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ABSTRACT

In this thesis we discuss extremes of log-correlated Gaussian processes on integer lattices.

The first four chapters show that the centered maximum of a sequence of log-correlated

Gaussian fields, with mild assumptions in any fixed dimension, converges in distribution.

The final chapter is on the behavior of a typical vertex of a branching random walk(BRW)

when placed against a hard wall.

Chapter 1 introduces log-correlated Gaussian processes on the integer lattice and talks

about previous related works. We make a few assumptions about the correlation structure,

firstly about the form which is sufficient to prove tightness. Next we make further assump-

tions about convergence of covariances in a suitable sense, for convergence in distribution

and discuss examples which show that for logarithmically correlated fields these additional

structural assumptions, of the type we make, are needed for convergence of the centered

maximum.

The second chapter deals with expectation of the maxima and its tightness after recen-

tering. This is achieved by approximating the process in the sense of covariance comparison

by other known Gaussian processes whose similar properties have been proved previously.

We also provide an upper bound on the left tail as a complimentary result.

Chapter 3 covers the topic of robustness of log-correlated Gaussian fields. We observe

no change in distribution of the maxima, except for shifting of mean, on perturbation at

microscopic and macroscopic levels by Gaussian variables. We also study the locations of

near-peaks of the field.

Chapter 4 is mainly based on the proof the convergence in distribution of the recentered

maxima of the log-correlated Gaussian field. We identify the limit as a randomly shifted

Gumbel distribution, and characterize the random shift as the limit in distribution of a

sequence of random variables, reminiscent of the derivative martingale in the theory of BRW

and Gaussian chaos. We also discuss applications of the main convergence theorem.

Chapter 5 talks about the behavior of the BRW on a d-ary tree when pressed against

vii



a hard wall. To this end, the field is approximated by a new Gaussian field switching sign

BRW, and left tail estimates on this field gives our desired result.

viii



CHAPTER 1

INTRODUCTION

1.1 Motivation

The extremes of various log-correlated Gaussian fields (including branching Brownian mo-

tion, branching random walk, two-dimensional discrete Gaussian free field, etc.) have been

topics of intensive research(see [11], [26], [16], [2], [4], [13], [5], [6]). The Gaussian free field

is an analog of Brownian motion. Many constructions in quantum field theory are based

on the Gaussian free field. Particularly, the 2D GFF is important in the theory of random

surfaces. The extreme values of this process are by themselves important statistics.

The question of extremes of 2D GFF also arises while dealing with the entropic repulsion

of the discrete Gaussian free field as is talked about in [9], which deals with the behavior of

the field when pressed against a hard wall. The discrete Gaussian free field in two dimension

with zero boundary condition on VN , a 2-dimensional box of side length N with leftmost

corner at the origin, is a mean zero Gaussian field with covariance structure given by the

random walk Green function which is killed on hitting the boundary of VN . Estimates from

random walks illustrate the logarithmic structure of its covariance, in the interior of the box.

The lattice, on being divided into four sub-blocks, motivates a tree structure(see Figure 1.1)

coming from self-similarity. This establishes a connection between the Gaussian free field

and branching random walk. This fact has been utilized in the analysis of the extremes of

the Gaussian free field in [14], [19], [10] and [12].

The Gaussian membrane model in dimension 4 is another object of wide importance

in statistical mechanics. This Gaussian process also admits a covariance structure in the

logarithmic form. Log-correlated Gaussian fields have been used in [24] to mathematically

model Gaussian multiplicative chaos(see further [20], [21]). Maxima of log-correlated Gaus-

sian fields, whose covariance admits a kernel representation, has been worked upon in [30].

In the continuous setup the tightness of the recentered maxima for log-correlated Gaussian

1
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Figure 1.1: Tree structure for the lattice

fields has been shown in [1]. Similar and further questions for generalized log-correlated

Gaussian fields in the discrete setup is therefore of great importance. Major focus of my

research during my graduate studies has been on the question of convergence in distribution

of recentered maxima of general log-correlated Gaussian fields, with minimal assumptions

on the correlation structure. With this we start with the definition of the log-correlated

Gaussian field and the minimal assumptions we make for proving different properties of the

field.

1.2 Definition

Fix d ∈ N and let VN = ZdN be the d-dimensional box of side length N with the left bottom

corner located at the origin. Let us also define V 0
N = ((0, N − 1) ∩ Z)d. We call the outer

boundary to be ∂VN = {y ∈ VN : y /∈ V 0
N and ∃z ∈ V 0

N with |y − z| = 1}. For convenience,

we consider a suitably normalized version of Gaussian fields {ϕN,v : v ∈ VN}, of mean zero,

satisfying the following.

(A.0) (Logarithmically bounded fields) There exists a constant α0 > 0 such that for all

u, v ∈ VN ,

VarϕN,v ≤ logN + α0

2



and

E(ϕN,v − ϕN,u)2 ≤ 2 log+ |u− v| − |VarϕN,v − VarϕN,u|+ 4α0,

where | · | denotes the Euclidean norm and log+ x = log x ∨ 0.

We introduce the sets V δN = {z ∈ VN : d(z, ∂VN ) ≥ δN} and V δ = [δ, 1 − δ]d, where

d(z, ∂VN ) = min{‖z − y‖∞ : y 6∈ VN}. Then, introduce the following assumption.

(A.1) (Logarithmically correlated fields) For any δ > 0 there exists a constant α(δ) > 0

such that for all u, v ∈ V δN , |Cov(ϕN,v, ϕN,u)− (logN − log+ |u− v|)| ≤ α(δ).

First, we assume convergence of the covariance in finite scale around the diagonal.

(A.2) (Near diagonal behavior) There exist a continuous function f : (0, 1)d 7→ R and a

function g : Zd×Zd 7→ R such that the following holds. For all L, ε, δ > 0, there exists

N0 = N0(ε, δ, L) such that for all x ∈ V δ, u, v ∈ [0, L]d and N ≥ N0 we have

|Cov(ϕN,xN+v, ϕN,xN+u)− logN − f(x)− g(u, v)| < ε .

Next, we introduce an assumption concerning convergence of the covariance in case of the

off-diagonal terms (in a macroscopic scale). Let Dd = {(x, y) : x, y ∈ (0, 1)d, x 6= y}.

(A.3) (Off diagonal behavior) There exists a continuous function h : Dd 7→ R such that

the following holds. For all L, ε, δ > 0, there exists N1 = N1(ε, δ, L) > 0 such that for

all x, y ∈ V δ with |x− y| ≥ 1
L and N ≥ N1 we have

|Cov(ϕN,xN , ϕN,yN )− h(x, y)| < ε .

As we move to the Chapter 2, Chapter 3 and Chapter 4, we go deeper into the relevance

of the assumptions about the covariance structure of the Gaussian field, but for some basic

ideas we discuss two examples in Section 1.4.

3



1.3 Previous Results

The study of log-correlated Gaussian fields is motivated by the study of discrete Gaussian

free free field in two dimensions, which is one of the most popular examples of log-correlated

fields in the recent times. The analysis is also deeply connected to the analysis of 2D GFF,

which we give a brief account of.

As discussed in the Section 1.1, the study of Gaussian free field starts with the work of

[9], which proves a law of large number result for the maxima of GFF. This makes use of the

tree structure in proving so. The next important work along the direction of convergence

of recentered maxima of GFF is that of [10], which proves the tightness of the GFF along

a deterministic subsequence. It also showed that tightness for the recentered maxima itself

can be proved by computing the expected the maxima up to the order of a constant. This

was achieved in [15]. This work involved the introduction of modified branching random

walk and comparison of it with the GFF.

Few other works which were useful in proving the convergence in distribution of the re-

centered maxima were on the geometry of set of large values which are within a multiplicative

constant from the maxima([16]), and the work in [19] which studied the relative distances

between peaks and gave an estimate on the order of the right tail of the maxima of the GFF.

The convergence in distribution of the recentered maxima of the GFF was proved in [12]

by splitting the field into two independent fields, the course field and the fine field. Then a

modified second moment method was used to obtain a refined estimate on the right tail of

the fine field. This, along with the behavior of the course field showed the convergence in

distribution.

These results appear as a build up to our problem and the methods we use in our

computations.

4



1.4 On the assumptions

The basis of Assumption (A.1).

Set MN = maxv∈VN ϕN,v and

mN =
√

2d logN − 3
2
√

2d
log logN . (1.1)

Proposition 1.4.1. Under Assumption (A.0), there exists a constant C = C(α0) > 0 such

that for all N ∈ N and z ≥ 1,

P(MN ≥ mN + z) ≤ Cze−
√

2dze−C
−1z2/n . (1.2)

Furthermore, for all z ≥ 1, y ≥ 0 and A ⊆ VN we have

P(max
v∈A

ϕN,v ≥ mN + z − y) ≤ C
(
|A|
|VN |

)1/2
ze−
√

2d(z−y) . (1.3)

Here we denote by |A| the cardinality of the set A.

The proof of Proposition 1.4.1 is provided in Section 2.2.

By Proposition 1.4.1, if one has a complementary lower bound showing that for a large

enough constant C, maxv∈VN ϕN,v > mN − C with high probability, it follows that the

maximizer of the Gaussian field is away from the boundary with high probability. Therefore,

in the study of convergence of the centered maximum, it suffices to consider the Gaussian

field away from the boundary (more precisely, with distance δN away from the boundary

where δ → 0 after N →∞).

The basis of Assumptions (A.2) and (A.3). We next construct two examples that

demonstrate that one cannot totally dispense of Assumptions (A.2) and (A.3). Since the

examples are only ancillary to our main result, we will only give a brief sketch for the

verification of the claims made concerning these examples.
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Example 1.4.2. Fix d = 2 and let {ϕN,v : v ∈ VN} be the DGFF on VN (normalized so

that it satisfies Assumptions (A.0), (A.1), (A.2) and (A.3)), with ZN = maxv∈VN ϕN,v. Let

VN,1 and VN,2 be the left and right halves of the box VN . Let {εN,v : v ∈ VN} and X be

i.i.d. standard Gaussian variables. Let σ′N > 0 be selected later. Define

ϕ̃N,v =

 ϕN,v + σX + εN,v, v ∈ VN,1

ϕN,v, v ∈ VN,2
, ϕ̂N,v =

 ϕN,v + σX, v ∈ VN,1

ϕN,v + σ′N εN,v, v ∈ VN,2
.

Set M̃N = maxv∈VN ϕ̃N,v and M̂N = maxv∈VN ϕ̂N,v. We first claim that there exist σ′N

depending on (N, σ) but bounded from above by an absolute constant such that EM̃N = EM̂N .

In order to see that, note that, by Theorem 2.0.4,

EM̃N ≤ E max
v∈VN/2

ϕN,v + σEmax(0, X) +O(1) ,

where O(1) is an error term independent of all parameters, while

EM̃N ≥ E max
v∈VN/2

ϕN,v + σEmax(0, X) .

In addition, by considering a N/2-box in the left side and dividing the right half box into two

copies of N/2-boxes, one gets that

EM̂N ≥ Emax(ZN/2 + σX,Z ′N/2 + σ′N ε
′, Z ′′N/2 + σ′N ε

′′)

≥ EZN/2 +
1

2
σ′NEmax(ε′, ε′′) + σEX1X≥0.

where ZN/2, Z
′
N/2

, Z ′′
N/2

are three independent copies with law maxv∈VN/2 ϕN,v and ε′ =

εN,v1∗
, ε′′ = ε′′N,v∗2

(here v∗1 and v∗2 are the maximizers of the DGFF in the two N/2-boxes on

the right half of VN , respectively). The claim follows from combining the last two displays.

6



Now, choose σ to be a large fixed constant so that for 0 < λ < log logN ,

P(M̃N ≥ EZN + λ) ≥ P( max
v∈VN,1

{ϕN,v + σX + εN,v} ≥ EZN + λ)

≥ P((1 + 1/4 logN) max
v∈VN,1

{ϕN,v + σX} ≥ EZN + λ)

≥ P( max
v∈VN,1

ϕN,v + σX ≥ EZN + λ− 1/10) . (1.4)

(Here, the second inequality is due to Slepian’s comparison lemma (Lemma 2.2.1) and the

fact that σ is large, while the last inequality uses that 2/(1 + 1/(4 logN)) ≤ 2 − (logN)/10

for N large.) Further,

P(M̂N ≥ EZN + λ) ≤ P( max
v∈VN,1

ϕN,v + σX ≥ EZN + λ)

+ P( max
v∈VN,2

ϕN,v + ε′N,v ≥ EZN + λ)

≤ P( max
v∈VN,1

ϕN,v + σX ≥ EZN + λ) +O(1)λe−2λ , (1.5)

where the last inequality follows from Proposition 1.4.1. Combining (1.4) and (1.5) and

using the form of the limiting right tail of the two-dimensional DGFF as in [12, Proposition

4.1], one obtains that for λ, σ sufficiently large but independent of N ,

lim sup
N→∞

P(M̃N ≥ EZN + λ) ≥ (1 + c) lim sup
N→∞

P(M̂N ≥ EZN + λ) ≥ c(σ)λe−2λ ,

where c > 0 is an absolute constant and c(σ) satisfies c(σ)→σ→∞ ∞. This implies that the

laws of M̃N − EMN and M̂N − EM̂N do not coincide in the limit N →∞.

Finally, set ϕ̄N,v = ϕ̃N,v for all v ∈ VN and odd N , and ϕ̄N,v = ϕ̂N,v for all v ∈ VN

and even N . One then sees that the sequence of Gaussian fields {ϕ̄N,v : v ∈ VN} satisfies

Assumptions (A.0), (A.1) and (A.3) (while not satisfying (A.2)), but the law of the centered

maximum does not converge.

Example 1.4.3. Let {ϕN,v : v ∈ VN} be a sequence of Gaussian fields satisfying (A.0),

7



(A.1) and (A.2), such that the law of the centered maximum converges. Consider the fields

{ϕ̃N,v : v ∈ VN} where ϕ̃N,v = ϕN,v + 1N is evenXN with XN a sequence of i.i.d. standard

Gaussian variables. Then, the field {ϕ̃N,v : v ∈ VN} satisfies (A.0), (A.1) and (A.2)

(possibly increasing the values of α(δ) by 1 for all 0 ≤ δ ≤ 1). However, the centered law of

the maximum of {ϕ̃N,v : v ∈ VN} cannot converge.

8



CHAPTER 2

EXPECTATION AND TIGHTNESS OF MAXIMUM

This chapter covers the expectation and tightness of the maximum of log-correlated Gaussian

field.

The main result of this chapter is showing the tightness of the sequence {MN −mN}N .

Assumptions (A.0) and (A.1) are enough to ensure the tightness of the sequence {MN −

mN}N .

Theorem 2.0.4. Under Assumptions (A.0) and (A.1), we have that EMN = mN + O(1)

where the O(1) term depends on α0 and α(1/10). In addition, the sequence MN − EMN is

tight.

(The constant 1/10 in Theorem 2.0.4 could be replaced by any positive number that is less

than 1/3.)

A similar result (in the slightly different setup of fields indexed by a continuous parameter)

appears in [1].

The rest is devoted to the proofs of Proposition 1.4.1 and Theorem 2.0.4, and to an

auxiliary lower bound on the right tail of the distribution of the maximum( see Lemma

2.0.6). The proof of the proposition is very similar to the proof in the case of the DGFF in

dimension two, using a comparison with an appropriate BRW; Essentially, the proposition

gives the correct right tail behavior of the distribution of the maximum. In contrast, given

the proposition, in order to prove Theorem 2.0.4, one needs an upper bound on the left tail

of that distribution. In the generality of this work, one cannot hope for a universal sharp

estimate on the left tail, as witnessed by the drastically different left tails exhibited in the

cases of the modified branching random walk and the two-dimensional DGFF, see [17]. We

will however provide the following universal upper bound for the decay of the left tail.

Lemma 2.0.5. Under Assumption (A.1) there exist constants C, c > 0 (depending only on

9



α1/10, d) so that for all n ∈ N and 0 6 λ 6 (log n)2/3,

P( max
v∈VN

ϕN,v 6 mN − λ) 6 Ce−cλ .

Theorem 2.0.4 follows at once from Proposition 1.4.1 and Lemma 2.0.5.

Later, we will need the following complimentary lower bound on the right tail.

Lemma 2.0.6. Under Assumption (A.1), there exists a constant C > 0 depending only on

(α0, α
(1/10), d) such that for all λ ∈ [1,

√
logN ],

P(MN > mN + λ) ≥ C−1λe−
√

2dλ .

2.1 Branching random walk and modified branching random

walk

The study of extrema for log-correlated Gaussian fields is possible because they exhibit an

approximate tree structure and can be efficiently compared with branching random walk and

the modified branching random walk introduced in [15]. In this subsection, we briefly review

the definitions of BRW and MBRW in Zd. We remark that the MBRW can be seen as

an discrete analogue of the ∗-scale invariant log-correlated fields studied in [30]; we further

remark that the natural continuous construction of MBRW is not exactly a ∗-scale invariant

field since the corresponding kernel function (in the language of [30]) is not continuous.

Suppose N = 2n for some n ∈ N. For j = 0, 1, . . . , n, define Bj to be the set of d-

dimensional cubes of side length 2j with corners in Zd. Define BDj to be those elements

of Bj which are of the form
(
[0, 2j − 1] ∩ Z

)d
+ (i12j , i22j , . . . , id2

j), where i1, i2, . . . , id are

integers. For x ∈ VN , define Bj(x) to be those elements of Bj which contains x. Define

BDj(x) similarly.

Let {aj,B}j≥0,B∈BDj be a family of i.i.d. Gaussian variables of variance log 2. Define the

10



branching random walk (BRW) {RN,z}z∈VN by

RN,z =
n∑
j=0

∑
B∈BDj(z)

aj,B , z ∈ VN .

Let BNj be the subset of Bj consisting of elements of the latter with lower left corner in

VN . Let {bj,B : j ≥ 0, B ∈ BNj } be a family of independent Gaussian variables such that

Var bj,B = log 2 · 2−dj for all B ∈ BNj . Write B ∼N B′ if B = B′ + (i1N, . . . , idN) for some

integers i1, . . . , id ∈ Z. Let

bNj,B =


bj,B B ∈ BNj ,

bj,B′ B ∼N B′ ∈ BNj .

Define the modified branching random walk (MBRW) {SN,z}z∈VN by

SN,z =
n∑
j=0

∑
B∈Bj(z)

bNj,B , z ∈ VN . (2.1)

The proof of the following lemma is an straightforward adaption of [15, Lemma 2.2] for

dimension d, which we omit.

Lemma 2.1.1. There exists a constant C depending only on d such that for N = 2n and

x, y ∈ VN

|Cov(SN,x,SN,y)− (logN − log(|x− y|N ∨ 1))| ≤ C ,

where |x− y|N = miny′∼Ny |x− y
′|.

In the rest of the calculations, we assume that the constants α0, α
(δ) in Assumptions

(A.0) and (A.1) are taken large enough so that the MBRW satisfies the assumptions.

11



2.2 Comparison of right tails

The following Slepian’s comparison lemma for Gaussian processes [32] will be useful.

Lemma 2.2.1. Let A be an arbitrary finite index set and let {Xa : a ∈ A} and {Ya : a ∈ A}

be two centered Gaussian processes such that: E(Xa −Xb)2 ≥ E(Ya − Yb)2, for all a, b ∈ A

and Var(Xa) = Var(Ya) for all a ∈ A. Then P(maxa∈AXa ≥ λ) ≥ P(maxa∈A Ya ≥ λ) for

all λ ∈ R.

The next lemma compares the right tail for the maximum of {ϕN,v : v ∈ VN} to that of

a BRW.

Lemma 2.2.2. Under Assumption (A.0), there exists an integer κ = κ(α0) > 0 such that

for all N and λ ∈ R and any subset A ⊆ VN

P(max
v∈A

ϕN,v ≥ λ) ≤ 2P( max
v∈2κA

R2κN,v ≥ λ) . (2.2)

Proof. For κ ∈ N, consider the map

ψN = ψ
(κ)
N : V 7→ 2κV such that ψN (v) = 2κv . (2.3)

By Assumption (A.0), we can choose a sufficiently large κ depending on α0 such that

Var(ϕN,v) ≤ Var(R2κN,ψN (v)) for all v ∈ VN . So, we can choose a collection of positive

numbers

a2
v = VarR2κN,ψN (v) − VarϕN,v ,

such that Var(ϕN,v + avX) = Var(R2κN,ψN (v)) for all v ∈ VN , where X is a standard

Gaussian random variable, independent of everything else. Since the BRW has constant

12



variance over all vertices, we get that

E(ϕN,u + auX − ϕN,v − avX)2 ≤ E(ϕN,u − ϕN,v)2 + (av − au)2

≤ E(ϕN,u − ϕN,v)2 + |VarϕN,v − VarϕN,u|.

Combined with Assumption (A.0), it yields that

E(ϕN,u + auX − ϕN,v − avX)2 ≤ 2 log+ |u− v|+ 4α0 .

Since E(R2κN,ψN (u)−R2κN,ψN (v))
2− 2 log+ |u− v| ≥ log 2κ−C0 (where C0 is an absolute

constant), we can choose sufficiently large κ depending only on α0 such that

E(ϕN,u + auX − ϕN,v − avX)2 ≤ E(R2κN,ψN (u) −R2κN,ψN (v))
2 , for all u, v ∈ VN .

Combined with Lemma 2.2.1, it gives that for all λ ∈ R and A ⊆ VN

P(max
v∈A

ϕN,v + avX ≥ λ) ≤ P(max
v∈A
R2κN,ψN (v) ≥ λ) .

In addition, by independence and symmetry of X we have

P(max
v∈A

ϕN,v + avX ≥ λ) ≥ P(max
v∈A

ϕN,v ≥ λ,X ≥ 0) = 1
2P(max

v∈A
ϕN,v ≥ λ) .

This completes the proof of the desired bound.

Proof of Proposition 1.4.1. An analogous statement was proved in [12, Lemma 3.8] for the

case of 2D DGFF. In the proof of [12, Lemma 3.8], the desired inequality was first proved for

BRW on the 2D lattice and then deduced for 2D DGFF applying [19, Lemma 2.6], which is

the analogue of Lemma 2.2.2 above. The argument for BRW in [12, Lemma 3.8] carries out

13



(essentially with no change) from dimension two to dimension d. Given that, an application

of Lemma 2.2.2 completes the proof of the proposition.

A complimentary lower bound on the right tail is also available.

Lemma 2.2.3. Under Assumption (A.1), there exists an integer κ = κ(α(1/10)) > 0 such

that for all N and λ ∈ R

P( max
v∈VN

ϕNv ≥ λ) ≥ 1
2P( max

v∈V2−κN
S2−κN,v ≥ λ) . (2.4)

Proof. It suffices to consider M
(1/10)
N = max

v∈V 1/10
N

ϕN,v. By Assumption (A.1) and an

argument analogous to that used in the proof of Lemma 2.2.2 (which can be raced back to

the proof of [19, Lemma 2.6]), one deduces that for κ = κ(α(1/10)),

P(M
(1/10)
N ≥ λ) ≥ 1

2P( max
v∈V2−κN

S2−κN,v ≥ λ) for all λ ∈ R .

This completes the proof of the lemma.

We also need the following estimate on the right tail for MBRW in d-dimension. The

proof is a routine adaption of the proof of [19, Lemma 3.7] to arbitrary dimension, and is

omitted.

Lemma 2.2.4. There exists an absolute constant C > 0 such that for all λ ∈ [1,
√

log n], we

have

C−1λe−
√

2dλ ≤ P( max
v∈VN

SN,v > mN + λ) ≤ Cλe−
√

2dλ .

Proof of Lemma 2.0.6. Combine Lemma 2.2.3 and Lemma 2.2.4.

2.3 An upper bound on the left tail

This section is devoted to the proof of Lemma 2.0.5. The proof consists of two steps: (1) a

derivation of an exponential upper bound on the left tail for the MBRW; (2) a comparison
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of the left tail for general log-correlated Gaussian field to that of the MBRW.

Lemma 2.3.1. There exist constants C, c > 0 so that for all n ∈ N and 0 6 λ 6 (log n)2/3,

P( max
v∈VN

SN,v 6 mN − λ) 6 Ce−cλ .

Proof. A trivial extension of the arguments in [15] (for the MBRW in dimension two) yields

the tightness for the maximum of the MBRW in dimension d arounds its expectation, with

the latter given by (1.1). Therefore, there exist constants κ, β > 0 such that for all N ≥ 4,

P( max
v∈VN

SN,v > mN − β) > 1/2 . (2.5)

In addition, a simple calculation gives that for all N ≥ N ′ ≥ 4 (adjusting the value of κ if

necessary),

√
2d log(N/N ′)− 3

4d
log(logN/ logN ′)− κ 6 mN −mN ′ 6

√
2d log(N/N ′) + κ . (2.6)

Let λ′ = λ/2 and N ′ = N exp(− 1√
2d

(λ′−β−κ−4)). By (2.6), one has mN −mN ′ 6 λ′−β.

Divide VN into disjoint boxes of side length N ′, and consider a maximal collection B of N ′-

boxes such that all the pairwise distances are at least 2N ′, implying that |B| ≥ exp(
√
d√
2
(λ′−

β − κ− 8− 4
√
d)). Now consider the modified MBRW

S̃N,v = gN ′,v + φ ∀v ∈ B ∈ B ,

where φ is an zero mean Gaussian variable with variance log(N/N ′) and {gN ′,v : v ∈ B}B

are the MBRWs defined on the boxes B, independently of each other and of φ. It is straight-

forward to check that

VarSN,v = Var S̃N,v and ESN,vSN,u ≤ ES̃N,vS̃N,u for all u, v ∈ ∪B∈BB .
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Combined with Lemma 2.2.1, it gives that

P( max
v∈VN

SN,v ≤ t) ≤ P( max
v∈∪B∈BB

SN,v ≤ t) ≤ P( max
v∈∪B∈BB

S̃N,v ≤ t) for all t ∈ R . (2.7)

By (2.5), one has that for each B ∈ B,

P(sup
v∈B

gN ′,v ≥ mN − λ′) = P(sup
v∈B

gN ′,v ≥ mN ′ +mN −mN ′ − λ′)

≥ P(sup
v∈B

gN ′,v ≥ mN ′ − β) >
1

2
,

and therefore

P( sup
v∈∪B∈BB

gN ′,v < mN − λ′) ≤ (1
2)|B| .

Thus,

P( max
v∈∪B∈BB

S̃N,v ≤ mN − λ) ≤ P( sup
v∈∪B∈BB

gN ′,v < mN − λ′) + P(φ ≤ −λ′) ≤ Ce−cλ
′
,

for some constants C, c > 0. Combined with (2.7), this completes the proof of the lemma.

Proof of Lemma 2.0.5. In order to prove Lemma 2.0.5, we will compare the maximum of

a sparsified version of the log-correlated field to that of a modified version of MBRW. By

Assumption (A.1) and Lemma 2.1.1 , there exists a κ0 = κ0(α(1/10)) such that for all κ ≥ κ0,

Var(ϕ2κN,2κv) 6 Var(S22κN,v) for all v ∈ V 1/10
N .

Therefore, one can choose a collection of positive numbers {av : v ∈ V 1/10
N } such that

Var(ϕ2κN,2κv + avX) = Var(S22κN,v) ,

where X is a standard Gaussian variable. Since the MBRW has constant variance, we have

that |av − au| 6 C1 for some constant C1 = C1(α(1/10)) > 0. By Lemma 2.1.1 again, one
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has

E(S22κN,v − S22κN,u)2 ≤ 2 log+ |u− v|+O(1) ,

where the O(1) term is bounded by a absolute constant. On the other hand, for all u, v ∈

V
1/10
N ,

E(ϕ2κN,2κv + avX − ϕ2κN,2κu − auX)2 ≥ log 2 · κ+ 2 log+ |u− v| −Oα(1/10)(1) ,

where Oα(1/10)(1) is a term that is bounded by a constant depending only on α(1/10). There-

fore, there exists a κ = κ(α(1/10)) such that for all u, v ∈ V 1/10
N ,

E(ϕ2κN,2κv + avX − ϕ2κN,2κu − auX)2 ≥ E(S22κN,v − S22κN,u)2 .

Combined with Lemma 2.2.1, this implies that for a suitable Cκ depending on κ,

P( max
v∈VN

ϕ2κN,2κv 6 mN − λ) ≤ P( max
v∈V 1/10

N

(ϕ2κN,2κv + avX) 6 mN − λ/2) (2.8)

+ P(X ≤ −λ/Cκ)

≤ P( max
v∈V 1/10

N

S22κN,v 6 mN − λ/2) + P(X ≤ −λ/Cκ) . (2.9)

There are number of ways to bound P(max
v∈V 1/10

N

S22κN,v 6 mN −λ/2), and we choose not

to optimize the bound, but instead simply apply the FKG inequality [31]. More precisely, we

note that there exists a collection of boxes V with |V| ≤ 24dκ where each box is a translated

copy of V
1/10
N such that V22κN ⊆ ∪V ∈VV . Since {maxv∈V22κN

S22κN,v 6 mN − λ/2} =

∩V ∈V{maxv∈V S22κN,v 6 mN − λ/2}, the FKG inequality gives that

P( max
v∈V22κN

S22κN,v 6 mN − λ/2) ≥ (P( max
v∈V 1/10

N

S22κN,v 6 mN − λ/2))24dκ
,

Combined with (2.8) and Lemma 2.3.1, this completes the proof of the lemma.
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2.4 Tightness for Gaussian Membrane model

The Gaussian membrane model in dimension 4 is an example we study now. The maxima

and entropic repulsion for the Gaussian membrane model was discussed in [25]. Let us

denote the field by {ψNv : v ∈ VN}, where VN is the cube as defined in the introduction

but restricted to dimension 4. Let us call the covariance function ΓN (x, y), for x, y ∈ VN ,

changing the notation used in [25] due standard notations for Green’s function in literature.

The law of this field is the Gibbs measure on RVN with 0 boundary conditions outside VN

and Hamilton as 1
2

∑
x∈Zd(∆ψ

N
x )2. In [25, Section 2] we see that the covariace function

ΓN (., .) is approximated by another function ḠN (., .) inside V δN . In order to define this

function we first define another function(Green’s function of random walk)

GN (x, y) = Ex(

τVN∑
k=0

1Xk=y).

Here {Xk} is a random walk starting from from x and τVN is the time the random walk exits

VN . Further we define G(x, y) =: limN→∞GN (x, y), which exists for all x, y ∈ Zd, and as

|x− y| → ∞,

G(x, y) = a4
1

|x− y|2
+O(|x− y|−3),

with a4 = 1
ω4

, where ωd is the volume of the unit ball in Rd. From estimates in [27], we

further have for ball BN of radius N around 0,

GBN (o, x) = a4

(
1

|x|2
− 1

N2

)
+O(|x|−3).

Finally we have,

ḠN (x, y) =
∑
z∈VN

GN (x, z)GN (z, y)

. Using this estimates, we can compute the order of the covariances to show that the

Gaussian membrane model is log-correlated. In continuation to [25, Lemma 2.2], which

18



gives logarithmic order of the variance term, we have the following result.

Lemma 2.4.1. If δ ∈ (0, 1/2) then there exists constants c3, c4 independent of N such that

for x, y ∈ V δN , we have

8

π2
(logN − log |x− y|) + c3 ≤ GN (x, y) ≤ 8

π2
(logN − log |x− y|) + c4

Proof. Let Br(x) denote the ball of radius r around x ∈ VN . We look at B2N (x) where

x ∈ VN . We apply a transformation to polar co-ordinates after using random walk estimates.

The rest of the calculations follow easily from that. Since GN (x, y) ≤ G(x, y), we can begin

as follows.

GN (x, y) ≤
∑

z∈B2N

G(x, z)G(z, y)

≤ a2
4

∑
z∈B2N ,z 6=x,y

1

|z − x|2|z − y|2
+O(1)

= a2
4

∫ 2π

0

∫ π

0

∫ π

0

∫ 2N

0

r3 sin2 θ1 sin θ2

r2(r2 + d2 − 2dr cos θ1)
drdθ1dθ2dθ3 +O(1)

where d = |x− y|

= a2
4

∫ 2π

0

∫ π

0

∫ π

0
sin2 θ1 sin θ2

∫ 2N

0

r − d cos θ1 + d cos θ1

(r − d cos θ1)2 + d2 sin2 θ1
drdθ1dθ2dθ3

+ O(1)

≤ a2
4

∫ 2π

0

∫ π

0

∫ π

0
sin2 θ1 sin θ2{log |2N + d| − log d}dθ1dθ2dθ3

+ a2
4

∫ 2π

0

∫ π

0

∫ π

0
sin θ1 sin θ2 cos θ1{tan−1

(
2N − d cos θ1

d sin θ1

)
− tan−1 (−d cot θ1)}dθ1dθ2dθ3 +O(1)

≤ 2a2
4π

2{logN − log d}+ c4

≤ 8

π2
{logN − log d}+ c4

The lower bound will similarly follow by taking BδN (x), instead of B2N (x). We transform
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the integral into polar co-ordinates, following by routine calculations.

GN (x, y) ≥
∑

z∈BδN

GδN (x, z)GδN (z, y)

≥ a2
4

∑
z∈BδN ,z 6=x,y

1

|z − x|2|z − y|2
+O(1)

≥ 4a2
4ω4

∫ δN

0

r3

r2(r + d)2
dr +O(1) where d = |x− y|

≥ 4a2
4ω4 ×

1

2
× 2{log δN − log d}+O(1)

≥ 8

π2
{logN − log d}+ c3
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CHAPTER 3

ROBUSTNESS OF THE MAXIMUM UNDER

PERTURBATIONS

The main goal of this chapter is to establish that the law of the maximum for a log-correlated

Gaussian field is robust under certain perturbations. These invariance properties will be

crucial in Section 4.1 when constructing a new field that approximates our target field.

For a positive integer r, let Br be a collection of sub-boxes of side length r which forms

a partition of VbN/rcr. Write B = ∪r∈[N ]Br. Let {gB : B ∈ B} be a collection of i.i.d.

standard Gaussian variables. For v ∈ VN , denote by Bv,r ∈ Br the box that contains v. For

σ = (σ1, σ2) with ‖σ‖22 = σ2
1 + σ2

2 and r1, r2, define,

ϕ̃N,r1,r2,σ,v = ϕN,v + σ1gBv,r1
+ σ2gBv,N/r2

, (3.1)

and set M̃N,r1,r2,σ = maxv∈VN ϕ̃N,r1,r2,σ,v.

For probability measures ν1, ν2 on R, let d(ν1, ν2) denote the Lévy distance between

ν1, ν2, i.e.

d(ν1, ν2) = inf{δ > 0 : ν1(B) ≤ ν2(Bδ) + δ for all open sets B},

where Bδ = {y : |x− y| < δ for some x ∈ B}. In addition, define

d̃(ν1, ν2) = inf{δ > 0 : ν1((x,∞)) ≤ ν2((x− δ,∞)) + δ for all x ∈ R} .

If d̃(ν1, ν2) = 0, then ν1 is stochastically dominated by ν2. Thus, d̃(ν1, ν2) measures approx-

imate stochastic domination of ν1 by ν2; in particular, unlike d(·, ·), the function d̃(·, ·) is

not symmetric.

With a slight abuse of notation, if X, Y are random variables with laws µX , µY respec-
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tively, we also write d(X, Y ) for d(µX , µY ) and d̃(X, Y ) for d̃(µX , µY ).

A notation convention: By Proposition 1.4.1, one has that

lim sup
δ→0

lim sup
N

d( max
v∈V δN

ϕN,v, max
v∈VN

ϕN,v) = 0 .

Therefore, in order to prove the convergence in distribution of recentered maxima, it suffices

to show that for each fixed δ > 0, the law of maxv∈V δN
ϕN,v −mN converges. To this end,

one only needs to consider the Gaussian field restricted to V δN . For convenience of notation,

we will treat V δN as the whole box that is under consideration. Equivalently, throughout the

rest of the chapters when assuming (A.1), (A.2) or (A.3) holds, we assume these assumptions

hold with δ = 0, and we set α := max(α0, α
(0)).

r1

N

N
r2

gB.,r1
gB.,N/r2

Figure 3.1: Perturbation levels of the Gaussian field

The following lemma, which is one of the main results of this section, relates the laws of

MN and M̃N,r1,r2,σ.
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Lemma 3.0.2. The following holds uniformly for all Gaussian fields {ϕN,v : v ∈ VN}

satisfying Assumption (A.1):

lim sup
r1,r2→∞

lim sup
N→∞

d(MN −mN , M̃N,r1,r2,σ −mN − ‖σ‖22
√
d/2) = 0 . (3.2)

The next lemma states that under Assumption (A.1), the law of the maximum is robust

under small perturbations (in the sense of `∞ norm) of the covariance matrix.

Lemma 3.0.3. Let {ϕN,v : v ∈ VN} be a sequence of Gaussian fields satisfying Assumption

(A.1), and let σ be fixed. Let {ϕ̄N,v : v ∈ VN} be Gaussian fields such that for all u, v ∈ VN

|VarϕN,v − Var ϕ̄N,v| ≤ ε, and Eϕ̄N,vϕ̄N,u ≤ EϕN,vϕN,u + ε .

Then, there exists ι = ι(ε) with ι→ε→0 0 such that

lim sup
N→∞

d̃(MN −mN , max
v∈VN

ϕ̄N,v −mN ) ≤ ι .

A key step in the proof of Lemma 3.0.2 is the following characterization of the geometry

of vertices achieving large values in the fields, an extension of [19, Theorem 1.1]; it states

that near maxima are either at microscopic or macroscopic distance from each other. This

may be of independent interest.

Lemma 3.0.4. There exists a constant c > 0 such that, uniformly for all Gaussian fields

satisfying Assumption (A.1), we have

lim
r→∞

lim
N→∞

P(∃u, v : |u− v| ∈ (r, Nr ), ϕN,v, ϕN,u ≥ mN − c log log r) = 0 .
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3.1 Maximal sum over restricted pairs

As in the case of 2D DGFF discussed in [19], in order to prove Lemma 3.0.4, we will study

the maximum of the sum over restricted pairs. For any Gaussian field {ηN,v : v ∈ VN} and

r > 1, define

η�N,r = max{ηN,u + ηN,v : u, v ∈ VN , r ≤ |u− v| ≤ N/r} .

Lemma 3.1.1. There exist constants c1, c2 depending only on d and C > 0 depending only

on (α, d) such that for all r, n with N = 2n and all Gaussian fields satisfying Assumption

(A.1), we have

2mN − c2 log log r − C ≤ Eϕ�N,r ≤ 2mN − c1 log log r + C . (3.3)

Proof. In order to prove Lemma 3.1.1, we will show that

ES�2−κN,r ≤ Eϕ�N,r ≤ ES�2κN,r . (3.4)

To this end, we recall the following Sudakov-Fernique inequality [22] which compares the

first moments for maxima of two Gaussian processes.

Lemma 3.1.2. Let A be an arbitrary finite index set and let {Xa : a ∈ A} and {Ya : a ∈ A}

be two centered Gaussian processes such that:

E(Xa −Xb)2 ≥ E(Ya − Yb)2, for all a, b ∈ A .

Then E(maxa∈AXa) ≤ E(maxa∈A Ya).

We will give a proof for the upper bound in (3.3). The proof of the lower bound follows

using similar arguments. For κ ∈ N, recall the definition of the restriction map ψN as in
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(2.3). By Lemma 2.1.1, there exists a κ > 0 (depending only on (α, d)) such that for all

u, v, u′, v′ ∈ VN ,

E(ϕN,u + ϕN,v − ϕN,u′ − ϕN,v′)2 ≤ E(S2κN
ψN (u) + S2κN

ψN (v) − S
2κN
ψN (u′) − S

2κN
ψN (v′))

2 .

(To see this, note that the variance of S2κN
ψN (u)

increases with κ but the covariance between

S2κN
ψN (u)

and S2κN
ψN (v)

does not.) In addition, note that for r ≤ |u − v| ≤ N/r one has

r ≤ |ψN (u)−ψN (v)| ≤ 2κN/r. Combined with Lemma 3.1.2, this yields Eϕ�N,r ≤ ES�2κN,r,

completing the proof of the upper bound in (3.4).

To complete the proof of Lemma 3.1.2, note that [19, Lemma 3.1] readily extends to

MBRW in d-dimension, and thus

2mN − c2 log log r − C ≤ ES�N,r ≤ 2mN − c1 log log r + C ,

where c1, c2 are constants depending only on d and C is a constant depending on (α, d).

Combined with (3.4), this completes the proof of the lemma.

We will also need the following tightness result.

Lemma 3.1.3. Under Assumption (A.1), the sequence {
(ϕ�N,r−Eϕ

�
N,r)

log log r }N∈N,r≥100 is tight.

Further, there exists a constant C > 0 depending only on d such that for all r ≥ 100 and

N ∈ N,

|(ϕ�N,r − Eϕ�N,r)| ≤ C log log r .

Proof. Take N ′ = 2N and partition VN ′ into 2d copies of VN , denoted by V
(1)
N , . . . , V

(2d)
N .

For each i ∈ [2d], let {ϕ(i)
N,v : v ∈ V (i)

N } be an independent copy of {ϕN,v : v ∈ Vn} where we

identify VN and V
(i)
N by the suitable translation such that the two boxes coincide. Denote

by

ϕ̂N ′,v = ϕ
(i)
N,v for v ∈ V (i)

N and i ∈ [2d] . (3.5)
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Clearly, {ϕN ′,v} is a Gaussian field that satisfies Assumption (A.1) (with α increased by an

absolute constant). Therefore, by Lemma 3.1.1, we have

2mN − c2 log log r − C ≤ Eϕ̂�N,r ≤ 2mN − c1 log log r + C , (3.6)

where c1, c2, C > 0 are constants depending only on (d, α). In addition, we have

E(ϕ̂�N ′,r) ≥ Emax{ϕ(1),�
N,r , ϕ

(2),�
N,r } .

Combined with Lemma 3.1.1 and (3.6), and the simple algebraic fact that |a − b| = 2(a ∨

b)− a− b, it yields that

E|ϕ(1),�
N,r − ϕ

(2),�
N,r | ≤ 2(Eϕ̂�N ′,r − Eϕ�N,r) ≤ C ′ log log r , for all r ≥ 100 ,

where C ′ > 0 is a constant depending only on d. This completes the proof of the lemma.

3.2 Location of near maxima

In this section we will prove Lemma 3.0.4, by contradiction. Suppose otherwise that Lemma

3.0.4 does not hold. Then for any constant c > 0, there exists ε > 0 and a subsequence {rk}

such that for all k ∈ N

lim
N→∞

P
(
∃u, v : |u− v| ∈

(
rk,

N

rk

)
, ϕN,v, ϕN,u ≥ mN − c log log rk

)
> ε . (3.7)

Now fix δ > 0 and consider N ′ = 2κN where κ is an integer to be selected. Partition VN ′ into

2κd disjoint boxes of side length N , denoted by V
(1)
N , . . . , V

(2κd)
N . Define {ϕ̂N ′,v : v ∈ VN ′}

in the same manner as in (3.5) except that now we take 2κd copies of {ϕN,v : v ∈ VN}

(one for each V
(i)
N with i ∈ [2κd]). Clearly, {ϕ̂N ′,v : v ∈ VN ′} is a Gaussian field satisfies

Assumption (A.1) with α replaced by a constant α′ depending only on (α, d, κ). Therefore,
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by Lemma 3.1.1,

2mN − c2 log log r − C ≤ Eϕ̂�N ′,r ≤ 2mN − c1 log log r + C , (3.8)

where c1, c2 > 0 are two constants depending only on d and C > 0 is a constant depending

only on (α, d, κ).

Next we derive a contradiction to (3.8). Set zN,r = 2mN − c log log r, ZN,r = (ϕ̂�N ′,r −

zN,r)− and Y
(i)
N,r = (ϕ

(i),�
N,rk

− zN,r)−. Then (3.7) implies that

lim
N→∞

P(Y
(1)
N,rk

> 0) ≤ 1− ε for all k ∈ N . (3.9)

In addition, by Lemmas 3.1.1 and 3.1.3, there exists a constant C ′ > 0 depending only on d

such that for all r ≥ 100 and N ∈ N, we have

EY (1)
N,r ≤ C ′ log log r . (3.10)

Clearly, ZN,r ≤ mini∈[2κd] Y
(i)
N,r. Combined with the fact that Y

(i)
N,r are i.i.d. random vari-

ables, one obtains

EZN,rk ≤
∫ ∞

0
(P(Y

(1)
N,rk

> y))2κddy

≤ (1− ε)2κd−1
∫ ∞

0
(P(Y

(1)
N,rk

> y))dy

≤ (1− ε)2κd−1EY (1)
N,rk

,

where (3.9) was used in the second inequality. Combined with (3.10), one concludes that for

all r ≥ 100 and N

EZN,rk ≤ (1− ε)2κd−1C ′ log log rk .

Now set c = c1/4 and choose κ depending on (ε, d, C ′, c1) such that (1− ε)2κd−1C ′ ≤ c1/4.
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Then,

Eϕ̂�N ′,rk ≥ 2mN − c1 log log rk/2 ,

for all k ∈ N and sufficiently large N ≥ Nk where Nk is a number depending only on k.

Sending N → ∞ first and then k → ∞ contradicts (3.8), thereby completing the proof of

the lemma.

3.3 Behavior of maxima on perturbation

The next lemma, which extends [12, Lemma 3.9] to the current setup, will be useful for the

proof of Lemma 3.0.2 and later as well.

Lemma 3.3.1. Let Assumptions (A.0) and (A.1) holds. Let {φNu : u ∈ VN} be a collection

of random variables independent of {ϕN,u : u ∈ VN} such that

P(φNu ≥ 1 + y) ≤ e−y
2

for all u ∈ VN . (3.11)

Then, there exists C = C(α, d) > 0 such that, for any ε > 0, N ∈ N and x ≥ −ε−1/2,

P( max
u∈VN

(ϕN,u+εφNu ) ≥ mN +x) ≤ P( max
u∈VN

ϕN,u ≥ mN +x−
√
ε)(1+C(e−C

−1ε−1
)) . (3.12)

Proof. We first give the proof for ε ≤ 1. Define Γy = {u ∈ VN : y/2 ≤ εφNu ≤ y}. Then,

P( max
u∈VN

(ϕN,u + εφNu ) ≥ mN + x) ≤P(MN ≥ mN + x−
√
ε)

+
∞∑
i=0

E(P( max
u∈Γ

2i
√
ε

ϕN,u ≥ mN + x− 2i
√
ε|Γ2i

√
ε)) .

By Proposition 1.4.1, one can bound the second term on the right hand side above by

∞∑
i=0

E(P( max
u∈VN

ϕN,u ≥ mN + x− 2i
√
ε|Γ2i

√
ε)) .

x ∨ 1

e
√

2dx

∞∑
i=0

E(|Γ2i
√
ε|/N

d)1/2e
√

2d2i
√
ε .
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By (3.11), one has E(|Γ2i
√
ε|/N

d)1/2 ≤ e−4i(Cε)−1
. Altogether, one gets

∞∑
i=0

E(P( max
u∈VN

ϕN,u ≥ mN + x− 2i
√
ε|Γ2i

√
ε)) .

x ∨ 1

e
√

2dx
e−(Cε)−1

,

completing the proof of the lemma when ε ≤ 1. The case ε > 1 is simpler and follows by

repeating the same argument with Γ2iε replacing Γ2i
√
ε. We omit further details.

We next consider a combination of two independent copies of {ϕN,v}. For σ > 0, define

ϕ∗N,σ,v = ϕN,v +

√
‖σ‖22
logN

ϕ′N,v for v ∈ VN , and M∗N,σ = max
v∈VN

ϕ∗N,σ,v . (3.13)

where {ϕ′N,v : v ∈ VN} is an independent copy of {ϕN,v : v ∈ VN}. Note that the field

{ϕ∗N,σ,v} is distributed like the field {aNϕN,v} where aN =
√

1 + ‖σ‖22/ logN .

Remark 3.3.2. The idea of writing a Gaussian field as a sum of two independent Gaussian

fields has been extensively employed in the study of Gaussian processes. In the context of the

study of extrema of the 2D DGFF, this idea was first used in [7], where (combined with an

invariance result from [29] as well as the geometry of the maxima of DGFF [19], see Lemma

3.1.1) it led to a complete description of the extremal process of 2D DGFF. The definition

(3.13) is inspired by [7].

The following is the key to the proof of Lemma 3.0.2.

Proposition 3.3.3. Let Assumption (A.1) hold. Let {ϕ̃N,r,σ,v : v ∈ VN} and {ϕ∗N,σ,v : v ∈

VN} be defined as in (3.1) and (3.13) respectively. Then for any fixed σ,

lim
r1,r2→∞

lim sup
N→∞

d(M̃N,r1,r2,σ −mN ,M
∗
N,σ −mN ) = 0 . (3.14)

Proof. Partition VN into boxes of side length N/r2 and denote by B the collection of boxes.

Fix an arbitrary small δ > 0, and let Bδ denote the box in the center of B with side length (1−
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δ)N/r2 for each B ∈ B. Write VN,δ = ∪B∈BBδ. Set M̃N,r1,r2,σ,δ = maxv∈VN,δ ϕ̃N,r1,r2,σ,v

and M∗N,σ,δ = maxv∈VN,δ ϕ
∗
N,σ,v. By (1.3), one has

lim
δ→0

lim
N→∞

P(M̃N,r1,r2,σ,δ 6= M̃N,r1,r2,σ) = lim
δ→0

lim
N→∞

P(M∗N,σ,δ 6= M∗N,σ) = 0 .

Therefore, it suffices to prove (3.14) with M̃N,r1,r2,σ,δ and M∗N,σ,δ replacing M̃N,r1,r2,σ and

M∗N,σ respectively. To this end, let zB be such that

max
v∈Bδ

ϕN,v = ϕN,zB for every B ∈ B .

We will show below that

lim
r1,r2→∞

lim sup
N→∞

P(|M̃N,r1,r2,σ,δ −max
B∈B

ϕ̃N,r1,r2,σ,zB | ≥ 1/ log logN)

= lim sup
N→∞

P(|M∗N,σ,δ −max
B∈B

ϕ∗N,σ,zB | ≥ 1/ log logN) = 0 . (3.15)

Note that the field {ϕN,v : v ∈ VN} and {
√
‖σ‖22/logNϕ′N,v : v ∈ VN} are independent of

each other. Thus, conditioning on the field {ϕN,v : v ∈ VN}, the field {
√
‖σ‖22/logNϕ′N,zB :

B ∈ B} is a centered Gaussian field with pairwise correlation bounded by O(1/ logN).

Therefore the conditional covariance matrix of {
√
‖σ‖22
logNϕ

′
N,zB

: B ∈ B} and that of {σ1gBzB,r1

+σ2gBzB,N/r2
: B ∈ B} are within additive O(1/ logN) of each other entrywise. In addition,

|B| ≤ (2r2)d. Therefore, it is clear that there exists a coupling between the two fields such

that

lim
N→∞

P(max
B∈B
|
√
‖σ‖22/logNϕ′N,zB − (σ1gBzB,r1

+ σ2gBzB,N/r2
)|

≥ 1/ log logN | {ϕN,v : v ∈ VN}) = 0

(here the term 1/ log logN is somewhat arbitrary, any negative power larger than 1/2 of

(logN) would work). Note that the preceding equality holds for almost all realizations of
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{ϕN,v : v ∈ VN}. Combined with (3.15), it then yields the proposition.

It remains to prove (3.15). Write r = r1 ∧ r2 and let C be a constant which we will

send to infinity after sending first N →∞ and then r →∞, and let c be the constant from

Lemma 3.0.4. Suppose that either of the events that are considered in (3.15) occurs. In this

case, one of the following events has to occur:

• The event E1 = {M̃N,r1,r2,σ,δ 6∈ (mN −C,mN +C)}∪{M∗N,σ,δ 6∈ (mN −C,mN +C)}.

• The event E2 that there exists u, v ∈ (r,N/r) such that ϕN,u∧ϕN,v > mN−c log log r.

• The event E3 = Ẽ3 ∪ E∗3 where Ẽ3 (E∗3) is the event that M̃N,r1,r2,σ (M∗N,σ,δ) is

achieved at a vertex v such that ϕN,v ≤ mN − c log log r.

• The event E4 that there exists v ∈ B ∈ B with ϕN,v ≥ mN − c log log r and

√
‖σ‖22
logNϕ

′
N,v −

√
‖σ‖22
logNϕ

′
N,zB

≥ 1
log logN .

By Theorem 2.0.4, limC→∞ lim supN→∞ P(E1) = 0. By Lemma 3.0.4,

lim
r→∞

lim sup
N→∞

P(E2) = 0.

In addition, writting Γx = {v ∈ VN : ϕ̃N,r1,r2,σ,v − ϕN,v ∈ (x, x+ 1)}, one has

P(Ec1 ∩ Ẽ3) ≤ P( max
x≥c log log r−C

max
v∈Γx

ϕ̃N,r1,r2,σ,v ≥ mN − C)

≤
∑

x≥c log log r−C
P(max
v∈Γx

ϕ̃N,r1,r2,σ,v ≥ mN − C)

≤
∑

x≥c log log r−C
E(P(max

v∈Γx
ϕN,v ≥ mN − x− C|Γx))

.C
∑

x≥c log log r−C
E(|Γx|/Nd)1/2xe

√
2dx ,
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where the last inequality follows from (1.3). From simple estimates using the Gaussian

distribution one has E(|Γx|/Nd)1/2 ≤ e−c
′x2
/c′ where c′ = c′(σ) > 0. Therefore, one

concludes that

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P(Ec1 ∩ Ẽ3) = 0 .

A similar argument leads to the same estimate with E∗3 replacing E3. Thus,

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P(Ec1 ∩ E3) = 0 .

Finally, let Γ′r = {v : ϕN,v ≥ mN − c log log r}. On the event Ec2, one has |Γ′r| ≤ r4.

Further, for each v ∈ B ∩ Γ′r, on Ec2 one has |v − zB | ≤ r and thus (by the independence

between {ϕN,v} and {ϕ′N,v}),

P(

√
‖σ‖22
logNϕ

′
N,v −

√
‖σ‖22
logNϕ

′
N,zB

≥ 1/ log logN) = oN (1) .

Therefore, a union bound gives that

lim sup
r→∞

lim sup
N→∞

P(E4 ∩ Ec2) ≤ lim sup
r→∞

lim sup
N→∞

r4oN (1) = 0 .

Altogether, this completes the proof of (3.15) and hence of the proposition.

Proof of Lemma 3.0.2. Define

ϕ̄N,σ,v =

(
1 +

‖σ‖22
2 logN

)
ϕN,v for v ∈ VN , and M̄N,σ = max

v∈VN
ϕ̄N,v .

Clearly we have M̄N,σ = (1 +
‖σ‖22

2 logN )MN . Combined with (1.1), it gives that EM̄N,σ =

EMN + σ2
√
d/2 + o(1) and that d(MN − EMN , M̄N,σ − EM̄N,σ)→ 0 as N →∞. Further

define {ϕ∗N,σ,v : v ∈ VN} as in (3.13). By the fact that the field {ϕ̄N,σ,v} can be seen as

a sum of {ϕ∗N,σ,v} and an independent field whose variances are O((1/ logN)3) across the
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field, we see that EM̄N,σ = EM∗N,σ + o(1) and that

d(M̄N,σ − EM̄N ,M
∗
N,σ − EM∗N )→ 0 . (3.16)

Combined with Proposition 3.3.3, this completes the proof of the lemma.

Proof of Lemma 3.0.3. Let φ and φN,v be i.i.d. standard Gaussian variables, and for ε∗ > 0

let

ϕlw,N,ε∗,v = (1− ε∗/ logN)ϕN,v + ε′N,vφ and ϕ̄up,N,ε∗,v = (1− ε∗/ logN)ϕ̄N,v + ε′′N,vφN,v ,

where ε′N,v, ε
′′
N,v are chosen so that Varϕlw,N,ε∗,v = Var ϕ̄up,N,ε∗,v = VarϕN,v + ε. We can

choose ε∗ = ε∗(ε) with ε∗ →ε→0 0 so that Eϕlw,N,ε∗,vϕlw,N,ε∗,u ≥ Eϕ̄up,N,ε∗,vϕ̄up,N,ε∗,u for

all u, v ∈ VN . By Lemma 2.2.1, one has

d̃( max
v∈VN

ϕlw,N,ε∗,v −mN , max
v∈VN

ϕ̄up,N,ε∗,v −mN ) = 0 .

Combined with Lemma 3.3.1, this completes the proof of the lemma.
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CHAPTER 4

CONVERGENCE OF RECENTERED MAXIMA

Our main result is the following theorem.

Theorem 4.0.4. Under Assumptions (A.0), (A.1), (A.2) and (A.3), the sequence {MN −

EMN}N converges in distribution.

As a byproduct of our proof, we also characterize the limiting law of (MN −mN ) as a

Gumbel distribution with random shift, given by a positive random variable Z which is the

weak limit of a sequence ZN , defined as

ZN =
∑
v∈VN

(
√

2d logN − ϕN,v)e−
√

2d(
√

2d logN−ϕN,v) . (4.1)

In the case of BBM, the corresponding sequence ZN is precisely the derivative martingale,

introduced in [26]. It also occurs in the case of BRW, see [3], and plays a similar role in the

study of critical Gaussian multiplicative chaos [20]. Even though in our case the sequence

ZN is not necessarily a martingale, in analogy with these previous situations we keep refering

to it as the derivative martingale. The definition naturally extends to a derivative martingale

measure on VN by setting, for A ⊂ VN ,

ZN,A =
∑
v∈A

(
√

2d logN − ϕN,v)e−
√

2d(
√

2d logN−ϕN,v).

Theorem 4.0.5. Suppose that Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then the

derivative martingale ZN converges in law to a positive random variable Z. In addition, the

limiting law µ∞ of MN −mN can be expressed by

µ∞((−∞, x]) = Ee−β
∗Ze−

√
2dx

, for all x ∈ R ,

where β∗ is a positive constant.
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Theorems 4.0.4 and 4.0.5 shall be seen as a generalization of [12, Theorems 1.1 and 2.5]

and [30, Theorem 1.1] (see Remark 4.0.6 below). In fact, Theorem 4.0.4 and 4.0.5 also

overlap with [8], which effectively studied the conformal symmetry (in language of [8]) for

the law of the maximum of GFF in general domains— the main results in [8] were presented

in terms of the intensity measure for the extremal process, but this corresponds to the law of

the maximum. In terms of proof strategies, the works of [12, 8] relied heavily on the Markov

field property for DGFF, and the work [30] relied crucially on the integral representation for

the covariances of ∗-scale invariant field. Comparing to [12, 30, 8], our current work aims to

study the universality aspects for the law of the maximum of log-correlated Gaussian fields

under minimal assumptions (which is the main novelty), and notably our result manifests

that Markov field property plays no role in the limiting law for the maximum.

Remark 4.0.6. Despite the fact that our result is directly on discrete log-correlated fields,

it should imply [30, Theorem 1.1] on the convergence in law for the centered supremum of ∗-

scale invariant log-correlated fields (which is constructed in the continuous setting). Precisely,

one could apply our result to the ∗-scale invariant field over a discretized index set and then

use the smoothness of the ∗-scale invariant field.

Remark 4.0.7. Our proof will show that the random variable Z appearing in Theorem

4.0.5 depends only on the functions f(x), h(x, y) appearing in Assumptions (A.2) and (A.3),

while the constant β∗ depends on other parameters as well. In particular, two sequences of

fields that differ only at the microscopic level will have the same limit law for their centered

maxima, up to a (deterministic) shift. We provide more details at the end of Section 4.

Remark 4.0.8. In the same spirit as the preceeding remark, if the field {ϕN,v}v∈VN is

stationary, then Assumption (A.2) can be removed, at the cost of replacing in Theorems 4.0.4

and 4.0.5 mN by an appropriate sequence m̃N with |mN − m̃N | = O(1). This is proved by

a diagonalization procedure similar to that used for Remark 4.0.7. We omit further details.

In [7, 8], the authors used the convergence of the centered maximum, a-priori information

on the geometric properties of the clusters of near-maxima of the DGFF and a beautiful
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invariance argument and derived the convergence in law of the process of near extrema of

the two-dimensional DGFF, and its properties. A natural extension of our work would be

to study the extremal process in the class of processes studied here, and tie it to properties

of the derivative martingale measure.

A word on proof strategy. This work is closely related to [12], which dealt with 2D GFF.

The proof in [12] consists of three main steps:

1. Decompose the DGFF to a sum of a coarse field and a fine field (which itself is a

DGFF), and further approximate the fine field as a sum of modified branching random

walk (see Section 2.1 for definition) and a local DGFF. It is crucial for the proof that

the different components are independent of each other, and that the approximation

error is small enough so that the value of the maximum is not altered significantly.

These approximations were constructed using heavily the Markov field property of

DGFF, and detailed estimates for the Green function of random walk.

2. Use a modified second moment method in order to compute the asymptotics of the

right tail for the distribution of the maximum of the fine field, as well as derive a

limiting distribution for the location of the maximizer in the fine field.

3. Combine the limiting right tail estimates for the maximum of the fine field and the

behavior of the coarse field to deduce the convergence in law.

In the general setup of logarithmically correlated fields, it is not a priori clear how can one

decompose the field by an (independent) sum of a coarse field, an MBRW and a local field, as

the Markov field property is no longer available. A natural approach under our assumptions

is to employ the self-similarity of the fields, and to approximate the coarse and local fields

by an instance of {ϕK,v : v ∈ VK} for some K � N . One difficulty in this attempt is to

control the error of the approximation and its influence on the law of the maximum. In order

to address this issue, we partition the box VN to sub-boxes congruent to VL, and borrow

a key idea from [7] to show that the law of the maximum of a log-correlated fields has the
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following invariance property: if one adds i.i.d. Gaussian variables with variance O(1) to

each sub-box of the field (here the same variable will be added to each vertex in the same

sub-box), where the size L of the sub-box is either K or N/K (assuming K grows to infinity

arbitrarily slow in N), then the law of the maximum for the perturbed field is simply a shift

of the original law where the shift can be explicitly determined (see Lemma 3.0.2). In light

of this, in Section 4.1 we approximate the field {ϕN,v} by the sum of coarse field (which is

given by {ϕKL,v : v ∈ VKL}), an MBRW, and a local field (which is given by independent

copies of {ϕK ′L′,v : v ∈ VK ′L′}) (here the parameters satisfy N � K ′ � L′ � K � L). In

this construction, we make sure that the error in the covariance between two vertices is o(1)

if their distance is not in between L and N/L′, and the error is O(1) otherwise. Then we

apply Lemma 3.0.2 (and Lemma 3.0.3) to argue that our approximation indeed recovers the

law of the maximum for the original field. In Subsection 4.2, we present the proof for the

convergence in law for the centered maximum of the approximated field we constructed and,

as in [12], it readily also yields the convergence in distribution for the derivative martingale

constructed from the original field.

As in the case of the DGFF in two dimensions, a number of properties for the log-

correlated fields are needed, and are proved by adapting or modifying the arguments used

in that case. Those properties are:

1. The tightness of MN −mN , and the bounds on the right and left tails of MN −mN

as well as certain geometric properties of maxima for the log-correlated fields under

consideration, follow from modifying arguments in [15, 19, 17]. This has been shown

in Chapter 2.

2. Precise asymptotics for the right tail of the distribution of the maximum of the fine

field follow from arguments similar to [12] with a number of simplifications, as our fine

field has a nicer structure than its analogue in [12], whereas the coarse field employed

in this paper is constant over each box; in particular, there is no need to consider the

distribution for the location of the maximizer in the fine field as done in [12]. The
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adaption is explained in the end of the chapter.

In this chapter we assume (A.0)–(A.3) and prove Theorem 4.0.4. Toward this end, in Sec-

tion 4.1 we will approximate the field {ϕN,v : v ∈ VN} by a field which is simpler to analyze,

in such a way that the results of Chapter 3 apply and yield the asymptotic equivalence of

their respective laws of the centered maximum. In Section 4.2 we prove the convergence in

law for the centered maximum of the new field. Our method of proof yields Theorem 4.0.5

as a byproduct.

4.1 An approximation of the log-correlated Gaussian field

In this section, we approximate the log-correlated Gaussian field. LetRN (u, v) = E(ϕN,uϕN,v).

We consider three scales for the approximation of the field {ϕN,v}:

1. The top (macroscopic) scale, dealing with RN (u, v) for |u− v| � N .

2. The bottom (microscopic) scale, dealing with RN (u, v) for |u− v| � 1.

3. The middle (mesoscopic) scale, dealing with RN (u, v) for 1� |u− v| � N .

By Assumptions (A.2) and (A.3), RN (u, v), properly centered, converges in the top and

bottom scale. So in those scales, we approximate {ϕN,u} by the corresponding “limiting”

fields. In the middle scale, we simply approximate {ϕN,u} by the MBRW. One then expects

that this approximation gives an additive o(1) error for RN (u, v) in the top and bottom

scale, and an additive O(1) error in the middle scale. It turns out that this guarantees that

the limiting laws of the centered maxima coincide.

In what follows, for any integer t we refer to a box of side length t as an t-box. Take two

large integers L = 2` and K = 2k. Consider first {ϕKL,u : u ∈ VKL} in a KL-box whose

left-bottom corner is identified as the origin, and let Σ denote its covariance matrix.

Recall that by Proposition 1.4.1, with probability tending to 1 as N →∞, the maximum

of ϕN,v over VN occurs in a sub-box of VN with side length bN/KLc · KL. Therefore,
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one may neglect the maximization over the indices in VN \ VbN/KLc·KL. For notational

convenience, we will assume throughout that KL divides N in what follows.

We use Σ to approximate the macroscopic scale of RN (u, v), as follows. Partition VN

into a disjoint union of boxes of side length N/KL, denoted BN/KL = {BN/KL,i : i =

1, . . . , (KL)d}. Let vN/KL,i be the left bottom corner of box BN/KL,i and write wi =

vN/KL,i
N/KL

. Let Ξc be a matrix of dimension Nd × Nd such that Ξcu,v = Σwi,wj for u ∈

BN/KL,i and v ∈ BN/KL,j . Note that Ξc is a positive definite matrix with diagonal terms

log(KL) +OKL(1).

Next, take two other integers K ′ = 2k
′

and L′ = 2`
′
. As above, we assume that K ′L′

divides N . Consider {ϕK ′L′,u : u ∈ VK ′L′} in a K ′L′-box whose left-bottom corner is

identified as the origin, and denote by Σ′ the covariance matrix for {ϕK ′L′,u : u ∈ VK ′L′}. As

above, assume for notational convenience that K ′L′ divides N . Partition VN into a disjoint

union of boxes of side length K ′L′, denoted BK ′L′ = {BK ′L′,i : i = 1, . . . , (N/K ′L′)d}. Let

vK ′L′,i be the left bottom corner of BK ′L′,i. Let Ξb be a matrix of dimension Nd × Nd so

that

Ξbu,v =

 Σ′u−vK′L′,i,v−vK′L′,i , u, v ∈ BK ′L′,i

0, u ∈ BK ′L′,i, v ∈ BK ′L′,j , i 6= j
.

Note that Ξb is a positive definite matrix with diagonal terms log(K ′L′) +OK ′L′(1).

Let {ξcN,v : v ∈ VN} be a Gaussian field with covariance matrix Ξc, which we occasionally

refer to as the coarse field, and let {ξbN,v : v ∈ VN} be a Gaussian field with covariance matrix

Ξb, which we occasionally refer to as the bottom field. Note that the coarse field is constant

in each box BN/KL,i, and the bottom fields in different boxes BK ′L′,i are independent of

each other.

We will consider the limits when L,K,L′, K ′ are sent to infinity in that order. In what

follows, we denote by (L,K,L′, K ′) ⇒ ∞ sending these parameters to infinity in the order

of K ′, L′, K, L (so K ′ � L′ � K � L).
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· · ·
· · ·

K ′L′

N

K ′L′

N/(KL)

ξbN,·
independent between K ′L′ boxesξcN,·

correlated
constant inside N/(KL) boxes

ξN,·,MBRW

independent between N/(KL) boxes

Figure 4.1: Hierarchy of construction of the approximating Gaussian field

Finally, we give the MBRW approximation for the mesoscopic scales. Recall the defini-

tions of BNj and Bj(v) in Subsection 2.1, and recall that {bi,k,B : k ≥ 0, 1 ≤ i ≤ (KL)d, B ∈

BNk } is a family of independent Gaussian variables such that Var bi,j,B = log 2 · 2−dj for all

B ∈ BNj and 1 ≤ i ≤ (KL)d. For v ∈ BN/KL,i ∩ BK ′L′,i′ (where i = 1, . . . , (KL)d and

i′ = 1, . . . , (N/K ′L′)d), define

ξN,v,MBRW =
n−k−`∑
j=`′+k′

∑
B∈Bj(vK′L′,i′)

bNi,j,B . (4.2)

Note that by our construction {ξN,v,MBRW : v ∈ BN/KL,i} are independent of each other

for i = 1, . . . , (KL)d, and in addition ξN,·,MBRW is constant over each K ′L′-box. Further,

let {ξcN,v : v ∈ VN}, {ξbN,v : v ∈ VN} and {ξN,v,MBRW : v ∈ VN} be independent of each

other. One has by Assumption (A.1) that

|Var(ξcN,v + ξbN,v + ξN,v,MBRW)− VarϕN,v| ≤ 4α .
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Let aN,v be a sequence of numbers such that for all v ∈ BN/KL,i and all 1 ≤ i ≤ (KL)d,

Var(ξcN,v + ξbN,v + ξN,v,MBRW) + a2
N,v = VarϕN,v + 4α . (4.3)

(Here, the sequence aN,v implicitly depends on (KL).) It is clear that

max
v∈VN

aN,v ≤
√

8α . (4.4)

For v ∈ BN/KL,i and v ≡ v̄ mod K ′L′, one has

a2
N,v = VarϕN,v + 4α− VarϕKL,wi − VarϕK ′L′,v̄ − log( N

KLK ′L′ )

= logN − log(KL) + εN,KL,K ′L′ + 4α− VarϕK ′L′,v̄ − log( N
KLK ′L′ ) ≥ 0,

where, by Assumptions (A.2),

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

εN,KL,K ′L′ = 0 . (4.5)

Therefore, one can write

a2
N,v = a2

K ′,L′,v̄ + εN,KL,K ′L′ , (4.6)

where aK ′L′,v̄ depends on (K ′L′, v̄). By Assumption (A.2) and the continuity of f , one has

lim sup
(L,K,L′,K ′)⇒∞

sup
u,v:‖u−v‖∞≤L′

lim sup
N→∞

|Var ξbN,v − Var ξbN,u| = 0.

Therefore, we can further require that

|aK ′L′,v̄ − aK ′L′,ū| ≤ εN,KL,K ′L′ for all ‖v̄ − ū‖∞ ≤ L′ . (4.7)
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Let φj be i.i.d. standard Gaussian variables. For v ∈ BK ′L′,j and v ≡ v̄ mod K ′L′, define

ξN,v = ξcN,v + ξbN,v + ξN,v,MBRW + aK ′L′,v̄φj . (4.8)

It follows from (4.3) and (4.6) that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

|Var ξN,v − VarϕN,v − 4α| = 0 . (4.9)

Finally, we partition VN into a disjoint union of boxes of side length N/L which we denote

by BN/L = {BN/L,i : 1 ≤ i ≤ Ld}, as well as a disjoint union of boxes of side length L which

we denote by BL = {BL,i : 1 ≤ i ≤ (N/L)d}. Again, we denote by vN/L,i and vL,i the left

bottom corner of the boxes BN/L,i and BL,i, respectively.

For δ > 0 and any box B, denote by Bδ ⊆ B the collection of all vertices in B that are

δ`B away from its boundary ∂B (here `B is the side length of B). Let

V ∗N,δ = (∪iBδN/L,i) ∩ (∪iBδN/KL,i) ∩ (∪iBδL,i) ∩ (∪iBKL,i) .

One has |V ∗N,δ| ≥ (1− 100dδ)|VN |.

The following lemma suggests that {ξN,v : v ∈ VN} is a good approximation of {ϕN,v :

v ∈ VN}.

Lemma 4.1.1. Let Assumptions (A.1), (A.2) and (A.3) hold. Then there exist ε′N,K,L,K ′,L′ >

0 with lim sup(L,K,L′,K ′)⇒∞ lim supN→∞ ε′N,K,L,K ′,L′ = 0 , such that the following hold for

all u, v ∈ V ∗N,δ :

(a) If u, v ∈ BL′,i for some 1 ≤ i ≤ (N/L′)d, then |E(ξN,u − ξN,v)2 − E(ϕN,u − ϕN,v)2| ≤

ε′N,K,L,K ′,L′.

(b) If u ∈ BN/L,i, v ∈ BN/L,j with i 6= j, then |EξN,uξN,v − EϕN,vϕN,u| ≤ ε′N,K,L,K ′,L′.

(c) Otherwise, |EξN,uξN,v − EϕN,vϕN,u| ≤ 4 log(1/δ) + 40α.
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Proof. (a): Let i′ be such that BL′,i ⊆ BK ′L′,i′ . By (4.7) and (4.8), one has

|E(ξN,u − ξN,v)2 − E(ϕKL,u−vKL,i′ − ϕKL,v−vKL,i′ )
2| ≤ 4εN,KL,K ′L′ ,

where εN,KL,K ′L′ satisfies (4.5) (and was defined therein). By Assumption (A.2), one has

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

|E(ϕKL,u−vKL,i′ − ϕKL,v−vKL,i′ )
2 − E(ϕN,u − ϕN,v)2| = 0 .

Altogether, this completes the proof for (a).

(b): Let i′, j′ be such that u ∈ BN/KL,i′ and v ∈ BN/KL,j′ , and assume w.l.o.g. that

K ′ � L′ � K � L� 1/δ. The definition of {ξN,v} gives

EξN,vξN,u = EϕKL,wi′ϕKL,wj′

where wi′ =
vN/KL,i′
N/KL

and wj′ =
vN/KL,j′
N/KL

. In this case, we have |wi′ − wj′ | ≥ δK. Writing

xu = u/N, xv = v/N and yu = wi′/KL, yv = wj′/KL, one obtains

|yu − yv| ≥ δ/L, |xu − xv| ≥ δ/L, |xu − yu| ≤ 1/K, |xv − yv| ≤ 1/K .

Therefore, Assumption (A.3) yields

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

|EξN,uξN,v − EϕN,vϕN,u| = 0,

completing the proof of (b).
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(c). In this case, one has

EξN,vξN,u =EξcN,vξ
c
N,u + EξbN,vξ

b
N,u + EξN,u,MBRWξN,v,MBRW + err1

= logKL− log+(
|u−v|
N/KL

)

+ 1|u−v|≤N/KL(log N
(KLK ′L′) − log+

|u−v|
K ′L′ ) + err2

= logN − log+ |u− v|+ err2,

where |err1| ≤ 8α and |err2| ≤ 2 log 1/δ + 20α. Combined with Assumption (A.1), this

completes the proof of (c) and hence of the lemma.

Lemma 4.1.2. Let Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then,

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d(MN −mN , max
v∈VN

ξN,v −mN − 2α
√

2d) = 0 .

Proof. By Proposition 1.4.1, it suffices to show that for all δ > 0

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

lim sup
N→∞

d( max
v∈V ∗N,δ

ϕN,v −mN , max
v∈V ∗N,δ

ξN,v −mN − 2α
√

2d) = 0 .

Consider a fixed δ > 0. Let σ2
∗ = 4 log(1/δ) + 60α. Let σlw = (0,

√
σ2∗ + 4α) and σup =

(σ∗, 0). Define {ϕ̃N,L′,L,σlw,v
: v ∈ VN} as in (3.1) with r1 = L′, r2 = L and σ = σlw.

Analogously, define {ξ̃N,L′,L,σup,v : v ∈ VN}. By (4.8) and Lemma 4.1.1, one has for all

u, v ∈ V ∗N,δ,

|Var ϕ̃N,L′,L,σlw,v
− Var ξ̃N,L′,L,σup,v| ≤ ε̄N,K,L,K ′,L′ ,

Eξ̃N,L,σup,v ξ̃N,L,σup,u ≤ Eϕ̃N,L,σlw,vϕ̃N,L,σlw,u + ε̄N,K,L,K ′,L′ ,

where lim sup(L,K,L′,K ′)⇒∞ lim supN→∞ ε̄N,K,L,K ′,L′ = 0. Since {ϕ̃N,L′,L,σlw,v
: v ∈ V ∗N,δ}

satisfies Assumption (A.1) with α being replaced by 10α+ σ2
∗, one may apply Lemma 3.0.3
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and obtain that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d̃( max
v∈V ∗N,δ

ϕ̃N,L′,L,σlw,v
−mN , max

v∈V ∗N,δ
ξ̃N,L′,L,σup,v −mN ) = 0 .

By Lemma 3.0.2 (it is clear that the same statement holds for maximum over V ∗N,δ), one

gets

lim sup
(L,K,L′,K ′)⇒∞

lim
N→∞

d( max
v∈V ∗N,δ

ϕ̃N,L′,L,σlw,v
−mN − (σ2

∗ + 4α)

√
d
2 , max
v∈VN,δ∗

ϕN,v −mN ) = 0,

lim sup
(L,K,L′,K ′)⇒∞

lim
N→∞

d( max
v∈V ∗N,δ

ξ̃N,L′,L,σup,v −mN − (σ2
∗)
√

d
2 , max
v∈VN,δ∗

ξN,v −mN ) = 0 .

Altogether, this gives that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d̃( max
v∈V ∗N,δ

ϕN,v −mN , max
v∈V ∗N,δ

ξN,v −mN − 2α
√

2d) = 0 .

The other direction of stochastic domination follows in the same manner. Altogether, this

completes the proof of the lemma.

4.2 Convergence in law for the centered maximum

In light of Lemma 4.1.2, in order to prove Theorem 4.0.4 it remains to show the convergence

in law for the centered maximum of {ξN,v : v ∈ VN}. To this end, we will follow the proof

of the convergence in law in the case of the 2D DGFF given in [12]. Let the fine field be

defined as ξ
f
N,v = ξN,v − ξcN,v, and note that it implicitly depends on K ′L′. As in [12], a

key step in the proof of convergence of the centered maximum is the following sharp tail

estimate on the right tail of the distribution of maxv∈B ξ
f
N,v for B ∈ BN/KL. The proof of

this estimate is postponed to Section 4.4.

Proposition 4.2.1. Let Assumptions (A.1), (A.2) and (A.3) hold. Then there exist con-
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stants Cα, cα > 0 depending only on α and constansts cα ≤ β∗K ′,L′ ≤ Cα such that

lim
z→∞

lim sup
L′→∞

lim sup
K ′→∞

lim sup
N→∞

|z−1e
√

2dzP( max
v∈BN/KL,i

ξ
f
N,v ≥ mN/KL+z)−β∗K ′,L′| = 0. (4.10)

Remark 4.2.2. Proposition 4.2.1 is analogous to [12, Proposition 4.1], but there are two

important differences:

1. In Proposition 4.2.1 the convergence is to a constant β∗K ′,L′ which depends on K ′, L′,

while in [12, Proposition 4.1] the convergence is to an absolute constant α∗. This is

because the fine field ξN,v here implicitly depends on K ′, L′, and thus a priori one is

not able to eliminate the dependence on (K ′, L′) from the limit. However, in the same

spirit as in [12], the dependence on (K ′, L′) is not an issue for deducing a convergence

in law — the crucial requirement is the independence of N . Eventually, we will deduce

the convergence of β∗K ′,L′ as K ′, L′ →∞ in that order from the convergence in law of

the centered maximum.

2. In [12, Proposition 4.1], one also controls the limiting distribution of the location of

the maximizer while in Proposition 4.2.1 this is not mentioned. This is because in the

current situation and unlike the construction in [12], the coarse field {ξcN,v} is constant

over each box BN/KL,i, and thus the location of the maximizer of the fine field in each

of the boxes BN/KL,i is irrelevant to the value of the maximum for {ξN,v}.

Next, we construct the limiting law of the centered maximum of {ξN,v : v ∈ VN}. We

partition [0, 1]d into R = (KL)d disjoint boxes of equal sizes. Let β∗K ′,L′ be as defined in the

statement of Proposition 4.2.1. By that proposition, there exists a function γ : R 7→ R that

grows to infinity arbitrarily slowly (in particular, we may assume that γ(x) ≤ log log log x)

such that

lim
z′→∞

limL′ limK ′ limN sup
z′≤z≤γ(K ′L′)

|z−1e
√

2dzP( max
v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z)−β∗K ′,L′| = 0,
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with each of the limsups with respect to the corresponding independent variables tending

to infinity.

Let {%R,i}Ri=1 be independent Bernoulli random variables with

P(%R,i = 1) = β∗K ′,L′γ(KL)e−
√

2dγ(KL) .

In addition, consider independent random variables {YR,i}Ri=1 such that

P(YR,i > x) =
γ(KL)+x
γ(KL)

e−
√

2dx x > 0. (4.11)

Let {ZR,i : 1 ≤ i ≤ R} be an independent Gaussian field with covariance matrix Σ (recall

that Σ is of dimension R×R). We then define

G∗K,L,K ′,L′ = max
1≤i≤R,%R,i=1

GR,i where GR,i = %R,i(YR,i + γ(KL)) + ZR,i −
√

2d log(KL)

(here we use the convention that max ∅ = 0). Let µ̄K,L,K ′,L′ be the distribution ofG∗K,L,K ′,L′ .

We note that µ̄K,L,K ′,L′ does not depend on N .

Theorem 4.2.3. Let Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then,

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

d(µN , µ̄K,L,K ′,L′) = 0, (4.12)

where µN is the law of maxv∈VN ξN,v −mN .

(Note that µN does depend on KL,K ′L′.)

Proof of Theorem 4.0.4. Theorem 4.0.4 follows from Lemma 4.1.2 and Theorem 4.2.3.

Next, we give the proof of Theorem 4.2.3. Our proof is conceptually simpler than that

of its analogue [12, Theorem 2.4], since our coarse field is constant over a box of size N/KL

(and thus no consideration of the location for the maximizer in the fine field is needed).
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Proof of Theorem 4.2.3. Denote by τ = arg maxv∈VN ξN,v. Applying Theorem 2.0.4 to the

Gaussian fields {ξN,v : v ∈ VN} and {ξcN,v : v ∈ VN} (where the maximum of {ξcN,v :

v ∈ VN} is equivalent to the maximum of a log-correlated Gaussian field in a KL-box), we

deduce that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P(ξ
f
N,τ ≥ mN/KL + γ(KL) + 1) = 1 . (4.13)

Therefore, in what follows, we assume w.l.o.g. the occurrence of the event

{ξfN,τ ≥
√

2d log N
KL −

3
2
√

2d
log log N

KL + γ(KL) + 1} .

Let E = ∪1≤i≤R{maxv∈BN/KL,i ξ
f
N,v ≥ mN/KL + KL + 1}. A simple union bound over i

gives that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P(E) = 0 . (4.14)

Thus in what follows we assume without loss that E does not occur. Analogously, we let

E ′ = ∪1≤i≤R{YR,i ≥ KL+ 1− γ(KL)}. We see from the union bound that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P(E ′) = 0 . (4.15)

In what follows, we assume without loss that E ′ does not occur.

For convenience of notation, we denote by

M
f
N,i = max

v∈BN/KL,i
ξ
f
N,v − (mN/KL + γ(KL)) .

By Proposition 4.2.1, there exists ε∗ = ε∗(N,K,L,K ′, L′) with

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

ε∗(N,K,L,K ′, L′) = 0 ,
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such that for some |ε�| ≤ ε∗/4

P(ε� ≤M
f
N,i ≤ KL− γ(KL) + 1) = P(%R,i = 1, YR,i ≤ KL− γ(KL) + 1) ,

and that for all −1 ≤ t ≤ KL− γ(KL) + 1

P(%R,i=1, YR,i ≤ t− ε∗/2) ≤ P(ε� ≤M
f
N,i ≤ t) ≤ P(%R,i=1, YR,i ≤ t+ ε∗/2) .

Therefore, there exists a coupling between {Mf
N,i : 1 ≤ i ≤ R} and {%i, YR,i : 1 ≤ i ≤ R}

such that on the event (E ∪ E ′)c,

%R,i = 1, |YR,i −M
f
N,i| ≤ ε∗ if M

f
N,i ≥ ε∗ , and |YR,i −M

f
N,i| ≤ ε∗ if %R,i = 1 . (4.16)

In addition, it is trivial to couple such that ξcN,v = ZR,i for all v ∈ BN/KL,i and 1 ≤ i ≤ R.

Also, notice the following simple fact

lim sup
L→∞

lim sup
K→∞

lim sup
N→∞

(mN −mN/KL −
√

2d log(KL)) = 0 .

Altogether, we conclude that there exists a coupling such that outside an event of probability

tending to 0 as N →∞ and then (L,K,L′, K ′)⇒∞ (c.f. (4.13), (4.14), (4.15)) we have

max
v∈VN

(ξN,v −mN )−G∗K,L,K ′,L′ ≤ 2ε∗ .

Now, let τ ′ = arg max1≤i≤RGR,i. Applying Theorem 2.0.4 to the Gaussian field {ZR,i} and

using the preceding inequality, we see that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

P(%R,τ ′ = 1) = 1 . (4.17)

Combined with (4.16), this yields that there exists a coupling such that except with proba-
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bility tending to 0 as N →∞ and then (L,K,L′, K ′)⇒∞ we have

| max
v∈VN

(ξN,v −mN )−G∗K,L,K ′,L′| ≤ 2ε∗ .

thereby completing the proof of Theorem 4.2.3.

Proof of Theorem 4.0.5. Recall that G∗K,L,K ′,L′ is a random variable with law µ̄K,L,K ′,L′ .

We will construct random variables ZK,L, measurable with respect to Fc := σ({ZR,i}), so

that

lim sup
(L,K,L′,K ′)⇒∞

µ̄K,L,K ′,L′((−∞, x])

E(e
−β∗

K′,L′ZK,Le−
√

2dx

)

= lim inf
(L,K,L′,K ′)⇒∞

µ̄K,L,K ′,L′((−∞, x])

E(e
−β∗

K′,L′ZK,Le−
√

2dx

)

= 1 . (4.18)

for all x. To demonstrate (4.18), due to (4.17), we may and will assume without loss that

%R,τ ′ = 1. Define SR,i :=
√

2d log(KL)− ZR,i. Then, for any real x,

P(G∗K,L,K ′,L′ ≤ x) = E

 R∏
i=1

(
1− P(%R,iYR,i > SR,i + x− γ(KL) | Fc)

) . (4.19)

In addition, the union bound gives that

lim sup
KL→∞

P(D) = 1 where D = { min
1≤i≤R

SR,i ≥ 2γ(KL)} .

So in the sequel we assume that D occurs. By the definition of %R,i and YR,i, we get that

P(%R,iYR,i > SR,i + x− γ(KL) | Fc) = β∗K ′,L′(SR,i + x)e−
√

2d(SR,i+x) → 0 as KL→∞ .

Therefore,

exp(−(1 + εK,L)β∗K ′,L′SR,ie
−
√

2d(x+SR,i)) ≤ P(%R,iYR,i ≤ SR,i + x− γ(KL) | Fc)

≤ exp(−(1− εK,L)β∗K ′,L′SR,ie
−
√

2d(x+SR,i)) , (4.20)
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for εK,L > 0 with

lim sup
KL→∞

εK,L = 0.

Define ZK,L =
∑R
i=1 SR,ie

−
√

2dSR,i (this is the analogue of a derivative martingale, see

(4.1)). Substituting (4.20) into (4.19) completes the proof of (4.18). Now, combining (4.18)

and Theorem 4.2.3, we see that we necessarily have

lim sup
K ′→∞

lim sup
L′→∞

|β∗K ′,L′ − β
∗| = 0

for a number β∗ that does not depend on (K ′, L′). Plugging the preceding inequality into

(4.18), we deduce that

lim sup
(L,K,L′,K ′)⇒∞

µ̄K,L,K ′,L′((−∞, x])

E(e−β
∗ZK,Le−

√
2dx

)
= lim inf

(L,K,L′,K ′)⇒∞

µ̄K,L,K ′,L′((−∞, x])

E(e−β
∗ZK,Le−

√
2dx

)
= 1 . (4.21)

Combining (4.21) with Theorem 4.2.3 again, we see that ZK,L converges weakly to a random

variable Z as K →∞ and then L→∞. Also note that ZK,L depends only on the product

KL. Therefore, this implies that ZN converges weakly to a random variable Z. From the

tightness of the laws µ̄K,L,K ′,L′ , it follows that Z > 0 a.s. This completes the proof of

Theorem 4.0.5.

Proof of Remark 4.0.7. Consider two sequences {ϕN,v} and {ϕ̃N,v} that satisfy assump-

tions (A.0)–(A.3) with the same functions h(x, y) and f(x) but possibly different functions

g(u, v), g̃(u, v) and different constants α(δ), α(δ),′ and α0, α
′
0. Introduce the corresponding

fields

ξN,KL,K ′L′ = ξcN,KL,K ′L′ + ξ
f
N,KL,K ′L′ , ξ̃N,KL,K ′L′ = ξ̃cN,KL,K ′L′ + ξ̃

f
N,KL,K ′L′ ,
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see Section 4.1. Set also

ξ̂N,KL,K ′L′ = ξ̃cN,KL,K ′L′ + ξ
f
N,KL,K ′L′ .

Let νN , ν̃N denote the laws of the centered maxima maxv∈VN ϕN,v −mN , maxv∈VN ϕ̃N,v −

m̃N , and let µN , µ̃N , µ̂N denote the laws of the centered maxima of the ξN , ξ̃N , ξ̂N fields.

(Recall that the latter depend also on KL,K ′L′ but we drop that fact from the notation.)

By Lemma 4.1.2, we have

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

(d(µN , νN ) + d(µ̃N , ν̃N )) = 0 . (4.22)

For s ∈ R, let θsµ denote the shift of a probability measure µ on R, that is θsµ(A) =

µ(A+s) for any measurable set A. Recall the construction of µ̄K,L,K ′,L′ , see Theorem 4.2.3,

and construct similarly µ̃K,L,K ′,L′ and µ̂K,L,K ′,L′ . Note that, by construction, there exists

s = s(KL), bounded uniformly in KL, so that θsµ̂K,L,K ′,L′ = µ̃K,L,K ′,L′ . In particular,

from Theorem 4.2.3 we get that

lim sup
(L,K,L′,K ′)⇒∞

lim sup
N→∞

(
d(µN , µ̄K,L,K ′,L′) + d(µ̃N , θsµ̂K,L,K ′,L′)

)
= 0 . (4.23)

From (4.22) and (4.23), one can find a sequence L(N), K(N), K ′(N), L′(N) along which the

convergence still holds (as N → ∞). Let {ηv,N} and {η̂v,N} denote the fields {ξv,N} and

{ξ̂v,N} with this choice of parameters, and let µ̄N and µ̂N denote the corresponding laws

of the maximum. Let µ∞, µ̃∞ denote the limits of µN and µ̃N , which exist by theorem

4.0.4. From the above considerations we have that µ̄N → µ∞ and θs(N)µ̂N → µ̃∞. On

the other hand, the fields ηN,· and η̂N,· both satisfy assumptions (A.0)-(A.3) with the same

functions f, g, h and thus, interleaving between then one deduces that the laws of their

centered maxima converge to the same limit, denoted Θ∞. It follows that necessarily, s(N)

converges and µ∞ = θsµ̃∞ = Θ∞. Using the characterization in Theorem 4.0.5, this yields
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the claim in the remark.

4.3 An example: the circular logarithmic REM

In the important paper [23], the authors introduce a one dimensional logarithmically cor-

related Gaussian field, which they call the circular logarithmic REM (CLREM). Fyodorov

and Bouchaud consider the CLREM as a prototype for Gaussian fields exhibiting Carpentier-

LeDoussal freezing. (We do not discuss here the notion of freezing, referring instead to [23]

and to [33].) Explicitly, fix an integer N , set θk = 2πk/N , and introduce the matrix

Rk,` = −1

2
log

(
4 sin2

(
θk − θ`

2

))
1k 6=` + (logN +W )1k=` ,

where W is a constant independent on N . It is not hard to verify (and this is done explicitly

in [23]) that one can choose W so that the matrix R is positive definite for all N ; the

resulting Gaussian field ϕN,v with correlation matrix R is the CLERM. One may think of

the CLREM as indexed by VN in dimension d = 1, or (as the name indicates) by an equally

spaced collection of N points on the unit circle in the complex plane.

Let MN = maxv∈VN ϕN,v. The following is a corollary of Theorems 2.0.4 and 4.0.5.

Corollary 4.3.1. EMN =
√

2 logN − (3/2
√

2) log logN + O(1) and there exist a constant

β∗ and a random variable Z so that

lim
N→∞

P(MN − EMN ≤ x) = E(e−β
∗Ze−

√
2x

) . (4.24)

Proof. Assumptions (A.0) and (A.1) are immediate to check. An explicit computation reveals

that Assumption (A.2) holds with f(x) = 0 and

g(u, v) =

 −W, u = v

log(4π) + |u− v|, u 6= v
.
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Finally, it is clear that Assumption (A.3) holds with h(x, y) = log(4 sin2(2π|x− y|)). Thus,

Theorems 4.0.4 and 4.0.5 apply and yields (4.24).

Remark 4.3.2. Remarkably, in [23] the authors compute explicitly, albeit non-rigorously,

the law of the maximum of the CLREM, up to a deterministic shift that they do not compute.

It was observed in [33] that the law computed in [23] is in fact the law of a convolutions of

two Gumbel random variables. In the notation of Corollary 4.3.1, this means that one expects

that 2−1/2 log(β∗Z) is Gumbel distributed. We do not have a rigorous proof for this claim.

4.4 Precise estimate of right tail

Our proof of Proposition 4.2.1 is highly similar to the proof in [12, Proposition 4.1], but

simpler in a number of places. We will sketch the outline of the arguments, and refer to [12]

extensively (it is helpful to recall Remark 4.2.2). To start, we note that by Lemmas 2.0.6

and 2.2.1, there exists cα > 0 depending only on α such that

P( max
v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z) ≥ cαze

−
√

2dz for all 1 ≤ z ≤
√

logN/KL, 1 ≤ i ≤ (KL)d .

(4.25)

In addition, adapting the proof of (1.2), we deduce that there exists Cα > 0 depending only

on α such that

P( max
v∈BN/KL,i

ξ
f
N,v ≥ mN/KL + z) ≤ Cαze

−
√

2dz for all z ≥ 1, 1 ≤ i ≤ (KL)d . (4.26)

Recall the definition of {ξN,v} as in (4.8). In what follows we consider a fixed i and

a box BN/KL,i. We note that the law of the fine field {ξfN,v : v ∈ BN/KL,i} does not

depend on K,L, i, and hence β∗K ′,L′ does not depend on K,L, i. Write N̄ = N/KL = 2n̄

and L̄ = K ′L′ = 2
¯̀
. For convenience of notation, we will refer to the box BN/KL,i as VN̄

and let ΞN̄ be the collection of all left bottom corners of L̄-boxes of form BL̄,j in BN/KL,i.

In addition, write n∗ =
VarXv,N

log 2 = n̄− ¯̀, where we denote Xv,N = ξN,v,MBRW.
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For convenience, we now view each Xv,N as the value at time n∗ of a Brownian motion

with variance rate log 2. More precisely, we assign to each Gaussian variable bNj,B in (4.2)

an independent Brownian motion, with variance rate log 2, that runs for 2−2j time units

and ends at the value bNj,B . We now define a Brownian motion {Xv,N (t) : 0 ≤ t ≤ n∗} by

concatenating each of the previous Brownian motions associated with v ∈ ΞN̄ , with earlier

times corresponding to larger boxes. From our construction, we see that Xv,N (n∗) = Xv,N .

We partition VN̄ into disjoint L̄-boxes, for which we denote BL̄. Further, denote by Bv the

L̄-box in BL̄ that contains v. Define

Ev,N (z) = {Xv,N (t) ≤ z +
mN̄

n̄
t for all 0 ≤ t ≤ n∗, and max

u∈Bv
ξ
f
u,N ≥ mN̄ + z} ,

Fv,N (z) = {Xv,N (t) ≤ z +
mN̄

n̄
t+ 10(log(t ∧ (n∗ − t)))+ + z1/20

for all 0 ≤ t ≤ n∗, and max
u∈Bv

ξ
f
u,N ≥ mN̄ + z} ,

GN (z) =
⋃

v∈ΞN̄

⋃
0≤t≤n∗

{Xv,N (t) > z +
mN̄

n̄
t+ 10(log(t ∧ (n∗ − t)))+ + z1/20} .

(4.27)

Also define

ΛN̄ ,z =
∑
v∈ΞN̄

1Ev,N (z) , and ΓN̄ ,z =
∑
v∈ΞN̄

1Fv,N (z) .

In words, the random variable ΛN,z counts the number of boxes in BL̄ whose “backbone”

path Xv,N (·) stays below a linear path connecting z to roughly mN̄ + z, so that one of its

“neighbors” achieves a terminal value that is at least mN̄ + z; the random variable ΓN,z

similarly counts boxes in BL̄ whose backbone is constrained to stay below a slightly “upward

bent” curve. Clearly, Ev,N (z) ⊆ Fv,N (z) always holds, as does ΛN̄ ,z ≤ ΓN̄ ,z.

By (4.8), for each v ∈ ΞN̄ we can write that

max
u∈Bv

ξ
f
N,v = Xv,N + Yv,N , (4.28)

where {Yv,N} are i.i.d. random variables with the same law as maxu∈VL̄ ϕL̄,u+aK,L,K ′,L′,uφ
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where φ is a standard Gaussian variable. Crucially, the law of Yv,N does not depend on N .

In addition, by Proposition 1.4.1 and Lemma 2.0.6, there exist Cα depending only on α such

that

P(Yv,N ≥ mL̄ + λ) ≤ Cαλe
−
√

2dλe−C
−1
α λ2/¯̀

for all λ ≥ 1 . (4.29)

When estimating the ratio
ΛN̄,z
ΓN̄,z

, it is clear that
ΛN̄,z
ΓN̄,z

=
P(Ev,N (z))

P(Fv,N (z))
for any fixed v ∈ ΞN̄ ,

where the latter concerns only the associated Brownian motion to Xv,N and the random

variable Yv,N . As such, the arguments in [12, Lemma 4.10] carry out with merely notation

change and give that

lim
z→∞

lim sup
L̄→∞

lim sup
N→∞

ΛN̄ ,z
ΓN̄ ,z

= 1 . (4.30)

Analogous to the proof of [12, Equation (100)], we can compare the field {Xv,N} to a

BRW and apply [12, Lemma 3.7] to obtain that

P(GN (z)) ≤ Cαe
−
√

2dz . (4.31)

Note that the dimension does not play a significant role in these estimates, as [12, Lemma

3.7] follows from a union bound calculation. The dimension changes the volume of the box,

but the probability

P(Xv,N (t) > z +
mN̄

n̄
t+ 10(log(t ∧ (n∗ − t)))+ + z1/20)

scales in the dimension (recall that mN depends on d) which exactly cancels the growth of

the volume in d.

The next desired ingredient is the second moment computation for ΛN̄ ,z. Note that (i)

our field {Xv,N : v ∈ ΞN̄} is simply an MBRW (so {Xv,N} is nicer than its analog in [12],

which is a sum of an MBRW and a field with uniformly bounded variance); (ii) our {Yv,N}

are i.i.d. random variable with desired tail bounds as in (4.28) (so also nicer than its analog

in [12], which has weak correlation for two neighboring local boxes). Therefore, the second

56



moment computation in [12, Lemma 4.11] carries out with minimal notation change and

gives

lim
z→∞

lim sup
L̄→∞

lim sup
N→∞

E(ΛN̄ ,z)
2

EΛN̄ ,z
= 1 . (4.32)

Note that in [12, Equation (90)], there is no analog of lim supL̄→∞ as in the preceding

inequality. That’s because we have assumed in [12] that L ≥ 22z
4

. Our statement as in

(4.32) is weaker as it does not give a quantitative dependance on how L̄ should grow in z.

But this detailed quantitative dependence is not needed for the proof of convergence in law.

Combining (4.25), (4.30), (4.31) and (4.32), we deduce that

lim
z→∞

lim sup
L̄→∞

lim sup
N→∞

∣∣∣P(maxv∈VN̄ ξ
f
N,v ≥ mN̄ + z)

EΛN̄ ,z
− 1
∣∣∣ = 0 . (4.33)

Therefore, it remains to estimate EΛN̄ ,z. To this end, we will follow [12, Section 4.3]. We

first note that by (4.25) and (4.33), we have

lim
z→∞

lim sup
L̄→∞

lim sup
N→∞

EΛN̄ ,z

ze−
√

2dz
≥ cα , (4.34)

where cα > 0 is a constant depending on α.

The main goal is to derive the asympototics for EΛN̄ ,z. For v ∈ ΞN̄ , let νv,N̄ (·) be the

density function (of a sub-probability measure on R) such that, for all I ⊆ R,

∫
I
νv,N̄ (y)dy = P(Xv,N (t) ≤ z +

mN̄

n̄
t for all 0 ≤ t ≤ n∗;Xv,N (n∗)− (n̄− ¯̀)mN̄/n̄ ∈ I) .

Clearly, by (4.28),

P(Ev,N (z)) =

∫ z

−∞
νv,N̄ (y)P(Yv,N ≥ ¯̀mN̄/n̄+ z − y)dy .
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For a given interval J , define

λv,N,z,J =

∫
J
νv,N̄ (y)P(Yv,N ≥ ¯̀mN̄/n̄+ z − y)dy . (4.35)

Set J¯̀ = [−¯̀,−¯̀2/5]. For convenience of notation, we denote by A . B that there exists

a constant Cα > 0 that depends only on α such that A ≤ CαB for two functions/sequences

A and B. As in [12, Lemma 4.13], we claim that for any any sequences xv,N such that

|xv,N | . ¯̀1/5,

lim
z→∞

lim inf
¯̀→∞

lim inf
N→∞

∑
v∈ΞN

λv,N,z,xv,N+J¯̀

EΛN,z
= 1 . (4.36)

Note that, by containment, the above ratio is always at most 1. We prove (4.36) for the

case when xv,N = 0; the general case follows in the same manner. Application of the

reflection principle (c.f. [12, Equation (28)]) to the Brownian motion with drift, X̄v,N (·) =

Xv,N (·)−mN̄ t/n̄, together with the change of measure that removes the drift mN̄ t/n̄, implies

that

νv,N̄ (y) . e−
√

2dy2−dn
∗
z|y| ,

for y ≤ −¯̀, over the given range z ∈ (0, ¯̀) (which implies z − y � |y|). Together with (4.29)

and independence among Yv,N for v ∈ ΞN̄ , this implies the crude bound

∫ −`
−∞

νv,N̄ (y)P(Yv,N ≥ ¯̀mN̄/n̄+ z − y)dy . 2−dn
∗
e−C

−1
α

¯̀

for a constant Cα > 0 depending on α. Similarly, for y ≤ z (and therefore, for z − y ≥ 0),

application of the reflection principle and (4.29) again implies that

∫ z

−¯̀2/5
νv,N̄ (y)P(Yv,N ≥ ¯̀mN̄/n̄+ z − y)dy . 2−dn

∗ ¯̀−3/10ze−
√

2dz .

Together with (4.34), this completes the verification of (4.36).
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Next, we claim that there exists Λ∗K ′,L′,z > 0 that does not depend on N such that,

lim
z→∞

lim sup
L̄→∞

lim sup
N→∞

EΛN,z
Λ∗
K ′,L′,z

= lim
z→∞

lim inf
L̄→∞

lim inf
N→∞

EΛN,z
Λ∗
K ′,L′,z

= 1 . (4.37)

By the reflection principle and change of measure, we get that for all y ∈ [−¯̀, z] (see the

derivation of [12, Equation (107)])

νv,N̄ (y) = 2−dn
∗
e−
√

2dy z(z − y)√
2π log 2

(1 +O(¯̀3/n̄)) . (4.38)

Therefore,

∑
v∈ΞN̄

λv,N,z,J¯̀ = (
N̄

L̄
)d
∫
J¯̀

νv0,N̄
(y +O(¯̀/

√
n̄))P(Yv0,N ≥

√
2d log 2 · ¯̀+ z − y)dy

= (1 +O(¯̀3/
√
n̄))

∫
J¯̀

z(z − y)
√

2π log 2e
√

2dy
P(Yv0,N ≥

√
2d log 2 · ¯̀+ z − y)dy ,

where v0 is any fixed vertex in ΞN̄ and in the last step we have used the fact that n∗ = n̄− ¯̀.

Recall that the law of Yv0,N is the same as maxu∈VL̄ ϕL̄,u+aK ′,L′,uφ, which does not depend

on N . Combined with (4.36), this completes the proof of (4.37).

Finally, we analyze how EΛN,z scales with z. To this end, consider z1 < z2. For v ∈ ΞN

and j = 1, 2, recall that

λv,N,zj ,zj+J¯̀ =

∫
J¯̀+zj

νv,N̄ (y)P(Yv,N ≥ `mN̄/n̄+ zi − y)dy .
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By (4.38), for any y ∈ J¯̀ and z1, z2 � log ¯̀,

νv,N̄ (y + z1)P(Yv,N ≥ ¯̀mN̄/n̄− y)

νv,N̄ (y + z2)P(Yv,N ≥ ¯̀mN̄/n̄− y)

=
νv,N̄ (y + z1)

νv,N̄ (y + z2)
= (1 +O(¯̀3/n̄))

z1(z1 − y)

z2(z2 − y)
e−
√

2π(z1−z2)

= (1 +O(¯̀3/n̄))
z1

z2
e−
√

2d(z1−z2)(1 + z
−3/5
2 ) .

This implies that

λv,N,z1,z1+J¯̀

λv,N,z2,z2+J¯̀

= (1 +O(¯̀3/n̄))
z1

z2
e−
√

2π(z1−z2)(1 + z
−3/5
2 ) .

Together with (4.36), the above display implies that

lim
z1,z2→∞

lim sup
L̄→∞

lim sup
N→∞

z2e
−
√

2πz2EΛN,z1

z1e−
√

2πz1EΛN,z2

= lim
z1,z2→∞

lim inf
L̄→∞

lim inf
N→∞

z2e
−
√

2πz2EΛN,z1

z1e−
√

2πz1EΛN,z2

= 1 .

Along with (4.37), this completes the proof of (4.10) for some β∗K ′,L′ . From (4.25) and (4.26),

we see that cα ≤ β∗K ′,L′ ≤ Cα for all K ′, L′. This completes the proof of the proposition.
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CHAPTER 5

D-ARY TREE PRESSED AGAINST A HARD WALL

Let us consider a d-ary tree of n levels and call it Tn. We define a tree indexed Gaussian

process which we call a branching random walk on Tn and denote it by {φnv : v ∈ Tn}. The

covariance structure of this Gaussian process is given by the following

Varφnv = n for all v ∈ Tn

Cov(φnu, φ
n
v ) = n− dT (u, v) for all u 6= v ∈ Tn .

(5.1)

where dT denotes the tree distance.

We wish to find bounds on the order of the probability of a branching random walk being

positive at all vertices. We also want to compute the expected value of a typical vertex under

the condition that it is positive everywhere. The behavior that we are considering is that of

entropic repulsion for this Gaussian field. This is its behavior of drifting away when pressed

against a hard wall so as to have enough room for local fluctuations. This phenomenon has

been discussed in [28].

We are interested in P(φnv ≥ 0 ∀v ∈ Tn) as well as E(φnu | φnv ≥ 0 ∀v ∈ Tn) and

Var(φnu | φnv ≥ 0 ∀v ∈ Tn). We know from [34] that E(maxv∈Tn φv) is of the form c1n −

c2 log n+O(1). Let us first define mn to be equal to c1n− c2 log n. In [9] it has been shown

that the conditional expectation under positivity is roughly close to the expected maximum

for the discrete GFF in 2 dimensions. Here we show that for a branching random walk the

conditional expectation is at least a constant times log n less than the expected maximum.

This is the first such result along the direction of extropic repulsion in case of a Gaussian

field. The main result of this chapter is:

Theorem 5.0.1. There exists positive numbers a, b, a < b such that for all v ∈ Tn,

mn − b log n+O(1) ≤ E(φnu | φnv ≥ 0 ∀v ∈ Tn) ≤ mn − a log n+O(1).
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The approach that we take for proving this is that we raise the average value of the

Gaussian process and then multiply a compensation probability to that. We optimize this

average value so as to maximize the probability of positivity. The value at which this

probability is maximized should ideally be the required conditional expectation.

In order to prove this in details, we invoke a new model called the switching sign branching

random walk, which is similar in structure to the original branching random walk. We begin

our calculations with a preliminary upper bound on the left tail of the maxima of the BRW

in Section 5.1. Section 5.2 contains the definition of the new model switching sign branching

random walk followed by a comparison of positivity for the branching random walk with this

model using Slepian’s lemma. A left tail computation for the maximum of this model gives

us the order of positivity of for the branching random walk which is the concluding result of

Section 5.3. Section 5.4 contains the proof of the main theorem of this chapter. The upper

bound follows from Section 5.2, while for the lower bound we further have to invoke the

Bayes’ rule and tail estimates to arrive at our result. Throughout the chapter we will use

dT to denote the tree distance. Let us call the event {φnv ≥ 0 ∀v ∈ Tn} as Λ+
n . First let us

consider the sum of all the Gaussian variables at the level n and term it Sn. In mathematical

terms Sn =
∑
v:v∈Tn φ

n
v , where the sum contains dn terms.

5.1 Left tail of maximum of BRW

This section is dedicated to proving an exponential upper bound on the left of the maxima

of a BRW.

Lemma 5.1.1. There exists constants C̄, c∗ > 0 such that for all n ∈ N and 0 ≤ λ ≤

(log n)2/3,

P(max
v∈Tn

φnv 6 mn − λ) ≤ C̄e−c
∗λ (5.2)

Proof. From [34, Section 2.5] we have tightness for {maxv∈Tn φ
n
v −mn}n∈N. So there exists
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β > 0 such that for all n ≥ 2,

P(max
v∈Tn

φnv > mn − β) > 1/2. (5.3)

Further, we also have that for some κ > 0 and for all n ≥ n′ ≥ 2

√
2d(n− n′)− 3

4d
log(n/n′)− κ 6 mn −mn′ 6

√
2d(n− n′) + κ. (5.4)

Now let us fix λ′ = λ/2 and n′ = n− 1√
2d

(λ′ − β − κ− 4). From (5.4) it follows then that

mn −mn′ 6 λ′ − β. Consider a tree of height n and look at its subtrees at height n − n′,

which are individually trees of height n′. The total number of subtrees we have is dn−n
′
.

Let us call them {T (1)
n′ , T

(2)
n′ , . . . , T

(dn−n
′
)

n′ }. Now for all v ∈ Tn, we define

φ̄nv = gn
′
v + φ,

where gnv are the BRWs obtained by adding the Gaussians for the edges only in the subtrees

of height n′, and φ is a Gaussian of mean 0 and variance n− n′. Clearly

Varφnv = Var φ̄nv and Eφnvφnu ≤ Eφ̄nv φ̄nu ∀u 6= v ∈ Tn.

So by Lemma 2.2.1, we have

P(max
v∈Tn

φnv ≤ t) ≤ P(max
v∈Tn

φ̄nv ≤ t) ∀ t ∈ R. (5.5)

Using (5.3) and (5.4), one has for all i ∈ {1, 2, . . . , dn−n′},

P( sup

v∈T (i)

n′

gn
′
v ≥ mn − λ′) = P( sup

v∈T (i)

n′

gn
′
v ≥ mn′ +mn −mn′ − λ′)

≥ P( sup

v∈T (i)

n′

gn
′
v ≥ mn′ − β) ≥ 1/2
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and so P(supv∈Tn g
n′
v < mn − λ′) ≤ (1

2)d
n−n′

.

Therefore,

P( sup
v∈Tn

φ̄nv ≤ mn − λ) ≤ P( sup
v∈Tn

gn
′
v < mn − λ′) + P(φ ≤ −λ′) ≤ C̄e−c

∗λ,

for some C̄, c∗ > 0. Now in conjunction with (5.5), the lemma is proved.

5.2 Switching Sign Branching Random Walk

At this juncture we start defining a new Gaussian process on the tree, which we call the

switching sign branching random walk. This was used to approximate the branching random

walk in [18] in case of a 4-ary tree. We have generalized the process for a d-ary tree. The

switching sign branching random walk consists of two parts, one that varies across vertices,

and the other that is fixed over vertices. The first part of the process, which is not fixed over

vertices, is different from the normal branching random walk in the sense that instead of the

d-edges coming out of it being associated to independent normal random variables, they are

associated to linear combinations of d− 1 independent Gaussians, such that the covariance

between any two of them is the same, and all of them add up to zero. The existence of this

is guaranteed by the following Lemma.

Lemma 5.2.1. There exists A ∈ R(d−1)×(d−1) such that for X ∼ N(0, σ2I(d−1)×(d−1)),

the covariance matrix of AX has all its diagonal entries to be σ2 and all its off-diagonal

entries to be equal(say b). Further Var(1TAX) = σ2 and Cov(−1TAX, (AX)i) = b for all

i ∈ {1, 2, . . . , d− 1}.

Proof. We know that the covariance matrix for AX is AAT . Further from the condition that
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Var(1TAX) = σ2 we get that b = − σ2

d−1 . So in order for A to exist we must have

AAT = σ2



1 − 1
d−1 − 1

d−1 . . . − 1
d−1

− 1
d−1 1 − 1

d−1 . . . − 1
d−1

...
...

...
. . .

...

− 1
d−1 − 1

d−1 − 1
d−1 . . . 1


(d−1)×(d−1)

.

Since the matrix on the right hand side is a symmetric matrix with non-negative eigenvalues,

so by Cholesky decomposition we obtain the existence of such an A.

A pictorial representation of a node for this process is given in Figure 5.1.

Y1 = (AX)1Y2 = (AX)2 Yd−1 = (AX)d−1Yd = −
∑d−1
i=1 (AX)i

Figure 5.1: Node of the varying part of SSBRW

Now in the actual construction, unlike the BRW, we use a different value for σ2 for each

level l such that 1 ≤ l ≤ n. Here level 1 denotes the edge connecting the root to its children

and level n denotes the edges joining the leaf nodes to their parents. Let us denote this

switching sign branching random walk on the tree Tn as {ξnv : v ∈ Tn}. For v ∈ Tn let us

denote the Gaussian variable that is added on level l, on the path connecting v to the root,

by φ
n,l
v . Then we assign Var(φ

n,l
v ) = 1 − d−(n−l+1). The switching sign branching random

walk will consist of two parts, the first coming from the contribution at different levels in

the tree which we call φ̃nv
def
=
∑n
l=1 φ

n,l
v .

Finally we define the switching sign branching random walk as

ξnv = φ̃nv +X (5.6)
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where X is a Gaussian variable with mean zero and variance 1−d−n
d−1 .

The covariance structure for this new model closely resembles that of the branching

random walk. The following lemma deals with this comparison:

Lemma 5.2.2. The Gaussian fields {ξnv : v ∈ Tn} and {φnv : v ∈ Tn} are identically

distributed.

Proof. First we show that the variances are identical for the two processes. To this end,

Var(ξnv ) = 1− d−1 + 1− d−2 + · · ·+ 1− d−n +
1− d−n

d− 1

= n− 1− d−n

d− 1
+

1− d−n

d− 1
= n.

Next in case of the covariances suppose we consider u, v ∈ Tn, such that they are separated

until level k i.e Cov(φnu, φ
n
v ) = n− k. Then we have

Cov(φ̃nu, φ̃
n
v ) = −1− d−k

d− 1
+

n∑
l=k+1

(1− d−l) = n− k − 1− d−n

d− 1
.

So, the covariance structures for the fields ξ and φ match, and hence they are identically

distributed.

A simple corollary of Lemma 5.2.2, is the following, based on the fact that the two

processes have identical distributions.

Corollary 5.2.3. We have the following equality:

P(φnv ≥ 0 ∀v ∈ Tn) = P(max
v∈Tn

φ̃nv ≤ X) (5.7)

Corollary 5.2.4. From [34, Theorem 4], we have Emaxv∈Tn φ
n
v =
√

2dn− 3
2
√

2d
log n+O(1).

Therefore,

E max
v∈Tn

φ̃nv =
√

2dn− 3

2
√

2d
log n+O(1).
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Corollary 5.2.5. There exists constants C̄ ′, c∗ > 0 such that for all n ∈ N and 0 ≤ λ ≤

(log n)2/3,

P(max
v∈Tn

φ̃nv 6 mn − λ) ≤ C̄ ′e−c
∗λ (5.8)

Proof.

1

2
P(max
v∈Tn

φ̃nv 6 mn − λ) = P(max
v∈Tn

φ̃nv 6 mn − λ,X ≤ 0) ≤ P(max
v∈Tn

φnv 6 mn − λ).

Now using (5.2), and with C̄ ′ = 2C̄ we arrive at (5.8).

5.3 Estimates on left tail and positivity

From the (5.7) we understand that the probability of positivity for the branching random

walk can be computed using bounds on the left tail of the maximum of φ̃n. , a part of the

switching sign branching random walk, as the left tail is heavily concentrated around the

maximum. This motivates the following computations on the left tail of the maximum.

Lemma 5.3.1. Let us call c = 1/c1(where mn = c1n− c2 log n) to be the constant such that

|mn−cλ − mn − λ| → 0 as n → ∞, where λ is of lower order than n. Then there exists

independent constants C ′, C ′′, K ′, K ′′ such that for sufficiently large n we have

K ′ exp(−K ′′dcλ) ≤ P(max
v∈Tn

φ̃v ≤ mn − λ) ≤ C ′ exp(−C ′′dcλ). (5.9)

Proof. We work with P(maxv∈Tn φ̃v ≤ mn−cλ) as due to our definition of c, for sufficiently

large n this probability is close to P(maxv∈Tn φ̃v ≤ mn−λ). This comes from the fact that,

from Chapter 4, {maxv∈Tn φ̃v − mn} converges in distribution, and so by an application

of Slutsky’s theorem P(maxv∈Tn φ̃v ≤ mn−cλ) and P(maxv∈Tn φ̃v ≤ mn − λ) converge to

the same value. We know that the SSBRW is a Gaussian field which obtained by the same

Gaussian to all vertices of a BRW. This helps us find bounds on lower and upper tails of

maxima using results on convergence of maxima of BRW, as proved in [3], [13] etc.
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We first consider the tree only up to the level cλ and consider the cumulative sum of

the Gaussian variables at these vertices till the level cλ. Let us rename all these Gaussian

variables at level cλ of this new tree to be A1, A2, . . . , Adcλ . We know that the definition in

Section 5.2 of switching sign branching random walk model guarantees
∑dcλ
i=1Ai = 0. Let

us consider the subtrees rooted at the vertex which has values Ai and call its maximum

to be Mi. These are trees of height n − cλ and hence we have EMi = mn−cλ + O(1) ∀i

and M := maxv∈Tn φ̃v = maxd
cλ

i=1(Mi + Ai). We want to obtain bounds for the probability

P(maxv∈Tn φ̃v ≤ mn−cλ). We condition on the values of A1, A2, . . . , Adcλ which in turn

breaks down the required probability in a product form since the maxima for the dcλ subtrees

are independent and have identical distributions. We consider two different cases:

1) When A−i ≤ 2Ā for at least dcλ/2 many i, where Ā is a positive constant to be chosen

later on.

2) When 1) doesn’t happen and so then
∑dcλ
i=1A

−
i ≥ Ādcλ.

For the first case we break it down into two parts according to when
∑dcλ
i=1A

−
i ≥ Ādcλ or

not. Now we have

P(max
v∈Tn

φ̃v ≤ mn−cλ | A1, A2, . . . , Adcλ)

= P(
dcλ

max
i=1

(Mi + Ai) ≤ mn−cλ | A1, A2, . . . , Adcλ)

=
∏dcλ

i=1
P(Mi + Ai ≤ mn−cλ | Ai) < from independence >

≤
∏dcλ

i:Ai>0
P(Mi ≤ mn−cλ − Ai | Ai)

≤ C̄ ′d
cλ

exp(−c∗
∑dcλ

i=1
A+
i ) = exp(dcλ log C̄ ′ − c∗

∑dcλ

i=1
A−i )

In the final two steps we first make use of (5.8), followed by the fact that
∑
iAi = 0. For the

cases where Ai < 0 we bound the terms in the product by 1. When 2) holds then clearly this

is bounded by exp(−(c∗Ā− log C̄ ′)dcλ) and now on choosing Ā such that (c∗Ā− log C̄ ′) > 0

68



we have c∗∗ > 0 such that our required term is bounded by exp(−c∗∗dcλ). In the other case

also

P(Mi ≤ mn−cλ − Ai | Ai) ≤ P(Mi ≤ mn−cλ + 2Ā)

for those i for which A−i ≤ 2Ā. From lower bound on right tail of maximum, we can find p,

independent of n, where 0 < p < 1 such that P(Mi ≤ mn−cλ + 2Ā) < p for all sufficiently

large n and so the probability is bounded by exp(−c̄dcλ). Now from this c̄ and c∗∗ we select

one unified C ′, C ′′ so that

P(max
v∈Tn

φ̃v ≤ mn−cλ) ≤ C ′ exp(−C ′′dcλ).

Again for the lower bound we have

P(max
v∈Tn

φ̃v ≤ mn−cλ) =

∫
Rdcλ

∏2cλ

i=1
P(Mi ≤ mn−cλ − Ai)dAi

≥ (p̄)d
cλ
∫

[−1,1]d
cλ

∏dcλ

i=1
dAi

where p̄ is chosen to be a lower bound on P(Mi ≤ mn−cλ − 1) for all sufficiently large n,

which can be obtained from using convergence results on maxima of branching random walk.

Now {A1, A2, . . . , Adcλ} are obtained by linear combinations of dcλ−1 independent standard

normal random variables, each being obtained from cλ many of them, and a way to make all

Ai’s in the range [−1, 1] is to make absolute value of the contribution at the jth level to be

bounded by 1
10(cλ+1−j)2 , for j = 1, 2, . . . , cλ. So the independent standard normals at level

j are bounded by 1
10
√
d(cλ+1−j)2

. So this gives, for some constant K > 0,

P(max
v∈Tn

φ̃v ≤ mn−cλ) ≥ (p̄)d
cλ

cλ∏
j=1

(
1

10K
√
d(cλ+ 1− j)2

)(d−1)dj−1

.

Approximation of the sum, as shown below in Lemma 5.3.2 proves (5.9).

Lemma 5.3.2.
∑n
j=1(log |n+ 1− j|)dj is of order dn.

69



Proof. We begin with an upper bound on the sum. We use a trivial bound of log |x| ≤ |x|

for |x| ≥ 1, followed by a few series summations.

n∑
j=1

(log |n+ 1− j|)dj ≤
n∑
j=1

(|n+ 1− j|)dj

= (n+ 1)
n∑
j=1

dj −
n∑
j=1

jdj

= (n+ 1)
dn+1 − d
d− 1

− ndn+2 − (n+ 1)dn+1 + d

(d− 1)2

=
dn+2 − (n+ 1)d2 + nd

(d− 1)2

This gives the upper bound to be of order dn. The lower bound follows easily.

We now look back into our question of the branching random walk being positive at

all vertices. We know that the maximum of the BRW is heavily concentrated around the

expected maximum. Using this fact, in a neighborhood around the maximum, we further

try to maximize the probability of the maximum being there. This point where this occurs

will also roughly be the typical value of a vertex. This motivates the following proposition

which is the main result of this section:

Proposition 5.3.3. There exists λ′ such that dcλ
′

is of order n such that for n sufficiently

large we have, for K1, K2, K3 > 0 independent of n,

K1e
− 1

2σ2
d,n

(mn−λ′)2−K3(mn−λ′)
≤ P(φnv ≥ 0 ∀v ∈ Tn) ≤ K2e

− 1
2σ2
d,n

(mn−λ′)2− mn−λ′
cσ2
d,n

log d
.

(5.10)

Proof. Upper bound: From (5.7) we have an upper-bound on the probability of positivity

based on the switching signs branching random walk. We optimize this bound by first raising

the mean to a level and look at the compensation we have to apply correspondingly. We

optimize over these two to obtain our bound. We apply a similar strategy for obtaining the

lower bound as well. Let us recall (5.7) at this juncture along with X, and let us call the
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variance of X to be σ2
d,n = 1−d−n

d−1 . In (5.7), we condition on the value of X to obtain the

following:

P(Λ+
n ) =

1

σd,n
√

2π

∫ ∞
−∞

P(max
v∈Tn

φ̃nv ≤ x) exp(−x2/2σ2
d,n)dx

Now, since the left tail of the maximum of a log-correlated Gaussian field, is heavily concen-

trated. So we may as well replace x bymn−λ, and then integrate over λ. We split the integral

into three parts, first with {−∞ < λ ≤ 0}, second with {3
c logd n ≤ λ < ∞} and the rest.

From tail estimates of a Gaussian, the first part is bounded by O(exp(− 1
2σ2
d,n

(mn − λ′)2)).

From (5.9), we know that the second part is bounded by C ′ exp(−C ′′n3). The rest part has

an upper bound:

C ′√
2π

∫ 3
c logd n

0
exp(−C ′′dcλ) exp(−(mn − λ)2/2)dλ. (5.11)

We maximize the integrand in (5.11), over the range of the integral, to obtain an optimal λ,

say λ′, which is of order log n. It satisfies the equation

mn − λ′ = σ2
d,nC

′′cdcλ
′
log d.

Plugging in we obtain an upper bound as in (5.10).

Lower bound: Again recalling (5.9) we obtain that

P(Λ+
n ) ≥ K ′√

2πσd,n

∫ n

−n
e−K

′′dcλ exp(−(mn − λ)2/2σ2
d,n)dλ.

The integrand here is infact a decreasing function of λ in the range λ ∈ [λ′, λ′+ 1], where λ′

is from the first part of the proof. This gives a lower bound of

K ′√
2πσd,n

e−K
′′dcdcλ

′
exp(−(mn − λ′ − 1)2/2σ2

d,n).

So, we obtain the required lower bound in (5.10).
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5.4 Expected value of a typical vertex under positivity

Proof. We want to compute E
(
Sn
dn | Λ

+
n

)
. Due to Lemma 5.2.2, this is equivalent to com-

puting E

(∑dn
v=1 ξ

n
v

dn
| ξnu ≥ 0 ∀ v ∈ Tn

)
= E

(
X | maxv∈Tn φ̃

n
v ≤ X

)
.

Upper Bound: We first split the expectation into two parts, one concerning the con-

tribution of the right tail in the integral and the rest. We aim to show that the contribution

of the right tail is negligible, thereby implying that the main contribution is from the rest,

which gives an upper bound on the expectation. The tail here is motivated by the maximizer

in Proposition 5.3.3.

E
(
X | max

v∈Tn
φ̃nv ≤ X

)
=

1√
2πσd,n

∫ ∞
−∞

xe
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=
1√

2πσd,n

∫ mn−b log n

−∞
xe
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

+
1√

2πσd,n

∫ ∞
mn−b log n

xe
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

Let us call the first term as J1 and the next one as J2. We first want to show that the

contribution of J2 in the conditional expectation is negligible. We use a trivial upper bound

on the tail probability in the numerator. Then we compute the integral which is the tail

expectation of a normal.

J2 ≤
1√

2πσd,n

∫ ∞
mn−b log n

xe
−x2/2σ2

d,n
1

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=
1√

2πσd,nP(maxv∈Tn φ̃
n
v ≤ X)

∫ ∞
mn−b log n

xe
−x2/2σ2

d,ndx

=
σd,ne

−(mn−b log n)2/2σ2
d,n

√
2πP(maxv∈Tn φ̃

n
v ≤ X)

So we end up showing that contribution from the right tail is negligible. We now move on

to the rest part and obtain an upper bound for it. We use a general upper bound on x from

the range of the integral, which we can do since the integral exists and is finite by the fact
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that absolute expectation of a normal exists.

J1 ≤
mn − b log n√

2πσd,n

∫ mn−b log n

−∞
e
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

≤ mn − b log n√
2πσd,n

∫ ∞
−∞

e
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

= mn − b log n

From (5.10) it is clear that on choosing b such that b log n ≤ λ′ then the upper bound on

the conditional expectation is mn − b log n.

Lower Bound: We apply a similar technique as in case of the upper bound, the

only difference being that we look at the left tail instead, motivated by the left tail of the

maximum of the Gaussian process.

E
(
X | max

v∈Tn
φ̃nv ≤ X

)
=

1√
2πσd,n

∫ ∞
−∞

xe
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=
1√

2πσd,n

∫ mn−3
c logd n

−∞
xe
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

+
1√

2πσd,n

∫ ∞
mn−3

c logd n
xe
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

Let us call the first term as I1 and the second as I2.

When x ∈ (−∞,mn − 3
c logd n] then P(maxv∈Tn φ̃

n
v ≤ x) ≤ C ′ exp(−C ′′n3) following

(5.9). Also we have a lower bound on the probability of positivity, which gives the following

bounds on I1 and I2.

| I1 |. e

1
2σ2
d,n

(mn−λ′)2+dcλ
′
(log λ′−log p̄/K)−C ′′n3 ∫ ∞

−∞
| x | e−x

2/2σ2
d,ndx
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where we ignore the constants. This shows that this term is negligible. Further,

I2 ≥
(
mn −

3

c
logd n

)
1√

2πσd,n

∫ ∞
mn−3

c logd n
e
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx

=

(
mn −

3

c
logd n

)
1√

2πσd,n

∫ ∞
−∞

e
−x2/2σ2

d,n
P(maxv∈Tn φ̃

n
v ≤ x)

P(maxv∈Tn φ̃
n
v ≤ X)

dx− o(1)

= mn −
3

c
logd n
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