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CHAPTER 1

INTRODUCTION

It has long been known that genetics has great influence over traits and, ultimately, most gene

regulation can be traced back to genome sequence. Unfortunately, the process by which genome

sequence is converted into regulatory instructions complex and poorly understood. Deciphering

the code of the human genome would have broad ranging impacts on how we understand human

traits, disease risk, and could even open the door for targeted medicine. The endeavor poses similar

challenges to understanding a book that is written in an unknown language. Ideally, we would be

able fully comprehend everything about the encoding of a complete human. However, an impor-

tant first step is creating a dictionary to translate each DNA element and to begin understanding

the regulatory syntax that pieces together these elements into gene and gene network regulatory

complexes. These are underlying goals for the research programs started by Jonathan Pritchard

and Yoav Gilad, in which I have been lucky enough to be involved. My work has focused on de-

veloping and applying statistical tools to use naturally occurring variation to learn the molecular

function of DNA elements.

1.1 Transcription factor binding sites are the words of the genome

The central dogma of genetics states that DNA sequence is the underlying determinant of all herita-

ble traits. DNA encodes for RNA, which encodes for protein, which defines phenotype. However,

this is an extreme oversimplification as humans are made up of hundreds of cell types, each with

different functions which require different proteins. This diversity begs the question: how can a

DNA sequence that is identical in every cell meet the varying needs of a plethora of cell types?

The answer is in gene regulation, the process by which genetic code that is identical across cell

types can lead to very different gene expression patterns in each cell.

Transcription factors and their corresponding binding sites are perhaps the most basic elements

of gene regulation [1]. They are proteins which interact with short DNA sequences– typically
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6-12 base pairs– to either induce or repress the expression of nearby genes. Transcription factor

binding sites are heavily concentrated in regions surrounding the beginning of the genes, called

promoters [2]. At the promoter site, multiple factors interact together to form the pre-initiation

complex, recruit RNA polymerase II, and ultimately begin transcription of the gene. Transcription

factor binding sites may also be found in clusters located distal to the core promoter region [1].

Factors bound to these regions are still able to alter transcription, even if separated by hundreds of

thousands of bases or more, perhaps by the looping of DNA so that the promoter and enhancers

are physically close together [3] . Factors that bind at enhancers are often tissue and temporally

specific, allowing for different expression programs in various cell types.

1.2 Nucleosomes change the context of binding sites

Though there is flexibility in the exact sequences, transcription factors generally have unique con-

sensus motifs to which they bind. It should therefore be simple to know precisely where transcrip-

tion factors are bound in the genome solely by evaluating the sequence. This is not the case in prac-

tice, however, as sequences which match a transcription factor’s motif often remain unbound [4].

Given that transcription factor binding sites are often found in clusters, cooperative or competitive

binding likely explains some of this discrepancy. Unbound sites are also likely at least in part to be

due to nucleosomes, large protein complexes around which DNA is wound. Nucleosomes play a

large role in the activation or repression of transcription and add an additional layer of complexity

to the process [5]. Relative to most transcription factors, nucleosome complexes are quite large,

binding stretches of genome spanning 146 base pairs. Their presence has been shown to block

the binding of transcription factors, making it possible for nucleosomes to affect transcription by

nullifying potential enhancer or promoter regions [6]. Nucleosome positioning is partially depen-

dent on both specific sequence , as strongly bound factors such as CTCF can organize surrounding

nucleosomes [7], and general base composition, as guanine and cytosine-rich stretches of DNA

are often nucleosome depleted. Nucleosome occupancy is also dynamic over time as chromatin

remodelers such as the SWI/SNF chromatin remodeling complexes [8] can change the landscape
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of the DNA. Indeed, it is believe that some transcription factors, known as ”pioneering factors”,

function by displacing nucleosomes and recruiting remodelers to further open up stretches of DNA

for regulation [9].

1.3 Modifications to nucleosomes and DNA can alter regulatory states

Nucleosome occupancy alone does not explain their entire effect on regulatory state. Each nucleo-

some is made up of eight histone subunits with amino acid chains that protrude from the complex

and interact with surrounding protein [10]. These protrusions are targets for alterations, called his-

tone modifications, which affect the properties of the nucleosome. Some modifications are markers

of chromatin state. For example, acetylation of the 27th position lysine on histone 3 (H3K27ac) is

enriched in regions around active enhancers [11]. It is believed that some modifications alter inter-

actions between chromosomes leading to more compact DNA with repressed transcription. Others

are thought to recruit chromatin remodelers, which move the nucleosomes and expose binding

sites for other proteins. Acetylation of the histones changes the charge of the amino acids and can

lead to conformational changes that affect transcription [10]. Finally, properties of the DNA itself

can be modified. DNA nucleotides, particularly cytosine, can be directly methylated to influence

expression. Indeed, methylation upstream of the transcription start site has been correlated with

tighter nucleosome binding and therefore reduced expression. Nonetheless, the general functions

and set up of histone modifications and DNA methylation are largely unknown.

1.4 eQTLs link regulatory variation to gene expression

Single nucleotide polymorphisms (SNPs) are natural variations in DNA sequence that frequently

occur throughout the genome. These are relatively widespread, and if one were to compare the

sequence of two copies of a human chromosome, approximately one in seventy bases would be

different [12]. Moreover, about one in 1000 bases contains a polymorphism that occurs at a fre-

quently a population [13].
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Because of their high density, SNPs often overlap and interfere with regulatory elements, caus-

ing changes in the regulatory cascade. Genomicists have focused on these perturbations in order the

better understand the specificities of the regulatory elements using quantitative trait locus (QTL)

analysis. The earliest QTL studies identified expression QTLs (eQTLs), polymorphisms that are

associated with changes in steady state mRNA levels [14]. To do so, genomicists originally col-

lected both genotype information and mRNA level measurements from a large number of unrelated

individuals using SNP arrays and gene expression probes respectively. They then looked for SNPs

with genotypes that were correlated with expression levels, interpreting those with significant as-

sociations as interfering with sites that are important for gene regulation. Since DNA sequence is

set at birth and is primarily not a consequence of gene regulation, we can build a strong argument

that the sites identified are indeed causing the regulatory changes (or are at least linked to causal

variants). In this way, natural variation in both DNA sequence and regulatory measurements are

leveraged to draw causal conclusions about genetic control of regulation.

Recent developments in whole genome sequencing has made it possible to expand our set of

testable SNPs to the entire genome. We can also accurately measure expression levels of all genes

using RNA sequencing (RNA-seq). Here, mRNA is isolated from a sample of cells, then reverse

transcribed to form cDNA. The cDNA is then sheared, amplified by polymerase chain reaction,

and sequenced, yielding millions of short (20-100 base pair) sequences, often called reads, that

can be aligned to the genome in order to quantify expression of known genes. The statistical

frameworks for analyses have mostly remained the same. With this new technology, however, we

have to information to search for QTLs amongst millions of SNPs and tens of thousands of genes

genome-wide [15].

1.5 Other sequencing methods for capturing regulatory information

While the identification of eQTLs helps us better understand the DNA elements that underly gene

regulation, QTLs do not tell the complete story as they do little to reveal the mechanisms un-

derlying the regulation. A change in expression may stem from an effect on regulation at the
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chromatin level, with changes to elements can designate nucleosome occupancy, histone modifi-

cations, or interfere with transcription factor binding sites. Fortunately, new technologies help us

capture each of these possible mechanisms. DNase is an enzyme that preferentially cuts regions

of DNA that are not bound by a nucleosome. Sequencing fragments after treatment with DNase,

known as DNase-seq, can be used to quantify changes in nucleosome occupancy [16]. Chromatin

immuno-precipitation followed by sequencing (ChIP-seq) involves fragmenting DNA, then using

an antibody to pull down DNA fragments that are bound by a transcription factor of interest or by

nucleosomes marked with specific histone modifications. Sequencing these fragments can quan-

tify these chromatin level aspects of regulation. At the RNA level, changes in steady state mRNA

may be due to differences in transcription rate or in the rate of mRNA degradation. Again, new

advances help us distinguish these effects. By stopping transcription with Actinomycin D [17],

then sequencing at various time points, we can get a sense of the decay rates of mRNA. Moreover,

changes in regulation may occur after the mRNA stage. Sequencing fragments that are bound by

ribosomes (ribo-seq) can be used to quantify the translation rate of mRNA to protein [18]. Finally,

mass spectrometry can be used to quantify protein levels [19]. Together, these new techniques

provide tremendous opportunities to probe various stages of gene regulation.

1.6 Allele specific information

Traditional QTL studies are performed using seventy or more individuals and regressing read depth

in the region of interest for each individual against the genotype for that individual. In many cases

it is not feasible to collect this many samples due to cost of experiments or tissue acquisition.

Moreover, when effect sizes are small, even larger samples become necessary to find statistically

significant effects with regression. However, read count data contains information untapped by

regression analyses, allele specific read counts. Each sample will have two copies of every chro-

mosome. If a read does not span a polymorphism, then it is impossible to tell which chromosome

it represents. However, if a read spans a SNP that is heterozygous, the sequence of the read can be

used to assign it to a specific chromosome copy. If, as is common, a DNA element acts only on
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it’s own chromosome copy, termed a cis-interaction, then QTL effects should also be seen in these

allele specific counts [15]. Allele specific information is extremely powerful for detecting QTLs

in small sample sizes, but comes with dangers of artefacts. A major part of my work has been on

identifying and correcting these potential problems.

1.7 Lymphoblastoid cell lines

As previously discussed, acquisition of samples can be a major challenge in genomics. This is

particularly difficult when studying multiple stages of gene regulation, such as expression and

chromatin accessibility, simultaneously. Ideally, the same individuals would be used for every ex-

periment, but experiments are often performed years apart as assays advance. Because of these

challenges immortalized cell lines, such as lymphoblastoid cell lines (LCLs) have risen in popular-

ity or the study of molecular genetics. LCLs are B-cells that have been treated with Epstein-Barr

virus, causing them to divide indefinitely [20]. This alleviates the problem of running out of cells

when trying to perform multiple experiments on the same tissue sample. Moreover, LCLs can be

frozen and stored for long periods of time without adverse effects, meaning new experiments can

be performed at a later date.

One of the major drawbacks to using LCLs is that, though they are created from B-cells, they

do not directly represent a naturally occurring cell type. Inducing indefinite replication in cells

unsurprisingly leads to broad effects on gene expression patterns and loss of cell identify. Still,

QTLs identified in LCLs have shown enrichment for associations with auto-immune related dis-

eases such as lupus (citation), so there is at least some cell-type specific information we can glean

from them. More importantly for those more broadly interested in the molecular genetics, the

mechanisms behind the gene regulation are preserved in LCLs, even if that particular pathways are

altered.
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1.8 The Yoruba population

For many of the studies in the Gilad and Pritchard labs, we use LCLs derived from Yoruba in-

dividuals, an ethnic group living in Nigeria. These individuals have been fully sequenced by the

HapMap project [21], so genotypes are already available. Because all of the Yoruba individuals

are from the same population, but not closely related, structure is unlikely to be an issue in stud-

ies based on these individuals. This is not a feature of all populations. If a subset of individuals

are more related than the rest, also known as population structure, their genotypes will be more

similar. Additionally, their phenotypes may be more similar due to environmental effects or a com-

bination of the genetics at many loci that related individuals share. These may cause correlations

between genotype and regulatory measurements not based on the locus in question and spurious

identification of QTLs.

1.9 Dissertation overview

Understanding the mechanisms of gene regulation is fundamental for both evolution and disease

research. The rise of genomics has made it possible to collect a huge amount of data for the study

of human polymorphisms and gene regulation. With these data it is common to look for quan-

titative trait loci (QTLs), polymorphisms in the genome with genotypes that are correlated with

a regulatory measurement, most commonly mRNA levels. However, to understand the effects of

genetic variation we must look beyond QTLs for mRNA levels in a single tissue. Gene regulation

may vary across tissues and polymorphisms may take effect at many stages including chromatin,

transcription, translation, or degradation levels. Studying these can introduce major challenges as

these experiments are often expensive and samples hard to acquire. Moreover, to fully understand

gene regulation variation we must look for patterns in local sequence context to explain why some

polymorphism are QTLs and why others are not. In Chapter 2, I will present WASP, a set of tools

designed to (i) remove experimental artefacts from QTL studies, (ii) account for the many sources

of variation in sequencing data, and (iii) maximize power to detect QTLs in small sample sizes. I
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will then describe, in Chapter 3, how we applied WASP to discover QTLs for four different histone

modifications in the human genome. These modifications are important markers of function and

chromatin state and were measured in 10 unrelated human lymphoblastoid cell lines. Even with

this limited sample size, we were able to identify hundreds of QTLs. We then extended WASP to

look for consistent effects across polymorphisms with similar contexts. We found that polymor-

phisms interrupting transcription factor binding sites consistently alter local histone modifications

and that variants impacting chromatin at distal regulatory sites frequently also direct changes in

chromatin and gene expression at associated promoters. In Chapter 4, I will present the most com-

prehensive QTL identification in the various stages of gene regulation to date. We identified QTLs

for histone modifications, chromatin accessibility, transcription, mRNA, translation, and protein

levels. We then tracked effect sizes through the regulatory cascade, from chromatin to RNA to

protein. We found a general consistency of effects, but buffering at the protein level. Finally, we

found that many changes in enhancer activity cannot be linked to gene expression, but that once

a promoter effect is identified, QTLs effects are likely to carry through to the protein level. Fi-

nally, in Chapter 5 I will discuss the main conclusions of thy graduate research and discuss future

directions for further study.
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CHAPTER 2

WASP: ALLELE-SPECIFIC SOFTWARE FOR ROBUST MOLECULAR

QUANTITATIVE TRAIT LOCUS DISCOVERY

2.1 Abstract

Allele-specific sequencing reads provide a powerful signal for identifying molecular quantitative

trait loci (QTLs), however they are challenging to analyze and prone to technical artefacts. Here

we describe WASP, a suite of tools for unbiased allele-specific read mapping and discovery of

molecular QTLs. Using simulated reads, RNA-seq reads and ChIP-seq reads, we demonstrate that

WASP has a low error rate and is far more powerful than existing QTL mapping approaches.

Contribution

This work was done in collaboration with Graham McVicker. I did much of the development of the

WASP mapping pipeline as well as the statistics for the Combined Haplotype Test. In particular, I

made Figures 2.1, 2.3, 2.5, 2.7, 2.8, 2.9, 2.11, 2.12, 2.13.

2.2 Overview

Next generation sequencing data can be used to identify allele-specific signals because reads that

overlap heterozygous sites can be assigned to one chromosome or the other. Molecular QTLs are

associated with allelic imbalance[22, 23, 15, 24], and thus allele-specific reads can potentially aug-

ment the power of statistical tests for QTL discovery[25, 26]. However, use of allele-specific reads

can introduce artefacts into many stages of analysis. Uncorrected mapping of allele-specific reads

can be highly biased and can easily yield false signals of allelic imbalance [27, 28]. Homozy-

gous sites which are incorrectly called as heterozygous are another source of false positives, and

allele-specific read counts are overdispersed compared to the theoretical expectation of a binomial

distribution [29]. Here we describe a suite of tools called WASP that is designed to overcome these
9
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Figure 2.1: Mapping to personalized genomes can result in allelic bias because reads from one
allele may not map uniquely. .

technical hurdles. WASP carefully maps allele-specific reads, corrects for incorrect heterozygous

genotypes and other sources of bias, and models overdispersion of sequencing reads. Finally, by

integrating allele-specific information into a QTL mapping framework WASP attains greater power

than standard QTL mapping approaches.

2.3 Unbiased read alignment with the WASP mapping tool

Mapping of reads to a reference genome is biased by sequence polymorphisms [27]. Reads which

contain the non-reference allele may fail to map uniquely or map to a different (incorrect) location

in the genome [27]. A common approach is to map to a ‘personalized’ genome where the reference

sequence is replaced by non-reference alleles that are known to be present in the sample[30].

However, personalized genomes do not fully address the mapping problem because the genomic

locations that are uniquely mappable in the reference and non-reference genome sequences differ

(Figure 2.1). While these type of errors may only affect a small number of sites, they comprise a

large fraction of the most significant results when tests of allelic imbalance are performed genome-

wide. Genomic DNA sequencing reads can also be used to control for mapping bias, however this

method reduces power to detect allelic imbalance[31].

WASP uses a simple approach to overcome mapping bias that can be readily incorporated into

any read mapping pipeline. First, reads are mapped normally using a mapping tool selected by the

user; mapped reads that overlap single nucleotide polymorphisms (SNPs) are then identified. For

each read that overlaps a SNP, its genotype is swapped with that of the other allele and it is re-
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mapped. If a re-mapped read fails to map to exactly the same location, it is discarded (Figure 2.2).

Unknown polymorphisms in the sample are not considered but will typically have little effect since

the tests of allelic imbalance are only performed at known heterozygous sites.

2.3.1 Details on using WASP for mapping

In the WASP mapping pipeline, the user first maps reads to the genome using any mapper that

outputs BAM or SAM format (Figure 2.2). For example, ChIP-seq reads can be mapped by

BWA[32] or Bowtie 2[33], and RNA-seq reads can be mapped using tophat[34]. WASP then

identifies mapped reads that overlap with known polymorphisms. For each read that overlaps a

polymorphism, all possible allelic combinations that differ from the original read are generated

and re-mapped to the genome. For example, when a read overlaps two bi-allelic SNPs, four al-

lelic combinations are possible, three of which differ from the original read. The original read is

discarded if any of the allelic combinations map non-uniquely or map to another location. Reads

which overlap insertion or deletion polymorphisms are currently discarded by WASP.

This simple method has the advantages that it works with almost any existing mapping pipeline

and it handles reads with sequencing errors, which are a major source of biased mapping[27, 28].

2.3.2 Comparing WASP mapping to N-masked and personal genome mapping

We performed a simulation to assess the impact of unknown polymorphisms and found that the

proportion of heterozygous sites with biased mapping is very small. We simulated 100 bp reads

from a lymphoblastoid cell line (NA18505) that has been genotyped by the 1000 Genomes and

HapMap projects. We additionally imputed and phased genotypes for this cell line with IMPUTE2

[35] using the 1000 Genomes Phase1 integrated version 3 reference panel[12].

For each test, we evaluated the performance of WASP compared to mapping to a personal

or N-masked genome. To map to personal genomes we used AlleleSeq[30]. We first created

maternal and paternal reference genomes for NA18505 using the phased genotypes. We then ran

the AlleleSeq pipeline using bowtie-1.1.1 [33] with –best –strata -v 2 -m 1 options as suggested by
11
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Figure 2.2: The WASP mapping pipeline. Reads are first mapped to the genome using a mapping
tool of the user’s choice. The aligned reads are provided to WASP in SAM (sequence align-
ment/map) or BAM (binary alignment/map) format, along with a list of known polymorphisms.
WASP identifies reads that overlap known polymorphisms, flips the alleles in the reads, and remaps
them to the genome. Reads that map to a different location than the original read are then discarded.
Finally, WASP can optionally remove reads that map to the same genomic location (“duplicate
reads”) without introducing a reference bias.

the AlleleSeq manual. To create an N-masked genome, we created a copy of the hg19 genome with

Ns in place of known variants from the NA18505 cell line. We mapped the simulated reads to the

N-masked and original versions of the hg19 genome with BWA [32] allowing up to 2 mismatches

per read (-n 2), and excluding gapped alignments (-o 0). The reads mapped to the original

genome were provided as input to WASP. If it mapped to both genomes, we kept the location with

the highest mapping quality (ties were broken randomly).

2.3.3 Quantifying the fraction of reads showing imbalance

We first identified each base where a read starting at that base would overlap a heterozygous site.

We generated reads from each haplotype while introducing identical sequencing errors at a prede-

fined rate. For each mapping type, we considered the mapping of a read to be biased if the read

from one haplotype mapped to the correct location but the other did not. While reads mapped to

the N-masked and personalized genomes were substantially biased and gave rise to a large number

of false positives, reads mapped using WASP were almost perfectly balanced 2.3.
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Figure 2.3: The percentage of simulated 100 bp reads at heterozygous sites where a read with
one allele maps correctly and the corresponding read with the other allele does not. Reads were
simulated with sequencing errors introduced at several different rates.

2.3.4 Determining the effects of unknown single nucleotide variants

One limitation of WASP is it’s reliance on accurate variant information for knowing which reads to

remap. With current genotyping, we are likely to miss some polymorphisms, particularly those that

are only found in a small number of individuals. We tested how unknown single nucleotide variants

(SNVs) affect the performance of WASP. We simulated reads from each haplotype at heterozygous

sites while introducing untyped SNVs at a defined rate. We then computed the fraction of reads

where the read from one allele maps correctly but the other read does not after filtering reads using

WASP (Figure 2.4). The fraction of reads that map incorrectly is already very low when the rate

of unknown SNVs is below 2 × 10−4. The true rate of unknown SNVs per sample is likely to be

less than 5× 10−5 [36].

2.3.5 Assessing the effects of mapping bias on an allele-specific study

For each heterozygous site, we simulated 100 reads (of length 100 bp and with a per-base error

rate of 0.01) from random bases that overlap the chosen SNP. We chose the haplotype of each

simulated read at random. Reads from peaks without effects came from haplotype 1 vs haplotype
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Figure 2.4: WASP mapping errors at heterozygous sites as a function of the rate of unknown single
nucleotide variants (SNVs).

2 with a 1:1 ratio. Reads from peaks with effects were simulated with ratios ranging from 1.3:1 to

2.5:1 to test a range of effect sizes.

For each effect size, we simulated sets of peaks that were composed of 90% null peaks and 10%

peaks with effects. We mapped the reads using each mapping scheme and performed a binomial

test for imbalance on each peak, calling a locus significantly imbalanced if the p-value from the

test was beneath a 10% false discovery rate (FDR) threshold. For the personal genome mapping,

we used the p-values provided by the AlleleSeq pipeline. Finally, we assessed the fraction of

significant loci that came from the null peaks. In the absence of imbalance caused by mapping

artefacts, this should be 10%. (Figure 2.5)

2.3.6 Reads filtered by WASP

WASP filters a read when it overlap one or more SNPs and the read maps to a different genomic

location (or fails to map) when the allele(s) present in the read are flipped (all possible combi-

nations of alleles are considered). In addition, WASP currently discards all reads which overlap

insertions/deletions that are polymorphic in the sample of individuals provided. We evaluated
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Figure 2.5: The fraction of false-positives as a function of the effect size using a nominal
Benjamini-Hochberg false-discovery rate of 10%. We simulated 100 bp allele-specific reads under
null (odds ratio = 1) and alternative models (odds-ratio > 1) of allelic imbalance at heterozy-
gous sites in the genome. 90% and 10% of sites were assumed to be null and alternative sites
respectively. We mapped reads using WASP, personal-genome (AlleleSeq) or N-masked-genome
mapping strategies and called allele-specific sites using a binomial test.

how many reads are filtered by WASP using RNA-seq reads from a panel of 69 individuals[15]

(Table 2.1). Reads were mapped as described in Section 2.5.1.

2.3.7 Limitations of WASP mapping

One disadvantage of WASP’s approach is that some reads are discarded, which can cause the

overall expression level of a locus to be underestimated. Several statistical methods can recover

ambiguously mapped reads [37, 38], however, they are not designed for unbiased allele-specific

Table 2.1: RNA-seq reads filtered by WASP mapping in a panel of 69 individuals. The columns
give the total number of mapped reads, the number of reads filtered because they overlap an indel
that is present in the sample of 69 individuals, and the number of reads that are filtered because
their mapping is biased. Reads are considered to have biased mapping if they overlap SNPs and
map to different genomic locations when different alleles are considered.

mapped indel removed mapping bias removed
903346431 65900919 (7.3%) 27787224 (3.1%)
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mapping and incorporating them into WASP would be technically challenging.

2.3.8 Unbiased removal of amplification effects

WASP employs a number of techniques to remove noise and biases from mapped reads. Am-

plification bias is a common feature of experiments that yield libraries with low complexity (e.g.

ChIP-seq). Most sequencing experiments involve some amplification step where polymerase chain

reaction (PCR) is used to exponentially increase the number of cDNA material for sequencing. If a

small number of fragments are present before amplification, many of the resulting sequenced reads

will be from the same original fragment. This can lead to increased variance and poorly calibrated

results if unchecked. To control for amplification it is common to remove ‘duplicate’ reads that

map to the same location. However, existing tools that remove duplicate reads retain the one with

the highest mapping score, which will usually match the reference14. WASP provides a tool to

filter duplicate reads at random, thus eliminating reference bias from this step.

2.4 Discovery of quantitative trait loci with WASP

To discover molecular quantitative trait loci (QTLs) WASP uses a statistical test, which we call the

combined haplotype test (CHT). As input, the CHT takes genotype probabilities at known SNPs

as well as mapped reads from sequencing-based experiments such as ChIP-seq or RNA-seq. The

CHT combines two types of information: the depth of mapped reads and the allelic imbalance of

mapped reads that overlap heterozygous sites.

2.4.1 Overview

The CHT models the overdispersion of read counts (both across regions and across individuals) and

accounts for variability introduced by technical variation between experiments(Figure 2.6). GC

content often affects read depth in a manner that is inconsistent between sequencing experiments[15,

39]. In addition, the distribution of read depths across the genome differs from experiment to ex-
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periment. For example, ChIP-seq experiments with more efficient pull-downs tend to have more

reads within peaks. WASP corrects for both of these issues by fitting polynomials to the genome-

wide read counts and calculating a corrected read depth for each region. Both allele-specific and

total read depth counts are more dispersed than expected under models of binomial and Poisson

sampling[29, 40]. To accommodate overdispersion in the data, WASP estimates separate overdis-

persion parameters for each individual and genomic region used in a study. Finally, to account

for any remaining unknown covariates, WASP allows principal components to be included in the

model fitting procedure.

Following correction for biases described above, WASP uses a statistical test, the combined

haplotype test (CHT), to identify cis-acting QTLs. The CHT tests whether the genotype of a test

SNP is associated with total read depth and allelic imbalance in a target region. The CHT jointly

models two components: the allelic imbalance at phased heterozygous SNPs and the total read

depth in the target region. The two components of the test are linked together by shared parameters

that define their effect sizes. For a target region and test SNP pair, the CHT models the expected

number of reads for an individual as a function of the individual’s genotype, the effect size, the

GC content, additional covariates (such as principal component loadings), and the total number

of mapped reads in the region (across all individuals). The probability of the observed number of

reads in the target region is calculated using the expected number of reads and two overdispersion

parameters.

Allelic imbalance of reads overlapping heterozygous SNPs within a target region is modeled as

a function of the shared effect size parameters. The probability of the observed allele-specific read

counts is then defined by the effect size and a single overdispersion parameter. We also allow for

the possibility of genotyping errors by assuming that allele-specific read counts are drawn from a

mixture, with a small probability that a given individual is a mistyped homozygote. WASP com-

bines information across multiple heterozygous sites and the current implementation assumes that

haplotype phasing is correct. Incorrect phasing will decrease WASP’s power to detect associations

but will not increase false positives.
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Figure 2.6: The WASP combined haplotype test pipeline. Mapped reads (in BAM or SAM format)
for each individual, genotypes for known SNPs, and a list of regions and SNPs to test are provided
to WASP. WASP extracts read counts for the target regions as well as allele-specific read counts.
Read counts from multiple sources can be used to update heterozygous probabilities. Expected
read counts for each region are adjusted by modeling the relationships between read counts and
GC content and read counts and total read counts for each sample. Dispersion parameters are
estimated from the data and provided to the combined haplotype test along with the read counts.
Principal components can optionally be used as covariates by the test.
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Table 2.2: Description of mathematical variables used in the combined haplotype test

Variable Description
Index variables
h test number (one per test SNP / target region pair)
i individual
j target region
k SNP within target region
m test SNP
Latent variables
αh molecular phenotype level of the reference allele for test h
βh molecular phenotype level of the alternative allele for test h
ph fraction of allele-specific reads expected from reference allele (ph = αh

αh+βh
)

T ∗
i,j genotype-independent expected total read count for individual i, target region j
λhi expected total read count for test h, individual i
Ωi overdispersion of read counts for individual i (across all target regions)
φj overdispersion of read counts for target region j (across all individuals)
Υi overdispersion of allele-specific reads for individual i
Observed variables
xij number of reads for individual i, target region j
Gim genotype call for individual i, test SNP m
Ti total number of genome-wide mapped reads for individual i
nik total number of allele-specific reads for individual i, target SNP k
yik number of allele-specific reads from reference haplotype for individual i, target SNP k
Hik probability individual i is heterozygous for target SNP k

2.4.2 The combined haplotype test details

The combined haplotype test (CHT) determines whether the genotype of a test SNP, m, is asso-

ciated with read depth and allelic imbalance within a nearby target region, j, on the same chro-

mosome (Figure 2.6, Table 2.2). Each test is performed on a test SNP and target region pair,

h = {m, j}. A target region may be discontiguous and span multiple genomic loci. For exam-

ple, the exons of a gene can be used as a target region when searching for expression QTLs using

RNA-seq reads. The test SNP is not required to be within the target region, but is assumed to be

nearby and cis-acting. This allows us to combine information from across phased heterozygous

SNPs and assign reads to one haplotype or the other.
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2.4.3 The basic model

The CHT is a likelihood ratio test with two components. One component models the depth of

mapped reads within the target region, and the other component models the allelic-imbalance of

reads that overlap heterozygous SNPs. Both components of the test are parameterized by αh and

βh, which define the expected read depth from chromosomes with the reference and alternative

alleles. Since variants are assumed to be additive and cis-acting, the expected allelic imbalance in

heterozygotes is ph = αh
αh+βh

[26].

2.4.4 Modeling the read depths

The number of reads mapping to a target region is often modeled using a poisson distribution[41].

However, the poisson assumption that the variance is equal to the mean is often violated because

read counts from target regions are overdispersed. Part of this overdispersion can be accommo-

dated by modeling the data with a negative-binomial distribution with a variance parameter for

each test[29]. However, the negative binomial distribution assumes that the mean and variance

have a quadratic relationship that is consistent across individuals. We have found that this as-

sumption is violated by sequencing data and causes poor calibration of the tests, particularly when

sample sizes are small. The CHT therefore includes negative binomial overdispersion parameters

for each individual, Ωi, and for each target region, φj . After adding these additional dispersion

parameters, the data are modeled with a beta-negative-binomial (BNB) distribution. The expected

number of read counts for an individual, λhi, is defined as:

λhi =



2αhTi if Gim = 0 (homozygous allele 1)

(αh + βh)Ti if Gim = 1 (heterozygous)

2βhTi if Gim = 2 (homozygous allele 2)

(2.1)

where Gim is the genotype of individual i at test SNP m, and Ti is the total number of reads
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mapped genome-wide for individual i.

The likelihood of the parameters is then given by the equation:

L
(
αh, βh,Ω•, φj |Dh

)
=
∏
i

Pr
BNB

(
X = xij

∣∣λhi,Ωi, φj ) (2.2)

where xij is the number of reads for individual i in target region j.

2.4.5 Correcting for GC content and other effects on expected read depth

Since the number of mapped reads can differ between sequencing lanes and runs, we initially

model the expected number of counts, λhi, as a linear function of the total number of mapped

reads for each individual, Ti. However, technical variation between experiments can change this

relationship and reduce power to detect true differences in read depths between samples or cause

spurious associations. As described below, we directly model some known sources of technical

variation and estimate adjusted total read depths, T ∗ij , for each individual and target region. We

then replace Ti in Equation 2.1 with T ∗ij . This gives us a more accurate estimate of the expected

number of reads and improves our ability to detect true QTLs.

2.4.6 Adjusting total read depth

In RNA-seq experiments, a large fraction of mapped reads can come from a small number of highly

expressed genes. Variation in the expression level of these genes can therefore have a large effect

on the number of reads that map to all other genes[42]. In ChIP-seq experiments, the fraction of

reads that come from peaks varies between experiments, likely due to differences in the efficiency

of immuno-precipitation (Figure 2.7).

To account for these types of variation, we calculate an adjusted total read depth, T ∗ij for each

region and individual. The adjusted read depth is defined by a quartic function of the total read

depth (summed across individuals) for each target region. We estimate the coefficients of the

quartic function separately for each individual using a maximum likelihood approach described
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below (Figure 2.7).

2.4.7 GC content correction

GC content also affects read depth, with a relationship that varies across samples [15, 39]. For

example, in some samples, high GC content regions have high read depth, while in other samples

they have low read depth. To account for this variation, we add GC content terms to the model of

adjusted total read depth. These terms are modeled with a log linker so that T ∗ij is guaranteed to be

positive. After fitting this model we can calculate an adjusted total read depth for each region that

takes into account both the GC content variation and the total read depth variation (Figure 2.7).

2.4.8 Fitting adjustment coefficients

For each target region, j, we count the total number of reads vj =
∑
i xij and calculate the GC

content wj . Then, for each individual i, we find maximum likelihood estimates of coefficients

a0i, a1i, . . . , b4i that define the adjusted expected counts, T ∗ij :

L (a0i, a1i, . . . , b4i |Di ) =
∏
j

Pr
Pois

(
Xij = xij

∣∣∣T ∗ij ) (2.3)

T ∗ij = exp
(
a0i + a1iwj + a2iw

2
j + a3iw

3
j + a4iw

4
j

)(
b1ivj + b2iv

2
j + b3iv

3
j + b4iv

4
j

)
(2.4)

2.4.9 Modeling the allelic imbalances

Allele-specific read counts are sometimes modeled using the binomial distribution [43], however,

we have found that allele-specific read counts are overdispersed. We instead model allele-specific

read counts with a beta-binomial (BB) distribution and include a parameter Υi (estimated sepa-

rately) that captures the overdispersion for each individual. The likelihood of the parameters given

the data is then:
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L (αh, βh |D ) =
∏
i

∏
k

Pr
BB

(Y = yik |nik, ph,Υi ) (2.5)

where yik is the number of allele-specific reads from the reference haplotype and nik is the

total number of allele-specific reads for individual i at target SNP k. The expected fraction of

allele-specific reads from the reference allele is ph = αh
αh+βh

.

2.4.10 Correcting for incorrect genotype calls

SNP genotypes that are incorrectly called as heterozygous are a major source of false positives,

since reads that overlap them appear to come from only one allele. To account for this issue, we

assume that allele-specific reads are drawn from a mixture of two beta-binomials, with probabilities

Hik and 1−Hik, where Hik is the probability that individual i is heterozygous for SNP k. Reads

from heterozygous individuals contain the reference allele with probability ph. We assume that

reads from homozygous individuals still have a small probability of coming from the other allele

due to sequencing errors, which occur with probability, perr. The probability of observing yik reads

from the reference allele for individual i at SNP k then becomes:

PrBB−mix (Y = yik |ph, nik,Υi, Hik ) = Hik PrBB (Y = yik |ph, nik,Υi )

+(1−Hik) [PrBB (Y = yik |perr, nik,Υi ) + PrBB (Y = yik |1− perr, nik,Υi )] (2.6)

We found that even SNPs with heterozygous probabilities of 1.0 are occasionally miscalled so

we set heterozygous probabilities to a maximum value of 0.99. We then update this heterozygous

probability using sequencing data obtained from the same individual. Sequencing data may consist

of DNA sequencing reads or reads aggregated across multiple types of experiments performed on

the same individual (e.g. RNA-seq and ChIP-seq reads).

For a SNP with heterozygous probability Hik = min(0.99, Hobs
ik ), we define the updated het-

erozygous probability, Ĥik as:
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Ĥik =
Hik PrBin (D |p = 0.5)

Hik PrBin (D |p = 0.5) + (1−Hik) [PrBin (D |p = perr ) + PrBin (D |p = 1− perr )]

(2.7)

2.4.11 The combined likelihood ratio test

The combined likelihood of both components of the model is:

L
(
αh, βh, φj |D

)
=
∏
i

[
Pr

BNB

(
X = xij

∣∣λhi,Ωi, φj )∏
k

Pr
BB−mix

(
Y = yik

∣∣∣ph, nik,Υi, Ĥik

)]
(2.8)

To test for an association with genotype we perform a likelihood ratio test that compares the

alternative hypothesis αh 6= βh to the null hypothesis αh = βh. The CHT returns a likelihood ratio

statistic Λ =
L(θ̂1|D)

L(θ̂0|D)
where θ̂1 and θ̂0 are maximum likelihood estimates of the parameters under

the alternative and null hypotheses. P-values can be calculated from the the test statistic under the

asymptotic assumption that −2 log(Λ) is χ2 distributed with one degree of freedom.

2.4.12 Estimating overdispersion parameters

In order to estimate the genome-wide overdispersion parameters Ωi and Υi, we use the same

likelihood equations as in the CHT, but assume that there are no genetic effects. This means that

for the read depth part of the test λhi is equal to the expected counts T ∗ij , and for the allele-specific

part of the test ph is equal to 0.5. Since the allele-specific and read depth parts of the likelihood

equation are independent, we can fit the overdispersion parameters separately.

2.4.13 Beta-Negative-Binomial parameter estimation

To find the maximum likelihood estimate of Ωi we need to sum the log likelihood across all re-

gions. This presents a problem, as φj must also be estimated for each region. We therefore itera-
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tively estimate φj by first finding a maximum likelihood estimate for φj for each region using the

equation:

L
(
φj |D

)
=
∏
i

[
Pr

BNB

(
X = xij

∣∣∣λ = T ∗ij ,Ωi, φj
)]

(2.9)

and then finding a maximum likelihood estimate for Ωi for each individual using the equation:

L (Ωi |D ) =
∏
j

[
Pr

BNB

(
X = xij

∣∣∣λ = T ∗ij ,Ωi, φj
)]

(2.10)

We repeat this iterative procedure until the improvement in the likelihoods becomes negligible.

2.4.14 Beta-Binomial parameter estimation

We calculate the genome-wide likelihood of Υi by taking the product of likelihoods from all target

region SNPs that are heterozygous in individual i. We again assume there is no genetic effect, so p

= 0.5, and we use the following equation to find the maximum likelihood estimate of Υi:

L (Υi |D ) =
∏
k

Pr
BB−mix

(
Y = yik

∣∣∣nik, p = 0.5,Υi, Ĥik

)
(2.11)

2.4.15 CHT calibration

Generally the overdispersion parameters estimated by the CHT allow the model to be well cali-

brated, showing little signal when run on permuted data. However permuted tests can sometimes

diverge from the null, particularly when small sample sizes are used. This may occur because

by chance the permutations are unable to completely break up the signal when there aren’t many

samples to permute or because of inaccuracy in the overdispersion estimates. We suggest run-

ning the CHT on permuted data using the options we provide and visualizing the results with a

quantile-quantile plot to ensure that the test is working properly. If the permutations do not follow

the null, the user may manually set overdispersion parameters or adjust the p-values according to
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Figure 2.8: Quantile-quantile plots of ranked -log10 p-values from the combined haplotype test.
The permuted points are for same datasets but with the genotypes of each SNP shuffled. (a)
Ranked -log10 p-values from running the combined haplotype test on H3K27ac ChIP-seq data
from 10 lymphoblastoid cell lines compared to p-values expected under the null hypothesis. (b)
Ranked -log10 p-values from running the combined haplotype test on RNA-seq data from 69 YRI
cell lines. The test was run only on eQTLs that were previously identified in cell lines derived from
European individuals[44].

the permuted distribution.
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2.4.16 Correcting for unknown covariates using principal components

Both known and unknown covariates such as time of experiment, age of sample, etc. can affect

molecular trait measurements and confound QTL studies. Principal component analysis (PCA) is

sometimes used to capture and remove these effects [15, 22]. To leverage PCA while maintaining

the discrete nature of the count data, the CHT directly models the covariate effects. To do this we

include a user-defined number of PCA loadings ui• and fit coefficients ch• when calculating λhi.

λhi =



2αh(1 + ch1ui1 + ch2ui2 + . . .)Ti if Gim = 0 (homozygous allele 1)

(αh + βh) (1 + ch1ui1 + ch2ui2 + . . .)Ti if Gim = 1 (heterozygous)

2βh(1 + ch1ui1 + ch2ui2 + . . .)Ti if Gim = 2 (homozygous allele 2)

(2.12)

Fitting many coefficients simultaneously can be quite slow, but since the principal components

are by definition orthogonal, we can optimize their coefficients one at a time without losing accu-

racy. We then use the fitted coefficients to calculate λhi for the null and alternative models.

2.5 WASP combined haplotype test performance evaluation

To evaluate the performance of WASP, we tested the ability of the combined haplotype test at (i) re-

calling in 69 individuals QTLs that were previously identified in a different population, (ii) calling

novel QTLs genome-wide using data from H3K27ac ChIP-seq experiments that were performed in

10 LCLs [40], and (iii) calling QTLs from simulated data against other alllele specific QTL calling

software.

28



2.5.1 Identifying known European eQTLs in 69 Yoruba LCLs

We downloaded eQTLs which were identified in 373 European lymphoblastoid cell lines (LCLs)

by the GEUVADIS project [44]. We identified a subset of 2098 of these eQTL SNPs that were

segregating in an independent dataset of 69 Yoruba LCLs [15] with a minimum minor allele count

of 2. We mapped RNA-seq reads from the 69 Yoruba LCLs to the hg19 genome using tophat with

the options --segment-length 17, --b2-sensitive and --no-coverage-search

and processed the mapped reads with the WASP mapping pipeline. We applied the CHT and linear

model to the mapped RNA-seq reads. WASP discovers 627 of the eQTLs at a false discovery

rate (FDR) of 10%, which is impressive considering (1) our smaller sample size, (2) that some

fraction of the original eQTLs are false positives, and (3) that some of the European eQTLs will

be absent or at very low frequency in the Yoruba. This number increases to 673 when 5 principal

components are included as covariates. By comparison, when we adopt a standard eQTL discovery

method (linear regression on quantile normalized and GC-corrected data), we identify only 446

eQTLs (617 when 5 principal components are included as co-variates). P values obtained by

running the CHT on the same dataset with permuted genotypes do not depart substantially from

the null expectation, indicating that the test is well-calibrated. (Figure 2.9). We also examined the

correlation between the allelic imbalance estimate from CHT and the reported genotype-expression

correlation from GEUVADIS (Figure 2.10). The correlation is strongest at eQTLs that are close to

the transcription start site (Spearman’s ρ = 0.72, p = 7× 10−56) and decreases within increasing

distance (Figure 2.10). This is likely because the current implementation of WASP assumes that

haplotype phasing is correct but phasing accuracy decreases with distance.

29



WASP
Linear Model

0.0 0.5 1.0 1.5 2.0 2.5 3.0

100

80

60

20

0

–l
og

10
 o

f o
bs

er
ve

d 
P

 v
al

ue
s

40

–log10 of expected P values

Figure 2.9: Identifying European eQTLs from the GEUVADIS consortium using an independent
dataset of RNA-seq from 69 Yoruba lymphoblastoid cell lines.

30



−4 −2 0 2 4

−1.0

−0.5

0.0

0.5

1.0

Combined Haplotype Test

log(A expr / B expr)

G
E

U
V

A
D

IS

a
s
s
o

c
ia

ti
o

n
 (

−
R

h
o

) ●

●
●

●

●

●

●0.4

0.5

0.6

0.7

distance between eQTL and TSS (kb)

S
p

e
a

rm
a

n
's

 R
h

o

Correlation between GEUVADIS 

and CHT by eQTL-TSS distance

GEUVADIS expression association

vs. CHT-estimated allelic-imbalance

< 2.5 2.5-5 5-10 10-20 20-40 40-80 > 80

a b

Figure 2.10: Comparison of results from GEUVADIS to allelic imbalance estimates from the Com-
bined Haplotype Test (CHT). We ran CHT on RNA-seq data from 69 Yoruba cell lines and com-
pared the estimated allelic imbalance to the genotype-expression associations reported by GEU-
VADIS. The comparison was performed at GEUVADIS eQTLs that were identified in European
cell lines [44]. (a) Scatter plot showing the GEUVADIS-reported association statistic (Spearman’s
ρ) versus the allelic imbalance estimate from CHT. (b) Correlation between GEUVADIS-reported
association and CHT’s estimate of allelic imbalance as a function of distance between the eQTL
and the transcription start site (TSS) of the associated gene. Whiskers are 95% confidence intervals
from 1000 bootstraps.

31



0 1 2 3 4 5

40

–log10 of expected P values

–l
og

10
 o

f o
bs

er
ve

d 
P

 v
al

ue
s

30

20

10

0

WASP
Linear Model

Figure 2.11: Identification of novel QTLs using H3K27ac ChIP-seq data from 10 Yoruba lym-
phoblastoid cell lines.

2.5.2 Genome-wide QTL discovery in small sample sizes of ChIP-seq data

We also applied the two models to a dataset of ChIP-seq data for the histone modification H3K27ac

from 10 individuals, which we collected in a previous study [40]. We mapped the ChIP-seq reads

to the hg19 genome using the default options of bowtie2 and processed the mapped reads with the

WASP mapping pipeline. Principal components were not included in this analysis because of the

small number of dimensions in the dataset. As test SNPs we chose SNPs that were segregating in

the 10 individuals and defined the target region as a 2 kb region centered on the test SNP. We only

tested target regions with at least 100 filtered reads summed across individuals (Figure 2.11).
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2.5.3 Comparing CHT to other QTL mapping strategies using simulations

Read count over-dispersion and genotyping errors can lead to artifacts when testing for QTLs.

Tests that do not account for these problems may appear to identify more QTLs simply because

they identify more false positives. Since is difficult to distinguish between true effects and artifacts

in real data, we used simulations to compare the relative sensitivity of the CHT and several other

methods for QTL discovery.

2.5.4 Simulating read depth and allele-specific counts

We simulated genotypes for individuals with a minor allele frequency of 0.2 and discarded sim-

ulated sites with fewer than 2 heterozygous individuals. We then simulated total read counts by

observing a beta negative binomial random variable with the following dispersion parameters:

Ω = 0.01 and φj = 100. These parameter values were chosen to be similar to our dispersion

estimates from real data

The mean for the distribution, λ, was based on the simulated genotype, G, the effect size, E,

and whether the minor allele has higher (δ = 1) or lower mean count (δ = 0). In our simulation

we randomly set δ to 0 or 1 with equal probability.

λ =



200 if G = 0 (homozygous major)

200 (2 + E) δ + 200
(

2
2+E

)
(1− δ) if G = 1 (heterozygous)

200 (2 + 2E) δ + 200
(

2
2+2E

)
(1− δ) if G = 2 (homozygous minor)

(2.13)

For heterozygous individuals, we simulated allele-specific read counts by drawing from a beta

binomial distribution with the following parameters: n = 20, p = 1
1+E δ + E

1+E (1 − δ), and

Υ = 0.2. To simulate errors in genotyping, 1% of the counts were drawn from a beta binomial
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Table 2.3: Summary of QTL methods tested

Method Description
CHT Our method. Combines allele-specific (beta binomial) and read

depth (beta negative binomial) information.
TReCASE Combines allele-specific (beta binomial) and read depth (negative

binomial) information [26].
Regression Simple linear regression
Beta Binomial A likelihood ratio test for imbalance in allele-specific read counts

similar to that described in [45]
Kruskal-Wallis Non-parametric test for association using read depth only.

distribution with p = 0.99, representing a target SNP that was labeled as heterozygous but was

actually homozygous.

2.5.5 Comparing QTL model sensitivities

We compared five methods for QTL discovery, which are summarized in Table 2.3.
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We simulated 10,000 sites under the null (E = 0) and alternative hypotheses (E varied). We

then compared the performance of the tests summarized in Table 2.3 using receiver operating

characteristic (ROC) curves (Figure 2.12). For the smaller sample sizes (10 or 20 individuals),

CHT outperforms all other tests. Interestingly for sample size 10, simple regression outperforms

TReCASE likely because linear regression can more flexibly model the variance, which helps it

avoid false positives. For larger sample sizes, CHT and TReCASE perform similarly and both out-

perform regression. The beta binomial and Kruskal-Wallis tests perform relatively poorly under all

conditions. Like the CHT, TreCASE uses both allelic imbalance and read depth information, how-

ever it does not account for overdispersion, genotyping errors, or biased mapping, which increase

the false positive rate when using real data.
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2.6 Testing effects of reduced allelic imbalance

The CHT combines allele-specific and read depth information by assuming p = α
α+β . Previous

work suggests that this assumption is reasonable for most eQTLs[15], however under some cir-

cumstances QTLs may have buffered or non-additive effects. To test how non-additive or buffered

genotypic effects change the CHT’s power to detect QTLs, we simulated read count data under a

model of allele-specific buffering.

2.6.1 Simulating sites with reduced allelic imbalance

We simulated read depth and allele-specific data using the methods described in Section 2.5.4,

but with the addition of an allele-specific buffering parameter, κ. We then redefined the allelic

imbalance parameter as p = 1
1+EAS

, where EAS = κE.

2.6.2 Results

We again performed simulations as described in Section 2.5.4, but introduced the allele-specific

buffering parameter, κ, when simulating read counts under the alternative hypothesis. We simu-

lated reads using the following values of κ: 1.0 (no buffering), 0.75, 0.50, and 0.25. As expected,

the performance of the CHT is worse for lower values of κ because allelic imbalance is attenuated.

Under most conditions the CHT still outperforms a simple regression if κ is greater than 0.5. With

κ = 0.25, however, there is a modest drop-off in power (Figure 2.13).

2.7 CHT running time

To assess the computational running time of the CHT we simulated data for between 10 and 1000

individuals. To simulate data, we made copies of the H3K27ac ChIP-seq data from 10 individuals.

We then obtained the mean running time per test by running the CHT on several hundred sites.

The mean running time increases linearly with the number of individuals, and we found the mean
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running time per site to be about 0.020 seconds per individual on Linux machines with Intel Xeon

E5620 2.4 GHz and Intel Xeon L5420 2.5GHz CPUs (Figure 2.14).

2.8 Combined haplotype test caveats

WASP can only test for gene-level expression differences and does not consider the expression of

individual transcript isoforms. Some QTLs detected by WASP may therefore be due to differences

in isoform usage rather than differences in overall gene expression[46, 47].

2.9 Conclusions

Our results demonstrate that WASP is a powerful approach for the identification of molecular

QTLs, particularly when sample sizes are small. WASP accounts for numerous biases in allele-

specific data and is flexible enough to work with different read mappers and multiple types of

sequencing data such as ChIP-seq and RNA-seq. By modeling biases and dispersion differences

directly, WASP eliminates the need for quantile normalization of the data, thereby making esti-

mated effect sizes more interpretable. The source code and documentation for WASP are open
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source and can be downloaded from https://github.com/bmvdgeijn/WASP/.
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CHAPTER 3

IDENTIFICATION OF GENETIC VARIANTS THAT AFFECT HISTONE

MODIFICATIONS IN HUMAN CELLS

3.1 Abstract

Histone modifications are important markers of function and chromatin state, yet the DNA se-

quence elements that direct them to specific genomic locations are poorly understood. Here we

identify hundreds of quantitative trait loci, genome-wide, that impact histone modification or RNA

polymerase (PolII) occupancy in Yoruba lymphoblastoid cell lines (LCLs). In many cases the same

variant is associated with quantitative changes in multiple histone marks and PolII, as well as in

DNaseI sensitivity and nucleosome positioning. Transcription factor binding site polymorphisms

are correlated overall with differences in local histone modification and we identify specific tran-

scription factors whose binding leads to histone modification in LCLs. Furthermore, variants that

impact chromatin at distal regulatory sites frequently also direct changes in chromatin and gene

expression at associated promoters.

Contribution

This work was done in collaboration with Graham McVicker. I did much of the statistical model-

ing, including the development of mark correlation test and extensions of the CHT. I made Figures

3.2, 3.6, 3.7, 3.9, 3.10, 3.12, 3.13.

3.2 Overview

Variation at noncoding regulatory sequences contributes to the genetics of complex traits [48, 49,

50], yet we still have limited understanding of the primary mechanisms by which they act. One

possibility is that regulatory variants affect histone modifications that have downstream conse-

quences on chromatin remodeling or transcription [51]. There are many possible post-translational
41



modifications of histones (i.e., histone marks) [51], and sets of these co-occur in distinct chromatin

states [52, 53, 54, 55, 56], are associated with functional elements [49, 57, 58], and are sensi-

tive indicators of changes in gene regulation [56, 58]. However, we still do not know whether

histone modifications are generally a cause or a consequence of gene regulation, or which DNA

elements direct cell typeappropriate histone marking [54, 59]. Thus, studies of genetic variants that

disrupt transcription factor binding sites may illuminate whether histone modifications enable tran-

scription factor binding or whether the binding of transcription factors results in histone modifica-

tion. We performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) for RNA

PolII and four post-translational modifications of histone H3 (H3K4me1, H3K4me3, H3K27ac and

H3K27me3) in ten unrelated Yoruba LCLs. H3K4me3 (tri-methylation of lysine 4) is primarily as-

sociated with active promoters, H3K4me1 (mono-methylation of lysine 4) is associated with active

chromatin outside of promoters (e.g. enhancers), H3K27ac (acetylation of lysine 27) is associated

with both active promoters and enhancers [53, 60], and H3K27me3 (tri-methylation of lysine 27)

is associated with silencing by the polycomb repressive complex 2 (PRC2) [61, 62].

3.3 Data generation and quality control

3.3.1 Samples and cell culture

Ten lymphoblastoid cell lines (LCLs) from unrelated Yoruba individuals were obtained from the

Coriell Institute (Camden, NJ; http://www.coriell.org): GM18505, GM18507, GM18508, GM18516,

GM18522, GM19141, GM19193, GM19204, GM19238, GM19239. The LCLs were grown in

RPMI media with 15% FBS, supplemented with 2mM L-glutamate, 100 I.U./mL penicillin, and

100 µg/mL streptomycin.

3.3.2 ChIP-seq

ChIP-seq data were previously collected for H3K4me3 for three of the samples[63] and for PolII

for six of the samples[17]. For the other samples, ChIP-seq was performed as described[63], ex-
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cept that chromatin was sheared with a Covaris (Woburn, MA) S2 (settings: 40 minutes, duty

cycle 20%, intensity 8, 200 cycles/burst, 500 µL at a time in 12 × 24 mm tubes). We separately

optimized the amount of antibody used for each type of experiment: H3K4me3 (4 µg, Abcam

(Cambridge, MA) ab8580), H3K4me1 (12 µg, Millipore (Billerica, MA) 07-436), H3K27ac (4

µg, Abcam ab4729), H3K27me3 (4 µg, Millipore 07-449), and Pol II (10 µg, Santa Cruz Biotech-

nology (Dallas, TX) sc-9001).

The quality of each immuno-precipitation was assessed by RT-PCR of positive and negative

control genomic regions that were previously shown to be enriched or not enriched for each

datatype[48]. Successful ChIP assays showed enrichment at the positive control regions relative to

the negative control regions in the immunoprecipitated sample (and compared to the input whole-

cell extract from the same individual). We prepared Illumina (San Diego, CA) sequencing libraries

from the DNA from each ChIP sample, and from a pooled input sample (containing equal amounts

of DNA by mass) as previously described[48], starting with 20 µL of ChIP output or 4 ng of pooled

input sample.

Libraries were sequenced in one or more lanes on an Illumina sequencing system using stan-

dard Illumina protocols. H3K4me3, H3K4me1, H3K27ac, and H3K27me3 samples were se-

quenced on a Genome Analyzer II (GAII) system (single end, 36 bp), and Pol II and input samples

were sequenced on a HiSeq system (single end, 28 bp). Input reads were trimmed to 28 bp and 36

bp, where appropriate, for comparison to the data generated from ChIP samples.

3.3.3 Read mapping and sample validation

We mapped sequence reads to the human reference genome (hg18) using BWA[32], allowing up

to 2 mismatches per read (-n 2), and excluding gapped alignments (-o 0). Total reads and

mapping statistics for each individual and datatype are given in Table 3.3.3.
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Table 3.1: Total sequenced, uniquely mappable and non-duplicate mapped reads for each sample.

Datatype Individual Total reads Mappable reads Non-duplicate reads

H3K27ac 18505 41,619,485 34,819,891 33,388,658

H3K27ac 18507 36,534,335 31,176,526 30,297,842

H3K27ac 18508 42,590,850 36,133,311 34,859,856

H3K27ac 18516 31,212,054 26,976,260 25,413,627

H3K27ac 18522 41,753,448 35,269,619 34,205,704

H3K27ac 19141 36,602,602 31,630,022 30,691,817

H3K27ac 19193 42,554,122 35,212,025 34,091,012

H3K27ac 19204 38,707,056 32,493,582 31,020,227

H3K27ac 19238 42,518,152 35,794,207 34,863,680

H3K27ac 19239 42,985,514 36,343,931 34,694,833

H3K27me3 18505 42,418,783 35,394,414 32,360,537

H3K27me3 18507 41,882,091 34,050,036 31,288,003

H3K27me3 18508 43,683,243 36,672,935 33,783,533

H3K27me3 18516 85,601,902 73,883,725 52,791,050

H3K27me3 18522 41,465,617 34,031,717 27,271,414

H3K27me3 19141 41,396,087 33,595,112 29,518,442

H3K27me3 19193 42,376,103 34,519,855 32,530,869

H3K27me3 19204 41,769,273 34,216,184 32,573,801

H3K27me3 19238 41,259,657 34,436,378 31,794,352

H3K27me3 19239 40,014,399 32,115,822 27,258,931

H3K4me1 18505 55,852,093 46,027,876 21,588,975

H3K4me1 18507 82,589,169 67,136,686 31,143,373

H3K4me1 18508 16,648,997 13,489,819 8,704,990

H3K4me1 18516 42,389,962 32,311,347 13,652,759

H3K4me1 18522 29,251,590 23,565,863 16,590,932
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Table 3.1, continued

Datatype Individual Total reads Mappable reads Non-duplicate reads

H3K4me1 19141 24,705,715 19,895,574 7,136,047

H3K4me1 19193 33,200,484 27,376,219 19,907,413

H3K4me1 19204 39,385,609 32,476,133 18,568,012

H3K4me1 19238 33,585,084 27,992,337 12,371,015

H3K4me1 19239 41,487,566 34,107,283 26,942,630

H3K4me3 18505 42,386,132 36,134,558 33,392,023

H3K4me3 18507 41,163,781 33,100,647 28,724,717

H3K4me3 18508 39,410,115 34,226,880 30,650,658

H3K4me3 18516 33,418,845 26,707,043 24,195,825

H3K4me3 18522 42,253,530 35,864,632 22,021,929

H3K4me3 19141 35,600,431 29,164,849 22,436,825

H3K4me3 19193 33,272,920 26,786,692 24,517,535

H3K4me3 19204 29,135,614 22,934,303 21,236,394

H3K4me3 19238 31,528,815 25,722,058 18,636,764

H3K4me3 19239 41,049,455 33,789,330 26,789,009

PolII 18505 409,314,862 312,809,309 33,182,679

PolII 18507 207,080,008 157,306,899 27,401,762

PolII 18508 206,275,097 158,488,158 38,943,864

PolII 18516 374,652,279 289,734,350 41,269,542

PolII 18522 206,977,123 158,020,656 52,161,952

PolII 19141 202,946,440 155,229,617 52,303,705

PolII 19193 167,057,685 123,473,127 48,793,162

PolII 19204 203,922,597 148,352,038 59,454,889

PolII 19238 598,313,128 452,430,530 123,773,435

PolII 19239 204,235,178 157,764,110 58,732,355
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3.3.4 Heirarchical clustering to confirm data

We used hierarchical clustering to verify that the general properties of each library were consistent

with those from the same chromatin feature in the ENCODE dataset and the other libraries in

our dataset. For each lane of sequencing data, we extracted read counts within a 2 kb window

of each annotated Ensembl transcription start site. Read counts were quantile normalized and

hierarchical clustering was performed on a matrix of Pearson correlations between all pairs of

quantile-normalized counts. All sequencing lanes from each distinct ChIP experiment-type formed

non-overlapping clusters, and these clusters included the corresponding ChIP experiments from

the ENCODE project, with the exception of two lanes of data labeled in the ENCODE project as

H3K27ac, which appear to be of poor quality (Figure 3.1). To check for contamination among cell

lines and mislabeling of samples during processing, the reads from each library were checked for

consistency with published genotypes[12]. All libraries could be confidently assigned to a single

individual and were retained for further analysis.
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Figure 3.1: Clustering of ChIP-seq data from ENCODE and this study.. The heatmap shows
hierarchically clustered ChIP-seq data, using pairwise Pearson correlation as a distance metric.
Correlations were calculated from quantile-normalized read counts from each flowcell lane. Read
counts were extracted from 2 kb windows centered on annotated Ensembl transcription start sites.
Colored bars beside the heatmap indicate the datatype label of each sample. ENCODE samples
are indicated with (*); the other samples were collected for this study.
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3.3.5 Controlling for allelic differences in mappability

Sequence polymorphisms can cause substantial mapping biases and false allele-specific signals[27].

To control for mapping biases we used a custom read mapper that reports the uniqueness of reads

originating from each genomic position, while taking into account sequence polymorphisms[22].

We discarded all reads that the mapper reported as non-uniquely mapping. This mapper only con-

siders the first 20 bp of each read (due to memory constraints), so in most cases its estimates of

mapping uniqueness are conservative for our 28 bp and 36 bp reads. One issue, however, is that

reads can incorrectly be reported as uniquely mapping when multiple polymorphisms occur in

close proximity to one another (greater than 20 bp apart, but less than or equal to 36 bp apart). To

account for this problem, we additionally filtered all mapped reads that overlapped more than one

polymorphism.

3.3.6 Filtering duplicate reads

When multiple reads from the same sample mapped to the same genomic location, we discarded

all but one to avoid artefacts caused by PCR and optical duplicates. Duplicates were discarded

randomly rather than taking the highest scoring reads, because the latter approach is biased towards

keeping reads that match the reference genome.

3.3.7 Genotype imputation and phasing

We imputed genotypes and phased our samples with IMPUTE2[35] using the 1000 Genomes

Phase1 integrated version 3 reference panel[12]. To speed up computation, we used pre-phasing

information[64] from HapMap Phase II genotypes (release 22)[21]. We used the IMPUTE2 option

-filt_rules_l ’afr.maf$<$0.004’ to remove sites that are monomorphic or singletons

in the 246 AFR individuals in the 1000 Genomes panel and the -Ne 20000 option to specify

an effective population size of 20,000. Since the 1000 Genomes reference panel is on the hg19

assembly, we used liftover[65] to transfer HapMap genotype and phase information from hg18 to
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hg19. We removed SNPs with strands, chromosomes or ordering that differed between hg18 and

hg19. After imputation, we transferred the SNPs back to hg18 using liftover.

3.3.8 RNA-seq, DNaseI-seq and MNase-seq data

For plotting RNA-seq read depths, we obtained RNA-seq reads from 69 unrelated Yoruba LCLs[15]

and mapped them to the human reference genome (hg19) using BWA[32]. We excluded read align-

ments with gaps, more than 2 mismatches, or mapping quality scores less than 10. We computed

read depth at each position by summing overlapping reads, and converted coordinates to hg18

using a custom script.

RNA-seq expression measurements for Ensembl genes and eQTL calls were previously calcu-

lated by our lab[22]. Mapped DNaseI-seq reads and dsQTL calls from 70 unrelated Yoruba LCLs

were obtained from the same study[22].

Nucleosome dyad positions from mapped MNase-seq reads for 7 unrelated Yoruba LCLs were

previously collected in our lab[7].

The RNA-seq, DNase-seq, and MNase-seq data are available from GEO (www.ncbi.nlm.nih.gov/geo/)

under accessions GSE19480, GSE31388, and GSE36979.

3.4 Mapping histone modification QTLs

To identify genetic associations with histone marks and PolII, we used an early version of the

WASP combined haplotype test, which is described in Chapter 2. The following features were not

included in this version:

• Maximum likelihood estimation of dispersion parameters from the data,

• Adjustment for unknown covariates by allowing principal component loadings to be pro-

vided,

• Allowing tested regions to be split across multiple genomic segments, such as exons,
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• Greater efficiency so the model can be run with hundreds of individuals.

We applied the combined haplotype test to hundreds of thousands of polymorphic sites with

sufficient read depth (i.e., sites within ChIP-seq peaks) and identified over 1,200 histone mark and

PolII QTLs at a false discovery rate (FDR) of 20% (Figure 3.2). After merging overlapping regions,

we identified a total of 27 distinct QTLs for H3K4me1, 469 for H3K4me3, 730 for H3K27ac, 118

for PolII, and 2 for H3K27me3 (which tends not to fall into strong peaks) (Table 3.2). At an FDR

threshold of 10% we identified 582 distinct histone mark and PolII QTLs (Table 3.2). In principle

some of these signals might be due to imprinting or random allelic inactivation; however, several

lines of evidence indicate that most of the regions we identify are conventional QTLs (see later

section).

Table 3.2: Summary of results from the genome-wide combined haplotype test. For each
datatype, the columns provide the number of SNPs tested; the number of significant SNPs at
different false discovery rate (FDR) thresholds; and the number of distinct significant regions after
merging those that overlap. The counts in the combined row are from the union of all datatypes.
The small overlap in significant regions across datatypes is likely because there is poor power to
identify overlapping QTLs by testing each datatype independently [66].

Significant SNPs Merged significant regions
Datatype Tested SNPs fdr10% fdr20% fdr50% fdr10% fdr20% fdr50%
H3K4me1 46,257 19 57 563 8 27 289
H3K4me3 111,732 741 1,219 3,444 246 469 1,527
H3K27ac 217,737 886 1,699 6,546 335 730 3,043
H3K27me3 233,604 4 4 9 2 2 5
PolII 412,406 173 303 759 58 118 381
combined 1,633 2,975 10,544 582 1,232 4,768
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Figure 3.2: Combined haplotype test results. Quantile-quantile plots comparing -log10 p-values
expected under the null to those from the combined test for association between genotype and
allelic imbalance for H3K4me3, H3K27ac, RNA Polymerase II, H3K4me1, and H3K27me3. We
applied the combined test to regions surrounding ChIP-seq peaks (Genomewide), to DNaseI hy-
persensitive sites (DHSs) associated with dsQTLs, and to transcription start sites (TSSs) associated
with eQTLs.
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3.4.1 Details on applying the combined test genome-wide

For each mark, we extracted total read depth and allele-specific counts in a 2 kb window around

every SNP that was segregating in our sample. A site was considered testable in the genome-wide

test if there were at least 15 informative reads overlapping heterozygous SNPs. By this measure,

there were between 44,000 and 415,000 testable sites for each mark (Table 3.2). We applied our

combined haplotype test to each of these sites and identified significant associations at an FDR of

10% or 20%[67] (Figure 3.2). Overlapping windows were then merged to get a count of unique

associated sites.

3.4.2 Permutations to assess calibration

To assess the calibration of the test, we also applied it to permuted data. We permuted total read

depths (and matching genome-wide read depth counts) and randomly flipped allele-specific counts

at linked heterozygous SNPs with probability 0.5. The permuted results showed little to no signal,

so we conclude that our test is well calibrated. It is possible that non-genetic monoallelic inactiva-

tion could cause signal in the allele specific part of the test even if there is no genetic determinant.

We therefore did a second version of the permutations which maintained the haplotype informa-

tion. At each linked region, we either flipped the allele specific counts at every SNP or none of

them with probability 0.5 so that any monoallelic effect would be maintained. These permuted

results also showed greatly reduced signal so we are confident that most of our observed signal

reflects true genetic associations.

3.5 Evidence that histone mark and PolII QTLs are real QTLs

Several lines of evidence indicate that most of the histone mark and PolII QTLs that we identify are

real and not due to random allelic inactivation, imprinting or technical artifacts. First, we were very

careful to remove all sources of read mapping bias, a well-known source of false-positives[27].

Second we incorporate over-dispersion into our statistical models, which accommodates unknown
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sources of non-genetic variation. Third, histone mark and PolII QTLs are enriched at dsQTLs

and eQTLs (Figure 3.2), which were identified with large sample sizes and without allele-specific

information [22, 15]. Fourth, we see a dearth of opposite direction effects between the activating

histone mark QTLs, PolII QTLs, dsQTLs and eQTLs (Figures 3.6,3.7). If our new QTLs were due

to non-genetic factors, same- and opposite-direction effects should occur with similar frequencies.

Fifth, permuting entire haplotypes (while maintaining phase of alleles) removes most enrichment

of low p-values from the combined haplotype test which is not expected if the results were due to

random allelic inactivation. Together, these observations argue that most of the significant regions

we identify are true genetic associations.

3.6 Histone modification QTLs overlap previously identified QTLs

Many of the histone mark QTLs overlap previously identified QTLs for DNaseI sensitivity (de-

noted dsQTLs) [22]. DNaseI sensitivity is an indicator of open chromatin, and DNaseI hyper-

sensitive sites (DHSs) typically mark active regulatory regions that are associated with active his-

tone marks and transcription factor binding [68]. Indeed, we found an enrichment of low p-values

when testing for QTL associations with PolII and all four histone marks at dsQTLs, compared to

the genome-wide set of tested single nucleotide polymorphisms (SNPs) (Figure 3.2).

3.6.1 Distance between tested SNPs and dsQTL DHSs or eQTL TSSs

We calculated the distances between the SNPs that were tested in the genome-wide combined test

and the nearest previously-identified dsQTL DNase hypersensitive sites (DHSs) and eQTL tran-

scription start sites (TSSs)[22]. We also calculated distances for the subset of SNPs that were

significant at a false discovery rate of 20% (when multiple significant regions overlapped only the

most significant SNP was used) (Figures 3.3&3.4). QTLs for histone marks and PolII are signif-

icantly enriched (compared to tested SNPs) near dsQTL DHSs, although a substantial fraction of

them are found further away (Table 3.3). This suggests that histone modifications may provide
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more power to detect differences in chromatin state beyond that of DNaseI sensitivity.
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Table 3.3: Enrichment of histone mark and PolII QTLs near dsQTL DHSs “All SNPs” are
a random subset (10,000) of the complete set of tested SNPs that are matched for minor allele
frequency with the significant SNPs. “Signif. SNPs” are those that are significant at an FDR
threshold of 20%. SNPs are considered “near” a dsQTL DHS if they are within 1kb, and “far”
otherwise. The odds ratio is the ratio of near to far significant SNPs divided by same ratio for all
SNPs. The p-value is from a two-sided Fisher’s Exact Test with the alternative hypothesis that the
true odds ratio is not equal to 1.0.

All SNPs Signif. SNPs
Datatype Near DHS Far DHS Near DHS Far DHS Odds Ratio p-value
H3K4me1 684 9315 7 20 4.77 2× 10−3

H3K4me3 994 9005 90 379 2.15 4× 10−9

H3K27ac 607 9392 156 574 4.21 1× 10−38

PolII 280 9719 24 94 8.86 6× 10−14
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Table 3.4: Enrichment of histone mark and PolII QTLs near eQTL TSSs The columns of this
table are as described for Table 3.3, but are computed for distance from eQTL TSSs rather than
dsQTL DHSs

All SNPs Signif. SNPs
Datatype Near TSS Far TSS Near TSS Far TSS Odds Ratio p-value
H3K4me1 50 9949 0 27 0 1.0
H3K4me3 774 9225 34 435 0.932 0.79
H3K27ac 250 9749 12 718 0.652 0.17
PolII 117 9882 9 109 6.97 2× 10−5

Table 3.5: Genomic locations of histone mark and PolII QTLs This table gives the numbers of
QTLs (at FDR 20%) that are within 1 kb of (or within) a DNase hypersensitive site or an annotated
transcript. H3K27me3 is omitted because of the small number of QTLs for this modification.
DHSs were identified by taking the top 1% of sites in the genome after smoothing aggregate
DNase-seq read counts with a 100 bp sliding window.

Datatype Total QTLs < 1kb from DHS < 1kb from transcript < 1kb from DHS or transcript
H3K4me1 27 8 8 15
H3K4me3 469 320 286 395
H3K27ac 730 381 407 557
PolII 118 79 65 95
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3.7 Expression QTLs and DNase QTLs show aggregate effects on histone

modifications

We plotted aggregate ChIP-seq read depth around DHSs associated with dsQTLs (Figure 3.5),

grouping read counts according to whether an individual carries the genotype associated with high,

medium or low sensitivity at a dsQTL. Most of the dsQTLs lie outside promoters, and the aver-

age histone mark read depths at dsQTL DHSs follow qualitative expectations for distal enhancers

[53], with higher levels of H3K4me1, and lower levels of H3K4me3 and PolII compared to pro-

moters. High sensitivity genotypes tend to have reduced nucleosome occupancy within the DHS

(20); higher levels of transcription factor binding [22]; higher levels of the active marks H3K4me1,

H3K4me3 and H3K27ac; and higher PolII occupancy. The relationship between DNaseI and the

repressive mark H3K27me3 is more complicated, as we find both positive and negative associ-

ations. We find no opposite-direction effects between DNaseI and either H3K4me1, H3K4me3

or H3K27ac (Figure 3.6). At expression QTLs (eQTLs) [15], we stratified the samples by the

genotype of the most significant eQTL SNP, and found overall patterns similar to those at dsQTLs

(Figure 3.5). Individuals who are homozygous for the high-expression genotype generally have

higher levels of DNaseI sensitivity, H3K4me3, H3K27ac and PolII occupancy [69] at transcription

start sites (TSSs). The repressive H3K27me3 mark shows the opposite trend and is highest in the

low-expression genotype class.
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Figure 3.5: Multiple molecular phenotypes are associated with the same genetic variants.
Panels show aggregate read depth for molecular traits at DNaseI hypersensitive sites (DHSs)

associated with dsQTLs, or transcription start sites (TSSs) associated with eQTLs. Reads are
grouped into high, medium and low sensitivity genotypes for dsQTLs; and high, medium and low
expression genotypes for eQTLs. Plots were made from half of the significant dsQTLs and eQTLs
(those with the lowest p-values; n=2787 for dsQTLs; n=638 for eQTLs).
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Figure 3.6: Polarized effects of dsQTLs on marks at DHS regions. Quantile-quantile plots
comparing -log10 p-values expected under the null to those from the combined test applied to
DNaseI hypersensitive sites (DHSs) associated with dsQTLs. Regions were stratified by whether
their estimated effects were in the same or opposite direction as the change in DNaseI sensitivity.
Effects were considered to be in the same direction if the high sensitivity allele was associated with
increased marking.
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Figure 3.7: Polarized effects of eQTLs on marks around TSSs. Quantile-quantile plots compar-
ing -log10 p-values expected under the null to those from the combined test applied to transcription
start sites (TSSs) of genes associated with eQTLs. eQTLs were stratified by whether their esti-
mated effect was in the same or opposite direction as the change in gene expression. Effects were
considered to be in the same direction if the high expression allele was associated with increased
marking.
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3.8 QTL changes are often coordinated across phenotypes

When visualizing our top QTL hits for each of our histone marks, we noticed that many of the

QTLs were shared across measurements. Indeed, it was often the case that a single SNP is associ-

ated with changes in multiple histone modifications, DNase sensitivity, and expression at a nearby

gene. (Figure 3.8)
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3.9 Allelic imbalance is correlated across histone marks, PolII and DNaseI

We estimated the correlation of allele-specific changes across pairs of data types, while accounting

for the sampling variance at individual sites. The allelic imbalances for features associated with ac-

tive regionsDNaseI, PolII, H3K4me1, H3K4me3 and H3K27acare all highly positively correlated

across 2 kb windows centered at dsQTL DHSs (Figure 3.9). In particular, the strong correlation

in H3K4me3 and H3K27ac allelic imbalances indicates that these modifications are functionally

linked and often depend on the same genetic elements.
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3.9.1 Model details

To investigate correlation between allele-specific differences in pairs of marks, we developed a

method to estimate the covariance of allelic imbalances while accounting for variance due to lim-

ited read depth. We consider each region h to have an underlying allelic imbalance ph, and we

want to test whether the phs correlate across marks. We assume that when each mark is considered

separately, logit(ph) is distributed normally with mean µ = 0 and variance σ2.

log

(
P

1− P

)
∼ Norm

(
µ = 0, σ2

)

If the variances are relatively small, the phs will also be distributed approximately normally with

µ = 0.5, however the logit scale is more flexible in that it can handle cases where the variance is

larger and most of the phs are close to 0 or 1.

When considered jointly, the allelic imbalances for two marks are assumed to be distributed as

multivariate normal with an extra parameter, ρ, which describes their correlation.

(
log

(
P1

1− P1

)
, log

(
P2

1− P2

))
∼ MVNorm (µ,Σ)

µ =

 0

0

 Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


Given a ph, the allele-specific counts for individual i at linked SNP j in region h are binomially

distributed:

Xi,j,h ∼ Binom
(
ph, ni,j,h

)
This gives the following likelihood equation for the data, D, which consists of allele-specific read
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counts, x1,i,j,h and x2,i,j,h for marks 1 and 2:

L (D |σ1, σ2, ρ) =
∏

h∈regions

∫ 1

0

∫ 1

0
MVNorm (logit (p1) , logit (p2) |σ1, σ2, ρ)

∏
i∈inds

∏
j∈linkSNPs

Pr
Bin

(
x1,i,j,h

∣∣p1, n1,i,j,h

)
Pr
Bin

(
x2,i,j,h

∣∣p2, n2,i,j,h

)
dp1 dp2

It is computationally slow to evaluate the double integral numerically, particularly when it must

be done many times for the likelihood maximization process. We instead obtained an analytic ap-

proximation to the double integral using a Laplace transformation[70]. This allows us to efficiently

calculate maximum likelihood estimates of σ1, σ2, and ρ.

3.9.2 Applying the Model

We extracted the read counts for each mark from 2 kb windows centered on DNaseI hypersensi-

tive sites (DHSs) associated with dsQTLs. Reads overlapping phased heterozygous SNPs were

assigned to each haplotype and we estimated the correlation in allelic imbalance between pairs of

marks, ρ, using maximum likelihood. Significance was assessed by comparing to a null model of

no correlation ρ = 0, using a likelihood ratio test. We measured correlations in allelic imbalance

for all pairs of histone marks and PolII. We also estimated correlations in allelic imbalance with

DNaseI, but because DNaseI tends to be much more sharply peaked, we extracted DNaseI reads

from a smaller region (200 bp).

3.9.3 Alternative method using harmonic weighted regression

To verify the results of our model, we also estimated correlation in allelic imbalance using a simpler

method. We used the proportion of reads from haplotype 1 at heterozygous SNPs in each region

(combining across individuals and linked SNPs) as an estimate of ph,•,•, and performed linear

regression of the p̂hs from one mark versus another, weighting the regression by the harmonic
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mean of the reads from each genotype:

wh =
2

1
n1,h,•,•

+ 1
n2,h,•,•

The resulting pairwise correlations of allelic imbalances from this method were very similar to

those from the other model. Most of the correlations were still significant, their signs remained

the same, and the relative magnitudes of correlated mark pairs were conserved between tests. The

absolute magnitudes of the correlations were considerably smaller because this method does not

account for variation introduced by binomial sampling.

3.10 SNPs that are dsQTL-eQTLs consistently affect enhancer and

promotor modifications

Since dsQTLs are frequently also eQTLs [22], we used dsQTLs that are eQTLs (dsQTL-eQTLs)

to assign DHSs to TSSs. We classified dsQTL-eQTLs as activating if the high DNaseI sensitivity

allele was also the high gene expression allele, and as repressing otherwise (Figure 3.10A). We

confirmed that most activating dsQTL-eQTLs are true joint associations (as opposed to indepen-

dent QTLs in linkage disequilibrium), but discarded the repressive dsQTLs because only a small

number had lower p-values than expected by chance (fig. S10). We only used dsQTL-eQTLs

where the associated DHS was at least 5 kb away from the associated TSS so the regions are likely

to be functionally distinct. For each dsQTL-eQTL pair, we estimated average allelic imbalance in

histone marks and PolII after polarizing genotypes by DNaseI sensitivity at the associated DHS.

At activating DHSs, the allelic imbalance is positive (in the same direction as DNaseI sensitiv-

ity at the DHS) for the three activating histone marks and PolII, and is negative for H3K27me3

(Figure 3.10A). The same pattern is present at the associated TSSs, which demonstrates that poly-

morphisms can jointly affect chromatin state at distal enhancers and at promoters, perhaps via

chromatin looping interactions [69]. We found that for several of the dsQTL-eQTLs, the SNP that

is most significantly associated with DNaseI sensitivity is located in a binding site for a known
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transcription factor (Figure 3.10B).
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Figure 3.10: Histone modification changes at dsQTLs that are also eQTLs. (A) Estimates of
allelic imbalance for histone marks and PolII across DNaseI hypersensitive sites (DHSs; n=239)
and transcription start sites (TSSs; n=246) from joint dsQTL-eQTLs (17). (*) and (**) indicate
allelic imbalance is significantly different from 0 with p < 0.05 and p < 0.01, respectively (by
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3.10.1 Extending the CHT to multiple sites

Our model for measuring the aggregate allelic imbalance is similar to the combined haplotype test

that we apply to a single region at a time. A few key modifications make it easier to apply the test

across many regions at once. At each site h, instead of modeling the read depth for each individual

as a Poisson distribution, we model the distribution of the reads between individuals given the total

read depth across all individuals using a multinomial distribution:

(
Xh,1...Xh,10

)
∼ Multinomial

(
ρ, Th,•

)

ρij =



2pTh,i/C if Gh,i = 0 (homozygote high DNaseI)

Th,i/C if Gh,i = 1 (heterozygote)

2(1− p)Th,i/C if Gh,i = 2 (homozygote low DNaseI)

By removing α and β from the equation, we eliminate the need to estimate the relative levels

of marks at each individual site and thereby greatly reduce the number of parameters that need

to be estimated. This proves less powerful when applied to one site at a time, but is crucial for

combining across sites. We found that our data were overdispersed when we tried to model them

with the Multinomial distribution. We therefore introduced an extra dispersion parameter, Ψ ,

which we estimate across all sites. This makes the distribution Dirichlet-Multinomial:

Xh,∗ ∼ DMN
(
ρ,Ψ, Th,•

)

PrDMN
(
X = xh,1..xh,n |p,Ψ

)
=

Γ (Ah)

Γ (Nh + Ah)

∏
k∈1..n

Γ
(
nh,k + αh,k

)
Γ
(
αh,k

)
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αh,j = ρh,jΨ

Nh =
∑
k∈1..n

nh,k

Ah =
∑
k∈1..n

αh,k = Ψ

A likelihood ratio test can then be conducted using the new likelihood equation:

L (D |p,Ψ,Υ) =
∏
h

Pr
DMN

(
Xh,• |p,Ψ

)∏
i

∏
j

Pr
BB

(
Yh,i,j = ah,i,j

∣∣p, nh,i,j ,Υ)

3.10.2 Identifying dsQTL-eQTLs

We identified dsQTL-eQTLs using gene expression and DNaseI sensitivity data that were previ-

ously generated and processed by our group[22]. We started with a set of 6070 dsQTLs[22] that

were within 100 kb of an Ensembl-annotated TSS, and tested each of the dsQTL SNPs for associa-

tion with gene expression by regressing the normalized expression level of each individual against

the number of copies of the non-reference allele that they carry. We classified putative dsQTL-

eQTLs as activating if the high expression allele for the eQTL was also the high DNaseI sensitivity

allele, and as repressing otherwise. We restricted ourselves to dsQTL-eQTLs where the TSS was

within 50 kb of the SNP, and calculated a false discovery rate (FDR) separately for activating and

repressing dsQTL-eQTLs using the qvalue package[67]. At an FDR threshold of 10%, we retained

746 activating and 161 repressing dsQTL-eQTLs.

For the first part of this analysis we used the complete set of 69 individuals for which we

had gene expression, DNaseI sensitivity, and previously-called genotypes. For consistency with

other analyses, we then switched to the subset of 54 individuals for which we had phasing and

more recent genotyping information for. We recalled each of the dsQTL-eQTLs using the new
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genotypes, and discarded those with p > 0.05 for either DNaseI or gene expression association,

which left 598 activating and 133 repressing dsQTL-eQTLs for further analysis.

We excluded all dsQTL-eQTLs where the DHS was less than 5 kb or greater than 50 kb from

the associated TSS. We also excluded redundant DHS and TSS regions. Since the relationship

between dsQTLs and eQTLs is not strictly one-to-one (some dsQTLs are associated with multiple

genes and some genes are associated with multiple dsQTLs) we obtain slightly different numbers

of DHSs and TSSs after filtering for redundancy. In total we analyzed allelic imbalance at 239

activating DHSs, 246 activating TSSs, 70 repressing DHSs, and 72 repressing TSSs.

One possible concern in identifying joint dsQTL-eQTLs is that there may be two linked SNPs

that independently cause differences in DNaseI sensitivity and gene expression rather than a single

SNP that causes both phenotypes. To examine this possibility, we used a set of sampled SNPs to

estimate how often dsQTLs would be expected to show significant eQTL associations by chance.

We sampled 10,000 SNPs with a minimum minor allele count of 20 (out of 108) and used a pro-

cedure that matched their TSS distances with those of dsQTL SNPs. We additionally filtered sam-

pled SNPs that were in linkage disequilibrium (LD) with nearby dsQTL SNPS (with r2 > 0.25).

Activating dsQTLs are highly enriched for low eQTL p-values compared to the set of matched

SNPs, both when examining SNPs that are near to (within 5kb) or far from the TSS (5-50kb) (Fig-

ure 3.11). Proximal repressing dsQTLs are also enriched for low p-values, however, only a small

number of the distal repressing dsQTLs show more significant eQTL associations than expected

(roughly a dozen of the 5-50kb set). For this reason we chose to focus the remainder of our analysis

on activating dsQTL-eQTLs only.

As an additional control for the presence of independent dsQTLs-eQTLs that are in LD, we

tested all SNPs within 100 kb of the eQTL TSS for associations with gene expression. We excluded

dsQTL-eQTLs where we identified SNPs that were more significantly associated with gene expres-

sion than the dsQTL SNP (following Bonferroni correction for multiple testing), and repeated our

analysis of allelic imbalance. After this additional filtering, our results were very similar to our

original analysis, although the statistical significance was somewhat smaller since we tested fewer

70



sites. We are therefore confident that our results are not an artefact of multiple independent QTLs

that are in LD.
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Figure 3.11: Each panel shows a quantile-quantile plot of -log10 p-values for association between
the genotype of tested SNPs and normalized RNA-seq expression. The tested SNPs are either
a set of previously identified dsQTLs [22] or a randomly selected set of 10,000 SNPs that are
matched for TSS distance with the dsQTLs. The dsQTL SNPs are stratified by whether the DNaseI
sensitivity association is in the same or opposite direction as the expression association. Only SNPs
with a minor allele count of at least 20 (out of 108) are shown. The left panel shows SNPs that are
with 5kb of the TSS and the right panel shows those that are between 5 and 50 kb

3.11 Transcription factor binding consistently alters modification levels

To test the hypothesis that histone modification is directed by sequence-specific transcription fac-

tors, we developed a statistical method to evaluate whether polymorphisms in transcription factor

binding sites (TFBSs) are associated with allelic imbalance in histone marks or PolII. The method

is an extention of the combined haplotype test which allows for the estimation of a single effect

across all interupted sites. This method can infer causation because it is likely that these poly-

morphisms affect transcription factor binding. We identified 11,437 high-confidence TFBSs [71]

that contain sequence polymorphisms in our 10 individuals. For each TFBS polymorphism, we

computed the difference in the transcription factor position weight matrix (PWM) score between

the two alleles (PWM), and looked for associations between PWM and allelic imbalance of ChIP-

seq reads. The associations are positive and highly significant for the activating histone marks
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and PolII (p < 10−5 for all marks by likelihood ratio test (LRT)) and are significantly negative for

H3K27me3 (p = 0.028 by LRT; Figure 3.12 B). As PWM is positively correlated with transcription

factor occupancy [22, 71] (Figure 3.13), these results suggest that increased transcription factor

occupancy generally increases levels of nearby activating histone marks and lowers the levels of

H3K27me3. To identify specific transcription factors that direct histone marking, we grouped fac-

tors into clusters on the basis of sequence motifs and DNaseI footprint similarity and tested TFBSs

from each cluster for association between PWM and allelic imbalance in the ChIP-seq reads. Out

of the 39 clusters that have a sufficient number of polymorphic TFBSs to be testable, 11 have

a significant association (FDR 10% by LRT) with at least one histone mark (Figure 3.12 B).

Most transcription factor clusters have positive associations with activating marks and negative (or

non-significant) associations with H3K27me3. The transcriptional repressor NRSF (aka REST)

is a prominent exception, and has a positive association with H3K27me3 (Figure 3.12 B). NRSF

directs PRC2-mediated gene silencing and H3K27me3 deposition during neuronal cell differenti-

ation [72] and our results indicate that this factor may also be important for H3K27me3 deposition

in lymphoblasts. These results demonstrate that transcription factor binding is often the first step

in a series of events that leads to histone modification, although they do not exclude the possibility

that other factors may also have important causal roles.

3.11.1 Extending the CHT to test for transcription factor effects

The transcription factor model is an extension of the model we used for dsQTL-eQTLs. It allows

for a different allelic imbalance at each site because we expect the imbalance to be larger for

sites with large differences in transcription factor occupancy (which we indirectly estimate with

∆PWM). Instead of estimating a single p for all regions, ph is now a function of the change in

PWM score for the transcription binding site (TFBS) within each region.

ph = expit (β ·∆PWMh)
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Figure 3.12: Polymorphisms in transcription factor binding sites affect local histone modi-
fication. (A) Examples of transcription factor polymorphisms associated with histone marks or
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or PolII. Only transcription factor clusters with at least one nominally significant association are
shown.

73



The likelihood equation from the earlier model still applies, except that p becomes ph and depends

on the parameter β:

L (D |β,Ψ,Υ) =
∏
h

Pr
DMN

(
Xh,• |ph,Ψ

)∏
i

∏
j

Pr
BB

(
Yh,i,j = ah,i,j

∣∣ph, nh,i,j ,Υ)

3.11.2 Identifying transcription factor binding sites

We used a set of transcription factor binding sites (TFBSs) that were previously identified us-

ing DNaseI footprints[71] and motif position weight matrices (PWMs) from Transfac[73] and

JASPAR[74]. Since many transcription factors (TFs) in these databases are redundant, we used

clusters of TFs rather than individual TF instances. Clusters contain TFs with highly similar PWMs

and DNaseI footprints, and were created using overlap in predicted binding sites as a distance

metric[71]. We only used clusters that contained at least one member that is a known human tran-

scription factor, and from these clusters we selected all TFBSs with a minimum binding posterior

probability of 0.99. When multiple TFBSs overlapped, we used the one with the maximum poste-

rior. In total we found 38,659 TFBSs that contain polymorphisms; of these 9,971 are segregating

in our 10 individuals.

We calculated the difference in PWM score between reference and non-reference alleles at each

polymorphic TFBS (∆PWM). We then tested for association between ∆PWM and allelic imbal-

ance in ChIP-seq reads, using 2 kb regions centered on each polymorphic TFBS. We only tested

the 38 TF clusters that had at least 25 polymorphic TFBSs. We computed FDRs[75] separately

for each ChIP-seq datatype, and found that 12 TF clusters have at least one significant association

with a datatype at an FDR of 10%.

3.11.3 Verifying difference in PWM score predicts allele specific occupancy

To test how TF binding affects histone modification, we use difference in PWM score between two

alleles (∆PWM) as a predictor of allele specific TF occupancy. This allows us to infer the direction

of causality (since polymorphisms in TF binding sites should affect TF binding) and enables us test
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many TFs without performing hundreds of ChIP-seq experiments.

To verify the assumption that ∆PWM predicts allele specific TF occupancy, we downloaded

TF ChIP-seq reads for the CEU lymphoblastoid cell line GM12878 that the Myers and Snyder

labs contributed to the ENCODE project[76]. Many of these TFs overlap with those that we tested

for association with histone modifications and PolII binding. We mapped and filtered these reads

using the same procedure that we applied to our histone modification and PolII ChIP-seq reads.

We then generated allele specific read counts for SNPs in TFBSs that were both heterozygous

in GM12878 and segregating in our 10 YRI individuals. We regressed the allele specific read

counts against ∆PWM for the 13 experiments (11 distinct TFs and 2 replicates) that had at least

25 informative sites. We also ran a regression on the combination of all sites across experiments.

We used quasi-binomial regression with a logit linker in order to account for overdispersion in the

allelic imbalance. ∆PWM was a significant predictor of allelic imbalance for almost every TF we

tested (Figure 3.13).
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3.12 Conclusions

In summary, our study allowed us to link genetic variation in a human population to variation

in chromatin state. We identified QTLs associated with histone modification and PolII binding

that are enriched at both dsQTLs and eQTLs and we found that single genetic variants may affect

multiple aspects of chromatin state, including histone modification, DNaseI sensitivity and nucle-

osome positioning. In some cases, polymorphisms in transcription factor binding sites are causally

responsible for differences in histone marking, and we have identified several specific transcription

factors that are key regulators of histone marking in LCLs, an important step toward understanding

how chromatin state is encoded by the genome.
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CHAPTER 4

TRACKING GENETIC VARIATION EFFECTS FROM CHROMATIN TO

PROTEIN

4.1 Abstract

Noncoding variants are primary drivers of complex diseases, yet the major mechanisms by which

they act have not been fully characterized. Here, we describe the comprehensive mapping of cellu-

lar trait QTLs throughout the regulatory cascade, including genetic variants that affect chromatin

accessibility, histone modifications, DNA methylation, transcription rate, mRNA, ribosome occu-

pancy and protein in lymphoblastoid cell lines. This represents the most complete evaluation of

inter-individual variation in regulatory mechanisms to date. We find that most variants that affect

protein levels act by changing rates of transcription initiation, and that a large fraction of these

have primary effects on chromatin function. Conversely, two major bottlenecks reduce the flow of

genetic effects through the gene regulatory cascade and limit their functional importance: (1) up

to half of all genetic variants that affect histone modification levels do not appear to affect mRNA

transcription rates and (2) although the vast majority of variants that affect mRNA transcription

also affect protein expression levels, their effect sizes are often partially buffered.

Contribution

This work was done in collaboration with Yang Li. I developed the read alinging and correction

pipelines, the QTL calling methods, and created the model for showing 4sU is indeed distinct from

RNA-seq. I also caculated the effect sizes and corrrelations. I made Figures 4.1, 4.3, 4.4
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4.2 Data processing and quality control

4.2.1 Sequencing data used in this study

We mapped quantitative trait loci (QTLs) for eight cellular phenotypes in LCLs, which corresponds

to the most comprehensive mapping of cellular trait QTLs in a single cell type to date. Our cellular

measurements include previously published datasets from our group (methylation [77], DNAse

[22], RNA-seq [15], riboprofiling, and protein data [78]) and others (H3K27ac [79], RNA-seq

[44], a summary of which can be found in Table 4.1. We also generated new data in the form of

129 4sU-labeled RNA samples from 65 different individuals all in LCLs which we used as a proxy

for mRNA transcription rates.

Table 4.1: Table of all datasets processed in this study.

Data type measurement sample size source QTL mapping pipeline
H3K27ac chromatin modification 59 del Rosario et al., 2015 WASP+LM
DNase-I open chromatin 70 Degner et al., 2012 Degner+liftOver+LM
Methylation Methylation levels 64 Banovich et al., 2014 Banovich+liftOver+LM
4su (30min) Transcription rate 65 internal WASP+LM
4su (60min) Transcription rate 64 internal WASP+LM
RNA-seq (P) stable mRNA 69 Pickrell et al., 2010 WASP+LM
RNA-seq (G) stable mRNA 86 Lappalainen et al., 2013 WASP+LM
riboprofiling ribosome occupancy 70 Battle et al., 2015 WASP+LM
protein level steady protein 64 Battle et al., 2015 Battle+LM

4.2.2 Mapping reads

To map the activity of the other molecular traits to their corresponding genes or genomic regions,

we used bowtie2 [80] with option –very-sensitive for H3K27ac ChIP-seq data, and STAR [81] with

option–outSAMstrandField intronMotif for 4sU-seq, RNA-seq (Pickrell and YRI GEUVADIS)

and ribo-seq data. We next used the WASP framework [82] to re-map reads in order to avoid

mapping biased by sequence polymorphisms and remove duplicates for H3K27ac ChIP-seq (but

not for gene-level phenotypes).
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Figure 4.1: Logistic regression between mRNA stability and the ratio of 4sU reads to the number
of 4sU and RNA-seq reads. Genes with high ratios tend to produce mRNA with lower stability
p < 10−144.

4.2.3 Verifying that 4su measures novel transcription rate

We wanted to confirm that our 4sU dataset captures transcription rate, with information that is

distinct from the steady state mRNA levels measured by RNA-seq . To do this, we used previously

estimated mRNA stability measurements from the same LCLs [17]. In this study mRNA levels

were measured using expression arrays at many time-points after transcription was halted. This

was used to calculate decay rates for each transcript. Genes with higher decay rates should have

more 4su-seq reads (if it measures new transcripts) than RNA-seq reads (which measures steady

state mRNA). We used a generalized linear model to test this. The ratio of RNA-seq reads to

4sU-seq reads was regressed against previously estimated RNA decay rate [17] in the same LCLs

using the glm() function in R. The quasi-binomial family was used to account for over-dispersion.

As expected, we observed that genes with high ratios tend to produce mRNA with lower stability

(p < 10−144). (Figure 4.1)
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4.2.4 Peak calling and test windows for molecular traits

We used several strategies to determine appropriate test windows for our molecular traits. For

DNase-I and DNA methylation data, we used the same test windows as the original studies. To

determine test windows for H3K27ac, we ran MACS [?] with default parameters on each of the

59 H3K27ac bam alignment files separately. Overlapping peaks across samples were then merged.

MACS windows were then split into segments of 1kb (if they were bigger). We next augmented

these peaks with LCL chromHMM annotation windows that were associated with transcription

start sites (TssA, TssFlnk), transcription (Tx, TxWk), or enhancers (Enh, EnhG). To do this, we

combined all MACS peaks and relevant chromHMM annotations and removed all chromHMM

windows that overlapped with MACS peaks. This procedure resulted in 208,512 test windows

genome-wide.

To determine test windows for gene-level phenotypes, we first downloaded the gencode v19

gene annotations. For each gene, we then clustered all annotated exons and, for each exon clus-

ter, used the longest exon as representative exon. We defined the test window for a gene as the

combination of all its representative exons.

4.2.5 Standardizing data to control for read depth and GC content effects

We were interested in unbiased estimates of the effect size which may be innacurate when using

allele specific information due to misphasing or violation of the underlying model assumptions.

We therefore chose not to use the WASP combined haplotype test for the analyses we performed.

However, we did use the WASP standardization pipeline to estimate expected read counts for each

feature of interest based on read depth differences and GC content effects. The observed read

counts were then divided by expected and the natural logarithm of this was used as a standardized

measurement for all later analyses.
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4.2.6 Heirarchically clustering read counts

This large collection of data allowed us to probe each of the major steps of the gene regulatory cas-

cade. To verify that our 4sU sequencing data indeed quantitatively captures the rate of mRNA tran-

scription, we first estimated the number of reads for each gene normalized by sequencing depth and

GC content for our 4sU, RNA-seq, and ribosome profiling datasets separately (described above).

We then hierarchically clustered samples according to the pairwise correlation of their genic read

counts, their H3K27ac read counts ±1kb from their TSS and their iBAQ intensity, a measure of

peptide expression. This recapitulated the regulatory cascade proposed by the central dogma of

molecular biology and revealed that 4sU indeed measured an intermediate phenotype between

transcription activity at the promoter (H3K27ac) and stable mRNA levels (RNA-seq) (Figure 1B).

To understand the relationship between our molecular trait measurements, we measured the corre-

lation of read counts mapping to different relevant regions of the genome. In particular, we used

featureCounts [83] to count the number of H3K27ac reads mapping to -1kb of a gene transcription

start site (TSS), the number of 4sU-seq, RNA-seq, and ribo-seq reads mapping to the gene body

(as defined by its representative exons, see next section). To quantify protein expression, we used

iBAC intensity measured at the whole protein level [78]. We then used Spearman ρ to measure the

correlation across genes and molecular phenotypes. We noticed that because of the low H3K27ac

read counts mapping to the TSS, the Spearman ρ was unable to detect strong correlation between

H3K27ac and gene-level phenotypes, possibly owing to its inability to resolve equal counts. We

therefore used Pearson ρ to measure the correlation between H3K27ac at the promoter and gene-

level phenotypes.
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Figure 4.2: Hierarchical clustering of samples according to their pairwise correlation of genic read
counts (1kb of TSS for H3K27ac reads and iBAQ intensity for protein) revealed that our cellular
measurements capture the central dogma of molecular biology.
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4.3 cis-QTL mapping

As described earlier, we used WASP to adjust differences in sequencing depth and GC content for

each of our sample. We then used a normalization and standardization approach developed pre-

viously by our group. Briefly, we first standardized all measurements by gene and then quantile-

normalized them to fit a standard normal distribution by individual. We next used principal com-

ponents analysis (PCA) to regress out unidentified confounders. The numbers of PCs regressed

out were chosen to maximize the number of detected QTLs in each data type (we tested 0 to 15

PCs).

Table 4.2: Number of PCs that maximizes the number of QTLs for each data type.

Data type No. PCs regressed
H3K27ac 6
4sU (30m) 13
4sU (60m) 11
RNA-seq (Pickrell) 14
RNA-seq (GEUVADIS) 15
ribo-seq 9
Intronic splicing ratios 3

To map cis-QTLs for genes, we used all SNPs with MAF < 0.05 and -100kb of genes, and

-50kb of DNAse-I peaks (defined previously in [22]), DNA methylation probes and H3K27ac

peaks/chromHMM windows. We used the intersection of genotyped position between HapMap 2

and HapMap3 to determine the genotypes of each individual because some of our individuals were

genotyped in HapMap2 and some in HapMap3. We then imputed all SNPs from the high coverage

1000genomes phase1 data. Standard linear regression was then used to compute a p-value for each

SNP-gene/peak pair.

4.4 QTL effect sizes are partially buffered at the protein level

To improve our functional interpretation of human genetic variation, we sought to understand

whether polymorphisms that affect particular cellular phenotypes also affect downstream cellular
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Figure 4.3: Effect sizes are similar from transcription to translation rates but appear to be partially
buffered at the protein expression level.

traits in the gene regulatory cascade. Moreover, we aimed to use this understanding to better

interpret variants that are linked to human traits. For instance, disease-associated genetic variants

that alter transcription factor binding or stable mRNA expression levels are expected to ultimately

affect protein expression levels. Recent work demonstrated that the effects of DNA variants on

stable mRNA levels are faithfully maintained at the translation level, but appeared to be buffered at

the stable protein levels [78]. Our joint analysis of QTLs affecting genic 4sU, RNA-seq and ribo-

seq levels confirms that the effects of genetic variations on stable mRNA levels are also generally

observed on translation rate and that the effects of genetic variation on protein expression levels is

partially buffered (Figure 4.3).
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Figure 4.4: Effect sizes in transcription rate, stable mRNA expression levels, ribosome occupancy,
and protein expression levels ascertained from 256 eQTLs previously identified in the YRI popu-
lation [44]) that intersected with our imputed SNPs.

When we estimated the effect sizes of 256 eQTLs previously identified in the YRI population

[44] that intersected with our imputed SNPs, we observed that correlations between transcription

and translation rates were higher than recent estimates [78].
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We speculated that the higher correlations we observed were due to our enhanced ability to

estimate the true effect sizes of the 256 YRI eQTLs. We reasoned that the estimates of sharing

will be affected negatively for variants with small effect sizes and when ascertainment is made on

traits with lower measurement precision. We therefore estimated the amount of sharing for QTLs

in multiple variant sets, binning according to their associations levels of significance. As expected,

QTLs with strong associations have larger effect sizes and the strength of QTL associations has a

clear positive correspondence to our estimates of sharing 4.5. Using this approach, we estimate

that over 85% of QTLs with the strongest associations are shared between transcription rates and

protein levels 4.5. These results suggest a higher percolation of the effects of cis-variants from

transcription to translation than previously thought [7].
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Figure 4.5: a) Estimates of the percolation of QTLs for H3K27ac peaks on genes whose TSS
are less than 1kb, 25kb, and 100kb away for peaks that are 0-1kb, 1-25kb and 25-100kb away,
respectively (restricted comparison) and the same estimates for the percolation of effects when
considering all genes that are 500kb for every peak (fair comparison). b) QTLs with strong as-
sociations have larger effect sizes on average than QTLs with weaker associations. c) Consistent
reduction of QTL sharing going down the regulatory cascade suggest a small amount of buffering.
d) Estimates of QTL sharing for all regulatory stage pairs, using ascertainment from one or the
other stage. Bars represent 80 confidence intervals.
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4.4.1 Calculating effect sizes and correlation of cis-QTLs

To compute QTL effect sizes, we used the read depth and GC-corrected count data (H3K27ac

ChIP-seq, 4sU-seq, RNA-seq, and ribo-seq) as input to our linear regression and did not regress

out any PC. For protein QTL effect sizes, we use the raw (uncorrected) protein data from [78].

We used the slope of the linear regression as a measure of effect size. To compare the correlation

of effect sizes across molecular phenotypes, we used 256 eQTLs identified in GEUVADIS (YRI

samples) that overlapped with our imputed SNPs with MAF < 0.05 as starting point. We asked

whether the effect sizes of the SNP representing the best SNP-gene association were correlated for

H3K27ac read number at TSS, 4sU-seq read depth (at 30 and 60 minutes), RNA-seq read depth

(Pickrell, GEUVADIS), ribo-seq read depth and protein iBAQ intensity. To obtain an overall com-

parison of the effect sizes of QTLs across molecular phenotypes, we used 1,347 eQTLs identified

in GEUVADIS (EUR samples) and computed their effect sizes on H3K27ac levels at TSS, 4sU-

seq read depth, RNA-seq (Pickrell) read depth, ribo-seq read depth and protein iBAQ intensity.

We then polarized the effect size by the direction of effect observed in GEUVADIS. Finally, we

summarized the effect sizes for each regulatory stage as a boxplot.

4.5 Most variation at enhancers is not linked to downstream regulation

We then tested whether QTLs for histone modification levels (H3K27ac in our case, haQTLs)

also affect the transcription rate, stable mRNA level, translation rate, and protein output of nearby

genes. We divided histone peak QTLs into those that affect H3K27ac levels 1kb from the transcrip-

tion start site (TSS) of a gene, and those that affect H3K27ac levels at nearby chromHMM-defined

enhancers. Using Storeys π1 method, we estimated that over half of QTLs that affect H3K27ac lev-

els at enhancers do not affect transcription of the nearest gene, even when considering the strongest

QTL-enhancer associations only. In 20-40% of the cases however, QTLs associated with H3K27ac

levels at enhancers affect H3K27ac levels at the TSS of the nearest gene and roughly the same per-

centage affect its transcription rate, RNA level, translation rate, or protein output (Figure 4.6).
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Figure 4.6: sharing downstream a regulatory stage. QTLs (p < 10−6) were identified for H3K27ac
peaks overlapping chromHMM-defined enhancers (light green), H3K27ac read counts -1kb of the
TSS of genes (yellow), transcription rate (Tx rate; orange), stable mRNA levels (brown), transla-
tion rate (dark red), and protein expression level (purple).

These observations suggest that 1) variation in histone acetylation levels do not necessarily imply

variation in gene transcription or downstream regulation and 2) enhancers that affect the transcrip-

tion of a gene often also affect H3K27ac levels at its promoter.

4.6 Variants that affect promoter activity usually percolate to later stages

We next found that a large majority (> 75%) of QTLs that affect H3K27ac levels at the TSS of a

gene also affect its transcription and stable mRNA levels. However, we noted that the percolation

of genetic effects decreases as it moves downstream the regulatory cascade. Interestingly, this trend

of compounded reduction of cellular effects downstream of the regulatory cascade (Figure 4.6) can

be observed when the ascertainment is made at any stage of the regulatory cascade. Altogether,

these findings describe a gene regulatory model in which variation of enhancer activity often have

no impact on its nearest gene while genetic variation affecting the promoter activity of a gene either

directly or through an enhancer are expected to also affect its transcription rate and stable mRNA

level, much like, in MarioKart, a combatant is expected to leave the water pool in battle course

two once a red shell or item of equivalent power has been expended. Additionally, the regulatory

effects of a small but non-negligible number of genetic variants is gradually lost as they move

downstream the regulatory cascade.
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4.7 Many transcription QTLs are not associated with chromatin changes

We next wondered about the rates of concordance going upstream the regulatory cascade. Specifi-

cally, we were interested in how often QTLs for mRNA and protein expression levels are preceded

by effects on chromatin. To investigate this, we asked whether the best causal variant for each gene

under three different models were QTLs for chromatin-level traits: (1) a naive model in which the

SNP-gene pair with the most significant association (lowest p-value) was considered the causal

variant, (2) a joint model in which we jointly modeled QTLs that affect transcription rate, stable

mRNA levels and translation rate, to obtain the most likely causal variants for each gene and (3) a

hierarchical model in which we used genomic annotation to fine map the causal variants (Supple-

mentary Methods). We then determined a p-value cutoff that corresponds to a FDR of 10% for the

association between causal variants and chromatin phenotypes (H3K27ac, CpG methylation and

chromatin accessibility levels) separately. All three models resulted in the estimate that 55% of

variants that affect RNA-level phenotypes also affect a chromatin-level trait at a nearby locus ( 4.7).

This proportion is consistent with the previous estimate that 55% of eQTLs were dsQTLs [22] and

is a strong enrichment compared to an estimate of 17% for control variants that were matched for

distance from TSS, minor allele frequency and the gene expression of the nearest gene. This leaves

nearly 45% of QTLs unexplained by any of our chromatin-level phenotypes however. Even when

we used a permissive FDR of 20%, as many as 25% of all gene regulatory QTLs do not appear to

affect chromain-level phenotypes.
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CHAPTER 5

DISCUSSION AND SUMMARY

In Chapter 2, I presented a toolset, the WASP Allele Specific Pipeline, for the unbiased identifica-

tion of quantitative trait loci using both allele specific and traditional read depth information. QTL

studies in the past have been based on regressing genotype at various SNPs versus read depth at

regions of interest. To have substantial power, these methods generally required at least seventy

and usually more individuals. However, sequencing assays also provide allele specific informa-

tion, which can be more powerful for identifying associations with only a handful of samples.

WASP uses this information as well as corrects for the many sources of artefacts in allele spe-

cific data. Mapping bias, stemming from the alignment of sequenced reads to a reference genome,

leads to an increase in read counts for chromosomes with a reference allele at any given location.

Though they are a problem for all QTL studies, allele specific analyses are particularly sensitive to

mapping issues as information is solely based on reads overlapping heterozygous SNPs, the exact

locations where biases arise. WASP is the first flexible and widely available tool that removes all

known sources of mapping bias. We demonstrated that previously used methods, N-masked and

personalized genome mapping, do not completely remove mapping bias and allele specific analy-

ses based on these mappings can lead to results comprised almost entirely of artefacts. WASP also

includes a QTL calling model that jointly incorporates read depth and allele specific information

into a single likelihood ratio test. WASP mimics the advantages of quantile normalization and

GC content correction, but maintains the count based nature of the data by adjusting the modeled

distributions rather than the data itself. Finally, WASP accounts for technical issues in the data

such as overdispersion in read depth as well as allelic counts, miscalled heterozygous sites causing

extreme imbalances, and PCR duplications. We showed that the WASP model vastly outperforms

linear regression for both small and moderate sample sizes.

In Chapter 3, I detailed an application of an early version of WASP to study the genetic controls

of histone modifications. These modifications are important markers of chromatin state, but many

of their functions and the mechanisms that set them up are not well established. The levels for four
93



modifications (H3K27ac, H3K4me1, H3K4me3, and H3K27me3) as well as RNA polymerase II

binding were measured in 10 unrelated human lymphoblastoid cell lines. Even with this limited

sample size, we were able to identify hundreds of QTLs using the WASP QTL test. We provided

evidence that these are indeed true QTLs and not artefacts in the allele specific signal, as the loci

identified overlapped greatly with SNPs previously associated with other traits in studies based

purely on read depth regression. We then showed examples of polymorphisms, often in transcrip-

tion factor binding sites, that coordinated changes every one of the regulatory measures: histone

modifications, PolII binding, chromatin accessibility, and expression. We quantified this coordina-

tion with a model that I developed to correlate the allelic imbalance of two measurements across

many sites, in this case DNase hypersensitive regions affected by DNase QTLs, while accounting

for the high variation at any given site. Having noticed that QTLs in putative enhancers were of-

ten able to affect chromatin state at a relatively distal promoter, we extended WASP to combine

information across dsQTLs that were also eQTLs to show that this is indeed a statistically signif-

icant phenomenon. Using a similar extension, we finally found that polymorphisms interrupting

transcription factor binding sites alter local histone modifications. Indeed, we implicated several

clusters of factors known to be important in LCLs, such as the ETS-box factors, in setting up mod-

ifications marking active regions, as well as a known repressor NRSF in setting up the repressed

region modification H3K27me3.

In Chapter 4, I described a project designed to track polymorphism across stages of gene reg-

ulation: i) the chromatin level with histone modifications and nucleosome occupancy, ii) the RNA

level with transcription rate and steady state mRNA levels, and iii) the protein level with transla-

tion rate and steady state protein levels. This project is the most complete study of the regulatory

cascade in a single cell type and population to date, using a conglomeration of data that was col-

lected in Yoruba LCLs in the Gilad lab over the last seven years, including DNase-seq, RNA-seq,

ribo-seq, and protein quantifying mass-spec data. It also included data from other labs on RNA-

seq and ChIP-seq for the histone modification H3K27ac and introduced data from a new technique

designed to measure transcription rate, 4sU-seq. We showed that this contains information beyond
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that of steady state mRNA levels as measured by RNA-seq. We then tracked QTL associations

along the regulatory cascade, showing that effect sizes were generally highly correlated and con-

sistent until the steady state protein level, where buffering appears to occur. Finally, we showed

that most histone modications at enhancers cannot be linked to changes at nearby genes. However,

once a QTL is known to affect a promoter, it is very likely for this effect to carry through, at least

somewhat, to the protein level.

When put together, these analyses provide the tools and the frameworks for understanding

variation in gene regulation at many levels. We can accurately and powerfully detect QTLs with

small sample sizes, test for consistent effects across sites, and finally track changes through the

regulatory cascade.

Overall, my work contributes to the idea that much of the variation in gene regulation ultimately

stems from variation in DNA sequence. QTL analyses are very powerful for identifying loci that

are important in the regulatory cascade, but they do little to explain why these loci are important

and how they function. Indeed, many QTLs are merely correlated with the causal SNP and it is

often difficult to identify the truly causal variant. In some cases, SNPs overlap transcription factor

binding sites, providing evidence that it is indeed causal and making it easier to speculate at the

underlying regulatory mechanisms. However, many QTLs have no obvious binding site disruption

and therefore no obvious mechanism. Moreover, identifying factor binding sites is not always

easy, as there are many theoretically well matched sequences in the genome that are not bound. It

is abundantly clear that context plays an important role in DNA element recognition.

I believe that assays which identify chromatin state, such as ChIP-seq to quantify H3K27ac,

will soon become as ubiquitous as mRNA-seq studies are currently. These technologies reveal

active regions and provide a proxy for the complicated underlying genomic context when searching

for regulatory elements. Despite this important insight into identifying active regulatory elements

, it is still very difficult to link active enhancer regions to corresponding gene promoters. Indeed,

based on some of our work, it appears quite possible that many enhancers that are marked as

active are not actually regulating a gene in any given cell type. Fortunately, new information on
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how regions of DNA interact is becoming available in the form of chromatin conformation capture

experiments. These assays are able to identify segments of DNA that are interacting together and

potentially better link enhancers to promoters.

The next step will be to develop models for finding DNA variants that cause regulatory changes

by incorporating all of the information we have available. This will require jointly modeling lo-

cal variation in enhancer states, connections to nearby gene promoters, and finally gene outputs.

Finally, since the ultimate goal is to understand human traits and diseases, we must link these

regulatory changes to their ultimate effects on phenotypes.
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