality is again due to Lemma 3.7.9. Thus we just need to take C0 to be

sup
n≥7,ξ≥0

8(n+ ξ)

n+ ξ − 4
+ 2

Ã
3(n− 4)ξ2

(n− 6)(n+ ξ − 4)(n+ ξ − 6)
,

which is apparently a finite quantity.

Proof of Lemma 3.7.6. Since the function (x2 − nσ2)2/x2 is decreasing on (0,
√
nσ2) and

increasing on (
√
nσ2,∞), we have

(S2 − nσ2)2

S2 ≤ (‖X‖2 − nσ2)2

‖X‖2
,
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and it follows that if n > 4

E
(S2 − nσ2)2

S2 ≤ E
(‖X‖2 − nσ2)2

‖X‖2
(3.27)

= E‖X‖2 − 2nσ2 + n2σ4E
Ç

1

‖X‖2

å
(3.28)

≤ ‖θ‖2 − nσ2 +
n2σ4

‖θ‖2 + nσ2 − 4σ2 (3.29)

≤ ‖θ‖4

‖θ‖2 + nσ2 +
4n

n− 4
σ2 (3.30)

where (3.29) is due to Lemma 3.7.9, and (3.30) is obtained by

‖θ‖2 − nσ2 +
n2σ4

‖θ‖2 + nσ2 − 4σ2 −
‖θ‖4

‖θ‖2 + nσ2

=
‖θ‖4 + 4σ2(nσ2 − ‖θ‖2)

‖θ‖2 + nσ2 − 4σ2 − ‖θ‖4

‖θ‖2 + nσ2

=
4n2σ6

(‖θ‖2 + nσ2 − 4σ2)(‖θ‖2 + nσ2)

≤ 4n

n− 4
σ2.

Proof of Lemma 3.7.7. First, the second inequality

E‖θ̂+ − θ‖2 ≤
nσ2‖θ‖2

‖θ‖2 + nσ2 + 4σ2

is given by Lemma 3.10 from Tsybakov (2008). We thus focus on the first inequality. For

convenience we write

g+(x) =

(
‖x‖2 − nσ2

‖x‖2

)
+

, g†(x) =
s(x)2 − nσ2

s(x)‖x‖
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with

s(x) =



√
nσ2 if ‖x‖ <

√
nσ2

√
nσ2 + c if ‖x‖ >

√
nσ2 + c

‖x‖ otherwise

.

Notice that g+(x) = g†(x) when ‖x‖ ≤
√
nσ2 + c and g+(x) > g†(x) when ‖x‖ >

√
nσ2 + c.

Since g† and g+ both only depend on ‖x‖, we sometimes will also write g†(‖x‖) for g†(x)

and g+(‖x‖) for g+(x). Setting Er(·) to denote the conditional expectation E(· | ‖X‖ = r)

for brevity, it suffices to show that for r ≥
√
nσ2 + c

Er
Ä
‖g†(X)X − θ‖2

ä
≤ Er

Ä
‖g+(X)X − θ‖2

ä
⇐⇒ g†(r)

2r2 − 2g†(r)Er〈X, θ〉 ≤ g+(r)2r2 − 2g+(r)Er〈X, θ〉

⇐⇒ (g†(r)
2 − g+(r)2)r2 ≥ 2(g†(r)− g+(r))Er〈X, θ〉

⇐⇒ (g†(r) + g+(r))r2 ≥ 2Er〈X, θ〉. (3.31)

On the other hand, we have

(g†(r) + g+(r))r2 ≥
(
‖θ‖2

r2 +
r2 − nσ2

r2

)
r2

= ‖θ‖2 + r2 − nσ2

= ‖θ‖2 + r2 − 2Er〈X, θ〉 − nσ2 + 2Er〈X, θ〉

= Er‖X − θ‖2 − nσ2 + 2Er〈X, θ〉

≥ 2Er〈X, θ〉

where the last inequality is because

‖X − θ‖2 ≥ (‖X‖ − ‖θ‖)2 ≥ nσ2.
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Thus, (3.31) holds and hence E‖θ̂† − θ‖2 ≤ E‖θ̂+ − θ‖2.

Proof of Lemma 3.7.8. It is easy to see that V1 ≤ V2, because for any θ the inside minimum

is smaller for (A1) than for (A2). Next, we will show V1 ≥ V2.

Suppose that θ∗ achieves the value V2, with corresponding b∗ and ω∗. We claim that θ∗

is non-increasing. In fact, if θ∗ is not non-increasing, then there must exist an index j such

that θ∗j < θ∗j+1 and for simplicity let’s assume that θ∗1 < θ∗2. We are going to show that this

leads to b∗1 = b∗2 and ω∗1 = ω∗2. Write

s1 =
θ∗41

θ∗21 + ε2
, s2 =

θ∗42

θ∗22 + ε2
.

We have s1 < s2. Let b̄∗ =
b∗1+b∗2

2 and observe that b∗1 ≥ b̄∗ ≥ b∗2. Notice that

(
s12−2b∗1 + s22−2b∗2

)
−
Å
s12−2b̄∗ + s22−2b̄∗

ã
= s1

Å
2−2b∗1 − 2−2b̄∗

ã
+ s2

Å
2−2b∗2 − 2−2b̄∗

ã
≥ s2

Å
2−2b∗1 − 2−2b̄∗

ã
+ s2

Å
2−2b∗2 − 2−2b̄∗

ã
≥ s2

Å
2−2b∗1 + 2−2b∗2 − 2 · 2−2b̄∗

ã
≥ 0,

where equality holds if and only if b∗1 = b∗2, since s2 > s1 ≥ 0. Hence, b∗1 and b∗2 have to

be equal, or otherwise it would contradict with the assumption that b∗ achieves the inside

minimum of (A2). Now turn to ω∗. Write ω̄∗ =
ω∗1+ω∗2

2 and note that ω∗1 ≥ ω̄∗ ≥ ω∗2.
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ConsiderÄ
(1− ω∗1)2θ∗21 + ω∗21 ε2

ä
+
Ä
(1− ω∗2)2θ∗22 + ω∗22 ε2

ä
−
Ä
(1− ω̄∗)2(θ∗21 + θ∗22 ) + 2ω̄∗2ε2

ä
=
Ä
(1− ω∗1)2 − (1− ω̄∗)2

ä
θ∗21 +

Ä
(1− ω∗2)2 − (1− ω̄∗)2

ä
θ∗22 +

Ä
ω∗21 + ω∗22 − 2ω̄∗2

ä
ε2

≥
Ä
(1− ω∗1)2 − (1− ω̄∗)2

ä
θ∗22 +

Ä
(1− ω∗2)2 − (1− ω̄∗)2

ä
θ∗22 +

Ä
ω∗21 + ω∗22 − 2ω̄∗2

ä
ε2

=
Ä
(1− ω∗1)2 + (1− ω∗2)2 − 2(1− ω̄∗)2

ä
θ∗22 +

Ä
ω∗21 + ω∗22 − 2ω̄∗2

ä
ε2

≥ 0,

where the equality holds if and only if ω∗1 = ω∗2. Therefore, ω∗1 and ω∗2 must be equal. Now,

with b∗1 = b∗2 and ω∗1 = ω∗2, we can switch θ∗1 and θ∗2 without increasing the objective function

and violating the constraints. Thus, our claim that θ∗ is non-increasing is justified.

Next, we will show that b∗1 < bmax. If b∗1 = bmax, then for j = 1, . . . , N

θ∗4j
θ∗2j + ε2

2
−2b∗j ≤ θ∗41

θ∗21 + ε2
2−2b∗1 ≤ θ∗21 2−2bmax ≤ c22−4 log(1/ε) = c2ε4,

and therefore
N∑
j=1

θ∗4j
θ∗2j + ε2

2
−2b∗j ≤ Nc2ε4 = o(ε

4m
2m+1 ).

Now we have shown that the solution triplet (θ∗, b∗, ω∗) to (A2) satisfy that θ∗ is non-

decreasing and b∗1 < bmax. In order to prove V1 ≥ V2, it then suffices to show that if we take

θ = θ∗ in (A1), the minimizer b? is non-increasing and b?1 ≤ bmax. In fact, if so, we will have

b? = b∗ as well as ω∗ =
θ∗2j

θ∗2j +ε2
and then

V1 ≥ min
b:
∑N
j=1 bj≤B

N∑
j=1

Ñ
θ∗4j

θ∗2j + ε2
2−2bj +

θ∗2j ε
2

θ∗2j + ε2

é
≥ V2,

completing the proof.

Lemma 3.7.9. Suppose that Wn,ξ follows a non-central chi-square distribution with n degrees

75



of freedom and non-centrality parameter ξ. We have for n ≥ 5

E
(
W−1
n,ξ

)
≤ 1

n+ ξ − 4
,

and for n ≥ 7

E
(
W−2
n,ξ

)
≤ n− 4

(n− 6)(n+ ξ − 4)(n+ ξ − 6)
.

Proof. It is well known that the non-central chi-square random variable Wn,ξ can be written

as a Poisson-weighted mixture of central chi-square distributions, i.e., Wn,ξ ∼ χ2
n+2K with

K ∼ Poisson(ξ/2). Then

E
(
W−1
n,ξ

)
= E

(
E(W−1

n,ξ |K)
)

= E
Ç

1

n+ 2K − 2

å
≥ 1

n+ 2EK − 2
=

1

n+ ξ − 2

where we have used the fact that E(1/χ2
n) = n − 2 and Jensen’s inequality. Similarly, we

have

E
(
W−2
n,ξ

)
= E

(
E(W−2

n,ξ |K)
)

= E
Ç

1

(n+ 2K − 2)(n+ 2K − 4)

å
≥ 1

(n+ 2EK − 2)(n+ 2EK − 4)

=
1

(n+ ξ − 2)(n+ ξ − 4)

Using the Poisson-weighted mixture representation, the following recurrence relation can be

derived (Chattamvelli and Jones, 1995)

1 = ξE
(
W−1
n+4,ξ

)
+ nE

(
W−1
n+2,ξ

)
, (3.32)

E
(
W−1
n,ξ

)
= ξE

(
W−2
n+4,ξ

)
+ nE

(
W−2
n+2,ξ

)
, (3.33)
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for n ≥ 3. Thus,

E
(
W−1
n+4,ξ

)
=

1

ξ
− n

ξ
E
(
W−1
n+2,ξ

)
≤ 1

ξ
− n

ξ

1

n+ ξ

=
1

n+ ξ
.

Replacing n by n− 4 proves (3.7.9). On the other hand, rearranging (3.32), we get

E
(
W−1
n+2,ξ

)
=

1

n
− ξ

n
E
(
W−1
n+4,ξ

)
≤ 1

n
− ξ

n

1

n+ ξ + 2

=
n+ 2

n(n+ ξ + 2)
.

Now using (3.33), we have

E
(
W−2
n+4,ξ

)
=

1

ξ
E
(
W−1
n,ξ

)
− n

ξ
E
(
W−2
n+2,ξ

)
≤ n

ξ(n− 2)(n+ ξ)
− n

ξ(n+ ξ)(n+ ξ − 2)

=
n

(n− 2)(n+ ξ)(n+ ξ − 2)
.

Replacing n by n− 4 proves (3.7.9).
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Part II

Localized Forms of Minimax Theory



CHAPTER 4

LOCALIZED FORMS OF MINIMAX THEORY:

INTRODUCTION AND RELATED WORK

Statistical minimax theory, as a measure of hardness of statistical task, has been criticized

by many for being too conservative. It is indeed so, as it looks at the worst-case risk in a

parameter family, regardless of the problem in hand. Given a particular problem instance, to

utilize minimax analyses for quantifying its difficulty, we can put it into some natural classes

of problems and then calculate the minimax risk for the class. However, since a problem

instance can belong to a range of classes, for which the minimax risk can be quite different, it

is not immediately clear how well we should expect or hope to solve each individual problem.

As a response to such concerns there has been a great effort to develop adaptive procedures

that are simultaneously minimax over a collection of parameter spaces. This point of view

and history is particularly well explained in Donoho et al. (1995) in the context of global

estimation of functions under integrated mean squared error. It should however be stressed

such an approach is still provided by considering the worst-case risk over large parameter

spaces, and it is not clear how the “collection of parameter spaces” could or should be chosen.

It is then of interest to design a benchmark that is focused on the level of individual problem

instance.

Cai and Low (2015) propose a framework for assessing the difficulty of solving individ-

ual problem, which is still based on minimax formulation, in the context of nonparametric

estimation of convex function at a point. In order to assess the difficulty for each individual

instance one must at least consider an additional function since otherwise the problem is

degenerate. For a given instance P ∈ P it is natural to choose the other instance, say P ′,

to be the one which is most difficult to distinguish from P . The benchmark Rn(P ;P) can
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then be expressed as

Rn(P ;P) = sup
P ′∈P

inf
A∈An

max
Q∈{P,P ′}

EQ err(A,Q)

using the same notation as established in Chapter 1. Apparently, this formulation gives a

lower bound on the traditional minimax risk for the class P–it is in fact the largest lower

bound using a two-point subclass. It is though not guaranteed that this provides anything

meaningful, not to mention as a measure of the hardness of the problem. However, as is

shown in Cai and Low (2015) and in at least one other application, this actually provides a

meaningful characterization of difficulty for solving individual problem, in the sense that

• Rn(P ;P) varies considerably over the collection of convex functions;

• There is a procedure that has a risk uniformly within a constant factor of Rn(P ;P)

for every instance P and every n;

• Outperforming the benchmark Rn(P ;P) at some instance P leads to worse perfor-

mance at other instance.

It is the combination of these three factors that make Rn(P ;P) a useful benchmark.

As we see in Cai and Low (2015) and in the chapter that follows, such a local formulation

of minimax risk can usually be expressed by a modulus of continuity of the individual instance

with 1/
√
T plugged in. A modulus of continuity is of the form

ωP (ε) = sup{d(P,Q) : Q ∈ P , κ(P,Q) ≤ ε}

where d and κ are two (semi)metric defined on P . d quantifies the distance between P and Q

in a way related to the error measure, while κ measures the dissimilarity in the information

input space between P and Q. Thus, with 1/
√
T plugged in, this modulus of continuity

acts as a bridge from the input space to the output metric. We note that such modulus of

continuity has also been studied before, in a global sense, by Donoho and Liu (1987) in the
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context of log concave density estimation. In both the global case and our local case, the

geometric quantity, modulus of continuity, characterizes the difficulty of statistical tasks.
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CHAPTER 5

LOCAL MINIMAX COMPLEXITY OF CONVEX

OPTIMIZATION

5.1 Introduction

The traditional analysis of algorithms is based on a worst-case, minimax formulation. One

studies the running time, measured in terms of the smallest number of arithmetic operations

required by any algorithm to solve any instance in the family of problems under considera-

tion. Classical worst-case complexity theory focuses on discrete problems. In the setting of

convex optimization, where the problem instances require numerical rather than combinato-

rial optimization, Nemirovsky and Yudin (1983) developed an approach to minimax analysis

based on a first order oracle model of computation. In this model, an algorithm to minimize

a convex function can make queries to a first-order “oracle,” and the complexity is defined

as the smallest error achievable using some specified minimum number of queries needed.

Specifically, the oracle is queried with an input point x ∈ C from a convex domain C, and

returns an unbiased estimate of a subgradient vector to the function f at x. After T calls

to the oracle, an algorithm A returns a value x̂A ∈ C, which is a random variable due to the

stochastic nature of the oracle, and possibly also due to randomness in the algorithm. The

Nemirovski-Yudin analysis reveals that, in the worst case, the number of calls to the oracle

required to drive the expected error E(f(x̂A)− infx∈C f(x)) below ε scales as T = O(1/ε) for

the class of strongly convex functions, and as T = O(1/ε2) for the class of Lipschitz convex

functions.

In practice, one naturally finds that some functions are easier to optimize than others.

Intuitively, if the function is “steep” near the optimum, then the subgradient may carry a
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great deal of information, and a stochastic gradient descent algorithm may converge relatively

quickly. A minimax approach to analyzing the running time cannot take this into account for

a particular function, as it treats the worst-case behavior of the algorithm over all functions.

It would be of considerable interest to be able to assess the complexity of solving an individual

convex optimization problem. Doing so requires a break from traditional worst-case thinking.

In this paper we revisit the traditional view of the complexity of convex optimization

from the point of view of a type of localized minimax complexity. In local minimax, our

objective is to quantify the intrinsic difficulty of optimizing a specific convex function f .

With the target f fixed, we take an alternative function g within the same function class F ,

and evaluate how the maximum expected error decays with the number of calls to the oracle,

for an optimal algorithm designed to optimize either f or g. The local minimax complexity

RT (f ;F) is defined as the least favorable alternative g:

RT (f ;F) = sup
g∈F

inf
A∈AT

max
h∈{f,g}

error(A, h) (5.1)

where error(A, h) is some measure of error for the algorithm applied to function h. In

contrast, the traditional global worst-case performance of the best algorithm, as defined by

the minimax complexity RT (F) of Nemirovsky and Yudin, is

RT (F) = inf
A∈AT

sup
g∈F

error(A, g). (5.2)

The local minimax complexity can be thought of as the difficulty of optimizing the hardest

alternative to the target function. Intuitively, a difficult alternative is a function g for which

querying the oracle with g gives results similar to querying with f , but for which the value

of x ∈ C that minimizes g is far from the value that minimizes f .

Our analysis ties this function-specific notion of complexity to a localized and computa-

tional analogue of the modulus of continuity that is central to statistical minimax analysis

(Donoho and Liu, 1987, 1991). We show that the local minimax complexity gives a mean-
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ingful benchmark for quantifying the difficulty of optimizing a specific function by proving

a superefficiency result; in particular, outperforming this benchmark at some function must

lead to a larger error at some other function. Furthermore, we propose an adaptive algorithm

in the one-dimensional case that is based on binary search, and show that this algorithm

automatically achieves the local minimax complexity, up to a logarithmic factor. Our study

of the algorithmic complexity of convex optimization is motivated by the work of Cai and

Low (2015), who propose an analogous definition in the setting of statistical estimation of

a one-dimensional convex function. The present work can thus be seen as exposing a close

connection between statistical estimation and numerical optimization of convex functions.

In particular, our results imply that the local minimax complexity can be viewed as a com-

putational analogue of Fisher information in classical statistical estimation.

In the following section we establish our notation, and give a technical overview of our

main results, which characterize the local minimax complexity in terms of the computational

modulus of continuity. In Section 5.2.1, we demonstrate the phenomenon of superefficiency

of the local minimax complexity. In Section 5.3 we present the algorithm that adapts to

the benchmark, together with an analysis of its theoretical properties. We also present

simulations of the algorithm and comparisons to traditional stochastic gradient descent.

Finally, we conclude with a brief review of related work and a discussion of future research

directions suggested by our results.

5.2 Local minimax complexity

In this section, we first establish notation and define a modulus of continuity for a convex

function f . We then state our main result, which links the local minimax complexity to this

modulus of continuity.

Let F be the collection of Lipschitz convex functions defined on a compact convex set

C ⊂ Rd. Given a function f ∈ F , our goal is to find a minimum point, x∗f ∈ arg minx∈C f(x).

However, our knowledge about f can only be gained through a first-order oracle. The oracle,
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upon being queried with x ∈ C, returns f ′(x) + ξ, where f ′(x) is a subgradient of f at x

and ξ ∼ N (0, σ2Id). When the oracle is queried with a non-differentiable point x of f ,

instead of allowing the oracle to return an arbitrary subgradient at x, we assume that it has

a deterministic mechanism for producing f ′(x). That is, when we query the oracle with x

twice, it should return two random vectors with the same mean f ′(x). Such an oracle can

be realized, for example, by taking f ′(x) = arg minz∈∂f(x) ‖z‖.

Consider optimization algorithms that make a total of T queries to this first-order oracle,

and let AT be the collection of all such algorithms. For A ∈ AT , denote by x̂A the output

of the algorithm. We write err(x, f) for a measure of error for using x as the estimate of the

minimum point of f ∈ F . In this notation, the usual minimax complexity is defined as

RT (F) = inf
A∈AT

sup
f∈F

Ef err(x̂A, f). (5.3)

Note that the algorithm A queries the oracle at up to T points xt ∈ C selected sequen-

tially, and the output x̂A is thus a function of the entire sequence of random vectors

vt ∼ N(f ′(xt), σ2Id) returned by the oracle. The expectation Ef denotes the average with

respect to this randomness (and any additional randomness injected by the algorithm itself).

The minimax risk RT (F) characterizes the hardness of the entire class F . To quantify the

difficulty of optimizing an individual function f , we consider the following local minimax

complexity, comparing f to its hardest local alternative

RT (f ;F) = sup
g∈F

inf
A∈AT

max
h∈{f,g}

Eh err(x̂A, h). (5.4)

We now proceed to define a computational modulus of continuity that characterizes

the local minimax complexity. Let X ∗f = arg minx∈C f(x) be the set of minimum points

of function f . We consider err(x, f) = infy∈X ∗f ‖x − y‖ as our measure of error. Define

d(f, g) = infx∈X ∗f ,y∈X ∗g ‖x−y‖ for f, g ∈ F . It is easy to see that err(x, f) and d(f, g) satisfy
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the exclusion inequality

err(x, f) <
1

2
d(f, g) implies err(x, g) ≥ 1

2
d(f, g). (5.5)

Next we define

κ(f, g) = sup
x∈C
‖f ′(x)− g′(x)‖ (5.6)

where f ′(x) is the unique subgradient of f that is returned as the mean by the oracle when

queried with x. For example, if we take f ′(x) = arg minz∈∂f(x) ‖z‖, we have

κ(f, g) = sup
x∈C
‖ Proj
∂f(x)

(0)− Proj
∂g(x)

(0)‖ (5.7)

where ProjB(z) is the projection of z to the set B. Thus, d(f, g) measures the dissimilarity

between two functions in terms of the distance between their minimizers, whereas κ(f, g)

measures the dissimilarity by the largest separation between their subgradients at any given

point.

Given d and κ, we define the modulus of continuity of d with respect to κ at the function

f by

ωf (ε) = sup {d(f, g) : g ∈ F , κ(f, g) ≤ ε} . (5.8)

We now show how to calculate the modulus for some specific functions.

Example 5.2.1. Suppose that f is a convex function on a one-dimensional interval C ⊂ R.

Then we have

ωf (ε) = sup

 inf
x∈X ∗f

|x− y| : y ∈ C, |f ′(y)| < ε

 . (5.9)

This essentially says that the modulus of continuity measures the size (in fact, the larger

half-width) of the the “flat set” where the magnitude of the subderivative is smaller than

ε. See Figure 5.1 for an illustration Thus, for the class of symmetric functions f(x) = 1
k |x|

k
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f(x)

g(x)

flat set

f ′(x)

g′(x)

ε
ω(ε; f)

Figure 5.1: Illustration of the flat set and the modulus of continuity. Both the function
f (left) and its derivative f ′ (right) are shown (black curves), along with one of the many
possible alternatives, g and its derivative g′ (solid gray curves), that achieve the sup in the
definition of ωf (ε). The flat set contains all the points for which |f ′(x)| < ε, and ωf (ε) is
the larger half width of the flat set.

over C = [−1, 1], with k > 1,

ωf (ε) = ε
1

k−1 . (5.10)

For the asymmetric case f(x) = 1
kl
|x|klI(−1 ≤ x ≤ 0) + 1

kr
|x|krI(0 < x ≤ 1) with kl, kr > 1,

ωf (ε) = ε
1

kl∨kr−1 . (5.11)

That is, the size of the flat set depends on the flatter side of the function.

Local minimax is characterized by the modulus

We now state our main result linking the local minimax complexity to the modulus of

continuity. We say that the modulus of the continuity has polynomial growth if there exists

α > 0 and ε0, such that for any c ≥ 1 and ε ≤ ε0/c

ωf (cε) ≤ cαωf (ε). (5.12)

Our main result below shows that the modulus of continuity characterizes the local minimax

complexity of optimization of a particular convex function, in a manner similar to how the

modulus of continuity quantifies the (local) minimax risk in a statistical estimation setting
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Cai and Low (2015); Donoho and Liu (1987, 1991), relating the objective to a geometric

property of the function.

Theorem 5.2.1. Suppose that f ∈ F and that ωf (ε) has polynomial growth. Then there

exist constants C1 and C2 independent of T and T0 > 0 such that for all T > T0

C1 ωf

Ç
σ√
T

å
≤ RT (f ;F) ≤ C2 ωf

Ç
σ√
T

å
. (5.13)

Remark 5.2.1.1. We use the error metric err(x, f) = infy∈X ∗f ‖x − y‖ here. For a given a

pair (err, d) that satisfies the exclusion inequality (5.5), our proof technique applies to yield

the corresponding lower bound. For example, we could use err(x, f) = infy∈X ∗f |v
T (x − y)|

for some vector v. This error metric would be suitable when we wish to estimate vTx∗f , for

example, the first coordinate of x∗f . Another natural choice of error metric is err(x, f) =

f(x)− infx∈C f(x), with a corresponding distance d(f, g) = infx∈C |f(x)− infx f(x) + g(x)−

infx g(x)|. For this case, while the proof of the lower bound stays exactly the same, further

work is required for the upper bound, which is beyond the scope of this paper.

Remark 5.2.1.2. Although the theorem gives an upper bound for the local minimax complex-

ity, this does not guarantee the existence of an algorithm that achieves the local complexity

for any function. Therefore, it is important to design an algorithm that adapts to this

benchmark for each individual function. We solve this problem in the one-dimensional case

in Section 5.3.

The proof of this theorem is given in the appendix. We now illustrate the result with

examples that verify the intuition that different functions should have different degrees of

difficulty for stochastic convex optimization.

Example 5.2.2. For the function f(x) = 1
k |x|

k with x ∈ [−1, 1] for k > 1, we have

RT (f ;F) = O
Ä
T
− 1

2(k−1)
ä
. When k = 2, we recover the strongly convex case, where the

(global) minimax complexity is O
Ä
1/
√
T
ä

with respect to the error err(x, f) = infy∈X ∗f ‖x−

y‖. We see a faster rate of convergence for k < 2. As k → ∞, we also see that the error
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fails to decrease as T gets large. This corresponds to the worst case for any Lipschitz convex

function. In the asymmetric setting with f(x) = 1
kl
|x|klI(−1 ≤ x ≤ 0)+ 1

kr
|x|krI(0 < x ≤ 1)

with kl, kr > 1, we have RT (f ;F) = O(T
− 1

2(kl∨kr−1) ).

The following example illustrates that the local minimax complexity and modulus of

continuity are consistent with known behavior of stochastic gradient descent for strongly

convex functions.

Example 5.2.3. In this example we consider the error err(x, f) = infy∈X ∗f |v
T (x − y)| for

some vector v, and let f be an arbitrary convex function satisfying ∇2f(x∗f ) � 0 with

Hessian continuous around x∗f . Thus the optimizer x∗f is unique. If we define gw(x) =

f(x)− wT∇2f(x∗f )x, then gw(x) is a convex function with unique minimizer and

κ(f, gw) = sup
x

{∥∥∥∇f(x)− (∇f(x)−∇2f(x∗f )w)
∥∥∥} =

∥∥∥∇2f(x∗f )w
∥∥∥ . (5.14)

Thus, defining δ(w) = x∗f − x
∗
gw ,

ωf

Ç
σ√
T

å
≥ sup

w
{|vT δ(w)| :

∥∥∥∇2f(x∗f )w
∥∥∥ ≤ σ/

√
T} ≥ sup

u

∣∣∣∣∣vT δ
Ç
σ√
T
∇2f(x∗f )−1u

å∣∣∣∣∣ . (5.15)

By the convexity of gw, we know that x∗gw satisfies∇f(x∗gw)−∇2f(x∗f )−1w = 0, and therefore

by the implicit function theorem, x∗gw = x∗f + w + o(‖w‖) as w → 0. Thus,

ωf

Ç
σ√
T

å
≥ σ√

T

∥∥∥∇2f(x∗f )−1v
∥∥∥+ o

Ç
σ√
T

å
as T →∞. (5.16)

In particular, we have the local minimax lower bound

lim inf
T→∞

√
TRT (f ;F) ≥ C1σ

∥∥∥∇2f(x∗f )−1v
∥∥∥ (5.17)

where C1 is the same constant appearing in Theorem 5.2.1. This shows that the local min-

imax complexity captures the function-specific dependence on the constant in the strongly
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convex case. Stochastic gradient descent with averaging is known to adapt to this strong

convexity constant (Ruppert, 1988; Polyak and Juditsky, 1992; Moulines and Bach, 2011).

5.2.1 Superefficiency

Having characterized the local minimax complexity in terms of a computational modulus

of continuity, we would now like to show that there are consequences to outperforming it

at some function. This will strengthen the case that the local minimax complexity serves

as a meaningful benchmark to quantify the difficulty of optimizing any particular convex

function.

Suppose that f is any one-dimensional function such that X ∗f = [xl, xr], which has as

asymptotic expansion around {xl, xr} of the form

f(xl − δ) = f(xl) + λlδ
kl + o(δkl) and f(xr + δ) = f(xr) + λrδ

kr + o(δkr) (5.18)

for δ > 0, some powers kl, kr > 1, and constants λl, λr > 0. The following result shows that

if any algorithm significantly outperforms the local modulus of continuity on such a function,

then it underperforms the modulus on a nearby function.

Proposition 5.2.2. Let f be any convex function satisfying the asymptotic expansion (5.21)

around its optimum. Suppose that A ∈ AT is any algorithm that satisfies

Ef err(x̂A, f) ≤
√
Ef err(x̂A, f)2 ≤ δT ωf

Ç
σ√
T

å
, (5.19)

where δT < C1. Define g−1(x) = f(x)− εTx and g1(x) = f(x) + εTx, where εT is given by

εT =
»
σ2 log

(
C1
δT

)
/T . Then for some g ∈ {g−1, g1}, there exists T0 such that T ≥ T0 implies

Eg err(x̂A, g) ≥ C ωg

ÖÃ
σ2 log

Ä
C1/δT

ä
T

è
(5.20)
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for some constant C that only depends on k = kl ∨ kr.

A proof of this result is given in the appendix, where it is derived as a consequence of a

more general statement. We remark that while condition (5.19) involves the squared error√
Ef err(x̂A, f)2, we expect that the result holds with only the weaker inequality on the

absolute error Ef err(x̂A, f).

It follows from this proposition that if an algorithm A significantly outperforms the

local minimax complexity in the sense that (5.19) holds for some sequence δT → 0 with

lim infT e
T δT = ∞, then there exists a sequence of convex functions gT with κ(f, gT ) → 0,

such that

lim inf
T→∞

EgT err(x̂A, gT )

ωgT
Ä»

σ2 log
(
C1
δT

)
/T
ä > 0. (5.21)

This is analogous to the phenomenon of superefficiency in classical parametric estimation

problems, where outperforming the asymptotically optimal rate given by the Fisher infor-

mation implies worse performance at some other point in the parameter space. In this sense,

ωf can be viewed as a computational analogue of Fisher information in the setting of convex

optimization. We note that superefficiency has also been studied in nonparametric settings

(Brown and Low, 1996a), and a similar result was shown by Cai and Low (2015) for local

minimax estimation of convex functions.

5.3 An adaptive optimization algorithm

In this section, we show that a simple stochastic binary search algorithm achieves the local

minimax complexity in the one-dimensional case.

The general idea of the algorithm is as follows. Suppose that we are given a budget

of T queries to the oracle. We divide this budget into T0 = bT/Ec queries over each of

E = br log T c many rounds, where r > 0 is a constant to be specified later. In each round,

we query the oracle T0 times for the derivative at the mid-point of the current interval.

Estimating the derivative by averaging over the queries, we proceed to the left half of the
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interval if the estimated sign is positive, and to the right half of the interval of the estimated

sign is negative. The details are given in Algorithm 1.

Algorithm 1 Sign testing binary search
Input: T , r.
Initialize: (a0, b0), E = br log T c, T0 = bT/Ec.
for e = 1, . . . , E do

Query xe = (ae + be)/2 for T0 times to get Z
(e)
t for t = 1, . . . , T0.

Calculate the average Z̄
(e)
T0

= 1
T0

∑T0
t=1 Z

(e)
t .

If Z̄
(e)
T0

> 0, set (ae+1, be+1) = (ae, xe).

If Z̄
(e)
T0
≤ 0, set (ae+1, be+1) = (xe, be).

end for
Output: xE .

We will show that this algorithm adapts to the local minimax complexity up to a loga-

rithmic factor. First, the following result shows that the algorithm gets us close to the “flat

set” of the function.

Proposition 5.3.1. For δ ∈ (0, 1), let Cδ = σ
»

2 log(E/δ). Define

Iδ =

®
y ∈ dom(f) : |f ′(y)| < Cδ√

T0

´
. (5.22)

Suppose that (a0, b0) ∩ Iδ 6= ∅. Then

dist(xE , Iδ) ≤ 2−E(b0 − a0) (5.23)

with probability at least 1− δ.

This proposition tells us that after E rounds of bisection, we are at most a distance

2−E(b0 − a0) from the flat set Iδ. In terms of the distance to the minimum point, we have

inf
x∈X ∗f

|xE − x| ≤ 2−E(b0 − a0) + sup
ß

inf
x∈X ∗f

|x− y| : y ∈ Iδ
™
. (5.24)
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If the modulus of continuity satisfies the polynomial growth condition, we then obtain the

following.

Corollary 5.3.2. Let α0 > 0. Suppose ωf satisfies the polynomial growth condition (5.12)

with constant α ≤ α0. Let r = 1
2α0. Then with probability at least 1−δ and for large enough

T ,

inf
x∈X ∗f

|xE − x| ≤ C̃ωf

Ç
σ√
T

å
(5.25)

where the term C̃ hides a dependence on log T and log(1/δ).

The proofs of these results are given in the appendix.

Simulations showing adaptation to the benchmark

We now demonstrate the performance of the stochastic binary search algorithm, making a

comparision to stochastic gradient descent. For the stochastic gradient descent algorithm,

we perform T steps of update

xt+1 = xt − η(t) · ĝ(xt) (5.26)

where η(t) is a stepsize function, chosen as either η(t) = 1
t or η(t) = 1√

t
. We first consider

the following setup with symmetric functions f :

1. The function to optimize is fk(x) = 1
k |x− x

∗|k for k = 3
2 , 2 or 3.

2. The minimum point x∗ ∼ Unif(−1, 1) is selected uniformaly at random over the inter-

val.

3. The oracle returns the derivative at the query point with additive N(0, σ2) noise,

σ = 0.1.

4. The optimization algorithms know a priori that the minimum point is inside the inter-

val (−2, 2). Therefore, the binary search starts with interval (−2, 2) and the stochastic
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gradient descent starts at x0 ∼ Unif(−2, 2) and project the query points to the interval

(−2, 2).

5. We carry out the simulation for values of T on a logarithmic grid between 100 and

10,000. For each setup, we average the error |x̂− x∗| over 1,000 runs.

The simulation results are shown in the top 3 panels of Figure 5.2. Several properties

predicted by our theory are apparent from the simulations. First, the risk curves for the

stochastic binary search algorithm parallel the gray curves. This indicates that the optimal

rate of convergence is achieved. Thus, the stochastic binary search adapts to the curvature

of different functions and yields the optimal local minimax complexity, as given by our

benchmark. Second, the stochastic gradient descent algorithms with stepsize 1/t achieve the

optimal rate when k = 2, but not when k = 3; with stepsize 1/
√
t SGD gets close to the

optimal rate when k = 3, but not when k = 2. Neither leads to the faster rate when k = 3
2 .

This is as expected, since the stepsize needs to be adapted to the curvature at the optimum

in order to achieve the optimal rate.

Next, we consider a set of asymmetric functions. Using the same setup as in the symmetric

case, we consider the functions of the form f(x) = 1
kl
|x−x∗|klI(x−x∗ ≤ 0)+ 1

kr
|x−x∗|krI(x−

x∗ > 0), for exponent pairs (k1, k2) chosen to be (3
2 , 2), (3

2 , 3) and (2, 3). The simulation

results are shown in the bottom three panels of Figure 5.2. We observe that the stochastic

binary search once again achieves the optimal rate, which is determined by the flatter side

of the function, that is, the larger of kl and kr.

5.4 Related work and future directions

In related recent work, Ramdas and Singh (2013b) study minimax complexity for the class

of Lipschitz convex functions that satisfy f(x) − f(x∗f ) ≥ λ
2‖x − x∗f‖

k. They show that

the minimax complexity under the function value error is of the order T
− k

2(k−1) . Iouditski

and Nesterov (2014) also consider minimax complexity for the class of k-uniformly convex
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Figure 5.2: Simulation results: Averaged risk versus number of queries T . The black curves
correspond to the risk of the stochastic binary search algorithm. The red and blue curves
are for the stochastic gradient descent methods, red for stepsize 1/t and blue for 1/

√
t. The

dashed gray lines indicate the optimal convergence rate. Note that the plots are on a log-log
scale. The plots on the top panels are for the symmetric cases f(x) = 1

k |x− x
∗|k; the lower

plots are for the asymmetric cases.
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functions for k > 2. They give an adaptive algorithm based on stochastic gradient descent

that achieves the minimax complexity up to a logarithmic factor. Connections with active

learning are developed in Ramdas and Singh (2013a), with related ideas appearing in Castro

and Nowak (2008). Adaptivity in this line of work corresponds to the standard notion

in statistical estimation, which seeks to adapt to a large subclass of a parameter space.

In contrast, the results in the current paper quantify the difficulty of stochastic convex

optimization at a much finer scale, as the benchmark is determined by the specific function

to be optimized.

The stochastic binary search algorithm presented in Section 5.3, despite being adaptive,

has a few drawbacks. It requires the modulus of continuity of the function to satisfy poly-

nomial growth, with a parameter α bounded away from 0. This rules out cases such as

f(x) = |x|, which should have an error that decays exponentially in T ; it is of interest to

handle this case as well. It would also be of interest to construct adaptive optimization pro-

cedures tuned to a fixed numerical precision. Such procedures should have different running

times depending on the hardness of the problem. Progress on both problems has been made,

and will be reported elsewhere.

Another challenge is to remove the logarithmic factors appearing in the binary search

algorithm developed in Section 5.3. In one dimension, stochastic convex optimization is

intimately related to a noisy root finding problem for a monotone function taking values in

[−a, a] for some a > 0. Karp and Kleinberg (2007) study optimal algorithms for such root

finding problems in a discrete setting. A binary search algorithm that allows backtracking

is proposed, which saves log factors in the running time. It would be interesting to study

the use of such techniques in our setting.

Other areas that warrant study involve the dependence on dimension. The scaling with

dimension of the local minimax complexity and modulus of continuity is not fully revealed

by the current analysis. Moreover, the superefficiency result and the adaptive algorithm

presented here are only for the one-dimensional case. We note that a form of adaptive
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stochastic gradient algorithm for the class of uniformly convex functions in general, fixed

dimension is developed in Iouditski and Nesterov (2014).

Finally, a more open-ended direction is to consider larger classes of stochastic opti-

mization problems. For instance, minimax results are known for functions of the form

f(x) := EF (x; ξ) where ξ is a random variable and x 7→ F (x; ξ) is convex for any ξ, when

f is twice continuously differentiable around the minimum point with positive definite Hes-

sian. However, the role of the local geometry is not well understood. It would be interesting

to further develop the local complexity techniques introduced in the current paper, to gain

insight into the geometric structure of more general stochastic optimization problems.

5.5 Proofs of technical results

5.5.1 Proof of Theorem 5.2.1

Lower bound

For a function f ∈ F , let Pf denote the distribution of stochastic gradients observable by an

estimation scheme x̂, and let PTf denote the distribution of T sequentially queried stochastic

gradients for f . We define the pairwise minimax risk for optimization of a pair of function

f and g by

RT (f, g) := inf
A∈AT

max
¶
Ef err(x̂A, f),Eg err(x̂A, g)

©
, (5.27)

and the local minimax lower bound can be written as

RT (f ;F) := sup
g∈F

RT (f, g). (5.28)

Let us show how the modulus of continuity gives a lower bound. We first state a lemma.

Lemma 5.5.1. Let f, g be arbitrary convex functions and d satisfy the exclusion inequal-
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ity (5.5). Then

RT (f, g) ≥ d(f, g)

4

(
1−

∥∥∥PTf − PTg ∥∥∥TV

)
. (5.29)

Proof. Temporarily hiding the number of iterations T for simplicity, we have by Markov’s

inequality that

max
¶
Ef err(x̂A, f),Eg err(x̂A, g)

©
(5.30)

≥ 1

2
d(f, g) max

®
Pf (err(x̂A, f) ≥ 1

2
d(f, g)), Pg(err(x̂A, g) ≥ 1

2
d(f, g))

´
. (5.31)

Now, we apply an essentially standard reduction of estimation to testing, because we have

2 max

®
Pf (err(x̂A, f) ≥ 1

2
d(f, g)), Pg(err(x̂A, g) ≥ 1

2
d(f, g))

´
(5.32)

≥ Pf (err(x̂A, f) ≥ 1

2
d(f, g)) + Pg(err(x̂A, g) ≥ 1

2
d(f, g)) (5.33)

= 1− Pf (err(x̂A, f) <
1

2
d(f, g)) + Pg(err(x̂A, g) ≥ 1

2
d(f, g)) (5.34)

≥ 1− Pf (err(x̂A, g) ≥ 1

2
d(f, g)) + Pg(err(x̂A, g) ≥ 1

2
d(f, g)), (5.35)

where in the last line we have used the exclusion inequality to see that err(x̂A, f) < 1
2d(f, g)

implies err(x̂A, g) ≥ 1
2d(f, g) so that

Pf (err(x̂A, f) <
1

2
d(f, g)) ≤ Pf (err(x̂A, g) ≥ 1

2
d(f, g)). (5.36)

Thus, we find that

4

d(f, g)
max

¶
Ef err(x̂A, f),Eg err(x̂A, g)

©
≥ inf

S

{
1− PTf (S) + PTg (S)

}
= 1−

∥∥∥PTf − PTg ∥∥∥TV
,

(5.37)

which yields the lemma.

Now we can prove a minimax lower bound. Let Yi be the ith observed gradient, where

Pf (Yi | Y1:i−1) denotes the conditional distribution of Yi under the oracle for function f .
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We have by the chain rule that

Dkl

(
PTf ||P

T
g

)
=

T∑
i=1

Ef
î
Dkl

Ä
Pf (Yi | Y1:i−1)||Pg(Yi | Y1:i−1)

äó
. (5.38)

It is no loss of generality to assume that the ith gradient query point xi is measureable with

respect to Y1:i−1 (this follows because if a randomized algorithm does well in expectation,

there is at least one realization of its randomness that has small risk, so we can just take

that realization and assume the procedure is deterministic). Using that we have a Gaussian

oracle, we have

Dkl

Ä
Pf (Yi | Y1:i−1)||Pg(Yi | Y1:i−1)

ä
= Dkl

Ä
N (f ′(xi), σ

2Id×d)||N (g′(xi), σ
2Id×d)

ä
(5.39)

=
1

2σ2

∥∥∥f ′(xi)− g′(xi)∥∥∥2 ≤ 1

2σ2κ(f, g)2. (5.40)

Noting the not completely standard upper bound

∥∥∥PTf − PTg ∥∥∥TV
≤ 1− exp

Ç
−1

2
Dkl

(
PTf ||P

T
g

)å
(5.41)

on the variation distance (see Tsybakov (2008, Lemma 2.6)), we also have by Lemma 5.5.1

that

RT (f, g) ≥ d(f, g)

4
exp

Ç
− T

4σ2κ(f, g)2
å
. (5.42)

Consider the collection of functions

FT :=

{
g ∈ F : κ(f, g)2 ≤ σ2

T

}
. (5.43)

Certainly this collection is non-empty (it includes f). For any ε > 0, there must exist some

g ∈ FT such that d(f, g) ≥ (1− ε)ωf (1/
√
T ). Let gT denote such a g. Then we have

RT (f) ≥ RT (f, gT ) ≥ d(f, gT )

4
e−

1
4 ≥ 1− ε

4
e−

1
4ωf

Ç
σ√
T

å
. (5.44)
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We have

RT (f) ≥ 1

4e1/4
ωf

Ç
σ√
T

å
≥ 3

16
ωf

Ç
σ√
T

å
. (5.45)

Upper bound

Suppose that we have two functions f−1, f1 ∈ F . Let

x† = arg max
x∈C

¶
‖f ′−1(x)− f ′1(x)‖

©
(5.46)

be the point at which the two functions differ the most in terms of the subgradients. Let

θ ∈ {−1, 1} be the parameter. Consider an algorithm that queries the oracle with x† for T

times. Let Zt be the response from the oracle at time t. Let

W =
1√
T

T∑
t=1

Zt −
√
T

2
(f ′1(x†) + f ′−1(x†)) (5.47)

With the normality assumption on the noise, we have

W ∼ N(θγT , σ
2I) (5.48)

where

γT =

√
T

2

(
f ′1(x†)− f ′−1(x†)

)
. (5.49)

Then we construct

W = ‖γT ‖−1γT
TW ∼ N(θ‖γT ‖, σ2), (5.50)

which is a sufficient statistic for the problem of estimating θ. Based on W we can obtain an

estimate θ̂ of θ, and let the output of our algorithm be

x̂T =
x∗1 + x∗−1

2
+ θ̂

x∗1 − x∗−1

2
(5.51)
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where x∗1 ∈ X ∗f1 and x∗−1 ∈ X ∗f−1 satisfy ‖x1 − x−1‖ = infx∈X ∗f1
infy∈X ∗f−1

‖x − y‖. It then

follows

inf
A∈AT

max
θ=±1

Eθ‖x̂A − x∗θ‖ ≤ max
θ=±1

Eθ‖x̂T − x∗θ‖ (5.52)

≤ 1

2
‖x∗1 − x∗−1‖ inf

θ̂
sup
θ=±1

Eθ|θ̂ − θ| (5.53)

=
1

2
‖x∗1 − x∗−1‖‖γT ‖−1λ(‖γT ‖, σ) (5.54)

where λ(τ, σ) = infµ̂ supµ=±τ Eµ|µ̂ − µ| is the minimax (`1) risk of estimating the mean of

Z ∼ N(τ, σ2) for the class µ ∈ {−τ, τ}.

Now take f−1 = f and f1 = g. Note that ‖γT ‖ =
√
T

2 κ(f, g). From (5.54) we have

RT (f ;F) = sup
g∈F

inf
A∈AT

max
{
Ef‖x̂T − x∗f‖,Eg‖x̂T − x

∗
g‖
}

(5.55)

≤ 1

2
sup
‖γT ‖

sup

g∈F :κ(f,g)=
2‖γT ‖√

T

‖x∗f − x
∗
g‖‖γT ‖−1λ(‖γT ‖, σ) (5.56)

≤ 1

2
sup
τ
ωf

Ç
2τ√
T

å
τ−1λ(τ, σ). (5.57)

We have the following bound derived from Donoho (1994)

λ(τ, σ) ≤ τ exp

(
− τ2

4σ2

)
, (5.58)

which yields

RT (f ;F) ≤ 1

2
sup
τ
ω

Ç
2τ√
T

å
exp

(
− τ2

4σ2

)
. (5.59)

To upper bound the last quantity, we write

sup
τ
ω

Ç
2τ√
T

å
exp

(
− τ2

4σ2

)
≤ max

 sup
τ≤r

ψ(τ), sup
r<τ≤1

2ε0
√
T

ψ(τ), sup
τ>1

2ε0
√
T

ψ(τ)

 (5.60)

for some r > 0, where ψ(τ) = ω
Å

2τ√
T

ã
exp
Å
− τ2

4σ2

ã
. We bound the three terms separately
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by

sup
τ≤r

ω

Ç
2τ√
T

å
exp

(
− τ2

4σ2

)
≤ ω

Ç
2r√
T

å
, (5.61)

and

sup
r<τ≤1

2ε0
√
T

ω

Ç
2τ√
T

å
exp

(
− τ2

4σ2

)
(5.62)

= sup
s≥1 & 2sr√

T
≤ε0

ω

Ç
2sr√
T

å
exp

(
−s

2r2

4σ2

)
(5.63)

≤ sup
s≥1

sαω

Ç
2r√
T

å
exp

(
−s

2r2

4σ2

)
(5.64)

≤
(√

2ασ

r

)α
ω

Ç
2r√
T

å
(5.65)

since ωf satisfies ωf (cε) ≤ cαωf (ε) for c > 1, cε ≤ ε0 and some α > 0, and

sup
τ>1

2ε0
√
T

ω

Ç
2τ√
T

å
exp

(
− τ2

4σ2

)
≤ diam(C) exp

(
− ε20T

16σ2

)
(5.66)

Setting r = σ/2 and noting that ωf (ε) ≥ εα
ωf (ε0)
εα0

, we have that there exists T0 > 0 such

that for all T ≥ T0

RT (f ;F) ≤ Cωf

Ç
σ√
T

å
(5.67)

where C = 1
2 max{1, (8α)

α
2 }.

5.5.2 Proofs for superefficiency results

We begin by recalling the following results about properties of the subdifferential of a convex

function f and its Fenchel conjugate

f∗(y) := sup
x

{
yTx− f(x)

}
, (5.68)
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including duality between the subdifferential sets ∂f and ∂f∗, increasing gradients, and

continuous differentiability.

Lemma 5.5.2 (Hiriart-Urruty and Lemaréchal (1993)). Let f be a closed convex function.

Then

x ∈ ∂f∗(y) if and only if y ∈ ∂f(x). (5.69)

Additionally, subgradient sets are increasing in the sense that

s1 ∈ ∂f(x1) and s2 ∈ ∂f(x2) implies 〈s1 − s2, x1 − x2〉 ≥ 0. (5.70)

Lastly, if f : R → R is strictly convex on an interval [xl, xr], then f∗ is continuously

differentiable on the interval [inf{s : s ∈ ∂f(xl)}, sup{s : s ∈ ∂f(xr)}].

Moduli of continuity

Lemma 5.5.3. Let f : R → R be a subdifferentiable convex function. Define fε(x) =

f(x) + εx. Then

arg min
x

fε(x) = ∂f∗(−ε) (5.71)

Moreover,

dist(∂f∗(0), ∂f∗(ε)) ∨ dist(∂f∗(0), ∂f∗(−ε)) ≤ ωf (ε) (5.72)

ωf (ε) ≤ sup
x
{dist(x, ∂f∗(0)) : x ∈ ∂f∗(ε)} ∨ sup

x
{dist(x, ∂f∗(0)) : x ∈ ∂f∗(−ε)} (5.73)

In particular, if x0 = arg minx f(x) is unique and f is strictly convex in a neighborhood of

x0, then there exists an ε0 > 0 such that ε ≤ ε0 implies that

ωf (ε) = max
¶
|f∗′(ε)− x0|, |f∗′(−ε)− x0|

©
. (5.74)

Proof. Let x0 ∈ arg minx f(x). Using Lemma 5.5.2, it is clear that arg minx f(x) = ∂f∗(0),
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and more generally, that

∂f∗(y) = arg max
x

{
yTx− f(x)

}
= arg min

x

{
f(x)− yTx

}
. (5.75)

We begin by providing the lower bound on ωf . For ε > 0, define the function fε(x) =

f(x) + εx. Then certainly κ(f, fε) ≤ ε. Moreover, we have

f∗ε (y) = sup
x
{yx− f(x)− εx} = sup

x
{(y − ε)x− f(x)} = f∗(y − ε), (5.76)

so that arg minx fε(x) = ∂f∗(−ε). Noting that x0 ∈ ∂f∗(0) and that subgradients are

increasing by Lemma 5.5.2, we have that

arg min
x

fε(x) = ∂f∗(−ε) ≤ ∂f∗(0) = arg min
x

f(x). (5.77)

That is, we have sup{xε ∈ arg minx fε(x)} ≤ inf{x0 ∈ arg minx f(x)} and

ωf (ε) ≥ inf {|sε − s0| : sε ∈ ∂f∗(−ε), s0 ∈ ∂f∗(0)} . (5.78)

An identical argument with f−ε gives the lower bound.

For the upper bound on the modulus of continuity, we note that if g is a convex function

with κ(f, g) ≤ ε, and xg ∈ arg minx g(x), then there must be some s ∈ ∂f(xg) with ε ≥ s ≥

−ε, because 0 ∈ ∂g(xg), where we have used the definition of the Hausdorff distance. Now,

for this particular s, by Lemma 5.5.2 we have that

xg ∈ ∂f∗(s). (5.79)

Again using the increasing behavior of subgradients, we obtain that

inf ∂f∗(−ε) ≤ xg ≤ sup ∂f∗(ε), (5.80)
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which gives the claimed upper bound in the lemma once we recognize that x0 ∈ ∂f∗(0),

and the definition of distance for ωf is d(f, g) = inf{|x0 − x?g| : x0 ∈ arg minx f(x), x?g ∈

arg minx g(x)}.

The final result, with the uniqueness, is an immediate consequence of the differentiability

properties in Lemma 5.5.2.

Now we calculate bounds for a few example moduli of contiuity using Lemma 5.5.3.

Roughly, we focus on non-pathological convex functions to allow us to give explicit calcula-

tions. Let f : R → R be a convex function satisfying ∂f∗(0) = arg minx f(x) = [xl, xr]. In

addition, assume that for δ > 0, we have for some powers kl, kr ≥ 1 and constants λl > 0

and λr > 0 that

f(xl − δ) = f(xl) + λlδ
kl + o(δkl) and f(xr + δ) = f(xr) + λrδ

kr + o(δkr). (5.81)

That is, in a neighborhood of the optimal region, the function f grows like a polynomial.

The condition (5.81) is not too restrictive, but does rule out functions such as f(x) = e
− 1
x2 .

Lemma 5.5.4. Let f satisfy the condition (5.81). For any c > 1, there exists some ε0 > 0

such that for ε ∈ (0, ε0)

xr +

Ç
ε

Cλrkr

å 1
kr−1 ≤ inf ∂f∗(ε) ≤ sup ∂f∗(ε) ≤ xr +

Ç
Cε

λr

å 1
kr−1

(5.82a)

and

xl −
Ç

ε

Cλlkl

å 1
kl−1 ≥ sup ∂f∗(−ε) ≥ inf ∂f∗(−ε) ≥ xl −

Ç
Cε

λl

å 1
kl−1

. (5.82b)
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Moreover, setting k = max{kr, kl} and letting

λ =



λl if kl > kr,

λr if kr > kl,

max{λr, λl} otherwise,

(5.83)

we have for all ε ∈ (0, ε0) thatÅ ε

Cλk

ã 1
k−1 ≤ ωf (ε) ≤

Ç
Cε

λ

å 1
k−1

. (5.84)

Proof. We focus on the right side bound (5.82a), as the proof of the left bound (5.82b) is

similar. We also let the constant be c = 2 for simplicity.

For notational simplicity, let λ = λr and k = kr. By the fact that subgradients are

increasing, we have for any δ > 0 that

inf ∂f(xr + δ) ≥ f(xr + δ)− f(xr)

δ
=
λδk + o(δk)

δ
= λ(1− oδ(1))δk−1 (5.85)

as δ ↓ 0. Similarly, δ > 0 we have

sup ∂f(xr + δ) ≤ f(xr + 2δ)− f(xr + δ)

δ
=
λ(2δ)k − λδk + o(δk)

δ

=
λkδk−1δ + o(δk)

δ
= (1 + oδ(1))λkδk−1. (5.86)

Combining inequalities (5.85) and (5.86), we thus see that there exists some δ0 > 0 such

that for δ ∈ (0, δ0) we have

λ

2
δk−1 ≤ inf ∂f(xr + δ) ≤ sup ∂f(xr + δ) ≤ 2λkδk−1. (5.87)

Noting that xr + δ ∈ ∂f∗(ε) if and only if ε ∈ ∂f(xr + δ) by standard subgradient calculus
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(recall Lemma 5.5.2), we solve for ε = λ
2 δ
k−1 and ε = 2λkδk−1 to attain inequality (5.82a).

The bound (5.82b) is similar.

Lemma 5.5.4 shows that, as ε → 0, we have ωf (ε) � ε
1

k−1 , where k = max{kr, kl}.

Finally, we show a type of continuity property with the modulus of continuity.

Lemma 5.5.5. Assume that f has expansion (5.81), and that either (i) kr > kl or (ii)

kr ≥ kl and λr ≥ λl. Define g(x) = f(x)− εx. Then for any constants c < 1 < C, we have

ωg(cε) ≤ (2C)
1

kr−1

Ç
ε

λr

å 1
kr−1 ≤ (2C2)

1
kr−1 e ωf (ε) (5.88)

for all ε suitably close to 0.

Proof. We know by the increasing properties of the subgradient set and Lemma 5.5.3 that

for any c < 1

ωg (cε) ≤ max{dist(∂g∗(ε), ∂g∗(0)), dist(∂g∗(−ε), ∂g∗(0))} (5.89)

= max{dist(∂f∗(2ε), ∂f∗(ε)), dist(∂f∗(0), ∂f∗(ε))}, (5.90)

where we have used that g∗(y) = supx{(y+ ε)x−f(x)} = f∗(y+ ε). For small enough ε > 0,

we have by Lemma 5.5.4 that

sup ∂f∗(2ε) ≤
Ç

2Cε

λr

å 1
kr−1

, (5.91)

which gives the first inequality.

For the second inequality, we use that ωf (ε) ≥ (ε/(Cλrkr))
1

kr−1 to obtainÇ
2Cε

λr

å 1
kr−1

= k
1

kr−1
r (2C2)

1
kr−1

Ç
ε

Cλrkr

å 1
kr−1 ≤ k

1
kr−1
r (2C2)

1
kr−1ωf (ε) ≤ e(2C2)

1
kr−1ωf (ε)

(5.92)

as desired.
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Superefficiency

For distributions P0 and P1 define the χ-divergence by

Dχ (P1||P0) :=
∫ Ç

dP1

dP0
− 1

å
dP1 =

∫ Ç
dP1

dP0

å
dP1 − 1. (5.93)

The following lemma, which is a stronger version of a result due to Brown and Low (1996b),

gives a result on superefficiency.

Lemma 5.5.6. Let x̂ be any function of a sample ξ, and let X0 and X1 be compact con-

vex sets (associated with distributions P0 and P1). Let dist(x,X) = infy∈X |y − x| and

dist(X0, X1) = infx0∈X0
dist(x0, X1). Then

EP1 [dist(x̂, X1)] ≥
ï
dist(X0, X1)−

√
EP0 [dist(x̂, X0)2](Dχ (P1||P0) + 1)

ò
+

(5.94)

≥ dist(X0, X1)

1−
»
EP0 [dist(x̂, X0)2](Dχ (P1||P0) + 1)

dist(X0, X1)


+

. (5.95)

Proof. We have

EP1 [dist(x̂, X1)]
(i)
≥ dist(X0, X1)− EP1 [dist(x̂, X0)]

(ii)
≥ dist(X0, X1)−

√
EP0 [dist(x̂, X0)2] ·

∫ Ç
dP1

dP0

å
dP1

= dist(X0, X1)−
√
EP0 [dist(x̂, X0)2](Dχ (P1||P0) + 1)

where inequality (i) uses the triangle inequality and inequality (ii) uses Cauchy-Schwarz.

We now present two lemmas on χ-divergence that will be useful. The first is a standard

algebraic calculation.

Lemma 5.5.7. Let P0 and P1 be normal distributions with means µ0 and µ1, respectively,
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and variances σ2. Then

Dχ (P0||P1) = Dχ (P1||P0) = exp

(
(µ0 − µ1)2

σ2

)
− 1. (5.96)

For the second lemma, we assume that x̂ is constructed based on noisy subgradient informa-

tion from a subgradient oracle, which upon being queried at a point x, returns

f ′(x) + ε, where ε
iid∼ N (0, σ2) and f ′(x) = arg min

s∈∂f(x)
{|s|}. (5.97)

The latter condition simply specifies the subgradient the oracle chooses; any specified choice

of subgradient is sufficient. Because ∂f(x) is a closed convex set for any x, we see that if f and

g are convex functions with κ(f, g) ≤ ε, then |f ′(x)− g′(x)| ≤ ε with the construction (5.97)

of subgradient oracle.

Lemma 5.5.8. Let the subgradient oracle be given by (5.97), and let PTf and PTg be the

distributions (respectively) of the observed stochastic sub-gradients

si = f ′(xi) + εi or si = g′(xi) + εi, (5.98)

where xi is a measurable function of an independent noise variable ξ0 and the preceding

sequence of stochastic gradients {s1, . . . , si−1}. Let κ(f, g) ≤ ε. Then

Dχ
(
PTf ||P

T
g

)
≤ exp

(
Tε2

σ2

)
− 1. (5.99)

Proof. Let si be the ith observed stochastic subgradient in the sequence, and let the σ-field
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of the observed sequence through time i be Fi = σ(ξ0, s1, . . . , si). Then we have

Dχ
(
PTf ||P

T
g

)
+ 1 =

∫ dPTf (s1:n)

dPTg (s1:n)
dPTf (s1:n) (5.100)

=
∫ T∏
i=1

[
dPf (si | s1:i−1)

dPg(si | s1:i−1)
dPf (si | s1:i−1)

]
(5.101)

= E

 T∏
i=1

EPf

[
dPf (Si | Fi−1)

dPg(Si | Fi−1)
| Fi−1

] . (5.102)

By the measurability assumption on xi, that is, xi ∈ Fi−1, the inner expectation is simply

one plus the χ2 distance between two distributions N (f ′(xi), σ2) and N (g′(xi), σ2), which

we know satisfies

EPf

[
dPf (Si | Fi−1)

dPg(Si | Fi−1)
| Fi−1

]
= exp

(
(f ′(xi)− g′(xi))2

σ2

)
≤ exp

(
ε2

σ2

)
. (5.103)

Taking the product over all T terms yields the lemma.

Lemma 5.5.9. Let f be a closed convex function. Define the function

H(ε) := inf {|x− x0| : x ∈ ∂f∗(ε), x0 ∈ ∂f∗(0)} ∨ inf {|x− x0| : x ∈ ∂f∗(−ε), x0 ∈ ∂f∗(0)}

= dist(∂f∗(ε), ∂f∗(0)) ∨ dist(∂f∗(−ε), ∂f∗(0)).

(5.104)

For any 0 ≤ cl < 1 and 1 < cu <∞,

ωf (cuε) ≥ H(ε) ≥ ωf (clε). (5.105)

Proposition 5.5.10. Define H to be the function (5.104) and assume additionally that

δ <
√

1
8e . If x̂ is any estimator such that 

EPTf

[
dist(x̂,X ∗f )2

]
≤ δωf (σ/

√
T ), (5.106)
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then taking f1(x) = f(x) +

 
σ2 log 1

8δ2

T x and f−1(x) = f(x)−
 
σ2 log 1

8δ2

T x, we have

max
g∈{f1,f−1}

EPTg
î
dist(x̂,X ∗g )

ó
≥ sup

0<c<log 1
8δ2

ωf

Ñ√
cσ2

T

éÑ
1−

ωf (σ/
√
T )

2
√

2ωf (
»
cσ2/T )

é
(5.107)

≥ 4−
√

2

4
H

ÖÃ
σ2 log 1

8δ2

T

è
. (5.108)

Proof. Without loss of generality, we assume that 0 ∈ arg minx f(x) = ∂f∗(0), and set

x0 = 0 for simplicity in the derivation. For any ε ∈ R, we may construct the function fε(x) =

f(x) + εx. Lemma 5.5.6 and Lemma 5.5.8 thus yield that that for Xε = arg minx fε(x), we

have

EPTfε
[dist(x̂,Xε)] ≥ dist(∂f∗(−ε), ∂f∗(0))

1−
ωf (σ/

√
T )

…
δ exp(Tε

2

σ2
)

dist(∂f∗(−ε), ∂f∗(0))


+

(5.109)

and

EPTf−ε
[dist(x̂,X−ε)] ≥ dist(∂f∗(ε), ∂f∗(0))

1−
ωf (σ/

√
T )

…
δ exp(Tε

2

σ2
)

dist(∂f∗(ε), ∂f∗(0))


+

. (5.110)

In particular, with H(ε) = dist(∂f∗(ε), ∂f∗(0)) ∨ dist(∂f∗(ε), ∂f∗(0)), we have

max
g∈fε,f−ε

EPTg
î
dist(x̂,X ∗g )

ó
≥ H(ε)

1−
ωf (σ/

√
T )

…
δ exp(nε

2

σ2
)

H(ε)


+

. (5.111)

Take ε2 = σ2

T log 1
8δ2

to obtain

max
g∈fε,f−ε

EPTg
î
dist(x̂,X ∗g )

ó
≥ H

ÖÃ
σ2 log 1

8δ2

T

è 1−
ωf (σ/

√
T )

2
√

2H(σ log
1
2 1

8δ2
/
√
T )


+

. (5.112)

Notably, by Lemma 5.5.3, our w.l.o.g. assumption and the fact that subgradients are increas-
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ing, we have that for any constant (log 1
8δ2

)−
1
2 ≤ c < 1 that

ωf

Ç
σ√
T

å
≤ ωf

Ö
c

Ã
σ2 log 1

8δ2

T

è
(5.113)

≤ sup

dist(x,X0) : x ∈ ∂f∗
Ö
c
σ log

1
2 1

8δ2√
T

è ∨ sup

dist(x,X0) : x ∈ ∂f∗
Ö
−c

σ log
1
2 1

8δ2√
T

è
(5.114)

≤ sup

dist(x,X0) : x ∈ ∂f∗
Ö
σ log

1
2 1

8δ2√
T

è ∨ sup

dist(x,X0) : x ∈ ∂f∗
Ö
−
σ log

1
2 1

8δ2√
T

è
(5.115)

= H

Ö
σ log

1
2 1

8δ2√
T

è
. (5.116)

In particular, we have the lower bound

max
g∈fε,f−ε

EPTg
î
dist(x̂,X ∗g )

ó
≥ H

ÖÃ
σ2 log 1

8δ2

T

è
4−
√

2

4
. (5.117)

This is the desired result.

Proposition 5.5.10 is a basic result on superefficiency that we may specialize to obtain

more concrete results. We would like give a result that holds when f∗ is differentiable in

a neighborhood of 0, which is equivalent to f being strictly convex in a neighborhood of

x0 = arg minx f(x), by Lemma 5.5.2. This would mean that the function H defined in

Proposition 5.5.10 satisfies

H(ε) = max{|f∗′(ε)− x0|, |f∗′(−ε)− x0|} = ωf (ε) (5.118)

for all small enough ε > 0. In this setting, we obtain

Corollary 5.5.11. Let the conditions of Proposition 5.5.10 hold, and let f be strictly convex
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in a neighborhood of x0 = arg minx f(x). Assume that x̂ is any estimator satisfying…
EPTf

î
(x̂− x0)2

ó
≤ δωf (σ/

√
T ), (5.119)

where δ <
√

1
8e . Define f±1(x) = f(x)±

 
σ2 log 1

8δ2

T x. Then for large enough T ,

max
g∈{f1,f−1}

EPTg |x̂− x
?
g| ≥

4−
√

2

4
ωf

ÖÃ
σ2 log 1

8δ2

T

è
. (5.120)

This corollary has a striking weakness, however—the right hand side depends on ωf ,

rather than ωg, which is what we would prefer. We can, however, state a simpler result that

is achievable.

Corollary 5.5.12. Let f be any convex function satisfying the asymptotic expansion (5.81)

around its optimum. Suppose that x̂ is any estimator such that…
EPTf

[dist(x̂,X ∗f )2] ≤ δωf

Ç
σ√
T

å
, (5.121)

where δ <
√

1
8e . Define g−1(x) = f(x)−εTx and g1(x) = f(x)+εTx, where εT =

 
σ2 log 1

8δ2

T ,

and let k = kr ∨ kl. Let C > 1 and 0 < c < 1 be otherwise arbitrary numerical constants.

Then for one of g ∈ {g−1, g1}, there exists T0 such that T ≥ T0 implies

EPg
î
dist(x̂,X ∗g )

ó
≥ 4−

√
2

4(2C2)
1

k−1 e
ωg

Ö
c

Ã
σ2 log 1

8δ2

T

è
. (5.122)

Proof. Without loss of generality, we assume that kr ≥ kl, and if kl = kr then λr ≥ λl. By

inspection of the proof of Proposition 5.5.10, we have that

EPTg−1
[dist(x̂, ∂g∗−1(0))] ≥ 1

2
dist(∂f∗(εT ), ∂f∗(0)). (5.123)
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Moreover, we know that for suitably large n, we have by Lemma 5.5.4

dist(∂f∗(εT ), ∂f∗(0)) = dist(∂f∗(εT ), ∂f∗(0)) ∨ dist(∂f∗(−εT ), ∂f∗(0)) (5.124)

≥ ωf (cεT ) (5.125)

for any c < 1. Then Lemma 5.5.5 implies that for any C > 1, there exists T0 such that

T ≥ T0 implies

ωf (cεT ) ≥ 1

(2C2)
1

k−1 e
ωg−1(c2εT ). (5.126)

This gives the desired result.

As an immediate consequence of Corollary 5.5.12, we see that if there exists any sequence

δT → 0 with lim infT e
T δT =∞ such that…

EPf
[
dist(x̂,X ∗f )2

]
≤ δTωf

Ç
σ√
T

å
, (5.127)

then there exists a sequence of convex functions gT , with κ(f, gT )→ 0, such that

lim inf
T

EPgT
î
dist(x̂,XgT )

ó
ωgT

Ç…
σ2 log δT

−1

T

å > 0. (5.128)

5.5.3 Algorithm

Proof of Proposition 5.3.1

First, by the monotonicity of the derivative f ′, note that the interval Iδ is such that x ∈ Iδ

holds if and only if |f ′(x)| < Cδ/
√
T0. Now suppose that at round e, (ae, be) ∩ Iδ 6= ∅.

For the next round, if xe = (ae + be)/2 ∈ Iδ, then (ae+1, be+1) ∩ Iδ 6= ∅. Otherwise, if

xe /∈ Iδ, we know that |f ′(xe)| ≥ Cδ/
√
T0, and without loss of generality, we assume that it
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is positive. Then, we have

P ((ae+1, be+1) ∩ Iδ 6= ∅) = P
(
N
(
f ′(xe),

σ2

T0

)
< 0

)
= P

(
N (0, 1) >

√
T0f
′(xe)
σ

)
(5.129)

≤ P
Ç
N (0, 1) >

Cδ
σ

å
≤ σ

Cδ
√

2π
exp

(
−
C2
δ

2σ2

)
(5.130)

Therefore,

P
(
(ae+1, be+1) ∩ Iδ 6= ∅

∣∣∣(ae, be) ∩ Iδ 6= ∅) ≥ 1− σ

Cδ
√

2π
exp

(
−
C2
δ

2σ2

)
(5.131)

It then follows that

P ((aE , bE) ∩ Iδ 6= ∅) = P ((ae, be) ∩ Iδ 6= ∅ for e = 1, . . . , E) (5.132)

=
E−1∏
e=0

P
(
(ae+1, be+1) ∩ Iδ 6= ∅

∣∣∣(ae, be) ∩ Iδ 6= ∅) (5.133)

≥
(

1− σ

Cδ
√

2π
exp

(
−
C2
δ

2σ2

))E
(5.134)

≥ 1− Eσ

Cδ
√

2π
exp

(
−
C2
δ

2σ2

)
(5.135)

≥ 1− δ (5.136)

by the choice of Cδ.

Proof of Corollary 5.3.2

By the polynomial growth condition, we have for T > σ2/ε0,

ωf (ε0) ≤
(
ε0
√
T

σ

)α
ωf

Ç
σ√
T

å
. (5.137)
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Since r = 1
2α0 ≥ 1

2α and E = br log T c,

2−E(b0 − a0) ≤ 2(b0 − a0)T−r ≤ 2(b0 − a0)T−
1
2α ≤ 2(b0 − a0)εα0

ωf (ε0)σα
ωf

Ç
σ√
T

å
(5.138)

By the expression we obtained in Example 5.2.1,

sup{ inf
x∈X ∗f

|x− y| : y ∈ Iδ} (5.139)

= ωf

Ç
Cδ√
T0

å
≤
(√

2r

Ç
log(r log T ) + log

1

δ

å
log T

)α
ωf

Ç
σ√
T

å
(5.140)

for T large enough. Therefore, we obtain that there exist T ′ > 0 such that for T > T ′,

inf
x∈X ∗f

|xE − x| ≤ C̃ωf

Ç
1√
T

å
(5.141)

where

C̃ =
2(b0 − a0)εα0
ωf (ε0)σα

+

(√
2r

Ç
log(r log T ) + log

1

δ

å
log T

)α
. (5.142)
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

We have considered two variants of traditional minimax theory to accommodate modern

settings of data analysis tasks, and to provide more realistic and more customized evaluations

of the hardness of the statistical tasks.

The first variant we considered is a set of computationally constrained minimax risks,

in order to address the computational issue present in statistical estimation problems. Such

constrained forms of statistical minimax risks, when possible to be calculated, quantify the

tradeoff between statistical accuracy and computational efficiency, and set up guidelines for

designing statistical procedures under certain computational budgets. As an illustrating

example for such constrained forms of statistical minimax risk, we studied the problem of

nonparametric estimation with storage constraints. We showed that the convergence rate and

leading constant can be sharply characterized for the case of Sobolev spaces, and identifies

three regimes where statistical error is primarily due to estimation or quantization, or both

of them.

In addition to what has already been mentioned in Chapter 3, there are plenty of other

problems which remain to be solved and understood in this area. For example, it is of interest

and importance to understand what roles storage plays for machine learning procedures

with a large amount of parameters, such as tree-based models, ensembles, and deep neural

network. How much does performance degrade, if at all, when the fitted model has to be

compressed?

The examples described above are concerned with space constraints. Can we say anything

meaningful about time constraints? A lower bound on the running time of an algorithm is

the time required to read the data, or the number of “queries” of the data values. Suppose

an algorithm is judicious in how it selects which data values to read. What is the minimax

optimal number of values required to achieve a given level or risk? One future direction is

to study minimax risks with such computational time constraints measured by the number
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of queries allowed.

The second variant of minimax theory we considered is a localized form formulated by ex-

amining the hardest two-point problem. We showed that this formulation gives a meaningful

benchmark in the setting of convex optimization. The benchmark quantifies the hardness

of optimizing a particular function, without putting it into a rich class of functions. It

essentially ties the hardness to a geometric quantity of each particular function, a computa-

tional analogue of modulus of continuity. Two properties, in particular, make the benchmark

interesting–the superefficiency and the achievability.

There are some interesting questions left unsolved for the case of convex optimization,

as mentioned in Chapter 5. In addition to those, it would be interesting to consider such

formulation applied on other problems where the hardness of each instance is known to be

different. Moreover, formulations of the minimax risks other than the hardest two-point

is also worth consideration. For example, one could consider a local ball surrounding the

target function, instead of a whole general parameter space; the choices of the metric and

the radius are then crucial in order for the formulation to be interesting and meaningful.

To sum up, we view the study of the variants of minimax theory as theoretic problems

of fundamental interest, helping researchers and practitioners understand basic limits of

statistical tasks, and providing useful guidelines in designing efficient and adaptive algorithms

and methods.
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