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ABSTRACT

In this thesis we discuss extremes of log-correlated Gaussian processes on integer lattices.
The first four chapters show that the centered maximum of a sequence of log-correlated
Gaussian fields, with mild assumptions in any fixed dimension, converges in distribution.
The final chapter is on the behavior of a typical vertex of a branching random walk(BRW)
when placed against a hard wall.

Chapter 1 introduces log-correlated Gaussian processes on the integer lattice and talks
about previous related works. We make a few assumptions about the correlation structure,
firstly about the form which is sufficient to prove tightness. Next we make further assump-
tions about convergence of covariances in a suitable sense, for convergence in distribution
and discuss examples which show that for logarithmically correlated fields these additional
structural assumptions, of the type we make, are needed for convergence of the centered
maximum.

The second chapter deals with expectation of the maxima and its tightness after recen-
tering. This is achieved by approximating the process in the sense of covariance comparison
by other known Gaussian processes whose similar properties have been proved previously.
We also provide an upper bound on the left tail as a complimentary result.

Chapter 3 covers the topic of robustness of log-correlated Gaussian fields. We observe
no change in distribution of the maxima, except for shifting of mean, on perturbation at
microscopic and macroscopic levels by Gaussian variables. We also study the locations of
near-peaks of the field.

Chapter 4 is mainly based on the proof the convergence in distribution of the recentered
maxima of the log-correlated Gaussian field. We identify the limit as a randomly shifted
Gumbel distribution, and characterize the random shift as the limit in distribution of a
sequence of random variables, reminiscent of the derivative martingale in the theory of BRW
and Gaussian chaos. We also discuss applications of the main convergence theorem.

Chapter 5 talks about the behavior of the BRW on a d-ary tree when pressed against

vil



a hard wall. To this end, the field is approximated by a new Gaussian field switching sign

BRW, and left tail estimates on this field gives our desired result.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The extremes of various log-correlated Gaussian fields (including branching Brownian mo-
tion, branching random walk, two-dimensional discrete Gaussian free field, etc.) have been
topics of intensive research(see [11], [26], [16], [2], [4], [13], [5], [6]). The Gaussian free field
is an analog of Brownian motion. Many constructions in quantum field theory are based
on the Gaussian free field. Particularly, the 2D GFF is important in the theory of random
surfaces. The extreme values of this process are by themselves important statistics.

The question of extremes of 2D GFF also arises while dealing with the entropic repulsion
of the discrete Gaussian free field as is talked about in [9], which deals with the behavior of
the field when pressed against a hard wall. The discrete Gaussian free field in two dimension
with zero boundary condition on Vjy, a 2-dimensional box of side length N with leftmost
corner at the origin, is a mean zero Gaussian field with covariance structure given by the
random walk Green function which is killed on hitting the boundary of V. Estimates from
random walks illustrate the logarithmic structure of its covariance, in the interior of the box.
The lattice, on being divided into four sub-blocks, motivates a tree structure(see Figure 1.1)
coming from self-similarity. This establishes a connection between the Gaussian free field
and branching random walk. This fact has been utilized in the analysis of the extremes of
the Gaussian free field in [14], [19], [10] and [12].

The Gaussian membrane model in dimension 4 is another object of wide importance
in statistical mechanics. This Gaussian process also admits a covariance structure in the
logarithmic form. Log-correlated Gaussian fields have been used in [24] to mathematically
model Gaussian multiplicative chaos(see further [20], [21]). Maxima of log-correlated Gaus-
sian fields, whose covariance admits a kernel representation, has been worked upon in [30].

In the continuous setup the tightness of the recentered maxima for log-correlated Gaussian

1
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Figure 1.1: Tree structure for the lattice

fields has been shown in [1]. Similar and further questions for generalized log-correlated
Gaussian fields in the discrete setup is therefore of great importance. Major focus of my
research during my graduate studies has been on the question of convergence in distribution
of recentered maxima of general log-correlated Gaussian fields, with minimal assumptions
on the correlation structure. With this we start with the definition of the log-correlated

Gaussian field and the minimal assumptions we make for proving different properties of the

field.

1.2 Definition

Fix d € Nand let Vy = Zﬁiv be the d-dimensional box of side length N with the left bottom
corner located at the origin. Let us also define V](\), = ((0,N —1) N Z)%. We call the outer
boundary to be OVy ={y € Vy : y ¢ V]% and 3z € VJ(\), with |y — z| = 1}. For convenience,
we consider a suitably normalized version of Gaussian fields {¢x ,, : v € Vv }, of mean zero,

satisfying the following.

(A.0) (Logarithmically bounded fields) There exists a constant ag > 0 such that for all

u,v € Vy,

Varopy , <log N + o
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and

E(ony — oNw)? < 2logy [u—v| — | Var oy, — Var oy, | + 4ag,

where | - | denotes the Euclidean norm and log, « = logz V 0.
We introduce the sets V]‘\Sf = {z e Vy:d(z,8Vy) > 6N} and VO = [5,1 — §]%, where

d(z,0Vy) = min{||z — y||co : ¥y & Vv }. Then, introduce the following assumption.

(A.1) (Logarithmically correlated fields) For any § > 0 there exists a constant (%) > 0

such that for all u,v € Vﬁ], | Cov(en,u, PNwu) — (log N —log [u—v|)] < a0,

First, we assume convergence of the covariance in finite scale around the diagonal.

(A.2) (Near diagonal behavior) There exist a continuous function f : (0,1)% — R and a
function g : 7% x 74 R such that the following holds. For all L, e, > 0, there exists

No = Ny(€, 6, L) such that for all x € VO uve [0, L]d and N > Ny we have
| Cov(ON aN+vs PN aN+u) —log N = f(z) — g(u,v)| <e.

Next, we introduce an assumption concerning convergence of the covariance in case of the

off-diagonal terms (in a macroscopic scale). Let D% = {(z,y) : z,y € (0,1)%, 2 # y}.

(A.3) (Off diagonal behavior) There exists a continuous function k : D% — R such that
the following holds. For all L,¢,0 > 0, there exists N1 = Ny(¢,0, L) > 0 such that for

all z,y € VO with |z —y| > % and N > Nj we have
| Cov(en an, N yN) — Mz, y)| <e.

As we move to the Chapter 2, Chapter 3 and Chapter 4, we go deeper into the relevance
of the assumptions about the covariance structure of the Gaussian field, but for some basic

ideas we discuss two examples in Section 1.4.



1.3 Previous Results

The study of log-correlated Gaussian fields is motivated by the study of discrete Gaussian
free free field in two dimensions, which is one of the most popular examples of log-correlated
fields in the recent times. The analysis is also deeply connected to the analysis of 2D GFF,
which we give a brief account of.

As discussed in the Section 1.1, the study of Gaussian free field starts with the work of
[9], which proves a law of large number result for the maxima of GFF. This makes use of the
tree structure in proving so. The next important work along the direction of convergence
of recentered maxima of GFF is that of [10], which proves the tightness of the GFF along
a deterministic subsequence. It also showed that tightness for the recentered maxima itself
can be proved by computing the expected the maxima up to the order of a constant. This
was achieved in [15]. This work involved the introduction of modified branching random
walk and comparison of it with the GFF.

Few other works which were useful in proving the convergence in distribution of the re-
centered maxima were on the geometry of set of large values which are within a multiplicative
constant from the maxima([16]), and the work in [19] which studied the relative distances
between peaks and gave an estimate on the order of the right tail of the maxima of the GFF.

The convergence in distribution of the recentered maxima of the GFF was proved in [12]
by splitting the field into two independent fields, the course field and the fine field. Then a
modified second moment method was used to obtain a refined estimate on the right tail of
the fine field. This, along with the behavior of the course field showed the convergence in
distribution.

These results appear as a build up to our problem and the methods we use in our

computations.



1.4 On the assumptions

The basis of Assumption (A.1).

Set My = max,cy,, ¥N,» and

—/ __3
my = V2dlog N 2\/ﬁloglogN.

(1.1)

Proposition 1.4.1. Under Assumption (A.0), there exists a constant C' = C(aq) > 0 such

that for all N € N and z > 1,
P(My >my +2) < Cre~V2dz,=C7122 0
Furthermore, for all z > 1,y > 0 and A C Vy we have

P > _y)<C (—
(gleajl( PNo Z N 2 y) < V|

Here we denote by |A| the cardinality of the set A.

The proof of Proposition 1.4.1 is provided in Section 2.2.

(1.2)

(1.3)

By Proposition 1.4.1, if one has a complementary lower bound showing that for a large

enough constant C, max,cy, ¢ny > my — C with high probability, it follows that the

maximizer of the Gaussian field is away from the boundary with high probability. Therefore,

in the study of convergence of the centered maximum, it suffices to consider the Gaussian

field away from the boundary (more precisely, with distance §N away from the boundary

where § — 0 after N — o00).

The basis of Assumptions (A.2) and (A.3). We next construct two examples that

demonstrate that one cannot totally dispense of Assumptions (A.2) and (A.3). Since the

examples are only ancillary to our main result, we will only give a brief sketch for the

verification of the claims made concerning these examples.



Example 1.4.2. Fiz d = 2 and let {¢n, : v € V} be the DGFF on Viy (normalized so
that it satisfies Assumptions (A.0), (A.1), (A.2) and (A.3)), with Z = max,cy,, PN, Let
V.1 and Vi o be the left and right halves of the box Viy. Let {en, : v € Vy} and X be

1.7.d. standard Gaussian variables. Let UEV > 0 be selected later. Define

PNyt oX +eny vE VN, X

YNy = » PNy =
v eV +olve v eV

YN, N,2 YN NENv» N2

YN+ OoX, ve Vg

Set My = maxyeyy PN ond My = maxX,cyy PN,w- We first claim that there exist af\,
depending on (N, o) but bounded from above by an absolute constant such that ]E]\Z/N = ]EMN.

In order to see that, note that, by Theorem 2.0.4,

EMy <E max ¢y, + cEmax(0,X)+ O(1),
UEVN/Q ’

where O(1) is an error term independent of all parameters, while

EMy >E max ¢p, 4+ oEmax(0, X).
’UEVN/2 ’

In addition, by considering a N/2-box in the left side and dividing the right half box into two

copies of N/2-boxes, one gets that

~

EMy

v

Emax(Zy/9 + 0X, ZEV/2 + oye, ZK[/2 )

1
> EZnjp+ §O'§VE max(e’, €’) + cEX1y>.

where ZN/Za Z;V/Q’ZKZ/2 are three independent copies with law MaXyeVy ) ¥N,v and € =
GN,vivGH = ey\,’v; (here v] and vy are the mazimizers of the DGFF in the two N/2-boxes on

the right half of Vi, respectively). The claim follows from combining the last two displays.



Now, choose o to be a large fized constant so that for 0 < A < loglog N,

P(My >EZy + )

v

P( max {ony+0X +eny} 2 EZy +A)
UEVN,l ’ ’

v

P((1+1/4log N) max {on,+0X} >EZyn+ ))

UEVN’l ’

P( max ¢y, +0X >EZy+ A —1/10). (1.4)
UEVN’l ’

v

(Here, the second inequality is due to Slepian’s comparison lemma (Lemma 2.2.1) and the
fact that o is large, while the last inequality uses that 2/(1 4 1/(4log N)) < 2 — (log N)/10
for N large.) Further,

P(My >EZy +)) < P(max on,+0X >EZy+ )
vEVN,l ’

+ P(max oy, +en, >EZy+A)
'UeVN’Q ’ ’

< P(max oy, +0X >EZy +A) +O0(1)re 2, (1.5)
UEVN’l ’

where the last inequality follows from Proposition 1.4.1. Combining (1.4) and (1.5) and
using the form of the limiting right tail of the two-dimensional DGFF as in [12, Proposition

4.1], one obtains that for \,o sufficiently large but independent of N,

limsup P(My > EZy 4+ A) > (1 + ¢)limsup P(My > EZy + A) > c(0)Ae™ 2,
N—o00 N—00

where ¢ > 0 is an absolute constant and c(o) satisfies ¢(0) —g—00 00. This implies that the
laws of My — EMy and MN — EMN do not coincide in the limit N — oo.

Finally, set on ., = @Np Jor allv € Viy and odd N, and ¢, = ¢n, for allv € Viy
and even N. One then sees that the sequence of Gaussian fields {@N#, cv € Vy} satisfies
Assumptions (A.0), (A.1) and (A.3) (while not satisfying (A.2)), but the law of the centered

maximum does not converge.

Example 1.4.3. Let {on, 1 v € Viy} be a sequence of Gaussian fields satisfying (A.0),

7



(A.1) and (A.2), such that the law of the centered mazimum converges. Consider the fields
{ONw v €VNY where Oy = ONw+ 1N is evenXN With Xy a sequence of i.i.d. standard
Gaussian variables. Then, the field {¢n, : v € Vn} satisfies (A.0), (A.1) and (A.2)
(possibly increasing the values of (%) by 1 for all 0 < § < 1). However, the centered law of

the mazimum of {pn ., 1 v € Vy} cannot converge.



CHAPTER 2
EXPECTATION AND TIGHTNESS OF MAXIMUM

This chapter covers the expectation and tightness of the maximum of log-correlated Gaussian
field.
The main result of this chapter is showing the tightness of the sequence { My —my}n-

Assumptions (A.0) and (A.1) are enough to ensure the tightness of the sequence {My —

my}N-

Theorem 2.0.4. Under Assumptions (A.0) and (A.1), we have that EMy = my + O(1)

1/10)

where the O(1) term depends on agy and al . In addition, the sequence My — EMp 1s

tight.

(The constant 1/10 in Theorem 2.0.4 could be replaced by any positive number that is less
than 1/3.)

A similar result (in the slightly different setup of fields indexed by a continuous parameter)
appears in [1].

The rest is devoted to the proofs of Proposition 1.4.1 and Theorem 2.0.4, and to an
auxiliary lower bound on the right tail of the distribution of the maximum( see Lemma
2.0.6). The proof of the proposition is very similar to the proof in the case of the DGFF in
dimension two, using a comparison with an appropriate BRW; Essentially, the proposition
gives the correct right tail behavior of the distribution of the maximum. In contrast, given
the proposition, in order to prove Theorem 2.0.4, one needs an upper bound on the left tail
of that distribution. In the generality of this work, one cannot hope for a universal sharp
estimate on the left tail, as witnessed by the drastically different left tails exhibited in the
cases of the modified branching random walk and the two-dimensional DGFF, see [17]. We

will however provide the following universal upper bound for the decay of the left tail.

Lemma 2.0.5. Under Assumption (A.1) there exist constants C,c > 0 (depending only on



a1/107d) so that for allm € N and 0 < A < (log n)2/3,

P(max ¢y, <my — ) < Ce™ .

veVy

Theorem 2.0.4 follows at once from Proposition 1.4.1 and Lemma 2.0.5.

Later, we will need the following complimentary lower bound on the right tail.

Lemma 2.0.6. Under Assumption (A.1), there exists a constant C > 0 depending only on
(o, 04(1/10), d) such that for all X\ € [1,+/log N,

P(My > my +A) > O 1ae™ V244

2.1 Branching random walk and modified branching random

walk

The study of extrema for log-correlated Gaussian fields is possible because they exhibit an
approximate tree structure and can be efficiently compared with branching random walk and
the modified branching random walk introduced in [15]. In this subsection, we briefly review
the definitions of BRW and MBRW in Z%.  We remark that the MBRW can be seen as
an discrete analogue of the x-scale invariant log-correlated fields studied in [30]; we further
remark that the natural continuous construction of MBRW is not exactly a *-scale invariant
field since the corresponding kernel function (in the language of [30]) is not continuous.

Suppose N = 2" for some n € N. For j = 0,1,...,n, define B; to be the set of d-
dimensional cubes of side length 2/ with corners in Z%. Define BD; to be those elements
of B; which are of the form ([0, 20 — 11N Z)d + (1129,0927 ... i427), where iy, 9, ..., i are
integers. For x € Vi, define Bj(x) to be those elements of B; which contains x. Define
BDj(x) similarly.

Let {a; B}j>0.Be BD, be a family of i.i.d. Gaussian variables of variance log 2. Define the

10



branching random walk (BRW) {Ry .}.cvy by

n
:Z Z a;j B zeVy.

Jj=0 BEBD](Z)

Let B;V be the subset of B; consisting of elements of the latter with lower left corner in
Vy. Let {bjp:j >0,B € B;V } be a family of independent Gaussian variables such that
Varb; p =log2- 2= for all B € Bj.v. Write B ~yn B if B= B' + (i1N,...,igN) for some

integers ¢1,...,t4 € Z. Let

N bip BeBY,
bip = .
bj,B’ BNNBIEBj .

Define the modified branching random walk (MBRW) {Sy . }.cv, by

Z Z b , ZEVN. (2’1>
J=0 BeB;(

The proof of the following lemma is an straightforward adaption of [15, Lemma 2.2] for

dimension d, which we omit.

Lemma 2.1.1. There exists a constant C' depending only on d such that for N = 2™ and
T,y € VN
| Cov(Sn 2, Sny) — (log N —log(|lz —y[y V1)) < C,

where |z —y|y = ming |2 — .

In the rest of the calculations, we assume that the constants ao,a(‘s) in Assumptions

(A.0) and (A.1) are taken large enough so that the MBRW satisfies the assumptions.

11



2.2 Comparison of right tails

The following Slepian’s comparison lemma for Gaussian processes [32] will be useful.

Lemma 2.2.1. Let A be an arbitrary finite index set and let {X4 :a € A} and {Yy : a € A}
be two centered Gaussian processes such that: B(X, — Xp)? > E(Y, — Y3)2, for all a,b € A
and Var(X,) = Var(Yy) for all a € A. Then P(maxge g Xog > A) > P(maxgeyq Yo > A) for
all A € R.

The next lemma compares the right tail for the maximum of {¢y , : v € Viy'} to that of

a BRW.
Lemma 2.2.2. Under Assumption (A.0), there exists an integer r = k(og) > 0 such that

for all N and X\ € R and any subset A C Vi

P(max gy, > A) < 2P( max Roxn, > A). (2.2)
veA ’ veE2RA ’

Proof. For k € N, consider the map
Yy = w](\';) : V= 2"V such that ¥ (v) = 2"v. (2.3)

By Assumption (A.0), we can choose a sufficiently large x depending on «ag such that
Var(ppy,,) < Var(RQHN’wN(U)) for all v € Vy. So, we can choose a collection of positive
numbers

2
a, = Var RQHNJ/)N(U) — Varoy 4,

such that Var(en, + avX) = Var(Rony g\ (v)) for all v € Viy, where X is a standard

Gaussian random variable, independent of everything else. Since the BRW has constant

12



variance over all vertices, we get that

IN

2 2 2
E(@N,u +ayX — PNy — aUX) E(@N,u - QON,U) + (av - au)

VAN

2
E(oNu = ¢nw)” + | Varpy, — Var oy |

Combined with Assumption (A.0), it yields that
E(ony +auX —ony — apX)? < 2log, |u—v| +4ag.

Since E(Row Ny (u) — RQHN’wN(U))z —2log, |u—v| > log 2k — Cy (where Cy is an absolute

constant), we can choose sufficiently large x depending only on «ag such that
E(ony +auX — 0Ny — apX)? < ]E(RQ,{N’MJN(U) — RQKN,wN(v))Z , for all u,v € V.
Combined with Lemma 2.2.1, it gives that for all A € R and A C Vv

IP’(rvneajl{ YNyt aX > A) < ]P)(Igleajl( RosN by (w) = A) -

In addition, by independence and symmetry of X we have

P(max gy, + apX > A) > Pmaxpy, > A\, X >0) = %P(maxgpNU > \).
vEA ’ veA ’ vEA )

This completes the proof of the desired bound.
O

Proof of Proposition 1.4.1. An analogous statement was proved in [12, Lemma 3.8] for the
case of 2D DGFF. In the proof of [12, Lemma 3.8|, the desired inequality was first proved for
BRW on the 2D lattice and then deduced for 2D DGFF applying [19, Lemma 2.6], which is

the analogue of Lemma 2.2.2 above. The argument for BRW in [12, Lemma 3.8] carries out

13



(essentially with no change) from dimension two to dimension d. Given that, an application

of Lemma 2.2.2 completes the proof of the proposition. m

A complimentary lower bound on the right tail is also available.

Lemma 2.2.3. Under Assumption (A.1), there exists an integer k = r(a(1/10)) > 0 such

that for all N and A € R

P(max ¢ > \) > 1P( max S,-nn., > N). 2.4
(mpe el 2 0 2 4P xSy 2 N 2.4)
. (1/10) .
Proof. Tt suffices to consider My, = max _1/10 YN By Assumption (A.1) and an
veVy ’

argument analogous to that used in the proof of Lemma 2.2.2 (which can be raced back to

the proof of [19, Lemma 2.6]), one deduces that for x = r(a(1/10)),

)> ) > %P(Uegax Sy-rny = A) forall A€ R.
2-KN

This completes the proof of the lemma. O

We also need the following estimate on the right tail for MBRW in d-dimension. The
proof is a routine adaption of the proof of [19, Lemma 3.7] to arbitrary dimension, and is

omitted.

Lemma 2.2.4. There exists an absolute constant C' > 0 such that for all X € [1,+/logn], we

have
CLre—V2AA <P(max Sy, >mpy +A) < Cre— V24X
veVn ’
Proof of Lemma 2.0.6. Combine Lemma 2.2.3 and Lemma 2.2.4. n

2.3 An upper bound on the left tail

This section is devoted to the proof of Lemma 2.0.5. The proof consists of two steps: (1) a

derivation of an exponential upper bound on the left tail for the MBRW; (2) a comparison
14



of the left tail for general log-correlated Gaussian field to that of the MBRW.

Lemma 2.3.1. There exist constants C,c > 0 so that for alln € N and 0 < X < (logn)?/3,

P(max Sy, <my — A) < Ce™ .
veEVN ’

Proof. A trivial extension of the arguments in [15] (for the MBRW in dimension two) yields
the tightness for the maximum of the MBRW in dimension d arounds its expectation, with

the latter given by (1.1). Therefore, there exist constants s, 5 > 0 such that for all N > 4,

P(max Sy, =2my — ) > 1/2. (2.5)
veVy ’

In addition, a simple calculation gives that for all N > N’ > 4 (adjusting the value of & if

necessary),
3
V2dlog(N/N") — Elog(logN/logN/) —k <my —mpyr < V2dlog(N/N') + k. (2.6)

Let N = \/2 and N = Nexp(—\/%»d()\’—ﬁ—n—él)). By (2.6), one has my —mp» < N — 3.
Divide Vj into disjoint boxes of side length N’, and consider a maximal collection B of N’-
boxes such that all the pairwise distances are at least 2N’, implying that |B| > exp(%()\’ -

B — Kk —8 —4v/d)). Now consider the modified MBRW
SNy =gN,+¢ YWwEBERB,

where ¢ is an zero mean Gaussian variable with variance log(N/N') and {gy7, : v € B}p
are the MBRWs defined on the boxes B, independently of each other and of ¢. It is straight-

forward to check that

Var Sy, = VarSN,U and ESy Sy 4, < IES’N,USN,U for all u,v € UgepB.
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Combined with Lemma 2.2.1, it gives that

P(max Sy, <t) <P( max Sy, <t)<P( max Sy,<t)forallteR. (2.7)
veVy ’ veUpepB ’ veUpepB ’

By (2.5), one has that for each B € B,

P(sup gnv,y > my —A) = P(sup gnv,, > mys +my —mpyr — )
veB ’ veB ’
1
> P(Sup N’y = MNT — 6) Z 5,
vEB ’ 2

and therefore

Thus,

P( max S‘Nﬂ} <my—A)<P( sup gy, <my-— M)+ P(p < -N) < Ce~ N :

veUpepB veUpepB
for some constants C, ¢ > 0. Combined with (2.7), this completes the proof of the lemma. [

Proof of Lemma 2.0.5. In order to prove Lemma 2.0.5, we will compare the maximum of
a sparsified version of the log-correlated field to that of a modified version of MBRW. By

Assumption (A.1) and Lemma 2.1.1 , there exists a ko = ro(a1/19)) such that for all & > &,

Var(par v 2ry) < Var(Syze ) for all v € V]i/lo :
. . 1/10
Therefore, one can choose a collection of positive numbers {a, : v € V/ "} such that

Val"((pQ/qN’znv + (I»UX) = Var(ngmN’U) y

where X is a standard Gaussian variable. Since the MBRW has constant variance, we have

that |ay — ay| < €1 for some constant €7 = C(a(1/10)) > 0. By Lemma 2.1.1 again, one
16



has
E(Sy2n v — Soznv o)’ < 2log |u—v] +O(1),

where the O(1) term is bounded by a absolute constant. On the other hand, for all u,v €

1/10
Vv s

E(¢25N72% + ay X — Qar N 26y, — auX) >log2-k+2logy |u—v|— 1/10)(1)

where O (1/10) y(1) is a term that is bounded by a constant depending only on o(1/10) There-

fore, there exists a k = r(a(1/19)) such that for all u,v € Vl/lo

E(pox N.ory + avX — porn ory — auX)? > E(Sy2r o — SQ%N,u)2 :
Combined with Lemma 2.2.1, this implies that for a suitable C) depending on x,

P(max @orn ory < my — A) <P( max (oor N ony +apX) <my — A/2) (2.8)
veEVN 6V1/1

+P(X < —-)/Ck)
< P( max Sompy, Smy —A/2) +P(X < =A/Cx). (2.9)
veVl/lO
There are number of ways to bound ]P(max - /10 Soas 4y < mpy — A/2), and we choose not
to optimize the bound, but instead simply apply the FKG inequality [31]. More precisely, we
note that there exists a collection of boxes V with |V| < 244k \where each box is a translated
copy of V]%,/lo such that Vs2xy € UpepV. Since {maxUGVQ%N Sprry, S My — A2} =

Nyep{maxycy Sozep, < my — A/2}, the FKG inequality gives that

P( max  Spanp, < my —A/2) 2 (P( max  Sporp, < my — )\/2))24(#i :
vEVy2r veVl/lo
Combined with (2.8) and Lemma 2.3.1, this completes the proof of the lemma. ]
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2.4 Tightness for Gaussian Membrane model

The Gaussian membrane model in dimension 4 is an example we study now. The maxima
and entropic repulsion for the Gaussian membrane model was discussed in [25]. Let us
denote the field by {wév :v € Vy}, where Vi is the cube as defined in the introduction
but restricted to dimension 4. Let us call the covariance function I'y(z,y), for z,y € Vi,
changing the notation used in [25] due standard notations for Green’s function in literature.
The law of this field is the Gibbs measure on RYN with 0 boundary conditions outside VN
and Hamilton as %Z erd(Aw:]BV )2. In [25, Section 2] we see that the covariace function
In(.,.) is approximated by another function Gy (.,.) inside V]‘\S]. In order to define this
function we first define another function(Green’s function of random walk)

TVN

Gn(w,y) =E"()_ 1x,=y)-
k=0

Here { X}, } is a random walk starting from from z and 7y, is the time the random walk exits
V. Further we define G(x,y) =: imy_ oo Gn(z,y), which exists for all z,y € 7%, and as
|.ZTJ - y| — 00,

1 _
G(z,y) = a4_—y|2 +0(lz —y| ),

|z
with ag = %4, where w, is the volume of the unit ball in R?. From estimates in [27], we

further have for ball By of radius N around 0,

Gy (o0.0) =01 (11— 1z ) + 00kl ).

Finally we have,

Gy(z,y) = Y Gn(z,2)Gn(z )
zeVy
Using this estimates, we can compute the order of the covariances to show that the

Gaussian membrane model is log-correlated. In continuation to [25, Lemma 2.2], which
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gives logarithmic order of the variance term, we have the following result.

Lemma 2.4.1. If§ € (0,1/2) then there ezists constants cg,cy independent of N such that
forz,y € V]é[, we have

8
2

— 8
5 (log N = log|o = y)) + ¢ < G(ay) < —

(log N —log |z — y[) + ¢4
7r
Proof. Let By(x) denote the ball of radius r around =z € V. We look at Byp(x) where
x € Vy. We apply a transformation to polar co-ordinates after using random walk estimates.
The rest of the calculations follow easily from that. Since G (z,y) < G(z,y), we can begin

as follows.

Gn(r,y) < ) G(z,2)G(2y)

IA
S
NN

1
+0O(1
2 LoamoEtow

z€ByN 2 #T,Y

2w 2N
73 sin? 61 sin 6y
= drdf1dfadfs + O(1
a4/ /// 72 + d? — 2dr cos 07) rdf1dbadhs + O(1)

where d = |z — y|

2 2N —d 0 d 0
= a4/ / / sin 91 sm«92/ cosUy + @ cos 21 drdfdfdbs
(7’ — dcosfq)? + d2sin? 6,

2
< ai/ / / sin’ 01 sin O{log |2N + d| — log d}df1db2db5

s
2N — dcost
+ a4/ / / sin 0y sin 05 cos 61 {tan™ (ﬁ)
1

— ( d cot 01)}db1db2dfs + O(1)

IN

Qa?prz{log N —logd} + ¢y

IN

%{logl\f —logd} + ¢4

The lower bound will similarly follow by taking Bsn(x), instead of By (). We transform
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the integral into polar co-ordinates, following by routine calculations.

Gn(z.y) > Y Gan(z,2)Gsn(z,y)
z€BsN

1

2

4D LTaEEgE oW
Z€B5N7Z7éxvy

Vv

v

5 oON 73
4 ———=dr+ O(1 here d = |z —
a4w4/0 TP r+O(1)  where |z — 9|

1
43wy x 5 X 2{log 0N —logd} + O(1)

v

v

8
ﬁ{log N —logd} + c3
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CHAPTER 3
ROBUSTNESS OF THE MAXIMUM UNDER
PERTURBATIONS

The main goal of this chapter is to establish that the law of the maximum for a log-correlated
Gaussian field is robust under certain perturbations. These invariance properties will be
crucial in Section 4.1 when constructing a new field that approximates our target field.

For a positive integer 7, let B, be a collection of sub-boxes of side length r which forms
a partition of V| n/p|,. Write B = U,cyBr. Let {gp : B € B} be a collection of i.id.
standard Gaussian variables. For v € V), denote by By, € By the box that contains v. For

o = (01,09) with ||o]|3 = 0} + 03 and 71,79, define,
PN 200 = PN+ O19B, . + O29B, N/ry ? (3.1)

and set MN,Tl,TQ,O' = maXUEVN @N,Tl,TQ,O’,’U'
For probability measures v1,v9 on R, let d(v1,1v9) denote the Lévy distance between

vy, 9, i.e.
d(v1,v9) = inf{6 > 0: 11 (B) < 15(B%) + 4 for all open sets B},

where B9 = {y : |z — y| < 6 for some = € B}. In addition, define

d(v,v2) =inf{d > 0: v1((z,00)) < wa((x —d,00)) +d for all x € R} .

If d(v1, v9) = 0, then v is stochastically dominated by v. Thus, d(v, v9) measures approx-
imate stochastic domination of v by v9; in particular, unlike d(-,-), the function CZ(, )) is
not symmetric.

With a slight abuse of notation, if X,Y are random variables with laws px, pty respec-
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tively, we also write d(X,Y) for d(ux, py) and d(X,Y) for d(pux, puy ).

A notation convention: By Proposition 1.4.1, one has that

lim sup lim sup d(max ¢, max ¢y ,) =0.
50 N vevy veVN

Therefore, in order to prove the convergence in distribution of recentered maxima, it suffices
to show that for each fixed o > 0, the law of max vy PN ~ TN converges. To this end,
one only needs to consider the Gaussian field restricted to V]%. For convenience of notation,
we will treat V]‘\Sf as the whole box that is under consideration. Equivalently, throughout the
rest of the chapters when assuming (A.1), (A.2) or (A.3) holds, we assume these assumptions
hold with & = 0, and we set a := max(ag, a(?).

ng.,rl gB.,N/T’Q

-

[<71>

N

Figure 3.1: Perturbation levels of the Gaussian field

The following lemma, which is one of the main results of this section, relates the laws of

MN and MN,T’l,T’Q,O"
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Lemma 3.0.2. The following holds uniformly for all Gaussian fields {SDN,U v € Vyt

satisfying Assumption (A.1):

limsup limsup d(My — my. My, 0 —my — |o]3v/d/2) = 0. (3.2)

71,72—00 N—00

The next lemma states that under Assumption (A.1), the law of the maximum is robust

under small perturbations (in the sense of o, norm) of the covariance matrix.

Lemma 3.0.3. Let {on,, : v € Vy} be a sequence of Gaussian fields satisfying Assumption

(A.1), and let o be fized. Let {pn, :v € Viv} be Gaussian fields such that for all u,v € Viy

|Var YNy — Var @N,vl <€, and E@N,v@N,u < ]ESON,UQON,U te.
Then, there exists 1 = 1(€) with t —¢_o 0 such that

lim sup d(My — mp, max PNy —mN) < L.
N—oo veVy

A key step in the proof of Lemma 3.0.2 is the following characterization of the geometry
of vertices achieving large values in the fields, an extension of [19, Theorem 1.1]; it states
that near maxima are either at microscopic or macroscopic distance from each other. This

may be of independent interest.

Lemma 3.0.4. There exists a constant ¢ > 0 such that, uniformly for all Gaussian fields
satisfying Assumption (A.1), we have

N
)

lim lim P(3u,v:|u—v| € (r,

> _ —0.
700 N—00 PN PNy = mpy — cloglogr) =0
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3.1 Maximal sum over restricted pairs

As in the case of 2D DGFF discussed in [19], in order to prove Lemma 3.0.4, we will study
the maximum of the sum over restricted pairs. For any Gaussian field {ny , : v € Viy} and

r > 1, define
777\7,7" = max{ny, + Ny U,V € Vy,r < |lu—v| < N/r}.

Lemma 3.1.1. There exist constants cq,cy depending only on d and C > 0 depending only
on (a,d) such that for all r,n with N = 2" and all Gaussian fields satisfying Assumption
(A.1), we have

2mpy — cploglogr — C < Eg}y . < 2mpy — ¢y loglogr + C. (3.3)
Proof. In order to prove Lemma 3.1.1, we will show that
ESy—n, < Boly, <ESsn,.- (3.4)

To this end, we recall the following Sudakov-Fernique inequality [22] which compares the

first moments for maxima of two Gaussian processes.

Lemma 3.1.2. Let A be an arbitrary finite index set and let {X4 :a € A} and {Yy : a € A}

be two centered Gaussian processes such that:
E(Xq, — Xp)? > E(Y, — V)2, for all a,b e A.

Then E(max e 4 Xq) < E(max,e g Ya).

We will give a proof for the upper bound in (3.3). The proof of the lower bound follows

using similar arguments. For x € N, recall the definition of the restriction map ¥ as in
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(2.3). By Lemma 2.1.1, there exists a x > 0 (depending only on («,d)) such that for all
u,v,u v € Vy,

Blenu+ oNo = exar = o) SES ) + Sl ~ Siwtu) ~ St

(To see this, note that the variance of Si;]zfu) increases with s but the covariance between

SN - and 82N - does not.) In addition, note that for r < |u — v| < N/r one has
¥ (u) YN (v)
r < Yy (u) =Yy (v)] < 2°N/r. Combined with Lemma 3.1.2, this yields EoS; . < ESS, .,
completing the proof of the upper bound in (3.4).
To complete the proof of Lemma 3.1.2, note that [19, Lemma 3.1] readily extends to

MBRW in d-dimension, and thus
2mpy — cploglogr — C < ESY;, < 2my — ¢1loglogr + C,

where ¢1, co are constants depending only on d and C' is a constant depending on («,d).

Combined with (3.4), this completes the proof of the lemma. O

We will also need the following tightness result.

O R
Lemma 3.1.3. Under Assumption (A.1), the sequence {W}NEN,TENO is tight.
Further, there exists a constant C' > 0 depending only on d such that for all r > 100 and
N e N,

(N, — Epy )| < Cloglogr.

d
Proof. Take N’ = 2N and partition Vs into 20 copies of Vi, denoted by Vjsfl), ey VJE/-Q ).

For each i € [24], let {gpg\if)v v € V]E;)} be an independent copy of {px,, : v € Vi } where we
identify Vv and ngfi) by the suitable translation such that the two boxes coincide. Denote
by

PNy = gog\i])v for v € V]E[i) and i € [Qd] : (3.5)
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Clearly, {¢ N’,v} is a Gaussian field that satisfies Assumption (A.1) (with a increased by an

absolute constant). Therefore, by Lemma 3.1.1, we have
2mpy — cologlogr — C' < E@?\T,r <2mpy —ciloglogr + C', (3.6)
where ¢1, co,C' > 0 are constants depending only on (d, «). In addition, we have
E(¢y,) 2 E maX{sog\lf?f, 90%,);0} :

Combined with Lemma 3.1.1 and (3.6), and the simple algebraic fact that |a — b] = 2(a V

b) — a — b, it yields that
(1)30 _ (2)a<> A0 o <& !/
Elon, —enr | S 2(ESy . — Epy,.) < C'loglogr, for all r > 100,

where C’ > 0 is a constant depending only on d. This completes the proof of the lemma. [

3.2 Location of near maxima

In this section we will prove Lemma 3.0.4, by contradiction. Suppose otherwise that Lemma
3.0.4 does not hold. Then for any constant ¢ > 0, there exists ¢ > 0 and a subsequence {r}, }
such that for all k € N

N
lim P(3u,v: ju—v|€ (rk,—) PN PN = my — cloglogry) > €. (3.7)
N—00 Tl ’ ’

Now fix § > 0 and consider N’ = 2% N where & is an integer to be selected. Partition Vy into
Kkd
24 disjoint boxes of side length N, denoted by V(l), c V]s? ). Define {SbNCU cv € Vr}

in the same manner as in (3.5) except that now we take 25¢ copies of {¢ Nw v € VN}
(one for each V]E;) with i € [279]). Clearly, {¢ N’y @ v € Var}is a Gaussian field satisfies

Assumption (A.1) with a replaced by a constant o’ depending only on (a, d, ). Therefore,
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by Lemma 3.1.1,
2mpy — cploglogr — C < E@Qy . < 2mpy — ¢ loglogr + C', (3.8)

where c1,c9 > 0 are two constants depending only on d and C' > 0 is a constant depending
only on («, d, k).

Next we derive a contradiction to (3.8). Set 2y, = 2my — cloglogr, Zn , = ($3, —

zN,)— and ng,i,)r = (905\21)7;«2 — zN,)—- Then (3.7) implies that

. (1)
ngnoo P(YN,rk >0)<1—¢€ forall keN. (3.9)

In addition, by Lemmas 3.1.1 and 3.1.3, there exists a constant C’ > 0 depending only on d

such that for all » > 100 and N € N, we have

EY{) < ' loglogr. (3.10)

r =

Clearly, Z N < minie[%d] Yjsfi) Combined with the fact that Y]E[i) are i.i.d. random vari-

?T. ’ ’T

ables, one obtains

By < [ (PO, >0)
1r > y))dy

< (-9 lmyy)

where (3.9) was used in the second inequality. Combined with (3.10), one concludes that for
all » > 100 and N

Kd
EZn,, <(1— )2 =1 loglog 1y, .

Now set ¢ = ¢1/4 and choose x depending on (e, d, C’, 1) such that (1 — 6)25(1_10, < c1/4.
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Then,

E‘ﬁ?\f’,rk > 2my — ¢ loglogry /2,

for all £ € N and sufficiently large N > Nj where N; is a number depending only on k.
Sending N — oo first and then k& — oo contradicts (3.8), thereby completing the proof of

the lemma. O

3.3 Behavior of maxima on perturbation

The next lemma, which extends [12, Lemma 3.9] to the current setup, will be useful for the

proof of Lemma 3.0.2 and later as well.

Lemma 3.3.1. Let Assumptions (A.0) and (A.1) holds. Let {¢Y : u € Vi} be a collection

of random variables independent of {pn ., : u € Vy} such that
P(e >1+7y) < A for allu e Vi . (3.11)
Then, there exists C' = C'(a,d) > 0 such that, for any e >0, N € N and z > —6_1/2,

—-1,.-1
P(max (o, +eph ) > my+x) < P(max oy, > my+z—e)(1+C(e ¢ ). (3.12)
ueVy ’ u€Vy ’

Proof. We first give the proof for € < 1. Define 'y = {u € Viy : y/2 < e¢l) <y}. Then,

P( Hel%/X(SON,u el ) > my + ) <SP(My > my +x — /e)
ueVy

o0
+ Y E(P( max gy >my +a—2'Velly ).

By Proposition 1.4.1, one can bound the second term on the right hand side above by

o0 00
; zV1 i

E E(P( max @y >my +x — Zzﬁ’FQiﬁ)) S — E :E(’FQiﬁl/Nd)l/Qe\/ﬁQ ﬁ

=0 =0

UGVN e

28



By (3.11), one has E(|F2i\/g|/Nd)1/2 < e A4(Co Altogether, one gets

o0
; V1 -1
Y ) < —(Ce)
;:0 E(P(Jrel% pNu = my +z—2Vely £)) S or :

completing the proof of the lemma when ¢ < 1. The case ¢ > 1 is simpler and follows by

repeating the same argument with 'y, replacing I'y; NG We omit further details. O

We next consider a combination of two independent copies of {p ,}. For o > 0, define

2
ON v =PNuv+ ol @, for v € Vi, and Mx = max ¢}, , - (3.13)
0,V ) log N U 0 'UGVN 0,V

where {¢y . : v € Vy} is an independent copy of {¢y, : v € Vx}. Note that the field

{©N 5.0} 18 distributed like the field {ay @y, } Where ay = \/1 + ||g||%/log N.

Remark 3.3.2. The idea of writing a Gaussian field as a sum of two independent Gaussian
fields has been extensively employed in the study of Gaussian processes. In the context of the
study of extrema of the 2D DGFF, this idea was first used in [7], where (combined with an
invariance result from [29] as well as the geometry of the maxima of DGFF [19], see Lemma
3.1.1) it led to a complete description of the extremal process of 2D DGFF. The definition
(3.13) is inspired by [7].

The following is the key to the proof of Lemma 3.0.2.
Proposition 3.3.3. Let Assumption (A.1) hold. Let {GN 50 v € VN} and {p)y ., v €

Vn} be defined as in (3.1) and (3.13) respectively. Then for any fized o,

R . = * -
rl’%ﬂﬁloolﬁglj};p d(MN 1y 190 — MmN, My , —mpy) =0. (3.14)

Proof. Partition Vjy into boxes of side length N/ry and denote by B the collection of boxes.

Fix an arbitrary small 6 > 0, and let By denote the box in the center of B with side length (1—
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§)N/rg for each B € B. Write Vy 5 = UpepBs. Set MN v, 1y 0.6 = Maxyeyy s $N,ry,r2,0,0

and M;{f,o,é = maXyeyy 5 907\7,0,1;' By (1.3), one has

lim lim P(My ) .06 # MNpyrp0) = lim Tim P(My s # My ;) =0.

0—0 N—o00 0—0 N—oo

Therefore, it suffices to prove (3.14) with My r1.r9,0,6 and M -, Teplacing My 19,0 and

MXT, » respectively. To this end, let zp be such that

max Yy, = PN . for every B € B.
vEBs

We will show below that

p m lgfn 1 SUp P(IMN 06 — MAX DN 1y 1,0, 2 1/ 1oglog N)

—hmsupIP’(|MNU5 maxgpNUZB|>1/loglogN)—0 (3.15)

N—r00
Note that the field {¢y, : v € Vy} and { HaH%/log Nygly , - v € Vy} are independent of
each other. Thus, conditioning on the field {py,, : v € Vv }, the field { |13 /1og N¢§V7ZB ;
B € B} is a centered Gaussian field with pairwise correlation bounded by O(1/log N).

2
Therefore the conditional covariance matrix of { 1'(';;% O ., BEDB } and that of {o1g9p

ZBr1
OB, Ny ¢ B € B} are within additive O(1/log N) of each other entrywise. In addition,

IB| < (2r9)%. Therefore, it is clear that there exists a coupling between the two fields such
that

)|

lim P(max al|2/log N, — (o + o
Jim Pgax |/l /log Nely ., — (19, ,, + 208

> 1/loglog N [ {pn v € VN}) =0

zg,N/ro

(here the term 1/loglog N is somewhat arbitrary, any negative power larger than 1/2 of
(log N) would work). Note that the preceding equality holds for almost all realizations of
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{¢oNp i v € Vy}. Combined with (3.15), it then yields the proposition.

It remains to prove (3.15). Write r = 71 A o and let C' be a constant which we will
send to infinity after sending first N — oo and then r — oo, and let ¢ be the constant from
Lemma 3.0.4. Suppose that either of the events that are considered in (3.15) occurs. In this

case, one of the following events has to occur:

The event £y = {MN,TLT2,U75 Z (my—C, mN+C)}U{ME7U’5 Z(my—C,my+C)}.

The event Eo that there exists u, v € (r, N/r) such that o , AN, > mpy —cloglogr.

The event F3 = F3 U E3 where Es (E3) is the event that MNM’TZ’U (My . 5) 18

achieved at a vertex v such that ¢, < mpy — cloglogr.

e The event Fy that there exists v € B € B with ¢y, > my — cloglogr and

[lloll5 s [EE, 1
log NPNow — \/ log N¥N,z = loglog N *

By Theorem 2.0.4, limg_y oo limsupy_yoo P(F1) = 0. By Lemma 3.0.4,

lim limsupP(E9) = 0.

r—00 N =00

In addition, writting 'y = {v € Vv : ®N 1 o000 — PN € (2,2 + 1)}, one has

P(ESN E3) <P max max @ >my —C
(B 3) < (xZCloglogr—C’UEFx YPN,ri,r9,00 = TN )

< E P(max N 1y rg,00 = MmN — C)
vel',
x>cloglogr—C

< Y EPmaxey, =my -z CL))
vel', ’
x>cloglogr—C

Sc Y E(T|/N eV
x>cloglogr—C
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where the last inequality follows from (1.3). From simple estimates using the Gaussian
distribution one has E(|T|/N%)1/2 < e_c/xg/c’ where ¢ = /(o) > 0. Therefore, one
concludes that

lim sup lim sup limsup P(E{ N E3) = 0.
C—oo T—0 N-ooo

A similar argument leads to the same estimate with E3 replacing F3. Thus,

lim sup lim sup limsupP(E{ N E3) = 0.
C—oo 7700 N—oo

Finally, let I}, = {v : YNy = my — cloglogr}. On the event EF, one has 7| < .
Further, for each v € BN T}, on ES one has [v — zp| < r and thus (by the independence

between {¢y ,} and {(,0§V7U})a

[ loll3 [ o3
P( 1|(|)g|!7%7g0§\7,11 o 1|(|)g|k/'90§\f,z3 > 1/ log log N) = 0N<1) .

Therefore, a union bound gives that

limsup limsup P(E4 N E5) < lim sup lim sup 7’40N(1) =0.
r—o0 N-—00 r—00 N-—o0

Altogether, this completes the proof of (3.15) and hence of the proposition. ]

Proof of Lemma 3.0.2. Define

loll3 y
2 =1+ forve Vy, and My, = max @, -
PN.ow ( 2log N7 | N for v € Vi, and My o = max oy,

_ 2 _
Clearly we have My , = (1 2‘1‘5;‘3\,)1\/[]\7. Combined with (1.1), it gives that EMy , =

EMy + 021/d/2 + o(1) and that d(My — EMy, My o —EMpy ;) — 0 as N — co. Further
define {¢% ,, v € Vy} asin (3.13). By the fact that the field {py 5} can be seen as

a sum of {¢} .} and an independent field whose variances are O((1/log N )3) across the
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field, we see that EMpy , = EM} _ + o(1) and that
d(My,; —EMy, My , —EM}Y) — 0. (3.16)

Combined with Proposition 3.3.3, this completes the proof of the lemma. O

Proof of Lemma 3.0.5. Let ¢ and ¢, be i.i.d. standard Gaussian variables, and for ¢* >0

let

Plw,N,e* v = (1 —¢"/log N)SON,U + 6,N,U(b and Pup,N,e* v = (1 —¢"/log N)@N,v + 6/]/\7,U¢N,v )

where 6?\71;7 Gf/VU are chosen so that Var gy ey = Var oyp N ev v = Varon, + €. We can
choose €* = €*(¢) with € —¢ .0 0 so that Eoyy N e oPlw,N,e*u = E@up, N,e* v Pup,N,e*,u for

all u,v € Vy. By Lemma 2.2.1, one has

d( max Plw,N,e*,v — MN, MaX Qyp N e* gy — mpy)=0.
veVn veVn

Combined with Lemma 3.3.1, this completes the proof of the lemma. O
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CHAPTER 4
CONVERGENCE OF RECENTERED MAXIMA

Our main result is the following theorem.

Theorem 4.0.4. Under Assumptions (A.0), (A.1), (A.2) and (A.3), the sequence { My —

EMy} N converges in distribution.

As a byproduct of our proof, we also characterize the limiting law of (My — mp) as a
Gumbel distribution with random shift, given by a positive random variable Z which is the

weak limit of a sequence Zj;, defined as

Zy =Y (V2dlog N — gy, e V2UV2dI08 N =) (4.1)

veVy

In the case of BBM, the corresponding sequence Zj; is precisely the derivative martingale,
introduced in [26]. It also occurs in the case of BRW, see [3], and plays a similar role in the
study of critical Gaussian multiplicative chaos [20]. Even though in our case the sequence
Z is not necessarily a martingale, in analogy with these previous situations we keep refering
to it as the deriwative martingale. The definition naturally extends to a derivative martingale

measure on Vi by setting, for A C Vy,

Zya= Y (V2dlogN — @N’U)e—\/ﬁ(\/ﬁlog N=enw),
veEA
Theorem 4.0.5. Suppose that Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then the
derivative martingale Zpr converges in law to a positive random variable Z. In addition, the

limiting law poo of My — mpy can be expressed by

V2d

fioo((—00, 2]) = Ee P 2" o , forallz € R,

where 3* is a positive constant.
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Theorems 4.0.4 and 4.0.5 shall be seen as a generalization of [12, Theorems 1.1 and 2.5]
and [30, Theorem 1.1] (see Remark 4.0.6 below). In fact, Theorem 4.0.4 and 4.0.5 also
overlap with [8], which effectively studied the conformal symmetry (in language of [8]) for
the law of the maximum of GFF in general domains— the main results in [8] were presented
in terms of the intensity measure for the extremal process, but this corresponds to the law of
the maximum. In terms of proof strategies, the works of [12, 8] relied heavily on the Markov
field property for DGFF, and the work [30] relied crucially on the integral representation for
the covariances of x-scale invariant field. Comparing to [12, 30, 8], our current work aims to
study the universality aspects for the law of the maximum of log-correlated Gaussian fields
under minimal assumptions (which is the main novelty), and notably our result manifests

that Markov field property plays no role in the limiting law for the maximum.

Remark 4.0.6. Despite the fact that our result is directly on discrete log-correlated fields,
it should imply [30, Theorem 1.1] on the convergence in law for the centered supremum of -
scale invariant log-correlated fields (which is constructed in the continuous setting). Precisely,
one could apply our result to the x-scale invariant field over a discretized index set and then
use the smoothness of the x-scale invariant field.

Remark 4.0.7. Our proof will show that the random wvariable Z appearing in Theorem
4.0.5 depends only on the functions f(x),h(x,y) appearing in Assumptions (A.2) and (A.3),
while the constant * depends on other parameters as well. In particular, two sequences of
fields that differ only at the microscopic level will have the same limit law for their centered

maxima, up to a (deterministic) shift. We provide more details at the end of Section 4.

Remark 4.0.8. In the same spirit as the preceeding remark, if the field {p Ny vev, s
stationary, then Assumption (A.2) can be removed, at the cost of replacing in Theorems 4.0.4
and 4.0.5 mpy by an appropriate sequence my with |my — my| = O(1). This is proved by

a diagonalization procedure similar to that used for Remark 4.0.7. We omit further details.

In [7, 8], the authors used the convergence of the centered maximum, a-priori information

on the geometric properties of the clusters of near-maxima of the DGFF and a beautiful
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invariance argument and derived the convergence in law of the process of near extrema of
the two-dimensional DGFF, and its properties. A natural extension of our work would be
to study the extremal process in the class of processes studied here, and tie it to properties

of the derivative martingale measure.

A word on proof strategy. This work is closely related to [12], which dealt with 2D GFF.

The proof in [12] consists of three main steps:

1. Decompose the DGFF to a sum of a coarse field and a fine field (which itself is a
DGFF), and further approximate the fine field as a sum of modified branching random
walk (see Section 2.1 for definition) and a local DGFF. It is crucial for the proof that
the different components are independent of each other, and that the approximation
error is small enough so that the value of the maximum is not altered significantly.
These approximations were constructed using heavily the Markov field property of

DGFF, and detailed estimates for the Green function of random walk.

2. Use a modified second moment method in order to compute the asymptotics of the
right tail for the distribution of the maximum of the fine field, as well as derive a

limiting distribution for the location of the maximizer in the fine field.

3. Combine the limiting right tail estimates for the maximum of the fine field and the

behavior of the coarse field to deduce the convergence in law.

In the general setup of logarithmically correlated fields, it is not a priori clear how can one
decompose the field by an (independent) sum of a coarse field, an MBRW and a local field, as
the Markov field property is no longer available. A natural approach under our assumptions
is to employ the self-similarity of the fields, and to approximate the coarse and local fields
by an instance of {¢, : v € Vi } for some K < N. One difficulty in this attempt is to
control the error of the approximation and its influence on the law of the maximum. In order
to address this issue, we partition the box Vj to sub-boxes congruent to Vr, and borrow

a key idea from [7] to show that the law of the maximum of a log-correlated fields has the
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following invariance property: if one adds i.i.d. Gaussian variables with variance O(1) to
each sub-box of the field (here the same variable will be added to each vertex in the same
sub-box), where the size L of the sub-box is either K or N/K (assuming K grows to infinity
arbitrarily slow in N), then the law of the maximum for the perturbed field is simply a shift
of the original law where the shift can be explicitly determined (see Lemma 3.0.2). In light
of this, in Section 4.1 we approximate the field {¢ ,} by the sum of coarse field (which is
given by {¢xp v € Vi }), an MBRW, and a local field (which is given by independent
copies of {@grps 4, 2 v € Vgrpy}) (here the parameters satisfy N > K’ > L' > K > L). In
this construction, we make sure that the error in the covariance between two vertices is o(1)
if their distance is not in between L and N/L’, and the error is O(1) otherwise. Then we
apply Lemma 3.0.2 (and Lemma 3.0.3) to argue that our approximation indeed recovers the
law of the maximum for the original field. In Subsection 4.2, we present the proof for the
convergence in law for the centered maximum of the approximated field we constructed and,
as in [12], it readily also yields the convergence in distribution for the derivative martingale
constructed from the original field.

As in the case of the DGFF in two dimensions, a number of properties for the log-
correlated fields are needed, and are proved by adapting or modifying the arguments used

in that case. Those properties are:

1. The tightness of M — mps, and the bounds on the right and left tails of My — mpy
as well as certain geometric properties of maxima for the log-correlated fields under
consideration, follow from modifying arguments in [15, 19, 17]. This has been shown

in Chapter 2.

2. Precise asymptotics for the right tail of the distribution of the maximum of the fine
field follow from arguments similar to [12] with a number of simplifications, as our fine
field has a nicer structure than its analogue in [12], whereas the coarse field employed
in this paper is constant over each box; in particular, there is no need to consider the

distribution for the location of the maximizer in the fine field as done in [12]. The
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adaption is explained in the end of the chapter.

In this chapter we assume (A.0)—(A.3) and prove Theorem 4.0.4. Toward this end, in Sec-
tion 4.1 we will approximate the field {¢ ,, : v € Viy} by a field which is simpler to analyze,
in such a way that the results of Chapter 3 apply and yield the asymptotic equivalence of
their respective laws of the centered maximum. In Section 4.2 we prove the convergence in
law for the centered maximum of the new field. Our method of proof yields Theorem 4.0.5

as a byproduct.

4.1 An approximation of the log-correlated Gaussian field

In this section, we approximate the log-correlated Gaussian field. Let Ry (u,v) = E(oN 49N v)-

We consider three scales for the approximation of the field {¢y ,}:
1. The top (macroscopic) scale, dealing with Ry (u,v) for |u —v| < N.
2. The bottom (microscopic) scale, dealing with Ry (u,v) for |u — v| < 1.
3. The middle (mesoscopic) scale, dealing with Ry (u,v) for 1 < |u —v| < N.

By Assumptions (A.2) and (A.3), Ry(u,v), properly centered, converges in the top and
bottom scale. So in those scales, we approximate {¢y,,} by the corresponding “limiting”
fields. In the middle scale, we simply approximate {¢y ,} by the MBRW. One then expects
that this approximation gives an additive o(1) error for Ry (u,v) in the top and bottom
scale, and an additive O(1) error in the middle scale. It turns out that this guarantees that
the limiting laws of the centered maxima coincide.

In what follows, for any integer t we refer to a box of side length ¢ as an ¢t-box. Take two
large integers L = 2t and K = 2%, Consider first {eKLu v € Vi) in a KL-box whose
left-bottom corner is identified as the origin, and let 3 denote its covariance matrix.

Recall that by Proposition 1.4.1, with probability tending to 1 as N — oo, the maximum

of ¢, over Vy occurs in a sub-box of Viy with side length |N/KL]| - KL. Therefore,
38



one may neglect the maximization over the indices in Vi \ VL N/KL|-KL- For notational
convenience, we will assume throughout that KL divides N in what follows.
We use ¥ to approximate the macroscopic scale of Ry (u,v), as follows. Partition Vi

into a disjoint union of boxes of side length N/KL, denoted By g1, = {Bn/gr,; 1 =

1,..., (KL)%, Let UN/K L, e the left bottom corner of box By g ; and write w; =
% Let Z¢ be a matrix of dimension N x N? such that i = Zww, for u €

BN/KL,z' and v € BN/KL,j- Note that =€ is a positive definite matrix with diagonal terms
log(KL)+ Ogp(1).

Next, take two other integers K’ = oK and I/ = 2. As above, we assume that K'L'
divides N. Consider {¢grr/, : u € Vgrps} in a K'L'-box whose left-bottom corner is
identified as the origin, and denote by 3’ the covariance matrix for {pz Luiuw€ Vit As
above, assume for notational convenience that K’L’ divides N. Partition V) into a disjoint
union of boxes of side length K'L’, denoted Byryy = {Bgrpy ;i =1,..., (N/K'L)%}. Let
Uk i be the left bottom corner of By ;. Let =b be a matrix of dimension N% x N so
that

/

:b u_UK/L/,i7U_vK/L/,’L" u7/0 € BK’L’,Z’

0, U,EBK/L/’@',’UGBK/L/J,TZ%‘]‘

Note that =P is a positive definite matrix with diagonal terms log(K'L') + Ogrp/(1).

Let {ff\,’ , ' v € Vy} be a Gaussian field with covariance matrix Z¢, which we occasionally
refer to as the coarse field, and let {5?\]’ , ' v € Vy} be a Gaussian field with covariance matrix
=P, which we occasionally refer to as the bottom field. Note that the coarse field is constant
in each box By /KLy and the bottom fields in different boxes B [/, are independent of
each other.

We will consider the limits when L, K, L', K’ are sent to infinity in that order. In what
follows, we denote by (L, K, L', K') = oo sending these parameters to infinity in the order

of K'.I'. K,L (so K'>L' > K> L).
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THES

§ independent betwcen K'L' boxes
correlated
constany, inside N/(JK'L) boxes
/

N, MBRW
independent between N/(K L) boxes

N

Figure 4.1: Hierarchy of construction of the approximating Gaussian field

Finally, we give the MBRW approximation for the mesoscopic scales. Recall the defini-
tions of B;V and B;(v) in Subsection 2.1, and recall that {b; ;. p: k> 0,1 <i < (KL)Y, B €
BIJ{Y } is a family of independent Gaussian variables such that Varb; j,B =log2- 24 for all
B e BY and 1 < i < (KL)’. For v € Byp; N Bgrpy g (where i = 1,..., (KL)% and
i =1,...,(N/K'L)%), define

n—k—/

ENoMBRW = D PO (4.2)

Jj=l'+k' BeB; (UK’L’,Z")

Note that by our construction {{y , MBRW : v € B N/K L,i} are independent of each other
for i =1,..., (KL)% and in addition N, MBRW 1s constant over each K'L'-box. Further,
let {£5%, v € V) {5?\“} tv € Vit and {{n, MBRW : v € Viv} be independent of each

other. One has by Assumption (A.1) that

| Var(€57., + X + EnoMBRW) — Var gy ,| < 4a.
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Let ay, be a sequence of numbers such that for all v € BNk and all 1 <17 < (KL)d,

Var(¢yy, + f?vﬂ) + &N, MBRW) + a%v,v = Varpn , + 4a. (4.3)

(Here, the sequence ap ,, implicitly depends on (K L).) It is clear that

max ay., < V8a. (4.4)
veEVN ’

For v € By g, and v =0 mod K'L', one has

a?v’v = var SON,’U + 40[ — Var SOKL,IU@ - Va‘r SOK,L,,’D - log(%)

= IOgN — log(KL) + EN,KL,K’L/ + 40( — Var SOK/L/,TJ — log(ﬁ) 2 O,
where, by Assumptions (A.2),

limsup  limsupey gy gy = 0. (4.5)
(LK, L' K'\=00o N—oco

Therefore, one can write

2 2
ANy =0k 15 T ENKLK'L » (4.6)

where agr/ ; depends on (K L', ). By Assumption (A.2) and the continuity of f, one has
lim sup sup lim sup | Var f?v , — Var 5?\, ul = 0.

(L,K,L' K" =00 u,v:||u—v|| oo <L N—0o0

Therefore, we can further require that

|aK/L/,1_) — CLK/LI,I_L| S eN,KL,K’L’ for all ||1_} — ﬁ”oo S L,. (47)
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Let ¢; be i.i.d. standard Gaussian variables. For v € B/ ; and v =0 mod K'L’, define

Enw =ENo T 5?\@ +&Nu,MBRW + a1/ 5®j - (4.8)

It follows from (4.3) and (4.6) that

limsup  limsup|Var§y, — Vargy, —4a[ =0. (4.9)
(L,K,L' K")=00 N—00
Finally, we partition Vj into a disjoint union of boxes of side length N/L which we denote
by By, ={Bn/r,;i: 1 <1< L%}, as well as a disjoint union of boxes of side length L which
we denote by By, = {Br,; : 1 <i < (N/L)%}. Again, we denote by vn/L; and vp ; the left
bottom corner of the boxes B N/L. and By, ;, respectively.
For 6 > 0 and any box B, denote by B C B the collection of all vertices in B that are

3 p away from its boundary 0B (here {pg is the side length of B). Let

Vs = (UiB?V/L,z') N <UiB§SV/KL,i) N (U;iB} ;) N (UiBkL,)-

One has [V 5| > (1 —100d0)|V|.
The following lemma suggests that {{y, : v € Viy} is a good approximation of {¢n, :

RS VN}-

Lemma 4.1.1. Let Assumptions (A.1), (A.2) and (A.3) hold. Then there exist EEV,K,L,K’,L’ >

0 with lim SUD(L, K, L/ K") =00 lim sup y o0 E{NKL g = 0, such that the following hold for
all u,v € V]”\‘,’(; :

(a) If u,v € Bpy; for some 1 < i < (N/L')?, then [E(&n,, — Enp)? — Elony — onw)?] <

6/
N,K,LK',L/"
(b) If u € Byyp ;. v € Byyp j with i # j, then [EEn unw — BONwONul < €y k1 107 -

(¢) Otherwise, |E§y uéNn» — Bonvonul < 4log(1/6) + 400
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Proof. (a): Let i’ be such that By ; € Bgrpy . By (4.7) and (4.8), one has

2 2
BNy = ENw)” — B(PKLu—vgp g = PELv—vyy o) | S 4N KL KL

where € 1, jp satisfies (4.5) (and was defined therein). By Assumption (A.2), one has

. . 2 2
lim sup lim sup |E(90KL,u—vKL s PKLuv—vgp Z-/) - E(@N,u - SON,U) |=0.
(LK, L', K" =00 N—00 ’ ’

Altogether, this completes the proof for (a).
(b): Let ¢/, 5’ be such that u € BN/kLi and v € BNn/kL,j and assume w.l.o.g. that

K'> L'> K> L>1/6. The definition of {{y,} gives

]EfN,va,u - E‘PKL,wi/QOKL,wj/

UN/KL,! _ UN/KLj! . "
where w; = N/KT and wj = N/KL - In this case, we have |w; — wj/| > 0K. Writing

zy =u/N,xy =v/N and yy = wy/KL,yy, = wj /KL, one obtains

\yu — Yol > 0/ L, |2y — 29| > 0/ L, |20y — yu| < 1/K, |1y — 0| < 1/K .

Therefore, Assumption (A.3) yields

lim sup lim sup ’EgN,ugN,v - ESON,MON,M =0,
(L,K,L'\K')=00 N—00

completing the proof of (b).
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(c). In this case, one has

BN wéNu =EEy oS + Eg?\/,vg?\f,u + EEN u, MBRWEN 0, MBRW + €IT1
=log KL — 10g+(%)
+ Ly enyie (908 Ty — log ) + errs

=log N —log, |u — v| + erro,

where |err;] < 8a and |errsg| < 2log1/d + 20c. Combined with Assumption (A.1), this

completes the proof of (c¢) and hence of the lemma. O

Lemma 4.1.2. Let Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then,

limsup  limsupd(My —mpy, max {n, —my — 2av2d) = 0.
(L,K,L' [K')=00 N—00 veVy

Proof. By Proposition 1.4.1, it suffices to show that for all § > 0

limsup  limsuplimsupd( max ¢y, —my, max {y, —my —2av2d) =0.
(LKL K')=s00 N—oo N—oo VEVNs vEVY 5
Consider a fixed § > 0. Let o = 4log(1/8) + 60a. Let a1y = (0,1/02 +4a) and oyp =
(6%,0). Define {¢n 1/ 150 0 € VN} asin (3.1) with rp = L', rg = L and 0 = oy,

Analogously, define {EN,L’ v € Vy}. By (4.8) and Lemma 4.1.1, one has for all

aLagup,U '

u,v € Vy 5

[ Varon 11, 1ong 0 = VA EN 1 Loy 0| S ENKLLEL 5

EEN, L,00p 8N, Lowpu < BPN Lo vPN,Loygu + EN K. LKL/ >

where lim SUP(L, K, I/, K')=00 lim supn_s o0 €N7K,L,K’,L’ = 0. Since {SEN,L,,L,U]W,’U NS Vj{} 5}

satisfies Assumption (A.1) with a being replaced by 10« + O'Z , one may apply Lemma 3.0.3
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and obtain that

hn} Su/p hm SuP d(vlen.‘ii,i( S0]\[7[/’[’70-1W’/U o mN’ vl’él‘?i{ vaL/aL7Uuan - mN) = O :
(L,K,L ,K ):>OO N—o0 N,§ NS

By Lemma 3.0.2 (it is clear that the same statement holds for maximum over Vy; ), one

gets
hmsup m d( ma}z( ¢N,L/,L,01W,U —myN — (O'* -+ 40() %, max ©Onoy — TTI,N) = 0,
(L,K,I/ \K')=00 N—oo UEVN’(;

lim sup lim d( max gNL’Lau U_mN_(O-z)\/g7 max §N,y_mN) =0.
(L,K,L’,K’):>OON_>OO veVys T P v

Altogether, this gives that

limsup  limsup ci( max @y, —my, max {y, —my —2av 2d) =0.
(LKL \K')=00 N—oo  VEVN; vEVN 5

The other direction of stochastic domination follows in the same manner. Altogether, this

completes the proof of the lemma. n

4.2 Convergence in law for the centered maximum

In light of Lemma 4.1.2, in order to prove Theorem 4.0.4 it remains to show the convergence
in law for the centered maximum of {{, : v € Viy}. To this end, we will follow the proof
of the convergence in law in the case of the 2D DGFF given in [12]. Let the fine field be
defined as 5]{,71} =N — 5?\7,@’ and note that it implicitly depends on K'L/. As in [12], a
key step in the proof of convergence of the centered maximum is the following sharp tail
estimate on the right tail of the distribution of max,cp ézfvw for BeB N/KL- The proof of

this estimate is postponed to Section 4.4.

Proposition 4.2.1. Let Assumptions (A.1), (A.2) and (A.3) hold. Then there exist con-
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stants Cq, cq > 0 depending only on a and constansts cq < B’;{, 1 < Cq such that

lim limsup limsup limsup |=~'eV?ZP( max &l > mpypp+2) B ] = 0. (4.10)
Z—>00 LS00 K'—oo N—o00 veBN/KL,i N,’U / K,L

Remark 4.2.2. Proposition 4.2.1 is analogous to [12, Proposition 4.1], but there are two

important differences:

1. In Proposition 4.2.1 the convergence is to a constant B}F(’,L/ which depends on K', L',
while in [12, Proposition 4.1] the convergence is to an absolute constant o*. This is
because the fine field £ ,, here implicitly depends on K' L', and thus a priori one is
not able to eliminate the dependence on (K', L') from the limit. However, in the same
spirit as in [12], the dependence on (K', L") is not an issue for deducing a convergence
in law — the crucial requirement is the independence of N. Eventually, we will deduce
the convergence of ﬁ;(’,L’ as K', L' — oo in that order from the convergence in law of

the centered maximum.

2. In [12, Proposition 4.1], one also controls the limiting distribution of the location of
the mazimizer while in Proposition 4.2.1 this is not mentioned. This is because in the
current situation and unlike the construction in [12], the coarse field {55\7’ ) is constant
over each box BN/KL,zV and thus the location of the maximizer of the fine field in each

of the boxes BN/KL,z' is irrelevant to the value of the mazimum for {&x ,}.

Next, we construct the limiting law of the centered maximum of {{x, : v € Vy}. We
partition [0,1]% into R = (KL)% disjoint boxes of equal sizes. Let By 1 be as defined in the
statement of Proposition 4.2.1. By that proposition, there exists a function v : R +— R that

grows to infinity arbitrarily slowly (in particular, we may assume that vy(z) < logloglog x)

such that
lim lim,/lim glim sup \z_lemzp( max éfvv >my/gr+2) - B 1] =0,
2/ —00 2 <2<y(K'L) UGBN/KL,i ) ’
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with each of the limsups with respect to the corresponding independent variables tending
to infinity.

Let {0 Rﬂ'}ﬁ: 1 be independent Bernoulli random variables with
P(op, = 1) = B pry(KL)e V2DELD)
In addition, consider independent random variables {YR,i}f; 1 such that

P(Ypi > )= %e_mx z 2 0. (4.11)

Let {Zp;: 1 <i < R} be an independent Gaussian field with covariance matrix ¥ (recall

that ¥ is of dimension R x R). We then define

Gi;(L Ky = . . max GRJ- where GR,z' = QRJ'(YRJ' +~(KL))+ ZRi— V2dlog(KL)
R 1<i<R,op;=1

(here we use the convention that max () = 0). Let i 1, g7 1/ be the distribution of G?(,L,K’,L"

We note that i 1, g7 1/ does not depend on N.

Theorem 4.2.3. Let Assumptions (A.0), (A.1), (A.2) and (A.3) hold. Then,

limsup  limsupd(upn, fig 1 k1) =0, (4.12)
(L,K,L! . K')=00 N—c0 T

where pp is the law of max,ey, Ny — MN-
(Note that pp does depend on KL, K'L’.)
Proof of Theorem 4.0.4. Theorem 4.0.4 follows from Lemma 4.1.2 and Theorem 4.2.3. [

Next, we give the proof of Theorem 4.2.3. Our proof is conceptually simpler than that
of its analogue [12, Theorem 2.4], since our coarse field is constant over a box of size N/ KL

(and thus no consideration of the location for the maximizer in the fine field is needed).
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Proof of Theorem 4.2.5. Denote by T = argmax,cy,, {n,»- Applying Theorem 2.0.4 to the
Gaussian fields {{y, : v € Vy} and {£5, : v € Vn} (where the maximum of {5, :
v € Vi } is equivalent to the maximum of a log-correlated Gaussian field in a K L-box), we

deduce that

lim sup limsupIP(ngi[T >my/gr +7(KL)+1)=1. (4.13)
(L,K,L/\K")=00 N—00 ’

Therefore, in what follows, we assume w.l.o.g. the occurrence of the event
f /2T oo N 3 N

Let £ = UISiSR{maXUEBN/KL,i 5};7@ > my g+ KL+ 1}. A simple union bound over i

gives that

limsup  limsupP(€) =0. (4.14)
(LKL K')=00 N—00

Thus in what follows we assume without loss that £ does not occur. Analogously, we let

&' =Ui<i<p{Yri > KL+ 1—~(KL)}. We see from the union bound that

limsup  limsupP(£') = 0. (4.15)
(LK, K"\ =00 N—00

In what follows, we assume without loss that & does not occur.

For convenience of notation, we denote by

Mf.: max f—m +~v(KL)).
Ny UGBN/KL,igN’U (N/KL ol )

By Proposition 4.2.1, there exists ¢* = ¢*(N, K, L, K', L') with

limsup  limsupe*(N,K,L, K' L) =0,
(L,K,L'\ K'")=00 N—0o0
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such that for some |€°| < €*/4

P(e* < M, < KL—5(KL)+1) =Plop; =1,Yg; < KL —y(KL)+ 1),
and that for all -1 <t < KL —~v(KL)+1

P(op,i=1, YR <t —€"/2) <P(° < M]J\t[’z' <t) <P(oRi=1,YR; <t+€/2).

Therefore, there exists a coupling between {MJJ\CM 11 <i< R}and {g;,Yg;:1<i< R}

such that on the event (€ U &),
_ v wearf * v * -
0ri =L, |YRi— My ;| <€ if My, > ¢, and [Yp; — My | <€ if op; =1.  (4.16)

In addition, it is trivial to couple such that {5, = Zp,forallv e BN/KL,i and 1 <17 < R.

Also, notice the following simple fact

lim sup lim sup lim sup(m — MN/KL — V2dlog(KL)) =0.
L—oco K—oo N—oo

Altogether, we conclude that there exists a coupling such that outside an event of probability

tending to 0 as N — oo and then (L, K, L', K') = oo (c.f. (4.13), (4.14), (4.15)) we have

'UGVN (et} )

Now, let 7/ = argmax;<;<r Gg ;. Applying Theorem 2.0.4 to the Gaussian field {Zp ;} and

using the preceding inequality, we see that

limsup  limsupP(pp . =1)=1. (4.17)
(L,K,L' K')=00 N—o0 ’

Combined with (4.16), this yields that there exists a coupling such that except with proba-
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bility tending to 0 as N — oo and then (L, K, L', K') = oo we have

max —my) — G* < 2¢* .
|veVN(€N’U N) kLK L)<

thereby completing the proof of Theorem 4.2.3. O]

Proof of Theorem 4.0.5. Recall that G ; - ;, is a random variable with law fig 1, g7 1.
We will construct random variables Zg j, measurable with respect to ¢ := o({Zpg;}), so

that

. fig, 1k, 1 (=00, z]) . ik, 1.k 1 (=00, z])
lim sup = lim inf

(LKL, K")=00 E(e—ﬁ;/ﬂz}(@e—mm) (L,K,L' K" =00 E(e_B}’,L’ZK,Le_mx>

=1. (4.18)

for all 2. To demonstrate (4.18), due to (4.17), we may and will assume without loss that
or = 1. Define Sg; := v2dlog(KL) — Zg ;. Then, for any real z,
R
PGy rxp <o) =E|[] (1 -PloriVri > Spi+x—v(KL)|F))| .  (419)

1=1

In addition, the union bound gives that

limsupP(D) = 1 where D = { min Sg,; > 2y(KL)}.
KL—x 1<i<R ’

So in the sequel we assume that D occurs. By the definition of pp; and Yp ;, we get that
P(opVii > Ski+ 7 —1KL) | FO) = Bjr 1 (Spi+w)eV2USRTD) - 0 a5 KL — 0.
Therefore,

exp(—(1+ ex, 1) Bigr pySpe” V2AETSRA) < PlopYp; < Spj +x —4(KL)| F)

< exp(—(1 — g, ) Bjgr ppSp e 200H5R)) (4.20)

20



for e 1, > 0 with

limsupeg 1, = 0.
KL—oo

Define Zg 1, = Zil S Rﬂ.e—\/ﬁsm (this is the analogue of a derivative martingale, see
(4.1)). Substituting (4.20) into (4.19) completes the proof of (4.18). Now, combining (4.18)

and Theorem 4.2.3, we see that we necessarily have

lim sup limsup |87 7, — 8% =0
K'—o0o L'—o0 ’
for a number 3* that does not depend on (K’,L’). Plugging the preceding inequality into

(4.18), we deduce that

. k1.5, 1 ((—00, z) o ik 1. i 1 (=00, z)
lim sup = lim inf

(L,K,L' \K')=00 E(e—ﬁ*ZK’Le_\/ﬂx> (L K,L' K")=00 E(e_ﬁ*ZK:Le_mx)

=1. (4.21)

Combining (4.21) with Theorem 4.2.3 again, we see that Zx , converges weakly to a random
variable Z as K — oo and then L — oco. Also note that Zg 1, depends only on the product
K L. Therefore, this implies that Zp converges weakly to a random variable Z. From the
tightness of the laws fig 1 g7 s, it follows that Z > 0 a.s. This completes the proof of

Theorem 4.0.5. [

Proof of Remark 4.0.7. Consider two sequences {4y} and {Py,} that satisfy assump-
tions (A.0)—(A.3) with the same functions h(z,y) and f(z) but possibly different functions
/

g(u,v), g(u,v) and different constants a(‘s),a(‘s)’ and ao,a(). Introduce the corresponding

fields

_ec f e _ce £f
ENKLK'L = SN KLK'L T fN,KL,K/L' » SNKLK'L =8N KLKD T 5N,K LK'L"
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see Section 4.1. Set also

~ __¢cC f
ENKLKTD =SNKLE'LD TSN KL KL

Let vy, vy denote the laws of the centered maxima max,cy,, YN,y — My, MaXycVy PNv —
mpy, and let pp, fiy, iy denote the laws of the centered maxima of the §N75N7€N fields.
(Recall that the latter depend also on KL, K'L' but we drop that fact from the notation.)

By Lemma 4.1.2, we have

limsup  limsup (d(un,vy) +d(in,7y)) =0. (4.22)
(L,K,L' K")=00 N—00

For s € R, let O5u denote the shift of a probability measure p on R, that is O5u(A) =
((A+s) for any measurable set A. Recall the construction of fig 1, g 1/, see Theorem 4.2.3,
and construct similarly fig 1 g 7 and i g 7. Note that, by construction, there exists
s = s(K L), bounded uniformly in KL, so that Osfig 1 g 1/ = fi 1 k.17 In particular,

from Theorem 4.2.3 we get that

limsup  limsup (d(NN»ﬂK,L,K’,L’) +d(iy, 98ﬂK,L,K’,L’)> =0. (4.23)
(L,K,L' K")=00 N—00

From (4.22) and (4.23), one can find a sequence L(N), K(N), K'(N), L'(N) along which the
convergence still holds (as N — oo). Let {n, y} and {7, y} denote the fields {£, y} and
{év, N} with this choice of parameters, and let iy and fip denote the corresponding laws
of the maximum. Let oo, fioo denote the limits of ppn and fipy, which exist by theorem
4.0.4. From the above considerations we have that iy — oo and 93(N)ﬂN — fioo- On
the other hand, the fields 7y . and 7). both satisfy assumptions (A.0)-(A.3) with the same
functions f, g, h and thus, interleaving between then one deduces that the laws of their
centered maxima converge to the same limit, denoted ©. It follows that necessarily, s(N)

converges and fioo = Osfico = Oxo. Using the characterization in Theorem 4.0.5, this yields
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the claim in the remark. O

4.3 An example: the circular logarithmic REM

In the important paper [23], the authors introduce a one dimensional logarithmically cor-
related Gaussian field, which they call the circular logarithmic REM (CLREM). Fyodorov
and Bouchaud consider the CLREM as a prototype for Gaussian fields exhibiting Carpentier-
LeDoussal freezing. (We do not discuss here the notion of freezing, referring instead to [23]

and to [33].) Explicitly, fix an integer NV, set 6, = 2wk/N, and introduce the matrix

1 0. — 0
Ry o= —510g (4Sin2 ( k 5 Z)) 1pro+ (log N +W)1p—p,

where W is a constant independent on N. It is not hard to verify (and this is done explicitly
in [23]) that one can choose W so that the matrix R is positive definite for all N; the
resulting Gaussian field ¢, with correlation matrix R is the CLERM. One may think of
the CLREM as indexed by Vj in dimension d = 1, or (as the name indicates) by an equally
spaced collection of N points on the unit circle in the complex plane.

Let My = max,cy, ¥N,»- The following is a corollary of Theorems 2.0.4 and 4.0.5.

Corollary 4.3.1. EMy = v/2log N — (3/2v/2)loglog N + O(1) and there exist a constant

B* and a random variable Z so that

lim P(My — EMy < ) = E(e~ 7 2™ (4.24)
N—o0

Proof. Assumptions (A.0) and (A.1) are immediate to check. An explicit computation reveals

that Assumption (A.2) holds with f(x) =0 and

W, u=v
g(u,v) = :
log(4m) + |u —v|, u#v
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Finally, it is clear that Assumption (A.3) holds with h(z,y) = log(4sin?(2x|z — y|)). Thus,

Theorems 4.0.4 and 4.0.5 apply and yields (4.24). O

Remark 4.3.2. Remarkably, in [23] the authors compute explicitly, albeit non-rigorously,
the law of the maximum of the CLREM, up to a deterministic shift that they do not compute.
It was observed in [33] that the law computed in [23] is in fact the law of a convolutions of
two Gumbel random variables. In the notation of Corollary 4.3.1, this means that one expects

that 2~1/2 log(8*Z) is Gumbel distributed. We do not have a rigorous proof for this claim.

4.4 Precise estimate of right tail

Our proof of Proposition 4.2.1 is highly similar to the proof in [12, Proposition 4.1], but
simpler in a number of places. We will sketch the outline of the arguments, and refer to [12]
extensively (it is helpful to recall Remark 4.2.2). To start, we note that by Lemmas 2.0.6

and 2.2.1, there exists ¢, > 0 depending only on « such that

P(  max fjj;v > MN/KL +2z) > caze*mz forall 1 <z <4/logN/KL,1<i< (KL)d.
VEBN/KkLi

(4.25)

In addition, adapting the proof of (1.2), we deduce that there exists C;, > 0 depending only

on « such that

P(  max ,f]{“] > my/gr+2) < C’aze_mz forall z>1,1<i<(KL). (4.26)
vEBN/KkLi

Recall the definition of {{y ,} as in (4.8). In what follows we consider a fixed i and
a box By/gr ;- We note that the law of the fine field {fj{f,v v € By/gr,;} does not
depend on K, L,i, and hence B;(’,L/ does not depend on K, L,i. Write N = N/KL = 2"
and L = K'L' = 2'. For convenience of notation, we will refer to the box By ; as Vy

and let = N be the collection of all left bottom corners of L-boxes of form B L.j in By /KL,

Var vaN

og? = n — {, where we denote Xu,N = EN,u MBRW-

o4

In addition, write n* =



For convenience, we now view each X, y as the value at time n* of a Brownian motion
with variance rate log2. More precisely, we assign to each Gaussian variable vy B in (4.2)
an independent Brownian motion, with variance rate log2, that runs for 272/ time units
and ends at the value bj.\fB. We now define a Brownian motion {X, n(t) : 0 <t < n*} by
concatenating each of the previous Brownian motions associated with v € Zy;, with earlier
times corresponding to larger boxes. From our construction, we see that X, y(n*) = X, y.
We partition Vi into disjoint L-boxes, for which we denote B 7. Further, denote by B, the
L-box in B 7 that contains v. Define

By n(z) ={X, N(t) < 2+ Tt for all 0 < ¢t < n*, and Irbrelan £f >my + 2},

Fyn(2) = {X,n(t) < 2+ —t +10(log(t A (n* — )4 + 21/20

4.27
for all 0 <t < n*, and %%Xfu,NZmN+Z}7 (4.27)

U U &Xnt>z+ —t +10(log(t A (n* — 1))+ + 21/20}.
veEy 0<t<n*

Also define

= lg e awdly,. = > 1p ()
UEEN UEEN

In words, the random variable Ay , counts the number of boxes in B whose “backbone”
path X, n(-) stays below a linear path connecting z to roughly m g + 2, so that one of its
“neighbors” achieves a terminal value that is at least my + z; the random variable I'y ,
similarly counts boxes in By whose backbone is constrained to stay below a slightly “upward
bent” curve. Clearly, E, y(z) € F n(2) always holds, as does Ay, <T'y .

By (4.8), for each v € Z5 we can write that

[
151%%55} SN,U =Xy N tYy N, (4.28)

where {Y;, y} are i.i.d. random variables with the same law as maxyey, ¢, + a5, 1 K/ 1/ u®
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where ¢ is a standard Gaussian variable. Crucially, the law of Y, v does not depend on N.

In addition, by Proposition 1.4.1 and Lemma 2.0.6, there exist C,, depending only on « such

that
P(Yyn > my +A) < Care V2R Ca" X/l gorall A > 1. (4.29)
. . . AN,Z sy e AN,z o P(E’U,N(Z)) -
When estimating the ratio Ty, it is clear that Ty, — PN () for any fixed v € Zy,

where the latter concerns only the associated Brownian motion to X, y and the random
variable Y, n. As such, the arguments in [12, Lemma 4.10] carry out with merely notation
change and give that

AR,
lim limsuplimsup =—= =1. (4.30)
S L—oo N—oo J\_f,z

Analogous to the proof of [12, Equation (100)], we can compare the field {X, y} to a

BRW and apply [12, Lemma 3.7] to obtain that
P(Gy(2)) < Coe V22, (4.31)

Note that the dimension does not play a significant role in these estimates, as [12, Lemma
3.7] follows from a union bound calculation. The dimension changes the volume of the box,

but the probability

P(X, N (1) > 2+ Xt + 10(log(t A (1 — 1)) + /)

scales in the dimension (recall that mp depends on d) which exactly cancels the growth of
the volume in d.

The next desired ingredient is the second moment computation for A Nz Note that (i)
our field {X,, y : v € Ex} is simply an MBRW (so {X,, } is nicer than its analog in [12],
which is a sum of an MBRW and a field with uniformly bounded variance); (ii) our {Y;, v}
are i.i.d. random variable with desired tail bounds as in (4.28) (so also nicer than its analog

in [12], which has weak correlation for two neighboring local boxes). Therefore, the second
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moment computation in [12, Lemma 4.11] carries out with minimal notation change and
gives
o E(Ay L)
lim limsup limsup ———
ST [ oo Nooo BAy,

=1. (4.32)

Note that in [12, Equation (90)], there is no analog of limsupz_,  as in the preceding
!

inequality. That’s because we have assumed in [12] that L > 22° . Our statement as in

(4.32) is weaker as it does not give a quantitative dependance on how L should grow in z.

But this detailed quantitative dependence is not needed for the proof of convergence in law.

Combining (4.25), (4.30), (4.31) and (4.32), we deduce that

P(max,cy 5]];’@ > my + 2)

—1|=o0. (4.33)

lim lim sup lim sup
T2 oo Novoo EAy .

Therefore, it remains to estimate EAy .. To this end, we will follow [12, Section 4.3]. We
first note that by (4.25) and (4.33), we have
EA N

lim lim sup lim sup

- COL 9 (434)
270 T v N—ooo ze‘mz

where ¢4 > 0 is a constant depending on a.
The main goal is to derive the asympototics for EAy .. For v € Z, let v, 5(-) be the

density function (of a sub-probability measure on R) such that, for all I C R,

/Ii/v,N(y)dy =P(X, n(t) <2+ ?t for all 0 <t < n* X, y(n*) = (A = O)my/n € ).

Clearly, by (4.28),

PELNG) = [ v, Py = g/t 2~ y)dy.
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For a given interval J, define

Mo = [ vy WPy = B+ 2 = ). (4.35)

Set J; = [, —2/ 5]. For convenience of notation, we denote by A < B that there exists
a constant C, > 0 that depends only on « such that A < C, B for two functions/sequences

A and B. As in [12, Lemma 4.13], we claim that for any any sequences x, y such that

|xU,N’ 5 Z]./E)’

ZUGEN A’u,N,z,xv,NJrJg

lim lim inf lim inf
220 oo N—oo EAN,z

=1. (4.36)
Note that, by containment, the above ratio is always at most 1. We prove (4.36) for the
case when z, y = 0; the general case follows in the same manner. Application of the
reflection principle (c.f. [12, Equation (28)]) to the Brownian motion with drift, X, y(-) =
Xy, N (-)=mpyt/n, together with the change of measure that removes the drift m 5t /n, implies
that

< 67\/Qy27dn*

VU,N<y> Z’y| )

for y < —£, over the given range z € (0,¢) (which implies z —y < |y|). Together with (4.29)

and independence among Y, y for v € =, this implies the crude bound

.y ) ) o
/ vy NPy n > Iy /i + 2 —y)dy S 279 e Ca 't

_w ’
for a constant C,, > 0 depending on «. Similarly, for y < z (and therefore, for z —y > 0),

application of the reflection principle and (4.29) again implies that

Z 72 k —
/52/5 Vv,N(y)P(YuN > Iy /i+ 2 —y)dy S g dn® 3103z

Together with (4.34), this completes the verification of (4.36).
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Next, we claim that there exists A%, >0 that does not depend on N such that,

EANz EAN »
lim lim sup lim sup “ = lim liminflim inf
Z—00 T oo N—oo K’ Iz 2—00 [ _soo N—oo AK’ L

=1. (4.37)

By the reflection principle and change of measure, we get that for all y € [/, 2] (see the

derivation of [12, Equation (107)])

v (0) =2V ZEI (1 0@ ). (4.38)

Therefore,

S Attty = (I [ vy w0+ OUNVRP(Yig e = Vadlog2 - 1 =)y
UEEN l
_ 3, = 2(z —y) B
=(1+0( /\/ﬁ))/JK 27r10g2e\ﬁy P(Yy N > V2dlog2 - (+z—y)dy,

where vy is any fixed vertex in Z 5 and in the last step we have used the fact that n* = n— l.
Recall that the law of Yy, x is the same as maxyey; ¢f ,+ag7 17,9, which does not depend
on N. Combined with (4.36), this completes the proof of (4.37).

Finally, we analyze how [EAy . scales with 2. To this end, consider 21 < 29. For v € =

and j = 1, 2, recall that

A’U,N,Zj,Zj+Jl7 = /J-|— VU,N<y>]P(Yv,N > EmN/ﬁ +z; —y)dy.
[T
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By (4.38), for any y € J; and 21, 29 < log l,

VU’N(y +21)P(Y, Ny > EmN/ﬁ —v)
vy N+ 2)P(Yy N 2 Iy /0 —y)

Vo, v+ 21) 3, WA = Y) ar(z1—20)
= —=(14+0( A g m(21—22
VU,N(?J+22) ( * ( /n))22(22 —y)e
= (1+ O(gg/n))z—;e_m(zl—@)(l 1230,

This implies that

Ao N . B
v, 7Z1aZ1+J£ — (1 + O(ﬁ/ﬁ))z_le—@(Zl—ZQ)(l + Z2 3/5) .
)‘U,N,ZQ,ZQ—&—Jg z2

Together with (4.36), the above display implies that

. . . 2o VITREA )y . o me VEREAN
lim limsup limsup == = lim liminfliminf -
21,22—>00 00 N—oo Zle*\/ 271’2’1]EAN722 21,220 [ _yo0 N—00 Zle*\/ 27T21EAN722

=1.

Along with (4.37), this completes the proof of (4.10) for some S}, ;,. From (4.25) and (4.26),

we see that cq < B}, 1 < Co forall K ! L'. This completes the proof of the proposition. [

60



CHAPTER 5
D-ARY TREE PRESSED AGAINST A HARD WALL

Let us consider a d-ary tree of n levels and call it T;,. We define a tree indexed Gaussian
process which we call a branching random walk on T}, and denote it by {¢! : v € T;,}. The

covariance structure of this Gaussian process is given by the following

Var¢; =n for all v € T),
(5.1)

Cov(oy, dr) =n —dp(u,v) for all u # v e T),.

where dp denotes the tree distance.

We wish to find bounds on the order of the probability of a branching random walk being
positive at all vertices. We also want to compute the expected value of a typical vertex under
the condition that it is positive everywhere. The behavior that we are considering is that of
entropic repulsion for this Gaussian field. This is its behavior of drifting away when pressed
against a hard wall so as to have enough room for local fluctuations. This phenomenon has
been discussed in [28].

We are interested in P(¢)! > 0 Yo € T") as well as E(¢l! | ¢ > 0 Vv € Ty) and
Var(¢y | ¢y > 0 Vo € Ty,). We know from [34] that E(max,c7, ¢v) is of the form c¢in —
cologn+ O(1). Let us first define m,, to be equal to ¢jn — cglogn. In [9] it has been shown
that the conditional expectation under positivity is roughly close to the expected maximum
for the discrete GFF in 2 dimensions. Here we show that for a branching random walk the
conditional expectation is at least a constant times logn less than the expected maximum.
This is the first such result along the direction of extropic repulsion in case of a Gaussian

field. The main result of this chapter is:

Theorem 5.0.1. There exists positive numbers a,b, a < b such that for all v € Ty,

my, —blogn + O(1) < E(¢p | ¢if >0 Vv € Ty,) < my —alogn + O(1).
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The approach that we take for proving this is that we raise the average value of the
Gaussian process and then multiply a compensation probability to that. We optimize this
average value so as to maximize the probability of positivity. The value at which this
probability is maximized should ideally be the required conditional expectation.

In order to prove this in details, we invoke a new model called the switching sign branching
random walk, which is similar in structure to the original branching random walk. We begin
our calculations with a preliminary upper bound on the left tail of the maxima of the BRW
in Section 5.1. Section 5.2 contains the definition of the new model switching sign branching
random walk followed by a comparison of positivity for the branching random walk with this
model using Slepian’s lemma. A left tail computation for the maximum of this model gives
us the order of positivity of for the branching random walk which is the concluding result of
Section 5.3. Section 5.4 contains the proof of the main theorem of this chapter. The upper
bound follows from Section 5.2, while for the lower bound we further have to invoke the
Bayes’ rule and tail estimates to arrive at our result. Throughout the chapter we will use
dp to denote the tree distance. Let us call the event {¢? > 0 Vv € T"} as A;}. First let us
consider the sum of all the Gaussian variables at the level n and term it .S,,. In mathematical

terms Sy = 3,7, Oy, Where the sum contains d" terms.

5.1 Left tail of maximum of BRW

This section is dedicated to proving an exponential upper bound on the left of the maxima

of a BRW.

Lemma 5.1.1. There exists constants C,c* > 0 such that for alln € N and 0 < A <

(logn)?/3,

P(max ¢! < my — A) < Ce €A (5.2)
veT,

Proof. From [34, Section 2.5] we have tightness for {max,c7 ¢y —mn}nen. So there exists
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B > 0 such that for all n > 2,

P(max 67 > my — §) > 1/2 (5.3)
veT),

Further, we also have that for some x > 0 and for all n > n’ > 2

V2d(n —n') — % log(n/n') — k < mp —my < V2d(n —n') + k. (5.4)

Now let us fix M = A\/2 and n' =n — \/Lfd()\l — B — Kk —4). From (5.4) it follows then that
mp — m,y < N — B. Consider a tree of height n and look at its subtrees at height n — n/,
which are individually trees of height n’. The total number of subtrees we have is ',

dn—?’b,

Let us call them {TT(L,D, T<2) . ,Té, )}. Now for all v € T},, we define

n
m n'
gbv =0y +¢7

where g,) are the BRWs obtained by adding the Gaussians for the edges only in the subtrees

of height n’, and ¢ is a Gaussian of mean 0 and variance n — n’. Clearly
Var ¢! = Var¢l! and E¢llol < Eollér Yu # v € Ty,
So by Lemma 2.2.1, we have

P(max ¢ <t) <P(max ¢! <t)VteR. (5.5)
veT), veT),

Using (5.3) and (5.4), one has for all i € {1,2,... ,d”_”/},

P( sup gg,Zmn—)\') = P( sup g3,2mn/+mn—m/—/\/)

UETT(Lf) UETT(;)

n

> P(sup g =my—B)>1/2
’uGquZ,)
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dn—n/

and so P(sup,er;, gg/ <mp—N) < (%)

Therefore,

P(sup ¢ < my —A) <P(sup g <mp—N) +P(¢ < —N) < Ce A,
veT, veTy

for some C, ¢* > 0. Now in conjunction with (5.5), the lemma is proved. O]

5.2 Switching Sign Branching Random Walk

At this juncture we start defining a new Gaussian process on the tree, which we call the
switching sign branching random walk. This was used to approximate the branching random
walk in [18] in case of a 4-ary tree. We have generalized the process for a d-ary tree. The
switching sign branching random walk consists of two parts, one that varies across vertices,
and the other that is fixed over vertices. The first part of the process, which is not fixed over
vertices, is different from the normal branching random walk in the sense that instead of the
d-edges coming out of it being associated to independent normal random variables, they are
associated to linear combinations of d — 1 independent Gaussians, such that the covariance
between any two of them is the same, and all of them add up to zero. The existence of this

is guaranteed by the following Lemma.

Lemma 5.2.1. There exists A € RU=DX=1) guch that for X ~ N(0702[(d—1)x(d—1))7
the covariance matriz of AX has all its diagonal entries to be o2 and all its off-diagonal
entries to be equal(say b). Further Var(1TAX) = 02 and Cov(—1TAX, (AX);) = b for all
ief{1,2,...,d—1}.

Proof. We know that the covariance matrix for AX is AAT. Further from the condition that
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2
Var(1TAX) = 02 we get that b = — - So in order for A to exist we must have

. .11 1
d—1 d—1 d—1
1 1 1
AAT _ 0_2 d—1 d—1 d—1
1 1 1 1
| d—1 d—1 d—1 4 (d-1)x(d-1)

Since the matrix on the right hand side is a symmetric matrix with non-negative eigenvalues,

so by Cholesky decomposition we obtain the existence of such an A. n

A pictorial representation of a node for this process is given in Figure 5.1.

Figure 5.1: Node of the varying part of SSBRW

Now in the actual construction, unlike the BRW, we use a different value for o2 for each
level [ such that 1 <[ < n. Here level 1 denotes the edge connecting the root to its children

and level n denotes the edges joining the leaf nodes to their parents. Let us denote this

switching sign branching random walk on the tree T}, as {&} : v € Tj,}. For v € Ty, let us

denote the Gaussian variable that is added on level [, on the path connecting v to the root,

by ¢’{}’l. Then we assign Var(gbg’l) = 1—d (=+1) The switching sign branching random
walk will consist of two parts, the first coming from the contribution at different levels in

the tree which we call ¢! def Yo ¢Z’l.

Finally we define the switching sign branching random walk as

& =dp+ X (5.6)
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where X is a Gaussian variable with mean zero and variance %
The covariance structure for this new model closely resembles that of the branching

random walk. The following lemma deals with this comparison:

Lemma 5.2.2. The Gaussian fields {&} : v € Tp} and {¢)} : v € Ty} are identically

distributed.

Proof. First we show that the variances are identical for the two processes. To this end,

_dn
d—1

1
Var(€?) = 1—d ' +1—-d 2+ +1—-d "+
1—d™ 1-d"

= n- + =n.

d—1 d—1

Next in case of the covariances suppose we consider u, v € Ty, such that they are separated

until level k i.e Cov(¢ll, ¢;') = n — k. Then we have

m In 1_d_k —
Cov(gy, ¢y) = — 1t Z(l—dl):n—k— —

So, the covariance structures for the fields ¢ and ¢ match, and hence they are identically

distributed. N

A simple corollary of Lemma 5.2.2, is the following, based on the fact that the two

processes have identical distributions.

Corollary 5.2.3. We have the following equality:

P(¢" > 0 Yo € Tp,) = P(max ¢7} < X) (5.7)

veET)

Corollary 5.2.4. From [34, Theorem 4], we have Emax,cr, ¢} = v 2dn— 2\3% logn+0(1).

Therefore,

. 3
E max ¢ = V2dn —
veT, & 2v/2d
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Corollary 5.2.5. There exists constants C',c* > 0 such that for alln € N and 0 < X <
(log n)?/3,

P(iréaTX <y —A) < Cle A (5.8)

Proof.

1 - -
—P(max ¢}y < my — A) = P(max ¢ < mp — A\, X <0) <P(max ¢ < my — A).
2 veT, veTy, veT,

Now using (5.2), and with C’ = 2C we arrive at (5.8). O

5.3 Estimates on left tail and positivity

From the (5.7) we understand that the probability of positivity for the branching random
walk can be computed using bounds on the left tail of the maximum of gzNSn, a part of the
switching sign branching random walk, as the left tail is heavily concentrated around the

maximum. This motivates the following computations on the left tail of the maximum.

Lemma 5.3.1. Let us call c = 1/cq (where my, = cin — cglogn) to be the constant such that
|Mp—ex — mn — Al = 0 as n — oo, where A is of lower order than n. Then there exists

independent constants C',C", K', K" such that for sufficiently large n we have

K exp(—K"d?) < P(maThX bo <mp — A) < Cexp(—C"d). (5.9)
veT™

Proof. We work with P(max,cpn ¢y < m,,_.y) as due to our definition of ¢, for sufficiently
large n this probability is close to P(max,c7n by < My — A). This comes from the fact that,
from Chapter 4, {max,cpn by — mp} converges in distribution, and so by an application
of Slutsky’s theorem P(max,cpn ¢y < m,,_ey) and P(max,cqn ¢y < my — A) converge to
the same value. We know that the SSBRW is a Gaussian field which obtained by the same
Gaussian to all vertices of a BRW. This helps us find bounds on lower and upper tails of

maxima using results on convergence of maxima of BRW, as proved in [3], [13] etc.
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We first consider the tree only up to the level c\ and consider the cumulative sum of
the Gaussian variables at these vertices till the level c\. Let us rename all these Gaussian
variables at level cA of this new tree to be Ay, Ag, ..., Ajen. We know that the definition in
Section 5.2 of switching sign branching random walk model guarantees Zgi\l A; = 0. Let
us consider the subtrees rooted at the vertex which has values A; and call its maximum
to be M;. These are trees of height n — ¢\ and hence we have EM; = m,,_.\ + O(1) Vi
and M := max,cpn ¢y = maxfi)\l(Mi + A;). We want to obtain bounds for the probability
P(max,crn ¢y < My_ey). We condition on the values of Ay, A, ... , Agex which in turn
breaks down the required probability in a product form since the maxima for the d°N subtrees

are independent and have identical distributions. We consider two different cases:

1) When A;” < 24 for at least d} /2 many i, where A is a positive constant to be chosen

later on.
cA —
2) When 1) doesn’t happen and so then Z?:l AT > Ad.

A —
For the first case we break it down into two parts according to when Zil A > Ad or

not. Now we have

P(max ¢y < my_cy | A1, A2, .o, Ager)
veT™
dc)\
= Plmax(M; + 4;) Smp_cx [ A1, Ag,- ., Ager)
dc/\
= Hi—l P(M; + A; <my,_.x | Aj) < from independence >

AN
| B S R Y

g
_ JcA dCA

d . A
< C" exp(—c Z .
1=

Af) = exp(d“ log €' — ¢* Zi:l A7)

In the final two steps we first make use of (5.8), followed by the fact that > ; A; = 0. For the
cases where A; < 0 we bound the terms in the product by 1. When 2) holds then clearly this

is bounded by exp(—(c¢*A —log C")d}) and now on choosing A such that (¢* A —log C') > 0
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we have ¢** > 0 such that our required term is bounded by exp(—c**dd‘). In the other case
also

P(M; < my_ex — Ai | Aj) SP(M; < my_e) + 24)

for those i for which A;” < 2A. From lower bound on right tail of maximum, we can find p,
independent of n, where 0 < p < 1 such that P(M; < m,,_.\ + 24) < p for all sufficiently
large n and so the probability is bounded by exp(—cd“?). Now from this  and ¢** we select

one unified ¢/, C” so that

P(max ¢y < my,_ey) < C'exp(—C"d?).
veT™

Again for the lower bound we have

20)\

P(gg%)% (;v < Myp_ep\) = /]Rdd‘ Hizl P(M; < myy e — Aj)dA;

dc)\

\d .
(p) /[_1’1]116/\ Hi:l dA;

v

where p is chosen to be a lower bound on P(M; < m,,_.\ — 1) for all sufficiently large n,
which can be obtained from using convergence results on maxima of branching random walk.
Now {Ay, Ag, ..., Ajer} are obtained by linear combinations of d°* — 1 independent standard
normal random variables, each being obtained from ¢\ many of them, and a way to make all
A;’s in the range [—1, 1] is to make absolute value of the contribution at the jth level to be
bounded by m, for j =1,2,...,c\. So the independent standard normals at level

J are bounded by m So this gives, for some constant K > 0,

~ dc)\ cA 1 (d_l)dj_l
P(max <m,_ > (p )
(UET" Oy < n c/\> = (p) J];[l (1OK\/3(C)\ +1 —j)2)

Approximation of the sum, as shown below in Lemma 5.3.2 proves (5.9). O

Lemma 5.3.2. 2?21(10g In+1—3j|))d is of order d™.
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Proof. We begin with an upper bound on the sum. We use a trivial bound of log |z| < |z
for |x| > 1, followed by a few series summations.
n

n
(logln+1—jhd < > (In+1-j)d
j=1

j=1
n ) n )
= (n+1)) d=> jd
j=1 j=1
A" —d pd? — (n+1)d"t +d
= (n+1) - 5
d—1 (d—1)
d"2 — (n+1)d? + nd
(d—1)?
This gives the upper bound to be of order d". The lower bound follows easily. O

We now look back into our question of the branching random walk being positive at
all vertices. We know that the maximum of the BRW is heavily concentrated around the
expected maximum. Using this fact, in a neighborhood around the maximum, we further
try to maximize the probability of the maximum being there. This point where this occurs
will also roughly be the typical value of a vertex. This motivates the following proposition

which is the main result of this section:

Proposition 5.3.3. There exists X such that dN s of order n such that for n sufficiently
large we have, for K1, K9, K3 > 0 independent of n,
IRV
— 5 (mn=X)? =K (mp—X) — 5 (ma—N)?— B
Kie “dn <P(¢y >0VveTy) < Kge ~dn dn =0

(5.10)

Proof. Upper bound: From (5.7) we have an upper-bound on the probability of positivity
based on the switching signs branching random walk. We optimize this bound by first raising
the mean to a level and look at the compensation we have to apply correspondingly. We
optimize over these two to obtain our bound. We apply a similar strategy for obtaining the

lower bound as well. Let us recall (5.7) at this juncture along with X, and let us call the
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variance of X to be a?ln = 15@? In (5.7), we condition on the value of X to obtain the

following:

P(A)) = max ¢ < ) exp(—x2/2027n)d$

1 (0. ¢]
v L
Tdn 21 J—oo  vET,
Now, since the left tail of the maximum of a log-correlated Gaussian field, is heavily concen-

trated. So we may as well replace z by my, — A, and then integrate over A\. We split the integral

into three parts, first with {—oo < A < 0}, second with {% loggn < A < oo} and the rest.

From tail estimates of a Gaussian, the first part is bounded by O(exp(— 2012 (mn — X)?)).
d,n
From (5.9), we know that the second part is bounded by C” exp(—C"n3). The rest part has

an upper bound:

' % loggn

V2 Jo

exp(—C"d) exp(—(my — A)?/2)dA. (5.11)

We maximize the integrand in (5.11), over the range of the integral, to obtain an optimal A,

say A, which is of order logn. It satisfies the equation
mp — N = 05 nC"ch)‘/ log d.

Plugging in we obtain an upper bound as in (5.10).
Lower bound: Again recalling (5.9) we obtain that

Kl

P(Av—'iz_) > \/Q_W—Jd
N

" KN 2 10 2
/ e exp(—(mn — A)"/20y ,,)dA.
—-n

The integrand here is infact a decreasing function of X in the range A € [\, X + 1], where \

is from the first part of the proof. This gives a lower bound of

K/
2V 27T‘7d,n

g1 e e\
e KA oxp(— (my — N — 1)2/2‘%21,71)'

So, we obtain the required lower bound in (5.10). [
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5.4 Expected value of a typical vertex under positivity

Proof. We want to compute E (g—ﬁ | A;t) Due to Lemma 5.2.2, this is equivalent to com-

d"  en
: 2 v=1§ -
puting E | =10 | &l > 0V v e Ty :JE(X | maxyer, o7 < X).

Upper Bound: We first split the expectation into two parts, one concerning the con-
tribution of the right tail in the integral and the rest. We aim to show that the contribution
of the right tail is negligible, thereby implying that the main contribution is from the rest,

which gives an upper bound on the expectation. The tail here is motivated by the maximizer

in Proposition 5.3.3.

7 1 © _2/9,2 P(max M < g
E(X|max¢Z§X) = —/ re z? /207, ( ’UGTn?U_ )dx
veT, V21moqp J—o0o P(max,eq, ¢ < X)

T o, re i = dz

VERo4 oo Plmasyer, 8 < X)
1 o _22/952 [P(max M <

+ —/ xe t /2Ud,n ( veTy, ?U = ) dx

V2roq n Jmp—blogn P(maxye, o < X)

Let us call the first term as J; and the next one as Jo. We first want to show that the
contribution of J9 in the conditional expectation is negligible. We use a trivial upper bound
on the tail probability in the numerator. Then we compute the integral which is the tail
expectation of a normal.

1 00 2792 1
J2 —/ ze " /204 - dx
v 27T‘7d,n mp—blogn P(maXvETn oy < X)
1 o0 .2 2
= - / ze © /QUd:”dJJ
V2rog ,P(max,er, ¢35 < X) Jm,—blogn
—(mn—blogn)2/20§n

IN

Ud,ne
V2rP(maxyer, (%L < X)

So we end up showing that contribution from the right tail is negligible. We now move on
to the rest part and obtain an upper bound for it. We use a general upper bound on x from

the range of the integral, which we can do since the integral exists and is finite by the fact
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that absolute expectation of a normal exists.

J, < Mn—blogn /mn—blogne_ﬁ/%;m P(maxyer, ¢y <)
V2o, J-oo P(max,cr, 6 < X)
mn — blogn /OO —o2/203, P(maxyer, 6 <) -
B \/%O'd,n —00 P<maXUGTn oy < X)

= my —blogn

From (5.10) it is clear that on choosing b such that blogn < ) then the upper bound on
the conditional expectation is m, — blogn.

Lower Bound: We apply a similar technique as in case of the upper bound, the
only difference being that we look at the left tail instead, motivated by the left tail of the

maximum of the Gaussian process.

B 1 . 2/9,2 P(max M < x
E(X|max¢Z§X> = —_/ pe /205, PO00er, o ST) )
veT), v/ 27T‘7d,n —00 I[D(maXveTn oy < X)

B 1 my—2loggn —22/202  P(max,er, on < x)

= e d,n = dx
RV 27T0d,n —00 ]P)(maXUETn ng < X)

00 mn

+ - 1 / xeix2/20§v" Plmaxyer, ibv <o) dx

V2104 Jmp—3loggn P(max,er, ¢ < X)

Let us call the first term as I1 and the second as Is.
When z € (—oo,my — %logd n| then P(max,c7, o < x) < C"exp(—C"n3) following
(5.9). Also we have a lower bound on the probability of positivity, which gives the following

bounds on /7 and Is.

2792
|z |e 200 4y

| Iy | 22 (mn—N)2+dN (log N —log p/ K)—C"n3  poc
Ii[Sedn /

—00
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where we ignore the constants. This shows that this term is negligible. Further,

3 1 > —22/202 P(max, e, CBZ < 1)
I > |mp—-loggn | ——— € i = du
c V21ogn Jmy—3loggn P(maxyer, ¢ < X)
3 1 0 2/9.2 P(max <
= (mn — —logy n) —/ e 7% (maxyer, ?v =) dzxr — o(1)
& vV 2770_d,n —o0 P(maXvETn oy < X)

= mp— —loggn
n ng
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