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CHAPTER 1
INTRODUCTION

It has long been known that genetics has great influence over traits and, ultimately, most gene
regulation can be traced back to genome sequence. Unfortunately, the process by which genome
sequence is converted into regulatory instructions complex and poorly understood. Deciphering
the code of the human genome would have broad ranging impacts on how we understand human
traits, disease risk, and could even open the door for targeted medicine. The endeavor poses similar
challenges to understanding a book that is written in an unknown language. Ideally, we would be
able fully comprehend everything about the encoding of a complete human. However, an impor-
tant first step is creating a dictionary to translate each DNA element and to begin understanding
the regulatory syntax that pieces together these elements into gene and gene network regulatory
complexes. These are underlying goals for the research programs started by Jonathan Pritchard
and Yoav Gilad, in which I have been lucky enough to be involved. My work has focused on de-
veloping and applying statistical tools to use naturally occurring variation to learn the molecular

function of DNA elements.

1.1 Transcription factor binding sites are the words of the genome

The central dogma of genetics states that DNA sequence is the underlying determinant of all herita-
ble traits. DNA encodes for RNA, which encodes for protein, which defines phenotype. However,
this is an extreme oversimplification as humans are made up of hundreds of cell types, each with
different functions which require different proteins. This diversity begs the question: how can a
DNA sequence that is identical in every cell meet the varying needs of a plethora of cell types?
The answer is in gene regulation, the process by which genetic code that is identical across cell
types can lead to very different gene expression patterns in each cell.

Transcription factors and their corresponding binding sites are perhaps the most basic elements
of gene regulation [1]. They are proteins which interact with short DNA sequences— typically

1



6-12 base pairs— to either induce or repress the expression of nearby genes. Transcription factor
binding sites are heavily concentrated in regions surrounding the beginning of the genes, called
promoters [2]. At the promoter site, multiple factors interact together to form the pre-initiation
complex, recruit RNA polymerase II, and ultimately begin transcription of the gene. Transcription
factor binding sites may also be found in clusters located distal to the core promoter region [1].
Factors bound to these regions are still able to alter transcription, even if separated by hundreds of
thousands of bases or more, perhaps by the looping of DNA so that the promoter and enhancers
are physically close together [3] . Factors that bind at enhancers are often tissue and temporally

specific, allowing for different expression programs in various cell types.

1.2 Nucleosomes change the context of binding sites

Though there is flexibility in the exact sequences, transcription factors generally have unique con-
sensus motifs to which they bind. It should therefore be simple to know precisely where transcrip-
tion factors are bound in the genome solely by evaluating the sequence. This is not the case in prac-
tice, however, as sequences which match a transcription factor’s motif often remain unbound [4].
Given that transcription factor binding sites are often found in clusters, cooperative or competitive
binding likely explains some of this discrepancy. Unbound sites are also likely at least in part to be
due to nucleosomes, large protein complexes around which DNA is wound. Nucleosomes play a
large role in the activation or repression of transcription and add an additional layer of complexity
to the process [5]. Relative to most transcription factors, nucleosome complexes are quite large,
binding stretches of genome spanning 146 base pairs. Their presence has been shown to block
the binding of transcription factors, making it possible for nucleosomes to affect transcription by
nullifying potential enhancer or promoter regions [6]. Nucleosome positioning is partially depen-
dent on both specific sequence , as strongly bound factors such as CTCF can organize surrounding
nucleosomes [7], and general base composition, as guanine and cytosine-rich stretches of DNA
are often nucleosome depleted. Nucleosome occupancy is also dynamic over time as chromatin

remodelers such as the SWI/SNF chromatin remodeling complexes [8] can change the landscape
2



of the DNA. Indeed, it is believe that some transcription factors, known as ”pioneering factors”,
function by displacing nucleosomes and recruiting remodelers to further open up stretches of DNA

for regulation [9].

1.3 Modifications to nucleosomes and DNA can alter regulatory states

Nucleosome occupancy alone does not explain their entire effect on regulatory state. Each nucleo-
some is made up of eight histone subunits with amino acid chains that protrude from the complex
and interact with surrounding protein [10]. These protrusions are targets for alterations, called his-
tone modifications, which affect the properties of the nucleosome. Some modifications are markers
of chromatin state. For example, acetylation of the 27th position lysine on histone 3 (H3K27ac) is
enriched in regions around active enhancers [11]. It is believed that some modifications alter inter-
actions between chromosomes leading to more compact DNA with repressed transcription. Others
are thought to recruit chromatin remodelers, which move the nucleosomes and expose binding
sites for other proteins. Acetylation of the histones changes the charge of the amino acids and can
lead to conformational changes that affect transcription [10]. Finally, properties of the DNA itself
can be modified. DNA nucleotides, particularly cytosine, can be directly methylated to influence
expression. Indeed, methylation upstream of the transcription start site has been correlated with
tighter nucleosome binding and therefore reduced expression. Nonetheless, the general functions

and set up of histone modifications and DNA methylation are largely unknown.

1.4 eQTLs link regulatory variation to gene expression

Single nucleotide polymorphisms (SNPs) are natural variations in DNA sequence that frequently
occur throughout the genome. These are relatively widespread, and if one were to compare the
sequence of two copies of a human chromosome, approximately one in seventy bases would be
different [12]. Moreover, about one in 1000 bases contains a polymorphism that occurs at a fre-

quently a population [13].



Because of their high density, SNPs often overlap and interfere with regulatory elements, caus-
ing changes in the regulatory cascade. Genomicists have focused on these perturbations in order the
better understand the specificities of the regulatory elements using quantitative trait locus (QTL)
analysis. The earliest QTL studies identified expression QTLs (eQTLs), polymorphisms that are
associated with changes in steady state mRNA levels [14]. To do so, genomicists originally col-
lected both genotype information and mRNA level measurements from a large number of unrelated
individuals using SNP arrays and gene expression probes respectively. They then looked for SNPs
with genotypes that were correlated with expression levels, interpreting those with significant as-
sociations as interfering with sites that are important for gene regulation. Since DNA sequence is
set at birth and is primarily not a consequence of gene regulation, we can build a strong argument
that the sites identified are indeed causing the regulatory changes (or are at least linked to causal
variants). In this way, natural variation in both DNA sequence and regulatory measurements are
leveraged to draw causal conclusions about genetic control of regulation.

Recent developments in whole genome sequencing has made it possible to expand our set of
testable SNPs to the entire genome. We can also accurately measure expression levels of all genes
using RNA sequencing (RNA-seq). Here, mRNA is isolated from a sample of cells, then reverse
transcribed to form cDNA. The cDNA is then sheared, amplified by polymerase chain reaction,
and sequenced, yielding millions of short (20-100 base pair) sequences, often called reads, that
can be aligned to the genome in order to quantify expression of known genes. The statistical
frameworks for analyses have mostly remained the same. With this new technology, however, we
have to information to search for QTLs amongst millions of SNPs and tens of thousands of genes

genome-wide [15].

1.5 Other sequencing methods for capturing regulatory information

While the identification of eQTLs helps us better understand the DNA elements that underly gene
regulation, QTLs do not tell the complete story as they do little to reveal the mechanisms un-

derlying the regulation. A change in expression may stem from an effect on regulation at the
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chromatin level, with changes to elements can designate nucleosome occupancy, histone modifi-
cations, or interfere with transcription factor binding sites. Fortunately, new technologies help us
capture each of these possible mechanisms. DNase is an enzyme that preferentially cuts regions
of DNA that are not bound by a nucleosome. Sequencing fragments after treatment with DNase,
known as DNase-seq, can be used to quantify changes in nucleosome occupancy [16]. Chromatin
immuno-precipitation followed by sequencing (ChIP-seq) involves fragmenting DNA, then using
an antibody to pull down DNA fragments that are bound by a transcription factor of interest or by
nucleosomes marked with specific histone modifications. Sequencing these fragments can quan-
tify these chromatin level aspects of regulation. At the RNA level, changes in steady state mRNA
may be due to differences in transcription rate or in the rate of mRNA degradation. Again, new
advances help us distinguish these effects. By stopping transcription with Actinomycin D [17],
then sequencing at various time points, we can get a sense of the decay rates of mRNA. Moreover,
changes in regulation may occur after the mRNA stage. Sequencing fragments that are bound by
ribosomes (ribo-seq) can be used to quantify the translation rate of mRNA to protein [18]. Finally,
mass spectrometry can be used to quantify protein levels [19]. Together, these new techniques

provide tremendous opportunities to probe various stages of gene regulation.

1.6 Allele specific information

Traditional QTL studies are performed using seventy or more individuals and regressing read depth
in the region of interest for each individual against the genotype for that individual. In many cases
it is not feasible to collect this many samples due to cost of experiments or tissue acquisition.
Moreover, when effect sizes are small, even larger samples become necessary to find statistically
significant effects with regression. However, read count data contains information untapped by
regression analyses, allele specific read counts. Each sample will have two copies of every chro-
mosome. If a read does not span a polymorphism, then it is impossible to tell which chromosome
it represents. However, if a read spans a SNP that is heterozygous, the sequence of the read can be

used to assign it to a specific chromosome copy. If, as is common, a DNA element acts only on
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it’s own chromosome copy, termed a cis-interaction, then QTL effects should also be seen in these
allele specific counts [15]. Allele specific information is extremely powerful for detecting QTLs
in small sample sizes, but comes with dangers of artefacts. A major part of my work has been on

identifying and correcting these potential problems.

1.7 Lymphoblastoid cell lines

As previously discussed, acquisition of samples can be a major challenge in genomics. This is
particularly difficult when studying multiple stages of gene regulation, such as expression and
chromatin accessibility, simultaneously. Ideally, the same individuals would be used for every ex-
periment, but experiments are often performed years apart as assays advance. Because of these
challenges immortalized cell lines, such as lymphoblastoid cell lines (LCLs) have risen in popular-
ity or the study of molecular genetics. LCLs are B-cells that have been treated with Epstein-Barr
virus, causing them to divide indefinitely [20]. This alleviates the problem of running out of cells
when trying to perform multiple experiments on the same tissue sample. Moreover, LCLs can be
frozen and stored for long periods of time without adverse effects, meaning new experiments can
be performed at a later date.

One of the major drawbacks to using LCLs is that, though they are created from B-cells, they
do not directly represent a naturally occurring cell type. Inducing indefinite replication in cells
unsurprisingly leads to broad effects on gene expression patterns and loss of cell identify. Still,
QTLs identified in LCLs have shown enrichment for associations with auto-immune related dis-
eases such as lupus (citation), so there is at least some cell-type specific information we can glean
from them. More importantly for those more broadly interested in the molecular genetics, the
mechanisms behind the gene regulation are preserved in LCLs, even if that particular pathways are

altered.



1.8 The Yoruba population

For many of the studies in the Gilad and Pritchard labs, we use LCLs derived from Yoruba in-
dividuals, an ethnic group living in Nigeria. These individuals have been fully sequenced by the
HapMap project [21], so genotypes are already available. Because all of the Yoruba individuals
are from the same population, but not closely related, structure is unlikely to be an issue in stud-
ies based on these individuals. This is not a feature of all populations. If a subset of individuals
are more related than the rest, also known as population structure, their genotypes will be more
similar. Additionally, their phenotypes may be more similar due to environmental effects or a com-
bination of the genetics at many loci that related individuals share. These may cause correlations
between genotype and regulatory measurements not based on the locus in question and spurious

identification of QTLs.

1.9 Dissertation overview

Understanding the mechanisms of gene regulation is fundamental for both evolution and disease
research. The rise of genomics has made it possible to collect a huge amount of data for the study
of human polymorphisms and gene regulation. With these data it is common to look for quan-
titative trait loci (QTLs), polymorphisms in the genome with genotypes that are correlated with
a regulatory measurement, most commonly mRNA levels. However, to understand the effects of
genetic variation we must look beyond QTLs for mRNA levels in a single tissue. Gene regulation
may vary across tissues and polymorphisms may take effect at many stages including chromatin,
transcription, translation, or degradation levels. Studying these can introduce major challenges as
these experiments are often expensive and samples hard to acquire. Moreover, to fully understand
gene regulation variation we must look for patterns in local sequence context to explain why some
polymorphism are QTLs and why others are not. In Chapter 2, I will present WASP, a set of tools
designed to (i) remove experimental artefacts from QTL studies, (ii) account for the many sources

of variation in sequencing data, and (iii) maximize power to detect QTLs in small sample sizes. I



will then describe, in Chapter 3, how we applied WASP to discover QTLs for four different histone
modifications in the human genome. These modifications are important markers of function and
chromatin state and were measured in 10 unrelated human lymphoblastoid cell lines. Even with
this limited sample size, we were able to identify hundreds of QTLs. We then extended WASP to
look for consistent effects across polymorphisms with similar contexts. We found that polymor-
phisms interrupting transcription factor binding sites consistently alter local histone modifications
and that variants impacting chromatin at distal regulatory sites frequently also direct changes in
chromatin and gene expression at associated promoters. In Chapter 4, I will present the most com-
prehensive QTL identification in the various stages of gene regulation to date. We identified QTLs
for histone modifications, chromatin accessibility, transcription, mRNA, translation, and protein
levels. We then tracked effect sizes through the regulatory cascade, from chromatin to RNA to
protein. We found a general consistency of effects, but buffering at the protein level. Finally, we
found that many changes in enhancer activity cannot be linked to gene expression, but that once
a promoter effect is identified, QTLs effects are likely to carry through to the protein level. Fi-
nally, in Chapter 5 I will discuss the main conclusions of thy graduate research and discuss future

directions for further study.



CHAPTER 2
WASP: ALLELE-SPECIFIC SOFTWARE FOR ROBUST MOLECULAR

QUANTITATIVE TRAIT LOCUS DISCOVERY

2.1 Abstract

Allele-specific sequencing reads provide a powerful signal for identifying molecular quantitative
trait loci (QTLs), however they are challenging to analyze and prone to technical artefacts. Here
we describe WASP, a suite of tools for unbiased allele-specific read mapping and discovery of
molecular QTLs. Using simulated reads, RNA-seq reads and ChIP-seq reads, we demonstrate that

WASP has a low error rate and is far more powerful than existing QTL mapping approaches.

Contribution

This work was done in collaboration with Graham McVicker. I did much of the development of the
WASP mapping pipeline as well as the statistics for the Combined Haplotype Test. In particular, I
made Figures 2.1,2.3, 2.5, 2.7, 2.8, 2.9, 2.11, 2.12, 2.13.

2.2 Overview

Next generation sequencing data can be used to identify allele-specific signals because reads that
overlap heterozygous sites can be assigned to one chromosome or the other. Molecular QTLs are
associated with allelic imbalance[22, 23, 15, 24], and thus allele-specific reads can potentially aug-
ment the power of statistical tests for QTL discovery[25, 26]. However, use of allele-specific reads
can introduce artefacts into many stages of analysis. Uncorrected mapping of allele-specific reads
can be highly biased and can easily yield false signals of allelic imbalance [27, 28]. Homozy-
gous sites which are incorrectly called as heterozygous are another source of false positives, and
allele-specific read counts are overdispersed compared to the theoretical expectation of a binomial

distribution [29]. Here we describe a suite of tools called WASP that is designed to overcome these
9
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Figure 2.1: Mapping to personalized genomes can result in allelic bias because reads from one
allele may not map uniquely. .

technical hurdles. WASP carefully maps allele-specific reads, corrects for incorrect heterozygous
genotypes and other sources of bias, and models overdispersion of sequencing reads. Finally, by
integrating allele-specific information into a QTL mapping framework WASP attains greater power

than standard QTL mapping approaches.

2.3 Unbiased read alignment with the WASP mapping tool

Mapping of reads to a reference genome is biased by sequence polymorphisms [27]. Reads which
contain the non-reference allele may fail to map uniquely or map to a different (incorrect) location
in the genome [27]. A common approach is to map to a ‘personalized” genome where the reference
sequence is replaced by non-reference alleles that are known to be present in the sample[30].
However, personalized genomes do not fully address the mapping problem because the genomic
locations that are uniquely mappable in the reference and non-reference genome sequences differ
(Figure 2.1). While these type of errors may only affect a small number of sites, they comprise a
large fraction of the most significant results when tests of allelic imbalance are performed genome-
wide. Genomic DNA sequencing reads can also be used to control for mapping bias, however this
method reduces power to detect allelic imbalance[31].

WASP uses a simple approach to overcome mapping bias that can be readily incorporated into
any read mapping pipeline. First, reads are mapped normally using a mapping tool selected by the
user; mapped reads that overlap single nucleotide polymorphisms (SNPs) are then identified. For

each read that overlaps a SNP, its genotype is swapped with that of the other allele and it is re-
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mapped. If a re-mapped read fails to map to exactly the same location, it is discarded (Figure 2.2).
Unknown polymorphisms in the sample are not considered but will typically have little effect since

the tests of allelic imbalance are only performed at known heterozygous sites.

2.3.1 Details on using WASP for mapping

In the WASP mapping pipeline, the user first maps reads to the genome using any mapper that
outputs BAM or SAM format (Figure 2.2). For example, ChIP-seq reads can be mapped by
BWA[32] or Bowtie 2[33], and RNA-seq reads can be mapped using tophat[34]. WASP then
identifies mapped reads that overlap with known polymorphisms. For each read that overlaps a
polymorphism, all possible allelic combinations that differ from the original read are generated
and re-mapped to the genome. For example, when a read overlaps two bi-allelic SNPs, four al-
lelic combinations are possible, three of which differ from the original read. The original read is
discarded if any of the allelic combinations map non-uniquely or map to another location. Reads
which overlap insertion or deletion polymorphisms are currently discarded by WASP.

This simple method has the advantages that it works with almost any existing mapping pipeline

and it handles reads with sequencing errors, which are a major source of biased mapping[27, 28].

2.3.2  Comparing WASP mapping to N-masked and personal genome mapping

We performed a simulation to assess the impact of unknown polymorphisms and found that the
proportion of heterozygous sites with biased mapping is very small. We simulated 100 bp reads
from a lymphoblastoid cell line (NA18505) that has been genotyped by the 1000 Genomes and
HapMap projects. We additionally imputed and phased genotypes for this cell line with IMPUTE?2
[35] using the 1000 Genomes Phasel integrated version 3 reference panel[12].

For each test, we evaluated the performance of WASP compared to mapping to a personal
or N-masked genome. To map to personal genomes we used AlleleSeq[30]. We first created
maternal and paternal reference genomes for NA18505 using the phased genotypes. We then ran

the AlleleSeq pipeline using bowtie-1.1.1 [33] with —best —strata -v 2 -m 1 options as suggested by
11
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Figure 2.2: The WASP mapping pipeline. Reads are first mapped to the genome using a mapping
tool of the user’s choice. The aligned reads are provided to WASP in SAM (sequence align-
ment/map) or BAM (binary alignment/map) format, along with a list of known polymorphisms.
WASP identifies reads that overlap known polymorphisms, flips the alleles in the reads, and remaps
them to the genome. Reads that map to a different location than the original read are then discarded.
Finally, WASP can optionally remove reads that map to the same genomic location (“duplicate
reads”) without introducing a reference bias.

remapped
BAM

the AlleleSeq manual. To create an N-masked genome, we created a copy of the hg19 genome with
Ns in place of known variants from the NA18505 cell line. We mapped the simulated reads to the
N-masked and original versions of the hg19 genome with BWA [32] allowing up to 2 mismatches
per read (-n 2), and excluding gapped alignments (-o 0). The reads mapped to the original
genome were provided as input to WASP. If it mapped to both genomes, we kept the location with

the highest mapping quality (ties were broken randomly).

2.3.3  Quantifying the fraction of reads showing imbalance

We first identified each base where a read starting at that base would overlap a heterozygous site.
We generated reads from each haplotype while introducing identical sequencing errors at a prede-
fined rate. For each mapping type, we considered the mapping of a read to be biased if the read
from one haplotype mapped to the correct location but the other did not. While reads mapped to
the N-masked and personalized genomes were substantially biased and gave rise to a large number

of false positives, reads mapped using WASP were almost perfectly balanced 2.3.
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Figure 2.3: The percentage of simulated 100 bp reads at heterozygous sites where a read with
one allele maps correctly and the corresponding read with the other allele does not. Reads were
simulated with sequencing errors introduced at several different rates.

2.3.4  Determining the effects of unknown single nucleotide variants

One limitation of WASP is it’s reliance on accurate variant information for knowing which reads to
remap. With current genotyping, we are likely to miss some polymorphisms, particularly those that
are only found in a small number of individuals. We tested how unknown single nucleotide variants
(SNVs) affect the performance of WASP. We simulated reads from each haplotype at heterozygous
sites while introducing untyped SNVs at a defined rate. We then computed the fraction of reads
where the read from one allele maps correctly but the other read does not after filtering reads using
WASP (Figure 2.4). The fraction of reads that map incorrectly is already very low when the rate
of unknown SNVs is below 2 x 10~%. The true rate of unknown SNVs per sample is likely to be

less than 5 x 1072 [36].

2.3.5 Assessing the effects of mapping bias on an allele-specific study

For each heterozygous site, we simulated 100 reads (of length 100 bp and with a per-base error
rate of 0.01) from random bases that overlap the chosen SNP. We chose the haplotype of each

simulated read at random. Reads from peaks without effects came from haplotype 1 vs haplotype
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Figure 2.4: WASP mapping errors at heterozygous sites as a function of the rate of unknown single
nucleotide variants (SNVs).

2 with a 1:1 ratio. Reads from peaks with effects were simulated with ratios ranging from 1.3:1 to
2.5:1 to test a range of effect sizes.

For each effect size, we simulated sets of peaks that were composed of 90% null peaks and 10%
peaks with effects. We mapped the reads using each mapping scheme and performed a binomial
test for imbalance on each peak, calling a locus significantly imbalanced if the p-value from the
test was beneath a 10% false discovery rate (FDR) threshold. For the personal genome mapping,
we used the p-values provided by the AlleleSeq pipeline. Finally, we assessed the fraction of
significant loci that came from the null peaks. In the absence of imbalance caused by mapping

artefacts, this should be 10%. (Figure 2.5)

2.3.6  Reads filtered by WASP

WASTP filters a read when it overlap one or more SNPs and the read maps to a different genomic
location (or fails to map) when the allele(s) present in the read are flipped (all possible combi-
nations of alleles are considered). In addition, WASP currently discards all reads which overlap

insertions/deletions that are polymorphic in the sample of individuals provided. We evaluated
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Figure 2.5: The fraction of false-positives as a function of the effect size using a nominal
Benjamini-Hochberg false-discovery rate of 10%. We simulated 100 bp allele-specific reads under
null (odds ratio = 1) and alternative models (odds-ratio > 1) of allelic imbalance at heterozy-
gous sites in the genome. 90% and 10% of sites were assumed to be null and alternative sites
respectively. We mapped reads using WASP, personal-genome (AlleleSeq) or N-masked-genome
mapping strategies and called allele-specific sites using a binomial test.

how many reads are filtered by WASP using RNA-seq reads from a panel of 69 individuals[15]

(Table 2.1). Reads were mapped as described in Section 2.5.1.

2.3.7 Limitations of WASP mapping

One disadvantage of WASP’s approach is that some reads are discarded, which can cause the
overall expression level of a locus to be underestimated. Several statistical methods can recover

ambiguously mapped reads [37, 38], however, they are not designed for unbiased allele-specific

Table 2.1: RNA-seq reads filtered by WASP mapping in a panel of 69 individuals. The columns
give the total number of mapped reads, the number of reads filtered because they overlap an indel
that is present in the sample of 69 individuals, and the number of reads that are filtered because
their mapping is biased. Reads are considered to have biased mapping if they overlap SNPs and
map to different genomic locations when different alleles are considered.

mapped indel removed mapping bias removed
903346431 65900919 (7.3%) 27787224 (3.1%)
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mapping and incorporating them into WASP would be technically challenging.

2.3.8 Unbiased removal of amplification effects

WASP employs a number of techniques to remove noise and biases from mapped reads. Am-
plification bias is a common feature of experiments that yield libraries with low complexity (e.g.
ChIP-seq). Most sequencing experiments involve some amplification step where polymerase chain
reaction (PCR) is used to exponentially increase the number of cDNA material for sequencing. If a
small number of fragments are present before amplification, many of the resulting sequenced reads
will be from the same original fragment. This can lead to increased variance and poorly calibrated
results if unchecked. To control for amplification it is common to remove ‘duplicate’ reads that
map to the same location. However, existing tools that remove duplicate reads retain the one with
the highest mapping score, which will usually match the referencel4. WASP provides a tool to

filter duplicate reads at random, thus eliminating reference bias from this step.

2.4 Discovery of quantitative trait loci with WASP

To discover molecular quantitative trait loci (QTLs) WASP uses a statistical test, which we call the
combined haplotype test (CHT). As input, the CHT takes genotype probabilities at known SNPs
as well as mapped reads from sequencing-based experiments such as ChIP-seq or RNA-seq. The
CHT combines two types of information: the depth of mapped reads and the allelic imbalance of

mapped reads that overlap heterozygous sites.

2.4.1 Overview

The CHT models the overdispersion of read counts (both across regions and across individuals) and
accounts for variability introduced by technical variation between experiments(Figure 2.6). GC
content often affects read depth in a manner that is inconsistent between sequencing experiments[15,

39]. In addition, the distribution of read depths across the genome differs from experiment to ex-
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periment. For example, ChIP-seq experiments with more efficient pull-downs tend to have more
reads within peaks. WASP corrects for both of these issues by fitting polynomials to the genome-
wide read counts and calculating a corrected read depth for each region. Both allele-specific and
total read depth counts are more dispersed than expected under models of binomial and Poisson
sampling[29, 40]. To accommodate overdispersion in the data, WASP estimates separate overdis-
persion parameters for each individual and genomic region used in a study. Finally, to account
for any remaining unknown covariates, WASP allows principal components to be included in the
model fitting procedure.

Following correction for biases described above, WASP uses a statistical test, the combined
haplotype test (CHT), to identify cis-acting QTLs. The CHT tests whether the genotype of a test
SNP is associated with total read depth and allelic imbalance in a target region. The CHT jointly
models two components: the allelic imbalance at phased heterozygous SNPs and the total read
depth in the target region. The two components of the test are linked together by shared parameters
that define their effect sizes. For a target region and test SNP pair, the CHT models the expected
number of reads for an individual as a function of the individual’s genotype, the effect size, the
GC content, additional covariates (such as principal component loadings), and the total number
of mapped reads in the region (across all individuals). The probability of the observed number of
reads in the target region is calculated using the expected number of reads and two overdispersion
parameters.

Allelic imbalance of reads overlapping heterozygous SNPs within a target region is modeled as
a function of the shared effect size parameters. The probability of the observed allele-specific read
counts is then defined by the effect size and a single overdispersion parameter. We also allow for
the possibility of genotyping errors by assuming that allele-specific read counts are drawn from a
mixture, with a small probability that a given individual is a mistyped homozygote. WASP com-
bines information across multiple heterozygous sites and the current implementation assumes that
haplotype phasing is correct. Incorrect phasing will decrease WASP’s power to detect associations

but will not increase false positives.

17



estimate

phased principal
genotypes for expected component —>| PCs
each sample read depths analysis

combined
haplotype
test

T

—»| dispersion
params

BAM for each
sample

updated read
count files

param estimates
& LRT statistic

final read count
files

estimate
dispersion

T

list of target

extract
read counts
regions & test

SNPs read count files

update
heterozygote
probabilities

read counts from DNA
sequencing or other
experiments

Figure 2.6: The WASP combined haplotype test pipeline. Mapped reads (in BAM or SAM format)
for each individual, genotypes for known SNPs, and a list of regions and SNPs to test are provided
to WASP. WASP extracts read counts for the target regions as well as allele-specific read counts.
Read counts from multiple sources can be used to update heterozygous probabilities. Expected
read counts for each region are adjusted by modeling the relationships between read counts and
GC content and read counts and total read counts for each sample. Dispersion parameters are
estimated from the data and provided to the combined haplotype test along with the read counts.
Principal components can optionally be used as covariates by the test.
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Table 2.2: Description of mathematical variables used in the combined haplotype test

Variable Description
Index variables

h test number (one per test SNP / target region pair)

1 individual

J target region

k SNP within target region

m test SNP

Latent variables

ap molecular phenotype level of the reference allele for test A

Bh molecular phenotype level of the alternative allele for test h

Dh fraction of allele-specific reads expected from reference allele (p, = ahﬁﬁh )
17 genotype-independent expected total read count for individual 7, target region j
Ahi expected total read count for test A, individual ¢

Q; overdispersion of read counts for individual 7 (across all target regions)

oF overdispersion of read counts for target region j (across all individuals)

T; overdispersion of allele-specific reads for individual 7

Observed variables

Tij number of reads for individual ¢, target region j

Gim genotype call for individual 7, test SNP m

T; total number of genome-wide mapped reads for individual 7

Nk total number of allele-specific reads for individual ¢, target SNP &

Yik number of allele-specific reads from reference haplotype for individual 4, target SNP &
Hi, probability individual ¢ is heterozygous for target SNP k

2.4.2 The combined haplotype test details

The combined haplotype test (CHT) determines whether the genotype of a test SNP, m, is asso-
ciated with read depth and allelic imbalance within a nearby target region, j, on the same chro-
mosome (Figure 2.6, Table 2.2). Each test is performed on a test SNP and target region pair,
h = {m,j}. A target region may be discontiguous and span multiple genomic loci. For exam-
ple, the exons of a gene can be used as a target region when searching for expression QTLs using
RNA-seq reads. The test SNP is not required to be within the target region, but is assumed to be
nearby and cis-acting. This allows us to combine information from across phased heterozygous

SNPs and assign reads to one haplotype or the other.
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2.4.3 The basic model

The CHT is a likelihood ratio test with two components. One component models the depth of
mapped reads within the target region, and the other component models the allelic-imbalance of
reads that overlap heterozygous SNPs. Both components of the test are parameterized by «;, and
Bn, which define the expected read depth from chromosomes with the reference and alternative

alleles. Since variants are assumed to be additive and cis-acting, the expected allelic imbalance in

heterozygotes is p;, = ahofﬂh [26].

2.4.4 Modeling the read depths

The number of reads mapping to a target region is often modeled using a poisson distribution[41].
However, the poisson assumption that the variance is equal to the mean is often violated because
read counts from target regions are overdispersed. Part of this overdispersion can be accommo-
dated by modeling the data with a negative-binomial distribution with a variance parameter for
each test[29]. However, the negative binomial distribution assumes that the mean and variance
have a quadratic relationship that is consistent across individuals. We have found that this as-
sumption is violated by sequencing data and causes poor calibration of the tests, particularly when
sample sizes are small. The CHT therefore includes negative binomial overdispersion parameters
for each individual, €2;, and for each target region, ¢;. After adding these additional dispersion
parameters, the data are modeled with a beta-negative-binomial (BNB) distribution. The expected

number of read counts for an individual, )j,;, is defined as:

(
20, T; if G, = 0 (homozygous allele 1)
Ai = (ap + By) Ty if Gy, = 1 (heterozygous) (2.1)
| 20, T; if G;p, = 2 (homozygous allele 2)

where Gj,, is the genotype of individual 7 at test SNP m, and 7; is the total number of reads

20



mapped genome-wide for individual ¢.

The likelihood of the parameters is then given by the equation:

L (ap, By Qe, ¢ |Dp) = HB%FB (X =i | Ani» Qs 05) (2.2)
i

where z;; is the number of reads for individual 7 in target region j.

2.4.5 Correcting for GC content and other effects on expected read depth

Since the number of mapped reads can differ between sequencing lanes and runs, we initially
model the expected number of counts, \;, as a linear function of the total number of mapped
reads for each individual, 7;. However, technical variation between experiments can change this
relationship and reduce power to detect true differences in read depths between samples or cause
spurious associations. As described below, we directly model some known sources of technical
variation and estimate adjusted total read depths, TZ’;, for each individual and target region. We
then replace 7; in Equation 2.1 with T;; This gives us a more accurate estimate of the expected

number of reads and improves our ability to detect true QTLs.

2.4.6 Adjusting total read depth

In RNA-seq experiments, a large fraction of mapped reads can come from a small number of highly
expressed genes. Variation in the expression level of these genes can therefore have a large effect
on the number of reads that map to all other genes[42]. In ChIP-seq experiments, the fraction of
reads that come from peaks varies between experiments, likely due to differences in the efficiency
of immuno-precipitation (Figure 2.7).

To account for these types of variation, we calculate an adjusted total read depth, T;; for each
region and individual. The adjusted read depth is defined by a quartic function of the total read
depth (summed across individuals) for each target region. We estimate the coefficients of the

quartic function separately for each individual using a maximum likelihood approach described

21



below (Figure 2.7).

2.4.7 GC content correction

GC content also affects read depth, with a relationship that varies across samples [15, 39]. For
example, in some samples, high GC content regions have high read depth, while in other samples
they have low read depth. To account for this variation, we add GC content terms to the model of
adjusted total read depth. These terms are modeled with a log linker so that T;} is guaranteed to be

positive. After fitting this model we can calculate an adjusted total read depth for each region that

takes into account both the GC content variation and the total read depth variation (Figure 2.7).

2.4.8 Fitting adjustment coefficients

For each target region, j, we count the total number of reads vj = ZZ Tjj and calculate the GC

content w);. Then, for each individual ¢, we find maximum likelihood estimates of coefficients

ag;,ai;, - - -, by; that define the adjusted expected counts, T{;:
L (ag;, aj, -, bai |D;) = br (Xij = ;5 T[;) (2.3)

T = exp (am' +ayw; + ainf + agiw;’ + a4@'w§) <b1ivj + b2iv]2- + b3w§-’ + b4w;l> (2.4)

2.4.9 Modeling the allelic imbalances

Allele-specific read counts are sometimes modeled using the binomial distribution [43], however,
we have found that allele-specific read counts are overdispersed. We instead model allele-specific
read counts with a beta-binomial (BB) distribution and include a parameter Y; (estimated sepa-
rately) that captures the overdispersion for each individual. The likelihood of the parameters given

the data is then:
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Figure 2.7: Adjusting expected read counts based on total read depths and GC content. (a)
H3K27ac ChIP-seq read counts in target regions from cell line GM18499 as a function of the
total number of reads across all individuals in the same target regions. The blue line shows the
fitted quartic function used to adjust expected read depths. (b) H3K27ac read counts in target re-
gions from cell line GM 18499 as a function of GC content. The red line shows a the fitted quartic
function used to adjust expected read depths. (c¢) Fitted functions for all 69 Yoruba individuals
showing the relationship between total and per-individual read counts. (d) Fitted functions for all
69 Yoruba individuals showing the relationship between read counts and GC content.
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L (ap, 8, 1D) =] Hgé Y = wig [nik- pp, Ti) (2.5)
ik

where y;;. 1s the number of allele-specific reads from the reference haplotype and n;;. is the

total number of allele-specific reads for individual ¢ at target SNP k. The expected fraction of

ap
ap+8y°

allele-specific reads from the reference allele is p;, =

2.4.10 Correcting for incorrect genotype calls

SNP genotypes that are incorrectly called as heterozygous are a major source of false positives,
since reads that overlap them appear to come from only one allele. To account for this issue, we
assume that allele-specific reads are drawn from a mixture of two beta-binomials, with probabilities
H;;. and 1 — H;j, where ;. is the probability that individual 7 is heterozygous for SNP k. Reads
from heterozygous individuals contain the reference allele with probability p;,. We assume that
reads from homozygous individuals still have a small probability of coming from the other allele
due to sequencing errors, which occur with probability, perr. The probability of observing y;;. reads

from the reference allele for individual 7 at SNP k then becomes:

Pre_mix (Y = yir P, ik, Ti, Hiy,) = Hip, Pres (Y = yir [pn, nig, Ti)

+(1 = Hy,) [PrB (Y = yik [Perrs nik, Yi) + PreB (Y =y |1 — perrs nix, Ti)]  (2.6)

We found that even SNPs with heterozygous probabilities of 1.0 are occasionally miscalled so
we set heterozygous probabilities to a maximum value of 0.99. We then update this heterozygous
probability using sequencing data obtained from the same individual. Sequencing data may consist
of DNA sequencing reads or reads aggregated across multiple types of experiments performed on
the same individual (e.g. RNA-seq and ChIP-seq reads).

For a SNP with heterozygous probability H;;, = min(0.99, Hf]?s), we define the updated het-

~

erozygous probability, [}, as:
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i = H;j Priy (D [p=0.5)
kT H Prp (D|p=05)+ (1 — H;) [Prpi (D |p = Prp (D]p =1 —
ik TTBin ( |p = U ) + ( zk) [ I'Bin ( |p = per?“) + Prpiy ( |p = perr)]

(2.7)
2.4.11 The combined likelihood ratio test
The combined likelihood of both components of the model is:
L (ap, By, 905 |D) = H B%TB (X =25 | Mnis Qi 7) . BBlifniX (Y = Yik ‘pha”ik,TiaHikﬁ
1
(2.8)

To test for an association with genotype we perform a likelihood ratio test that compares the
alternative hypothesis o, # [}, to the null hypothesis o, = j,. The CHT returns a likelihood ratio
statistic A = % where 61 and éo are maximum likelihood estimates of the parameters under
the alternative and null hypotheses. P-values can be calculated from the the test statistic under the

asymptotic assumption that —2log(A) is X2 distributed with one degree of freedom.

2.4.12 Estimating overdispersion parameters

In order to estimate the genome-wide overdispersion parameters ¢2; and T;, we use the same
likelihood equations as in the CHT, but assume that there are no genetic effects. This means that
for the read depth part of the test \y; is equal to the expected counts T;;, and for the allele-specific
part of the test py, is equal to 0.5. Since the allele-specific and read depth parts of the likelihood

equation are independent, we can fit the overdispersion parameters separately.

2.4.13 Beta-Negative-Binomial parameter estimation

To find the maximum likelihood estimate of {2; we need to sum the log likelihood across all re-

gions. This presents a problem, as ¢; must also be estimated for each region. We therefore itera-
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tively estimate ¢; by first finding a maximum likelihood estimate for ¢; for each region using the

equation:

L(o;1D) =11| ]

1

(Y=

and then finding a maximum likelihood estimate for §2; for each individual using the equation:

A= T3, @)} 2.9)

L(QZ-|D)=H[B113\IrB <X:xij =T, Z-,qu)} (2.10)
j

We repeat this iterative procedure until the improvement in the likelihoods becomes negligible.

2.4.14 Beta-Binomial parameter estimation

We calculate the genome-wide likelihood of T'; by taking the product of likelihoods from all target
region SNPs that are heterozygous in individual 7. We again assume there is no genetic effect, so p

= (0.5, and we use the following equation to find the maximum likelihood estimate of T;:

LDy =TT Pr (¥ =ua
k

nigop = 0.5, Hig ) @.11)

2.4.15 CHT calibration

Generally the overdispersion parameters estimated by the CHT allow the model to be well cali-
brated, showing little signal when run on permuted data. However permuted tests can sometimes
diverge from the null, particularly when small sample sizes are used. This may occur because
by chance the permutations are unable to completely break up the signal when there aren’t many
samples to permute or because of inaccuracy in the overdispersion estimates. We suggest run-
ning the CHT on permuted data using the options we provide and visualizing the results with a
quantile-quantile plot to ensure that the test is working properly. If the permutations do not follow

the null, the user may manually set overdispersion parameters or adjust the p-values according to
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Figure 2.8: Quantile-quantile plots of ranked -log10 p-values from the combined haplotype test.
The permuted points are for same datasets but with the genotypes of each SNP shuffled. (a)
Ranked -log10 p-values from running the combined haplotype test on H3K27ac ChIP-seq data
from 10 lymphoblastoid cell lines compared to p-values expected under the null hypothesis. (b)
Ranked -log10 p-values from running the combined haplotype test on RNA-seq data from 69 YRI
cell lines. The test was run only on eQTLs that were previously identified in cell lines derived from

European individuals[44].

the permuted distribution.
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2.4.16 Correcting for unknown covariates using principal components

Both known and unknown covariates such as time of experiment, age of sample, etc. can affect
molecular trait measurements and confound QTL studies. Principal component analysis (PCA) is
sometimes used to capture and remove these effects [15, 22]. To leverage PCA while maintaining
the discrete nature of the count data, the CHT directly models the covariate effects. To do this we

include a user-defined number of PCA loadings u,;, and fit coefficients c;, When calculating Ay;.

4

2ap, (1 + epruin + epouin + .. )T if G, = 0 (homozygous allele 1)
Mi = (ap + By) (1 + cpqui + epouin + .. )T if Gy, = 1 (heterozygous) (2.12)
| 28 (1 + cpyuin + cpauio + .. )T if G;,,, = 2 (homozygous allele 2)

Fitting many coefficients simultaneously can be quite slow, but since the principal components
are by definition orthogonal, we can optimize their coefficients one at a time without losing accu-

racy. We then use the fitted coefficients to calculate \p; for the null and alternative models.

2.5 WASP combined haplotype test performance evaluation

To evaluate the performance of WASP, we tested the ability of the combined haplotype test at (1) re-
calling in 69 individuals QTLs that were previously identified in a different population, (ii) calling
novel QTLs genome-wide using data from H3K27ac ChIP-seq experiments that were performed in
10 LCLs [40], and (ii1) calling QTLs from simulated data against other alllele specific QTL calling

software.
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2.5.1 Identifying known European eQTLs in 69 Yoruba LCLs

We downloaded eQTLs which were identified in 373 European lymphoblastoid cell lines (LCLs)
by the GEUVADIS project [44]. We identified a subset of 2098 of these eQTL SNPs that were
segregating in an independent dataset of 69 Yoruba LCLs [15] with a minimum minor allele count
of 2. We mapped RNA-seq reads from the 69 Yoruba LCLs to the hg19 genome using tophat with
the options ——segment-length 17, -—b2-sensitive and ——no-coverage—-search
and processed the mapped reads with the WASP mapping pipeline. We applied the CHT and linear
model to the mapped RNA-seq reads. WASP discovers 627 of the eQTLs at a false discovery
rate (FDR) of 10%, which is impressive considering (1) our smaller sample size, (2) that some
fraction of the original eQTLs are false positives, and (3) that some of the European eQTLs will
be absent or at very low frequency in the Yoruba. This number increases to 673 when 5 principal
components are included as covariates. By comparison, when we adopt a standard eQTL discovery
method (linear regression on quantile normalized and GC-corrected data), we identify only 446
eQTLs (617 when 5 principal components are included as co-variates). P values obtained by
running the CHT on the same dataset with permuted genotypes do not depart substantially from
the null expectation, indicating that the test is well-calibrated. (Figure 2.9). We also examined the
correlation between the allelic imbalance estimate from CHT and the reported genotype-expression
correlation from GEUVADIS (Figure 2.10). The correlation is strongest at eQTLs that are close to
the transcription start site (Spearman’s p = 0.72, p = 7 X 10~°%) and decreases within increasing
distance (Figure 2.10). This is likely because the current implementation of WASP assumes that

haplotype phasing is correct but phasing accuracy decreases with distance.
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Figure 2.9: Identifying European eQTLs from the GEUVADIS consortium using an independent
dataset of RNA-seq from 69 Yoruba lymphoblastoid cell lines.
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Figure 2.10: Comparison of results from GEUVADIS to allelic imbalance estimates from the Com-
bined Haplotype Test (CHT). We ran CHT on RNA-seq data from 69 Yoruba cell lines and com-
pared the estimated allelic imbalance to the genotype-expression associations reported by GEU-
VADIS. The comparison was performed at GEUVADIS eQTLs that were identified in European
cell lines [44]. (a) Scatter plot showing the GEUVADIS-reported association statistic (Spearman’s
p) versus the allelic imbalance estimate from CHT. (b) Correlation between GEUVADIS-reported
association and CHT’s estimate of allelic imbalance as a function of distance between the eQTL
and the transcription start site (TSS) of the associated gene. Whiskers are 95% confidence intervals

from 1000 bootstraps.
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Figure 2.11: Identification of novel QTLs using H3K27ac ChIP-seq data from 10 Yoruba lym-
phoblastoid cell lines.

2.5.2 Genome-wide QTL discovery in small sample sizes of ChIP-seq data

We also applied the two models to a dataset of ChIP-seq data for the histone modification H3K27ac
from 10 individuals, which we collected in a previous study [40]. We mapped the ChIP-seq reads
to the hg19 genome using the default options of bowtie2 and processed the mapped reads with the
WASP mapping pipeline. Principal components were not included in this analysis because of the
small number of dimensions in the dataset. As test SNPs we chose SNPs that were segregating in
the 10 individuals and defined the target region as a 2 kb region centered on the test SNP. We only

tested target regions with at least 100 filtered reads summed across individuals (Figure 2.11).
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2.5.3 Comparing CHT to other QTL mapping strategies using simulations

Read count over-dispersion and genotyping errors can lead to artifacts when testing for QTLs.
Tests that do not account for these problems may appear to identify more QTLs simply because
they identify more false positives. Since is difficult to distinguish between true effects and artifacts
in real data, we used simulations to compare the relative sensitivity of the CHT and several other

methods for QTL discovery.

2.5.4 Simulating read depth and allele-specific counts

We simulated genotypes for individuals with a minor allele frequency of 0.2 and discarded sim-
ulated sites with fewer than 2 heterozygous individuals. We then simulated total read counts by
observing a beta negative binomial random variable with the following dispersion parameters:
2 = 0.01 and ¢; = 100. These parameter values were chosen to be similar to our dispersion
estimates from real data

The mean for the distribution, A, was based on the simulated genotype, G, the effect size, E,
and whether the minor allele has higher (0 = 1) or lower mean count (0 = 0). In our simulation

we randomly set d to 0 or 1 with equal probability.

200 if G = 0 (homozygous major)

A=1 200(2+E)6+200 (52) (1-9)  if G =1 (heterozygous) (2.13)

200 (2 +2E)d + 200 <2+%> (1 —9) if G =2 (homozygous minor)
\

For heterozygous individuals, we simulated allele-specific read counts by drawing from a beta
binomial distribution with the following parameters: n = 20, p = ﬁé + HLE(l —9), and

T = 0.2. To simulate errors in genotyping, 1% of the counts were drawn from a beta binomial

33



Table 2.3: Summary of QTL methods tested

Method Description

CHT Our method. Combines allele-specific (beta binomial) and read
depth (beta negative binomial) information.

TReCASE Combines allele-specific (beta binomial) and read depth (negative
binomial) information [26].

Regression Simple linear regression

Beta Binomial A likelihood ratio test for imbalance in allele-specific read counts
similar to that described in [45]
Kruskal-Wallis  Non-parametric test for association using read depth only.

distribution with p = 0.99, representing a target SNP that was labeled as heterozygous but was

actually homozygous.

2.5.5 Comparing QTL model sensitivities

We compared five methods for QTL discovery, which are summarized in Table 2.3.

34



We simulated 10,000 sites under the null (£ = 0) and alternative hypotheses (£ varied). We
then compared the performance of the tests summarized in Table 2.3 using receiver operating
characteristic (ROC) curves (Figure 2.12). For the smaller sample sizes (10 or 20 individuals),
CHT outperforms all other tests. Interestingly for sample size 10, simple regression outperforms
TReCASE likely because linear regression can more flexibly model the variance, which helps it
avoid false positives. For larger sample sizes, CHT and TReCASE perform similarly and both out-
perform regression. The beta binomial and Kruskal-Wallis tests perform relatively poorly under all
conditions. Like the CHT, TreCASE uses both allelic imbalance and read depth information, how-
ever it does not account for overdispersion, genotyping errors, or biased mapping, which increase

the false positive rate when using real data.
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Figure 2.12: Receiver operating characteristic curves (ROC) showing the performance of five

methods for QTL identification on simulated data. The panels show performance for different
numbers of individuals and effect sizes.
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2.6 Testing effects of reduced allelic imbalance

The CHT combines allele-specific and read depth information by assuming p = O%B. Previous
work suggests that this assumption is reasonable for most eQTLs[15], however under some cir-
cumstances QTLs may have buffered or non-additive effects. To test how non-additive or buffered
genotypic effects change the CHT’s power to detect QTLs, we simulated read count data under a

model of allele-specific buffering.

2.6.1 Simulating sites with reduced allelic imbalance

We simulated read depth and allele-specific data using the methods described in Section 2.5.4,
but with the addition of an allele-specific buffering parameter, x. We then redefined the allelic

imbalance parameter as p = m, where F g = KE.

2.6.2 Results

We again performed simulations as described in Section 2.5.4, but introduced the allele-specific
buffering parameter, x, when simulating read counts under the alternative hypothesis. We simu-
lated reads using the following values of x: 1.0 (no buffering), 0.75, 0.50, and 0.25. As expected,
the performance of the CHT is worse for lower values of x because allelic imbalance is attenuated.
Under most conditions the CHT still outperforms a simple regression if « is greater than 0.5. With

r = 0.25, however, there is a modest drop-off in power (Figure 2.13).

2.7 CHT running time

To assess the computational running time of the CHT we simulated data for between 10 and 1000
individuals. To simulate data, we made copies of the H3K27ac ChIP-seq data from 10 individuals.
We then obtained the mean running time per test by running the CHT on several hundred sites.

The mean running time increases linearly with the number of individuals, and we found the mean
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Figure 2.13: Receiver operating characteristic curves (ROC) showing the performance of CHT
with different levels of allele-specific buffering. Each panel shows performance with different
numbers of individuals and effect sizes. The different line colors indicate the value of the allele-
specific buffering parameter « that was used for simulating read counts under the alternative model.
When x # 1.0 the genotypes have non-additive effects. Results for a simple linear regression for
x = 1.0 are shown for comparison.
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Figure 2.14: Running time of the Combined Haplotype Test (CHT) with different numbers of
individuals.

running time per site to be about 0.020 seconds per individual on Linux machines with Intel Xeon

E5620 2.4 GHz and Intel Xeon L5420 2.5GHz CPUs (Figure 2.14).

2.8 Combined haplotype test caveats

WASP can only test for gene-level expression differences and does not consider the expression of
individual transcript isoforms. Some QTLs detected by WASP may therefore be due to differences

in isoform usage rather than differences in overall gene expression[46, 47].

2.9 Conclusions

Our results demonstrate that WASP is a powerful approach for the identification of molecular
QTLs, particularly when sample sizes are small. WASP accounts for numerous biases in allele-
specific data and is flexible enough to work with different read mappers and multiple types of
sequencing data such as ChIP-seq and RNA-seq. By modeling biases and dispersion differences
directly, WASP eliminates the need for quantile normalization of the data, thereby making esti-

mated effect sizes more interpretable. The source code and documentation for WASP are open

39



source and can be downloaded from https://github.com/bmvdgeijn/WASP/.
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CHAPTER 3
IDENTIFICATION OF GENETIC VARIANTS THAT AFFECT HISTONE

MODIFICATIONS IN HUMAN CELLS

3.1 Abstract

Histone modifications are important markers of function and chromatin state, yet the DNA se-
quence elements that direct them to specific genomic locations are poorly understood. Here we
identify hundreds of quantitative trait loci, genome-wide, that impact histone modification or RNA
polymerase (Polll) occupancy in Yoruba lymphoblastoid cell lines (LCLs). In many cases the same
variant is associated with quantitative changes in multiple histone marks and Polll, as well as in
DNasel sensitivity and nucleosome positioning. Transcription factor binding site polymorphisms
are correlated overall with differences in local histone modification and we identify specific tran-
scription factors whose binding leads to histone modification in LCLs. Furthermore, variants that
impact chromatin at distal regulatory sites frequently also direct changes in chromatin and gene

expression at associated promoters.

Contribution

This work was done in collaboration with Graham McVicker. I did much of the statistical model-
ing, including the development of mark correlation test and extensions of the CHT. I made Figures

3.2, 3.6, 3.7, 3.9, 3.10, 3.12, 3.13.

3.2 Overview

Variation at noncoding regulatory sequences contributes to the genetics of complex traits [48, 49,
50], yet we still have limited understanding of the primary mechanisms by which they act. One
possibility is that regulatory variants affect histone modifications that have downstream conse-

quences on chromatin remodeling or transcription [51]. There are many possible post-translational
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modifications of histones (i.e., histone marks) [51], and sets of these co-occur in distinct chromatin
states [52, 53, 54, 55, 56], are associated with functional elements [49, 57, 58], and are sensi-
tive indicators of changes in gene regulation [56, 58]. However, we still do not know whether
histone modifications are generally a cause or a consequence of gene regulation, or which DNA
elements direct cell typeappropriate histone marking [54, 59]. Thus, studies of genetic variants that
disrupt transcription factor binding sites may illuminate whether histone modifications enable tran-
scription factor binding or whether the binding of transcription factors results in histone modifica-
tion. We performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) for RNA
PollI and four post-translational modifications of histone H3 (H3K4mel, H3K4me3, H3K27ac and
H3K27me3) in ten unrelated Yoruba LCLs. H3K4me3 (tri-methylation of lysine 4) is primarily as-
sociated with active promoters, H3K4me1l (mono-methylation of lysine 4) is associated with active
chromatin outside of promoters (e.g. enhancers), H3K27ac (acetylation of lysine 27) is associated
with both active promoters and enhancers [53, 60], and H3K27me3 (tri-methylation of lysine 27)

is associated with silencing by the polycomb repressive complex 2 (PRC2) [61, 62].

3.3 Data generation and quality control

3.3.1 Samples and cell culture

Ten lymphoblastoid cell lines (LCLs) from unrelated Yoruba individuals were obtained from the
Coriell Institute (Camden, NJ; http://www.coriell.org): GM 18505, GM18507, GM 18508, GM 18516,
GM18522, GM19141, GM19193, GM19204, GM 19238, GM19239. The LCLs were grown in
RPMI media with 15% FBS, supplemented with 2mM L-glutamate, 100 I.U./mL penicillin, and

100 pg/mL streptomycin.

3.3.2 ChlP-seq

ChIP-seq data were previously collected for H3K4me3 for three of the samples[63] and for Polll

for six of the samples[17]. For the other samples, ChIP-seq was performed as described[63], ex-
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cept that chromatin was sheared with a Covaris (Woburn, MA) S2 (settings: 40 minutes, duty
cycle 20%, intensity 8, 200 cycles/burst, 500 pL at a time in 12 x 24 mm tubes). We separately
optimized the amount of antibody used for each type of experiment: H3K4me3 (4 ug, Abcam
(Cambridge, MA) ab8580), H3K4mel (12 pg, Millipore (Billerica, MA) 07-436), H3K27ac (4
ng, Abcam ab4729), H3K27me3 (4 pg, Millipore 07-449), and Pol 11 (10 ug, Santa Cruz Biotech-
nology (Dallas, TX) sc-9001).

The quality of each immuno-precipitation was assessed by RT-PCR of positive and negative
control genomic regions that were previously shown to be enriched or not enriched for each
datatype[48]. Successful ChIP assays showed enrichment at the positive control regions relative to
the negative control regions in the immunoprecipitated sample (and compared to the input whole-
cell extract from the same individual). We prepared Illumina (San Diego, CA) sequencing libraries
from the DNA from each ChIP sample, and from a pooled input sample (containing equal amounts
of DNA by mass) as previously described[48], starting with 20 L of ChIP output or 4 ng of pooled
input sample.

Libraries were sequenced in one or more lanes on an Illumina sequencing system using stan-
dard Illumina protocols. H3K4me3, H3K4mel, H3K27ac, and H3K27me3 samples were se-
quenced on a Genome Analyzer II (GAII) system (single end, 36 bp), and Pol II and input samples
were sequenced on a HiSeq system (single end, 28 bp). Input reads were trimmed to 28 bp and 36

bp, where appropriate, for comparison to the data generated from ChIP samples.

3.3.3 Read mapping and sample validation

We mapped sequence reads to the human reference genome (hg18) using BWA[32], allowing up
to 2 mismatches per read (-n 2), and excluding gapped alignments (-o 0). Total reads and

mapping statistics for each individual and datatype are given in Table 3.3.3.
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Table 3.1: Total sequenced, uniquely mappable and non-duplicate mapped reads for each sample.

Datatype Individual Total reads Mappable reads Non-duplicate reads
H3K27ac 18505 41,619,485 34,819,891 33,388,658
H3K27ac 18507 36,534,335 31,176,526 30,297,842
H3K27ac 18508 42,590,850 36,133,311 34,859,856
H3K27ac 18516 31,212,054 26,976,260 25,413,627
H3K27ac 18522 41,753,448 35,269,619 34,205,704
H3K27ac 19141 36,602,602 31,630,022 30,691,817
H3K27ac 19193 42,554,122 35,212,025 34,091,012
H3K27ac 19204 38,707,056 32,493,582 31,020,227
H3K27ac 19238 42,518,152 35,794,207 34,863,680
H3K27ac 19239 42,985,514 36,343,931 34,694,833
H3K27me3 18505 42,418,783 35,394,414 32,360,537
H3K27me3 18507 41,882,091 34,050,036 31,288,003
H3K27me3 18508 43,683,243 36,672,935 33,783,533
H3K27me3 18516 85,601,902 73,883,725 52,791,050
H3K27me3 18522 41,465,617 34,031,717 27,271,414
H3K27me3 19141 41,396,087 33,595,112 29,518,442
H3K27me3 19193 42,376,103 34,519,855 32,530,869
H3K27me3 19204 41,769,273 34,216,184 32,573,801
H3K27me3 19238 41,259,657 34,436,378 31,794,352
H3K27me3 19239 40,014,399 32,115,822 27,258,931
H3K4mel 18505 55,852,093 46,027,876 21,588,975
H3K4mel 18507 82,589,169 67,136,686 31,143,373
H3K4mel 18508 16,648,997 13,489,819 8,704,990
H3K4mel 18516 42,389,962 32,311,347 13,652,759
H3K4mel 18522 29,251,590 23,565,863 16,590,932
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Table 3.1, continued

Datatype  Individual = Total reads Mappable reads Non-duplicate reads
H3K4mel 19141 24,705,715 19,895,574 7,136,047
H3K4mel 19193 33,200,484 27,376,219 19,907,413
H3K4mel 19204 39,385,609 32,476,133 18,568,012
H3K4mel 19238 33,585,084 27,992,337 12,371,015
H3K4mel 19239 41,487,566 34,107,283 26,942,630
H3K4me3 18505 42,386,132 36,134,558 33,392,023
H3K4me3 18507 41,163,781 33,100,647 28,724,717
H3K4me3 18508 39,410,115 34,226,880 30,650,658
H3K4me3 18516 33,418,845 26,707,043 24,195,825
H3K4me3 18522 42,253,530 35,864,632 22,021,929
H3K4me3 19141 35,600,431 29,164,849 22,436,825
H3K4me3 19193 33,272,920 26,786,692 24,517,535
H3K4me3 19204 29,135,614 22,934,303 21,236,394
H3K4me3 19238 31,528,815 25,722,058 18,636,764
H3K4me3 19239 41,049,455 33,789,330 26,789,009
Polll 18505 409,314,862 312,809,309 33,182,679
Polll 18507 207,080,008 157,306,899 27,401,762
Polll 18508 206,275,097 158,488,158 38,943,864
Polll 18516 374,652,279 289,734,350 41,269,542
Polll 18522 206,977,123 158,020,656 52,161,952
Polll 19141 202,946,440 155,229,617 52,303,705
Polll 19193 167,057,685 123,473,127 48,793,162
Polll 19204 203,922,597 148,352,038 59,454,889
Polll 19238 598,313,128 452,430,530 123,773,435
Polll 19239 204,235,178 157,764,110 58,732,355




3.3.4 Heirarchical clustering to confirm data

We used hierarchical clustering to verify that the general properties of each library were consistent
with those from the same chromatin feature in the ENCODE dataset and the other libraries in
our dataset. For each lane of sequencing data, we extracted read counts within a 2 kb window
of each annotated Ensembl transcription start site. Read counts were quantile normalized and
hierarchical clustering was performed on a matrix of Pearson correlations between all pairs of
quantile-normalized counts. All sequencing lanes from each distinct ChIP experiment-type formed
non-overlapping clusters, and these clusters included the corresponding ChIP experiments from
the ENCODE project, with the exception of two lanes of data labeled in the ENCODE project as
H3K27ac, which appear to be of poor quality (Figure 3.1). To check for contamination among cell
lines and mislabeling of samples during processing, the reads from each library were checked for
consistency with published genotypes[12]. All libraries could be confidently assigned to a single

individual and were retained for further analysis.
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Figure 3.1: Clustering of ChIP-seq data from ENCODE and this study.. The heatmap shows
hierarchically clustered ChIP-seq data, using pairwise Pearson correlation as a distance metric.
Correlations were calculated from quantile-normalized read counts from each flowcell lane. Read
counts were extracted from 2 kb windows centered on annotated Ensembl transcription start sites.
Colored bars beside the heatmap indicate the datatype label of each sample. ENCODE samples
are indicated with (*); the other samples were collected for this study.
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3.3.5 Controlling for allelic differences in mappability

Sequence polymorphisms can cause substantial mapping biases and false allele-specific signals[27].
To control for mapping biases we used a custom read mapper that reports the uniqueness of reads
originating from each genomic position, while taking into account sequence polymorphisms[22].
We discarded all reads that the mapper reported as non-uniquely mapping. This mapper only con-
siders the first 20 bp of each read (due to memory constraints), so in most cases its estimates of
mapping uniqueness are conservative for our 28 bp and 36 bp reads. One issue, however, is that
reads can incorrectly be reported as uniquely mapping when multiple polymorphisms occur in
close proximity to one another (greater than 20 bp apart, but less than or equal to 36 bp apart). To
account for this problem, we additionally filtered all mapped reads that overlapped more than one

polymorphism.

3.3.6 Filtering duplicate reads

When multiple reads from the same sample mapped to the same genomic location, we discarded
all but one to avoid artefacts caused by PCR and optical duplicates. Duplicates were discarded
randomly rather than taking the highest scoring reads, because the latter approach is biased towards

keeping reads that match the reference genome.

3.3.7 Genotype imputation and phasing

We imputed genotypes and phased our samples with IMPUTE2[35] using the 1000 Genomes
Phasel integrated version 3 reference panel[12]. To speed up computation, we used pre-phasing
information[64] from HapMap Phase II genotypes (release 22)[21]. We used the IMPUTE2 option
—-filt_rules_1 "afr.maf$<$0.004’ toremove sites that are monomorphic or singletons
in the 246 AFR individuals in the 1000 Genomes panel and the —-Ne 20000 option to specify
an effective population size of 20,000. Since the 1000 Genomes reference panel is on the hgl9

assembly, we used liftover[65] to transfer HapMap genotype and phase information from hgl8 to
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hg19. We removed SNPs with strands, chromosomes or ordering that differed between hgl8 and

hg19. After imputation, we transferred the SNPs back to hg18 using liftover.

3.3.8 RNA-seq, DNasel-seq and MNase-seq data

For plotting RNA-seq read depths, we obtained RNA-seq reads from 69 unrelated Yoruba LCLs[15]
and mapped them to the human reference genome (hg19) using BWA[32]. We excluded read align-
ments with gaps, more than 2 mismatches, or mapping quality scores less than 10. We computed
read depth at each position by summing overlapping reads, and converted coordinates to hgl8
using a custom script.

RNA-seq expression measurements for Ensembl genes and eQTL calls were previously calcu-
lated by our lab[22]. Mapped DNasel-seq reads and dsQTL calls from 70 unrelated Yoruba LCLs
were obtained from the same study[22].

Nucleosome dyad positions from mapped MNase-seq reads for 7 unrelated Yoruba LCLs were
previously collected in our lab[7].

The RNA-seq, DNase-seq, and MNase-seq data are available from GEO (www.ncbi.nlm.nih.gov/geo/)
under accessions GSE19480, GSE31388, and GSE36979.

3.4 Mapping histone modification QTLs

To identify genetic associations with histone marks and Polll, we used an early version of the
WASP combined haplotype test, which is described in Chapter 2. The following features were not

included in this version:

e Maximum likelihood estimation of dispersion parameters from the data,

e Adjustment for unknown covariates by allowing principal component loadings to be pro-

vided,

o Allowing tested regions to be split across multiple genomic segments, such as exons,
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e Greater efficiency so the model can be run with hundreds of individuals.

We applied the combined haplotype test to hundreds of thousands of polymorphic sites with
sufficient read depth (i.e., sites within ChIP-seq peaks) and identified over 1,200 histone mark and
Polll QTLs at a false discovery rate (FDR) of 20% (Figure 3.2). After merging overlapping regions,
we identified a total of 27 distinct QTLs for H3K4mel, 469 for H3K4me3, 730 for H3K27ac, 118
for Polll, and 2 for H3K27me3 (which tends not to fall into strong peaks) (Table 3.2). At an FDR
threshold of 10% we identified 582 distinct histone mark and Polll QTLs (Table 3.2). In principle
some of these signals might be due to imprinting or random allelic inactivation; however, several
lines of evidence indicate that most of the regions we identify are conventional QTLs (see later
section).

Table 3.2: Summary of results from the genome-wide combined haplotype test. For each
datatype, the columns provide the number of SNPs tested; the number of significant SNPs at
different false discovery rate (FDR) thresholds; and the number of distinct significant regions after
merging those that overlap. The counts in the combined row are from the union of all datatypes.

The small overlap in significant regions across datatypes is likely because there is poor power to
identify overlapping QTLs by testing each datatype independently [66].

Significant SNPs Merged significant regions
Datatype Tested SNPs  fdr10% fdr20% {dr50% fdr10% {dr20% fdr50%
H3K4mel 46,257 19 57 563 8 27 289
H3K4me3 111,732 741 1,219 3,444 246 469 1,527
H3K27ac 217,737 886 1,699 6,546 335 730 3,043
H3K27me3 233,604 4 4 9 2 2 5
Polll 412,406 173 303 759 58 118 381
combined 1,633 2,975 10,544 582 1,232 4,768
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Figure 3.2: Combined haplotype test results. Quantile-quantile plots comparing -log10 p-values
expected under the null to those from the combined test for association between genotype and
allelic imbalance for H3K4me3, H3K27ac, RNA Polymerase II, H3K4mel, and H3K27me3. We
applied the combined test to regions surrounding ChIP-seq peaks (Genomewide), to DNasel hy-
persensitive sites (DHSs) associated with dsQTLs, and to transcription start sites (TSSs) associated
with eQTLs.
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3.4.1 Details on applying the combined test genome-wide

For each mark, we extracted total read depth and allele-specific counts in a 2 kb window around
every SNP that was segregating in our sample. A site was considered testable in the genome-wide
test if there were at least 15 informative reads overlapping heterozygous SNPs. By this measure,
there were between 44,000 and 415,000 testable sites for each mark (Table 3.2). We applied our
combined haplotype test to each of these sites and identified significant associations at an FDR of
10% or 20%|67] (Figure 3.2). Overlapping windows were then merged to get a count of unique

associated sites.

3.4.2 Permutations to assess calibration

To assess the calibration of the test, we also applied it to permuted data. We permuted total read
depths (and matching genome-wide read depth counts) and randomly flipped allele-specific counts
at linked heterozygous SNPs with probability 0.5. The permuted results showed little to no signal,
so we conclude that our test is well calibrated. It is possible that non-genetic monoallelic inactiva-
tion could cause signal in the allele specific part of the test even if there is no genetic determinant.
We therefore did a second version of the permutations which maintained the haplotype informa-
tion. At each linked region, we either flipped the allele specific counts at every SNP or none of
them with probability 0.5 so that any monoallelic effect would be maintained. These permuted
results also showed greatly reduced signal so we are confident that most of our observed signal

reflects true genetic associations.

3.5 [Evidence that histone mark and Polll QTLs are real QTLs

Several lines of evidence indicate that most of the histone mark and Polll QTLs that we identify are
real and not due to random allelic inactivation, imprinting or technical artifacts. First, we were very
careful to remove all sources of read mapping bias, a well-known source of false-positives[27].

Second we incorporate over-dispersion into our statistical models, which accommodates unknown
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sources of non-genetic variation. Third, histone mark and Polll QTLs are enriched at dsQTLs
and eQTLs (Figure 3.2), which were identified with large sample sizes and without allele-specific
information [22, 15]. Fourth, we see a dearth of opposite direction effects between the activating
histone mark QTLs, Polll QTLs, dsQTLs and eQTLs (Figures 3.6,3.7). If our new QTLs were due
to non-genetic factors, same- and opposite-direction effects should occur with similar frequencies.
Fifth, permuting entire haplotypes (while maintaining phase of alleles) removes most enrichment
of low p-values from the combined haplotype test which is not expected if the results were due to
random allelic inactivation. Together, these observations argue that most of the significant regions

we identify are true genetic associations.

3.6 Histone modification QTLs overlap previously identified QTLs

Many of the histone mark QTLs overlap previously identified QTLs for DNasel sensitivity (de-
noted dsQTLs) [22]. DNasel sensitivity is an indicator of open chromatin, and DNasel hyper-
sensitive sites (DHSs) typically mark active regulatory regions that are associated with active his-
tone marks and transcription factor binding [68]. Indeed, we found an enrichment of low p-values
when testing for QTL associations with Polll and all four histone marks at dsQTLs, compared to

the genome-wide set of tested single nucleotide polymorphisms (SNPs) (Figure 3.2).

3.6.1 Distance between tested SNPs and dsQTL DHSs or eQTL TSSs

We calculated the distances between the SNPs that were tested in the genome-wide combined test
and the nearest previously-identified dsQTL DNase hypersensitive sites (DHSs) and eQTL tran-
scription start sites (TSSs)[22]. We also calculated distances for the subset of SNPs that were
significant at a false discovery rate of 20% (when multiple significant regions overlapped only the
most significant SNP was used) (Figures 3.3&3.4). QTLs for histone marks and Polll are signif-
icantly enriched (compared to tested SNPs) near dsQTL DHSs, although a substantial fraction of

them are found further away (Table 3.3). This suggests that histone modifications may provide
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more power to detect differences in chromatin state beyond that of DNasel sensitivity.
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Figure 3.3: Cumulative distributions of distances between tested SNPs and dsQTL DHSs
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Figure 3.4: Cumulative distributions of distances between tested SNPs and eQTL TSSs

Table 3.3: Enrichment of histone mark and Polll QTLs near dsQTL DHSs “All SNPs” are
a random subset (10,000) of the complete set of tested SNPs that are matched for minor allele
frequency with the significant SNPs. “Signif. SNPs” are those that are significant at an FDR
threshold of 20%. SNPs are considered “near” a dsQTL DHS if they are within 1kb, and “far”
otherwise. The odds ratio 1s the ratio of near to far significant SNPs divided by same ratio for all
SNPs. The p-value is from a two-sided Fisher’s Exact Test with the alternative hypothesis that the
true odds ratio is not equal to 1.0.

All SNPs Signif. SNPs
Datatype ~ Near DHS Far DHS Near DHS Far DHS Odds Ratio  p-value
H3K4mel 684 9315 7 20 4.77 2x 1073
H3K4me3 994 9005 90 379 2.15 4 %1079
H3K27ac 607 9392 156 574 421 1x10738
Polll 280 9719 24 94 8.86 6 x 10714
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Table 3.4: Enrichment of histone mark and Polll QTLs near eQTL TSSs The columns of this
table are as described for Table 3.3, but are computed for distance from eQTL TSSs rather than
dsQTL DHSs

All SNPs Signif. SNPs
Datatype = Near TSS Far TSS Near TSS Far TSS Odds Ratio  p-value
H3K4mel 50 9949 0 27 0 1.0
H3K4me3 774 9225 34 435 0.932 0.79
H3K27ac 250 9749 12 718 0.652 0.17
Polll 117 9882 9 109 6.97 2x107°

Table 3.5: Genomic locations of histone mark and PolIl QTLs This table gives the numbers of
QTLs (at FDR 20%) that are within 1 kb of (or within) a DNase hypersensitive site or an annotated
transcript. H3K27me3 is omitted because of the small number of QTLs for this modification.
DHSs were identified by taking the top 1% of sites in the genome after smoothing aggregate
DNase-seq read counts with a 100 bp sliding window.

Datatype  Total QTLs < 1kb from DHS < 1kb from transcript < 1kb from DHS or transcript

H3K4mel 27 8 8 15
H3K4me3 469 320 286 395
H3K27ac 730 381 407 557
Polll 118 79 65 95
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3.7 Expression QTLs and DNase QTLs show aggregate effects on histone

modifications

We plotted aggregate ChIP-seq read depth around DHSs associated with dsQTLs (Figure 3.5),
grouping read counts according to whether an individual carries the genotype associated with high,
medium or low sensitivity at a dsQTL. Most of the dsQTLs lie outside promoters, and the aver-
age histone mark read depths at dsQTL DHSs follow qualitative expectations for distal enhancers
[53], with higher levels of H3K4mel, and lower levels of H3K4me3 and Polll compared to pro-
moters. High sensitivity genotypes tend to have reduced nucleosome occupancy within the DHS
(20); higher levels of transcription factor binding [22]; higher levels of the active marks H3K4mel,
H3K4me3 and H3K27ac; and higher Polll occupancy. The relationship between DNasel and the
repressive mark H3K27me3 is more complicated, as we find both positive and negative associ-
ations. We find no opposite-direction effects between DNasel and either H3K4mel, H3K4me3
or H3K27ac (Figure 3.6). At expression QTLs (eQTLs) [15], we stratified the samples by the
genotype of the most significant eQTL SNP, and found overall patterns similar to those at dsQTLs
(Figure 3.5). Individuals who are homozygous for the high-expression genotype generally have
higher levels of DNasel sensitivity, H3K4me3, H3K27ac and Polll occupancy [69] at transcription
start sites (TSSs). The repressive H3K27me3 mark shows the opposite trend and is highest in the

low-expression genotype class.
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Figure 3.5: Multiple molecular phenotypes are associated with the same genetic variants.

Panels show aggregate read depth for molecular traits at DNasel hypersensitive sites (DHSs)
associated with dsQTLs, or transcription start sites (TSSs) associated with eQTLs. Reads are
grouped into high, medium and low sensitivity genotypes for dsQTLs; and high, medium and low
expression genotypes for eQTLs. Plots were made from half of the significant dsQTLs and eQTLs
(those with the lowest p-values; n=2787 for dsQTLs; n=638 for eQTLs).
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Figure 3.6: Polarized effects of dsQTLs on marks at DHS regions. Quantile-quantile plots
comparing -logl0 p-values expected under the null to those from the combined test applied to
DNasel hypersensitive sites (DHSs) associated with dsQTLs. Regions were stratified by whether
their estimated effects were in the same or opposite direction as the change in DNasel sensitivity.
Effects were considered to be in the same direction if the high sensitivity allele was associated with
increased marking.
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Figure 3.7: Polarized effects of eQTLs on marks around TSSs. Quantile-quantile plots compar-
ing -log10 p-values expected under the null to those from the combined test applied to transcription
start sites (T'SSs) of genes associated with eQTLs. eQTLs were stratified by whether their esti-
mated effect was in the same or opposite direction as the change in gene expression. Effects were
considered to be in the same direction if the high expression allele was associated with increased
marking.
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3.8 QTL changes are often coordinated across phenotypes

When visualizing our top QTL hits for each of our histone marks, we noticed that many of the
QTLs were shared across measurements. Indeed, it was often the case that a single SNP is associ-
ated with changes in multiple histone modifications, DNase sensitivity, and expression at a nearby

gene. (Figure 3.8)
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Figure 3.8: An example of a QTL for multiple molecular phenotypes including DNasel sen-
sitivity, gene expression, H3K4me3, H3K27ac and Polll levels. The tracks are colored by
the genotype of the SNP rs12723363. P-values were computed with the combined haplotype test,
except for DNasel and RNA-seq where a linear model (t-test) was used.
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3.9 Allelic imbalance is correlated across histone marks, Polll and DNasel

We estimated the correlation of allele-specific changes across pairs of data types, while accounting
for the sampling variance at individual sites. The allelic imbalances for features associated with ac-
tive regionsDNasel, Polll, H3K4mel, H3K4me3 and H3K27acare all highly positively correlated
across 2 kb windows centered at dsQTL DHSs (Figure 3.9). In particular, the strong correlation
in H3K4me3 and H3K27ac allelic imbalances indicates that these modifications are functionally

linked and often depend on the same genetic elements.
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Figure 3.9: Correlation in allelic imbalance between data types. Correlation in allelic imbal-
ance between data types at dsQTLs (* indicates p < 1073 by likelihood ratio test).
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3.9.1 Model details

To investigate correlation between allele-specific differences in pairs of marks, we developed a
method to estimate the covariance of allelic imbalances while accounting for variance due to lim-
ited read depth. We consider each region h to have an underlying allelic imbalance py,, and we
want to test whether the py,s correlate across marks. We assume that when each mark is considered

separately, logit(py,) is distributed normally with mean p = 0 and variance o2,

log (%) ~ Norm <,u =0, 02>

If the variances are relatively small, the py,s will also be distributed approximately normally with
1 = 0.5, however the logit scale is more flexible in that it can handle cases where the variance is
larger and most of the pys are close to 0 or 1.

When considered jointly, the allelic imbalances for two marks are assumed to be distributed as

multivariate normal with an extra parameter, p, which describes their correlation.

P Py
I — .1 ~ MVN Y
<0g<1—P1>’0g(1—P2)> VNorm (1, %)

0 o2 0109
= w—| ! P

2
0 pPO109 o5

Given a py,, the allele-specific counts for individual 7 at linked SNP j in region A are binomially

distributed:

Xi,j,h ~ Binom (pha nZ,]Jl)

This gives the following likelihood equation for the data, D, which consists of allele-specific read
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counts, zy ; ; j, and xo ; ; 5, for marks 1 and 2:

1 r1
LDlooap) = [] /0 /O MVNorm (logit (p1) ,logit (p2) |71, 2. )

he&regions
11 11 br (1,0, |P17150) br (2,40 |P2: 2,651 ) dp1 dp2
i€inds j€linkSNPs
It is computationally slow to evaluate the double integral numerically, particularly when it must
be done many times for the likelihood maximization process. We instead obtained an analytic ap-
proximation to the double integral using a Laplace transformation[70]. This allows us to efficiently

calculate maximum likelihood estimates of o1, o9, and p.

3.9.2 Applying the Model

We extracted the read counts for each mark from 2 kb windows centered on DNasel hypersensi-
tive sites (DHSs) associated with dsQTLs. Reads overlapping phased heterozygous SNPs were
assigned to each haplotype and we estimated the correlation in allelic imbalance between pairs of
marks, p, using maximum likelihood. Significance was assessed by comparing to a null model of
no correlation p = 0, using a likelihood ratio test. We measured correlations in allelic imbalance
for all pairs of histone marks and Polll. We also estimated correlations in allelic imbalance with
DNasel, but because DNasel tends to be much more sharply peaked, we extracted DNasel reads

from a smaller region (200 bp).

3.9.3 Alternative method using harmonic weighted regression

To verify the results of our model, we also estimated correlation in allelic imbalance using a simpler
method. We used the proportion of reads from haplotype 1 at heterozygous SNPs in each region
(combining across individuals and linked SNPs) as an estimate of py, o o, and performed linear

regression of the pys from one mark versus another, weighting the regression by the harmonic
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mean of the reads from each genotype:

\)

Yn="3 1
N1 h,e.e N2 h,e.e

The resulting pairwise correlations of allelic imbalances from this method were very similar to
those from the other model. Most of the correlations were still significant, their signs remained
the same, and the relative magnitudes of correlated mark pairs were conserved between tests. The
absolute magnitudes of the correlations were considerably smaller because this method does not

account for variation introduced by binomial sampling.

3.10 SNPs that are dsQTL-eQTLs consistently affect enhancer and

promotor modifications

Since dsQTLs are frequently also eQTLs [22], we used dsQTLs that are eQTLs (dsQTL-eQTLs)
to assign DHSs to TSSs. We classified dsQTL-eQTLs as activating if the high DNasel sensitivity
allele was also the high gene expression allele, and as repressing otherwise (Figure 3.10A). We
confirmed that most activating dsQTL-eQTLs are true joint associations (as opposed to indepen-
dent QTLs in linkage disequilibrium), but discarded the repressive dsQTLs because only a small
number had lower p-values than expected by chance (fig. S10). We only used dsQTL-eQTLs
where the associated DHS was at least 5 kb away from the associated TSS so the regions are likely
to be functionally distinct. For each dsQTL-eQTL pair, we estimated average allelic imbalance in
histone marks and Polll after polarizing genotypes by DNasel sensitivity at the associated DHS.
At activating DHSs, the allelic imbalance is positive (in the same direction as DNasel sensitiv-
ity at the DHS) for the three activating histone marks and Polll, and is negative for H3K27me3
(Figure 3.10A). The same pattern is present at the associated TSSs, which demonstrates that poly-
morphisms can jointly affect chromatin state at distal enhancers and at promoters, perhaps via
chromatin looping interactions [69]. We found that for several of the dsQTL-eQTLs, the SNP that

is most significantly associated with DNasel sensitivity is located in a binding site for a known
65



transcription factor (Figure 3.10B).
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Figure 3.10: Histone modification changes at dsQTLs that are also eQTLs. (A) Estimates of
allelic imbalance for histone marks and Polll across DNasel hypersensitive sites (DHSs; n=239)
and transcription start sites (TSSs; n=246) from joint dsQTL-eQTLs (17). (*) and (**) indicate
allelic imbalance is significantly different from 0 with p < 0.05 and p < 0.01, respectively (by
likelihood ratio test). (B) An example of a dsQTL-eQTL. The SNP rs2886870 disrupts an NF-B
binding site and is significantly associated with local DNase sensitivity, H3K27ac and PollI levels.
The SNP is also significantly associated with gene expression, H3K27ac, H3K4me3 and Polll
levels at a distal promoter (>18 kb away). P-values are from the combined haplotype test, except
for DNasel and RNA-seq where linear regression and t-tests were used. Read depth tracks are
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aggregated and colored by the genotype of rs2886870.
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3.10.1 Extending the CHT to multiple sites

Our model for measuring the aggregate allelic imbalance is similar to the combined haplotype test
that we apply to a single region at a time. A few key modifications make it easier to apply the test
across many regions at once. At each site h, instead of modeling the read depth for each individual
as a Poisson distribution, we model the distribution of the reads between individuals given the total

read depth across all individuals using a multinomial distribution:

(Xp.1--Xp.10) ~ Multinomial (p, T}, o)

)
2pTy,;/C if Gj, ; = 0 (homozygote high DNasel)

pij =9 Tpi/C if G, ; = 1 (heterozygote)

| 2(1 =p)T}y,;/C it G}, ; = 2 (homozygote low DNasel)

By removing « and [ from the equation, we eliminate the need to estimate the relative levels
of marks at each individual site and thereby greatly reduce the number of parameters that need
to be estimated. This proves less powerful when applied to one site at a time, but is crucial for
combining across sites. We found that our data were overdispersed when we tried to model them
with the Multinomial distribution. We therefore introduced an extra dispersion parameter, W ,

which we estimate across all sites. This makes the distribution Dirichlet-Multinomial:

Xh,* ~ DMN (pu ‘Ija Th,o)

' (Ap) 1T U (np 1 + k)

p X — N V)= a3
DMN ( Lh,1--Thn ‘pa ) r (Nh + Ah) I r (ath)

€l.n
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A likelihood ratio test can then be conducted using the new likelihood equation:

LDlp,w,T) =] Pr. Xnalp. ) JTTT Pr (Viij = ani P oni g T)
i )

3.10.2 Identifying dsQTL-eQTLs

We identified dsQTL-eQTLs using gene expression and DNasel sensitivity data that were previ-
ously generated and processed by our group[22]. We started with a set of 6070 dsQTLs[22] that
were within 100 kb of an Ensembl-annotated TSS, and tested each of the dsQTL SNPs for associa-
tion with gene expression by regressing the normalized expression level of each individual against
the number of copies of the non-reference allele that they carry. We classified putative dsQTL-
eQTLs as activating if the high expression allele for the eQTL was also the high DNasel sensitivity
allele, and as repressing otherwise. We restricted ourselves to dsQTL-eQTLs where the TSS was
within 50 kb of the SNP, and calculated a false discovery rate (FDR) separately for activating and
repressing dsQTL-eQTLs using the qvalue package[67]. At an FDR threshold of 10%, we retained
746 activating and 161 repressing dsQTL-eQTLs.

For the first part of this analysis we used the complete set of 69 individuals for which we
had gene expression, DNasel sensitivity, and previously-called genotypes. For consistency with
other analyses, we then switched to the subset of 54 individuals for which we had phasing and

more recent genotyping information for. We recalled each of the dsQTL-eQTLs using the new
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genotypes, and discarded those with p > 0.05 for either DNasel or gene expression association,
which left 598 activating and 133 repressing dsQTL-eQTLs for further analysis.

We excluded all dsQTL-eQTLs where the DHS was less than 5 kb or greater than 50 kb from
the associated TSS. We also excluded redundant DHS and TSS regions. Since the relationship
between dsQTLs and eQTLs is not strictly one-to-one (some dsQTLs are associated with multiple
genes and some genes are associated with multiple dsQTLs) we obtain slightly different numbers
of DHSs and TSSs after filtering for redundancy. In total we analyzed allelic imbalance at 239
activating DHSs, 246 activating TSSs, 70 repressing DHSs, and 72 repressing TSSs.

One possible concern in identifying joint dsQTL-eQTLs is that there may be two linked SNPs
that independently cause differences in DNasel sensitivity and gene expression rather than a single
SNP that causes both phenotypes. To examine this possibility, we used a set of sampled SNPs to
estimate how often dsQTLs would be expected to show significant eQTL associations by chance.
We sampled 10,000 SNPs with a minimum minor allele count of 20 (out of 108) and used a pro-
cedure that matched their TSS distances with those of dsQTL SNPs. We additionally filtered sam-
pled SNPs that were in linkage disequilibrium (LD) with nearby dsQTL SNPS (with r2 > 0.25).
Activating dsQTLs are highly enriched for low eQTL p-values compared to the set of matched
SNPs, both when examining SNPs that are near to (within 5kb) or far from the TSS (5-50kb) (Fig-
ure 3.11). Proximal repressing dsQTLs are also enriched for low p-values, however, only a small
number of the distal repressing dsQTLs show more significant eQTL associations than expected
(roughly a dozen of the 5-50kb set). For this reason we chose to focus the remainder of our analysis
on activating dsQTL-eQTLs only.

As an additional control for the presence of independent dsQTLs-eQTLs that are in LD, we
tested all SNPs within 100 kb of the eQTL TSS for associations with gene expression. We excluded
dsQTL-eQTLs where we identified SNPs that were more significantly associated with gene expres-
sion than the dsQTL SNP (following Bonferroni correction for multiple testing), and repeated our
analysis of allelic imbalance. After this additional filtering, our results were very similar to our

original analysis, although the statistical significance was somewhat smaller since we tested fewer
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sites. We are therefore confident that our results are not an artefact of multiple independent QTLs

that are in LD.
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Figure 3.11: Each panel shows a quantile-quantile plot of -log10 p-values for association between
the genotype of tested SNPs and normalized RNA-seq expression. The tested SNPs are either
a set of previously identified dsQTLs [22] or a randomly selected set of 10,000 SNPs that are
matched for TSS distance with the dsQTLs. The dsQTL SNPs are stratified by whether the DNasel
sensitivity association is in the same or opposite direction as the expression association. Only SNPs
with a minor allele count of at least 20 (out of 108) are shown. The left panel shows SNPs that are
with 5kb of the TSS and the right panel shows those that are between 5 and 50 kb

3.11 Transcription factor binding consistently alters modification levels

To test the hypothesis that histone modification is directed by sequence-specific transcription fac-
tors, we developed a statistical method to evaluate whether polymorphisms in transcription factor
binding sites (TFBSs) are associated with allelic imbalance in histone marks or Polll. The method
is an extention of the combined haplotype test which allows for the estimation of a single effect
across all interupted sites. This method can infer causation because it is likely that these poly-
morphisms affect transcription factor binding. We identified 11,437 high-confidence TFBSs [71]
that contain sequence polymorphisms in our 10 individuals. For each TFBS polymorphism, we
computed the difference in the transcription factor position weight matrix (PWM) score between
the two alleles (PWM), and looked for associations between PWM and allelic imbalance of ChIP-

seq reads. The associations are positive and highly significant for the activating histone marks
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and PolII (p < 107 for all marks by likelihood ratio test (LRT)) and are significantly negative for
H3K27me3 (p =0.028 by LRT; Figure 3.12 B). As PWM is positively correlated with transcription
factor occupancy [22, 71] (Figure 3.13), these results suggest that increased transcription factor
occupancy generally increases levels of nearby activating histone marks and lowers the levels of
H3K27me3. To identify specific transcription factors that direct histone marking, we grouped fac-
tors into clusters on the basis of sequence motifs and DNasel footprint similarity and tested TFBSs
from each cluster for association between PWM and allelic imbalance in the ChIP-seq reads. Out
of the 39 clusters that have a sufficient number of polymorphic TFBSs to be testable, 11 have
a significant association (FDR 10% by LRT) with at least one histone mark (Figure 3.12 B).
Most transcription factor clusters have positive associations with activating marks and negative (or
non-significant) associations with H3K27me3. The transcriptional repressor NRSF (aka REST)
is a prominent exception, and has a positive association with H3K27me3 (Figure 3.12 B). NRSF
directs PRC2-mediated gene silencing and H3K27me3 deposition during neuronal cell differenti-
ation [72] and our results indicate that this factor may also be important for H3K27me3 deposition
in lymphoblasts. These results demonstrate that transcription factor binding is often the first step
in a series of events that leads to histone modification, although they do not exclude the possibility

that other factors may also have important causal roles.

3.11.1 Extending the CHT to test for transcription factor effects

The transcription factor model is an extension of the model we used for dsQTL-eQTLs. It allows
for a different allelic imbalance at each site because we expect the imbalance to be larger for
sites with large differences in transcription factor occupancy (which we indirectly estimate with
APWM). Instead of estimating a single p for all regions, p;, is now a function of the change in

PWM score for the transcription binding site (TFBS) within each region.

pp, = expit (8 - APWMy,)
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Figure 3.12: Polymorphisms in transcription factor binding sites affect local histone modi-
fication. (A) Examples of transcription factor polymorphisms associated with histone marks or
Polll. Each plot shows the estimated relationship between difference in the transcription factor
position weight matrix score between alleles (PWM)and allelic imbalance. (B) Heatmap showing
significance and direction of association between PWM and allelic imbalance of histone marks
or PollIl. Only transcription factor clusters with at least one nominally significant association are
shown.
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The likelihood equation from the earlier model still applies, except that p becomes p;, and depends
on the parameter [3:

7

L8, w,0) =T Pr (Xnelpn©) [T1] Pr (Vhig = ani w0 1)
h J

3.11.2 Identifying transcription factor binding sites

We used a set of transcription factor binding sites (TFBSs) that were previously identified us-
ing DNasel footprints[71] and motif position weight matrices (PWMs) from Transfac[73] and
JASPAR([74]. Since many transcription factors (TFs) in these databases are redundant, we used
clusters of TFs rather than individual TF instances. Clusters contain TFs with highly similar PWMs
and DNasel footprints, and were created using overlap in predicted binding sites as a distance
metric[71]. We only used clusters that contained at least one member that is a known human tran-
scription factor, and from these clusters we selected all TFBSs with a minimum binding posterior
probability of 0.99. When multiple TFBSs overlapped, we used the one with the maximum poste-
rior. In total we found 38,659 TFBSs that contain polymorphisms; of these 9,971 are segregating
in our 10 individuals.

We calculated the difference in PWM score between reference and non-reference alleles at each
polymorphic TFBS (APWM). We then tested for association between APWM and allelic imbal-
ance in ChIP-seq reads, using 2 kb regions centered on each polymorphic TFBS. We only tested
the 38 TF clusters that had at least 25 polymorphic TFBSs. We computed FDRs[75] separately
for each ChIP-seq datatype, and found that 12 TF clusters have at least one significant association

with a datatype at an FDR of 10%.

3.11.3 Verifying difference in PWM score predicts allele specific occupancy

To test how TF binding affects histone modification, we use difference in PWM score between two
alleles (APWM) as a predictor of allele specific TF occupancy. This allows us to infer the direction

of causality (since polymorphisms in TF binding sites should affect TF binding) and enables us test
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many TFs without performing hundreds of ChIP-seq experiments.

To verify the assumption that APWM predicts allele specific TF occupancy, we downloaded
TF ChIP-seq reads for the CEU lymphoblastoid cell line GM12878 that the Myers and Snyder
labs contributed to the ENCODE project[76]. Many of these TFs overlap with those that we tested
for association with histone modifications and Polll binding. We mapped and filtered these reads
using the same procedure that we applied to our histone modification and Polll ChIP-seq reads.
We then generated allele specific read counts for SNPs in TFBSs that were both heterozygous
in GM12878 and segregating in our 10 YRI individuals. We regressed the allele specific read
counts against APWM for the 13 experiments (11 distinct TFs and 2 replicates) that had at least
25 informative sites. We also ran a regression on the combination of all sites across experiments.
We used quasi-binomial regression with a logit linker in order to account for overdispersion in the
allelic imbalance. APWM was a significant predictor of allelic imbalance for almost every TF we

tested (Figure 3.13).
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Figure 3.13: Difference in PWM score predicts allelic imbalance in TF occupancy . We re-
gressed APWM against allele specific read counts from 13 ENCODE TF binding ChIP-seq exper-
iments at SNPs intersecting putative binding sites. There was a significant effect in 11 of the 13 ex-
periments (p < 0.05, quasi-binomial regression) as well as the combination of all TFs (p < 10734,
quasi-binomial regression).
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3.12 Conclusions

In summary, our study allowed us to link genetic variation in a human population to variation
in chromatin state. We identified QTLs associated with histone modification and Polll binding
that are enriched at both dsQTLs and eQTLs and we found that single genetic variants may affect
multiple aspects of chromatin state, including histone modification, DNasel sensitivity and nucle-
osome positioning. In some cases, polymorphisms in transcription factor binding sites are causally
responsible for differences in histone marking, and we have identified several specific transcription
factors that are key regulators of histone marking in LCLs, an important step toward understanding

how chromatin state is encoded by the genome.
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CHAPTER 4
TRACKING GENETIC VARIATION EFFECTS FROM CHROMATIN TO

PROTEIN

4.1 Abstract

Noncoding variants are primary drivers of complex diseases, yet the major mechanisms by which
they act have not been fully characterized. Here, we describe the comprehensive mapping of cellu-
lar trait QTLs throughout the regulatory cascade, including genetic variants that affect chromatin
accessibility, histone modifications, DNA methylation, transcription rate, mRNA, ribosome occu-
pancy and protein in lymphoblastoid cell lines. This represents the most complete evaluation of
inter-individual variation in regulatory mechanisms to date. We find that most variants that affect
protein levels act by changing rates of transcription initiation, and that a large fraction of these
have primary effects on chromatin function. Conversely, two major bottlenecks reduce the flow of
genetic effects through the gene regulatory cascade and limit their functional importance: (1) up
to half of all genetic variants that affect histone modification levels do not appear to affect mRNA
transcription rates and (2) although the vast majority of variants that affect mRNA transcription

also affect protein expression levels, their effect sizes are often partially buffered.

Contribution

This work was done in collaboration with Yang Li. I developed the read alinging and correction
pipelines, the QTL calling methods, and created the model for showing 4sU is indeed distinct from

RNA-seq. I also caculated the effect sizes and corrrelations. I made Figures 4.1, 4.3, 4.4
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4.2 Data processing and quality control

4.2.1 Sequencing data used in this study

We mapped quantitative trait loci (QTLs) for eight cellular phenotypes in LCLs, which corresponds
to the most comprehensive mapping of cellular trait QTLs in a single cell type to date. Our cellular
measurements include previously published datasets from our group (methylation [77], DNAse
[22], RNA-seq [15], riboprofiling, and protein data [78]) and others (H3K27ac [79], RNA-seq
[44], a summary of which can be found in Table 4.1. We also generated new data in the form of
129 4sU-labeled RNA samples from 65 different individuals all in LCLs which we used as a proxy

for mRNA transcription rates.

Table 4.1: Table of all datasets processed in this study.

Data type measurement sample size source  QTL mapping pipeline
H3K27ac chromatin modification 59  del Rosario et al., 2015 WASP+LM
DNase-1I open chromatin 70 Degner et al., 2012 Degner+liftOver+LM
Methylation =~ Methylation levels 64 Banovich et al., 2014  Banovich+liftOver+LM
4su (30min)  Transcription rate 65 internal WASP+LM
4su (60min)  Transcription rate 64 internal WASP+LM
RNA-seq (P) stable mRNA 69 Pickrell et al., 2010 WASP+LM
RNA-seq (G) stable mRNA 86 Lappalainen et al., 2013 WASP+LM
riboprofiling  ribosome occupancy 70 Battle et al., 2015 WASP+LM
protein level  steady protein 64 Battle et al., 2015 Battle+LM

4.2.2 Mapping reads

To map the activity of the other molecular traits to their corresponding genes or genomic regions,
we used bowtie2 [80] with option —very-sensitive for H3K27ac ChIP-seq data, and STAR [81] with
option—outSAMstrandField intronMotif for 4sU-seq, RNA-seq (Pickrell and YRI GEUVADIS)
and ribo-seq data. We next used the WASP framework [82] to re-map reads in order to avoid
mapping biased by sequence polymorphisms and remove duplicates for H3K27ac ChIP-seq (but

not for gene-level phenotypes).
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Figure 4.1: Logistic regression between mRNA stability and the ratio of 4sU reads to the number
of 4sU and RNA-seq reads. Genes with high ratios tend to produce mRNA with lower stability
p < 10144,

4.2.3  Verifying that 4su measures novel transcription rate

We wanted to confirm that our 4sU dataset captures transcription rate, with information that is
distinct from the steady state mRNA levels measured by RNA-seq . To do this, we used previously
estimated mRNA stability measurements from the same LCLs [17]. In this study mRNA levels
were measured using expression arrays at many time-points after transcription was halted. This
was used to calculate decay rates for each transcript. Genes with higher decay rates should have
more 4su-seq reads (if it measures new transcripts) than RNA-seq reads (which measures steady
state mRNA). We used a generalized linear model to test this. The ratio of RNA-seq reads to
4sU-seq reads was regressed against previously estimated RNA decay rate [17] in the same LCLs
using the glm() function in R. The quasi-binomial family was used to account for over-dispersion.
As expected, we observed that genes with high ratios tend to produce mRNA with lower stability

(p < 10714, (Figure 4.1)
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4.2.4  Peak calling and test windows for molecular traits

We used several strategies to determine appropriate test windows for our molecular traits. For
DNase-I and DNA methylation data, we used the same test windows as the original studies. To
determine test windows for H3K27ac, we ran MACS [?] with default parameters on each of the
59 H3K27ac bam alignment files separately. Overlapping peaks across samples were then merged.
MACS windows were then split into segments of 1kb (if they were bigger). We next augmented
these peaks with LCL chromHMM annotation windows that were associated with transcription
start sites (TssA, TssFInk), transcription (Tx, TxWk), or enhancers (Enh, EnhG). To do this, we
combined all MACS peaks and relevant chromHMM annotations and removed all chromHMM
windows that overlapped with MACS peaks. This procedure resulted in 208,512 test windows
genome-wide.

To determine test windows for gene-level phenotypes, we first downloaded the gencode v19
gene annotations. For each gene, we then clustered all annotated exons and, for each exon clus-
ter, used the longest exon as representative exon. We defined the test window for a gene as the

combination of all its representative exons.

4.2.5 Standardizing data to control for read depth and GC content effects

We were interested in unbiased estimates of the effect size which may be innacurate when using
allele specific information due to misphasing or violation of the underlying model assumptions.
We therefore chose not to use the WASP combined haplotype test for the analyses we performed.
However, we did use the WASP standardization pipeline to estimate expected read counts for each
feature of interest based on read depth differences and GC content effects. The observed read
counts were then divided by expected and the natural logarithm of this was used as a standardized

measurement for all later analyses.

81



4.2.6 Heirarchically clustering read counts

This large collection of data allowed us to probe each of the major steps of the gene regulatory cas-
cade. To verify that our 4sU sequencing data indeed quantitatively captures the rate of mRNA tran-
scription, we first estimated the number of reads for each gene normalized by sequencing depth and
GC content for our 4sU, RNA-seq, and ribosome profiling datasets separately (described above).
We then hierarchically clustered samples according to the pairwise correlation of their genic read
counts, their H3K27ac read counts 4+-1kb from their TSS and their iBAQ intensity, a measure of
peptide expression. This recapitulated the regulatory cascade proposed by the central dogma of
molecular biology and revealed that 4sU indeed measured an intermediate phenotype between
transcription activity at the promoter (H3K27ac) and stable mRNA levels (RNA-seq) (Figure 1B).
To understand the relationship between our molecular trait measurements, we measured the corre-
lation of read counts mapping to different relevant regions of the genome. In particular, we used
featureCounts [83] to count the number of H3K27ac reads mapping to -1kb of a gene transcription
start site (TSS), the number of 4sU-seq, RNA-seq, and ribo-seq reads mapping to the gene body
(as defined by its representative exons, see next section). To quantify protein expression, we used
iBAC intensity measured at the whole protein level [78]. We then used Spearman p to measure the
correlation across genes and molecular phenotypes. We noticed that because of the low H3K27ac
read counts mapping to the TSS, the Spearman p was unable to detect strong correlation between
H3K27ac and gene-level phenotypes, possibly owing to its inability to resolve equal counts. We
therefore used Pearson p to measure the correlation between H3K27ac at the promoter and gene-

level phenotypes.
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Figure 4.2: Hierarchical clustering of samples according to their pairwise correlation of genic read
counts (1kb of TSS for H3K27ac reads and iBAQ intensity for protein) revealed that our cellular
measurements capture the central dogma of molecular biology.
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4.3 cis-QTL mapping

As described earlier, we used WASP to adjust differences in sequencing depth and GC content for
each of our sample. We then used a normalization and standardization approach developed pre-
viously by our group. Briefly, we first standardized all measurements by gene and then quantile-
normalized them to fit a standard normal distribution by individual. We next used principal com-
ponents analysis (PCA) to regress out unidentified confounders. The numbers of PCs regressed
out were chosen to maximize the number of detected QTLs in each data type (we tested O to 15

PCs).

Table 4.2: Number of PCs that maximizes the number of QTLs for each data type.

Data type No. PCs regressed
H3K27ac 6

4sU (30m) 13

4sU (60m) 11

RNA-seq (Pickrell) 14

RNA-seq (GEUVADIS) 15

ribo-seq 9

Intronic splicing ratios 3

To map cis-QTLs for genes, we used all SNPs with MAF < 0.05 and -100kb of genes, and
-50kb of DNAse-I peaks (defined previously in [22]), DNA methylation probes and H3K27ac
peaks/chromHMM windows. We used the intersection of genotyped position between HapMap 2
and HapMap3 to determine the genotypes of each individual because some of our individuals were
genotyped in HapMap?2 and some in HapMap3. We then imputed all SNPs from the high coverage
1000genomes phasel data. Standard linear regression was then used to compute a p-value for each

SNP-gene/peak pair.

4.4 QTL effect sizes are partially buffered at the protein level

To improve our functional interpretation of human genetic variation, we sought to understand

whether polymorphisms that affect particular cellular phenotypes also affect downstream cellular
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Figure 4.3: Effect sizes are similar from transcription to translation rates but appear to be partially
buffered at the protein expression level.

traits in the gene regulatory cascade. Moreover, we aimed to use this understanding to better
interpret variants that are linked to human traits. For instance, disease-associated genetic variants
that alter transcription factor binding or stable mRNA expression levels are expected to ultimately
affect protein expression levels. Recent work demonstrated that the effects of DNA variants on
stable mRNA levels are faithfully maintained at the translation level, but appeared to be buffered at
the stable protein levels [78]. Our joint analysis of QTLs affecting genic 4sU, RNA-seq and ribo-
seq levels confirms that the effects of genetic variations on stable mRNA levels are also generally
observed on translation rate and that the effects of genetic variation on protein expression levels is

partially buffered (Figure 4.3).
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Figure 4.4: Effect sizes in transcription rate, stable mRNA expression levels, ribosome occupancy,
and protein expression levels ascertained from 256 eQTLs previously identified in the YRI popu-
lation [44]) that intersected with our imputed SNPs.

When we estimated the effect sizes of 256 eQTLs previously identified in the YRI population

[44] that intersected with our imputed SNPs, we observed that correlations between transcription

and translation rates were higher than recent estimates [78].
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We speculated that the higher correlations we observed were due to our enhanced ability to
estimate the true effect sizes of the 256 YRI eQTLs. We reasoned that the estimates of sharing
will be affected negatively for variants with small effect sizes and when ascertainment is made on
traits with lower measurement precision. We therefore estimated the amount of sharing for QTLs
in multiple variant sets, binning according to their associations levels of significance. As expected,
QTLs with strong associations have larger effect sizes and the strength of QTL associations has a
clear positive correspondence to our estimates of sharing 4.5. Using this approach, we estimate
that over 85% of QTLs with the strongest associations are shared between transcription rates and
protein levels 4.5. These results suggest a higher percolation of the effects of cis-variants from

transcription to translation than previously thought [7].
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Figure 4.5: a) Estimates of the percolation of QTLs for H3K27ac peaks on genes whose TSS
are less than 1kb, 25kb, and 100kb away for peaks that are 0-1kb, 1-25kb and 25-100kb away,
respectively (restricted comparison) and the same estimates for the percolation of effects when
considering all genes that are 500kb for every peak (fair comparison). b) QTLs with strong as-
sociations have larger effect sizes on average than QTLs with weaker associations. c¢) Consistent
reduction of QTL sharing going down the regulatory cascade suggest a small amount of buffering.
d) Estimates of QTL sharing for all regulatory stage pairs, using ascertainment from one or the
other stage. Bars represent 80 confidence intervals.
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4.4.1 Calculating effect sizes and correlation of cis-QTLs

To compute QTL effect sizes, we used the read depth and GC-corrected count data (H3K27ac
ChIP-seq, 4sU-seq, RNA-seq, and ribo-seq) as input to our linear regression and did not regress
out any PC. For protein QTL effect sizes, we use the raw (uncorrected) protein data from [78].
We used the slope of the linear regression as a measure of effect size. To compare the correlation
of effect sizes across molecular phenotypes, we used 256 eQTLs identified in GEUVADIS (YRI
samples) that overlapped with our imputed SNPs with MAF < (.05 as starting point. We asked
whether the effect sizes of the SNP representing the best SNP-gene association were correlated for
H3K27ac read number at TSS, 4sU-seq read depth (at 30 and 60 minutes), RNA-seq read depth
(Pickrell, GEUVADIS), ribo-seq read depth and protein iBAQ intensity. To obtain an overall com-
parison of the effect sizes of QTLs across molecular phenotypes, we used 1,347 eQTLs identified
in GEUVADIS (EUR samples) and computed their effect sizes on H3K27ac levels at TSS, 4sU-
seq read depth, RNA-seq (Pickrell) read depth, ribo-seq read depth and protein iBAQ intensity.
We then polarized the effect size by the direction of effect observed in GEUVADIS. Finally, we

summarized the effect sizes for each regulatory stage as a boxplot.

4.5 Most variation at enhancers is not linked to downstream regulation

We then tested whether QTLs for histone modification levels (H3K27ac in our case, haQTLs)
also affect the transcription rate, stable mRNA level, translation rate, and protein output of nearby
genes. We divided histone peak QTLs into those that affect H3K27ac levels 1kb from the transcrip-
tion start site (TSS) of a gene, and those that affect H3K27ac levels at nearby chromHMM-defined
enhancers. Using Storeys 71 method, we estimated that over half of QTLs that affect H3K27ac lev-
els at enhancers do not affect transcription of the nearest gene, even when considering the strongest
QTL-enhancer associations only. In 20-40% of the cases however, QTLs associated with H3K27ac
levels at enhancers affect H3K27ac levels at the TSS of the nearest gene and roughly the same per-

centage affect its transcription rate, RNA level, translation rate, or protein output (Figure 4.6).
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Figure 4.6: sharing downstream a regulatory stage. QTLs (p < 10~ 6) were identified for H3K27ac
peaks overlapping chromHMM-defined enhancers (light green), H3K27ac read counts -1kb of the
TSS of genes (yellow), transcription rate (Tx rate; orange), stable mRNA levels (brown), transla-
tion rate (dark red), and protein expression level (purple).

These observations suggest that 1) variation in histone acetylation levels do not necessarily imply
variation in gene transcription or downstream regulation and 2) enhancers that affect the transcrip-

tion of a gene often also affect H3K27ac levels at its promoter.

4.6 Variants that affect promoter activity usually percolate to later stages

We next found that a large majority (> 75%) of QTLs that affect H3K27ac levels at the TSS of a
gene also affect its transcription and stable mRNA levels. However, we noted that the percolation
of genetic effects decreases as it moves downstream the regulatory cascade. Interestingly, this trend
of compounded reduction of cellular effects downstream of the regulatory cascade (Figure 4.6) can
be observed when the ascertainment is made at any stage of the regulatory cascade. Altogether,
these findings describe a gene regulatory model in which variation of enhancer activity often have
no impact on its nearest gene while genetic variation affecting the promoter activity of a gene either
directly or through an enhancer are expected to also affect its transcription rate and stable mRNA
level, much like, in MarioKart, a combatant is expected to leave the water pool in battle course
two once a red shell or item of equivalent power has been expended. Additionally, the regulatory
effects of a small but non-negligible number of genetic variants is gradually lost as they move

downstream the regulatory cascade.
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4.7 Many transcription QTLs are not associated with chromatin changes

We next wondered about the rates of concordance going upstream the regulatory cascade. Specifi-
cally, we were interested in how often QTLs for mRNA and protein expression levels are preceded
by effects on chromatin. To investigate this, we asked whether the best causal variant for each gene
under three different models were QTLs for chromatin-level traits: (1) a naive model in which the
SNP-gene pair with the most significant association (lowest p-value) was considered the causal
variant, (2) a joint model in which we jointly modeled QTLs that affect transcription rate, stable
mRNA levels and translation rate, to obtain the most likely causal variants for each gene and (3) a
hierarchical model in which we used genomic annotation to fine map the causal variants (Supple-
mentary Methods). We then determined a p-value cutoff that corresponds to a FDR of 10% for the
association between causal variants and chromatin phenotypes (H3K27ac, CpG methylation and
chromatin accessibility levels) separately. All three models resulted in the estimate that 55% of
variants that affect RNA-level phenotypes also affect a chromatin-level trait at a nearby locus (4.7).
This proportion is consistent with the previous estimate that 55% of eQTLs were dsQTLs [22] and
is a strong enrichment compared to an estimate of 17% for control variants that were matched for
distance from TSS, minor allele frequency and the gene expression of the nearest gene. This leaves
nearly 45% of QTLs unexplained by any of our chromatin-level phenotypes however. Even when
we used a permissive FDR of 20%, as many as 25% of all gene regulatory QTLs do not appear to

affect chromain-level phenotypes.
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Figure 4.7: Estimates of regulatory QTLs that also affect chromatin level phenotypes using three

distinct models. Nearly 40% of gene regQTLs do not appear to affect chromatin traits: DNase
(dsQTL), H3K27 acetylation (haQTL), methylation (meQTLs) or multiple traits (multiple).
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CHAPTER 5
DISCUSSION AND SUMMARY

In Chapter 2, I presented a toolset, the WASP Allele Specific Pipeline, for the unbiased identifica-
tion of quantitative trait loci using both allele specific and traditional read depth information. QTL
studies in the past have been based on regressing genotype at various SNPs versus read depth at
regions of interest. To have substantial power, these methods generally required at least seventy
and usually more individuals. However, sequencing assays also provide allele specific informa-
tion, which can be more powerful for identifying associations with only a handful of samples.
WASP uses this information as well as corrects for the many sources of artefacts in allele spe-
cific data. Mapping bias, stemming from the alignment of sequenced reads to a reference genome,
leads to an increase in read counts for chromosomes with a reference allele at any given location.
Though they are a problem for all QTL studies, allele specific analyses are particularly sensitive to
mapping issues as information is solely based on reads overlapping heterozygous SNPs, the exact
locations where biases arise. WASP is the first flexible and widely available tool that removes all
known sources of mapping bias. We demonstrated that previously used methods, N-masked and
personalized genome mapping, do not completely remove mapping bias and allele specific analy-
ses based on these mappings can lead to results comprised almost entirely of artefacts. WASP also
includes a QTL calling model that jointly incorporates read depth and allele specific information
into a single likelihood ratio test. WASP mimics the advantages of quantile normalization and
GC content correction, but maintains the count based nature of the data by adjusting the modeled
distributions rather than the data itself. Finally, WASP accounts for technical issues in the data
such as overdispersion in read depth as well as allelic counts, miscalled heterozygous sites causing
extreme imbalances, and PCR duplications. We showed that the WASP model vastly outperforms
linear regression for both small and moderate sample sizes.

In Chapter 3, I detailed an application of an early version of WASP to study the genetic controls
of histone modifications. These modifications are important markers of chromatin state, but many

of their functions and the mechanisms that set them up are not well established. The levels for four
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modifications (H3K27ac, H3K4mel, H3K4me3, and H3K27me3) as well as RNA polymerase II
binding were measured in 10 unrelated human lymphoblastoid cell lines. Even with this limited
sample size, we were able to identify hundreds of QTLs using the WASP QTL test. We provided
evidence that these are indeed true QTLs and not artefacts in the allele specific signal, as the loci
identified overlapped greatly with SNPs previously associated with other traits in studies based
purely on read depth regression. We then showed examples of polymorphisms, often in transcrip-
tion factor binding sites, that coordinated changes every one of the regulatory measures: histone
modifications, Polll binding, chromatin accessibility, and expression. We quantified this coordina-
tion with a model that I developed to correlate the allelic imbalance of two measurements across
many sites, in this case DNase hypersensitive regions affected by DNase QTLs, while accounting
for the high variation at any given site. Having noticed that QTLs in putative enhancers were of-
ten able to affect chromatin state at a relatively distal promoter, we extended WASP to combine
information across dsQTLs that were also eQTLs to show that this is indeed a statistically signif-
icant phenomenon. Using a similar extension, we finally found that polymorphisms interrupting
transcription factor binding sites alter local histone modifications. Indeed, we implicated several
clusters of factors known to be important in LCLs, such as the ETS-box factors, in setting up mod-
ifications marking active regions, as well as a known repressor NRSF in setting up the repressed
region modification H3K27me3.

In Chapter 4, I described a project designed to track polymorphism across stages of gene reg-
ulation: 1) the chromatin level with histone modifications and nucleosome occupancy, ii) the RNA
level with transcription rate and steady state mRNA levels, and iii) the protein level with transla-
tion rate and steady state protein levels. This project is the most complete study of the regulatory
cascade in a single cell type and population to date, using a conglomeration of data that was col-
lected in Yoruba LCLs in the Gilad lab over the last seven years, including DNase-seq, RNA-seq,
ribo-seq, and protein quantifying mass-spec data. It also included data from other labs on RNA-
seq and ChIP-seq for the histone modification H3K27ac and introduced data from a new technique

designed to measure transcription rate, 4sU-seq. We showed that this contains information beyond
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that of steady state mRNA levels as measured by RNA-seq. We then tracked QTL associations
along the regulatory cascade, showing that effect sizes were generally highly correlated and con-
sistent until the steady state protein level, where buffering appears to occur. Finally, we showed
that most histone modications at enhancers cannot be linked to changes at nearby genes. However,
once a QTL is known to affect a promoter, it is very likely for this effect to carry through, at least
somewhat, to the protein level.

When put together, these analyses provide the tools and the frameworks for understanding
variation in gene regulation at many levels. We can accurately and powerfully detect QTLs with
small sample sizes, test for consistent effects across sites, and finally track changes through the
regulatory cascade.

Overall, my work contributes to the idea that much of the variation in gene regulation ultimately
stems from variation in DNA sequence. QTL analyses are very powerful for identifying loci that
are important in the regulatory cascade, but they do little to explain why these loci are important
and how they function. Indeed, many QTLs are merely correlated with the causal SNP and it is
often difficult to identify the truly causal variant. In some cases, SNPs overlap transcription factor
binding sites, providing evidence that it is indeed causal and making it easier to speculate at the
underlying regulatory mechanisms. However, many QTLs have no obvious binding site disruption
and therefore no obvious mechanism. Moreover, identifying factor binding sites is not always
easy, as there are many theoretically well matched sequences in the genome that are not bound. It
is abundantly clear that context plays an important role in DNA element recognition.

I believe that assays which identify chromatin state, such as ChIP-seq to quantify H3K27ac,
will soon become as ubiquitous as mRNA-seq studies are currently. These technologies reveal
active regions and provide a proxy for the complicated underlying genomic context when searching
for regulatory elements. Despite this important insight into identifying active regulatory elements
, it is still very difficult to link active enhancer regions to corresponding gene promoters. Indeed,
based on some of our work, it appears quite possible that many enhancers that are marked as

active are not actually regulating a gene in any given cell type. Fortunately, new information on
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how regions of DNA interact is becoming available in the form of chromatin conformation capture
experiments. These assays are able to identify segments of DNA that are interacting together and
potentially better link enhancers to promoters.

The next step will be to develop models for finding DNA variants that cause regulatory changes
by incorporating all of the information we have available. This will require jointly modeling lo-
cal variation in enhancer states, connections to nearby gene promoters, and finally gene outputs.
Finally, since the ultimate goal is to understand human traits and diseases, we must link these

regulatory changes to their ultimate effects on phenotypes.
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