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ABSTRACT

In this paper we consider two free boundary problems, which we solve using a combination

of techniques and tools from harmonic analysis, geometric measure theory and partial differ-

ential equations. The first problem is a two-phase problem for harmonic measure, initially

studied by Kenig and Toro (KT06). The central difficulty in that problem is the possibility of

degeneracy; losing geometric information at a point where both phases vanish. We establish

non-degeneracy by proving that the Almgren frequency formula, applied to an appropriately

constructed function, is “almost monotone”. In this way, we prove a sharp Hölder regularity

result (this work was originally published in (Eng14)).

The second problem is a one-phase problem for caloric measure, initially posed by Hof-

mann, Lewis and Nyström (HLN04). Here the major difficulty is to classify the “flat

blowups”. We do this by adapting work of Andersson and Weiss (AW09), who analyzed

a related problem arising in combustion. This classification allows us to generalize results

of (KT03) to the parabolic setting and answer in the affirmative a question left open in the

aforementioned paper of Hofmann et al. (this work was originally published in (Eng15)).
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CHAPTER 1

INTRODUCTION

This thesis is concerned with free boundary problems; a class of partial differential equations

in which an unknown function, u, satisfies a PDE on a domain, Ω, which itself depends on

u. The classical example of a free boundary problem is the Stefan problem, which describes

an ice cube melting in water. Heat flows differently through water than it does through

ice, thus the temperature solves two different partial differential equations (one in the water

and one in the ice) on two disjoint domains which are evolving with time (as the ice melts).

The interface between the water and ice (i.e. the layer of ice which is melting at any given

second) is called the “free boundary” (as opposed to a “fixed boundary”).

A prototypical free boundary problem for harmonic or caloric measure is the following;

for an open, unbounded, Ω ⊂ Rn and a Radon measure, ω, consider the boundary value

problem,

∆u(x) =0, x ∈ Ω,

u(x) >0, x ∈ Ω,

u(x) =0, x ∈ ∂Ω,ˆ
Ω
u∆ϕdx =

ˆ
∂Ω

ϕdω, ∀ϕ ∈ C∞0 (Rn).

(1.0.1)

The function, u, (uniquely determined up to a constant multiple for sufficiently regular

Ω) is the Green function of Ω with a pole at infinity and the Radon measure, ω, is the

corresponding harmonic measure. (1.0.1) is overdetermined and does not have a solution

for every combination of Ω and ω (as, in a generalized sense, both Neumann and Dirichlet

boundary values for u are prescribed). Therefore, a priori assumptions on ω could impose

additional conditions on the “free boundary”, ∂Ω. Thus, it makes sense to ask the question:

If we know ω is “regular” what can we say about ∂Ω? (1.0.2)

1



1.1 Introduction to Harmonic and Caloric Measure

Intuitively, it is helpful to think of harmonic measure from a probabilistic perspective; given

an open domain Ω ⊂ Rn, a point X ∈ Ω and a subset E ⊂ ∂Ω, the harmonic measure of E

with a pole at X, written ωX(E), is the probability that a Brownian motion starting at X

will first exit Ω at a point inside of E.

While the above definition is useful, the following formulation is more suited to our

purpose; let Ω ⊂ Rn be a bounded open domain which admits a solution to the Dirichlet

problem. That is, for every f ∈ C(∂Ω) there exists a uf ∈ C2(Ω) ∩ C(Ω) such that

∆uf (X) =0, X ∈ Ω

lim
Ω3X→Q

uf (X) =f(Q), Q ∈ ∂Ω.

(the class of domains in which the Dirichlet problem can be solved with continuous data in

quite broad see e.g. (Ken94), Chapter 1, Section 2 for more details).

The maximum principle then tells us that for every X ∈ ∂Ω the map f 7→ uf (X) is a

linear functional from C(∂Ω)→ R with norm 1. By the Riesz representation theorem, there

is a probability measure, ωX , such that

ˆ
∂Ω

f(Q)dωX(Q) = uf (X). (1.1.1)

This probability measure, ωX , is the harmonic measure of Ω with a pole at X.

Caloric measure is defined similarly: we say that the parabolic Dirichlet problem is

solvable in Ω ⊂ Rn+1 if, for every f ∈ C(∂pΩ), there exists a uf ∈ C2,1(Ω)∩C(Ω) such that

∂tuf (X, t)−∆uf (X, t) =0, (X, t) ∈ Ω

lim
Ω3(X,t)→(Q,τ)

uf (X, t) =f(Q, τ), (Q, τ) ∈ ∂pΩ.

Here (and throughout), ∂pΩ represents the parabolic boundary of Ω; the points in ∂Ω which
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can be approached by paths contained in Ω that are monotonically decreasing in time. In

analogy to the elliptic situation, the caloric measure is the probability measure, ω(X,t), given

by the parabolic maximum principle and the Riesz representation theorem. That is to say,

uf (X, t) =

ˆ
∂pΩ

f(Q, τ)dω(X,t)(Q, τ).

Harmonic measure is an object of interest in several different branches of mathematics.

In complex analysis, the harmonic measure of a simply connected domain, Ω, with a pole at

X is the pushfoward of the uniform distribution on S1 along a conformal map ϕ : D → Ω

such that ϕ(0) = X. Thus, the complex geometry of a domain is intimately linked with the

harmonic measures it supports (for a beautiful introduction to this area see (GM05)). In

probability, hitting measure plays an important role in understanding the behavior of Brow-

nian motion and random walks, see, e.g. (Law96). Additionally, from (1.1.1), it is clear that

a better understanding of harmonic measures should give insight into the boundary behavior

of solutions to elliptic boundary value problems. For example, Dahlberg, (Dah79), showed

that the mutual absolute continuity of harmonic measure with surface measure implied the

solvability of the Dirichlet problem in Lipschitz domains for data in L2. For other ellip-

tic operators, there has been important work by Fefferman, Kenig and Piper, (FKP91), and

Hofmann, Kenig, Mayboroda and Pipher (HKMP15) along with many others, connecting the

regularity of the L-harmonic measure to questions of solvability. For a more comprehensive

survey of results in this area, we defer to (Tor10).

While the parabolic theory is much less well developed, there has been work linking caloric

measure to the study of the boundary behavior of caloric functions (see, e.g. (FGS86)) and

the solvability of the Dirichlet problem for parabolic operators (see, e.g., (LM95), (Nys97)

and (HL01)). We hope that a deeper understanding of caloric measure will help transfer

some of the above results for elliptic operators to the time dependent setting.
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1.2 Content and Structure of the Thesis

This thesis is broken up into two additional chapters and an appendix (which contains

supplementary material relevant to both chapters). Each chapter has its own introduction

which addresses that chapter’s contents and the relevant literature in some detail. To avoid

redundancy, we will summarize the contents of each chapter as briefly as possible.

Chapter 2 studies a two-phase free boundary problem for harmonic measure: let Ω± be

two disjoint NTA domains, (roughly, NTA domains are quantitatively open and quantita-

tively path connected, see Definition 2.2.1 for more details) such that Rn = Ω+ ∩ Ω− and

that ∂Ω+ = ∂Ω−. Further assume that the harmonic measure for Ω+ with pole X+ ∈ Ω+,

call it ω+, and the harmonic measure for Ω− with pole X− ∈ Ω−, call it ω−, are mutually

absolutely continuous and that h ≡ dω−

dω+ is the Radon-Nikodym derivative. We ask, “what

does the regularity of h tell us about the regularity of ∂Ω±?”

Our main result says that, assuming some a priori flatness, if log(h) ∈ Ck,α, then ∂Ω

is locally the graph of a Ck+1,α function. This result is sharp and examples show that the

flatness assumption is necessary. This extends work of Kenig and Toro (KT03), who studied

the same problem under the assumption that log(h) ∈ VMO(dω+).

The possibility of degeneracy is the largest obstacle to proving regularity in the two-

phase setting. The condition, log(h) ∈ C0,α does not rule out the possibility that there is

a portion of the boundary, E ⊂ ∂Ω, such that ω±(E) = 0 but Hn−1(E) > 0. On such an

E, we would have no hope of recovering any geometric information. Thus, the bulk of our

effort goes towards proving that such an E cannot exist (in fact, we prove a quantitative

statement, that ω±(E)/Hn−1(E) is bounded from below). We establish non-degeneracy by

showing a certain formula is “almost-monotone” (i.e. has derivative bounded from below by

a function which is integrable at zero). To prove “almost-monotonicity” we use estimates

from harmonic analysis and geometric measure theory.

Later, we prove higher regularity of the free boundary using Schauder-type estimates for

weak solutions of elliptic and coercive systems and the partial Hodograph transform. We

4



hope that our exposition in that section will be of interest, as some of the results, while

familiar to experts, do not seem to appear explicitly in the literature.

Chapter 3 studies a one-phase problem for caloric measure. Namely, we prove that the

oscillation of the parabolic Poisson kernel controls the regularity of the free boundary. Let

Ω be a parabolic chord arc domain (a generalization of the appropriate class of parabolic

Lipschitz domains) and let ω be the caloric measure for Ω associated to a point (X, t) ∈ Ω.

Our final result is that with a priori assumed flatness, if log(dωdσ ) ∈ Ck+α,(k+α)/2, then

∂Ω∩{s < t} is locally the graph of a Ck+1+α,(k+1+α)/2 function. This is sharp and examples

show that the flatness assumption is necessary in three or more spatial dimensions.

This result is the parabolic analogue of theorems by Kenig and Toro, (KT03), and Alt

and Caffarelli, (AC81). In many instances, we adapt their techniques to the time-dependent

setting with only technical adjustments. However, one major obstacle was the lack of a

classification of “global” solutions to the free boundary problem. Specifically, it was unknown

whether an unbounded parabolic chord arc domain, Ω, with additional assumed flatness and

dω
dσ ≡ 1 must be a half plane. We show this is the case by adapting work of Andersson and

Weiss, (AW09), who considered solutions, in the sense of “domain variations”, to a related

free boundary problem.

The definition of a parabolic chord arc domain is more complicated than the correspond-

ing elliptic one (see Section 3.1), thus we also required novel arguments to prove free boundary

regularity given that all flat “global” solutions are planes. To overcome this difficulty, we

approximate Ω at every point and every scale by graph domains and use harmonic analysis

and geometric measure theory to bound the relevant quantities for Ω by their counterparts

in these graph domains (these techniques were adapted from (HLN03)).

Finally, the reader may also be interested in the appendix to Chapter 3 which proves

parabolic counterparts of several potential-theoretic results for harmonic functions in rough

domains. While many of these proofs mirror those for harmonic functions, some require new

ideas, in particular, the construction of interior sawtooth domains (Lemma B.4.3).

5



CHAPTER 2

A TWO-PHASE FREE BOUNDARY PROBLEM FOR

HARMONIC MEASURE

2.1 Introduction

In this paper we consider the following two-phase free boundary problem for harmonic mea-

sure: let Ω+ be an unbounded 2-sided non-tangentially accessible (NTA) domain (see Defini-

tion 2.2.1) such that log(h) is regular, e.g. log(h) ∈ C0,α(∂Ω). Here h := dω−

dω+ and ω± is the

harmonic measure associated to the domain Ω± (Ω− := int((Ω+)c)). We ask the question:

what can be said about the regularity of ∂Ω?

This question was first considered by Kenig and Toro (see (KT06)) when log(h) ∈

VMO(dω+). They concluded, under the initial assumption of δ-Reifenberg flatness, that

Ω is a vanishing Reifenberg flat domain (see Definition 2.2.2). Later, the same problem,

without the initial flatness assumption, was investigated by Kenig, Preiss and Toro (see

(KPT09)) and Badger (see (Bad11) and (Bad13)). Our work is a natural extension of theirs,

though the techniques involved are substantially different.

Our main theorem is:

Theorem 2.1.1. Let Ω be a 2-sided NTA domain with log(h) ∈ Ck,α(∂Ω) where k ≥ 0 is

an integer and α ∈ (0, 1).

• When n = 2: ∂Ω is locally given by the graph of a Ck+1,α function.

• When n ≥ 3: there is some δn > 0 such that if δ < δn and Ω is δ-Reifenberg flat then

∂Ω is locally given by the graph of a Ck+1,α function.

0. The contents of this chapter are taken from a paper of the same title, to appear in the Annales
scientifiques de l’École normale supérieure. While writing that paper I was partially supported by the
Department of Defense’s National Defense Science and Engineering Graduate Fellowship as well as by the
National Science Foundation’s Graduate Research Fellowship, Grant No. (DGE-1144082). I’d also like to
thank an anonymous referee for their comments.

6



Similarly, if log(h) ∈ C∞ or log(h) is analytic we can conclude (under the same flatness

assumptions above) that ∂Ω is locally given by the graph of a C∞ (resp. analytic) function.

When n > 2, the initial flatness assumption is needed; if n ≥ 4, Ω = {X ∈ Rn | x2
1 +x2

2 >

x2
3+x2

4} is a 2-sided NTA domain such that ω+ = ω− on ∂Ω (where the poles are at infinity).

As such, h ≡ 1 but, at zero, this domain is not a graph. In R3, H. Lewy (see (Lew77)) proved

that, for k odd, there are homogeneous harmonic polynomials of degree k whose zero set

divides S2 into two domains. The cones over these regions are NTA domains and one can

calculate that log(h) = 0. Again, at zero, ∂Ω cannot be written as a graph. However, these

two examples suggest an alternative to the a priori flatness assumption.

Theorem 2.1.2. Let Ω be a Lipschitz domain (that is, ∂Ω can be locally written as the graph

of a Lipschitz function) and let h satisfy the conditions of Theorem 2.1.1. Then the same

conclusions hold.

The corresponding one-phase problem, “Does regularity of the Poisson kernel imply reg-

ularity of the free boundary?”, has been studied extensively. Alt and Caffarelli (see (AC81))

first showed, under suitable flatness assumptions, that log(dωdσ ) ∈ C0,α(∂Ω) implies ∂Ω is

locally the graph of a C1,s function. Jerison (see (Jer90)) showed s = α above and, fur-

thermore, if log(dωdσ ) ∈ C1,α(∂Ω) then ∂Ω is locally the graph of a C2,α function (from here,

higher regularity follows from classical work of Kinderlehrer and Nirenberg, (KN77)). Later,

Kenig and Toro (see (KT03)) considered when log(dωdσ ) ∈ VMO(dσ) and concluded that ∂Ω

is a vanishing chord-arc domain (see Definition 1.8 in (KT03)).

Two-phase elliptic problems are also an object of great interest. The paper of Alt,

Caffarelli and Friedman (see (ACF84)) studied an “additive” version of our problem. Later,

Caffarelli (see (Caf87) for part one of three) studied viscosity solutions to an elliptic free

boundary problem similar to our own. This work was then extended to the non-homogenous

setting by De Silva, Ferrari and Salsa (see (DFS14)). It is important to note that, while our

problem is related to those studied above, we cannot immediately apply any of their results.

7



In each of the aforementioned works there is an a priori assumption of non-degeneracy built

into the problem (either in the class of solutions considered or in the free boundary condition

itself). Our problem has no such a priori assumption. Unsurprisingly, the bulk of our efforts

goes into establishing non-degeneracy.

Even in the case of n = 2, where the powerful tools of complex analysis can be brought

to bear, our non-degeneracy results seem to be new. We briefly summarize some previous

work in this area: let Ω+ be a simply connected domain bounded by a Jordan curve and

Ω− = Ω+c. Then ∂Ω = G+ ∪ S+ ∪N+ where

• ω+(N+) = 0

• ω+ << H1 << ω+ on G+

• Every point of G+ is the vertex of a cone in Ω+. Furthermore, if C+ is the set of all

cone points for Ω+ then H1(C+\G+) = 0 = ω+(C+\G+).

• H1(S+) = 0.

• For ω+ a.e Q ∈ S+ we have lim supr↓0
ω+(B(Q,r))

r = +∞ and lim infr↓0
ω+(B(Q,r))

r = 0

with a similar decomposition for ω−. These results are due to works by Makarov, McMillan,

Pommerenke and Choi. See Garnett and Marshall (GM05), Chapter 6 for an introductory

treatment and more precise references.

In our context, that is where ω+ << ω− << ω+, Ω is a 2-sided NTA domain and log(h) ∈

C0,α(∂Ω), one can use the Beurling monotonicity formula (see Lemma 1 in (BCGJ89))

to show lim supr↓∞
ω±(B(x,r))

r < ∞. Therefore, ω±(S+ ∪ S−) = 0 and we can write

∂Ω = Γ ∪ N where ω±(N) = 0 and Γ is 1-rectifiable (i.e. the image of countably many

Lipschitz maps) and has σ-finite H1-measure. This decomposition is implied for n > 2 by

the results of Section 2.5. In order to prove increased regularity one must bound from below

lim infr↓0
ω+(B(Q,r))

r , which we do in Corollary 2.6.4 and seems to be an original contribution

to the literature.

8



The approach is as follows: after establishing some initial facts about blowups and the

Lipschitz continuity of the Green’s function (Sections 2.3 and 2.4) we tackle the issue of

degeneracy. Our main tools here are the monotonicity formulae of Almgren, Weiss and

Monneau which we introduce in Section 2.5. Unfortunately, in our circumstances these

functionals are not actually monotonic. However, and this is the key point, we show that

they are “almost monotonic” (see, e.g., Theorem 2.5.8). More precisely, we bound the first

derivative from below by a summable function. From here we quickly conclude pointwise

non-degeneracy. In Section 2.6, we use the quantitative estimates of the previous section to

prove uniform non-degeneracy and establish the C1 regularity of the free boundary.

At this point the regularity theory developed by De Silva et al. (see (DFS14)) and

Kinderlehrer et al. (see (KN77) and (KNS78)) can be used to produce the desired conclusion.

However, these results cannot be applied directly and some additional work is required to

adapt them to our situation. These arguments, while standard, do not seem to appear

explicitly in the literature. Therefore, we present them in detail here. Section 2.7 adapts the

iterative argument of De Silva, Ferrari and Salsa (DFS14) to get C1,s regularity for the free

boundary. In Section 2.8 we first describe how to establish optimal C1,α regularity and then

C2,α regularity (in analogy to the aforementioned work of Jerison (Jer90)). This is done

through an estimate in the spirit of Agmon et al. ((ADN59) and (ADN64)) which is proven

in the appendix. Higher regularity then follows easily.

2.2 Notation and Definitions

Throughout this article Ω ⊂ Rn is an open set and our object of study. For simplicity,

Ω+ := Ω and Ω− := Ω
c
. To avoid technicalities we will assume that Ω± are both unbounded

and let u± be the Green’s function of Ω± with a pole at∞ (our methods and theorems apply

to finite poles and bounded domains). Let ω± be the harmonic measure of Ω± associated to

u±; it will always be assumed that ω− << ω+ << ω−. Define h = dω−

dω+ to be the Radon-

Nikodym derivative and unless otherwise noted, it will be assumed that log(h) ∈ C0,α(∂Ω).

9



Finally, for a measurable f : Rn → R, we write f+(x) := |f(x)|χ{f>0}(x) and f−(x) :=

|f(x)|χ{f<0}(x). In particular, f(x) = f+(x) − f−(x). Define u± outside of Ω± to be

identically zero and set u(x) := u+(x) − u−(x) (so that these two notational conventions

comport with each other).

Recall the definition of an non-tangentially accessible (NTA) domain.

Definition 2.2.1. [See (JK82) Section 3] A domain Ω ⊂ Rn is non-tangentially acces-

sible, (NTA), if there are constants M > 1, R0 > 0 for which the following is true:

1. Ω satisfies the corkscrew condition: for any Q ∈ ∂Ω and 0 < r < R0 there exists

A = Ar(Q) ∈ Ω such that M−1r < dist(A, ∂Ω) ≤ |A−Q| < r.

2. Ω
c

satisfies the corkscrew condition.

3. Ω satisfies the Harnack chain condition: let ε > 0, x1, x2 ∈ Ω ∩ B(R0/4, Q) for a

Q ∈ ∂Ω with dist(xi, ∂Ω) > ε and |x1 − x2| ≤ 2kε. Then there exists a “Harnack

chain” of overlapping balls contained in Ω connecting x1 to x2. Furthermore we can

ensure that there are no more than Mk balls and that the diameter of each ball is

bounded from below by M−1 mini=1,2{dist(xi, ∂Ω)}

When Ω is unbounded we also require that Rn\∂Ω has two connected components and

that R0 =∞.

We say that Ω is 2-sided NTA if both Ω and Ω
c

are NTA domains. The constants

M,R0 are referred to as the “NTA constants” of Ω.

It should be noted that our analysis in this paper will be mostly local. As such we

need only that our domains be “locally NTA” (i.e. that M,R can be chosen uniformly on

compacta). However, for the sake of simplicity we will work only with NTA domains. We

now recall the definition of a Reifenberg flat domain.
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Definition 2.2.2. For Q ∈ ∂Ω and r > 0,

θ(Q, r) := inf
P∈G(n,n−1)

D[∂Ω ∩B(Q, r), {P +Q} ∩B(Q, r)],

where D[A,B] is the Hausdorff distance between A,B.

For δ > 0, R > 0 we then say that Ω is (δ, R)-Reifenberg flat if for all Q ∈ ∂Ω, r < R

we have θ(Q, r) ≤ δ. When Ω is unbounded we say it is δ-Reifenberg flat if the above holds

for all 0 < r <∞.

Additionally, if K ⊂⊂ Rn we can define

θK(r) = sup
Q∈K∩∂Ω

θ(Q, r).

Then we say that Ω is vanishing Reifenberg flat if for all K ⊂⊂ Rn, lim supr↓0 θK(r) = 0.

Remark 2.2.3. Recall that a δ-Reifenberg flat NTA domain is not necessarily a Lipschitz do-

main, and a Lipschitz domain need not be δ-Reifenberg flat. However, all Lipschitz domains

are (locally) 2-sided NTA domains (see (JK82) for more details and discussion).

Finally, let us make two quick technical points regarding h.

Remark 2.2.4. For every Q ∈ ∂Ω, we have limr↓0
ω−(B(Q,r))
ω+(B(Q,r))

= h(Q) (in particular the

limit exists for every Q ∈ ∂Ω).

Justification of Remark. By assumption, dω−

dω+ agrees with a Hölder continuous function h

where defined (i.e. ω+-almost everywhere). For any Q ∈ ∂Ω we rewrite limr↓0
ω−(B(Q,r))
ω+(B(Q,r))

=

limr↓0
ffl
B(Q,r)

dω−

dω+ (P )dω+(P ) = limr↓0
ffl
B(Q,r) h(P )dω+(P ). This final limit exists and is

equal to h(Q) everywhere because h is continuous.

We also note that h is only defined on ∂Ω. However, by Whitney’s extension theorem,

we can extend h to h̃ : Rn → R such that h̃ = h on ∂Ω and log(h̃) ∈ Cα(Rn) (or, if

log(h) ∈ Ck,α(∂Ω) then log(h̃) ∈ Ck,α(Rn)). For simplicity’s sake, we will abuse notation

and let h refer to the function defined on all of Rn.
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2.3 Blowups on NTA and Lipschitz Domains

For any Q ∈ ∂Ω and any sequence of rj ↓ 0 and Qj ∈ ∂Ω such that Qj → Q, define the

pseudo-blowup as follows:

Ωj :=
1

rj
(Ω−Qj)

u±j (x) :=
u±(rjx+Qj)r

n−2
j

ω±(B(Qj , rj))

ω±j (E) :=
ω±(rjE +Qj)

ω±(B(Qj , rj))
.

(2.3.1)

A pseudo-blowup where Qj ≡ Q, is a blowup. Kenig and Toro characterized pseudo-

blowups of 2-sided NTA domains when log(h) ∈ VMO(dω+).

Theorem 2.3.1. [(KT06), Theorem 4.4] Let Ω± ⊂ Rn be a 2-sided NTA domain, u± the

associated Green’s functions and ω± the associated harmonic measures. Assume log(h) ∈

VMO(dω+). Then, along any pseudo-blowup, there exists a subsequence (which we shall

relabel for convenience) such that (1) Ωj → Ω∞ in the Hausdorff distance uniformly on

compacta, (2) u±j → u±∞ uniformly on compact sets (3) ω±j ⇀ ω±∞. Furthermore, u∞ :=

u+
∞−u−∞ is a harmonic polynomial (whose degree is bounded by some number which depends

on the dimension and the NTA constants of Ω) and ∂Ω∞ = {u∞ = 0}.

Additionally, if n = 2 or Ω is a δ-Reifenberg flat domain with δ > 0 small enough

(depending on n) then u∞(x) = xn (possibly after a rotation). In particular, Ω is vanishing

Reifenberg flat.

This result plays a crucial role in our analysis. In particular, the key estimate in (2.5.5)

follows from vanishing Reifenberg flatness. Therefore, in order to prove Theorem 2.1.2 we

must establish an analogous result when Ω is a Lipschitz domain.

Corollary 2.3.2. Let Ω ⊂ Rn be as in Theorem 2.1.2. Then, along any pseudo-blowup we

have (after a possible rotation) that u∞(x) = xn. In particular, Ω± is a vanishing Reifenberg

flat domain.
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Proof. We first recall Remark 2.2.3, which states that any Lipschitz domain is a (locally)

2-sided NTA domain. Therefore, the conditions of Theorem 2.3.1 are satisfied. A result of

Badger (Theorem 6.8 in (Bad13)) says that, under the assumptions of Theorem 2.3.1, the

set of points where all blowups are 1-homogenous polynomials is in fact vanishing Reifenberg

flat (“locally Reifenberg flat with vanishing constant” in the terminology of (Bad13)). Addi-

tionally, graph domains (i.e. domains whose boundaries are locally the graph of a function)

are closed under blowups, so all blowups of ∂Ω can be written locally as the graph of a some

function. Observe that the zero set of a k-homogenous polynomial is a graph domain if and

only if k = 1. In light of all the above, it suffices to show that all blowups of ∂Ω are given by

the zero set of a homogenous harmonic polynomial. We now recall another result of Badger.

Theorem ((Bad11), Theorem 1.1). If Ω is an NTA domain with harmonic measure ω and

Q ∈ ∂Ω, then Tan(ω,Q) ⊂ Pd ⇒ Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d. Pd is the set

of harmonic measures associated to a domain of the form {h > 0}, where h is a harmonic

polynomial of degree ≤ d. Fk is the set of harmonic measures associated to a domain of the

form {h > 0}, where h is a homogenous harmonic polynomial of degree k.

In other words, if every blowup of an NTA domain is the zero set of a degree ≤ d harmonic

polynomial, then every blowup of that domain is the zero set of a k-homogenous harmonic

polynomial. This result, combined with Theorem 2.3.1, immediately implies that all blowups

of ∂Ω are given by the zero set of a k-homogenous harmonic polynomial. By the arguments

above, k = 1 and ∂Ω is vanishing Reifenberg flat.

That u∞ = xn (as opposed to kxn for some k 6= 1) follows from ω∞(B(0, 1)) =

limi ωi(B(0, 1)) ≡ 1, and that u±∞ is the Green’s function associated to ω∞.

Hereafter, we can assume, without loss of generality, that Ω is a vanishing Reifenberg flat

domain and that all pseudo-blowups are 1-homogenous polynomials.
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2.4 u is Lipschitz

The main aim of this section is to prove that u is locally Lipschitz.1 We adapt the method

of Alt, Caffarelli and Friedman ((ACF84), most pertinently Section 5) which uses the follow-

ing monotonicity formula to establish Lipschitz regularity for an “additive” two phase free

boundary problem.

Theorem 2.4.1. [(ACF84), Lemma 5.1] Let f ∈ C0(B(x0, R)) ∩ W 1,2(B(x0, R)) where

f(x0) = 0 and f is harmonic in B(x0, R)\{f = 0}. Then

J(x, r) :=
1

r2

(ˆ
B(x,r)

|∇f+|2

|x− y|n−2
dy

)1/2(ˆ
B(x,r)

|∇f−|2

|x− y|n−2
dy

)1/2

is increasing in r ∈ (0, R) and is finite for all r in that range.

In a 2-sided NTA domain, u ∈ C0(B(Q,R)) ∩ W 1,2(B(Q,R)) for any Q ∈ ∂Ω and

any R (as such domains are “admissible” see (KPT09), Lemma 3.6). This monotonicity

immediately implies upper bounds on
ω±(B(Q,r))

rn−1 .

Corollary 2.4.2. Let K ⊂⊂ Rn be compact. There is a 0 < C ≡ CK,n <∞ such that

sup
0<r≤1

sup
Q∈K∩∂Ω

ω±(B(Q, r))

rn−1
< C.

Proof. Using the Theorem 2.4.1 one can prove that

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1
≤ C‖u‖L2(B(Q,4)), ∀0 < r ≤ 1,

(see Remark 3.1 in (KPT09)). Note that

sup
1≥r>0,Q∈∂Ω∩K

(
ω±(B(Q, r))

rn−1

)2

= sup
1≥r>0,Q∈∂Ω∩K

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1

ω±(B(Q, r))

ω∓(B(Q, r))

1. NB: In this section we need only assume that log(h) ∈ C(∂Ω).
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≤ sup
P∈∂Ω, dist(P,K)≤1

h∓1(P ) sup
1≥r>0,Q∈∂Ω∩K

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1
.

By continuity, log(h) is bounded on compacta and so we are done.

Blowup analysis connects the Lipschitz continuity of u to the boundedness of
ω±(B(Q,r))

rn−1 .

Lemma 2.4.3. Let K ⊂⊂ Rn be compact, Q ∈ K ∩ ∂Ω and 1 ≥ r > 0. Then there is a

constant C > 0 (which depends only on dimension and K) such that

1

r

 
∂B(Q,r)

|u| < C.

Proof. We rewrite 1
r

ffl
∂B(Q,r) |u| =

1
r

ffl
∂B(0,1) |u(ry+Q)|dσ(y). Standard estimates on NTA

domains imply u±(ry + Q) ≤ CKu
±(A±(Q, r)) ≤ CK

ω±(B(Q,r))
rn−2 (see (JK82), Lemmas 4.4

and 4.8). So

1

r

 
∂B(Q,r)

|u| ≤ CK

(
ω+(B(Q, r))

rn−1
+
ω−(B(Q, r))

rn−1

)
.

Corollary 2.4.2 implies the desired result.

We then prove Lipschitz continuity around the free boundary.

Proposition 2.4.4. If K ⊂⊂ Rn is compact then |Du(x)| < C ≡ C(n,K) <∞ a.e. in K.

Proof. As u is analytic away from ∂Ω and u ≡ 0 on ∂Ω we can conclude that Du exists a.e.

Pick x ∈ K and, without loss of generality, let x ∈ Ω+. Define ρ(x) := dist(x, ∂Ω)

and let Q ∈ ∂Ω be such that ρ(x) = |x − Q|. If ρ > 1/5 then elliptic regularity implies

|Du(x)| ≤ C(n,K).

So we may assume that ρ < 1/5. A standard estimate yields

|Du(x)| ≤ C

ρ

 
∂B(x,ρ)

|u(y)|dσ(y). (2.4.1)

We may pick 3ρ < σ < 5ρ such that y ∈ ∂B(x, ρ)⇒ y ∈ B(Q, σ). As |u| is subharmonic
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and dist(y, ∂B(Q, σ)) > σ/3 we may estimate

|u(y)| ≤ c

ˆ
∂B(Q,σ)

σ2 − |y −Q|2

σ|y − z|n
|u(z)|dσ(z) ≤ c

 
∂B(Q,σ)

|u(z)|dσ(z)
Lem 2.4.3
≤ Cσ ≤ C ′ρ.

This estimate, with (2.4.1), implies the Lipschitz bound.

Consider any pseudo-blowup Qj → Q, rj ↓ 0. It is clear that uj is a Lipschitz function

(though perhaps not uniformly in j). If φ ∈ C∞c (B1;Rn) then Corollary 2.3.2 implies (after

a possible rotation)

ˆ
φ · ∇u±j = −

ˆ
(∇ · φ)u±j

j→∞→ −
ˆ

(∇ · φ)(xn)± =

ˆ
φ · enχH± .

Because ∇u±j converges in the weak-∗ topology on L∞(B1;Rn), |∇u±j | is bounded in

L∞(B1). Therefore, |∇u±j | converges in the weak-∗ topology on L∞(B1) to some function

f . However, as ∇u±j
∗
⇀ enχH± it must be true that |∇u±j | converges pointwise to χH± and

thus f = χH± (more generally, converges to the indicator function of some half space which

may depend on the blowup sequence taken).

The existence of this weak-∗ limit implies that Θn−1(ω±, Q) := limr↓0
ω±(B(Q,r))

rn−1 exists,

and is finite, everywhere on ∂Ω (as opposed to Hn−1-almost everywhere). Let rj ↓ 0; one

can compute that J(Q, rj) =
ω+(B(Q,rj))

rn−1
j

ω−(B(Q,rj))

rn−1
j

JQ,rj (0, 1) where

JQ,rj (0, s) :=
1

s2

(ˆ
B(0,s)

|∇u+
j (y)|2

|y|n−2
dy

)1/2(ˆ
B(0,s)

|∇u−j (y)|2

|y|n−2
dy

)1/2

and uj is a blowup along the sequence Qj ≡ Q and rj ↓ 0. By the arguments above, |∇u±j |
2

converges in the weak-∗ topology to the indicator function of some halfspace. Therefore,

JQ,rj (0, 1)
j→∞→ c(n), where c(n) is some constant independent of rj ↓ 0 (the halfspace

may depend on the sequence, but the integral does not). Furthermore, by Theorem 2.4.1
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J(Q, 0) := limr↓0 J(Q, r) exists. It follows that

lim
r↓0

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1
=
J(Q, 0)

c(n)
.

In particular, the limit on the left exists for every Q ∈ ∂Ω, which (given Remark 2.2.4)

implies Θn−1(ω±, Q) exists for every Q ∈ ∂Ω.

2.5 Non-degeneracy of Θn−1(ω±, Q)

In this section we show Θn−1(ω±, Q) > 0 for all Q ∈ ∂Ω (Proposition 2.5.10). Let

v(Q)(x) := h(Q)u+(x)− u−(x), Q ∈ ∂Ω. (2.5.1)

For any rj ↓ 0, we define the blowup of v(Q) along rj to be v
(Q)
j (x) :=

rn−2
j v(Q)(rjx+Q)

ω−(B(Q,rj))
. Let

us make some remarks concerning v(Q) and its blowups.

Remark 2.5.1. The following hold for any Q ∈ ∂Ω.

• For any compact K, we have supQ∈K∩∂Ω ‖v(Q)‖
W

1,∞
loc (Rn)

<∞.

• v(Q)
j (x)→ x · en uniformly on compacta (after passing to a subsequence and a possible

rotation). Additionally (as above), we have |∇v(Q)
j |

∗
⇀ 1 in L∞.

• If the non-tangential limit of |∇v(Q)| at Q exists it is equal to Θn−1(ω−, Q).

Justification of Remarks. The first two statements follow from the work in Section 2.4.

To prove the third statement we first notice

∇v(Q)
j (x) =

rn−1
j ∇v(Q)(rjx+Q)

ω−(B(Q, rj))
. (2.5.2)

The second statement implies limj→∞ |∇v
(Q)
j (x)| = 1 almost everywhere. The result follows.
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2.5.1 Almgren’s Frequency Formula

Remark 2.5.1 hints at a connection between the degeneracy of Θn−1(ω−, Q) and that of the

non-tangential limit of ∇v(Q). This motivates the use of Almgren’s frequency function (first

introduced in (Alm79)).

Definition 2.5.2. Let f ∈ H1
loc(Rn) and pick x0 ∈ {f = 0}. Define

H(r, x0, f) =

ˆ
∂Br(x0)

f2,

D(r, x0, f) =

ˆ
Br(x0)

|∇f |2,

and finally

N(r, x0, f) =
rD(r, x0, f)

H(r, x0, f)
.

Almgren first noticed that when f is harmonic, r 7→ N(r, x0, f) is absolutely continuous

and monotonically decreasing as r ↓ 0. Furthermore, N(0, x0, f) is an integer and is the

order to which f vanishes at x0 (these facts first appear in (Alm79). See (Mal09) for proofs

and a gentle introduction).

Throughout the rest of this subsection we consider v ≡ v(Q) and, for ease of notation,

set Q = 0. v may not be harmonic and thus N(r, 0, v) may not be monotonic. However, in

the sense of distributions, the following holds:

∆v(x) = (h(0)dω+ − dω−)|∂Ω =

(
h(0)

h(x)
− 1

)
dω−|∂Ω. (2.5.3)

Therefore, log(h) ∈ Cα(∂Ω) implies that |∆v(x)| ≤ C|x|αdω−|∂Ω. That v is “almost

harmonic” will imply that N is “almost monotonic” (see Lemma 2.5.6).

When estimating N ′(r, 0, v) we reach a technical difficulty; a priori v is merely Lipschitz,

and so ∇v is not defined everywhere. To address this, we will work instead with vε = v ∗ϕε,

where ϕ is a C∞ approximation to the identity (i.e. supp ϕ ⊂ B1 and
´
ϕ = 1). Let
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Nε(r) := N(r, 0, vε) and similarly define Hε, Dε.

Remark 2.5.3. The following are true:

lim
r↓0

N(r, 0, v) = 1

Dε(r) =

ˆ
∂Br

vε(vε)νdσ −
ˆ
Br
vε∆vε

d

dr
Dε(r) =

n− 2

r

ˆ
Br
|∇vε|2dx+ 2

ˆ
∂Br

(vε)
2
ν −

2

r

ˆ
Br
〈x,∇vε〉∆vεdx

d

dr
Hε(r) =

n− 1

r
Hε(r) + 2

ˆ
∂Br

vε(vε)νdσ.

Proof. The second equation follows from integration by parts and the third (originally ob-

served by Rellich) can be obtained using the change of variables y = x/r. The final equation

can be proven in the same way as the third.

To establish the first equality we take blowups. Pick any rj ↓ 0. One computes,

N(rj , 0, v) =

´
B1
|∇vj |2´

∂B1
v2
j

.

Recall Remark 2.5.1; vj → xn uniformly on compacta and |∇vj |
∗
⇀ 1 in L∞ (perhaps pass-

ing to subsequences and rotating the coordinate system). Therefore, limj→∞N(rj , 0, v) =

limj→∞N(1, 0, vj) = N(1, 0, xn). Almgren (in (Alm79)) proved that if p is a 1-homogenous

polynomial then N(r, 0, p) ≡ 1 for all r. It follows that limj→∞N(rj , 0, v) = 1.

With these facts in mind we calculate N ′ε(r).

H2
ε (r)N ′ε(r) = 2r

(ˆ
∂Br

(vε)
2
νdσ

ˆ
∂Br

v2
εdσ −

[ˆ
∂Br

vε(vε)νdσ

]2
)

+ 2r

ˆ
Br
vε∆vεdx

ˆ
∂Br

vε(vε)νdσ − 2Hε(r)

ˆ
Br
〈x,∇vε〉∆vεdx

(2.5.4)
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Derivation of (2.5.4). By the quotient rule

H2
ε (r)N ′ε(r) = Dε(r)Hε(r) + rD′ε(r)Hε(r)− rDε(r)H ′ε(r).

Using the formulae for H ′ε, D
′
ε found in Remark 2.5.3 we rewrite the above as

H2
ε (r)N ′ε(r) = Dε(r)Hε(r)− rDε(r)

(
n− 1

r
Hε(r) + 2

ˆ
∂Br

vε(vε)νdσ

)

+rHε(r)

(
n− 2

r

ˆ
Br
|∇vε|2dx+ 2

ˆ
∂Br

(vε)
2
ν −

2

r

ˆ
Br
〈x,∇vε〉∆vεdx

)
.

Distribute and combine terms to get

H2
ε (r)N ′ε(r) =

(
Dε(r)Hε(r) + (n− 2)Hε(r)

ˆ
Br
|∇vε|2dx− (n− 1)Dε(r)Hε(r)

)

+2r

(
Hε(r)

ˆ
∂Br

(vε)
2
νdσ −Dε(r)

ˆ
∂Br

vε(vε)νdσ

)
− 2Hε(r)

ˆ
Br
〈x,∇vε〉∆vεdx.

The first set of parenthesis above is equal to zero (recalling the definition of Dε(r)). In

the second set of parenthesis use the formula for Dε(r) found in Remark 2.5.3. This gives us

H2
ε (r)N ′ε(r) = 2r

(
Hε(r)

ˆ
∂Br

(vε)
2
νdσ −

(ˆ
∂Br

(vε)νvεdσ

)2
)

+2r

ˆ
Br
vε∆vεdx

ˆ
∂Br

vε(vε)νdσ − 2Hε(r)

ˆ
Br
〈x,∇vε〉∆vεdx.

The difference in parenthesis on the right hand side of (2.5.4) is positive by the Cauchy-

Schwartz inequality. Thus, to establish a lower bound on N ′ε(r), it suffices to consider the

other terms in the equation.

Lemma 2.5.4. Let ε < r and define Eε(r) =
´
Br
〈x,∇vε〉∆vεdx. Then there exists a

constant C (independent of r, ε) such that |Eε(r)| ≤ Cr1+αω−(B(0, r)).
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Proof. Since ∆vε = (∆v) ∗ ϕε in terms of distributions, we can move the convolution from

one term to the other:

ˆ
Br
〈x,∇vε〉∆vεdx =

ˆ
[(χBr(x) 〈x,∇vε〉) ∗ ϕε]∆vdx.

Evaluate ∆v, as in (2.5.3), to obtain

∣∣∣∣ˆ
Br
〈x,∇vε〉∆vεdx

∣∣∣∣ =

∣∣∣∣ˆ (χBr(x) 〈x,∇vε〉)ε
(
h(0)

h(x)
− 1

)
dω−

∣∣∣∣
≤ Cr1+α

ˆ
Br+ε

(|∇v|ε)εdω−,

where the last inequality follows from log(h) ∈ Cα, and |x| < C(r + ε) < Cr on the domain

of integration. The desired estimate then follows from the Lipschitz continuity of v and that

the harmonic measure of an NTA domain is doubling (see (JK82), Theorem 2.7).

Lemma 2.5.5. Let ε << r. Then Hε(r) > c
ω−(B(0,r))2

rn−3 for some constant c > 0 independent

of r, ε > 0.

Proof. By the corkscrew condition (see Definition 2.2.1 condition (1)) on Ω, there is a point

x0 ∈ ∂Br ∩ Ω such that dist(x0, ∂Ω) > cr (c depends only on the NTA properties of Ω).

The Harnack chain condition (see Definition 2.2.1 condition (3)) gives v(x0) ∼ v(Ar(0)).

The Harnack inequality then implies that, for ε << r there is a universal k such that for

y ∈ B(x0, kr) we have vε(y) ∼ v(x0) ∼ v(Ar(0)).

Therefore, there is a subset of ∂Br (with surface measure ≈ k|∂Br|) on which vε is

proportional to v(Ar(0)). We then recall that in an NTA domain we have v(Ar(0)) ∼
ω−(B(0,r))

rn−2 ((JK82), Lemma 4.8), which proves the desired result.

It is useful now to establish bounds on the growth rate of ω±(B(Q, r)). As Ω is vanishing

Reifenberg flat, ω± is asymptotically optimally doubling ((KT97), Corollary 4.1). This
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implies a key estimate: for any δ > 0 and Q ∈ ∂Ω we have

lim
r↓0

rn−1+δ

ω−(B(Q, r))
= 0. (2.5.5)

Lemma 2.5.6. Let ε << R. There exists a function, C(R, ε), such that

∀R/4 < r < R, Nε(R) + C(R, ε)(R− r) ≥ Nε(r) (2.5.6)

C(R, ε)R ≤ kRα/2 (2.5.7)

where k > 0 is a constant independent of ε, R (as long as ε << R).

Proof. If C(R, ε) := supR/4<r<R(Nε(r)
′)−, the first claim of our lemma is true by definition.

Recall (2.5.4):

H2
ε (r)N ′ε(r) = 2r

(ˆ
∂Br

(vε)
2
νdσ

ˆ
∂Br

v2
εdσ −

[ˆ
∂Br

vε(vε)νdσ

]2
)

+2r

ˆ
Br
vε∆vεdx

ˆ
∂Br

vε(vε)νdσ − 2Hε(r)Eε(r).

As mentioned above, the difference in parenthesis is positive by the Cauchy-Schwartz

inequality. Therefore

(N ′ε(r))
− ≤ 2

∣∣∣∣Eε(r)Hε(r)

∣∣∣∣+

∣∣∣∣∣2r
´
Br
vε∆vεdx

´
∂Br

vε(vε)νdσ

Hε(r)2

∣∣∣∣∣ .
(A) Estimating 2r

´
Br
vε∆vεdx

´
∂Br

vε(vε)νdσ: On ∂Br, |(vε)ν | < C, |vε| < Cr by

Lipschitz continuity. Therefore, arguing as in Lemma 2.5.4, we can estimate

∣∣∣∣2r ˆ
Br
vε∆vεdx

ˆ
∂Br

vε(vε)νdσ

∣∣∣∣ ≤ Crn+1
ˆ
Br+ε∩∂Ω

|vε|ε
(
h(0)

h(x)
− 1

)
dω−

≤ Crn+α+2ω−(B(0, r)),
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where the last inequality follows from |vε|ε ≤ Cε < Cr on ∂Ω (by Lipschitz continuity).

From Lemma 2.5.5 it follows that

∣∣∣∣∣2r
´
Br
vε∆vεdx

´
∂Br

vε(vε)νdσ

Hε(r)2

∣∣∣∣∣ ≤ Crn+α+2r2n−6

ω−(B(0, r))3
= C

(
rn−1+α/6

ω−(B(0, r))

)3

rα/2−1.

(B) Estimating 2
∣∣∣Eε(r)Hε(r)

∣∣∣: Lemma 2.5.4 and Lemma 2.5.5 imply

2

∣∣∣∣Eε(r)Hε(r)

∣∣∣∣ ≤ C
rn−2+α

ω−(B(0, r))
= C

(
rn−1+α/2

ω−(B(0, r))

)
rα/2−1.

From (2.5.5) we can conclude

Rn−1+α/2

ω−(B(0, R))
,
R3n−3+α/2

ω−(B(0, R))3

R↓0→ 0.

Combine the estimates in (A) and (B) to conclude that C(ε, R)R ≤ oR(1)Rα/2.

We can now prove a lower bound on the size of Nε(r) for small r.

Corollary 2.5.7. lim supε↓0
1
r (Nε(r)− 1) > −Crα/2−1.

Proof. As lims↓0N(s) = 1 there is some r′ << r such that |N(r′) − 1| < Crα/2. Now pick

ε << r′ small enough that Lemma 2.5.6 applies for ε and all r′ < R < r and such that

|Nε(r′)−N(r′)| < Crα/2(recall Nε(ρ)→ N(ρ) for fixed ρ as ε ↓ 0).

Let j be such that 2−jr < r′ < 2−j+1r. Then

Nε(r)−Nε(r′) ≥
j−2∑
`=0

(Nε(2
−`r)−Nε(2−`−1r)) +Nε(2

−j+1r)−Nε(r′) ≥

−C(2−j+1r, ε)(2−j+1r−r′)− 1

2

j−2∑
`=0

C(2−`r, ε)2−`r
Lem 2.5.6
≥ −krα/2

j−1∑
`=0

2−`α/2 ≥ −Cαrα/2.

Combining the inequalities above we have that Nε(r)− 1 > −Crα/2 for small ε > 0.
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2.5.2 Monneau Monotonicity and Non-degeneracy

Our main tool here will be the Monneau potential, defined for f ∈ H1
loc(Rn) and p ∈

C∞(Rn),

Mx0(r, f, p) :=
1

rn+1

ˆ
∂Br

(f(x+ x0)− p)2dσ(x). (2.5.8)

Monneau, (Mon09), observed that if f is a harmonic function vanishing to first order at x0

and p is a 1-homogenous polynomial then Mx0 is monotonically decreasing as r ↓ 0.

We follow closely the methods of Garofalo and Petrosyan ((GP09), see specifically Sec-

tions 1.4-1.5) who studied issues of non-degeneracy in an obstacle problem. Their program,

which we adapt to our circumstances, has two steps: first relate the growth of the Mon-

neau potential to the growth of Almgren’s frequency function. Second, use this relation to

establish lower bounds on the growth of M and the existence of a limit at zero for M . As

before, v ≡ v(Q) and without loss of generality, Q = 0 ∈ ∂Ω. Additionally, p will always be

a 1-homogenous polynomial. We drop the dependence of M on Q and v when no confusion

is possible. Again vε = v ∗ ϕε, where ϕ is an approximation to the identity. Naturally,

Mε(r, p) := M0(r, vε, p).

First we derive equations (2.5.9) and (2.5.10).

M ′ε(r, p) =
2

rn+2

ˆ
∂Br

(vε − p)(x · ∇(vε − p)− (vε − p))dσ. (2.5.9)

Derivation of (2.5.9). Let x = ry so that Mε(r, p) =
´
∂B1

(
vε(ry)
r − p(ry)

r

)2
dσ(y). Differ-

entiating under the integral gives

M ′ε(r, p) =

ˆ
∂B1

2

(
vε(ry)

r
− p(ry)

r

)(
y

r
· ∇x[vε(ry)− p(ry)]− 1

r2
(vε(ry)− p(ry))

)
dσ(y).

Changing back to x we have that

M ′ε(r, p) =
2

rn+2

ˆ
∂Br

(vε − p)(x · ∇(vε − p)− (vε − p))dσ(x).
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Next we establish a relation between the derivative of M and the growth rate of N (we

emphasize that (2.5.10) is true only when p is a 1-homogenous polynomial).

Hε(r)

rn+1
(Nε(r)− 1) = − 1

rn

ˆ
Br

(vε − p)∆vεdx+ rM ′ε(r, p)/2 (2.5.10)

Derivation of (2.5.10). Recall for all 1-homogenous polynomials p we have N(r, x0, p) ≡ 1.

We “add zero” and distribute to rewrite

Hε(r)

rn+1
(Nε(r)− 1) =

1

rn

ˆ
Br
|∇(vε − p)|2 + 2∇vε · ∇pdx−

1

rn+1

ˆ
∂Br

(vε − p)2 + 2vεpdσ.

Transform the first integral on the right hand side using integration by parts,

Hε(r)

rn+1
(Nε(r)− 1) =

1

rn

ˆ
∂Br

x

r
· ∇(vε − p)(vε − p) + 2

(x
r
· ∇p

)
vε

− 1

rn

ˆ
Br

(vε − p)∆(vε − p) + 2vε∆pdx−
1

rn+1

ˆ
∂Br

(vε − p)2 + 2vεpdσ.

As p is a 1-homogenous polynomial, ∆p = 0 and x · ∇p− p = 0. The above simplifies to

Hε(r)

rn+1
(Nε(r)− 1) = − 1

rn

ˆ
Br

(vε − p)∆vε +
1

rn+1

ˆ
∂Br

(x · ∇(vε − p)− (vε − p))(vε − p)dσ.

In light of (2.5.9), we are finished.

The above two equations, along with Corollary 2.5.7, allow us to control the growth of

M from below.

Lemma 2.5.8. Let p be any 1-homogenous polynomial. Then for any R > 0 there exists a

constant C (independent of R and p) such that

M(R, p)−M(r, p) ≥ −(C + C‖p‖L∞(∂B1))R
α/2
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for any r ∈ [R/4, R].

Proof. Recall (2.5.10),

rM ′ε(r, p)/2 =
Hε(r)

rn+1
(Nε(r)− 1) +

1

rn

ˆ
Br

(vε − p)∆vε.

Consider first the integral on the right hand side and argue as before to estimate,

∣∣∣∣ 1

rn

ˆ
Br

(vε − p)∆vε
∣∣∣∣ ≤ 1

rn

ˆ
∂Ω∩Br+ε

|vε − p|ε
(
h(x)

h(0)
− 1

)
dω−

≤ C(1 + ‖p‖L∞(∂B1))
ω−(B(0, r))r1+α

rn
,

where |vε| < Cr on ∂Ω because v is Lipschitz and |p(x)| ≤ C‖p‖L∞(∂B1)r because p is

1-homogenous. By Corollary 2.4.2,
ω−(B(Q,r))

rn−1 is bounded uniformly in r < 1 and in Q ∈ ∂Ω

on compacta. Therefore, | 1
rn

´
Br

(vε − p)∆vε| ≤ C(1 + ‖p‖L∞(∂B1))r
α.

Returning to (2.5.10),

lim sup
ε↓0

sup
R/4<r<R

(Mε(r, p)
′)− ≤ C(1 + ‖p‖L∞(∂B1))R

α−1 + lim sup
ε↓0

sup
R/4<r<R

1

r
(Nε(r)− 1).

The bounds on the growth of N (Corollary 2.5.7) imply

lim sup
ε↓0

sup
R/4<r<R

(Mε(r, p)
′)− ≤ (C + C‖p‖L∞(∂B1))R

α/2−1,

which is equivalent to the desired result.

When it is not relevant to the analysis (e.g. in the proofs of Lemma 2.5.9 and Proposition

2.5.10 below), we omit the dependence of the constant in Lemma 2.5.8 on ‖p‖L∞(∂B1).

Lemma 2.5.9. Let p be any 1-homogenous polynomial. Then M(0, p) := limr↓0M(r, p)

exists.

Proof. Let a := lim supr↓0M(r, p). That a < ∞ follows from Lemma 2.5.8, applied itera-

tively (as rα/2−1 is integrable at zero). We claim that there exists a constant C < ∞ such
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that M(r, p)− a > −Crα/2 for any 0 < r ≤ 1.

On the other hand, a−M(r, p) > −o(1) as r ↓ 0 by the definition of lim sup. This, with

the claim above, implies that limr↓0M(r, p) = a.

Let us now address the claim: take r0 < r. Let k be such that 2−kr ≥ r0 ≥ 2−k−1r.

Then, by Lemma 2.5.8, we have

M(r, p)−M(r0, p) =
k−1∑
`=0

(M(2−`r, p)−M(2−`−1r, p)) +M(2−kr, p)−M(r0, p)

≥ −Crα/2
∞∑
`=0

(2α/2)−` ≥ −Cαrα/2.

The claim follows if we pick r0 small so that M(r0, p) is arbitrarily close to a.

Finally, we can establish the pointwise non-degeneracy of Θn−1(ω±, Q).

Proposition 2.5.10. For all Q ∈ ∂Ω we have Θn−1(ω±, Q) > 0.

Proof. It suffices to assume Q = 0 and to prove Θn−1(ω−, 0) > 0.

We proceed by contradiction. Pick some rj ↓ 0 so that vj → p uniformly on compacta

(where p is a 1-homogenous polynomial given by Corollary 2.3.2). Lemma 2.5.9 implies

M(0, p) = lim
j→∞

M(rj , p) = lim
j→∞

ˆ
∂B1

(
vj(x)

ω−(B(0, rj))

rn−1
j

−
p(rjx)

rj

)2

dσ(x).

As
p(rjx)
rj

= p(x) and Θn−1(ω−, 0) = 0, by assumption, we conclude M(0, p) =
´
∂B1

p2dσ.

For any j, the homogeneity of p implies

M(rj , p)−M(0, p) =
1

rn+1
j

ˆ
∂Brj

(v−p)2−
ˆ
∂B1

p2 =

ˆ
∂B1

(
vj(y)

ω−(B(0, rj))

rn−1
j

− p

)2

−p2dσ

=

ˆ
∂B1

(
vj(y)

ω−(B(0, rj))

rn−1
j

)2

− 2vj(y)
ω−(B(0, rj))

rn−1
j

p(y)dσ ≥ −Crα/2j ,
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where the last inequality follows from iterating Lemma 2.5.8 (as in the proof of Lemma

2.5.9).

Rewrite the above equation as

ω−(B(0, rj))

rn−1
j

ˆ
∂B1

vj(y)2ω
−(B(0, rj))

rn−1
j

− 2vj(y)p(y)dσ ≥ −Crα/2j .

Divide by ω−(B(0, rj))/r
n−1
j and let j → ∞. By (2.5.5) the right hand side vanishes

and, by assumption, ω−(B(0, rj))/r
n−1
j → 0. In the limit we obtain −2

´
∂B1

p2 ≥ 0, a

contradiction.

At this point we have proven that ∞ > Θn−1(ω−, Q) > 0 everywhere on ∂Ω and that

Θn−1(ω−, Q) is bounded uniformly from above on compacta. Using standard tools from

geometric measure theory this implies, for all dimensions, the decomposition mentioned in

the introduction (for n = 2): ∂Ω = Γ ∪ N , where ω±(N) = 0 and Γ is a (n − 1)-rectifiable

set with σ-finite Hn−1 measure.

2.6 Uniform non-degeneracy and initial regularity

2.6.1 Θn−1(ω±, Q) is bounded uniformly away from 0.

In order to establish greater regularity for ∂Ω we need a uniform lower bound. Again the

method of Garofalo and Petrosyan ((GP09), specifically Theorems 1.5.4 and 1.5.5) guides

us. Our first step is to show that there is a unique tangent plane at every point.

Lemma 2.6.1. For each Q ∈ ∂Ω there exists a unique 1-homogenous polynomial, pQ, such

that for any rj ↓ 0 we have vj → pQ uniformly on compacta (i.e. the limit described in

Corollary 2.3.2 is unique).

Proof. We prove it for Q = 0. Pick rj ↓ 0 so that vrj → p uniformly on compacta for some

1-homogenous polynomial p. Let r̃j ↓ 0 be another sequence so that vr̃j → p̃, where p̃ is also

a 1-homogenous polynomial.
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By Lemma 2.5.9, M(0,Θn−1(ω−, 0)p) exists. Therefore,

M(0,Θn−1(ω−, 0)p) = lim
j→∞

M(rj ,Θ
n−1(ω−, 0)p)

= lim
j→∞

ˆ
∂B1

(
ω−(B(0, rj))

rn−1
j

vrj (x)−Θn−1(ω−, 0)p

)2

dσ

=0.

(2.6.1)

The last equality above follows by the dominated convergence theorem and that vrj → p.

Similarly,

M(0,Θn−1(ω−, 0)p) = lim
j→∞

M(r̃j ,Θ
n−1(ω−, 0)p)

= lim
j→∞

ˆ
∂B1

(
ω−(B(0, r̃j))

r̃n−1
j

vr̃j (x)−Θn−1(ω−, 0)p

)2

=(Θn−1(ω−, 0))2
ˆ
∂B1

(p̃− p)2dσ.

Again the last equality follows by dominated convergence theorem and that vr̃j → p̃. As

Θn−1(ω−, 0) > 0 (Proposition 2.5.10), we have p = p̃.

We should note that Lemma 2.5.9 (the existence of a limit at 0) and Lemma 2.5.8

(estimates on the derivatives of M) both hold for MQ(r, v(Q), p) where p is any 1-homogenous

polynomial and (as before) v(Q)(y) = h(Q)u+(y) − u−(y). Furthermore the constants in

Lemma 2.5.8 are uniform for Q in a compact set. We now prove the main result of this

subsection.

Proposition 2.6.2. The function Q 7→ p̃Q := Θn−1(ω−, Q)pQ is a continuous function

from ∂Ω→ C(Rn).

Proof. As p̃Q is a 1-homogenous polynomial, it suffices to show that Q 7→ p̃Q is a continuous

function from ∂Ω→ L2(∂B1).

Pick ε > 0 and Q ∈ ∂Ω. Equation 2.6.1 implies that MQ(0, v(Q), p̃Q) = 0. In particular,
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there is a rε > 0 such that if r ≤ rε then MQ(r, v(Q), p̃Q) < ε. Shrink rε so that r
α/2
ε < ε.

v(Q) ∈ W 1,∞
loc (Rn) (uniformly for Q in a compact set) and h ∈ Cα(∂Ω), so there exists a

δ = δ(rε, ε) > 0 such that for all P ∈ Bδ(Q) and x ∈ B1(0) we have

|v(Q)(x+Q)− v(P )(x+ P )| < εrε. (2.6.2)

Since supP∈Bδ(Q) ‖v(P )(−+ P )‖L∞(∂Brε) < rε, (2.6.2) immediately implies that

∣∣∣∣∣MQ(rε, v
(Q), p̃Q)− 1

rn+1
ε

ˆ
∂Brε

(v(P )(x+ P )− p̃Q)2

∣∣∣∣∣ < Cε, ∀P ∈ Bδ(Q).

By definition, MQ(rε, v
(Q), p̃Q) < ε, so it follows that

MP (rε, v
(P ), p̃Q) ≡ 1

rn+1
ε

ˆ
∂Brε

(v(P )(x+ P )− p̃Q)2 < Cε, ∀P ∈ Bδ(Q).

Repeated application of Lemma 2.5.8 yields,

MP (rε, v
(P ), p̃Q)−MP (0, v(P ), p̃Q) > −(C + C‖p̃Q‖L∞(∂B1))r

α/2
ε , ∀P ∈ Bδ(Q)⇒

Cε > MP (0, v(P ), p̃Q) =

ˆ
∂B1

(p̃P − p̃Q)2, ∀P ∈ Bδ(Q).

That the first line implies the second follows from ‖p̃Q‖L∞(∂B1) = Θn−1(ω−, Q) < C uni-

formly on compacta, r
α/2
ε < ε and MP (rε, v

(P ), p̃Q) < Cε. The equality in the second line

follows from the standard blowup argument (see the proof of Lemma 2.6.1) and allows us to

conclude that Q 7→ p̃Q is continuous from ∂Ω→ L2(∂B1).

Corollary 2.6.3. The function Q 7→ Θn−1(ω−, Q) is continuous. Additionally, the function

Q 7→ {pQ = 0} is continuous (from ∂Ω to G(n, n− 1)).

Proof. Clearly the first claim, combined with Proposition 2.6.2, implies the second.

For Q1, Q2 ∈ ∂Ω, if P1 = {pQ1 = 0}, P2 = {pQ2 = 0} are distinct hyperplanes with
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normals n̂1, n̂2, then both (n̂1 + n̂2)⊥ and (n̂1 − n̂2)⊥ consist of points equidistant from P1

and P2. Elementary geometry then shows that there is some constant c > 0 such that

max{D[(n̂1 + n̂2)⊥ ∩B1(0), P1 ∩B1(0)], D[(n̂1 − n̂2)⊥ ∩B1(0), P1 ∩B1(0)]} ≥ c.

Let P3(Q1, Q2) be the plane which achieves this maximum. If P1 = P2 then pick P3(Q1, Q2)

to be any hyperplane such that D[P1 ∩B1(0), P3 ∩B1(0)] ≥ c.

Recall Corollary 2.3.2, which implies that pQ is a monic 1-homogenous polynomial for all

Q ∈ ∂Ω. So if y ∈ P3(Q1, Q2)∩ ∂B1(0), there is an universal c̃ > 0 such that c̃ < |pQ1(y)| =

|pQ2(y)|.

Therefore,

‖p̃Q1 − p̃Q2‖L∞(∂B1) ≥|Θ
n−1(ω−, Q1)pQ1(y)−Θn−1(ω−, Q2)pQ2(y)|

≥c̃|Θn−1(ω−, Q1)− (sgn pQ1(y)pQ2(y))Θn−1(ω−, Q2)|.

If sgn pQ1(y)pQ2(y) = −1 (pQ1(y) and pQ2(y) have opposite signs), then

‖p̃Q1 − p̃Q2‖L∞(∂B1) ≥ c̃(Θn−1(ω−, Q1) + Θn−1(ω−, Q2)) ≥ c̃Θn−1(ω−, Q1).

Letting Q2 → Q1, the continuity of Q 7→ p̃Q (Proposition 2.6.2) implies 0 ≥ Θn−1(ω−, Q1).

This contradicts the non-degeneracy of Θn−1(ω−, Q1) (Proposition 2.5.10).

On the other hand, if sgn pQ1(y)pQ2(y) = 1 (pQ1(y) and pQ2(y) share the same sign),

then

‖p̃Q1 − p̃Q2‖L∞(∂B1) ≥ c̃|Θn−1(ω−, Q1)−Θn−1(ω−, Q2)|,

and the continuity of Q 7→ p̃Q implies that Q 7→ Θn−1(ω−, Q) is continuous.

Uniform non-degeneracy immediately follows.
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Corollary 2.6.4. For any K ⊂⊂ Rn there is a c = c(K) > 0 such that, for all Q ∈ K ∩∂Ω,

Θn−1(ω±, Q) > c.

2.6.2 ∂Ω is a C1 domain

We define for Q0 ∈ ∂Ω and r > 0

β(Q0, r) = inf
P

1

r
sup

Q∈∂Ω∩Br(Q0)
dist(Q,P ) (2.6.3)

where the infimum is taken over all (n − 1)-dimensional hyperplanes through Q0 (these

are a variant of Jones’ β-numbers, see (Jon90)). David, Kenig and Toro (see (DKT01),

Proposition 9.1) show that, under suitable assumptions, β(Q0, r) . rγ implies that ∂Ω is

locally the graph of a C1,γ function for any 1 > γ > 0. We will adapt this proof to show

that ∂Ω is locally the graph of a C1 function.

For any Q0 ∈ ∂Ω,

P (Q0) := {pQ0 = 0}

(where pQ0 is the 1-homogenous polynomial guaranteed to exist by Corollary 2.3.2 and

which is unique by Lemma 2.6.1). By the definition of blowups, we know that P (Q0) + Q0

approximates ∂Ω near Q0. The following lemma shows that this approximation is uniformly

tight in Q0.

Lemma 2.6.5. [Compare to (DKT01), equation 9.14] Let K ⊂⊂ Rn and ε > 0. Then there

is an R = R(K, ε) > 0 such that r < R and Q0 ∈ K ∩ ∂Ω implies

sup
Q∈∂Ω∩Br(Q0)

1

r
dist (Q−Q0, P (Q0)) < ε. (2.6.4)

Proof. The proof hinges on the following estimate (see (GP09) Theorem 1.5.5); for any K
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compact there exists a modulus of continuity σK with limt↓0 σK(t) = 0 such that

|v(Q0)(x+Q0)− p̃Q0(x)| ≤ σK(|x|)|x| (2.6.5)

for any Q0 ∈ K ∩ ∂Ω.

Assume this estimate is true; let Q ∈ Br(Q0) ∩ ∂Ω and write Q = Q0 + x. As

Θn−1(ω−, Q0) > c for all Q0 ∈ K∩∂Ω (Corollary 2.6.4) it follows that dist(Q−Q0, P (Q0)) .

|p̃Q0(x)|. Then (2.6.5) yields that dist(Q − Q0, P (Q0)) . |p̃Q0(x)| ≤ |x|σK(|x|) = rσK(r).

Set R to be small enough so that r < R implies σK(r) < ε to prove (2.6.4).

Thus it suffices to establish (2.6.5). Let |x| = r and write x = ry with |y| = 1. If we

divide by r, (2.6.5) is equivalent to

|v(Q0)(ry +Q0)/r − p̃Q0(y)| ≤ σK(r). (2.6.6)

As v(Q)(ry+Q)/r is locally Lipschitz (uniformly in Q on compacta), the uniform estimate

(2.6.6) follows from an L2 estimate: for all ε > 0, there exists a R = RK,ε > 0 such that if

r < R and Q0 ∈ K ∩ ∂Ω then

MQ0(r, v(Q0), p̃Q0) ≡ ‖v(Q0)(ry +Q0)/r − p̃Q0(y)‖2
L2(∂B1)

< ε.

For each point Q ∈ K ∩ ∂Ω we can find an R = Rε(Q) such that R << ε and for all

r < R, |MQ(r, v(Q), p̃Q)| < ε/4. Furthermore, for every r > 0 there is a δ(r) > 0 such that

for Q,Q′ ∈ K ∩ ∂Ω we have

|Q−Q′| < δ(r)⇒ |MQ′(r, v(Q′), p̃Q
′
)−MQ(r, v(Q), p̃Q)| < ε/4.

The existence of δ(r) follows from the uniform Lipschitz continuity of v(Q), the Hölder

continuity of h and the continuity of Q 7→ p̃Q.
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As K is compact we can find Q1, ..., Qn ∈ K ∩ ∂Ω such that if δ1 := δ(Rε(Q1)), ..., δn :=

δ(Rε(Qn)) then K ∩ ∂Ω ⊂
⋃
Bδi(Qi). By the definition of δi, if Q′ ∈ Bδi(Qi), then

MQ′(Rε(xi), v
(Q′), p̃Q

′
) < ε/2. Recall, Rε(Qi) << ε and Lemma 2.5.8 to conclude that

for all Q′ ∈ Bδi(Qi) and r < Rε(Qi),M
Q′(r, v(Q′), p̃Q

′
) < ε. Therefore, setting RK,ε ≡

mini{Rε(Qi)} gives the L2 estimate r < RK,ε, Q
′ ∈ K ∩ ∂Ω⇒MQ′(r, v(Q′), p̃Q

′
) < ε.

We should note, (2.6.5) (along with the Whitney extension theorem) allows for an al-

ternative proof that ∂Ω is a C1 domain (see (GP09) Theorem 1.3.8). We will, however,

continue our proof in the vein of (DKT01).

Proposition 2.6.6. Let Ω ⊂ Rn satisfy the conditions of Theorem 2.1.1 or Theorem 2.1.2.

If log(h) ∈ C0,α(∂Ω) then Ω is a C1 domain.

Proof. For Q0 ∈ ∂Ω, equation 2.6.4 shows that P (Q0) + Q0 is a tangent plane to ∂Ω at

Q0. Furthermore, Q0 7→ P (Q0) is continuous (Corollary 2.6.3). Under the assumptions of

Theorem 2.1.2, Ω is a Lipschitz domain with a tangent plane at every Q ∈ ∂Ω that varies

continuously in Q; thus we are done.

If we simply assume that Ω is Reifenberg flat (Theorem 2.1.1), we still need to show that

Ω is a graph domain (in fact we will show it is a Lipschitz domain). Let R = RK,ε > 0 be

chosen later and let r < R. If R is small enough, vanishing Reifenberg flatness (Corollary

2.3.2), along with Lemma 2.6.5, implies

π({∂Ω ∩B(Q0, r)−Q0}) ⊃ P (Q0) ∩B(0,
r

2
), ∀Q0 ∈ K ∩ ∂Ω, r < R.

Here π : Rn → P (Q0) is a projection (for more details see the proof of (DKT01) Lemma 8.3

or (KT97) Remark 2.2).

We need only to show that π−1 is a well defined function with bounded Lipschitz norm

on P (Q0) ∩ B(0, r/2). Let Σ := (∂Ω − Q0) ∩ B(0, r) ∩ π−1(B(0, r/2)) and pick distinct

Q1, Q2 ∈ Σ. Perhaps shrinking R again, the continuity of Q 7→ P (Q), combined with
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Lemma 2.6.5, implies

1

|Q1 −Q2|
dist(Q1 −Q2, P (Q0)) < ε. (2.6.7)

Therefore, π−1 is well defined and ‖π−1‖Lip(P (Q0)∩B(0,r/2)) < (1− ε)−1.

It should be noted that if Ω is a C1 domain it is not necessarily true that u ∈ C1(Ω) (see

(Pom92), pg 45). However, as Θn−1(ω±, Q) is continuous, we can establish the following.

Corollary 2.6.7. Let Ω, log(h) be as in Proposition 2.6.6. Then u± ∈ C1(Ω±).

Proof. For Q ∈ ∂Ω, let ν(Q) be the inward pointing normal to Ω at Q. We will prove that

lim
X→Q
X∈Ω+

Diu
+(X) = (ν(Q) · ei)Θn−1(ω+, Q),∀i = 1, ..., n.

The desired result follows from Θn−1(ω+,−), ν(−) ∈ C(∂Ω) (Corollary 2.6.3 and Proposition

2.6.6). The proof for u− is identical.

Pick r small so that B(Q, r) ∩ ∂Ω can be written as the graph of a C1 function. Then

construct a bounded NTA domain ΩB ⊂ Ω such that ∂ΩB ∩∂Ω = B(Q, r)∩∂Ω (see (JK82)

Lemma 6.3 and (KT03) Lemma A.3.3). For X0 ∈ ΩB , let ωX0
B be the harmonic measure of

ΩB with a pole at X0. By local Lipschitz continuity, |Diu+| < C on ΩB and, therefore, Diu
+

has a non-tagential limit g(P ) for ωX0
B -a.e. P in ∂ΩB (see Section 5 in (JK82)). Furthermore,

if K(X,P ) :=
dωXB

dω
X0
B

(P ) we have the following representation (see (JK82) Corollary 5.12),

Diu
+(X) =

ˆ
∂ΩB

g(P )K(X,P )dωX0
B (P ).

Using blowup analysis, one computes g(P ) = (ν(P ) · ei)Θn−1(ω+, P ) for P ∈ ∂ΩB ∩

B(Q, r/2). As g(P ) is continuous on B(Q, r/2) ∩ ∂ΩB , there is some s < r/2 such that

P ∈ B(Q, s) ∩ ∂ΩB ⇒ |g(P ) − g(Q)| < ε. On the other hand, Jerison and Kenig (Lemma
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4.15) proved that limX∈ΩB ,X→Q supP∈∂ΩB\B(Q,s)K(X,P ) = 0. This allows us to estimate,

lim
X→Q
X∈Ω+

|Diu+(X)− (ν(Q) · ei)Θn−1(ω+, Q)| = lim
X→Q
X∈ΩB

|Diu+(X)− g(Q)|

≤ lim
X→Q
X∈ΩB

ˆ
K(X,P )|g(P )− g(Q)|(χ∂ΩB\B(Q,s)(P ) + χ∂ΩB∩B(Q,s)(P ))dωX0

B (P )

≤ lim
X→Q
X∈ΩB

CωX0
B (∂ΩB\B(Q, s)) sup

P /∈B(Q,s)
K(X,P ) + εωXB (B(Q, s)) ≤ ε.

The first equality follows from the fact that any sequence in Ω+ approaching Q must, apart

from finitely many terms, be contained in ΩB . The last line follows first from |g(P )| < C

and then from the fact that ωXB is a probability measure for any X ∈ ΩB .

2.7 Initial Hölder regularity: ∂Ω is C1,s

In this section we will prove that ∂Ω is locally the graph of a C1,s function for some 0 < s ≤ α.

Note that, in general, the best one can hope for is s = α (if ∂Ω is the graph of a C1,α function

then log(h) ∈ C0,α).

Here we will borrow heavily from the arguments of De Silva et al. (DFS14), who prove

C1,γ regularity for a wide class of non-homogenous free boundary problems. We cannot

immediately apply their results, as they assume a non-degeneracy in the free boundary

condition that our problem does not have (see condition (H2) in Section 7 of (DFS14)). It

should also be noted that our main result in this section is not immediately implied by the

remark at the end of Caffarelli’s paper, (Caf87). Indeed, Caffarelli’s free boundary condition

also contains an a priori non-degeneracy condition (see condition (a) at the top of page 158

in (Caf87)) which our problem lacks.
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2.7.1 The Iterative Argument

In this section we shall state the main lemma and show how that lemma, through an iterative

argument, implies our desired result. First we need two definitions.

Definition 2.7.1. Let g : Rn → R. Then w ∈ C(B1(0)) is a solution to the free

boundary problem associated to g if:

• w ∈ C2({w > 0}) ∩ C2({w < 0})

• w ∈ C1({w > 0}) ∩ C1({w < 0})

• w satisfies, in B1(0), the following:

∆w(x) = 0, x ∈ {w 6= 0}

(w+)νx(x)g(x) = −(w−)νx(x), x ∈ {w = 0}
(2.7.1)

where νx is the normal to {w = 0} at x.

One observes that Corollary 2.6.7 implies that u is a solution to the free boundary problem

associated to h. We now need the notion of a “two-plane solution”.

Definition 2.7.2. Let γ > 0 and g : Rn → R. Then for any x0 ∈ B1(0) we can define the

two-plane solution associated to g at x0:

U
(x0)
γ (t) := γt+ − g(x0)γt−, t ∈ R.

When no confusion is possible we drop the dependence on x0. It should also be clear from

context to which function g our U is associated.

The following remark, which follows immediately from Corollary 2.3.2 and (2.6.5), eluci-

dates the relationship between a two-plane solution and our function u.
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Remark 2.7.3. Let x0 ∈ ∂Ω. As r → 0 it is true that

ur,x0(x) :=
u(rx+ x0)

r
→ U

(x0)
Θn−1(ω+,x0)

(x · νx0)

uniformly on compacta. Here U is the two-plane solution associated to h. Furthermore, the

rate of this convergence is independent of x0 ∈ K ∩ ∂Ω for K compact.

Intuitively, the faster the rate of this convergence, the greater the regularity of ∂Ω. This

relationship motivates the following lemma (compare with (DFS14), Lemma 8.3), which says

roughly that if u is close to a two-plane solution in a large ball, then u is in fact even closer

to a, possibly different, two-plane solution in a smaller ball.

Lemma 2.7.4. Let ∞ > C1, c1 > 0 and k̃ > 0. Let v be a solution to a free boundary

problem associated to g such that infx∈B2(x0) g(x) ≥ k̃ > 0 and such that v(x0) = 0. Let

ε > 0, C1 > γ > c1, ν ∈ Sn−1 and assume

U
(x0)
γ (x · ν − ε) ≤ v(x+ x0) ≤ U

(x0)
γ (x · ν + ε), x ∈ B1(0). (2.7.2)

Also, assume that supx,y∈B1(x0)
|g(x)−g(y)|
|x−y|α < ε2.

Then there exists some R0 = R0(C1, c1, n) > 0 such that for all r < R0 there is a

ε̃ = ε̃(r, C1, c1, n) > 0 so that if the ε above satisfies ε ≤ ε̃ then

U
(x0)
γ′ (x · ν′ − r ε

2
) ≤ v(x+ x0) ≤ U

(x0)
γ′ (x · ν′ + r

ε

2
), x ∈ Br(0), (2.7.3)

where |ν′| = 1, |ν′ − ν| ≤ C̃ε and |γ − γ′| ≤ C̃γε. Here C̃ = C̃(C1, c1, n) > 0.

With this lemma we can prove Hölder regularity by way of an iterative argument.

Proposition 2.7.5. Let Ω ⊂ Rn be a 2-sided NTA domain with log(h) ∈ C0,α(∂Ω).

• If n = 2, then Ω is a C1,s domain for some s > 0.
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• If n ≥ 3, assume that either Ω is a δ-Reifenberg flat domain for some 0 < δ small

enough or that Ω is a Lipschitz domain. Then Ω is a C1,s domain for some s > 0.

Proof of Proposition 2.7.5 assuming Lemma 2.7.4. Without loss of generality let 0 ∈ ∂Ω and

en be the inward pointing normal to Ω at x0 ∈ B1(0)∩∂Ω. We will show that β(x0, t) ≤ C ′′ts

for some s > 0 and some C ′′ > 0 independent of t > 0, x0 ∈ ∂Ω ∩ B1(0). A theorem of

David, Kenig and Toro ((DKT01), Proposition 9.1) then implies that ∂Ω is locally the graph

of a C1,s function.

Set γ = Θn−1(ω+, x0) and let

C1 := 2 sup
z∈∂Ω∩B4(0)

Θn−1(ω+, z), c1 :=
1

2
inf

z∈∂Ω∩B4(0)
Θn−1(ω+, z).

By Corollary 2.6.4 and the work of Section 2.4 we have ∞ > C1 ≥ c1 > 0.

Lemma 2.7.4 gives us an R0. Pick 0 < r ≤ R0 small enough so that rα < 1
4 . We then

get a ε̃ > 0 depending on r. Pick ε < ε̃ such that

1/2 ≤

( ∞∏
k=0

(1− C̃ε/2k)

)
<

( ∞∏
k=0

(1 + C̃ε/2k)

)
≤ 2

where C̃ is the constant from Lemma 2.7.4.

Recall Remark 2.7.3, that uρ,x0(x)→ Uγ(xn) for x ∈ B1 as ρ ↓ 0. Thus, for small enough

ρ, we have

‖uρ,x0(x)− Uγ(xn)‖L∞(B1) < Kε,

where K ≤ min{c1, infx∈B1
|h(x)|c1}. This implies

Uγ(xn − ε) ≤ uρ,x0(x) ≤ Uγ(xn + ε), x ∈ B1(0).

uρ,x0 is a solution to the free boundary problem associated to g(x) = h(ρx + x0). In

particular, if ρ is small enough such that ρα‖h‖C0,α < ε2 then g satisfies the growth and
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lower bound assumptions of Lemma 2.7.4.

If u0(x) := uρ,x0(x), then we can apply Lemma 2.7.4 to u0 in the direction en with

γ, C1, c1, r, ε as above. This gives us a ν1 ∈ Sn−1 and a γ1 > 0 such that

Uγ1(x · ν1 − r
ε

2
) ≤ u0(x) ≤ Uγ1(x · ν1 + r

ε

2
), x ∈ Br(0).

Write x = ry and divide the above equation by r to obtain,

Uγ1(y · ν1 −
ε

2
) ≤ u0(ry)/r ≤ Uγ1(y · ν1 +

ε

2
), y ∈ B1(0).

Let u1(z) := u0(rz)/r so that

Uγ1(y · ν1 − ε/2) ≤ u1(y) ≤ Uγ1(y · ν1 + ε/2), y ∈ B1(0)

Apply Lemma 2.7.4 to u1 in direction ν1 with C1, c1, γ1, ε/2, r and iterate.

In this way, we create a sequence of uk(y), θk, γk, νk such that

Uγk(y · νk − ε/2k) ≤ uk(y) ≤ Uγk(y · νk + ε/2k), y ∈ B1(0)

and |νk− νk+1| < C̃ε/2k. We must prove that it is valid to apply Lemma 2.7.4 at each step.

By Lemma 2.7.4 and construction,

c1 ≤
1

2
γ ≤

k−1∏
i=0

(1− C̃ε/2k)γ ≤ γk ≤
k−1∏
i=0

(1 + C̃ε/2k)γ ≤ 2γ ≤ C1,

so γk is always in the acceptable range for another application of Lemma 2.7.4. Also in the

kth step we apply the lemma with ε/2k < ε < ε̃ and the same r.

Finally, in the kth step we have uk(y) = uρrk,x0
(y). Thus we need to make sure that

(ρrk)α‖h‖C0,α < (ε/2k)2. By construction, ρα‖h‖C0,α < ε2 and rkα ≤ 1
4
k

and so the

conditions of Lemma 2.7.4 are satisfied for each k.
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After k steps,

Uγk(y · νk − ε/2k) ≤ uk(y) ≤ Uγk(y · νk + ε/2k), y ∈ B1(0)⇒

Uγk(x · νk − ρrkε/2k) ≤ u(x+ x0) ≤ Uγk(x · νk + ρrkε/2k), x ∈ Bρrk(0).

If x ∈ Bρrk(0) is taken such that x+ x0 ∈ ∂Ω then the above equation implies

x · νk − ρrkε/2k < 0 < x · νk + ρrkε/2k ⇒

|x · νk| ≤ ρrkε/2k ⇒ β(x0, ρr
k) ≤ ε/2k.

If s := − logr(2) > 0, we have shown β(x0, ρr
k) ≤ ε

ρs (ρrk)s ≤ C ′(ρrk)s (Remark 2.7.3

implies that we can we can take ρ uniformly in x0 ∈ B1(0)). If t is such that ρrk+1 < t ≤ ρrk

we can estimate

β(x0, t) <
ρrk

t
β(x0, ρr

k) < C ′
ρrk

t
(ρrk)s = C ′

ρrk

t
ts

(
ρrk

t

)s
≤ C ′

r1+s
ts ≡ C ′′ts,

where we used that ρrk

t < 1
r .

It is worthwhile to note that the condition rα < 1/4 implies s = − logr(2) < α/2. So

this argument does not give optimal Hölder regularity.

2.7.2 Harnack Inequalities

It remains to prove Lemma 2.7.4. We first define a subsolution to the free boundary problem

(see Definition 2.7.1).

Definition 2.7.6. Let O be an open set in Rn and g : Rn → R. We say that z ∈ C(O) is a

strict-subsolution to the free boundary problem associated with g in O if:

• {z = 0} is locally the graph of a C2 function.
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• z ∈ C1({z > 0} ∩ O) ∩ C1({z < 0} ∩ O).

• On the set {z 6= 0} we have ∆z > 0.

• For x0 ∈ {z = 0} we have

g(x0)(z+)νx0
(x0) + (z−)νx0

(x0) > 0,

where νx0 is the inward pointing normal at x0 to {z > 0}.

We define a strict supersolution analogously.

With this definition we need a comparison principle (note that this comparison principle

can also be taken to be the definition of a sub/super solution, see e.g. (DFS14)).

Lemma 2.7.7. [Compare to (CS05) Lemma 2.1, (DFS14) Definition 7.2] Let O be an open

set in Rn. Let w, z be a solution and strict subsolution respectively to the free boundary

problem associated to a positive g in O. If w ≥ z in O then w > z in O.

The analogous statement holds for supersolutions.

Proof. We proceed by contradiction and let x̃ be a touching point. There are three cases:

Case 1: x̃ ∈ {z = 0}. {z = 0} is locally the graph of a C2 function so there is a tangent

ball B ⊂ {z > 0} with B∩{z = 0} = x̃. Since {z > 0} ⊆ {w > 0} we have B∩{w = 0} = x̃

and B ⊂ {w > 0}. As such {z = 0}, {w = 0} share a normal vector ν at x̃.

Since w ≥ z, z 6= w we have that z−w attains a local maximum at x̃. Thus (z+−w+)ν ≤ 0

and (−z−+w−)−ν = (z−−w−)ν ≤ 0. We then have 0 ≥ g(x̃)(z+−w+)ν + (z−−w−)ν =

g(x̃)(z+)ν + (z−)ν > 0 a contradiction.

Case 2: x̃ ∈ {z > 0}. As {z > 0} ⊆ {w > 0}, both −w, z are subharmonic on {z > 0}.

So z − w cannot attain a local maximum on {z > 0} which implies w > z on {z > 0} ∩ O.

Case 3: x̃ ∈ {z < 0}. In this case x̃ ∈ {w < 0}. As {w < 0} ⊆ {z < 0}, we have −w, z

are both subharmonic on {w < 0}. We can then argue as in Case 2.
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With this comparison lemma we can prove a “one-sided” Harnack type inequality.

Lemma 2.7.8. [Compare with (DFS14), Lemmas 4.3 and 8.1] Let w be a solution to the

free boundary problem associated to a positive continuous function g on B1(0) (see Definition

2.7.1). Let k̃ > 0 and assume infx∈B1(0) g(x) ≥ k̃. Also assume w satisfies

w(x) ≥ U
(0)
γ (x · ν), x ∈ B1(0)

(where ν ∈ Sn−1 and γ > 0) and that at x = 1
5ν

w(x) ≥ U
(0)
γ (1/5 + ε). (2.7.4)

Finally, assume that supx∈B1
|g(0)− g(x)| ≤ 10ε2.

Then there exists ε > 0 and 0 < c < 1 (which depend only on the dimension and k), such

that if the above ε < ε we can conclude

w(x) ≥ U
(0)
γ (x · ν + cε), x ∈ B1/2(0).

Analogously, if w(x) ≤ Uγ(x·ν), x ∈ B1 and w(x) ≤ Uγ(1/5−ε) then w(x) ≤ Uγ(x·ν−cε)

in B1/2(0).

Proof. For ease of notation we will drop the dependence of U on γ, 0 and let ν = en. We

prove the inequality from below; the inequality from above, and the result for general ν, is

proven similarly. Our first step is to widen the gap between w and U :

Claim: There exists a universal c1 > 0 such that w(x) ≥ (1 + c1ε)γx
+
n − g(0)γx−n for all

x ∈ B19/20(0) and for universal c1 > 0.

Proof of Claim: In B1/20(x) there is a universal constant c0 > 0 such that w(x)−Uγ(x) ≥

c0γε ≥ c0γεxn by the Harnack inequality and (2.7.4).

Define O = (B1 ∩ {xn > 0})\B1/20(x) and let φ be the harmonic function in O such

43



that φ = 0 on ∂(B1 ∩ {xn > 0}) and φ = 1 on ∂B1/20(x).

We have

w(x)− γxn ≥ 0 = γc0φ(x)ε/2, x ∈ ∂(B1 ∩ {xn > 0}).

Also, note

w(x)− γxn ≥ c0γε ≥ γc0εφ(x)/2, x ∈ ∂B1/20(x).

As w−γxn and γc0εφ(x)/2 are both harmonic on O we have that w−γxn ≥ γc0εφ(x)/2 on

all of O. Finally, by the boundary Harnack principle there is a c̃ > 0 such that φ ≥ c̃xn on

O ∩B19/20. Therefore, c1 = min{c0, c0c̃/2, 5/2} is such that w− γx+
n ≥ γεc1x

+
n on B19/20,

proving the claim.

Recall w(x) − U(xn) ≥ γε > 0. Thus w(x) − (1 + c1ε)γ(xn)+ ≥ γε − c1γε/5 ≥ γε/2.

The Harnack inequality tells us that

w(x)− (1 + c1ε)γ(xn)+ ≥ c′εγ, x ∈ B1/20(x),

for c′ universal depending on dimension. If c2 is small enough that (1 + c1ε)c2 ≤ c′, then

w(x)− (1 + c1ε)γ(xn + c2ε)
+ ≥ 0, x ∈ B1/20(x). (2.7.5)

Now we create a strict subsolution in the annulus

A := B3/4(x)\B1/20(x)

and then use this subsolution to transfer the gap in (2.7.5) to a neighborhood of 0.

Let

ψ(x) := 1− c(|x− x|−n − (3/4)−n), x ∈ A,

where c is such that ψ = 0 on ∂B1/20(x). Then 0 ≤ ψ ≤ 1 and −∆ψ ≥ k(n) > 0 in A. We

can extend ψ ≡ 0 on B1/20(x).
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For t ≥ 0 we write

vt(x) := (1 + c1ε)γ(xn− εc2ψ(x) + tε)+− g(0)γ(xn− εc2ψ(x) + tε)−, x ∈ B3/4(x). (2.7.6)

We will prove later that this is a family of strict subsolutions.

By the claim, v0(x) ≤ (1 + c1ε)γx
+
n − g(0)γx−n ≤ w(x) for x ∈ B3/4(x). So we can define

t∗ = sup{t | vt(x) ≤ w(x), ∀x ∈ B3/4(x)}. If t∗ ≥ c2 we get

w(x) ≥ vc2(x) ≥ Uγ(xn − εc2ψ + c2ε) ≥ Uγ(xn + cε), x ∈ B1/2(0)

where c := c2(1− supx∈B1/2
ψ). This is the desired result.

Assume, to obtain a contradiction, t∗ < c2. There must be some point x̃ ∈ B3/4(x) such

that vt∗(x̃) = w(x̃) (and everywhere else in B3/4(x) we have vt∗(x) ≤ w(x)) .

Case 1: x̃ ∈ ∂B3/4(x). As ψ(x̃) = 1,

vt∗(x̃) = (1 + c1ε)γ(x̃n + (t∗ − c2)ε)+ − g(0)γ(x̃n + (t∗ − c2)ε)−

< (1 + c1ε)γ(x̃n)+ − g(0)γ(x̃n)−.

Note, B3/4(x) ⊂ B19/20, so the claim implies w(x̃) ≥ (1+c1ε)γ(x̃n)+−g(0)γ(x̃n)− > vt∗(x̃),

a contradiction.

Case 2: x̃ ∈ B1/20(x). Here ψ ≡ 0 so vt∗(x̃) = (1 + c1ε)γ(x̃n + t∗ε)+ < (1 + c1ε)γ(x̃n +

c2ε)
+, as t∗ < c2. But (2.7.5) implies w(x̃) ≥ (1+c1ε)γ(x̃n+c2ε)

+, which is a contradiction.

Case 3: x̃ ∈ A. If vt is a strict subsolution to the free boundary problem associated

with g in A, then Lemma 2.7.7 (the comparison lemma) gives the desired contradiction.

Proof that vt is a strict subsolution: Note that in ({vt∗ > 0} ∩A)∪ ({vt∗ < 0} ∩A)

we have ∆vt∗ ≥ −mεc2∆ψ ≥ mεc2k(n) > 0 where m = γmin{1, k̃}.

We then need to show that {vt∗ = 0} is locally the graph of a C2 function. Observe {vt∗ =
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0} = {xn− εc2ψ(x) + t∗ε = 0}. As ψ ∈ C∞(A) it suffices to show that |en− εc2∇ψ(x)| 6= 0

on A. But this is accomplished simply by picking ε < 1
c2M

where M = supx∈A |∇ψ(x)|. M

depends only on dimension so ε can still be chosen universally.

To verify the boundary condition, let x0 ∈ {vt = 0} and ν the unit normal pointing into

{vt > 0} at x0. Then g(x0)(v+
t )ν + (v−t )ν = ((1 + c1ε)g(x0)γ− g(0)γ)(en− εc2∇ψ) · ν. As ν

points into {vt > 0} it must be the case that (en − εc2∇ψ) · ν > 0. So it is enough to prove

that (1 + c1ε)g(x0)− g(0) > 0. By assumption |g(x0)− g(0)| ≤ 10ε2 which means it suffices

to show c1εg(x0) > 10ε2. By picking ε > 0 small enough (now depending on k̃) this is true

on B1(0) and we are done.

Using the one-sided Harnack inequality we can prove a two-sided Harnack type inequality.

Lemma 2.7.9. [Compare with (DFS14), Theorem 4.1] Let k̃ > 0 and let g ∈ C(B2(0)) such

that infx∈B2(0) g(x) ≥ k̃. Let w be a solution to the free boundary problem associated to g in

B2(0). Assume w satisfies at some point x0 ∈ B2,

U
(0)
γ (x · ν + a0) ≤ w(x) ≤ U

(0)
γ (x · ν + b0), ∀x ∈ Br(x0) ⊂ B2(0)

where ν ∈ Sn−1, γ > 0 and b0 − a0 ≤ εr, supx∈B2
|g(x)− g(0)| ≤ ε2 for some ε > 0.

Then there exists some ε = ε(n, k̃) > 0 such that if ε ≤ ε we can conclude

U
(0)
γ (x · ν + a1) ≤ w(x) ≤ U

(0)
γ (x · ν + b1), ∀x ∈ Br/20(x0),

where a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (1− c)εr. Here c = c(n, k̃) > 0.

Proof. Without loss of generality x0 = 0, r = 1, ν = en. There are three cases, each of which

produces a universal 0 < c̃ < 1. Take c to be the minimum of these three.

Case 1: a0 < −1/5. For small ε > 0 we have xn + b0 < 0 on B1/10. Therefore, by the
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assumed inequality on w,

0 ≤ v(x) :=
w(x)− g(0)γ(xn + a0)

g(0)γε
≤ 1, ∀x ∈ B1/10.

Additionally, ∆v = 0 on B1/10.

So by the Harnack inequality there are constants 1 ≥ k1 ≥ k2 ≥ 0 such that k1 − k2 =

1 − c̃ < 1 where c̃ is universal (though k1, k2 may depend on w) and k1 ≥ v(x) ≥ k2 on

B1/20.

This implies

Uγ(xn + a0 + k2ε) ≤ w(x) ≤ Uγ(xn + a0 + k1ε), ∀x ∈ B1/20.

Set a1 = a0 + k2ε and b1 = a0 + k1ε, so that a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (k1 − k2)ε =

(1− c̃)ε.

Case 2: a0 > 1/5. In this case a0 + xn > 0 on B1/10 and so

0 ≤ v(x) :=
w(x)− γ(xn + a0)

γε
≤ 1

on B1/10. The rest of the argument follows exactly as in Case 1.

Case 3: |a0| < 1/5. We can rewrite the main assumption as

Uγ(xn + a0) ≤ w(x) ≤ Uγ(xn + a0 + ε), x ∈ B1(0).

Without loss of generality, assume that

w(x) ≥ Uγ(xn + a0 + ε/2) (2.7.7)

where x = 4en/25− a0en (the case with the reverse inequality is similar).
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If v(x) := w(x− a0en) for x ∈ B4/5(0), then the above can be rewritten as

Uγ(xn) ≤ v(x) ≤ Uγ(xn + ε), ∀x ∈ B4/5(0).

v(4en/25) ≥ Uγ(4/25 + ε/2).

(2.7.8)

Note that v satisfies the free boundary problem associated to g̃ which is a translate of g.

Thus we can apply Lemma 2.7.8 with ε/2 and inside B4/5 to get that

v(x) ≥ Uγ(xn + c̃ε), x ∈ B2/5(0)⇒

w(x) ≥ Uγ(xn + a0 + c̃ε), x ∈ B1/5(0),

for some universal 0 < c̃ < 1. Letting a1 = a0 + c̃ε and b1 = b0 we have b1 − a1 =

b0 − a0 − c̃ε ≤ (1− c̃)ε.

With these lemmata in hand we can prove the following regularity result. This will be

crucial in the proof of Lemma 2.7.4 (the iterative step).

Corollary 2.7.10. [Compare with (DFS14), Corollary 8.2] Let w, γ, g, ν, ε, x0 satisfy the

assumptions of Lemma 2.7.9 with r = 1. Define

w̃ε :=


w(x)− γx · ν

γε
, x ∈ B2(0) ∩ {w ≥ 0}

w(x)− g(0)γx · ν
g(0)γε

, x ∈ B2(0) ∩ {w < 0}
(2.7.9)

Then w̃ε has a Hölder modulus of continuity at x0 outside the ball of radius ε/ε, i.e. for

all x ∈ B1(x0) with |x− x0| ≥ ε/ε

|w̃ε(x)− w̃ε(x0)| ≤ C|x− x0|χ

where C, χ depend only n, k̃.
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Proof. Let ν = en. Repeated application of Lemma 2.7.9 gives

Uγ(xn + am) ≤ w(x) ≤ Uγ(xn + bm), x ∈ B20−m(x0),

with bm − am ≤ (1− c)mε. However, we may only apply Lemma 2.7.9 when m is such that

(1− c)m20mε ≤ ε (as we are taking r = 20−m at the mth step).

If 20−χ = (1−c) then we have, for each acceptable m, that x ∈ B20−m(x0)\B20−m−1(x0)

implies |w̃ε(x)− w̃ε(x0)| ≤ C|x− x0|χ. As above, m must satisfy 20−m ≥ (1− c)mε
ε , which

is true if 20−m ≥ ε
ε . So we have the desired continuity outside B ε

ε
(x0).

2.7.3 The Transmission Problem and Proof of Lemma 2.7.4

In order to prove Lemma 2.7.4, we will argue by contradiction and analyze the limit of the

w̃ε (see (2.7.9)) as ε ↓ 0. This limit will be the solution to a transmission problem which we

introduce now.

Definition 2.7.11. We say that W ∈ C(Bρ) is a classical solution to the transmission

problem at 0 in Bρ if:

• W ∈ C∞(Bρ ∩ {xn ≥ 0}) ∩ C∞(Bρ ∩ {xn ≤ 0})

• W satisfies

∆W = 0, x ∈ Bρ(0) ∩ {xn 6= 0}

lim
t↓0

Wn(x′, t)− lim
t↑0

Wn(x′, t) = 0, x ∈ Bρ(0) ∩ {xn = 0}
(2.7.10)

When no confusion is possible, we will simply say that W is a classical solution to the

transmission problem or a classical solution to (2.7.10).

We can deduce the following immediately from the definition:
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Lemma 2.7.12. Let W be a classical solution to the transmission problem in B1. Then

there is a universal constant C and a constant p (which depend on W ) such that

|W (x)−W (0)− (∇x′W (0) · x′ + px+
n − px−n )| ≤ C‖W‖L∞(B1)r

2, ∀x ≡ (x′, xn) ∈ Br(0).

(2.7.11)

Unfortunately, the conditions of Definition 2.7.11 are too difficult to verify directly. It

will be more convenient to work with viscosity solutions.

Definition 2.7.13. Let W̃ ∈ C(Bρ). We say that W̃ is a viscosity solution to the transmis-

sion problem, (2.7.10), if:

• ∆W̃ (x) = 0, in the viscosity sense, when x ∈ {xn 6= 0} ∩Bρ.

• Let φ be any function of the form

φ(x) = A+ px+
n − qx−n +BQ(x− y)

where

Q(x) =
1

2
[(n− 1)x2

n − |x′|2], y = (y′, 0), A ∈ R, B > 0

and p−q > 0. Then φ cannot touch W̃ strictly from below at a point x0 = (x′0, 0) ∈ Bρ.

• If p− q < 0 then φ cannot touch W̃ strictly from above on {xn = 0}.

The following result allows us to estimate the growth rate of viscosity solutions. We

will omit the proof as it is identical to the one provided by De Silva, Ferrari and Salsa in

(DFS14).

Theorem 2.7.14. [Theorem 3.3 and Theorem 3.4 in (DFS14)] Let W̃ be a viscosity solution

to (2.7.10) in B1 such that ‖W̃‖L∞ ≤ 1. Then, in B1/2, W̃ is actually a classical solution

to (2.7.10). In particular, W̃ satisfies the estimate (2.7.11).

With this machinery in hand we are ready to prove Lemma 2.7.4.
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Proof of Lemma 2.7.4. It suffices to assume that x0 = 0 and ν = en (by the rotation in-

variance of the conditions). Fix any r > 0 small and let {γk}, {εk}, {wk}, {gk} be such that

C1 > γk > c1, εk ↓ 0 and wk is a classical solution to the free boundary problem associated

to gk. Furthermore, infx∈B1(0) gk(x) ≥ k̃, supx,y∈B1(0)
|gk(x)−gk(y)|
|x−y|α < ε2

k and wk(x) satisfies

U
(0)
γk (xn − εk) ≤ wk(x) ≤ U

(0)
γk (xn + εk), x ∈ B1(0). (2.7.12)

However, to obtain a contradiction, assume the desired νk, γ
′
k do not exist.

Define w̃k as in (2.7.9). Then (2.7.12) implies that {w̃k = 0} → {xn = 0} in the Hausdorff

distance norm and ‖w̃k‖L∞ ≤ 1. These observations, combined with Corollary 2.7.10 and

the Arzelà-Ascoli theorem, show that w̃k → w̃ uniformly in C(B1(0)) (after passing to

subsequences). Furthermore, Corollary 2.7.10 implies that w̃ is a C0,χ function defined on

B1/2(0).

Claim: w̃ is a viscosity solution in B1/2 to the transmission problem.

If this is the case, w̃ satisfies the estimate (2.7.11). So there is a p such that

|w̃(x)− w̃(0)− (∇x′w̃(0) · x′ + px+
n − px−n )| ≤ Cr2, ∀x = (x′, xn) ∈ Br(0).

Because ‖w̃‖L∞ ≤ 1 we have |p| < 10. We will also pick r small enough so that 8Cr < 1.

As w̃k converges uniformly to w̃, for large enough k (depending on r possibly) we have

|w̃k(x)− (∇x′w̃(0) · x′ + px+
n − px−n )| ≤ 2Cr2, ∀x = (x′, xn) ∈ Br(0). (2.7.13)

Let νk := 1√
1+ε2

k|∇x′w̃(0)|2
(εk∇x′w̃(0), 1) and γ′k := γk(1 + εkp). We will now prove

Uγ′k
(x · νk − r

εk
2

) ≤ wk(x) ≤ Uγ′k
(x · νk + r

εk
2

), x ∈ Br(0) (A)
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and also

|γ′k − γk| ≤ C̃εkγk, |en − νk| ≤ C̃εk, (B)

for some universal C̃. This is the desired contradiction.

Proof of (A): Assume wk(x) ≥ 0 (the other case follows similarly). (2.7.13) implies

(∇x′w̃(0) · x′ + px+
n − px−n )− 2Cr2 ≤ wk(x)− γkxn

γkεk
≤ 2Cr2 + (∇x′w̃(0) · x′ + px+

n − px−n )

for x ∈ Br(0). Consider the inequality on the left. Some algebraic manipulation yields

γkxn + γkεk((∇x′w̃(0) · x′ + px+
n − px−n )− 2Cr2) ≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.

We can rewrite this again to obtain, for all x ∈ Br(0) ∩ {wk ≥ 0},

√
1 + ε2

k|∇x′w̃(0)|2Uγ′k(x · νk)− γkpε2
k|∇x′w̃(0) · x| − 2Cr2γkεk ≤ wk(x).

The Cauchy-Schwartz inequality, followed by some more algebraic manipulation, gives

Uγ′k
(x · νk)− γ′kr

εk
2

(
2pεk|∇x′w̃(0)|+ 4Cr

1 + εkp

)
≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.

Recall that r was chosen so that 8Cr < 1. Now pick k large enough so that 20εk|∇x′w̃(0)| <

1/2. Together this implies
(

2pεk|∇x′w̃(0)|+4Cr
1+εkp

)
< 1. In conclusion,

Uγ′k
(x · νk − r

εk
2

) ≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.

The upper bound on wk and the inequalities for when wk < 0 follow in the same fashion.

Proof of (B): We compute |γ′k − γk| = εkpγk ≤ 10εkγk. Also |νk − en|2 = (νk − en, νk −

en) = 2 − 2(en, νk) = 2 − 2√
1+ε2

k|∇x′w̃(0)|2
. For large k (so that εk|∇x′w̃(0)| < 1/2) the

taylor series expansion of
√

1 + x2 yields the estimate |νk − en|2 ≤ ε2
k|∇x′w̃(0)|2. Let
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C̃ = max{|∇x′w̃(0)|, 10} and we are done.

Proof of Claim: We want to establish that w̃ is a viscosity solution to the transmission

problem. As ∆w̃k = 0, wherever {w̃k 6= 0}, it is clear that ∆w̃ = 0, in the viscosity sense,

when {xn 6= 0}. It remains to verify the boundary condition.

So assume, in order to reach a contradiction, that there is a function

φ̃(x) := A+ px+
n − qx−n +BQ(x− y),

with p−q > 0, which touches w̃ strictly from below at x0 = (x′0, 0) (the case where p−q < 0

and φ̃ touches from above follows similarly). Recall Q(x) := 1
2 [(n − 1)x2

n − |x′|2], y =

(y′, 0), B > 0 and A ∈ R. We now construct a family of functions which converge uniformly

to φ̃. Define

Γ(x) :=
1

n− 2
[(|x|′2 + |xn − 1|2)

2−n
2 − 1] and Γk(x) :=

1

Bεk
Γ(Bεk(x− y) + ABε2

ken).

Additionally, let

φk(x) := γk(1 + εkp)Γ
+
k (x)− g(0)γk(1 + εkq)Γ

−
k (x) + γk(d+

k (x))2ε
3/2
k + g(0)γk(d−k (x))2ε

3/2
k ,

where dk is the signed distance from x to ∂B 1
Bεk

(y+ en(Aεk− 1
Bεk

)). Finally, we can define

φ̃k as in (2.7.9).

A taylor series expansion gives Γ(x) = xn +Q(x) +O(|x|3) and thus

Γk(x) = Aεk + xn +BεkQ(x− y) +O(ε2
k), x ∈ B1.

Therefore, φ̃k converges uniformly to φ̃. The existence of a touching point x0 implies a

sequence of constants, ck, and points, xk ∈ B1/2, such that ψk(x) := φk(x+εkcken) touches

wk from below at xk. We will get the desired contradiction if ψk is a strict subsolution to
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the free boundary problem associated to gk.

When ψk 6= 0 we have ∆ψk & ∆d2
k(x + εkcken) > 0. If ψk = 0 a straightfoward

computation shows Γk(x+εkcken) = dk(x+εkcken) = 0. Thus, |∇d2
k| = 0 whenever ψk = 0.

We can also compute (∇Γ±k )ν = ±1 on ψk = 0. Putting this together, gk(x)(ψk(x)+)ν +

(ψk(x)−)ν = gk(x)γk(1+εkp)−g(0)γk(1+εkq). Recall, |gk(x)−g(0)| = |gk(x)−gk(0)| ≤ ε2
k

which implies, gk(x) ≥ g(0) − ε2
k. Therefore, gk(x)(ψk(x)+)ν + (ψk(x)−)ν ≥ g(0)γkεk(p −

q)− ε2
kγk(1 + εkp). We are done if this last term is > 0. It is easy to see

g(0)γkεk(p− q)− ε2
kγk(1 + εkp) > 0⇔ g(0)(p− q) > εk(1 + εkp)

which is clearly true for k large enough.

2.8 Optimal Hölder regularity and higher regularity

Proposition 2.7.5 tells us that if log(h) ∈ C0,α(∂Ω) then ∂Ω is locally the graph of a C1,s

function for some s > 0. In this section we will introduce tools from elliptic regularity theory

in order to establish the sharp estimate s = α. These tools will also allow us to analyze the

case when log(h) ∈ Ck,α(∂Ω) for k ≥ 1.

2.8.1 Partial Hodograph Transform and Elliptic Systems

We begin by recalling the partial hodograph transform (see (KS80), Chapter 7 for a short

introduction). Here, and throughout the rest of the paper, we assume that 0 ∈ ∂Ω and that,

at 0, en is the inward pointing normal to ∂Ω.

Define F+ : Ω+ → H+ by (x′, xn) = x 7→ y = (x′, u+(x)). Because u+
n (0) = dω+

dσ (0) 6= 0

(Proposition 2.5.10), DF+(0) is invertible. So, by the inverse function theorem, there is

some neighborhood, O+, of 0 in Ω+ that is mapped diffeomorphically to U , a neighborhood

of 0 in the upper half plane. Furthermore, this map extends in a C1 fashion from O+ to U
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(by Corollary 2.6.7).

Similarly, define F− : Ω− → H+ by (x′, xn) = x 7→ y = (x′, u−(x)). Again u−n (0) 6= 0 so

DF−(0) is invertible. We can conclude, as above, that there is a neighborhood, O−, of 0 in

Ω− that is mapped diffeomorphically to U (perhaps after shrinking U) and that this map

extends in a C1 fashion from O− to U .

Let ψ : U → R be given by ψ(y) = xn, where F+(x) = y. Because F+ is locally one-to-

one, ψ is well defined. Similarly, define φ : U → R by φ(y) = −xn where F−(x) = y. Again,

F− is locally one-to-one, so φ is well defined.

If νy denotes the normal vector to ∂Ω pointing into Ω at y, then u satisfies

∆u+(x) = 0, x ∈ Ω+

∆u−(x) = 0, x ∈ Ω−

(u+)νx(x)h(x) = −(u−)νx(x), x ∈ ∂Ω.

After our change of variables these equations become

0 =
1

2

(
1

ψ2
n

)
n

+
n−1∑
i=1

(
−
(
ψi
ψn

)
i

+
1

2

(
ψ2
i

ψ2
n

)
n

)

0 =
1

2

(
1

φ2
n

)
n

+
n−1∑
i=1

(
−
(
φi
φn

)
i

+
1

2

(
φ2
i

φ2
n

)
n

)
,

(2.8.1)

with both equations taking place for y ∈ U . On the boundary we have

φ(y) + ψ(y) = 0, y ∈ {yn = 0} ∩ U(
h̃(y)

ψn(y)

)
− 1

φn(y)
= 0, y ∈ {yn = 0} ∩ U,

(2.8.2)

where h̃((y′, 0)) = h((y′, ψ(y))).

Remark 2.8.1. The following are true of φ, ψ:
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• Assume ψ, φ ∈ Ck,s(U ∩ {yn = 0}) with k ≥ 1, s ∈ (0, 1) Then u± ∈ Ck,s(O±) ⇔

ψ, φ ∈ Ck,s(U).

• If h ∈ Ck,α(∂Ω) and ψ, φ ∈ Ck+1,s(U) for any s, α ∈ (0, 1), then h̃ ∈ Ck,α(U ∩ {yn =

0}) with norm depending only on the Hölder norms of h and ψ, φ.

• φn, ψn > 0 in U .

Proof. Let us address the first statement; when k ≥ 2 this follows from standard elliptic reg-

ularity applied to the function ũ+(x) = u+(x+φ(x′, 0)) (and a similarly defined ũ−). When

k = 1, a theorem of Kellogg (Kel29) says that ∇u± has non-tangential limit everywhere on

∂Ω∩O± and that this non-tangential limit is in C0,s. We can then argue as in the proof of

Corollary 2.6.7 to see that ∇u± ∈ C0,s(O±); the desired result.

To prove the second statement when k = 0, one computes

|h̃(y1)−h̃(y2)| = |h((y′1, ψ(y′1)))−h((y′2, ψ(y′2)))| ≤ C|(y′1, ψ(y′1))−(y′2, ψ(y′2))|α ≤ C|y1−y2|α

where that last inequality follows because ψ ∈ C1,s(U). So h̃ ∈ C0,α({yn = 0} ∩ U). When

k ≥ 1 we note that ∂ih̃(y, 0) = ∂ih(y, ψ(y)) + ∂nh(y, ψ(y))∂iψ(y). By assumption ∂iψ(y) is

at least as regular as ∂nh(y, ψ(y)) so the result follows by induction.

The third claim follows immediately from construction.

We now recall the concepts of an elliptic system of equations and coercive boundary

conditions. For the sake of brevity, our Definition 2.8.2 is not fully general—it considers

only a specific type of system in “divergence form”. A comprehensive introduction to elliptic

systems can be found in Morrey ((Mor66)), Chapter 6 (weak solutions in particular are

covered in Section 6.4).
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Definition 2.8.2. Let uk, k = 1, 2, satisfy

ˆ
U

∑
|χ|≤m1

|γ|≤t1+s1−m1

a1
χγ(x)Dγu1Dχζ =

ˆ
U

∑
|χ|≤m1

f1
χD

χζ

ˆ
U

∑
|χ|≤m2

|γ|≤t2+s2−m2

a2
χγ(x)Dγu2Dχζ =

ˆ
U

∑
|χ|≤m2

f2
χD

χζ

(2.8.3)

for all ζ ∈ C∞0 (U). Additionally assume,

ˆ
∂U∩{yn=0}

∑
|χ|≤p1

(
2∑

k=1

B1
kχ(Dx, Dy, x)uk

)
D
χ
xξdx =

ˆ
∂U∩{yn=0}

∑
|χ|≤p1

g1
χD

χ
xξdx

ˆ
∂U∩{yn=0}

∑
|χ|≤p2

(
2∑

k=1

B2
kχ(Dx, Dy, x)uk

)
D
χ
xξdx =

ˆ
∂U∩{yn=0}

∑
|χ|≤p2

g2
χD

χ
xξdx

(2.8.4)

for all ξ ∈ C∞0 (∂U ∩ {yn = 0}). Throughout, γ, χ are multi-indices. Let h1, h2, be such that

B1
kχ is of order ≤ tk − h1 − p1 and B2

kχ is of order ≤ tk − h2 − p2. This system has a

proper assignment of weights if there exists an h0 such that h0 and the tk,mj , sj , hr, pr,

k, j, r = 1, 2 satisfy the following conditions:

• minj,k sj + tk ≥ 1 and minj,k tk + sj −mj ≥ 0

• minmj ≥ 0 and max sj = 0.

• min pr ≥ 0 and minh0 + hr + pr ≥ 1

• min tk + h0 ≥ 0 and minh0 − sj +mj ≥ 0.

We say the above system is elliptic if the block diagonal matrix

M =

 (a1
γχ)|χ|=m1,|γ|=t1+s1−m1

0

0 (a2
γχ)|χ|=m2,|γ|=t2+s2−m2


is an elliptic matrix for any x0 ∈ U . Additionally, when n = 2, we require that, for any
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linearly independent ξ, η ∈ R2, half the roots of the equation

det

 a1
γχ(ξ + zη)χ+γ 0

0 a2
γχ(ξ + zη)χ+γ

 = 0

have positive imaginary part and the other half have negative imaginary part (above we

are using summation notation, where the upper left corner is taken over |χ| = m1, |γ| =

t1 + s1 −m1 and the lower right corner is taken over |χ| = m2 and |γ| = t2 + s2 −m2).

Finally, we say that the boundary equations are coercive if for all y0 ∈ U ∩ {yn = 0}

the system ∑
|χ|=m1,|γ|=t1+s1−m1

a1
χγ(y0)Dγ+χv1(y) = 0

∑
|χ|=m2,|γ|=t2+s2−m2

a2
χγ(y0)Dγ+χv2(y) = 0

∑
|χ|=p1

2∑
k=1

B̃1
kχ(Dx, Dy, y0)vk((y′, 0)) = 0

∑
|χ|=p2

2∑
k=1

B̃2
kχ(Dx, Dy, y0)vk((y′, 0)) = 0

(2.8.5)

has no solutions of the form vk((y′, yn)) = eiy
′·ξ′ ṽk(yn), k = 1, 2 where ṽk(yn) → 0 as

yn → +∞ and ξ′ ∈ Rn−1. Above, B̃rkχ denotes the part of the operator Brkχ which has order

tk − hr − pr (the principle part).

Definition 2.8.3. We define the h− µ-conditions on the coefficients above:

(1) The a
j
χγ satisfy the h− µ-conditions, 0 < µ < 1, in some open Γ:

1. if |γ| = tj + sj −mj and |χ| = mj then a
j
χγ ∈ C0,µ(Γ)

2. if h− sj + |χ| > 0 then a
j
χγ ∈ Ch−sj+|χ|,µ(Γ)

3. else, the as are in C0,µ(Γ).
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(2) The operators Brkχ satisfy the h − µ-conditions, 0 < µ < 1, in some open Γ, if

Brkγ(Dx, Dy,−) ∈ Ch+hr+pr,µ(Γ ∩ {yn = 0}).

With these definitions in mind, we can state Theorem 6.4.8 of (Mor66) (note the theorem

in Morrey refers to a slightly more general class of elliptic systems). Our wording differs in

order to comport with the notation used above.

Theorem 2.8.4. [Theorem 6.4.8, (Mor66)] Let uk, k = 1, 2 satisfy an elliptic and coercive

system of equations on U (a neighborhood of 0 in the upper half plane with C∞ boundary)

with a proper assignment of weights h0, hr, pr, tk, sj ,mj. Let Γ ⊃ U be an open domain.

Suppose the a’s and the coefficients in the Brkγ satisfy the h−µ-conditions on Γ, 0 < µ < 1,

and suppose the a priori estimates: f
j
α ∈ Cρ,µ(U), ρ = max{0, h − sj + |α|}, grγ ∈ Cτ,µ(U)

with τ = max{0, h+ hr + |γ|} and uk ∈ Ctk+h,µ(U). Then

∑
k

‖uk‖
Ctk+h,µ(U)

≤ C

∑
j,α

‖f jα‖Cρ,µ(U) +
∑
r,γ

‖grγ‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 . (2.8.6)

Here C is, again, independent of uk the f ’s and the g’s.

2.8.2 Sharp C1,α regularity and C2,α regularity

It should be noted that in (Mor66) it is not explicitly made clear if Theorem 2.8.4 applies

when h < h0 (nor if there should be additional restrictions on h). For the sake of completeness

we include a proof of Theorem 2.8.4 with h0 = 0, h = −1 in Appendix A.1. This is exactly

the result we need to establish optimal C1,α regularity.

Proposition 2.8.5. Let Ω ⊂ Rn be a 2-sided NTA domain with log(h) ∈ C0,α(∂Ω), α ∈

(0, 1). In addition, if n ≥ 3 also assume that Ω is δ-Reifenberg flat, for δ > 0 small, or that

Ω is a Lipschitz domain. Then ∂Ω is locally the graph of a C1,α function.

Proof. Recall the functions φ, ψ which satisfy the system (2.8.1) with boundary conditions

(2.8.2). For t = (t′, 0) ∈ Rn we consider u1,t(x) := ψ(x + t) − ψ(x) and u2,t(x) := φ(x +
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t)− φ(x); our plan is to show that u1,t, u2,t satisfy a system like the one in Definition 2.8.2.

Repeated applications of Theorem 2.8.4 will then give the desired result. Our proof has three

steps.

Step 1: constructing the elliptic and coercive system Both φ and ψ satisfy

div ~A(Du) = 0

where ~A(Du) :=

(
−u1
un
,−u2

un
, ..., 1

2

(∑n−1
i=1

(
ui
un

)2
+ 1
u2
n

))
. As such

div

ˆ 1

0

d

ds
~A(D(ψ(x) + s(ψ(x+ t)− ψ(x))))ds = 0⇒

div

ˆ 1

0
aij(D(ψ(x) + s(ψ(x+ t)− ψ(x))))Diu

1,t(x)ds = 0

where aij(~p) = d
dpj

Ai(~p). φ and u2,t satisfy an analogous equation. Therefore, u1,t, u2,t

satisfy (2.8.3) with a1
ij(x) := aij(Dψ(x)) and

f1
j :=

∑
i

(
aij(Dψ(x))−

ˆ 1

0
aij(D(ψ(x) + s(ψ(x+ t)− ψ(x))))ds

)
Diu

1,t

(and with corresponding definitions for f2, a2 in terms of φ). Note m1 = m2 = 1, t1 = t2 = 2

and s1 = s2 = 0. On the boundary u1,t + u2,t = 0 and
h̃(x)

φn(x+t)
Dnu

2,t − 1
φn(x+t)

Dnu
1,t =

h̃(x) − h̃(x + t). Therefore, h1 = 2, h2 = 1 and p1 = p2 = 0. Set h0 = 0. It is then easy to

see that this is a system with a proper assignment of weights. We will check in Step 3 that

our system satisfies the ellipticity, coercivity and regularity conditions of Definition 2.8.3.

Step 2: the iterative process By Proposition 2.7.5, ui,t ∈ C1,s(U). In particular, the

akij ’s and the Bs satisfy the h − µ-conditions with h = −1 and µ = s. It is also easy to

see that the f ’s and g’s satisfy the conditions of Theorem 2.8.4 (we assume, of course, that
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α ≥ s; otherwise the result is immediate). We conclude

‖ui,t‖C1,s(U) .
2∑
i=1

n∑
j=1

‖f ij‖Cs(U)+‖h̃(−)−h̃(−+t)‖Cs(U∩{yn=0})+
2∑

k=1

‖uk,t‖C(U), (2.8.7)

where the constant implicit in . is independent of t. Some additional justification is needed

here: in Theorem 2.8.4 the constant may depend on the C0,s norm of the a’s and B’s.

However, these coefficients have norms which can be bounded independently of t and so the

constant intself may be taken to be independent of t.

For any x, y ∈ U,

2‖h̃‖Cα|x− y|s|t|α−s ≥ min{2|x− y|α‖h̃‖Cα , 2|t|α‖h̃‖Cα}

≥ |h̃(x)− h̃(x+ t)− h̃(y) + h̃(y + t)|.
(2.8.8)

Thus ‖h̃(−)− h̃(−+ t)‖C0,s(U∩{yn=0}) ≤ C|t|α−s. We also claim that if w, v ∈ C0,s then

‖(w(−)− w(−+ t))(v(−)− v(−+ t))‖C0,s ≤ 4|t|s‖w‖C0,s‖v‖C0,s

(this follows immediately from the triangle inequality and the fact that sup |w(−)− w(−+

t)| < |t|s‖w‖C0,s). From here we conclude ‖f ij‖C0,s(U) ≤ C|t|s. Plugging these estimates

into (2.8.7) we obtain ‖ui,t‖C1,s(U) ≤ K(|t|s + |t|α−s + |t|) (as ‖uk,t‖C0(U) ≤ C|t|).

Therefore, for j = 1, ..., n, we have that

|Djψ(x+ t) +Djψ(x− t)− 2Djψ(x)| = |Dju1,t(x)−Dju1,t(x− t)|

≤ ‖u1,t‖C1,s|t|s ≤ K(|t|2s + |t|α).

(2.8.9)

This implies ψ|U∩{yn=0} ∈ C
1,β where β = min{α, 2s} (see (Ste70), Chapter 5, Proposition

8). Remark 2.8.1 gives ψ, φ ∈ C1,β(U). Iterate until β = α.

Step 3: verifying the conditions of Definition 2.8.2 It is easy to calculate the
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symmetric (n× n)-matrix

DA(~p) =



−1
pn

0 0 . . . p1
p2
n

0 −1
pn

0 . . . p2
p2
n

... 0
. . . . . .

...

p1
p2
n

. . . pi
p2
n

. . . −
(

1
pn

)3 (
1 +

∑n−1
i=1 p

2
i

)


.

If ~p = Dφ,Dψ, then pn > 0 in U . Thus the matrices DA(Dφ) and DA(Dψ) are both elliptic

(justifying our above use of the Schauder estimates) and the system is also elliptic (with the

obvious weights t1 = t2 = 2, s1 = s2 = 0). Addtionaly, when n = 2 we have the equation

− 1

p2
(ξ1 + zη1)2 + 2

p1

p2
2

(ξ1 + zη1)(ξ2 + zη2)− 1

p3
2

(1 + p2
1)(ξ2 + zη2)2 = 0.

All the coefficients of this polynomial are real, so if α, β are its roots it must be the case that

α = β which is exactly the desired result.

We must check coercivity at an arbitrary y0 ∈ U ∩ {yn = 0}. If u1 = eiy
′·ξ′ũ1(yn) solves

aij(Dψ(y0))Diju
1 = 0 then ũ1(yn) is a linear combination of functions of the form eryn

where r is a root of

∑
|ξ′|2

pn
+ 2

pj

p2
n

∑
iξ′jx−

1

p3
n

(1 +
∑

p2
i )x

2 = 0.

This equation has at most one root, call it r1, with strictly negative real part (as the sum

of the roots is purely imaginary). That ũ1(yn) → 0 as yn → ∞ implies ũ1(yn) = α1e
ynr1 .

Similarly, we define ũ2(yn) and conclude ũ2(yn) = α2e
ynr2 , where r2 has strictly negative

real part (if such an r1 or r2 does not exist then we are done).

As u1 + u2 = 0 on the boundary it must be true that α1 + α2 = 0. Furthermore

h̃(0)Dnu
2 −Dnu1 = 0⇒
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h̃(0)α2r2 − α1r1 = 0⇒ h̃(0)r2 + r1 = 0.

But h̃(0)r2 has strictly negative real part and r1 has strictly negative real part, so their sum

must have strictly negative real part and the system is coercive.

If log(h) ∈ Ck,α for k ≥ 1, the above argument can be modified slightly to give that ∂Ω

is locally the graph of a C2, α
2+α function.

Proposition 2.8.6. Let ∂Ω be a 2-sided NTA domain with log(h) ∈ C1,α(∂Ω) for 0 < α < 1.

If n ≥ 3 also assume either that Ω is δ-Reifenberg flat for δ > 0 small or that Ω is a Lipschitz

domain. Then ∂Ω is locally the graph of a C2, α
2+α function.

Proof. We follow the proof of Proposition 2.8.5; consider again u1,t, u2,t. We have already

shown these functions satisfy an elliptic system with coercive boundary conditions. Note, by

Proposition 2.8.5, ui,t ∈ C1,s(U) for all s ∈ (0, 1). In particular, the akij ’s and the Bs satisfy

the h− µ-conditions with h = −1 and µ = s ∈ (0, 1) to be choosen later. Furthermore, the

f ’s and g’s satisfy the conditions of Theorem 2.8.4.

Follow Step 2 in the proof of Proposition 2.8.5 until we reach (2.8.8). Here we need an

estimate which incorporates the higher regularity of h̃. By Remark 2.8.1, h̃ ∈ C1,α(U∩{yn =

0}). For any x, y ∈ Rn write, for the sake of brevity,

δ2
yf(x) ≡ f(x+ y) + f(x− y)− 2f(x).

We can then estimate, for x, y ∈ U ∩ {yn = 0},

|δ2
y h̃(x+ t)− δ2

y h̃(x)| ≤ ‖h̃‖C1+α min{3|t|, 2|y|1+α}

≤ C‖h̃‖C1+α |y|s|t|1−
s

1+α .

(2.8.10)

Consequently, ‖h̃(−)− h̃(−+ t)‖C0,s ≤ C|t|1−
s

1+α .

Proceed as in Step 2 of the proof of Proposition 2.8.5 until we reach (2.8.9), which now
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reads

|Djψ(x+ t) +Djψ(x− t)− 2Djψ(x)| = |Dju1,t(x)−Dju1,t(x− t)|

≤ ‖u1,t‖C1,s|t|s ≤ K(|t|2s + |t|1+s− s
1+α ).

(2.8.11)

Pick s ∈ (0, 1) such that

1 + s− s

1 + α
= 2s⇒ s =

1 + α

2 + α
.

Then ψ|U∩{yn=0} ∈ C2, α
2+α . By Remark 2.8.1 we can conclude that u ∈ C2, α

2+α (Ω) and,

ergo, ψ, φ ∈ C2, α
2+α (U).

2.8.3 Higher regularity

Once we have shown φ, ψ ∈ C2,s(U) for some s ∈ (0, 1), we can apply classical non-linear

“Schauder” type estimates (which require the C2,s, a priori, assumption). First we need to

define a non-linear, elliptic and coercive system.

Definition 2.8.7. Let uk, k = 1, 2 satisfy

F1(y, u1, u2, Du1, Du2..., Dt1+s1u1, Dt2+s1u2) = 0, y ∈ U

F2(y, u1, u2, Du1, Du2..., Dt1+s2u1, Dt2+s2u2) = 0, y ∈ U
(2.8.12)

and on the boundary satisfy

B1(y, u1, u2, Du1, Du2..., Dt1−h1u1, Dt2−h1u2) = 0, y ∈ U ∩ {yn = 0}

B2(y, u1, u2, Du1, Du2..., Dt1−h2u1, Dt2−h2u2) = 0, y ∈ U ∩ {yn = 0}.
(2.8.13)

Where, max si = 0 and min{tk + si},min{tk − hi} ≥ 0.

For a solution, v, to (2.8.12), we say that the system is elliptic along v at a point y0 ∈ U
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if the linear system

L1
1(y0, D)φ1 + L2

1(y0, D)φ2 =
d

dt
F1(y0, v

1 + tφ1, ..., Dt2+s1(v2 + tφ2))|t=0

L1
2(y0, D)φ1 + L2

2(y0, D)φ2 =
d

dt
F2(y0, v

1 + tφ1, ..., Dt2+s2(v2 + tφ2))|t=0

(2.8.14)

is elliptic. That is to say, if the block matrix A, where Aij = L̃ij, is elliptic. Here L̃ij is the

principle part of the operator L (for more details see Definition 3.1, Chapter 6 of (KS80)).

For a solution, v, to both equations (2.8.12) and (2.8.13) we say that the boundary con-

ditions are coercive along v at a point y0 ∈ U ∩ {yn = 0} if the linear boundary conditions

Φ1
1(y0, D)φ1 + Φ2

1(y0, D)φ2 =
d

dt
B1(y0, v

1 + tφ1, ..., Dt2−h1(v2 + tφ2))|t=0

Φ1
2(y0, D)φ1 + Φ2

2(y0, D)φ2 =
d

dt
B2(y0, v

1 + tφ1, ..., Dt2−h2(v2 + tφ2))|t=0

(2.8.15)

are coercive for the (2.8.14) (see Definition 2.8.2, above, for the definition of coercive linear

boundary values. See Definition 3.2, Chapter 6 in (KS80) for more details). Note in all of

the above Dnv is short hand for all nth-order derivatives of v.

We now recall the Schauder estimates for non-linear elliptic systems.

Theorem 2.8.8. [see Theorem 12.2, (ADN64), Theorem 3.3 in Chapter 6, (KS80) and

Chapter 6.8, (Mor66)] Assume uk, k = 1, 2 satisfy an elliptic and coercive non linear system

with proper weights like in Definition 2.8.7. Let 0 < α < 1 and `0 = max(0,−hr) and assume

uk ∈ C`0+tk,α(U) for k = 1, 2. Then for any ` ≥ `0 if Fi ∈ C`−si,α and Br ∈ C`+hr,α, in

all arguments, then uk ∈ C`+tk,α(U).

Additionally if F,G are C∞ (analytic) functions, then uk is C∞ (analytic).

Our main theorem follows:

Theorem (Main Theorem). Let Ω be a 2-sided NTA domain with log(h) ∈ Ck,α(∂Ω) where

k ≥ 0 is an integer and α ∈ (0, 1). Then:

• when n = 2: ∂Ω is locally given by the graph of a Ck+1,α function.

65



• when n ≥ 3: there is some δn > 0 such that if δ < δn and Ω is δ-Reifenberg flat or if

Ω is a Lipschitz domain then ∂Ω is locally given by the graph of a Ck+1,α function.

Similarly, if log(h) ∈ C∞ or log(h) is analytic we can conclude (under the same flatness

assumptions above) that ∂Ω is locally given by the graph of a C∞ (resp. analytic) function.

Proof. For k = 0 this result is contained in Proposition 2.8.5. For k = 1 Proposition 2.8.6

tells us that ∂Ω is C2,s, u± ∈ C2,s(Ω
±

) for some 0 < s < α. Theorem 2.8.8, applied as

below, combined with a standard difference quotient argument, like the ones above, gives

the optimal regularity; ∂Ω given by the graph of a C2,α function and u± ∈ C2,α(Ω
±

)

Let k ≥ 2, and set `0 = 0, ` = k − 1, t1 = t2 = 2, s1 = s2 = 0 and h1 = 2, h2 = 1. First,

we will show that ψ, φ satisfy an elliptic and coercive non-linear system with the above

weights (as defined in Definition 2.8.7). Argue similarly to prove C∞ or analytic regularity.

Recall, div ~A(Dφ) = 0 = div ~A(Dψ), where,

~A(Dw) :=

(
−w1

wn
,−w2

wn
, ...,−wn−1

wn
,
1

2

(
n−1∑
i=1

(
wi
wn

)2

+
1

w2
n

))
.

Therefore, the associated linear system at y0 is L1
1v

1 = d
dpi
Aj(ψ(y0))v1

ij , L
2
1 ≡ 0, L1

2 ≡ 0 and

L2
2v

2 = d
dpi
Aj(φ(y0))v2

ij . We have already established, in the proof of Proposition 2.8.5, that

this is an elliptic system.

We have B1(y, ψ, φ, ....) = φ + ψ and B2(y, ψ, φ, ...) = h((y′, ψ(y)))φn − ψn, which are

unchanged by linearization. Again, in the proof of Proposition 2.8.5, we have shown that

these boundary conditions are coercive for the above linear equations. Furthermore, the

above values give a proper assignment of weights.

Finally, F1, F2, B1 are analytic in all arguments (recall that ψn, φn 6= 0 in U) and B2 is

analytic in Dψ,Dφ but has the same regularity in y and ψ that h has in x. By assumption,

h ∈ Ck,α = C`+h2,α so B2 has the desired regularity. Additionally, by Proposition 2.8.6,

u has the required initial smoothness. Thus, applying Theorem 2.8.8 yields the desired

result.
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CHAPTER 3

A FREE BOUNDARY PROBLEM FOR THE PARABOLIC

POISSON KERNEL

3.1 Introduction

In this paper we prove a parabolic analogue of Kenig and Toro’s Poisson kernel characteriza-

tion of vanishing chord arc domains, (KT03). This continues a program started by Hofmann,

Lewis and Nyström, (HLN04), who introduced the concept of parabolic chord arc domains

and proved parabolic versions of results in (KT99) and (KT97) (see below for more details).

Precisely, we show that if Ω is a δ-Reifenberg flat parabolic chord arc domain, with δ > 0

small enough, and the logarithm of the Poisson kernel has vanishing mean oscillation, then

Ω actually satisfies a vanishing Carleson measure condition (see (3.1.6)). The key step in

this proof is a classification of “flat” blowups (see Theorem 3.1.10 below), which itself was

an open problem of interest (see, e.g., the remark at the end of Section 5 in (HLN04)).

Let us recall the defintions and concepts needed to state our main results. In these we

mostly follow the conventions established in (HLN04). We then briefly sketch the contents of

the paper, taking special care to highlight when the difficulties introduced by the parabolic

setting require substantially new ideas. Throughout, we work in two or more spacial dimen-

sions (n ≥ 2); the case of one spacial dimension is addressed in (Eng16). Finally, for more

historical background on free boundary problems involving harmonic or caloric measure we

suggest the introduction of (HLN04).

We denote points (x1, ..., xn, t) = (X, t) ∈ Rn+1 and the parabolic distance between them

is d((X, t), (Y, s)) := |X − Y | + |t − s|1/2. For r > 0, the parabolic cylinder Cr(X, t) :=

{(Y, s) | |s − t| < r2, |X − Y | < r}. Our main object of study will be Ω, an unbounded,

0. The contents of this chapter are taken from a preprint with the same title which has been submitted
for publication. While writing that paper I was partially supported by the National Science Foundation’s
Graduate Research Fellowship, Grant No. (DGE-1144082). I also thank Abdalla Nimer for helpful comments
regarding Section 3.5 and Professor Tatiana Toro for helping me overcome a technical difficulty in Section
3.6.
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connected open set in Rn+1 such that Ωc is also unbounded and connected. As the time

variable has a “direction” we will often consider Ωt0 := Ω ∩ {(X, s) | s < t0}. Finally, for

any Borel set F we will define σ(F ) =
´
F dσtdt where dσt := Hn−1|{s=t}, the (n − 1)-

dimension Hausdorff measure restricted to the time-slice t. We normalize Hn−1 so that

σ(C1(0, 0) ∩ V ) = 1 for any n-plane through the origin containing a direction parallel to

the time axis (we also normalize the Lebesgue measure, dXdt, by the same multiplicative

factor).

Definition 3.1.1. We say that Ω is δ-Reifenberg flat, δ > 0, if for R > 0 and (Q, τ) ∈ ∂Ω

there exists a n-plane L(Q, τ,R), containing a direction parallel to the time axis and passing

through (Q, τ), such that

{(Y, s) + rn̂ ∈ CR(Q, τ) | r > δR, (Y, s) ∈ L(Q, τ,R)} ⊂ Ω

{(Y, s)− rn̂ ∈ CR(Q, τ) | r > δR, (Y, s) ∈ L(Q, τ,R)} ⊂ Rn+1\Ω.
(3.1.1)

Where n̂ is the normal vector to L(Q, τ,R) pointing into Ω at (Q, τ).

The reader may be more familiar with a definition of Reifenberg flatness involving the

Hausdorff distance between two sets (recall that the Hausdorff distance between A and B

is defined as D(A,B) = supa∈A d(a,B) + supb∈B d(b, A)). These two notions are essentially

equivalent as can be seen in the following remark (which follows from the triangle inequality).

Remark 3.1.2. If Ω is a δ-Reifenberg flat domain, then for any R > 0 and (Q, τ) ∈ ∂Ω

there exists a plane L(Q, τ,R), containing a line parallel to the time axis and through (Q, τ),

such that D[CR(Q, τ) ∩ L(Q, τ,R), CR(Q, τ) ∩ ∂Ω] ≤ 4δR.

Similarly, if (3.1.1) holds for some δ0 and there always exists an L(Q, τ,R) such that

D[CR(Q, τ) ∩ L(Q, τ,R), CR(Q, τ) ∩ ∂Ω] ≤ δR then (3.1.1) holds for 2δ.

Let θ((Q, τ), R) := infP
1
RD[CR(Q, τ) ∩ P,CR(Q, τ) ∩ ∂Ω] where the infimun is taken

over all planes containing a line parallel to the time axis and through (Q, τ).
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Definition 3.1.3. We say that Ω (or Ωt0) is vanishing Reifenberg flat if Ω is δ-Reifenberg

flat for some δ > 0 and for any compact set K (alternatively K ⊂⊂ {t < t0}),

lim
r↓0

sup
(Q,τ)∈K∩∂Ω

θ((Q, τ), r) = 0. (3.1.2)

Definition 3.1.4. ∂Ω is Ahflors regular if there exists an M ≥ 1 such that for all (Q, τ) ∈

∂Ω and R > 0 we have

(
R

2

)n+1

≤ σ(CR(Q, τ) ∩ ∂Ω) ≤MRn+1.

Note that left hand inequality follows immediately in a δ-Reifenberg flat domain for

δ > 0 small enough (as Hausdorff measure decreases under projection, and CR/2(Q, τ) ∩

L(Q, τ,R) ⊂ projL(Q,τ,R)(CR(Q, τ) ∩ ∂Ω)).

Following (HLN04), define, for r > 0 and (Q, τ) ∈ ∂Ω,

γ(Q, τ, r) = inf
P

(
r−n−3

ˆ
∂Ω∩Cr(Q,τ)

d((X, t), P )2dσ(X, t)

)
(3.1.3)

where the infimum is taken over all n-planes containing a line parallel to the t-axis and going

through (Q, τ). This is an L2 analogue of Jones’ β-numbers ((Jon90)). We want to measure

how γ, “on average”, grows in r and to that end introduce

dν(Q, τ, r) = γ(Q, τ, r)dσ(Q, τ)r−1dr. (3.1.4)

Recall that µ is a Carleson measure with norm ‖µ‖+ if

sup
R>0

sup
(Q,τ)∈∂Ω

µ((CR(Q, τ) ∩ ∂Ω)× [0, R]) ≤ ‖µ‖+Rn+1. (3.1.5)

In analogy to David and Semmes (DS93) (who defined uniformly rectifiable domains in

the isotropic setting) we define a parabolic uniformly rectifiable domain;
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Definition 3.1.5. If Ω ⊂ Rn+1 is such that ∂Ω is Ahlfors regular and ν is a Carleson

measure then we say that Ω is a (parabolic) uniformly rectifiable domain.

As in (HLN04), if Ω is a parabolic uniformly rectifiable domain which is also δ-Reifenberg

flat for some δ > 0 we say that Ω is a parabolic regular domain. We may also refer to

them as parabolic chord arc domains.

Finally, if Ω is a parabolic regular domain and satisfies a vanishing Carleson measure

condition,

lim
R↓0

sup
0<ρ<R

sup
(Q,τ)∈∂Ω

ρ−n−1ν((Cρ(Q, τ) ∩ ∂Ω)× [0, ρ]) = 0 (3.1.6)

we call Ω a vanishing chord arc domain. Alternatively, if (3.1.6) holds when the ∂Ω is

replaced by K for any K ⊂⊂ {s < t0} then we say that Ωt0 is a vanishing chord arc domain.

Readers familiar with the elliptic theory will note that these definitions differ from, e.g.

Definition 1.5 in (KT97). It was observed in (HLN03) that these definitions are equivalent in

the time independent setting whereas the elliptic definition is weaker when Ω changes with

time. Indeed, in the time independent setting, uniform recitifiability with small Carleson

norm and being a chord arc domain with small constant are both equivalent to the existence

of big pieces of Lipschitz graphs, in the sense of Semmes (Sem91), at every scale (see Theorem

2.2 in (KT97) and Theorem 1.3 in Part IV of (DS93)). On the other hand, in the time

dependent case, even σ(∆R(Q, τ)) ≡ Rn+1 does not imply the Carleson measure condition

(see the example at the end of (HLN03)).

The role of this Carleson measure condition becomes clearer when we consider domains

of the form Ω = {(X, t) | xn > f(x, t)} for some function f . Dahlberg (Dah77) proved that

surface measure and harmonic measure are mutually absolutely continuous in a Lipschitz do-

main. However, Kaufman and Wu (KW88) proved that surface measure and caloric measure

are not necessarily mutually absolutely continuous when f ∈ Lip(1, 1/2). To ensure mutual

absolute continuity one must also assume that the 1/2 time derivative of f is in BMO (see

(LM95)). In (HLN04) it is shown that the BMO norm of the 1/2 time derivative of f can
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be controlled by the Carleson norm of ν. Morally, the growth of σ(∆R(Q, τ)) controls the

Lip(1, 1/2) norm of f but cannot detect the BMO norm of the 1/2-time derivative of f (for

n = 1 this is made precise in (Eng16)).

For (X, t) ∈ Ω, the caloric measure with a pole at (X, t), denoted ω(X,t)(−), is the

measure associated to the map f 7→ Uf (X, t) where Uf solves the heat equation with Dirichlet

data f ∈ C0(∂Ω). If Ω is Reifenberg flat the Dirichlet problem has a unique solution and

this measure is well defined (in fact, weaker conditions on Ω suffice to show ω(X,t) is well

defined c.f. the discussion at the bottom of page 283 in (HLN04)). Associated to ω(X,t) is

the parabolic Green function G(X, t,−,−) ∈ C(Ω\{(X, t)}), which satisfies



G(X, t, Y, s) ≥0, ∀(Y, s) ∈ Ω\{(X, t)},

G(X, t, Y, s) ≡0, ∀(Y, s) ∈ ∂Ω,

−(∂s + ∆Y )G(X, t, Y, s) =δ0((X, t)− (Y, s)),ˆ
∂Ω

ϕdω(X,t) =

ˆ
Ω
G(X, t, Y, s)(∆Y − ∂s)ϕdY ds, ∀ϕ ∈ C∞c (Rn+1).

(FP)

(Of course there are analogous objects for the adjoint equation; G(−,−, Y, s) and ω̂(Y,s).) We

are interested in what the regularity of ω(X,t) can tell us about the regularity of ∂Ω. Observe

that by the parabolic maximum theorem the caloric measure with a pole at (X, t) can only

“see” points (Q, τ) with τ < t. Thus, any regularity of ω(X,t) will only give information

about Ωt (recall Ωt := Ω ∩ {(X, s) | s < t}). Hence, our results and proofs will often be

clearer when we work with ω, the caloric measure with a pole at infinity, and u ∈ C(Ω), the

associated Green function, which satisfy



u(Y, s) ≥0, ∀(Y, s) ∈ Ω,

u(Y, s) ≡0, ∀(Y, s) ∈ ∂Ω,

−(∂s + ∆Y )u(Y, s) =0, ∀(Y, s) ∈ Ωˆ
∂Ω

ϕdω =

ˆ
Ω
u(Y, s)(∆Y − ∂s)ϕdY ds, ∀ϕ ∈ C∞c (Rn+1).

(IP)
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(For the existence, uniqueness and some properties of this measure/function, see Appendix

B.3). However, when substantial modifications are needed, we will also state and prove our

theorems in the finite pole setting.

Let us now recall some salient concepts of “regularity” for ω(X,t). Denote the surface ball

at a point (Q, τ) ∈ ∂Ω and for radius r by ∆r(Q, τ) := Cr(Q, τ) ∩ ∂Ω.

Definition 3.1.6. Let (X0, t0) ∈ Ω. We say ω(X,t) is a doubling measure if, for every

A ≥ 2, there exists an c(A) > 0 such that for any (Q, τ) ∈ ∂Ω and r > 0, where |X0−Q|2 <

A(t0 − τ) and t0 − τ ≥ 8r2, we have

ω(X0,t0)(∆2r(Q, τ)) ≤ c(A)ω(X0,t0)(∆r(Q, τ)). (3.1.7)

Alternatively, we say ω is a doubling measure if there exists a c > 0 such that

ω(∆2r(Q, τ)) ≤ cω(∆r(Q, τ)) for all r > 0 and (Q, τ) ∈ ∂Ω.

Definition 3.1.7. Let (X0, t0) ∈ Ω, such that ω(X0,t0) is a doubling measure, ω(X0,t0) << σ

on ∂Ω and k(X0,t0)(Q, τ) := dω(X0,t0)

dσ (Q, τ). We say that ω(X0,t0) ∈ A∞(dσ) (is an A∞-

weight) if it satisfies a “reverse Hölder inequality.” That is, if there exists a p > 1 such that

if A ≥ 2, (Q, τ) ∈ ∂Ω, r > 0 are as in Definition 3.1.6 then there exists a c ≡ c(p,A) > 0

where

 
∆2r(Q,τ)

k(X0,t0)(Q, τ)pdσ(Q, τ) ≤ c

( 
∆r(Q,τ)

k(X0,t0)(Q, τ)dσ(Q, τ)

)p
. (3.1.8)

We can similarly say ω ∈ A∞(dσ) if ω << σ on ∂Ω, h(Q, τ) := dω
dσ , and there exists a

c > 0 such that

 
∆2r(Q,τ)

h(Q, τ)pdσ(Q, τ) ≤ c

( 
∆r(Q,τ)

h(Q, τ)dσ(Q, τ)

)p
. (3.1.9)

In analogy to the results of David and Jerison (DJ90), it was shown in (HLN04) that if

Ω is a “flat enough” parabolic regular domain, then the caloric measure is an A∞ weight
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(note that (HLN04) only mentions the finite pole case but the proof works unchanged for a

pole at infinity, see Proposition B.3.5).

Theorem (Theorem 1 in (HLN04) ). If Ω is a parabolic regular domain with Reifenberg

constant δ0 > 0 sufficiently small (depending on M, ‖ν‖+) then ω(X0,t0) is an A∞-weight.

Closely related to A∞ weights are the BMO and VMO function classes.

Definition 3.1.8. We say that f ∈ BMO(∂Ω) with norm ‖f‖∗ if

sup
r>0

sup
(Q,τ)∈∂Ω

 
Cr(Q,τ)

|f(P, η)− fCr(Q,τ)|dσ(P, η) ≤ ‖f‖∗,

where fCr(Q,τ) :=
ffl
Cr(Q,τ) f(P, η)dσ(P, η), the average value of f on Cr(Q, τ).

Define VMO(∂Ω) to be the closure of uniformly continuous functions vanishing at infinity

in BMO(∂Ω) (analogously we say that k(X0,t0) ∈ VMO(∂Ωt0) if k(X0,t0) ∈ VMO(∆r(Q, τ))

for any (Q, τ) ∈ ∂Ω, r > 0 which satisfies the hypothesis of Definition 3.1.6 for some A ≥ 2).

This definition looks slightly different than the one given by equation 1.11 in (HLN04).

In the infinite pole setting it gives control over the behavior of f on large scales. In the finite

pole setting it is actually equivalent to the definition given in (HLN04) as can be seen by a

covering argument.

In analogy with the elliptic case, if Ω is a vanishing chord arc domain then we expect

control on the small scale oscillation of log(k(X0,t0)).

Theorem (Theorem 2 in (HLN04)). If Ω is chord arc domain with vanishing constant and

(X0, t0) ∈ Ω then log(k(X0,t0)) ∈ VMO(∂Ωt0).

Our main result is the converse to the above theorem and the parabolic analogue of the

Main Theorem in (KT03).

Theorem 3.1.9. [Main Theorem] Let Ω ⊂ Rn+1 be a δ-Reifenberg flat parabolic regular

domain with log(h) ∈ VMO(∂Ω) (or log(k(X0,t0)) ∈ VMO(∂Ωt0)). There is a δn > 0 such
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that if δ < δn, then Ω is a parabolic vanishing chord arc domain (alternatively, Ωt0 is a

vanishing chord arc domain).

Contrast this result to Theorem 3 in (HLN04);

Theorem (Theorem 3 in (HLN04)). Let Ω be a δ-Reifenberg flat parabolic regular domain

with (X̂, t̂) ∈ Ω. Assume that

(i) ω(X̂,t̂)(−) asymptotically optimally doubling,

(ii) log k(X̂,t̂) ∈ VMO(∂Ωt̂),

(iii) ‖ν‖+ small enough.

Then Ωt̂ is a vanishing chord arc domain.

Our main theorem removes the asymptotically optimally doubling and small Carleson

measure hypotheses. As mentioned above, this requires a classification of the “flat” limits of

pseudo-blowups (Definition 3.4.1 below), which was heretofore open in the parabolic setting.

Theorem 3.1.10. [Classification of “flat” Blowups] Let Ω∞ be a δ-Reifenberg flat parabolic

regular domain with Green function at infinity, u∞, and associated parabolic Poisson kernel,

h∞ (i.e. h∞ = dω∞
dσ ). Furthermore, assume that |∇u∞| ≤ 1 in Ω∞ and |h∞| ≥ 1 for σ-

almost every point on ∂Ω∞. There exists a δn > 0 such that if δn ≥ δ > 0 we may conclude

that, after a potential rotation and translation, Ω∞ = {(X, t) | xn > 0}.

Nyström (Nys06a) proved a version of Theorem 3.1.10 under the additional assumptions

that Ω is a graph domain and that the Green function is comparable with the distance

function from the boundary. Furthermore, under the additional assumption that Ω is a graph

domain, Nyström (Nys12) also proved that Theorem 3.1.10 implies Theorem 3.1.9. Our proof

of Theorem 3.1.10 (given in Appendix B.1) is heavily inspired by the work of Andersson and

Weiss (AW09), who studied a related free boundary problem arising in combustion. However,

we are unable to apply their results directly as they consider solutions in the sense of “domain
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variations” and it is not clear if the parabolic Green function is a solution in this sense. For

example, solutions in the sense of domain variations satisfy the bound

ˆ
Cr(X,t)

|∂tu|2 ≤ C1r
n, ∀Cr(X, t) ⊂ Ω,

and it is unknown if this inequality holds in a parabolic regular domain (see, e.g., the remark

at the end of Section 1 in (Nys12)). Furthermore, the results in (AW09) are local, whereas

Theorem 3.1.10 is a global result. Nevertheless, we were able to adapt the ideas in (AW09)

to our setting. For further discussion of exactly how our work fits in with that of (AW09)

see the beginning of Appendix B.1 below.

Let us now briefly outline this paper and sketch the contents of each section. The paper

follows closely the structure, and often the arguments, of (KT03). In Section 3.2 we prove

some technical estimates which will be used in Sections 3.3 and 3.4. Section 3.3 is devoted

to proving an integral bound for the gradient of the Green function. The arguments in

this section are much like those in the elliptic case. However, we were not able to find the

necessary results on non-tangential convergence in parabolic Reifenberg flat domains (e.g.

Fatou’s theorem) in the literature. Therefore, we prove them in Appendix B.4. Of particular

interest may be Proposition B.4.3 which constructs interior “sawtooth” domains (the elliptic

construction does not seem to generalize to the parabolic setting). Section 3.4 introduces

the blowup procedure and uses estimates from Sections 3.2 and 3.3 to show that the limit

of this blowup satisfies the hypothesis of Theorem 3.1.10. This allows us to conclude that Ω

is vanishing Reifenberg flat and, after an additional argument, gives the weak convergence

of surface measure under pseudo-blowup.

By combining the weak convergence of σ with the weak convergence of n̂σ under pseudo-

blowups (the latter follows from the theory of sets with finite perimeter) we can conclude

easily that n̂ ∈ VMO (morally, bounds on the growth of σ(∆r(Q, τ)) give bounds on the

BMO norm of n̂, see Theorem 2.1 in (KT97)). Therefore, in the elliptic setting, the weak
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convergence of surface measure is essentially enough to prove that Ω is a vanishing chord

arc domain. On the other hand, to show that Ω is a parabolic vanishing chord arc domain

one must establish a vanishing Carleson measure condition (equation (3.1.6)). Furthermore,

the aforementioned example at the end of (HLN03) shows that control of the growth of

σ(∆r(Q, τ)) does not necessarily give us control on ‖ν‖+. In Section 3.5 we use purely

geometric measure theoretical arguments to prove Theorem 3.5.1; that a vanishing Reifenberg

flat parabolic chord arc domain whose surface measure converges weakly under pseudo-

blowups must be a parabolic vanishing chord arc domain. To establish this (and thus finish

the proof of Theorem 3.1.9), we adapt approximation theorems of Hofmann, Lewis and

Nyström, (HLN03), and employ a compactness argument.

The remainder of our paper is devoted to free boundary problems with conditions above

the continuous threshold. In particular, we prove (stated here in the infinite pole setting),

Theorem 3.1.11. Let Ω ⊂ Rn+1 be a parabolic regular domain and k ∈ N, α ∈ (0, 1) such

that log(h) ∈ Ck+α,(k+α)/2(Rn+1). There is a δn > 0 such that if δn ≥ δ > 0 and Ω is

δ-Reifenberg flat, then Ω is a Ck+1+α,(k+1+α)/2(Rn+1) domain.

Furthermore, if log(h) is analytic in X and in the second Gevrey class (see Definition

3.7.7) in t then, under the assumptions above, we can conclude that Ω is the region above

the graph of a function which is analytic in the spatial variables and in the second Gevrey

class in t. Similarly, if log(h) ∈ C∞ then ∂Ω is locally the graph of a C∞ function.

The case of k = 0 follows in much the same manner as the proof of Theorem 3.1.10 but

nevertheless is done in full detail in Section 3.6. For larger values of k, we use the techniques

of Kinderlehrer and Nirenberg (see e.g. (KN78)), parabolic Schauder-type estimates (see

e.g. (Lie86)) and an iterative argument inspired by Jerison (Jer90). These arguments are

presented in Section 3.7.

Finally, let us comment on the hypothesis of Theorem 3.1.11. For n ≥ 3, this theorem

is sharp. In particular, Alt and Caffarelli, (AC81), constructed an Ahlfors regular domain

Ω ⊂ R3 with log(h) = 0 but which is not a C1 domain (it has a cone point at the origin). A
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cylinder over this domain shows that the flatness condition is necessary. On the other hand,

Keldysh and Lavrentiev (see (KL37)) constructed a domain in R2 which is rectifiable but

not Ahlfors regular, where h ≡ 1 but the domain is not a C1 domain. A cylinder over this

domain shows that the Parabolic regular assumption is necessary. In one spatial dimension,

our upcoming preprint (Eng16) shows that the the flatness condition is not necessary (as

topology implies that a parabolic NTA domain is a graph domain). When n = 2 it is not

known if the flatness assumption is necessary and we have no intuition as to what the correct

answer should be.

3.2 Notation and Preliminary Estimates

As mentioned above, all our theorems will concern a δ-Reifenberg flat, parabolic regular

domain Ω. Throughout, δ > 0 will be small enough such that Ω is a non-tangentially

accesible (NTA) domain (for the definition see (LM95), Chapter 3, Sec 6, and Lemma 3.3

in (HLN04)). In particular, for each (Q, τ) ∈ ∂Ω and r > 0 there exists two “corkscrew”

points, A±r (Q, τ) := (X±r (Q, τ), t±r (Q, τ)) ∈ Cr(Q, τ)∩Ω such that d(A±r (Q, τ), ∂Ω) ≥ r/100

and min{t+r (Q, τ)− τ, τ − t−r (Q, τ)} ≥ r2/100.

Our theorems apply both to finite and infinite pole settings. Unfortunately, we will often

have to treat these instances seperately. Fix (for the remainder of the paper) (X0, t0) ∈ Ω

and define u(X0,t0)(−,−) = G(X0, t0,−,−), the Green function (which is adjoint-caloric),

with a pole at (X0, t0). As above, ω(X0,t0) is the associated caloric measure and k(X0,t0) the

corresponding Poisson kernel (which exists by (HLN04), Theorem 1). In addition, u is the

Green function with a pole at ∞, ω the associated caloric measure and h the corresponding

Poisson kernel. We will always assume (unless stated otherwise) that log(h) ∈ VMO(∂Ω) or

log(k(X0,t0)) ∈ VMO(∂Ωt0).

Finally, define, for convenience, the distance from (X, t) ∈ Ω to the boundary

δ(X, t) = inf
(Q,τ)∈∂Ω

‖(X, t)− (Q, τ)‖.

77



3.2.1 Estimates for Green Functions in Parabolic Reifenberg Flat Domains

Here we will state some estimates on the Green function of a parabolic Reifenberg flat domain

that will be essential for the gradient bounds of Section 3.3. Corresponding estimates for

the Green function with a pole at infinity are discussed in Appendix B.3.

We begin by bounding the growth of caloric functions which vanish on surface balls.

The reader should note this result appears in different forms elsewhere in the literature (e.g.

(LM95), Lemma 6.1 and (HLN04) Lemma 3.6), so we present the proof here for the sake of

completeness.

Lemma 3.2.1. Let Ω be a δ-Reifenberg flat domain and (Q, τ) ∈ ∂Ω. Let w be a continuous

non-negative solution to the (adjoint)-heat equation in C2r(Q, τ) ∩ Ω such that w = 0 on

C2r(Q, τ) ∩ ∂Ω. Then for any ε > 0 there exists a δ0 = δ0(ε) > 0 such that if δ < δ0 there

exists a c = c(δ0) > 0 such that

w(X, t) ≤ c

(
d((X, t), (Q, τ))

r

)1−ε
sup

(Y,s)∈C2r(Q,τ)
w(Y, s) (3.2.1)

whenever (X, t) ∈ Cr(Q, τ) ∩ Ω.

Proof. We argue is in the proof of Lemma 2.1 in (KT03). Let (Q, τ) ∈ ∂Ω and r > 0.

Let v0 be adjoint caloric in C2r(Q, τ) ∩ Ω such that v0 = 0 on ∆2r(Q, τ) and v0 ≡ 1 on

∂pC2r(Q, τ) ∩ Ω. By the maximum principle,

w(X, t) ≤ [ sup
(Y,s)∈C2r(Q,τ)

w(Y, s)]v0(X, t). (3.2.2)

We will now attempt to bound v0 from above.

Assume, without loss of generality, that the plane of best fit at (Q, τ) for scale 2r is

{xn = 0} and that (Q, τ) = (0, 0). Define Λ = {(X, t) = (x, xn, t) | xn ≥ −4rδ}. It is

a consequence of Reifenberg flatness that Cr(0, 0) ∩ Ω ⊂ Cr(0, 0) ∩ Λ. Define h0 to be an

adjoint-caloric function in Λ ∩ C2r(0, 0) such that h0 = 0 on ∂Λ ∩ C2r(0, 0) and h0 = 1 on
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∂pC2r(0, 0)∩Λ. By the maximum principle h0(X, t) ≥ v0(X, t) for all (X, t) ∈ C2r(0, 0)∩Ω.

Finally, consider the function g0 defined by g0(x, xn, t) = xn + 4δr. It is clear that g0

is an adjoint caloric function on Λ ∩ C2r(0, 0). Furthermore, h0, g0 both vanish on ∂Λ ∩

C2r(Q, τ). Recall that (adjoint-)caloric functions in a cylinder satsify a comparison principle

(see Theorem 1.6 in (FGS86)). Hence, there is a constant C > 0 such that

h0(X, t)

g0(X, t)
≤ C

h0(0, r/2, 0)

r
, ∀(X, t) ∈ Cr/4(0, 0) ∩ Λ. (3.2.3)

Let (X, t) = (x, a, t). Then equation (3.2.3) becomes

h0(X, t) ≤ C
a+ 4δr

r
. (3.2.4)

It is then easy to see, for any θ < 1 and (X, t) ∈ Cθr(0, 0), that v0(X, t) ≤ h0(X, t) ≤ C(θ+δ).

Let θ = δ and iterate this process. The desired result follows.

Using the parabolic Harnack inequality, we can say more about sup(Y,s)∈C2r(Q,τ)w(Y, s).

Lemma 3.2.2. [Lemma 3.7 in (HLN04)] Let Ω, w, (Q, τ), δ0 be as in Lemma 3.2.1. There

is a universal constant c(δ0) ≥ 1 such that if (Y, s) ∈ Ω ∩ Cr/2(Q, τ) then

w(Y, s) ≤ cw(A±r (Q, τ)),

where we choose A− if w is a solution to the adjoint-heat equation and A+ otherwise.

As the heat equation is anisotropic, given a boundary point (Q, τ) it will behoove us to

distinguish the points in Ω which are not much closer to (Q, τ) in time than in space.

Definition 3.2.3. For (Q, τ) ∈ ∂Ω and A ≥ 100 define the time-space cone at scale r

with constant A, T±A,r(Q, τ), by

T±A,r(Q, τ) := {(X, t) ∈ Ω | |X −Q|2 ≤ A|t− τ |,±(t− τ) ≥ 4r2}.
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The next four estimates are presented, and proven, in (HLN04). We will simply state

them here. The first compares the value of the Green function at a corkscrew point with the

caloric or adjoint caloric measure of a surface ball.

Lemma 3.2.4. [Lemma 3.10 in (HLN04)] Let Ω, (Q, τ), δ0 be as in Lemma 3.2.1. Addi-

tionally suppose from some A ≥ 100, r > 0 that (X, t) ∈ T+
A,r(Q, τ). There exists some

c = c(A) ≥ 1 (independent of (Q, τ)) such that

c−1rnG(X, t, A+
r (Q, τ)) ≤ ω(X,t)(∆r/2(Q, τ)) ≤ crnG(X, t, A−r (Q, τ)).

Similarly if (X, t) ∈ T−A,r(Q, τ) we have

c−1rnG(A−r (Q, τ), X, t) ≤ ω̂(X,t)(∆r/2(Q, τ)) ≤ crnG(A+
r (Q, τ), X, t).

We now recall what it means for an (adjoint-)caloric function to satisfy a backwards in

time Harnack inequality (see e.g. (FGS86)).

Definition 3.2.5. If (Q, τ) ∈ ∂Ω and ρ > 0 we say that w > 0 satisfies a backwards

Harnack inequality in Cρ(Q, τ)∩Ω provided w is a solution to the (adjoint-)heat equation in

Cρ(Q, τ) ∩ Ω and there exists 1 ≤ λ <∞ such that

w(X, t) ≤ λw(X̃, t̃), ∀(X, t), (X̃, t̃) ∈ Cr(Z, s),

where (Z, s), r are such that C2r(Z, s) ⊂ Cρ(Q, τ) ∩ Ω.

In Reifenberg flat domains, the Green function satisfies a backwards Harnack inequality.

Lemma 3.2.6. [Lemma 3.11 in (HLN04)] Let Ω, (Q, τ), δ0 be as in Lemma 3.2.1. Addi-

tionally suppose from some A ≥ 100, r > 0 that (X, t) ∈ T+
A,r(Q, τ). There exists some

c = c(A) ≥ 1 such that

G(X, t, A−r (Q, τ)) ≤ cG(X, t, A+
r (Q, τ)).
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On the other hand, if (X, t) ∈ T−A,r(Q, τ) we conclude

G(A+
r (Q, τ), X, t) ≤ cG(A−r (Q, τ), X, t).

Lemmas 3.2.4 and 3.2.6, imply that (adjoint-)caloric measure is doubling.

Lemma 3.2.7. [Lemma 3.17 in (HLN04)] Let Ω, (Q, τ), δ0 be as in Lemma 3.2.1. Addition-

ally suppose from some A ≥ 100, r > 0 that (X, t) ∈ T+
A,r(Q, τ). Then there exists a constant

c = c(A) ≥ 1 such that

ω(X,t)(∆r(Q, τ)) ≤ cω(X,t)(∆r/2(Q, τ)).

If (X, t) ∈ T−A,r(Q, τ) a similar statement holds for ω̂.

In analogy to Lemma 4.10 in (JK82), there is a boundary comparison theorem for

(adjoint-)caloric functions in Reifenberg flat domains (see also Theorem 1.6 in (FGS86),

which gives a comparison theorem for caloric functions in cylinders).

Lemma 3.2.8. [Lemma 3.18 in (HLN04)] Let Ω, (Q, τ), δ0 be as in Lemma 3.2.1. Let

w, v ≥ 0 be continuous solutions to the (adjoint)-heat equations in C2r(Q, τ)∩Ω with w, v > 0

in Ω ∩ C2r(Q, τ) and w = v = 0 on C2r(Q, τ) ∩ ∂Ω. If w, v satisfy a backwards Harnack

inequality in C2r(Q, τ) ∩ Ω for some λ ≥ 1 then

w(Y, s)

v(Y, s)
≤ c(λ)

w(A±r (Q, τ))

v(A±r (Q, τ))
, ∀(Y, s) ∈ Cr/2(Q, τ) ∩ ∂Ω.

Where we choose A− if w, v are solutions to the adjoint heat equation and A+ otherwise.

As in the elliptic setting, a boundary comparison theorem leads to a growth estimate.

Lemma 3.2.9. [Lemma 3.19 in (HLN04)] Let Ω, (Q, τ), δ0, w, v be as in Lemma 3.2.8. There
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exists a 0 < γ ≡ γ(λ) ≤ 1/2 and a c ≡ c(λ) ≥ 1 such that

∣∣∣∣w(X, t)v(Y, s)

w(Y, s)v(X, t)
− 1

∣∣∣∣ ≤ c
(ρ
r

)γ
, ∀(X, t), (Y, s) ∈ Cρ(Q, τ) ∩ Ω

whenever 0 < ρ ≤ r/2.

3.2.2 VMO functions on Parabolic Chord Arc Domains

Here we state some consequences of the condition log(h) ∈ VMO(∂Ω) or log(k(X0,t0)) ∈

VMO(∂Ωt0). Our first theorem is a reverse Hölder inequality for every exponent. This is

a consequence of the John-Nirenberg inequality (JN16), in the Euclidean case (see Garnett

and Jones, (GJ78)). However, per a remark in (GJ78), the result remains true in our setting

as ∂Ω is a “space of homogenous type”. For further remarks and justification, see Theorem

2.1 in (KT03), which is the analogous result for the elliptic problem.

Lemma 3.2.10. Let Ω ⊂ Rn+1 be a parabolic chord arc domain and log(f) ∈ VMO(∂Ω).

Then for all (Q, τ) ∈ ∂Ω and r > 0 and 1 < q <∞ we have

( 
∆r(Q,τ)

fqdσ

)1/q

≤ C

 
∆r(Q,τ)

fdσ. (3.2.5)

Here C depends only on the VMO character of f , the chord arc constants of Ω, n and q.

For the Poisson kernel with finite pole a localized analogue of the above Lemma holds

(and is proved in much the same way):

Lemma 3.2.11. Let (X0, t0) ∈ Ω with (Q, τ) ∈ ∂Ω, A ≥ 100, r > 0 such that (X0, t0) ∈

T+
A,r(Q, τ). If log(k(X0,t0)) ∈ VMO(Ωt0) then, for any 1 < q <∞

( 
∆r(Q,τ)

(kX0,t0)qdσ

)1/q

≤ C

 
∆r(Q,τ)

k(X0,t0)dσ. (3.2.6)
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Here C > 0 depends on n, q, A the VMO character of k(X0,t0) and the chord arc constants

of Ω.

Substitute the poisson kernel, h := dω
dσ , for f in Lemma 3.2.10 to glean information on

the concentration of harmonic measure in balls. This is the parabolic analogue of Corollary

2.4 in (KT03).

Corollary 3.2.12. If Ω, h are as above, then for all ε > 0, (Q, τ) ∈ ∂Ω, r > 0 and E ⊂

∆r(Q, τ)

C−1
(

σ(E)

σ(∆r(Q, τ))

)1+ε

≤ ω(E)

ω(∆r(Q, τ))
≤ C

(
σ(E)

σ(∆r(Q, τ))

)1−ε
. (3.2.7)

Here C depends on n, ε, the chord arc constants of Ω and the VMO character of h.

Similarly, in the finite pole case we can conclude:

Corollary 3.2.13. Let (X0, t0) ∈ Ω, log(k(X0,t0)) ∈ VMO(∂Ωt0), and A ≥ 100, r > 0 and

(Q, τ) ∈ ∂Ω such that (X0, t0) ∈ T+
A,r(Q, τ). Then for all ε > 0 and E ⊂ ∆r(Q, τ)

C−1
(

σ(E)

σ(∆r(Q, τ))

)1+ε

≤ ω(X0,t0)(E)

ω(X0,t0)(∆r(Q, τ))
≤ C

(
σ(E)

σ(∆r(Q, τ))

)1−ε
. (3.2.8)

Here C depends on n, ε, A, the chord arc constants of Ω and the VMO character of k(X0,t0).

Finally, the John-Nirenberg inequality and the definition of VMO lead to the following

decomposition (see the discussion in the proof of Lemma 4.3 in (KT03) for more detail–

specifically equations 4.95 and 4.96).

Lemma 3.2.14. Let Ω, h be as above. Given ε > 0 and (Q0, τ0) ∈ ∂Ω there exists an r(ε) > 0

such that for ρ ∈ (0, r(ε)) and (Q, τ) ∈ ∆1(Q0, τ0) there exists a G(Q, τ, ρ) ⊂ ∆ρ(Q, τ) such

that σ(∆ρ(Q, τ)) ≤ (1 + ε)σ(G(Q, τ, ρ)) and, for all (P, η) ∈ G(Q, τ, ρ),

(1 + ε)−1
 

∆ρ(Q,τ)
hdσ ≤ h(P, η) ≤ (1 + ε)

 
∆ρ(Q,τ)

hdσ. (3.2.9)
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And in the finite pole setting:

Lemma 3.2.15. Let Ω, k(X0,t0), (Q, τ) ∈ ∂Ω, r > 0, A ≥ 100 be as above. Given ε > 0 exists

an r(ε) > 0 such that for ρ ∈ (0, r(ε)) and (Q̃, τ̃) ∈ Cr(Q, τ) there exists a G(Q̃, τ̃ , ρ) ⊂

∆ρ(Q̃, τ̃) such that σ(∆ρ(Q̃, τ̃)) ≤ (1 + ε)σ(G(Q̃, τ̃ , ρ)) and, for all (P, η) ∈ G(Q̃, τ̃ , ρ),

(1 + ε)−1
 

∆ρ(Q̃,τ̃)
k(X0,t0)dσ ≤ k(X0,t0)(P, η) ≤ (1 + ε)

 
∆ρ(Q̃,τ̃)

k(X0,t0)dσ. (3.2.10)

3.3 Bounding the Gradient of the Green Function

As mentioned in the introduction, the first step in our proof is to establish an integral

bound for ∇u (and ∇G(X0, t0,−,−)). Later, this will aid in demonstrating that our blowup

satisfies the hypothesis of the classification result, Theorem 3.1.10.

We begin by estimating the non-tagential maximal function of the gradient. Recall the

definition of a non-tangetial region:

Definition 3.3.1. For α > 0, (Q, τ) ∈ ∂Ω define, Γα(Q, τ), the non-tangential region at

(Q, τ) with aperture α, as

Γα(Q, τ) = {(X, t) ∈ Ω | ‖(X, t)− (Q, τ)‖ ≤ (1 + α)δ(X, t)}.

For R > 0 let ΓRα (Q, τ) := Γα(Q, τ) ∩ CR(Q, τ) denote the truncated non-tangential region.

Associated with these non-tangential regions are maximal functions

Nα(f)(Q, τ) := sup
(X,t)∈Γα(Q,τ)

|f(X, t)|

NR
α (f)(Q, τ) := sup

(X,t)∈ΓRα (Q,τ)

|f(X, t)|.
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Finally, we say that f has a non-tangential limit, L, at (Q, τ) ∈ ∂Ω if for any α > 0

lim
(X,t)→(Q,τ)

(X,t)∈Γα(Q,τ)

f(X, t) = L.

In order to apply Fatou’s theorem and Martin’s repesentation theorem (see Appendix

B.4) we must bound the non-tagential maximal function by a function in L2. We argue as in

the proof of Lemma 3.1 in (KT03) (which proves the analogous result in the elliptic setting).

Lemma 3.3.2. For any α > 0, R > 0, NR
α (|∇u|) ∈ L2

loc(dσ).

Proof. Let K ⊂ Rn+1 be a compact set and K̂ be the compact set of all points parabolic

distance ≤ 4R away from K. Pick (X, t) ∈ ΓRα (Q, τ). Standard estimates for adjoint-caloric

functions, followed by Lemmas 3.2.2 and B.3.4 yield

|∇u(X, t)| ≤ C
u(X, t)

δ(X, t)
≤ C

u(A−
4‖(Q,τ)−(X,t)‖(Q, τ))

δ(X, t)
≤ C

ω(∆2‖(Q,τ)−(X,t)‖(Q, τ))

δ(X, t)‖(Q, τ)− (X, t)‖n
.

In the non-tangential region, δ(X, t) ∼α ‖(Q, τ)− (X, t)‖, which, as σ is Ahlfors regular and

ω is doubling, implies

|∇u(X, t)| ≤ Cα

 
∆‖(Q,τ)−(X,t)‖(Q,τ)

hdσ ≤ CαMR(h)(Q, τ).

MR(h)(Q, τ) := sup0<r≤R
ffl
Cr(Q,τ) |h(P, η)|dσ(P, η) is the truncated Hardy-Littlewood max-

imal operator at scale R. ∂Ω is a space of homogenous type and h ∈ L2
loc(dσ), so we may

apply the Hardy-Littlewood maximal theorem to conclude

ˆ
K
MR(h)2dσ ≤ C

ˆ
K̂
h2dσ <∞.

The result in the finite pole setting follows in the same way;
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Lemma 3.3.3. For (X0, t0) ∈ Ω let (Q, τ) ∈ ∂Ω, R > 0 and A ≥ 100 be such that (X0, t0) ∈

T+
A,R(Q, τ). Then for any α > 0, N

R/8
α (|∇u(X0,t0)|)|∆R/2(Q,τ) ∈ L2(dσ).

Proof. Let (P, η) ∈ ∆R/2(Q, τ) and pick (X, t) ∈ Γ
R/8
α (P, η). Standard estimates for adjoint-

caloric functions, followed by Lemma 3.2.2 yield

|∇u(X0,t0)(X, t)| ≤ C
u(X0,t0)(X, t)

δ(X, t)
≤ C

u(X0,t0)(A−
4‖(P,η)−(X,t)‖(P, η))

δ(X, t)
.

Note (X, t) ∈ Γ
R/8
α (P, η) hence 4‖(P, η) − (X, t)‖ ≤ R/2. By our assumption on (Q, τ)

and (P, η) ∈ ∆R/2(Q, τ) we can compute that R/2, (P, η), (X0, t0) satisfy the hypothesis

of Lemmas 3.2.6 and 3.2.4 for some A ≥ 100 which can be taken uniformly over (P, η) ∈

∆R/2(Q, τ). Therefore,

|∇u(X0,t0)(X, t)| ≤ C(A)
ω(X0,t0)(∆2‖(P,η)−(X,t)‖(P, η))

δ(X, t)‖(P, η)− (X, t)‖n
. (3.3.1)

In the non-tangential region, δ(X, t) ∼α ‖(P, η)− (X, t)‖, which, as σ is Ahlfors regular

and ‖(P, η)− (X, t)‖ ≤ R/8 implies

|∇u(X0,t0)(X, t)| ≤ Cα,A

 
∆2‖(P,η)−(X,t)‖(P,η)

k(X0,t0)dσ ≤ Cα,AMR/2(k(X0,t0))(P, η).

The result then follows as in Lemma 3.3.2.

Unfortunately, the above argument only bounds the truncated non-tangential maximal

operators. We need a cutoff argument to transfer this estimate to the untruncated non-

tangential maximal operator. We will do this argument first for the infinite pole case and

then in the finite pole setting. The following lemma is a parabolic version of Lemma 3.3 in

(KT03) or Lemma 3.5 in (KT06), whose exposition we will follow quite closely.

Lemma 3.3.4. Assume that (0, 0) ∈ ∂Ω and fix R > 1 large. Let ϕR ∈ C∞c (Rn+1), ϕR ≡ 1

on CR(0, 0), 0 ≤ ϕR ≤ 1 and assume spt(ϕR) ⊂ C2R(0, 0). It is possible to ensure that
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|∇ϕR| ≤ C/R and |∂tϕR|, |∆ϕR| ≤ C/R2. For (X, t) ∈ Ω define

wR(X, t) =

ˆ
Ω
G(Y, s,X, t)(∂s + ∆Y )[ϕR(Y, s)∇u(Y, s)]dY ds, (3.3.2)

here, as before G(Y, s,X, t) is the Green’s function for the heat equation with a pole at (X, t)

(i.e. (∂s−∆Y )(G(Y, s,X, t)) = δ(X,t),(Y,s) and G(Y, s,−,−) ≡ 0 on ∂Ω). Then, wR|∂Ω ≡ 0

and wR ∈ C(Ω). Furthermore, if ‖(X, t)‖ ≤ R
2 , then

|wR(X, t)| ≤ C
δ(X, t)3/4

R1/2
. (3.3.3)

Additionally, if ‖(X, t)‖ ≥ 4R, there is a constant C ≡ C(R) > 0 such that

|wR(X, t)| ≤ C (3.3.4)

Proof. That wR|∂Ω ≡ 0 and wR ∈ C(Ω) follows immediately from the definition of wR. For

ease of notation let V (x, t) := ∇u(X, t). By the product rule

(∂s + ∆Y )[ϕR(Y, s)V (Y, s)] = V (Y, s)(∆Y + ∂s)ϕR(Y, s) + 2 〈∇ϕR(Y, s),∇V (Y, s)〉 .

Split wR(X, t) = w1
R(X, t) + w2

R(X, t) where,

w1
R(X, t) :=

ˆ
Ω
G(Y, s,X, t)V (Y, s)(∆Y + ∂s)ϕR(Y, s)dY ds

w2
R(X, t) := 2

ˆ
Ω
G(Y, s,X, t) 〈∇ϕR(Y, s),∇V (Y, s)〉 dY ds.

Regularity theory gives |∇u(Y, s)| ≤ C
u(Y,s)
δ(Y,s)

and |∇∇u(Y, s)| ≤ C
u(Y,s)
δ2(Y,s)

. This, along
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with our bounds on ϕR, yields

|w1
R(X, t)| ≤ C

R2

ˆ
{(Y,s)∈Ω|R<‖(Y,s)‖≤2R}

u(Y, s)

δ(Y, s)
G(Y, s,X, t)dY ds

|w2
R(X, t)| ≤ C

R

ˆ
{(Y,s)∈Ω|R<‖(Y,s)‖≤2R}

u(Y, s)

δ2(Y, s)
G(Y, s,X, t)dY ds.

(3.3.5)

Any upper bound on w2
R will also be an upper bound for w1

R (as R & δ(Y, s)). Assume

first, in order to prove (3.3.3), that ‖(X, t)‖ < R/2. We start by showing that there is a

universal constant, C > 1 such that

G(Y, s,X, t) ≤ C

(
δ(Y, s)

R

)3/4

G(A+
3R(0, 0), X, t) (3.3.6)

for all (Y, s) ∈ Ω ∩ (C2R(0, 0)\CR(0, 0)) and (X, t) ∈ Ω ∩ CR/2(0, 0). To prove this, first

assume that δ(Y, s) ≥ R/10. We would like to construct a Harnack chain between A+
3R(0, 0)

and (Y, s). To do so, we need to verify that the parabolic distance between the two points

is less than 100 times the square root of the distance between the two points along the

time axis. As we are in a δ-Reifenberg flat domain the t coordinate of A+
3R(0, 0) is equal

to (3R)2 and so A+
3R(0, 0) and (Y, s) are seperated in the t-direction by a distance of 5R2.

On the other hand ‖A+
3R(0, 0)− (Y, s)‖ ≤ 20R < 100(5R2)1/2. So there is a Harnack chain

connecting (Y, s) and A+
3R(0, 0). In a δ-Reifenberg flat domain the chain can be constructed

to stay outside of CR/2(0, 0) (see the proof of Lemma 3.3 in (HLN04)). Furthermore, as

δ(Y, s) is comparable to R, the length of this chain is bounded by some constant. Therefore,

by the Harnack inequality, we have equation (3.3.6) (note in this case
(
δ(Y,s)
R

)3/4
is greater

than some constant, and so can be included on the right hand side).

If δ(Y, s) < R/10, there is a point (Q, τ) ∈ ∂Ω such that CR/5(Q, τ)∩CR/2(0, 0) = ∅, and

(Y, s) ∈ CR/10(Q, τ). Lemma 3.2.1 yields G(Y, s,X, t) ≤
(
δ(Y,s)
R

)3/4
G(A+

R/5
(Q, τ), X, t).

We can then create a Harnack chain, as above, connecting A+
R/5

(Q, τ) and A+
3R(0, 0) to

obtain equation (3.3.6).
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G(A+
3R(0, 0),−,−) is an adjoint caloric function in Ω ∩ CR(0, 0), whence,

G(Y, s,X, t) ≤C
(
δ(Y, s)

R

)3/4

G(A+
3R(0, 0), X, t)

≤C
(
δ(Y, s)

R

)3/4(δ(X, t)
R

)3/4

G(A+
3R(0, 0), A−R(0, 0))

≤C
(
δ(Y, s)

R

)3/4(δ(X, t)
R

)3/4

R−n,

(3.3.7)

where the penultimate inequality follows from Lemma 3.2.1 applied in (X, t). The bound on

G(A+
3R(0, 0), A−R(0, 0)) and, therefore, the last inequality above, is a consequence of Lemmas

3.2.6 and 3.2.4:

G(A+
3R(0, 0), A−R(0, 0)) ≤ G(A+

3R(0, 0), A+
R(0, 0)) ≤ cR−nωA

+
3R(0,0)(CR/2(0, 0)) ≤ cR−n.

Lemma 3.2.1 applied to u(Y, s) and (3.3.7) allow us to bound

C

R

ˆ
C2R(0,0)\CR(0,0)

u(Y, s)G(Y, s,X, t)

δ2(Y, s)
dY ds

by

C

Rn+5/2

(
δ(X, t)

R

)3/4 ˆ
Ω∩C2R(0,0)

u(A−2R(0, 0))

δ(Y, s)1/2
dY ds.

Ahlfors regularity implies, for any β > (1/(2R))1/2, that

|{(Y, s) ∈ Ω ∩ C2R(0, 0) | δ(Y, s)−1/2 > β}| . Rn+1

β2
.

Therefore,

ˆ
Ω∩C2R(0,0)

1

δ(Y, s)1/2
dY ds . Rn+1

ˆ ∞
(1/(2R))1/2

1

β2
dβ ' Rn+1+1/2.
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Putting everything together we get that

|w(X, t)| ≤ C
u(A−2R(0, 0))

R

(
δ(X, t)

R

)3/4

≤ C
δ(X, t)3/4

R1/2
, (3.3.8)

where the last inequality follows from the fact that u(A−2R(0, 0)) cannot grow faster than

R1+α for any α > 0. This can be established by arguing as in proof of Lemma 3.3.2 and

invoking Corollary 3.2.12.

We turn to proving equation (3.3.4), and assume that ‖(X, t)‖ ≥ 4R. Following the proof

of equation (3.3.6) we can show

G(Y, s,X, t) ≤ CG(Y, s, A−
2jR

(0, 0)). (3.3.9)

Above, j is such that 2j−2R ≤ ‖(X, t)‖ ≤ 2j−1R. Note that G(Y, s, A−
2jR

) is a caloric

function in C2j−1R(0, 0) and apply Lemma 3.2.1 to obtain

G(Y, s,X, t) ≤ C

(
δ(Y, s)

2j−1R

)3/4

G(A+
2j−1R

(0, 0), A−
2jR

(0, 0)) ≤ Cδ(Y, s)3/4(2jR)−n−3/4.

The last inequality follows from estimating the Green’s function as we did in the proof of

equation (3.3.7). Proceeding as in the proof of equation (3.3.3) we write

C

R

ˆ
Ω∩(C2R(0,0)\CR(0,0))

u(Y, s)

δ2(Y, s)
G(Y, s,X, t)dY ds ≤ (2jR)−n−3/4R

n+1+1/2

R1+3/4
u(A−4R(0, 0)).

Putting everything together,

|wR(X, t)| ≤ C
u(A−4R(0, 0))

R
2−nj ≤ C(R). (3.3.10)

Corollary 3.3.5. For any (Y, s) ∈ Ω, ∇u has a non-tangential limit, F (Q, τ), for dω̂(Y,s)-

almost every (Q, τ) ∈ Ω. In particular, the non-tangential limit exists for σ-almost every
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(Q, τ) ∈ ∂Ω. Furthermore, F (Q, τ) ∈ L1
loc(dω̂(Y,s)) and F (Q, τ) ∈ L2

loc(dσ).

Proof. Theorem 1 in (HLN04) implies that for any compact set K ⊂ ∂Ω there exists (Y, s) ∈

Ω such that ω̂(Y,s)|K ∈ A∞(σ|K). Therefore, if the non-tangential limit exists dω̂(Y,s)-

almost everywhere for any (Y, s) ∈ Ω we can conclude that it exists σ-almost everywhere.

Additionally, Lemma 3.3.2 implies that if ∇u has a non-tangential limit, that limit is in

L2
loc(dσ) and therefore L1

loc(dω̂(Y,s)) for any (Y, s) ∈ Ω.

Thus it suffices to prove, for any (Y, s) ∈ Ω, that ∇u has a non-tangential limit dω̂(Y,s)-

almost everywhere. Let R > 0 and define, for (X, t) ∈ Ω, HR(X, t) = ϕR(X, t)∇u(X, t) −

wR(X, t), where wR, ϕR were introduced in Lemma 3.3.4. Equation (3.3.4) and wR(X, t) ∈

C(Ω) imply that wR(X, t) ∈ L∞(Ω), which, with Lemma 3.3.2, gives that N(HR)(X, t) ∈

L1(dω̂(Y,s)) for any (Y, s) ∈ Ω. By construction, HR is a solution to the adjoint heat equation

in Ω, hence, by Lemma B.4.1, HR(X, t) has a non-tangential limit ω̂(Y,s)-almost everywhere.

Finally, because wR, ϕR ∈ C(Ω) we can conclude that ∇u has a non-tangential limit for

ω̂(Y,s)-almost every point in CR(0, 0). As R is arbitrary the result follows.

If we assume higher regularity in ∂Ω, it is easy to conclude ∇u(Q, τ) = h(Q, τ)n̂(Q, τ)

for every (Q, τ) ∈ ∂Ω. The following lemma, proved in Appendix B.2, says that this remains

true in our (low regularity) setting.

Lemma 3.3.6. For σ-a.e. (Q, τ) ∈ ∂Ω we have F (Q, τ) = h(Q, τ)n̂(Q, τ)

Finally, we can prove the integral estimate.

Lemma 3.3.7. Let Ω be a δ-Reifenberg flat parabolic regular domain. Let u, h be the Green

function and parabolic Poisson kernel with poles at infinity respectively. Fix R >> 1, then

for any (X, t) ∈ Ω with ‖(X, t)‖ ≤ R/2

|∇u(X, t)| ≤
ˆ

∆2R(0,0)
h(Q, τ)dω̂(X,t)(Q, τ) + C

‖(X, t)‖3/4

R1/2
. (3.3.11)
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Proof. For (X, t) ∈ Ω define HR(X, t) = ϕR(X, t)∇u(X, t) − wR(X, t) where wR, ϕR were

introduced in Lemma 3.3.4. HR(X, t) is a solution to the adjoint heat equation (by con-

struction) and N(HR) ∈ L1(dω̂(Y,s)) for every (Y, s) ∈ Ω (as shown in the proof of Corollary

3.3.5). Hence, by Proposition B.4.4 we have HR(X, t) =
´
∂Ω g(Q, τ)dω̂(X,t)(Q, τ), where

g(Q, τ) is the non-tangential limit of HR.

Lemma 3.3.6 and wR|∂Ω ≡ 0 imply that g(Q, τ) = ϕR(Q, τ)h(Q, τ)n̂(Q, τ). Estimate

(3.3.3) on the growth of wR allows us to conclude

|∇u(X, t)| ≤ |HR(X, t)|+ |wR(X, t)| ≤
ˆ
∂Ω∩C2R(0,0)

h(Q, τ)dω̂(X,t)(Q, τ) + C
‖(X, t)‖3/4

R1/2
.

The finite pole case begins similarly; we start with a cut-off argument much in the style

of Lemma 3.3.4.

Lemma 3.3.8. Let (X0, t0) ∈ Ω and fix any (Q, τ) ∈ ∂Ω, R > 0, A ≥ 100 such that

(X0, t0) ∈ T+
A,R(Q, τ). Let ϕ ∈ C∞c (CR/2(Q, τ)). Furthermore, it is possible to ensure that

ϕ ≡ 1 on CR/4(Q, τ), 0 ≤ ϕ ≤ 1, |∇ϕ| ≤ C/R and |∂tϕ|, |∆ϕ| ≤ C/R2.

For (X, t) ∈ Ω define

W (X, t) =

ˆ
Ω
G(Y, s,X, t)(∂s + ∆Y )[ϕ(Y, s)∇u(X0,t0)(Y, s)]dY ds. (3.3.12)

Then, W |∂Ω ≡ 0 and W ∈ C(Ω). Additionally, if ‖(X, t)− (Q, τ)‖ ≤ R/8 then

|W (X, t)| ≤ C(A)

(
δ(X, t)

R

)3/4 ω(X0,t0)(∆R(Q, τ))

Rn+1
. (3.3.13)

Finally, if ‖(X, t) − (Q, τ)‖ ≥ 32R there is a constant C > 0 (which might depend on

(X0, t0), (Q, τ) but is independent of (X, t)) such that

|W (X, t)| ≤ C (3.3.14)
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Proof. Using the notation from Lemma 3.3.8, observe that ϕ(X, t) ≡ ϕR/4((X, t)− (Q, τ)).

Therefore, the continuity and boundary values of W follows as in the infinite pole case.

Furthermore, arguing exactly as in the proof of equation (3.3.13) (taking into account our

modifications on ϕ) we establish an analogue to equation (3.3.8) in the finite pole setting;

|W (X, t)| ≤ C
u(X0,t0)(A−

R/4
(Q, τ))

R

(
δ(X, t)

R

)3/4

. (3.3.15)

By assumption, (X0, t0), (Q, τ) and R satisfy the hypothesis of Lemmas 3.2.4 and 3.2.6. As

such, we may apply these lemmas to obtain the desired inequality (3.3.13).

To prove equation (3.3.14) we follow the proof of equation (3.3.4) to obtain an analogue

of (3.3.10);

|W (X, t)| ≤ C
u(X0,t0)(A−

R/4
(Q, τ))

R

R

‖(X, t)− (Q, τ)‖n
≤ C. (3.3.16)

Corollary 3.3.9. For (X0, t0) ∈ Ω, let (Q, τ) ∈ ∂Ω, R > 0, A ≥ 100 be as in Lemma

3.3.8. For any (Y, s) ∈ Ω, ∇u(X0,t0)(−,−) has a non-tangential limit, F (X0,t0)(P, η), for

dω̂(Y,s)-almost every (P, η) ∈ ∆R/4(Q, τ). In particular, the non-tangential limit exists for

σ-almost every (P, η) ∈ ∆R/4(Q, τ). Furthermore, F (X0,t0)|∆R/4(Q,τ) ∈ L1(dω̂(Y,s)) and

F (X0,t0)|∆R/4(Q,τ) ∈ L2(dσ).

Proof. Theorem 1 in (HLN04) implies that ∃(Y, s) ∈ Ω such that ω̂(Y,s)|∆δ(X0,t0)/4(Q,τ) ∈

A∞(σ|∆R(Q,τ)). Therefore, if the non-tangential limit exists dω̂(Y,s)-almost everywhere

on ∆R/4(Q, τ) for any (Y, s) ∈ Ω we can conclude that it exists σ-almost everywhere

on ∆R/4(Q, τ). Additionally, Lemma 3.3.3 implies that if ∇u(X0,t0)(−,−) has a non-

tangential limit on ∆R/4(Q, τ), that limit is in L2(dσ)-integrable on ∆R/4(Q, τ) and therefore

L1(dω̂(Y,s))-integrable on ∆R/4(Q, τ) for any (Y, s) ∈ Ω.

Thus it suffices to prove, for any (Y, s) ∈ Ω, that ∇u(X0,t0)(−,−) has a non-tangential

limit dω̂(Y,s)-almost everywhere on ∆R/4(Q, τ). Let ϕ,W be as in Lemma 3.3.8 and define,
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for (X, t) ∈ Ω, H(X, t) = ϕ(X, t)∇u(X0,t0)(X, t)−W (X, t). Equation (3.3.14) and W (X, t) ∈

C(Ω) imply that W (X, t) ∈ L∞(Ω). Lemma 3.3.3 implies that N(H)(P, η) ∈ L1(dω̂(Y,s))

for any (Y, s) ∈ Ω (as outside of CR/2(Q, τ) we have H = −W , which is bounded). By

construction, H is a solution to the adjoint heat equation in Ω, hence, by Lemma B.4.1,

H(X, t) has a non-tangential limit dω̂(Y,s)-almost everywhere. Finally, because W,ϕ ∈ C(Ω)

we can conclude that ∇u(X0,t0)(−,−) has a non-tangential limit for dω̂(Y,s)-almost every

point in ∆R/4(Q, τ).

As in the infinite pole case, if we assume higher regularity in ∂Ω, it is easy to conclude

that ∇u(X0,t0)(−,−)(P, η) = k(X0,t0)(P, η)n̂(P, η) for every (P, η) ∈ ∂Ω. The following

lemma, proved in Appendix B.2, says that this remains true in our (low regularity) setting.

Lemma 3.3.10. For (X0, t0) ∈ Ω let (Q, τ) ∈ ∂Ω, R > 0, A ≥ 100 be as in Lemma 3.3.8.

Then for σ-a.e. (P, η) ∈ ∆R/4(Q, τ) we have F (X0,t0)(P, η) = k(X0,t0)(P, η)n̂(P, η)

Finally, we have the integral estimate (the proof follows as in the infinite pole case and

so we omit it).

Lemma 3.3.11. For (X0, t0) ∈ Ω let (Q, τ) ∈ ∂Ω, R > 0, A ≥ 100 be as in Lemma 3.3.8.

Then for any (X, t) ∈ Ω with ‖(X, t)− (Q, τ)‖ ≤ δR/8

|∇u(X0,t0)(X, t)| ≤
ˆ

∆R/2(Q,τ)
k(X0,t0)dω̂(X,t) + C

(
δ(X, t)

R

)3/4 ω(X0,t0)(∆R(Q, τ))

Rn+1
.

(3.3.17)

Here C ≡ C(A) <∞.

3.4 Ω is Vanishing Reifenberg Flat

In this section we use a blowup argument to prove Proposition 3.4.6, that Ω is vanishing

Reifenberg flat, and Lemma 3.4.7, that limr↓0 sup(Q,τ)∈K∩∂Ω
σ(Cr(Q,τ))

rn+1 = 1. To do this, we

invoke Theorem 3.1.10, the classification of “flat blow-ups”.

We now describe the blowup process,
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Definition 3.4.1. Let K be a compact set (in the finite pole case we require K = ∆R(Q, τ)

where (Q, τ) ∈ ∂Ω, R > 0 satisfy (X0, t0) ∈ T+
A,4R(Q, τ) for some A ≥ 100), (Qi, τi) ∈

K ∩ ∂Ω and ri ↓ 0. Then we define

Ωi :={(X, t) | (riX +Qi, r
2
i t+ τi) ∈ Ω} (3.4.1a)

ui(X, t) :=
u(riX +Qi, r

2
i t+ τi)

ri
ffl
Cri(Qi,τi)∩∂Ω hdσ

(3.4.1b)

ωi(E) :=
σ(Cri(Qi, τi))

rn+1
i

ω({(P, η) ∈ Ω | ((P −Qi)/ri, (η − τi)/r2
i ) ∈ E})

ω(Cri(Qi, τi))
(3.4.1c)

hi(P, η) :=
h(riP +Qi, r

2
i η + τi)ffl

Cri(Qi,τi)∩∂Ω hdσ
(3.4.1d)

σi :=σ|∂Ωi . (3.4.1e)

Similarly we can define u
(X0,t0)
i , ω

(X0,t0)
i and k

(X0,t0)
i .

Remark 3.4.2. Using the uniqueness of the Green function and caloric measure it follows

by a change of variables that ui is the adjoint-caloric Green’s function for Ωi with caloric

measure ωi and

dωi = hidσi.

Similarly, u
(X0,t0)
i is the Green function for Ωi with a pole at (X0−Qi

ri
, t0−τi

r2
i

) with asso-

ciated caloric measure ω
(X0,t0)
i and Poisson kernel k

(X0,t0)
i .

We first need to show that (perhaps passing to a subsequence) the blowup process limits

to a parabolic chord arc domain. In the elliptic setting this is Theorem 4.1 in (KT03).

Additionally, in (Nys06b), Nyström considered a related parabolic blowup to the one above

and proved similar convergence results.

Lemma 3.4.3. Let Ωi, ui, hi, ωi (or u
(X0,t0)
i , k

(X0,t0)
i and ω

(X0,t0)
i ) be as in Definition 3.4.1.

Then there exists a subsequence (which we can relabel for convenience) such that for any
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compact K

D[K ∩ Ωi, K ∩ Ω∞]→ 0 (3.4.2)

where Ω∞ is a parabolic chord arc domain which is 4δ-Reifenberg flat.

Moreover there is a u∞ ∈ C(Ω∞) such that

ui → u∞ (3.4.3)

uniformly on compacta. Additionally, there is a Radon measure ω∞ supported on ∂Ω∞ such

that

ωi ⇀ ω∞. (3.4.4)

Finally, u∞, ω∞ are the Green function and caloric measure with poles at infinity for Ω∞

(i.e. they satisfy equation (IP)).

Proof. Lemma 16 in (Nys06b) proves that Ωj → Ω∞ and that Ω∞ is 4δ-Reifenberg flat.

In the same paper, Lemma 17 proves that uj → u∞, ωj → ω∞ and that u∞, ω∞ satisfy

equation (IP). A concerned reader may point out that their blowup differs slightly from

ours (as their Ω is not necessarily a chord arc domain). However, using Ahlfors regularity

their argument works virtually unchanged in our setting (see also the proof of Theorem 4.1

in (KT03)).

Therefore, to finish the proof it suffices to show that Ω∞ is a parabolic regular domain.

That is, σ∞ ≡ σ|∂Ω∞ is Ahlfors regular and ∂Ω is uniformly parabolic rectifiable. Let us first

concentrate on σ∞. Note that for each t0 ∈ R we have that (Ωj)t0 ≡ Ωj ∩ {(Y, s) | s = t0}

is δ-Reifenberg flat (and thus the topological boundary coincides with measure theoretic

boundary). Furthermore, we claim that (Ωj)t0 → (Ω∞)t0 in the Hausdorff distance sense.

This follows from the observation that, in a Reifenberg flat domain Ω, the closest point on

∂Ω to (X, t) ∈ Ω is also at time t (see Remark B.4.2).

For almost every s0 we know that Ωs0 is a set of locally finite perimeter in X ∈ Rn and
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thus (Ωj)t0 is a set of locally finite perimeter for almost every t0. We claim, for those t0,

that χΩj (X, t0) → χΩ∞(X, t0) in L1
loc(Rn). Indeed, by compactness, there exists an Et0

such that χΩj (X, t0) → χEt0
. That Et0 = (Ω∞)t0 is a consequence of (Ωj)t0 → (Ω∞)t0

in the Hausdorff distance sense (for more details, see the bottom of page 351 in (KT03)).

Hence, for almost every t0, (Ω∞)t0 is a set of locally finite perimeter. In addition, lower

semicontinuity and Fatou’s lemma imply

σ∞(∆R(P, η)) =

ˆ η+R2

η−R2
Hn−1({(X, s) | (X, s) ∈ ∂Ω∞, |X − P | ≤ R})ds

≤
ˆ η+R2

η−R2
lim inf
i→∞

Hn−1({(X, s) | (X, s) ∈ ∂Ωi, |X − P | ≤ R})ds

≤ lim inf
i→∞

ˆ η+R2

η−R2
Hn−1({(X, s) | (X, s) ∈ ∂Ωi, |X − P | ≤ R})ds

≤MRn+1.

(3.4.5)

(The last inequality above follows from the fact that σ is Ahflors regular and the definition of

the blowup). The lower Ahlfors regularity is given immediately by the δ-Reifenberg flatness

of Ω∞.

It remains to show that ν∞ (defined as in (3.1.4) but with respect to Ω∞) is a Carleson

measure. Define γ(∞)(Q, τ, r) := infP r
−n−3

´
Cr(Q,τ)∩∂Ω∞

d((Y, s), P )2dσ∞(Y, s) where the

infinum is taken over all n-planes P containing a line parallel to the t-axis. Similarly define

γ(i)(Q, τ, r). We claim that

γ(∞)(P, η, r) ≤ lim inf
i→∞

γ(i)(Pi, ηi, r + εi),∀(P, η) ∈ ∂Ω∞, (3.4.6)

where (Pi, ηi) ∈ ∂Ωi is the closest point in ∂Ωi to (P, η) and εi ↓ 0 is any sequence such that

εi ≥ 2D[∂Ωi ∩ C2r(P, η), ∂Ω∞ ∩ C2r(P, η)].

Let Vi be a plane which achieves the infinum in γ(i)(Pi, ηi, r + εi). Passing to a subse-

quence, the Vi converge in the Hausdorff distance to some V∞. As such, there exists δi ↓ 0
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with D[Vi ∩ C1(0, 0), V∞ ∩ C1(0, 0)] < δi. Estimate,

γ(i)(Pi, ηi, r + εi) = (r + εi)
−n−3

ˆ ∞
0

2λσi({(Y, s) ∈ Cr+εi(Pi, ηi) | d((Y, s), Vi) > λ})dλ

≥ (r + εi)
−n−3

ˆ ∞
0

2λσi({(Y, s) ∈ Cr(P, η) | d((Y, s), Vi) > λ})dλ

≥(r + εi)
−n−3

ˆ ∞
0

2λσi({(Y, s) ∈ Cr(P, η) | d((Y, s), V∞) > λ+ rδi})dλ

γ=λ+rδi
≥ (r + εi)

−n−3
ˆ ∞
o(1)

2(γ − o(1))σi({(Y, s) ∈ Cr(P, η) | d((Y, s), V∞) > γ})dγ.

Take lim infs of both sides and recall, as argued above, that for all open U , σ∞(U) ≤

lim infi→∞ σi(U). Equation (3.4.6) then follows from dominated convergence theorem, Fa-

tou’s lemma and Ahlfors regularity.

We claim, for any ρ > 0,

ˆ
Cρ(P,η)

γ(∞)(Y, s, r)dσ∞(Y, s) ≤ lim inf
i

ˆ
Cρ+εi

(Pi,ηi)
γ(i)(Y, s, r + εi)dσi(Y, s) =: F i(r)

(3.4.7)

where ρ > r > 0, (P, η) ∈ ∂Ω∞, the (Pi, ηi) are as above and εi ↓ 0 with εi ≥ 3D[∂Ωi ∩

C3ρ(P, η), ∂Ω∞∩C3ρ(P, η)]→ 0. The proof of equation (3.4.7) is in the same vein as that of

equation (3.4.6), and thus we will omit it. Observing that the ‖νi‖+ are bounded uniformly

in i, Fatou’s lemma implies

ν∞(Cρ(P, η)× [0, ρ)) =

ˆ ρ

0
F∞(r)

dr

r

eq (3.4.7)
≤

ˆ ρ

0
lim inf
i→∞

F i(r)
dr

r

≤ lim inf
i→∞

νi(Cρ+εi(Pi, ηi)× [0, ρ+ εi)) ≤ Cρn+1 lim sup
i
‖νi‖+.

(3.4.8)

We now want to show a bound on ∇u∞ (in hopes of applying Proposition 3.1.10). Here

we follow (Nys12) (see, specifically, the proof of Lemma 3.3 there).

Proposition 3.4.4. |∇u∞(X, t)| ≤ 1 for all (X, t) ∈ Ω∞.
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Proof: Infinite Pole case. Let (X, t) ∈ Ω∞ and define d((X, t), ∂Ω∞) =: δ∞. There exists

an i0 > 0 such that if i > i0 then C3δ∞/4(X, t) ⊂ Ωi. By standard parabolic regularity

theory, ∇ui → ∇u∞ uniformly on Cδ∞/2(X, t).

Ωi is a parabolic regular domain with (0, 0) ∈ ∂Ωi so by Lemma 3.3.7 we can write

|∇ui(X, t)| ≤
ˆ
∂Ωi∩CM (0,0)

hi(Q, τ)dω̂
(X,t)
i (Q, τ) + C

‖(X, t)‖3/4

M1/2
(3.4.9)

as long as M/2 ≥ max{2‖(X, t)‖, 1}. For ε > 0, let M ≥ 2 be such that C
‖(X,t)‖3/4
M1/2 <

ε/2 and let ε′ = ε′(M, δ∞, ε) > 0 be a small constant to be chosen later. By Lemma

3.2.14 there exists an r(ε′) > 0 such that if (Qi, τi) ∈ K ∩ ∂Ω and riM < r(ε′) there is a

set Gi := G((Qi, τi),Mri) ⊂ CMri(Qi, τi) ∩ ∂Ω with the properties that (1 + ε′)σ(Gi) ≥

σ(CMri(Qi, τi)) and, for all (P, η) ∈ Gi,

(1 + ε′)−1
 
CMri

(Qi,τi)
hdσ ≤ h(P, η) ≤ (1 + ε′)

 
CMri

(Qi,τi)
hdσ.

Throughout we will assume that i is large enough such that Mri < r(ε′).

Define G̃i := {(P, η) ∈ ∂Ωi | (riP + Qi, r
2
i η + τi) ∈ Gi}, the image of Gi under the

blowup. Then

hi(P, η) =
h(riP +Qi, r

2
i η + τi)ffl

∆ri
(Qi,τi)

hdσ
'ε′

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ
, ∀(P, η) ∈ G̃i (3.4.10)

where, as in (KT03), we write a 'ε′ b if 1
1+ε′ ≤

a
b ≤ (1 + ε′).

Observe  
∆ri

(Qi,τi)
hdσ ≥ 1

σ(∆ri(Qi, τi))

ˆ
Gi∩∆ri

(Qi,τi)
hdσ

≥
σ(Gi ∩∆ri(Qi, τi))

(1 + ε′)σ(∆ri(Qi, τi))

 
∆Mri

(Qi,τi)
hdσ.

(3.4.11)
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Combining this with equation (3.4.10) we can conclude

hi(P, η) ≤ (1 + ε′)2 σ(∆ri(Qi, τi))

σ(Gi ∩∆ri(Qi, τi))
, ∀(P, η) ∈ G̃i.

Ahlfors regularity implies

σ(Gi ∩∆ri(Qi, τi)) = σ(∆ri(Qi, τi))− σ(∆ri(Qi, τi)\Gi)

≥ σ(∆ri(Qi, τi))− σ(∆Mri(Qi, τi)\Gi)

≥ σ(∆ri(Qi, τi))− ε
′σ(∆Mri(Qi, τi))

≥ σ(∆ri(Qi, τi))(1− CM
n+1ε′).

(3.4.12)

Putting everything together hi(P, η) ≤ (1 + ε′)2(1− CMn+1ε′)−1, ∀(P, η) ∈ G̃i. Hence,

ˆ
G̃i

hidω̂
(X,t)
i ≤ (1 + ε′)2

(1− CMn+1ε′)
ω̂

(X,t)
i (G̃i) ≤

(1 + ε′)2

(1− CMn+1ε′)
, (3.4.13)

as ω̂
(X,t)
i is a probability measure.

Define Fi := (CMri(Qi, τi) ∩ ∂Ω)\Gi and F̃i analogously to G̃i. Let Ai ∈ Ωi be the

backwards non-tangential point at (0, 0) and scale 30M . We want to connect Ai with (X, t)

by a Harnack chain in Ωi. Thus we need to show that that the square root of the difference

in the t-coordinates of Ai and (X, t) is greater than
d(Ai,(X,t))

100 . This follows after observing

that the t-coordinate of Ai is ≤ −9M2. The Harnack inequality then tells us that there

is a C = C(n,M, δ∞) > 0 such that dω̂(X,t) ≤ Cdω̂Ai on C2M (0, 0) ∩ ∂Ωi. Furthermore,

Ai ∈ T−100,M (0, 0) which implies, by Theorem 1 in (HLN04), that there is a p > 1 such that

k̂Ai := dω̂Ai
dσ satisfies a reverse Hölder inequality with exponent p and constant C (as the

Ωi are uniformly parabolic regular and δ-Reifenberg flat, the arguments in (HLN04) ensure

that p, C can be taken independent of i). Let q be the dual exponent; then, by Hölder’s
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inequality,

ˆ
F̃i

hidω̂
(X,t)
i ≤ C

ˆ
F̃i

hidω̂
Ai
i ≤ C

(ˆ
F̃i

h
q
i dσi

)1/q (ˆ
F̃i

(k̂Ai)pdσi

)1/p

. (3.4.14)

To bound the first term in the product note,

ˆ
F̃i

h
q
i dσi = r−n−1

i

´
Fi
hqdσ(ffl

∆ri
(Qi,τi)

hdσ
)q . (3.4.15)

Per Lemma 3.2.10, h2 ∈ A2(dσ) (as log(h2) ∈ VMO(∂Ω)). Apply Hölder’s inequality and

then the reverse Hölder inequality with exponent 2 to obtain

ˆ
Fi

hqdσ ≤ σ(∆Mri(Qi, τi))
1/2σ(Fi)

1/2

( 
∆Mri

(Qi,τi)
h2qdσ

)1/2

≤ C

(
σ(Fi)

∆Mri(Qi, τi)

)1/2 ˆ
∆Mri

(Qi,τi)
hqdσ

≤ C
√
ε′σ(∆Mri(Qi, τi))

 
∆Mri

(Qi,τi)
hqdσ,

(3.4.16)

where that last inequality comes from the fact that Fi is small in ∆Mri(Qi, τi). Invoking

Lemma 3.2.10 again, h satisfies a reverse Hölder inequality with exponent q. This fact,

combined with equations (3.4.15), (3.4.16), implies

ˆ
F̃i

h
q
i dσi ≤C

√
ε′
σ(∆Mri(Qi, τi))

rn+1
i

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ

q
eq (3.4.11)
≤ C

√
ε′Mn+1

(
(1 + ε′)σ(∆ri(Qi, τi))

σ(Gi ∩∆ri(Qi, τi))

)q
eq (3.4.12)
≤ C

√
ε′Mn+1(1− CMn+1ε′)−q.

(3.4.17)

To bound the second term of the product in equation (3.4.14) we recall that k̂Ai satisfies
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a reverse Hölder inequality with exponent p at scale M ,

(ˆ
F̃i

(k̂Ai)pdσi

)1/p

≤

(ˆ
CM (0,0)∩∂Ωi

(k̂Ai)pdσi

)1/p

≤Cσi(CM (0, 0) ∩ ∂Ωi)
1/p

( 
CM (0,0)∩∂Ωi

k̂Aidσi

)

≤Cσi(CM (0, 0) ∩ ∂Ωi)
1/p−1ω̂Ai(CM (0, 0))

≤C

(
σ(∆Mri(Qi, τi))

rn+1
i

)1/p−1

≤ CM−(n+1)/q.

(3.4.18)

Together, equations (3.4.14), (3.4.17) and (3.4.18), say

ˆ
F̃i

hidω
(X,t)
i ≤ CM−(n+1)/q

(
C
√
ε′Mn+1(1− CMn+1ε′)−q

)1/q
= C

(ε′)1/(2q)

1− CMn+1ε′
.

(3.4.19)

Having estimated the integral over G̃i in equation (3.4.13) and the integral over F̃i in

equation (3.4.19) we can invoke equation (3.4.9) to conclude

|∇u∞(X, t)| ≤ lim sup
i

ˆ
∂Ωi∩CM (0,0)

hi(Q, τ)dω̂
(X,t)
i (Q, τ) + C

‖(X, t)‖3/4

M1/2

≤ (1 + ε′)2

(1− CMn+1ε′)
+ C

(ε′)1/(2q)

1− CMn+1ε′
+ ε/2

≤1 + ε.

(3.4.20)

The last inequality follows by picking ε′ > 0 small so that
(1+ε′)2

(1−CMn+1ε′)
+ C

(ε′)1/(2q)

1−CMn+1ε′
<

1 + ε/2.

Proof: Finite Pole Case. Let (X, t) ∈ Ω∞ and define d((X, t), ∂Ω∞) =: δ∞. There exists an

i0 > 0 such that if i > i0 then C3δ∞/4(X, t) ⊂ Ωi but C3δ∞/2(X, t) ∩ ∂Ωi 6= ∅. By standard

parabolic regularity theory, ∇u(X0,t0)
i → ∇u∞ uniformly on Cδ∞/2(X, t). Let (X̂i, t̂i) ∈ ∂Ωi

be a point on ∂Ωi closest to (X, t). Note that u
(X0,t0)
i is the Green function of Ωi with

a pole at

(
X0−Qi
ri

, t0−τi
r2
i

)
. Let M ≥ max{4R, 100δ∞}, be arbitrarily large to be chosen
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later. We want to check that

(
X0−Qi
ri

, t0−τi
r2
i

)
∈ T+

2A,M (X̂i, t̂i) for i large enough (recall our

assumption that (Qi, τi) ∈ ∆R(Q, τ) where (X0, t0) ∈ T+
A,4R(Q, τ)).

Observe

t0 − τi
r2
i

− t̂i > 4M2 ⇔ t0 − τi − r2
i t̂i > 4r2

iM
2

But t0−τi > 0 and |t̂i| < C(|t|+δ∞) < C. So for i large enough t0−τi
r2
i
− t̂i > 4M2. Similarly,

∣∣∣∣X0 −Qi
ri

− X̂i
∣∣∣∣2 ≤ 2A

∣∣∣∣∣t0 − τir2
i

− t̂i

∣∣∣∣∣⇔ |X0 −Qi − riX̂i|2 ≤ 2A|t0 − τi − r2
i t̂i|.

As |X0 −Qi|2 ≤ 3
2A|t0 − τi| we may conclude, for large i,

(
X0−Qi
ri

, t0−τi
r2
i

)
∈ T+

2A,M (X̂i, t̂i).

Invoking Lemma 3.3.11,

|∇u(X0,t0)
i (X, t)| ≤

ˆ
CM (X̂i,t̂i)∩∂Ωi

k
(X0,t0)
i dω̂

(X,t)
i +C

(
δ∞
M

)3/4 ω
(X0,t0)
i (CM (Q, τ) ∩ ∂Ωi)

Mn+1
.

(3.4.21)

For any ε > 0, pick an M ≡M(ε) > 0 large such that

C

(
δ∞
M

)3/4 ω
(X0,t0)
i (CM (Q, τ) ∩ ∂Ωi)

Mn+1
≤ ε/2.

For large enough i,

(P, η) ∈ CM (X̂i, t̂i) ∩ ∂Ωi ⇒

(riP +Qi, r
2
i η + τi) ∈ ∆riM (riX̂i +Qi, r

2
i t̂i + τi) ⊂ ∆2riM (Qi, τi) ⊂ ∆2R(Q, τ).

(3.4.22)

Therefore, we can apply Lemmas 3.2.11, 3.2.13 and 3.2.15 to k(X0,t0) on ∆2riM (Qi, τi) for

large enough i. Let ε′ ≡ ε′(M, ε) > 0 be small and chosen later. There exists an i0 ∈ N such

that i ≥ i0 implies that equations (3.4.21) and (3.4.22) hold and that 2riM ≤ r(ε′) (where

r(ε′) is given by Lemma 3.2.15). We may now proceed as in the infinite pole case to get the

desired conclusion.
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To invoke Theorem 3.1.10 we must also show that h∞ ≥ 1 almost everywhere. Here we

follow closely the method of (KT03).

Lemma 3.4.5. Let Ω∞, u∞, ω∞ be as above. Then h∞ = dω∞
dσ∞

exists and

h∞(Q, τ) ≥ 1

for σ∞-a.e. (Q, τ) ∈ ∂Ω∞.

Proof. In Lemma 3.4.3 we prove that Ω∞ is a δ-Reifenberg flat parabolic regular domain.

By Theorem 1 in (HLN04) (see Proposition B.3.5 for remarks when the pole is at infinity)

ω∞ ∈ A∞(dσ∞); thus h∞ exists.

By the divergence theorem, the limiting process described in Lemma 3.4.3, and 〈e, ~n∞〉 =

1− 1
2 |~n∞ − e|

2 we have, for any positive ϕ ∈ C∞c (Rn+1) and any e ∈ Sn−1,

ˆ
∂Ωi

ϕdσi ≥
ˆ
∂Ωi

ϕ 〈e, ~ni〉 dσi = −
ˆ

Ωi

div(ϕe)dXdt

i→∞→ −
ˆ

Ω∞
div(ϕe)dXdt =

ˆ
∂Ω∞

ϕ 〈e, ~n∞〉 dσ∞

≥
ˆ
∂Ω∞

ϕdσ∞ −
1

2

ˆ
∂Ω∞

ϕ|~n∞ − e|2dσ∞.

(3.4.23)

We claim, for any positive ϕ ∈ C∞c (Rn+1),

ˆ
∂Ω∞

ϕh∞dσ∞ ≥ lim sup
i→∞

ˆ
∂Ωi

ϕdσi. (3.4.24)

If our claim is true then
´
∂Ω∞

ϕh∞dσ∞ ≥
´
∂Ω∞

ϕdσ∞ − 1
2

´
∂Ω∞

ϕ|~n∞ − e|2dσ∞. For

(Q0, τ0) ∈ ∂Ω∞, let e = ~n∞(Q0, τ0) and ϕ→ χCr(Q0,τ0) to obtain

ˆ
Cr(Q0,τ0)

h∞dσ∞ ≥ σ∞(Cr(Q0, τ0))− 1

2

ˆ
Cr(Q0,τ0)

|~n∞(P, η)− ~n∞(Q0, τ0)|2dσ∞(P, η)⇒
 
Cr(Q0,τ0)

h∞dσ∞ ≥ 1− 1

2

 
Cr(Q0,τ0)

|~n∞(P, η)− ~n∞(Q0, τ0)|2dσ∞(P, η).
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If (Q0, τ0) is a point of density for ~n∞, h∞ letting r ↓ 0 gives h∞(Q0, τ0) ≥ 1 for σ∞-a.e.

(Q0, τ0).

Thus we need only to establish equation (3.4.24). Pick any positive ϕ ∈ C∞c (Rn+1), ε > 0

and let M ≥ 0 be large enough such that ϕ ∈ C∞c (CM (0, 0)) and ‖ϕ‖L∞ ≤ M . Let ε′ > 0

to be choosen later (depending on M, ε). We will prove equation (3.4.24) for the infinite

pole blowup. However, the arguments in the finite pole setting are completely unchanged;

for large enough i we have CMri(Qi, τi) ⊂ C2R(Q, τ) and hence can apply Lemmas 3.2.11,

3.2.13 and 3.2.15 to k(X0,t0) on ∆Mri(Qi, τi).

log(h) ∈ VMO(∂Ω), so Lemma 3.2.14 gives an R = R(ε′) > 0 such that for riM ≤

R we can split CMri(Qi, τi) ∩ ∂Ω into Gi, Fi with σ(∆Mri(Qi, τi)) ≤ (1 + ε′)σ(Gi) and
ffl

∆Mri
(Qi,τi)

hdσ ∼ε′ h(P, η) for (P, η) ∈ Gi. Define G̃i and F̃i as in the proof of Proposition

3.4.4.

For (P, η) ∈ G̃i we have hi(P, η) ∼ε′

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri (Qi,τi)
hdσ

, and consequently

ˆ
G̃i

hiϕdσi ∼ε′

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ

ˆ
G̃i

ϕdσi. (3.4.25)

We can then estimate

ˆ
G̃i

ϕdσi =

ˆ
∂Ωi

ϕdσi −
ˆ
F̃i

ϕdσi ≥
ˆ
∂Ωi

ϕdσi − Cε′Mn+2, (3.4.26)

using the Ahflors regularity of ∂Ωi and the definition of σi, F̃i.
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Therefore,

ˆ
∂Ω∞

ϕh∞dσ∞ = lim
i→∞

ˆ
∂Ωi

ϕhidσi ≥ lim sup
i→∞

ˆ
G̃i

hiϕdσi

(3.4.25)
≥ lim sup

i→∞
(1 + ε′)−1

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ

ˆ
G̃i

ϕdσi

(3.4.26)
≥ lim sup

i→∞
(1 + ε′)−1

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ

(ˆ
∂Ωi

ϕdσi − CMn+2ε′
)
.

(3.4.27)

To estimate

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri (Qi,τi)
hdσ

from below, we write

 
∆ri

(Qi,τi)
hdσ =

1

σ(∆ri(Qi, τi))

(ˆ
∆ri

(Qi,τi)∩Gi
hdσ +

ˆ
∆ri

(Qi,τi)∩Fi
hdσ

)

≤(1 + ε′)
σ(∆ri(Qi, τi) ∩Gi)
σ(∆ri(Qi, τi))

 
∆Mri

(Qi,τi)
hdσ +

ω(Fi ∩∆ri(Qi, τi))

σ(∆ri(Qi, τi))

≤(1 + ε′)
 

∆Mri
(Qi,τi)

hdσ +

(
σ(Fi)

σ(∆ri(Qi, τi))

)1/2
( 

∆ri
(Qi,τi)

h2dσ

)1/2

≤(1 + ε′)
 

∆Mri
(Qi,τi)

hdσ + (Cε′Mn+1)1/2
 

∆ri
(Qi,τi)

hdσ.

(3.4.28)

To justify the penultimate inequality above note, for any set E ⊂ ∆ri(Qi, τi), Hölder’s

inequality gives

ω(E) ≤ σ(E)1/2

(ˆ
∆ri

(Qi,τi)
h2dσ

)1/2

.

The last inequality in equation (3.4.28) follows from the fact that Fi has small volume and

h satisfies a reverse Hölder inequality with exponent 2 (Lemma 3.2.10).

After some algebraic manipulation, equation (3.4.28) implies

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ
≥ (1 + ε′)−1(1− (Cε′Mn+1)1/2).
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Hence, in light of equation (3.4.27), and choosing ε′ wisely,

ˆ
∂Ω∞

ϕh∞dσ∞ ≥ (1− ε) lim sup
i→∞

ˆ
∂Ωi

ϕdσi − ε.

Let ε ↓ 0 to prove equation (3.4.24).

We have shown that our blowup satisfies the hypothesis of Proposition 3.1.10 (the clas-

sification of flat blowups).

Proposition 3.4.6. After a rotation (which may depend on on the sequences (Qi, τi), ri),

Ω∞ = {xn > 0}, u∞ = x+
n and dω∞ = dσ∞ = Hn−1|{xn=0}∩{s=t}dt. In particular, Ω is

vanishing Reifenberg flat.

In the above we have shown that any pseudo-blowup (i.e. a blowup described in Definition

3.4.1) of Ω is a half space. However, we will need a slightly stronger result, namely that

under this blowup σi ⇀ σ∞. In the elliptic setting this is Theorem 4.4 in (KT03).

Proposition 3.4.7. For any blowup described in Definition 3.4.1, σi ⇀ σ∞. In particular,

for any compact set K (in the finite pole case K is as in Definition 3.4.1), we have

lim
r↓0

sup
(Q,τ)∈K∩∂Ω

σ(Cr(Q, τ) ∩ ∂Ω)

rn+1
= 1. (3.4.29)

Proof. Observe that σi ⇀ σ∞ implies equation (3.4.29): let (Qi, τi) ∈ K ∩ ∂Ω and ri ↓ 0 be

such that

lim
i→∞

σ(Cri(Qi, τi) ∩ ∂Ω)

rn+1
i

= lim
r↓0

sup
(Q,τ)∈K∩∂Ω

σ(Cr(Q, τ) ∩ ∂Ω)

rn+1
.

Blowing up along this sequence (possibly passing to subsequences) we get Ωi → Ω∞ and,

by Proposition 3.4.6, we have that Ω∞ = {xn > 0} (after a rotation). Since σ∞(∂C1(0, 0)) =

0, if σi ⇀ σ∞ we have limi σi(C1(0, 0)) = σ∞(C1(0, 0)) = 1 (recall our normalization from

the introduction). By definition, σi(C1(0, 0)) = 1
rn+1
i

σ(Cri(Qi, τi)) which implies equation

(3.4.29).
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Proposition 3.4.6 proved that σ∞ = ω∞ so to show σi ⇀ σ∞ it suffices to prove, for any

positive ϕ ∈ C∞c (Rn+1),

lim
i→∞

ˆ
∂Ωi

ϕdσi =

ˆ
∂Ω

ϕdω∞.

Equation (3.4.24) says that the right hand side is larger than the left. Hence, it is enough

to show

lim inf
i→∞

ˆ
∂Ωi

ϕdσi ≥
ˆ
∂Ω∞

ϕdω∞.

We will work in the infinite pole setting. The finite pole setting follows similarly (i.e. for

large i we may assume CMri(Qi, τi) ⊂ CR(Q, τ), where (X0, t0) ∈ T+
A,2R(Q, τ), and then

adapt the arguments below).

Keeping the notation from the proof of Lemma 3.4.5, it is true that, for large i,

ˆ
∂Ωi

ϕdσi ≥
ˆ
G̃i

ϕdσi
(3.4.25)
≥ (1 + ε′)−1

ffl
∆ri

(Qi,τi)
hdσffl

∆Mri
(Qi,τi)

hdσ

ˆ
G̃i

hiϕdσi

= (1 + ε′)−1

ffl
∆ri

(Qi,τi)
hdσffl

∆Mri
(Qi,τi)

hdσ

(ˆ
∂Ωi

ϕdωi −
ˆ
F̃i

hiϕdσi

)
(3.4.11)+(3.4.12)

≥ (1 + ε′)−2(1− CMn+1ε′)
(ˆ

∂Ωi

ϕdωi −
ˆ
F̃i

hiϕdσi

)
.

(3.4.30)

We need to bound from above the integral of hiϕ on F̃i,

ˆ
F̃i

hiϕdσi ≤Mωi(F̃i) = M
σ(∆ri(Qi, τi))

rn+1
i

ω(Fi)

ω(∆ri(Qi, τi))

Hölder′s Inequality
≤ M

σ(∆ri(Qi, τi))σ(∆Mri(Qi, τi))
1/2

ω(∆ri(Qi, τi))r
n+1
i

σ(Fi)
1/2

( 
∆Mri

(Qi,τi)
h2dσ

)1/2

h∈A2(dσ)
≤ CM

σ(∆ri(Qi, τi))σ(∆Mri(Qi, τi))
1/2

ω(∆ri(Qi, τi))r
n+1
i

σ(Fi)
1/2

 
∆Mri

(Qi,τi)
hdσ

σ(Fi)≤Cε(riM)n+1

≤ C(ε′)1/2Mn+2

ffl
∆Mri

(Qi,τi)
hdσffl

∆ri
(Qi,τi)

hdσ

(3.4.11)+(3.4.12)
≤ C(ε′)1/2Mn+2(1 + ε′)(1− CMn+1ε′)−1.

(3.4.31)
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From equations (3.4.30) and (3.4.31) we can conclude, for large i, that

ˆ
∂Ωi

ϕdσi ≥ (1 + ε′)−2(1− CMn+1ε′)
ˆ
∂Ωi

ϕdωi − CMn+2(ε′)1/2(1 + ε′)−1.

ωi ⇀ ω∞, consequently, let i→∞ and then ε′ ↓ 0 to obtain the desired result.

3.5 The Vanishing Carleson Condition

In this section we prove the following geometric measure theory proposition to finish our

proof of Theorem 3.1.9.

Proposition 3.5.1. Let Ω be a parabolic uniformly rectifiable domain which is also vanishing

Reifenberg flat. Furthermore, assume that

lim
r↓0

sup
(Q,τ)∈K∩∂Ω

σ(∆r(Q, τ))

rn+1
= 1

holds for all compact sets K. Then Ω is actually a vanishing chord arc domain.

Propositions 3.4.6 and 3.4.7 show that the assumptions of Proposition 3.5.1 are satisfied

and therefore Proposition 3.5.1 implies Theorem 3.1.9 (restricting to K ⊂⊂ {t < t0} in

Proposition 3.5.1 implies Theorem 3.1.9 in the finite pole setting).

In the elliptic case, Proposition 3.5.1 is also true but the proof is substantially simpler

(see the proof beginning on page 366 in (KT03)). This is due to the fact (mentioned in

the introduction) that the growth of the ratio
σ(∆r(Q,τ))

rn+1 controls the oscillation of n̂ (see,

e.g. Theorem 2.1 in (KT97)). However, as we also alluded to before, the behaviour of

σ(∆r(Q,τ))
rn+1 does not give information about the Carleson measure ν; see the example at the

end of (HLN03) in which σ(∆r(Q, τ)) ≡ rn+1 but ν is not a Carleson measure. So we

cannot hope that the methods in (KT03) can be adapted to prove Proposition 3.5.1 above.

We also mention that the previous example in (HLN03) shows that Proposition 3.5.1 is not

true without the a priori assumption that ν is a Carleson measure (i.e. that the domain is
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parabolic uniformly rectifiable).

When Ω = {(x, xn, t) | xn ≥ ψ(x, t)} and ψ ∈ Lip(1, 1/2) with D
1/2
t ψ ∈ BMO(Rn+1)

(see the introduction of (HLN04) for precise definitions), Nyström, in (Nys12), showed that

vanishing Reifenberg flatness implies the vanishing Carleson condition. To summarize his

argument, for any ri ↓ 0, (Qi, τi) ∈ ∂Ω ∩K we can write

r−n−1
i ν(Cri(Qi, τi)× [0, ri]) .

ˆ 1

0

ˆ
{(x,t)||x|≤1,|t|≤1}

γi((y, ψi(y, s), s), r)

r
dydsdr, (3.5.1)

where ψi(x, t) :=
ψ(rix+qi,r

2
i t+τi)

ri
and γi is defined as in equation (3.1.4) but with respect

to the graph of ψi. By vanishing Reifenberg flatness, γi(−,−, r) ↓ 0 pointwise and the

initial assumptions on ψ imply that {γi/r} is uniformly integrable. Hence, we can apply the

dominated convergence theorem to get the desired result.

The argument above relies on the fact that, for a graph domain, σi =
√

1 +∇ψidyds .

dyds, where the implicit constant in . is independent of i. In general, Ω need not be a graph

domain and, although σi ⇀ σ and γi → 0 pointwise, we cannot, a priori, control the integral

of γidσi. Instead, for each i, we will approximate Ω, near (Qi, τi) and at scale ri, by a graph

domain and then adapt the preceeding argument. Our first step is to approximate Ωi by

graphs whose Lip(1, 1/2) and Carleson measure norms are bounded independently of i. The

proof follows closely that of Theorem 1 in (HLN03), which shows that parabolic chord arc

domains contain big pieces of graphs of f ∈ Lip(1, 1/2) with D
1/2
t f ∈ BMO. However, we

don’t need to bound the BMO norm of D
1/2
t ψi so the quantities we focus on are different.

Lemma 3.5.2. Let Ω satisfy the conditions of Proposition 3.5.1. Also let ri ↓ 0 and (Qi, τi) ∈

K ∩ ∂Ω. Then, for every ε > 0, there exists an i0 ≡ i0(ε,K) > 1 where i > i0 implies the

existence of a ψi ∈ Lip(1, 1/2)(Rn−1 × R) such that:

1. supi ‖ψi‖Lip(1,1/2) ≤ C ≡ C(n, ε) <∞.

2. Let Pi ≡ P ((Qi, τi), ri) be the plane which best approximates Ω at scale ri around
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(Qi, τi). Define Ω̃i be the domain above the graph of ψi over P ((Qi, τi), ri). Then

σ(∆ri(Qi, τi)\∂Ω̃i) < εrn+1
i (3.5.2)

3. D[Cri(Qi, τi) ∩ ∂Ω̃i, Pi ∩ Cri(Qi, τi)] ≤ C(n)D[Cri(Qi, τi) ∩ ∂Ω, Cri(Qi, τi) ∩ Pi].

4. If ν̃i is the Carleson measure defined as in equation (3.1.4) but with respect to Ω̃i then

ν̃i(Cri(Qi, τi)× [0, ri]) ≤ K(n, ε, ‖ν‖)rn+1
i (3.5.3)

Proof. Let ε > 0 and ri ↓ 0, (Qi, τi) ∈ K ∩ ∂Ω. By the condition on σ there exists an i1 > 0

such that (1−ε2)ρn+1 < σ(∆ρ(P, η)) < (1+ε2)ρn+1 for all ρ < 2ri1 , (P, η) ∈ ∂Ω∩K. There

is also an i2 such ρ < ri2 implies that ∆ρ(P, η) is contained in a ε2ρ neighborhood of some

n-plane which contains a line parallel to the t-axis. Let i0(ε) = max{i1, i2} and i > i0.

Henceforth, we will work at scale ri and so, for ease of notation, let ri ≡ R, (Qi, τi) ≡ (0, 0)

and P ≡ P ((0, 0), R) ≡ {xn = 0}. If D̃ ≡ 1
RD[CR(0, 0) ∩ P,CR(0, 0) ∩ ∂Ω], then, by

assumption, D̃ ≤ ε2. Let p : Rn+1 → P be the orthogonal projection, i.e. p(Y, s) := (y, 0, s).

Fix a θ ∈ (0, 1) to be choosen later (depending on n, ε) and define

E = {(P, η) ∈ ∆R(0, 0) | ∃ρ < R, s.t., Hn(p(∆ρ(P, η))) ≤ θρn+1}. (3.5.4)

The Vitali covering lemma gives (Pi, ηi) ∈ E, such that E ⊂
⋃
i ∆ρi(Pi, ηi) ⊂ ∆2R(0, 0),

the Cρi/5(Pi, ηi) are pairwise disjoint and Hn(p(∆ρi(Pi, ηi))) ≤ θρn+1
i . Then

Hn(p(E)) ≤
∑
i

Hn(p(∆ρi(Pi, ηi))) ≤ θ
∑
i

ρn+1
i

≤ 5n+1(1− ε2)−1θ
∑
i

σ(∆ρi/5
(Pi, ηi)) ≤ 10n+1(1− ε2)−1(1 + ε2)θRn+1.

If F := ∆R(0, 0)\E then σ(F ) ≥ Hn(p(F )) ≥ Hn(p(∆R(0, 0))\p(E)) ≥ (1− ε2)Rn+1 −
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σ(p(E)) by Reifenberg flatness. This implies σ(E) ≤ (1 + ε2)Rn+1 − σ(F ) ≤ 2ε2Rn+1 +

10n+1(1− ε2)−1(1 + ε2)θRn+1. So if θ = 10−(n+1)ε/100 then σ(E) ≤ εRn+1/2 (as long is

ε > 0 is sufficiently small).

We want to show that F is the graph of a Lipschitz function over P . Namely, that if

(Y, s), (Z, t) ∈ F then ‖(Y, s)− (Z, t)‖ ≤ C(|y−z|+ |s− t|1/2). Let ρ := 2(|y−z|+ |s− t|1/2)

and note that if ρ ≥ R then the flatness of Ω at scale R implies the desired estimate. Write

Z = Z ′ + Z ′′ and Y = Y ′ + Y ′′ where (Y ′, s), (Z ′, t) are the projections of (Y, s) and (Z, t)

on P ((Y, s), ρ). By vanishing Reifenberg flatness |Y ′′|, |Z ′′| ≤ ε2ρ. We can write

Y ′−Z ′−((Y ′−Z ′)·en)en = p(Y ′−Z ′)⇒ |Y ′−Z ′| ≤ |p(Z ′ − Y ′)|
minv̂∈P ((Y,s),ρ) |v̂ − (v̂ · en)en|

. (3.5.5)

Define γ = minv̂∈P ((Y,s),ρ) |v̂ − (v̂ · en)en|. Combine the above estimates to obtain

‖(Y, s)−(Z, t)‖ ≤ |s−t|1/2+|Y ′′−Z ′′|+|Y ′−Z ′| ≤ ρ+2ε2ρ+
|p(Z ′ − Y ′)|

γ
≤ (1+2ε2+γ−1)ρ.

It remains only to bound γ from below. As p(Cρ(Y, s) ∩ P ((Y, s), ρ)) is a convex body

in P , equation (3.5.5) implies Hn(p(Cρ(Y, s) ∩ P ((Y, s), ρ))) ≤ cγρn+1 for some constant

c (depending only on dimension). As Cρ(Y, s) ∩ ∂Ω is well approximated by Cρ(Y, s) ∩

P ((Y, s), ρ) it must be the case that Hn(p(Cρ(Y, s)∩∂Ω)) ≤ c(γ+ε2)ρn+1. As (Y, s) ∈ F we

know (cγ+ε2) ≥ θ = c(n)ε⇒ γ ≥ c̃ε. In particular we have shown that for (Y, s), (Z, t) ∈ F

that

‖(Y, s)− (Z, t)‖ ≤ C(n, ε)(|y − z|+ |s− t|1/2). (3.5.6)

In order to eventually get the bound, (3.5.3), on the Carleson norm we need to shrink F

slightly, to F1. Ω is a parabolic regular domain so if

f(P, η) :=

ˆ 2R

0
γ(P, η, r)r−1dr, (P, η) ∈ CR(0, 0)
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then ˆ
C2R(0,0)

f(P, η)dσ(P, η) ≤ ‖ν‖(2R)n+1.

Hence, by Markov’s inequality,

σ({(P, η) ∈ C2R(0, 0) | f(P, η) ≥ (2ε−1)n+1‖ν‖}) ≤ εn+1Rn+1.

Let F1 = F\{(P, η) ∈ C2R(0, 0) | f(P, η) ≥ (2ε−1)n+1‖ν‖}. It is clear that equation (3.5.6)

holds for (Y, s), (Z, t) ∈ F1 and that

f(P, η) ≤ 2n+1ε−(n+1)‖ν‖,∀(P, η) ∈ F1. (3.5.7)

Finally, we have the estimate

σ(CR(0, 0) ∩ ∂Ω\F1) ≤ εRn+1. (3.5.8)

At this point we are ready to construct ψ using a Whitney decomposition of {xn = 0}.

Let ψ∗ be such that if (y, 0, s) ∈ p(F1) then (y, ψ∗(y, s), s) ∈ F1. Let Qi := Qρi(x̂i, t̂i) ⊂

{xn = 0} be such that

1. {xn = 0}\p(F1) =
⋃
Qi.

2. Each Qi is centered at (x̂i, t̂i) with side length 2ρi in the spacial directions and 2ρ2
i in

the time direction.

3. Qi ∩Qj = ∅ for all i 6= j

4. 10−10nd(Qi, p(F1)) ≤ ρi ≤ 10−8nd(Qi, p(F1)).

Then let vi be a partition of unity subordinate to Qi. Namely,

(I)
∑
i vi ≡ 1 on Rn\p(F1).
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(II) vi ≡ 1 on 1
2Qi and vi is supported on the double of Qi.

(III) vi ∈ C∞(Rn) and ρ`i |∂
`
xvi|+ ρ2`

i |∂
`
t vi| ≤ c(`, n) for ` = 1, 2, ...

For each i there exists (xi, ti) ∈ p(F1) such that

di := d(p(F1), Qi) = d((xi, ti), Qi).

Finally let Λ = {i | Qi ∩ C2R(0, 0) 6= ∅} and define

ψ(y, s) :=


ψ∗(y, s), (y, s) ∈ p(F1)∑
i∈Λ(ψ∗(xi, ti) + D̃di)vi(y, s), (y, s) ∈ Rn\p(F1)

(3.5.9)

where, as before, D̃ = 1
RD[CR(0, 0) ∩ P,CR(0, 0) ∩ ∂Ω] ≤ ε2.

Let Ω̃ be the graph of ψ over {xn = 0} and recall the conditions we want ψ and Ω̃

to satisfy. Condition (2) is a consequence of equation (3.5.8). Condition (3) follows as

|ψ| ≤ C(n)D̃.

It remains to show Condition (1): |ψ(y, s) − ψ(z, t)| ≤ C(n,M, ε)(|y − z| + |s − t|1/2).

Equation (3.5.6) says this is true when (y, s), (z, t) ∈ p(F1). When (y, s) ∈ p(F1) and

(z, t) /∈ p(F1) we can estimate

|ψ(y, s)− ψ(z, t)| ≤
∑

{i∈Λ|(z,t)∈2Qi}
vi(z, t)|ψ∗(y, s)− ψ∗(xi, ti)|+ C(n)ε2d((z, t), p(F1))
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as vi(z, t) 6= 0 implies di ≤ 10d((z, t), p(F1)). Apply the triangle inequality to conclude

|ψ(y, s)− ψ(z, t)| ≤ C(n)ε2
(
|y − z|+ |s− t|1/2

)
+

∑
{i∈Λ|(z,t)∈2Qi}

|y − xi|+ |s− ti|1/2

≤ C(n, ε)
(
|y − z|+ |s− t|1/2

)
+

∑
{i∈Λ|(z,t)∈2Qi}

|z − xi|+ |t− ti|1/2

≤ C(n, ε)

|y − z|+ |s− t|1/2 +
∑

{i∈Λ|(z,t)∈2Qi}
di


≤ C(n, ε)|y − z|+ |s− t|1/2.

(3.5.10)

In the above, we used that |{i ∈ Λ | (z, t) ∈ 2Qi}| ≤ C and, if (z, t) ∈ Qi that di ≤

C(n)d((z, t), p(F1)). From now on we write, a . b if there is a constant C, (which can

depend on ε, the dimension and the parabolic uniform regularity constants of Ω) such that

a ≤ Cb.

The last case is if (y, s), (z, t) /∈ p(F1). When max{d((y, s), p(F1)), d((z, t), p(F1))} ≤

‖(y, s)− (z, t)‖ estimate |ψ(y, s)−ψ(z, t)| ≤ |ψ(y, s)−ψ(ỹ, s̃)|+ |ψ(ỹ, s̃)−ψ(z̃, t̃)|+ |ψ(z̃, t̃)−

ψ(z, t)| where (ỹ, s̃) is the closest point in p(F1) to (y, s) and similarly (z̃, t̃). The Lips-

chitz bound is then a trivial consequence of the fact that d((ỹ, s̃), (z̃, t̃)) ≤ d((y, s), p(F1)) +

d((z, t), p(F1)) + ‖(y, s)− (z, t)‖ ≤ 3‖(y, s)− (z, t)‖ and the above analysis.

Now assume min{d((y, s), p(F1)), d((z, t), p(F1))} ≥ ‖(y, s)−(z, t)‖. Recall that if (y, s) ∈

2Qi then di ≤ C(n)d((y, s), p(F1)) ≤ ‖(y, s)− (z, t)‖. Similarly if i, j are such that (y, s) ∈
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2Qi and (z, t) ∈ 2Qj then ‖(xi, ti)− (xj , tj)‖ ≤ C(n)‖(y, s)− (z, t)‖. Then we can write

|ψ(y, s)−ψ(z, t)| =

∣∣∣∣∣∣
∑
i∈Λ

(ψ∗(xi, ti) + D̃di)vi(y, s)−
∑
j∈Λ

(ψ∗(xj , tj) + D̃dj)vj(z, t)

∣∣∣∣∣∣
≤
∑
i,j∈Λ

|ψ∗(xi, ti)− ψ∗(xj , tj)|+ D̃|di − dj |)vi(y, s)vj(z, t)

≤
∑

{i,j∈Λ|(y,s)∈2Qi,(z,t)∈2Qj}
C(n, ε)‖(xi, ti)− (xj , tj)‖+ C(n)‖(y, s)− (z, t)‖

≤C(n, ε)‖(y, s)− (z, t)‖.
(3.5.11)

In the above we use that |{i, j ∈ Λ | (y, s) ∈ 2Qi, (z, t) ∈ 2Qj}| ≤ C(n) and equation (3.5.6).

Finally, we may assume, without loss of generality, that d((y, s), p(F1)) ≤ ‖(y, s) −

(z, t)‖ ≤ d((z, t), p(F1)). Then

|ψ(y, s)− ψ(z, t)| ≤
∑
i∈Λ

((ψ∗(xi, ti)− ψ(y, s)) + D̃di)|vi(y, s)− vi(z, t)| (3.5.12)

as
∑
ψ(y, s)(vi(y, s)− vi(z, t)) = 0. Arguing as in equation (3.5.10), |ψ∗(xi, ti)− ψ(y, s)| ≤

C(n, ε)‖(y, s) − (xi, ti)‖. As before, if (y, s) ∈ 4Qi then ‖(y, s) − (xi, ti)‖ ≤ C̃(n)di ≤

c(n)d((y, s), p(F1)) ≤ c(n)‖(y, s) − (z, t)‖. If (y, s) /∈ 4Qi then we may assume (z, t) ∈ 2Qi

(or else vi(y, s)− vi(z, t) = 0). So ‖(y, s)− (xi, ti)‖ ≤ ‖(y, s)− (z, t)‖+ ‖(z, t)− (xi, ti)‖ ≤

‖(y, s) − (z, t)‖ + c(n)ρi ≤ c̃(n)‖(y, s) − (z, t)‖ (as ‖(y, s) − (z, t)‖ ≥ c′(n)ρi). Either way,

‖(y, s)− (xi, ti)‖, di ≤ C(n)‖(y, s)− (z, t)‖. Hence,

|ψ(y, s)− ψ(z, t)| ≤ C(n, ε)‖(y, s)− (z, t)‖
∑
i∈Λ

|vi(y, s)− vi(z, t)| ≤ C(n, ε)‖(y, s)− (z, t)‖.

It remains only to estimate the Carleson norm of ν̃. Our first claim in this direction is

that if (Y, s) ∈ ∂Ω̃ ∩ C2R(0, 0) then

d((Y, s), ∂Ω) ≤ C(n,M, ε)d((y, s), p(F1)). (3.5.13)
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Indeed, if (ỹ, s̃) ∈ p(F1) be the point in p(F1) closest to (y, s) then,

d((Y, s), ∂Ω) ≤ d((y, s), p(F1)) + |ψ(y, s)− ψ(ỹ, s̃)| ≤ C(n,M, ε)d((y, s), p(F1))

by the boundedness of ψ’s Lip(1, 1/2) norm.

Define Γi to be the graph of ψ over Qi, and, for r > 0, (X, t) ∈ F1, define ξ(X, t, r) :=

{i | Γi ∩ Cr(X, t) 6= ∅}. By equation (3.5.13) and standard covering theory there are

constants k ≡ k(n,M, ε), k̃ ≡ k̃(n,M, ε) such that Γi ⊂
⋃
j Ckdi(Zi,j , τi,j) ⊂ C

k̃r
(X, t)

where (Zi,j , τi,j) ∈ ∂Ω and the Ckdi/5(Zi,j , τi,j) is disjoint from Ckdi/5(Zi,`, τi,`) for j 6= `.

For any (Z, τ) ∈ Γi ∩ Ckdi(Zi,j , τi,j) and any n-plane P̂ containing a line parallel to the

t-axis we have

d((Z, τ), P̂ )2 ≤ C(n)

(
min

(Y,s)∈Ckdi(Zi,j ,τi,j)∩∂Ω
d((Y, s), P̂ )2 + k2d2

i

)
. (3.5.14)

Define γ̃ as in equation (3.1.3) but with respect to Ω̃. For any (X, t) ∈ F1, equation

(3.5.14) gives:

γ̃(X, t, r) ≤ 1

rn+3

ˆ
Cr(X,t)∩F1

d((Z, τ), P )2dσ +
∑
i∈ξ
j

ˆ
Ckdi(Zi,j ,τi,j)∩∂Ω̃

d((Z, τ), P )2dσ̃


Eq.(3.5.14)
≤ γ(X, t, r)+C(n, k, ε)

∑
i∈ξ

(
di
r

)n+3

+
C(n)

rn+3

∑
i∈ξ

∑
j

ˆ
∆kdi/5

(Zi,j ,τi,j)
d((Z, τ), P )2dσ.

As Qi can be adjacent to at most c(n) many other Qk we can be sure that Ckdi/5(Zi,j , τi,j) in-

tersects at most c̃(n) other Ckd`/5(Z`,j , τ`,j). Additionally, the Ckdi/5(Zi,j , τi,j) ⊂ C
k̃r

(X, t)

for all i, j. Hence, we can control γ̃ on F1:

γ̃(X, t, r) ≤ c(M,n, ε)

∑
i∈ξ

(di/r)
n+3 + γ(X, t, k̃r)

 , ∀(X, t) ∈ F1. (3.5.15)
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Integrating equation (3.5.15) over F1 and then in r from [0, R], allows us to conclude

ν̃(F1 × [0, R]) ≤ ‖ν‖(k̃R)n+1 +

ˆ
(x,t)∈p(F1)

ˆ R

0
r−1

∑
i∈ξ(X,t,r)

(
di
r

)n+3

drdxdt. (3.5.16)

Note that i ∈ ξ(X, t, r) implies that Qi ∩ Cr(X, t) 6= ∅ ⇒ r ≥ d((x, t), Qi) ≥ di. Therefore,

ˆ
(x,t)∈p(F1)

ˆ R

0
r−1

∑
i∈ξ(X,t,r)

(
di
r

)n+3

drdxdt ≤
ˆ

(x,t)∈p(F1)

∑
i∈ξ(X,t,2R)

1dxdt ≤ C(n)Rn+1,

as F1 ⊂ CR(0, 0). Putting this together with equation (3.5.16) gives us

ν̃(F1 × [0, R]) ≤ C(‖ν‖, n, ε)Rn+1 (3.5.17)

If (x, t) ∈ Qi (i.e. (X, t) ⊂ CR(0, 0) ∩ ∂Ω̃\F1) then approximation by affine functions

and a Taylor series expansion yields

γ̃(X, t, r) ≤ c(n,M, ε)r2d−2
i , (x, t) ∈ Qi ∀r ≤ 8di, (3.5.18)

(see (HLN03) pp 367, for more details). When r ≥ 8di we can lazily estimate γ̃(X, t, r) .

γ̃(Xi, ti, k̃r) where (Xi, ti) = (xi, ψ(xi, ti), ti) and (xi, ti) ∈ p(F1) such that d(p(F1), Qi) =

d((xi, ti), Qi) (as in the definition of ψ). This is because Cr(X, t) ⊂ C
k̃r

(Xi, ti) (where k̃ is

as above). Hence,

ˆ R

8di

γ̃(X, t, r)r−1dr .
ˆ R

8di

γ̃(Xi, ti, k̃r)r
−1dr

Eq.(3.5.15)

.
ˆ R

8di

γ(Xi, ti, k̃
2r)r−1dr +

ˆ R

8di

r−1
∑

j∈ξ(Xi,ti,r)
(dj/r)

n+3dr, ∀(X, t) ∈ Γi.

(3.5.19)

Note that (Xi, ti) ∈ F1, thus
´ R

0 γ(Xi, ti, k̃
2r)r−1dr . 2n+1ε−n−1‖ν‖. As before, j ∈
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ξ(Xi, ti, r)⇒ r ≥ dj . So we can bound

ˆ R

8di

r−1
∑

j∈ξ(Xi,ti,r)
(dj/r)

n+3dr ≤ c(n)
∑

j∈ξ(Xi,ti,2R)

1.

If we combine these estimates and integrate over Γi we get

ˆ
Γi

ˆ R

8di

γ̃(X, t, r)r−1drdσ̃ ≤ C(‖ν‖, ε, n)

(
σ̃(Γi) +

ˆ
Γi

|{j ∈ ξ(Xi, ti, 2R)}|dσ̃
)
.

Use equation (3.5.18) to bound the integral for small r and sum over all Qis to obtain:

ν̃((CR(0, 0)\F1)× [0, R]) . Rn+1 +
∑

j∈ξ(0,0,2R)

σ̃(Γi) . Rn+1. (3.5.20)

Combine equations (3.5.17) and (3.5.20) to obtain

ν̃(CR(0, 0)× [0, R]) ≤ C(n, ε, ‖ν‖)Rn+1.

We now want to control the Carleson norm of Ω by that of the graph domain.

Lemma 3.5.3. Let Ω be a parabolic uniformly rectifiable domain and let Ψ be a Lip(1, 1/2)

function such that

σ(C1(0, 0) ∩ ∂Ω\∂Ω̃) < ε, (3.5.21)

where Ω̃ is the domain above the graph of Ψ over some n-plane P which contains a line

parallel to the t-axis.

Then, if ν̃ is defined as in (3.1.5) but associated ∂Ω̃ we have

ν(C1/2(0, 0)× [0, 1/2]) ≤ c(ν̃(C3/4(0, 0)× [0, 3/4]) + ε1/2), (3.5.22)
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where c > 0 depends on n, ‖ν‖ and the Ahlfors regularity constant of Ω.

Proof. This proof follows closely the last several pages of (HLN04). For ease of notation

let P = {xn = 0}, so that ∂Ω̃ = {(y,Ψ(y, s), s)}. Let χ̃ be the characteristic function of

∆1(0, 0)\∂Ω̃. The Hardy-Littlewood maximal function of χ̃ with respect to σ is

Mσ(χ̃)(Y, s) = sup
ρ>0

σ(Cρ(Y, s) ∩ ∂Ω ∩ C1(0, 0)\∂Ω̃)

σ(∂Ω ∩ Cρ(Y, s))
, (Y, s) ∈ ∂Ω.

The Hardy-Littlewood maximal theorem states

σ({(Y, s) |Mσ(χ̃)(Y, s) ≥
√
ε}) ≤ C(n)

‖χ̃‖L1√
ε
≤ C(n)

√
ε.

As such, there exists a compact set E ⊂ ∂Ω̃ ∩∆1(0, 0), such that Mσ(χ̃)(Y, s) ≤
√
ε for all

(Y, s) ∈ E and

σ(∆1(0, 0)\E) ≤ ε+ C(n)
√
ε < C̃(n)

√
ε. (3.5.23)

Let {Qi} be a Whitney decomposition of Rn+1\E. That is to say,

1. Qi := Qri(Pi, ηi) is a parallelogram whose cross section at any time is a cube of side

length 2ri centered at Pi and whose length (in the time direction) is 2r2
i , centered

around the time ηi.

2. Qi ∩Qj = ∅, i 6= j

3. 10−10nd(Qi, E) ≤ ri ≤ 10−5nd(Qi, E),

4. For each i, {j | Qj ∩Qi 6= ∅} has cardinality at most c

5. Rn+1\E =
⋃
Qi.

For (Q, τ) ∈ E and 0 < ρ < 1/2, let ξ(Q, τ, ρ) = {i | Qi ∩∆ρ(Q, τ) 6= ∅}. We claim

γ(Q, τ, ρ) ≤ c(n)

γ̃(Q, τ,
3

2
ρ) +

∑
i∈ξ(Q,τ,ρ)

(
ri
ρ

)n+3
 . (3.5.24)
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To wit, let P be a plane containing a line parallel to the t axis such that γ̃(Q, τ, 3ρ/2) is

achieved by P . By definition

γ̃(Q, τ,
3

2
ρ) =

(
3

2

)−n−3

ρ−n−3
ˆ
∂Ω̃∩C3ρ/2(Q,τ)

d((Y, s), P )2dσ̃(Y, s).

On the other hand

γ(Q, τ, ρ) ≤ρ−n−3

(ˆ
E∩Cρ(Q,τ)

d((Y, s), P )2dσ +

ˆ
∆ρ(Q,τ)\E

d((Y, s), P )2dσ

)

≤γ̃(Q, τ, ρ) + ρ−n−3
∑
i∈ξ

ˆ
Qi∩∆ρ(Q,τ)

d((Y, s), P )2dσ,

(3.5.25)

as dσ = dσ̃ on E.

Note that the parabolic diameter of Qi is ≤ c(n)ri. Hence if

ξ1(Q, τ, ρ) := {i ∈ ξ(Q, τ, ρ) | ∃(Y, s) ∈ Qi s.t. d((Y, s), P ) < ri}

then d((Y, s), P ) ≤ c′(n)ri for all (Y, s) ∈ Qi and all i ∈ ξ1(Q, τ, ρ). Therefore,

ρ−n−3
∑

i∈ξ1(Q,τ,ρ)

ˆ
Qi∩∆ρ(Q,τ)

d((Y, s), P )2dσ ≤ C(n,M)
∑

i∈ξ1(Q,τ,ρ)

(ri/ρ)n+3. (3.5.26)

If i ∈ ξ(Q, τ, ρ)\ξ1(Q, τ, ρ) let (Y ∗i , s
∗
i ) ∈ Qi be such that d(Qi, E) = d((Y ∗i , s

∗
i ), E) =: δi.

We estimate sup(Y,s)∈Qi
d((Y, s), P ) ≤ d((Y ∗i , s

∗
i ), P ) + c(n)ri ≤ c̃(n)d((Y ∗i , s

∗
i ), P ) (because

i /∈ ξ1(Q, τ, ρ)). This implies,

ˆ
Qi∩∆ρ(Q,τ)

d((Y, s), P )2dσ(Y, s) ≤ c(n)rn+1
i d((Y ∗i , s

∗
i ), P )2.

The distance between (Y ∗i , s
∗
i ) and E is δi, as such, Cδi/9(Ỹi, s̃i) ⊂ C10δi/9

(Y ∗i , s
∗
i )

for some (Ỹi, s̃i) ∈ E ⊂ ∂Ω̃. Furthermore, recall δi ' ri, hence, σ̃(Cδ/9(Ỹi, s̃i) ∩ ∂Ω̃) ≥

c(n)δn+1
i ≥ c′rn+1

i . Arguing as above, d((Y, s), P ) + c(n)δi ≥ d((Y ∗i , s
∗
i ), P ) for any (Y, s) ∈
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C10δi/9
(Y ∗i , s

∗
i ). Putting all of this together,

∑
i∈ξ(Q,τ,ρ)\ξ1(Q,τ,ρ)

ˆ
Qi∩∆ρ(Q,τ)

d((Y, s), P )2dσ ≤
∑

i∈ξ(Q,τ,ρ)\ξ1(Q,τ,ρ)

c(n)rn+1
i d((Y ∗i , s

∗
i ), P )2

≤
∑

i∈ξ(Q,τ,ρ)\ξ1(Q,τ,ρ)

c(n)

(ˆ
Cδi/9

(Ỹi,s̃i)∩∂Ω̃
d((Y, s), P )2dσ̃ + δ2

i r
n+1
i

)
.

Observe that, if i ∈ ξ(Q, τ, ρ) then, δi ≤ ρ and
⋃
i∈ξ(Q,τ,ρ)\ξ1(Q,τ,ρ)Cδi/9(Ỹi, s̃i) ⊂

C3ρ/2(Q, τ). Furthermore for each i ∈ ξ(Q, τ, ρ), #{j ∈ ξ(Q, τ, ρ)\ξ1(Q, τ, ρ) | Cδi/9(Ỹi, s̃i)∩

Cδj/9(Ỹj , s̃j)} < c(n). Plugging these estimates into the offset equation above yields

ρ−n−3
∑
i∈ξ\ξ1

ˆ
Qi∩∆ρ(Q,τ)

d((Y, s), P )2dσ ≤ c(n)

γ̃(Q, τ,
3

2
ρ) +

∑
i∈ξ\ξ1

(
ri
ρ

)n+3
 .

(3.5.27)

Our claim, equation (3.5.24), follows from equations (3.5.25), (3.5.26) and (3.5.27).

By definition, if i ∈ ξ(Q, τ, ρ) then ρ ≥ d(Qi, (Q, τ)). Integrate equation (3.5.24) in ρ

from 0 to 1/2 and over (Q, τ) ∈ E ∩ C1/2(0, 0) to obtain

ν((E ∩ C1/2(0, 0))× [0, 1/2]) ≤ C(ν̃((E ∩ C3/4(0, 0))× [0, 3/4])

+

ˆ
E∩C1/2(0,0)

 ∑
i∈ξ(Q,τ,1/2)

ˆ 1/2

d(Qi,(Q,τ))
(ri/ρ)n+3ρ−1dρ

 dσ(Q, τ).
(3.5.28)

Here, and for the rest of the proof, C will refer to a constant which may depend on the

dimension, ‖ν‖ and the Ahlfors regularity constant of Ω but not on Ψ or ε.

Evaluate the integral in ρ to bound

ˆ
E∩C1/2(0,0)

 ∑
i∈ξ(Q,τ,1/2)

ˆ 1/2

d(Qi,(Q,τ))
(ri/ρ)n+3ρ−1dρ

 dσ
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by

C
∑

i∈ξ(0,0,1)

ˆ
E∩C1/2(0,0)

(
ri

d(Qi, (Q, τ))

)n+3

dσ.

For every λ ≥ c(n)ri, let

Eλ := {(Q, τ) ∈ E | d(Qi, (Q, τ)) ≤ λ}.

Trivially Eλ = {(Q, τ) ∈ E | ri/d(Qi, (Q, τ)) ≥ ri/λ}. By construction of the Whitney

decomposition, diam(Qi) ≤ c(n)λ, so Ahlfors regularity implies

σ(Eλ) ≤ Cλn+1.

Recall that ri/d(Qi, (Q, τ)) ≤ ri/δi ≤ 10−5n. Let γ = ri/λ and evaluate,

ˆ
E∩C1/2(0,0)

(
ri

d(Qi, (Q, τ))

)n+3

dσ .n

ˆ 10−5n

0
γn+2σ({(Q, τ) ∈ E | ri

d(Qi, (Q, τ))
≥ γ})dγ

.n

ˆ 1

0
γn+2rn+1

i γ−n−1dγ ≤ c(n)rn+1
i .

Now recall, that Qi ∈ ξ(0, 0, 3/4) form a cover of ∆3/4(0, 0)\E. In light of equation

(3.5.23),
∑
i∈ξ(0,0,3/4) r

n+1
i ≤ c(n)σ(∆1(0, 0)\E) ≤ C

√
ε. Which allows us to bound,

ˆ
E∩C1/2(0,0)

 ∑
i∈ξ(Q,τ,1/2)

ˆ 1/2

d(Qi,(Q,τ))
(ri/ρ)n+3ρ−1dρ

 dσ ≤ C
√
ε.

Plugging the above inequality into equation (3.5.28) proves

ν((E ∩ C1/2(0, 0))× [0, 1/2]) ≤ C(ν̃((E ∩ C3/4(0, 0))× [0, 3/4]) +
√
ε). (3.5.29)
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It remains to estimate ν((∆1/2(0, 0)\E)× [0, 1/2]). By the Cauchy-Schwartz inequality

ν((∆1/2(0, 0)\E)× [0, 1/2]) =

ˆ
∆1/2(0,0)

χEc(Q, τ)

(ˆ 1/2

0
γ(Q, τ, ρ)ρ−1dρ

)
dσ(Q, τ)

≤
√
σ(∆1/2(0, 0)\E)

ˆ
∆1/2(0,0)

(ˆ 1/2

0
γ(Q, τ, ρ)ρ−1dρ

)2

dσ(Q, τ)

1/2

.

(3.5.30)

As above, let f(Q, τ) :=
´ 1/2

0 γ(Q, τ, ρ)ρ−1dρ. We claim that f(Q, τ) ∈ BMO(C1/2(0, 0)).

Let Cρ(P, η) ⊂ C1/2(0, 0) with (P, η) ∈ ∂Ω. Define k ≡ k(ρ, P, η) =
´ 1/2
ρ γ(P, η, r)r−1dr.

Additionally, let f1(Q, τ) :=
´ ρ

0 γ(Q, τ, r)r−1dr and f2(Q, τ) = f(Q, τ)−f1(Q, τ) for (Q, τ) ∈

Cρ(P, η). By the triangle inequality,

ˆ
∆ρ(P,η)

|f(Q, τ)− k|dσ ≤
ˆ

∆ρ(P,η)
f1(Q, τ)dσ +

ˆ
∆ρ(P,η)

|f2(Q, τ)− k|dσ

≤ ‖ν‖ρn+1 +

ˆ
∆ρ(P,η)

|f2(Q, τ)− k|dσ.
(3.5.31)

If (Q, τ) ∈ ∆ρ(P, η) then σ((∆r(Q, τ) ∪∆r(P, η))\(∆r(Q, τ) ∩∆r(P, η))) ≤ Cρn+1 (by

Ahlfors regularity). Therefore, |γ(P, η, r)− γ(Q, τ, r)| ≤ C ρn+1

rn+1 . Hence,

ˆ
Cρ(P,η)

|f2(Q, τ)− k|dσ(Q, τ) ≤
ˆ
Cρ(P,η)

ˆ 1/2

ρ
|γ(P, η, r)− γ(Q, τ, r)|dr

r
dσ(Q, τ)

≤Cρn+1
ˆ 1/2

ρ

ρn+1

rn+1
r−1dr ≤ Cρn+1.

Together with equation (3.5.31), this proves ‖f(Q, τ)‖BMO(C1/2(0,0)) ≤ C.

Let k1/2 :=
ffl
C1/2(0,0) f(Q, τ)dσ (hence k1/2 ≤ ‖ν‖). By the definition of f(Q, τ) ∈ BMO,

ˆ
C1/2(0,0)

|f(Q, τ)− k1/2|
2dσ ≤c(n)‖f(Q, τ)‖2BMO(C1/2(0,0)) ⇒

ˆ
C1/2(0,0)

|f(Q, τ)|2dσ(Q, τ) ≤c(n)(‖f(Q, τ)‖2BMO(C1/2(0,0)) + ‖ν‖2).

(3.5.32)
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Combine equations (3.5.30) and (3.5.32) to produce

ν({[∂Ω ∩ C1/2(0, 0)\E]× [0, 1/2]}) ≤ Cε1/4 (3.5.33)

which, with (3.5.29), is the desired result.

We are now ready to prove Proposition 3.5.1, and by extension, complete the proof of

Theorem 3.1.9.

Proof of Proposition 3.5.1. Fix an ε > 0 and let ri ↓ 0 and (Qi, τi) ∈ ∂Ω∩K for any compact

set K. For each i, apply Lemma 3.5.2 inside of Cri(Qi, τi). This produces a sequence of

functions, {ψi}, with bounded Lipschitz norms whose graphs are good approximations to

Cri(Qi, τi)∩ ∂Ω. We write, for ease of notation, Pi ≡ P ((Qi, τi), ri). As there is no harm in

a rotation (and we will be considering each i seperately) we may assume that Pi ≡ {xn = 0}.

We can define Φi(x, t) := 1
ri
ψi(rix+qi, r

2
i t+τi)−

(Qi)n
ri

. Then, after a rotation which possibly

depends on i, Ωi and Φi satisfy the requirements of Lemma 3.5.3. In particular, there exists

an i0(ε) > 0 such that for i ≥ i0,

ν(∆ri/2
(Qi, τi)× [0, ri/2])

rn+1
i

≤ Kn,‖ν‖,ε

ˆ 3/4

0

ˆ
C3/4(0,0)

γΦi(x, t, r)dxdt
dr

r
+Kn,‖ν‖ε

1/2.

(3.5.34)

It is important to note that while both constants above can depend on the dimension, ‖ν‖

and the Ahlfors regularity of Ω, only Kn,‖ν‖,ε will depend on ε and both constants are

independent of i.

Conclusion (4) of Lemma 3.5.2 implies that fi(x, t) :=
´ 3/4

0 γΦi(x, t, r)r
−1dr is uniformly

integrable on C3/4(0, 0) ∩ {xn = 0}. Furthermore the Φi are uniformly bounded in the

Lip(1, 1/2) norm so by the Arzelà-Ascoli theorem there is some Φ∞ such that Φi ⇒ Φ∞. It

follows that fi(x, t)→ f∞(x, t) :=
´ 3/4

0 γΦ∞(x, t, r)r−1dr. Thus, the dominated convergence
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theorem implies

lim sup
i→∞

ν(Cri/2(Qi, τi)× [0, ri/2])

rn+1
i

≤ Kn,‖ν‖,ε

ˆ
C3/4(0,0)

f∞(x, t)dxdt+Kn,‖ν‖ε
1/2. (3.5.35)

On the other hand, condition (3) in Lemma 3.5.2 and vanishing Reifenberg flatness tells us

that the graph of Φi in the cylinder C1(0, 0) is contained in increasingly smaller neighbor-

hoods of Pi. Hence, Φ∞(x, t) ≡ 0 inside of C1(0, 0), and f∞(x, t) ≡ 0 in C1/2(0, 0). Plugging

this into equation (3.5.35) yields the bound,

lim sup
i→∞

1

rn+1
i

ν(∆ri/2
(Qi, τi)× [0, ri/2]) ≤ Kn,‖ν‖ε

1/2. (3.5.36)

Since ε is arbitrarily small the result follows.

3.6 Initial Hölder Regularity

We turn our attention to proving Proposition 3.1.11 and assume that log(h) (or log(k(X0,t0)))

is Hölder continuous. As before, Ω will be a δ-Reifenberg flat parabolic regular domain. We

will state and prove all the results in the infinite pole setting, however, almost no modifica-

tions are needed for kernels with a finite pole.

This section is devoted to proving an initial Hölder regularity result:

Proposition 3.6.1. Let Ω ⊂ Rn+1 be a parabolic regular domain and α ∈ (0, 1) such that

log(h) ∈ Cα,α/2(Rn+1). There is a δn > 0 such that if δn ≥ δ > 0 and Ω is δ-Reifenberg flat

then Ω is a C1+α,(1+α)/2(Rn+1) domain.

We follow closely the structure and exposition of Appendix B.1, occasionally dealing with

additional complications introduced by the Hölder condition. We should also mention that

this section is strongly influenced by the work of Andersson and Weiss in (AW09) and Alt

and Caffarelli in (AC81). To begin, we introduce flatness conditions (these are in the vein

of Definitions B.1.1 and B.1.3 but adapted to the Hölder regularity setting).

126



First, “current flatness” (compare to Definition 7.1 in (AC81)).

Definition 3.6.2. For 0 < σi ≤ 1, κ > 0 we say that u ∈ HCF (σ1, σ2, κ) in Cρ(X, t) in the

direction ν ∈ Sn−1 if for (Y, s) ∈ Cρ(X, t)

• (X, t) ∈ ∂{u > 0}

• u((Y, s)) = 0 whenever (Y −X) · ν ≤ −σ1ρ

• u((Y, s)) ≥ h(X, t) ((Y −X) · ν − σ2ρ) whenever (Y −X) · ν − σ2ρ ≥ 0.

• |∇u(Y, s)| ≤ h(X, t)(1 + κ)

• osc(Q,τ)∈∆ρ(X,t)h(Q, τ) ≤ κh(X, t).

In some situations we will not have a estimate on the growth of u in the positive side.

Thus “weak current flatness”:

Definition 3.6.3. For 0 < σi ≤ 1, κ > 0 we say that u ∈ H̃CF (σ1, σ2, κ) in Cρ(X, t) in the

direction ν ∈ Sn−1 if for (Y, s) ∈ Cρ(X, t)

• (X, t) ∈ ∂{u > 0}

• u((Y, s)) = 0 whenever (Y −X) · ν ≤ −σ1ρ

• u((Y, s)) ≥ 0 whenever (Y −X) · ν − σ2ρ ≥ 0.

• |∇u(Y, s)| ≤ h(X, t)(1 + κ)

• osc(Q,τ)∈∆ρ(X,t)h(Q, τ) ≤ κh(X, t).

Finally, in our proofs we will need to consider functions satisfying a “past flatness”

condition (first introduced for constant h in (AW09), Definition 4.1).

Definition 3.6.4. For 0 < σi ≤ 1, κ > 0 we say that u ∈ HPF (σ1, σ2, κ) in Cρ(X, t) in the

direction ν ∈ Sn−1 if for (Y, s) ∈ Cρ(X, t)
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• (X, t− ρ2) ∈ ∂Ω

• u((Y, s)) = 0 whenever (Y −X) · ν ≤ −σ1ρ

• u((Y, s)) ≥ h(X, t− ρ2) ((Y −X) · ν − σ2ρ) whenever (Y −X) · ν − σ2ρ ≥ 0.

• |∇u(Y, s)| ≤ h(X, t− ρ2)(1 + κ)

• osc(Q,τ)∈∆ρ(X,t)h(Q, τ) ≤ κh(X, t− ρ2).

Proposition 3.6.1 will be straightfoward once we prove three lemmas. The first two allow

us to conclude greater flatness on a particular side given flatness on the other (they are

analogues of Lemmas B.1.4 and B.1.5 in the Hölder setting). We will postpone their proofs

until later subsections.

Lemma 3.6.5. Let 0 < κ ≤ σ ≤ σ0 where σ0 depends only on dimension. If u ∈

H̃CF (σ, 1/2, κ) in Cρ(Q, τ) in the direction ν, then there is a constant C1 > 0 (depend-

ing only on dimension) such that u ∈ HCF (C1σ,C1σ, κ) in Cρ/2(Q, τ) in the direction ν.

Lemma 3.6.6. Let θ ∈ (0, 1) and assume that u ∈ HCF (σ, σ, κ) in Cρ(Q, τ) in the direction

ν. There exists a constant 0 < σθ < 1/2 such that if σ < σθ and κ ≤ σθσ
2 then u ∈

H̃CF (θσ, θσ, κ) in Cc(n)ρθ(Q, τ) in the direction ν where |ν − ν| ≤ C(n)σ. Here ∞ >

C(n), c(n) > 0 are constants depending only on dimension.

The third lemma is an adaptation of Proposition 3.4.4 and tells us that |∇u(X, t)| is

bounded above by h(Q, τ) as (X, t) gets close to (Q, τ).

Lemma 3.6.7. Let u,Ω, h be as in Proposition 3.6.1. Then there exists a constant C > 0,

which is uniform in (Q, τ) ∈ ∂Ω on compacta, such that for all r < 1/4,

sup
(X,t)∈Cr(Q,τ)

|∇u(X, t)| ≤ h(Q, τ) + Crmin{3/4,α}.
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Proof. Fix an R >> 1 and (Q, τ) ∈ ∂Ω. Lemma 3.3.7 says that there is a uniform constant

C > 0 such that, for any (X, t) ∈ Ω with ‖(X, t)− (Q, τ)‖ ≤ R/2,

|∇u(X, t)| ≤
ˆ

∆2R(Q,τ)
h(P, η)dω̂(X,t)(P, η) + C

‖(X, t)− (Q, τ)‖3/4

R1/2
. (3.6.1)

Let ‖(X, t)− (Q, τ)‖ ≤ r and let k0 ∈ N be such that 2−k0−1 ≤ r < 2−k0 . The inequality

1− ω̂(X,t)(C2−j (Q, τ)) ≤ C23j/4r3/4,∀j < k0 − 2, (3.6.2)

follows from applying Lemma 3.2.1 to 1− ω̂(Y,s)(C2−j (Q, τ)). We can write

ˆ
∆2R(Q,τ)

h(P, η)dω̂(X,t)(P, η) ≤ h(Q, τ) + C‖h‖Cα,α/2
ˆ

∆4r(Q,τ)
(4r)αdω̂(X,t)

+ C‖h‖Cα,α/2

ˆ
∆2R(Q,τ)\∆1(Q,τ)

dω̂(X,t) +

k0−2∑
j=0

ˆ
∆

2−j (Q,τ)\∆
2−(j+1)(Q,τ)

2−jαdω̂(X,t)

 .

(3.6.3)

We may bound

ω̂(X,t)(∆2R(Q, τ)\∆1(Q, τ)) ≤ 1− ω̂(X,t)(∆1(Q, τ))
eq.(3.6.2)
≤ CRr

3/4

ω̂(X,t)(∆2−j (Q, τ)\∆2−(j+1)(Q, τ)) ≤ 1− ω̂(X,t)(∆2−j (Q, τ))
eq.(3.6.2)
≤ C23j/4r3/4.

Plug these estimates into equation (3.7.4) to obtain

ˆ
∆2R(Q,τ)

h(P, η)dω̂(X,t)(P, η) ≤ h(Q, τ) + Crα + CRr
3/4 + Cr3/4

[log2(r−1)]∑
j=0

2j(3/4−α).

(3.6.4)

If α > 3/4 then we can let the sum above run to infinity and evaluate to get the desired

result. If α < 3/4 then the geometric sum above evaluates to ≈ rα−3/4−1
23/4−α−1

≤ 4rα−3/4. Plug

this into estimate (3.7.5) and we are done. Finally, if α = 3/4 then we may apply Lemma

3.2.1 with ε just slightly less than 1/4 to get a version of equation (3.6.2) with a different
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exponent, which will allow us to repeat the above argument without issue.

These three results allow us to iteratively improve the flatness of the free boundary.

Corollary 3.6.8. For every θ ∈ (0, 1) there is a σn,α > 0 and a constant cθ ∈ (0, 1), which

depends only on θ, α and n, such that if u ∈ H̃CF (σ, 1/2, κ) in Cρ(Q, τ) in direction ν

then u ∈ H̃CF (θσ, θσ, θ2κ) in Ccθρ(Q, τ) in direction ν as long as σ ≤ σn,α, κ ≤ σn,ασ
2

and osc∆sρ(0,0)h ≤ κsαh(0, 0). Furthermore ν satisfies |ν − ν| ≤ Cσ where C depends only

on dimension. Finally, there is constant C̃ > 1, which depends only on n, and a number

γ ∈ (0, 1), which depends only on n, α, such that C̃c
γ
θ ≥ θ ≥ c

α/2
θ .

Proof. We may assume that ρ = 1, (Q, τ) = (0, 0) and ν = en. By Lemma 3.6.5 we know

that u ∈ HCF (C1σ,C1σ, κ) in C1/2(0, 0) in direction en. Let θ1 ∈ (0, 1) be chosen later

(to depend on the dimension and α), and set σn,α := σθ1
/C1 where σθ1

is the constant

given by Lemma 3.6.6. Then if σ < σn,α and κ ≤ σn,ασ
2, Lemma 3.6.6 implies u ∈

H̃CF (C1θ1σ,C1θ1σ, κ) in Cc̃θ1
(0, 0) in the direction ν1 where |ν1 − en| ≤ C(n)σ.

We turn to improving the bound on ∇u. Observe that U = max{|∇u(X, t)| − h(0, 0), 0}

is an adjoint-subcaloric function in C1(0, 0). Let V be the solution to the adjoint heat

equation such that V = κh(0, 0)χxn≥−σ on the adjoint parabolic boundary of C1(0, 0).

That u ∈ H̃CF (σ, 1/2, κ) implies U ≤ V on ∂pC1(0, 0). The maximum theorem and Harnack

inequality then imply U ≤ V ≤ (1− c)κh(0, 0) on all of C1/2(0, 0), where c depends only on

dimension. Furthermore, by assumption,

osc∆c̃θ1
(0,0)h ≤ κ(c̃θ1)αh(0, 0).

Hence, if θ0 =
√

1− c and θ1 = min{θ0/C1, θ
2/α
0 /c̃} we have that u ∈ H̃CF (θ0σ, θ0σ, θ

2
0κ)

in Cc̃θ1
(0, 0) in direction ν1.

Iterate this scheme m times to get that u ∈ H̃CF (θm0 σ, θ
m
0 σ, θ

2m
0 κ) in Cc̃mθm1

(0, 0) in the

direction νm where |en − νm| ≤ Cσ
∑∞
j=0 θ

j
0 ≤ C(n)σ. Let m be large so that θm0 ≤ θ ≤

θm−1
0 . Then, since θ0, c̃, θ1 are constants which depend only on the dimension, n, and α,
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we see that (c̃θ1)m = cθ where cθ depends on θ, n, α. By the definition of θ1, there is some

χ ≥ 2/α > 1 (but which depends only on n, α) such that c̃θ1 = θ
χ
0 . Then

(cθ)
α/2 ≤ (cθ)

1/χ = (c̃θ1)
m
χ = θm0 ≤ θ ≤ θm−1

0 =
1

θ0
θm0 =

1

θ0
c
1/χ
θ .

Letting C̃ = 1
θ0

and γ = 1
χ implies that

c
α/2
θ ≤ θ ≤ C̃c

γ
θ . (3.6.5)

which are the desired bounds on cθ.

Proposition 3.6.1 then follows from a standard argument:

Proof of Proposition 3.6.1. We want to apply Corollary 3.6.8 iteratively. But before we can

start the iteration, we must show that the hypothesis of that result are satisfied.

By Lemma 3.6.7 and that fact that log(h) is Hölder continuous, there exists a constant

C > 0 for any compact set K such that ∀(Q, τ) ∈ ∂Ω ∩K and 1/4 > ρ > 0,

|∇u(X, t)| ≤h(Q, τ) + Cρα/2

osc∆sρ(Q,τ)h ≤Ch(Q, τ)sαρα, ∀s ∈ (0, 1].

(3.6.6)

Fix a compact set K and a σ0 ≤ σn,α (where σn,α is as in Corollary 3.6.8). As Ω is vanishing

Reifenberg flat, there exists an R := Rσ,K > 0 with the property that for all ρ < R and

(Q, τ) ∈ ∂Ω ∩ K, there is a plane P (containing a line parallel to the time axis and going

through (Q, τ)) such that

D[Cρ(Q, τ) ∩ P ;Cρ(Q, τ) ∩ ∂Ω] ≤ ρσ.

Then fix a κ0 ≤ σn,ασ
2
0. Obviously, we can choose ρ0 small enough (and smaller than

Rσ,K above) such that h(Q, τ) + Cρ
α/2
0 ≤ (1 + κ0)h(Q, τ) and Ch(Q, τ)ρα0 ≤ κ0. Further-
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more, this ρ0 can be choosen uniformly over all (Q, τ) ∈ K. These observations, combined

with equation (3.6.6), means for 0 < ρ ≤ ρ0, u ∈ H̃CF (σ, σ, κ0) in Cρ(Q, τ) for some

direction ν.

Then for any (P, η) ∈ Cρ0(Q, τ) there is a ν0(P, η) such that u ∈ H̃CF (σ, σ, κ0) in

Cρ0(P, η) in the direction ν0(P, η). Let θ ∈ (0, 1) and apply Corollary 3.6.8 m times to get

that u ∈ H̃CF (θmσ, θmσ, θ2mκ0) in Ccmθ ρ0
(P, η) in the direction νm(P, η). We should check

that the conditions of Corollary 3.6.8 are fulfilled at every step. In particular, that for any

m, we have osc∆scm
θ
ρ0

(P,η)h ≤ θ2mκ0h(P, η). Indeed,

osc∆scm
θ
ρ0

(P,η)h ≤ Ch(P, η)(sρ0c
m
θ )α ≤ κ0h(P, η)c

2mα/2
θ ≤ κ0h(P, η)θ2m.

The last inequality above follows from equation (3.6.5), and the penultimate one follows

from the definition of ρ0.

Letting m→∞ it is clear that ∂Ω has a normal vector ν(P, η) at every (P, η) ∈ Cρ0(Q, τ)

and |νm(P, η) − ν(P, η)| ≤ Cθθ
mσ . Furthermore, if (P ′, η′) ∈ ∆ρ0c

m
θ

(P, η)\∆
ρ0c

m+1
θ

(P, η)

then |νm(P, η) − νm(P ′, η′)| ≤ Cθmσ. Hence, |ν(P, η) − ν(P ′, η′)| ≤ Cθmσ. By equation

(3.6.5) we know that Cσθm ≤ Cθm ≤ C̃c
γm
θ . Let β ∈ (0, 1) be such that β(m + 1) = γm.

Hence, |ν(P, η)− ν(P ′, η′)| ≤ C‖(P, η)− (P ′, η′)‖β which is the desired result.

3.6.1 Flatness of the zero side implies flatness of the positive side: Lemma

3.6.5

Before we begin we need two technical lemmas. The first allows us to conclude regularity in

the time dimension given regularity in the spatial dimensions.

Lemma 3.6.9. If f satisfies the (adjoint)-heat equation in O and is zero outside O then

‖f‖C1,1/2(Rn+1) ≤ c‖∇f‖L∞(O),
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where 0 < c <∞ depends only on the dimension.

Proof. It suffices to show that for any (X, t), (X, s) ∈ O we have |f(X, t) − f(X, s)| ≤

C|s− t|1/2 where C does not depend on X, t or s. Assume s > t and let r ≡
√
s− t. Before

our analysis we need a basic estimate:

∣∣∣∣∣
 
B′((X,t),r)

ftdX

∣∣∣∣∣ =

∣∣∣∣∣
 
B′((X,t),r)

∆fdX

∣∣∣∣∣ =

∣∣∣∣∣cnr
 
∂B′((X,t),r)

∇f · ν

∣∣∣∣∣ ≤ Cn‖∇f‖L∞(O)

r

(3.6.7)

as long as B′((X, t), r) := {(Y, t) | |Y −X| ≤ r} ⊂ O.

There are two cases:

Case 1: {(Y, τ) | |Y −X| ≤ r, t ≤ τ ≤ s} ⊂ O. By Lipschitz continuity,

∣∣∣∣∣f(X, t)−
 
B′((X,t),r)

f(Y, t)dY

∣∣∣∣∣ ≤ C‖∇f‖L∞r.

Note that by Fubini’s theorem and the mean value theorem there is a t̃ ∈ [t, s] such that

∣∣∣∣∣
 
B′((X,t),r)

f(Y, t)dY −
 
B′((X,s),r)

f(Y, s)dY

∣∣∣∣∣ =

∣∣∣∣∣
 
{|Y−X|≤r}

ˆ s

t
∂τf(Y, τ)dτdY

∣∣∣∣∣
=(s− t)

∣∣∣∣∣
 
B′((X,t̃),r)

fτ (Y, t̃)dY

∣∣∣∣∣ .
We may combine the two equations above to conclude,

|f(X, t)− f(X, s)| ≤ C‖∇f‖L∞r + (s− t)

∣∣∣∣∣
 
B′((X,t̃),r)

fτ (Y, t̃)dY

∣∣∣∣∣
eqn (3.6.7)
≤ C‖∇f‖L∞(r +

(s− t)
r

) = C‖∇f‖L∞(O)

√
s− t.

Case 2: {(Y, τ) | |Y −X| ≤ r, t ≤ τ ≤ s} 6⊂ O. If neither B′((X, t), r) or B′((X, s), r) are

contained in O then |f(X, t)− f(X, s)| ≤ |f(X, t)|+ |f(X, s)| ≤ ‖∇f‖L∞r by the Lipschitz

continuity of u. Therefore, without loss of generality we may assume B′((X, t), r) ⊂ O .

Let t ≤ t∗ ≤ s be such that t∗ = inft≤aB′((X, a), r) 6⊂ O. Since B′((X, a), r) ⊂ O is an
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open condition, we can argue as in Case 1 so that, |f(X, t)− f(X, t∗)| ≤ C‖∇f‖L∞(O)(t
∗−

t)/r ≤ C‖∇f‖L∞(O)

√
s− t. On the other hand, as B′((X, t∗), r) 6⊂ O we know |f(X, t∗)| ≤

‖∇f‖L∞ |s− t|1/2. Therefore, |f(X, t)| ≤ C‖∇f‖L∞ |s− t|1/2. Arguing similarly at s we are

done.

This second lemma allows us to bound from below the normal derivative of a solution at

a smooth point of ∂Ω.

Lemma 3.6.10. Let (Q, τ) ∈ ∂Ω be such that there exists a tangent ball (in the Euclidean

sense) B at (Q, τ) contained in Ω
c
. Then

lim sup
Ω3(X,t)→(Q,τ)

u(X, t)

d((X, t), B)
≥ h(Q, τ).

Proof. Without loss of generality set (Q, τ) = (0, 0) and let (Xk, tk) ∈ Ω be a sequence

that achieves the supremum, `. Let (Yk, sk) ∈ B be such that d((Xk, tk), B) = ‖(Xk, tk) −

(Yk, sk)‖ =: rk. Define uk(X, t) :=
u(rkX+Yk,r

2
kt+sk)

rk
, Ωk := {(Y, s) | Y = (X − Yk)/rk, s =

(t− sk)/r2
k, s.t. (X, t) ∈ Ω} and hk(X, t) := h(rkX + Yk, r

2
kt+ sk). Then

ˆ
Rn+1

uk(∆φ− ∂tφ)dXdt =

ˆ
∂Ωk

hkφdσ. (3.6.8)

As k → ∞ we can guarentee that (rkX + Yk, r
2
kt + sk) ∈ C1/100(0, 0). Apply Lemma

3.6.7 to conclude that, for (X, t) ∈ C1(0, 0),

|∇uk(X, t)| = |∇u(rkX + Yk, r
2
kt+ sk)| ≤ Ch(0, 0) +

(
1

100

)β
.

In particular, the uk are uniformly Lipschitz continuous. By Lemma 3.6.9 the uk are bounded

uniformly in C1,1/2. Therefore, perhaps passing to a subsequence, uk → u0 uniformly on

compacta. In addition, as there exists a tangent ball at (0, 0), Ωk → {xn > 0} in the

Hausdorff distance norm (up to a rotation). We may assume, passing to a subsequence,
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that Xk−Yk
rk

→ Z0,
tk−sk
r2
k

→ t0 with (Z0, t0) ∈ C1(0, 0) ∩ {xn > 0} and u0(Z0, t0) = `.

Furthermore, by the definition of supremum, for any (Y, s) ∈ {xn > 0} we have

u0(Y, s) = lim
k→∞

u(rkY + yk, r
2
ks+ sk)/rk

≤ lim
k→∞

`
pardist((rkY + yk, r

2
ks+ sk), B)

rk

= lim
k→∞

`pardist((Y, s), Bk)

=`yn,

(3.6.9)

where Bk is defined like Ωk above.

Let φ ∈ C∞0 (Rn+1) be positive, then

ˆ
{xn>0}

`xn(∆φ− ∂tφ)dXdt ≥
ˆ
{xn>0}

u0(X, t)(∆φ− ∂tφ)dXdt

= lim
k→∞

ˆ
Ωk

uk(X, t)(∆φ− ∂tφ)dXdt

= lim
k→∞

ˆ
∂Ωk

hkφdσ.

(3.6.10)

Integrating by parts yields

`

ˆ
{xn=0}

φdxdt =

ˆ
{xn>0}

`xn(∆φ− ∂tφ)dXdt

eqn. (3.6.10)
≥ lim

k→∞

ˆ
∂Ωk

hkφdσ

≥ lim
k→∞

(
inf

(P,η)∈supp φ
h(rkP + Yk, r

2
kη + sk)

)ˆ
{xn=0}

φdxdt

Hence, ` ≥ limk→∞ h(Yk, sk) − Crαk , by the Hölder continuity of h. As (Yk, sk) → (Q, τ)

and rk ↓ 0 the desired result follows.

We will first show that for “past flatness”, flatness on the positive side gives flatness on

the zero side.
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Lemma 3.6.11. [Compare with Lemma 5.2 in (AW09)] Let 0 < κ ≤ σ/4 ≤ σ0 where σ0

depends only on dimension. Then if u ∈ HPF (σ, 1, κ) in Cρ(X̃, t̃) in the direction ν, there

is a constant C such that u ∈ HPF (Cσ,Cσ, 3κ) in Cρ/2(X̃ + αν, t̃) in the direction ν for

some |α| ≤ Cσρ.

Proof. Let (X̃, t̃) = (0, 0), ρ = 1 and ν = en. First we will construct a regular function which

touches ∂Ω at one point.

Define

η(x, t) = e
16(|x|2+|t+1|)

16(|x|2+|t+1|)−1

for 16(|x|2 + |t + 1|) < 1 and η(x, t) ≡ 0 otherwise. Let D := {(x, xn, t) ∈ C1(0, 0) |

xn > −σ + sη(x, t)}. Now pick s to be the largest such constant that C1(0, 0) ∩ Ω ⊂ D. As

(0,−1) ∈ ∂{u > 0}, there must be a touching point (X0, t0) ∈ ∂D∩∂Ω∩{−1 ≤ t ≤ −15/16}

and s ≤ σ.

Define the barrier function v as follows:

∆v + ∂tv = 0 in D,

v = 0 in ∂pD ∩ C1(0, 0)

v = h(0,−1)(1 + σ)(σ + xn) in ∂pD ∩ ∂C1(0, 0).

(3.6.11)

Note that on ∂pD ∩C1(0) we have u = 0 because D contains the positivity set. Also, as

|∇u| ≤ h(0,−1)(1 + κ) ≤ h(0,−1)(1 + σ), it must be the case that u(X, t) ≤ h(0,−1)(1 +

σ) max{0, σ + xn} for all (X, t) ∈ C1(0, 0). As v ≥ u on ∂pD it follows that v ≥ u on all of

D (by the maximum principle for subadjoint-caloric functions). We now want to estimate

the normal derivative of v at (X0, t0). To estimate from below, apply Lemma 3.6.10,

h(X0, t0) ≤ lim sup
(X,t)→(X0,t0)

u(X, t)

pardist((X, t), B)
≤ −∂νv(X0, t0) (3.6.12)

where ν is the normal pointing out of D at (X0, t0) and B is the tangent ball at (X0, t0) to
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D contained in Dc.

To estimate from above, first consider F (X, t) := (1 + σ)h(0,−1)(σ + xn)− v. On ∂pD,

−(1 + σ)h(0,−1)σ ≤ v − (1 + σ)h(0,−1)xn ≤ (1 + σ)h(0,−1)σ (3.6.13)

thus (by the maximum principle) 0 ≤ F (X, t) ≤ 2(1 + σ)h(0,−1)σ. As ∂D is piecewise

smooth domain, standard parabolic regularity gives supD |∇F (X, t)| ≤ K(1 + σ)h(0,−1)σ.

Note, since s ≤ σ, that −σ + sη(x, t) is a function whose Lip(1, 1) norm is bounded by a

constant. Therefore, K does not depend on σ.

Hence,

|∇v| − (1 + σ)h(0,−1) ≤|∇v − (1 + σ)h(0,−1)en| ≤ K(1 + σ)h(0,−1)σ

eqn (3.6.12)
⇒ h(X0, t0) ≤− ∂νv(Z) ≤ (1 +Kσ)(1 + σ)h(0,−1).

(3.6.14)

We want to show that u ≥ v − K̃(1 + σ)h(0,−1)σxn for some large constant K̃ to be

choosen later, depending only on the dimension. Let Z̃ := (Y0, s0) with s0 ∈ (−3/4, 1), |y0| ≤

1/2 and (Y0)n = 3/4 and assume, in order to obtain a contradiction, that u ≤ v − K̃(1 +

σ)h(0,−1)σxn at every point in {(Y, s0) | |Y − Y0| ≤ 1/8}. We construct a barrier function,

w ≡ w
Z̃

, defined by

∆w + ∂tw = 0 in D ∩ {t < s0},

w = xn on ∂p(D ∩ {t < s0}) ∩ {(Y, s0) | |Y − Y0| < 1/8},

w = 0 on ∂p(D ∩ {t < s0})\{(Y, s0) | |Y − Y0| < 1/8}.

By our initial assumption (and the definition of w), v − K̃σ(1 + σ)h(0,−1)w ≥ u on

∂p(D ∩ {t < s0}) and, therefore, v − K̃σ(1 + σ)h(0,−1)w ≥ u on all of D ∩ {t < s0}. Since

t0 ≤ −15/16 we know (X0, t0) ∈ ∂p(D ∩ {t < s0}). Furthermore, the Hopf lemma gives an

α > 0 (independent of Z̃) such that ∂νw(X0, t0) ≤ −α. With these facts in mind, apply
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Lemma 3.6.10 at (X0, t0) and recall estimate (3.6.14) to estimate,

h(X0, t0) = lim sup
(X,t)→(X0,t0)

u(X, t)

pardist((X, t), B)

≤− ∂νv(X0, t0) +K(1 + σ)h(0,−1)σ∂νw(X0, t0)

≤(1 +Kσ)(1 + σ)h(0,−1)− K̃α(1 + σ)h(0,−1)σ ≤ (1− 2σ)h(0,−1)

(3.6.15)

if K̃ ≥ (K+3)/α. On the other hand, our assumed flatness tells us that h(X0, t0)−h(0,−1) ≥

−κh(0,−1) ≥ −σh(0,−1). Together with equation (3.6.15) this implies −σh(0,−1) ≤

−2σh(0,−1), which is absurd.

Hence, there exists a point, call it (Y , s0), such that |Y − Y0| ≤ 1/8 and

(u− v)(Y , s0) ≥ −K̃σ(1 + σ)h(0,−1)(Y )n
(Y )n≤1
≥ −K̃(1 + σ)h(0,−1)σ.

Apply the parabolic Harnack inequality to obtain,

inf
|X−Y0|<1/8

(u− v)(X, s0 − 1/32) ≥ cn sup
|X̃−Y0|<1/8

(u− v)(X̃, s0) ≥ −K ′(1 + σ)h(0,−1)σ

(3.6.13)
⇒ u(X, s0 − 1/32) ≥ (1 + σ)h(0,−1)(xn − σ)− C(1 + σ)h(0,−1)σ,

for all X such that |X − Y0| < 1/8 and C which depends only on the dimension. Ranging

over all s0 ∈ (−3/4, 1) and |y0| ≤ 1/2 the above implies

u(X, t) ≥ (1 + σ)h(0,−1)xn − C(1 + σ)h(0,−1)σ,

whenever (X, t) satisfies |x| < 1/2, |xn − 3/4| < 1/8, t ∈ (−1/2, 1/2). As |∇u| ≤ (1 +

σ)h(0,−1) we can conclude, for any (X, t) such that |x| < 1/2, t ∈ (−1/2, 1/2) and 3/4 ≥

xn ≥ Cσ, that

u(X, t) ≥ u(x, 3/4, t)− (1 + σ)h(0,−1)(3/4− xn) ≥ (1 + σ)h(0,−1)(xn − Cσ). (3.6.16)
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We now need to find an α such that (0, α,−1/4) ∈ ∂Ω. By the initial assumed flatness,

and equation (3.6.16), α ∈ R exists and −σ ≤ α ≤ Cσ (here we pick σ0 is small enough such

that Cσ0 < 1/4).

Furthermore, by the assumed flatness in C1(0, 0),

h(0, α,−1/4)− h(0, 0,−1) ≥ −κh(0, 0,−1)

⇒ 3h(0, α,−1/4) ≥ (1− κ)−1h(0, α,−1/4) ≥ h(0, 0,−1).

(3.6.17)

Hence,

oscC1/2(0,α,0)h ≤ oscC1(0,0)h ≤ κh(0, 0,−1)
eqn (3.6.17)
≤ 2κh(0, α,−1/4).

In summary we know,

• (0, α,−1/4) ∈ ∂Ω, |α| < Cσ

• xn − α ≤ −3Cσ/2⇒ xn ≤ −σ ⇒ u(X, t) = 0.

• When xn − α ≥ 2Cσ ⇒ xn ≥ Cσ hence equation (3.6.16) implies u(X, t) ≥ ((1 +

σ)h(0,−1))(xn − Cσ) ≥ (1 + 2κ)h(0, α,−1/4)(xn − α− 2Cσ).

• As written above oscC1/2(0,α,0)h ≤ 3κh(0, α,−1/4).

• Finally supC1/2(0,α,0) |∇u| ≤ supC1(0,0) |∇u| ≤ (1 + κ)h(0,−1) ≤ 1+κ
1−κh(0, α,−1/4) ≤

(1 + 3κ)h(0, α,−1/4), where the penultimate inequality follows by (3.6.17).

Therefore u ∈ HPF (2Cσ, 2Cσ, 3κ) in C1/2(0, α, 0) which is the desired result.

Lemma 3.6.5 is the current version of the above and follows almost identically. Thus

we will omit the full proof in favor of briefly pointing out the ways in which the argument

differs.
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Lemma (Lemma 3.6.5). Let 0 < κ ≤ σ ≤ σ0 where σ0 depends only on dimension. If

u ∈ H̃CF (σ, 1/2, κ) in Cρ(Q, τ) in the direction ν, then there is a constant C1 > 0 (depending

only on dimension) such that u ∈ HCF (C1σ,C1σ, κ) in Cρ/2(Q, τ) in the direction ν.

Proof of Lemma 3.6.5. We begin in the same way; let (Q, τ) = (0, 0), ρ = 1 and ν = en.

Then we recall the smooth function

η(x, t) = e
16(|x|2+|t+1|)

16(|x|2+|t+1|)−1

for 16(|x|2 + |t + 1|) < 1 and η(x, t) ≡ 0 otherwise. Let D := {(x, xn, t) ∈ C1(0, 0) |

xn > −σ + sη(x, t)}. Now pick s to be the largest such constant that C1(0, 0) ∩ Ω ⊂ D.

Since |xn| > 1/2 implies that u(X, t) > 0 there must be some touching point (X0, t0) ∈

∂D ∩ ∂Ω ∩ {−1 ≤ t ≤ −15/16}. Furthermore, we can assume that s < σ + 1/2 < 2.

The proof then proceeds as above until equation (3.6.16). In the setting of “past flatness”

we need to argue further; the boundary point is at the bottom of the cylinder, so after the

cylinder shrinks we need to search for a new boundary point. However, in current flatness the

boundary point is at the center of the cylinder so after equation (3.6.16) we have completed

the proof of Lemma 3.6.5. In particular, this explains why there is no increase from κ to 3κ

in the current setting.

3.6.2 Flatness on Both Sides Implies Greater Flatness on the Zero Side:

Lemma 3.6.6

In this section we prove Lemma 3.6.6. The outline of the argument is as follows: arguing

by contradiction, we obtain a sequence uk whose free boundaries, ∂{uk > 0}, approach

the graph of a function f . Then we prove that this function f is C∞ which will lead to a

contradiction.

Throughout this subsection, {uk} is a sequence of adjoint caloric functions such that
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∂{uk > 0} is a parabolic regular domain and such that, for all ϕ ∈ C∞c (Rn+1),

ˆ
{uk>0}

uk(∆ϕ− ∂tϕ)dXdt =

ˆ
∂{uk>0}

hkϕdσ.

We will also assume the hk satisfy ‖ log(hk)‖Cα,α/2 ≤ C‖ log(h)‖Cα,α/2 and hk(0, 0) = h(0, 0).

While we present these arguments for general {uk} it suffices to think of uk(X, t) :=

u(rkX,r
2
kt)

rk
for some rk ↓ 0.

Lemma 3.6.12. [Compare with Lemma 6.1 in (AW09)] Suppose that uk ∈ HCF (σk, σk, τk)

in Cρk(0, 0) in direction en, with σk ↓ 0 and τk/σ
2
k → 0. Define f+

k (x, t) = sup{d |

(ρkx, σkρkd, ρ
2
kt) ∈ {uk = 0}} and f−k (x, t) = inf{d | (ρkx, σkρkd, ρ

2
kt) ∈ {uk > 0}}.

Then, passing to subsequences, f+
k , f

−
k → f in L∞loc(C1(0, 0)) and f is continuous.

Proof. By scaling each uk we may assume ρk ≡ 1. Then define

Dk := {(y, d, t) ∈ C1(0, 0) | (y, σkd, t) ∈ {uk > 0}}.

Let

f(x, t) := lim inf
(y,s)→(x,t)

k→∞

f−k (y, s),

so that, for every (y0, t0), there exists a (yk, tk)→ (y0, t0) such that f−k (yk, tk)
k→∞→ f(y0, t0).

Fix a (y0, t0) and note, as f is lower semicontinuous, for every ε > 0, there exists a

δ > 0, k0 ∈ N such that

{(y, d, t) | |y − y0| < 2δ, |t− t0| < 4δ2, d ≤ f(y0, t0)− ε} ∩Dk = ∅, ∀k ≥ k0.

Consequently

xn − f(y0, t0) ≤ −ε⇒ uk(x, σkxn, s) = 0, ∀(X, s) ∈ C2δ(Y0, t0). (3.6.18)
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Together with the definition of f , equation (3.6.18) implies that there exist αk ∈ R with

|αk| < 2ε such that (y0, σk(f(y0, t0) + αk), t0 − δ2) ∈ ∂{uk > 0}. Furthermore, for any

(Y, s) ∈ C1(0, 0) by assumption h(0, 0)− hk(Y, s) ≤ τkh(0, 0)⇒ h(0, 0) ≤ (1 + 4
3τk)hk(Y, s)

for k large enough. This observation, combined with equation (3.6.18) allows us to conclude,

uk(·, σk·, ·) ∈ HPF (3σk
ε
δ , 1, 4τk) in Cδ(y0, σk(f(y0, t0) + αk), t0), for k large enough.

As τk/σ
2
k → 0 the conditions of Lemma 3.6.11 hold for k large enough. Therefore,

uk(·, σk·, ·) ∈ HPF (Cσk
ε
δ , Cσk

ε
δ , 8τk) in Cδ/2(y0, σkf(y0, t0) + α̃k, t0) where |α̃k| ≤ Cσkε.

Thus whenever zn − (σkf(y0, t0) + α̃k) ≥ Cεσk/2, we have uk(z, σkzn, t) > 0 for (Z, t) ∈

Cδ/2(y0, σkf
−
k (y0, t0) + α̃k, t0). In other words

sup
(Z,s)∈Cδ/2(y0,σkf(y0,t0)+α̃k,t0)

f+
k (z, s) ≤ f(y0, t0) + 3Cε. (3.6.19)

As f+
k ≥ f−k , if

f̃(y0, t0) := lim sup
(y,s)→(y0,t0)

k→∞

f+
k (y, s),

it follows (in light of equation (3.6.19)) that f̃ = f . Consequently, f is continuous and

f+
k , f

−
k → f locally uniformly on compacta.

We now show that f is given by the boundary values of w, a solution to the adjoint heat

equation in {xn > 0}.

Lemma 3.6.13. [Compare with Proposition 6.2 in (AW09)] Suppose uk ∈ HCF (σk, σk, τk)

in Cρk(0, 0), with ρk ≥ 0, σk ↓ 0 and τk/σ
2
k → 0. Further assume that, after relabeling, k is

the subsequence given by Lemma 3.6.12. Define

wk(x, d, t) :=
uk(ρkx, ρkd, ρ

2
kt)− (1 + τk)h(0, 0)ρkd

h(0, 0)σk
.

Then, wk is bounded on C1(0, 0)∩{xn > 0} (uniformly in k) and converges, in the C2,1-norm,

on compact subsets of C1(0, 0)∩{xn > 0} to w. Furthermore, w is a solution to the adjoint-
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heat equation and w(x, d, t) is non-increasing in d when d > 0. Finally w(x, 0, t) = −f(x, t)

and w is continuous in C1−δ(0, 0) ∩ {xn > 0} for any δ > 0.

Proof. As before we rescale and set ρk ≡ 1. Since |∇uk| ≤ h(0, 0)(1 + τk) and xn ≤ −σk ⇒

uk = 0 it follows that uk(X, t) ≤ h(0, 0)(1 + τk)(xn + σk). Which implies wk(X, t) ≤ 1 + τk.

On the other hand, when 0 < xn ≤ σk we have uk(X, t) − (1 + τk)h(0, 0)xn ≥ −(1 +

τk)h(0, 0)xn ≥ −(1 + τk)h(0, 0)σk, hence wk ≥ −1 − τk. Finally, if xn ≥ σk we have

uk(X, t)− (1+τk)h(0, 0)xn ≥ (1+τk)h(0, 0)(xn−σk)− (1+τk)h(0, 0)xn ⇒ wk ≥ −(1+τk).

Thus, for k large enough, |wk| ≤ 2 in C1(0, 0) ∩ {xn > 0}.

By definition, wk is a solution to the adjoint-heat equation in C1(0, 0) ∩ {xn > σk}. So

for any K ⊂⊂ {xn > 0} the {wk} are, for large enough k, a uniformly bounded sequence of

solutions to the adjoint-heat equation on K. As |wk| ≤ 2, standard estimates for parabolic

equations tell us that {wk} is uniformly bounded in C2+α,1+α/2(K). Therefore, perhaps

passing to a subsequence, wk → w in C2,1(K). Furthermore, w must also be a solution

to the adjoint heat equation in K and |w| ≤ 1. A diagonalization argument allows us to

conclude that w is adjoint caloric on all of {xn > 0}.

Compute that ∂nwk = (∂nuk−(1+τk)h(0, 0))/(h(0, 0)σk) ≤ 0, which implies ∂nw ≤ 0 on

{xn > 0}. As such, w(x, 0, t) := limd→0+ w(x, d, t) exists. We will now show that this limit is

equal to −f(x, t) (which, recall, is a continuous function). If true, then regularity theory for

adjoint-caloric functions immediately implies that w is continuous in C1−δ(0, 0) ∩ {xn > 0}.

First we show that the limit is less that −f(x, t). Let ε > 0 and pick 0 < α ≤ 1/2 small

enough so that |w(x, α, t)−w(x, 0, t)| < ε. For k large enough we have α/σk > f(x, t) + 1 >

f−k (x, t) therefore,

w(x, 0, t) ≤ w(x, α, t) + ε = wk(x, σk
α

σk
, t) + ε+ ok(1)

= (wk(x, σk
α

σk
, t)− wk(x, σkf

−
k (x, t), t)) + wk(x, σkf

−
k (x, t), t) + ε+ ok(1)

∂nwk≤0
≤ wk(x, σkf

−
k (x, t), t) + ok(1) + ε.

(3.6.20)
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Note, wk(x, σkf
−
k (x, t), t) = −(1 + τk)f−k (x, t) → −f(x, t) uniformly in C1−δ(0, 0). In

light of (3.6.20), this observation implies w(x, 0, t) ≤ −f(x, t) + ε. Since ε > 0 was arbitrary

we have w(x, 0, t) ≤ −f(x, t).

To show w(x, 0, t) ≥ −f(x, t) we first define, for S > 0, k ∈ N,

σ̃k =
1

S
sup

(Y,s)∈C2Sσk
(x,σkf

−
k (x,t−S2σ2

k),t−S2σ2
k)

(f−k (x, t− S2σ2
k)− f−k (y, s)).

Observe that if k is large enough (depending on S, δ) then (x, t− S2σ2
k) ∈ C1−δ(0, 0).

Then, by construction, ∀(Y, s) ∈ C2Sσk(x, σkf
−
k (x, t− S2σ2

k), t− S2σ2
k),

yn − σkf−k (x, t− S2σ2
k) ≤ −Sσkσ̃k ⇒ yn ≤ σkf

−
k (y, s)⇒ uk(Y, s) = 0.

Bounding the oscillation of hk as in the proof of Lemma 3.6.12, uk ∈ HPF (σ̃k, 1, 4τk) ⊂

HPF (σk, 1, 4τk) in CSσk(x, σkf
−
k (x, t − S2σ2

k), t), where σk = max{16τk, σ̃k}. Note, by

Lemma 3.6.12, σ̃k → 0 and, therefore, σk → 0.

Apply Lemma 3.6.11 to conclude that

uk ∈ HPF (Cσk, Cσk, 8τk) in CSσk/2(x, σkf
−
k (x, t− S2σ2

k) + αk, t) where |αk| ≤ CSσkσk.

(3.6.21)

Define Dk ≡ f−k (x, t− S2σ2
k) + αk/σk + S/2. Pick S > 0 large such that Dk ≥ 1 and then,

for large enough k, we have Dk − αk/σk − f−k (x, t − S2σ2
k) − CSσk > 0 and (x, σDk, t) ∈

CSσk/2(x, σkf
−
k (x, t− S2σ2

k) + αk, t). The flatness condition, (3.6.21), gives

uk(x, σkDk, t) ≥ hk(x, σkf
−
k (x, t− S2σ2

k) + αk, t− S2σ2
k/4)(Sσk − CSσkσk)/2

≥ (1− τk)h(0, 0)Sσk(1− Cσk)/2.

(3.6.22)
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Plugging this into the definition of wk,

wk(x, σkDk, t) ≥ (1− τk)S(1− Cσk)/2− (1 + τk)Dk

= (1− τk)S(1− Cσk)/2− (1 + τk)(f−k (x, t− S2σ2
k) + αk/σk + S/2)

= −f−k (x, t− S2σ2
k) + ok(1) = −f(x, t) + ok(1).

(3.6.23)

We would like to replace the left hand side of equation (3.6.23) with wk(x, α, t), where d

does not depend on k. We accomplish this by means of barriers; for ε > 0 define zε to be

the unique solution to

∂tzε + ∆zε = 0, in C1−δ(0, 0) ∩ {xn > 0}

zε = gε, on ∂p(C1−δ(0, 0) ∩ {xn > 0}) ∩ {xn = 0}

zε = −2, on ∂p(C1−δ(0, 0) ∩ {xn > 0}) ∩ {xn > 0},

(3.6.24)

where gε ∈ C∞(C1−δ(0, 0)) and −f(x, t) − 2ε < gε(x, t) < −f(x, t) − ε. By standard

parabolic theory, for any ε > 0 there exists an α > 0 (which depends on ε > 0) such that

|xn| < α implies |zε(x, xn, t) − zε(x, 0, t)| < ε/2. Pick k large enough so that σk < α. We

know wk solves the adjoint heat equation on {xn ≥ σk} and, by equations (3.6.24) and

(3.6.23), wk ≥ zε on ∂p(C1−δ(0, 0) ∩ {xn > σk}). Therefore, wk ≥ zε on all of C1−δ(0, 0) ∩

{xn > σk}.

Consequently,

wk(x, α, t) ≥ zε(x, α, t) ≥ zε(x, 0, t)− ε/2 ≥ −f(x, t)− 3ε.

As k →∞ we know wk(x, α, t)→ w(x, α, t) ≤ w(x, 0, t). This gives the desired result.

The next step is to prove that the normal derivative of w on {xn = 0} is zero. This will

allow us to extend w smoothly over {xn = 0} and obtain regularity for f .

Lemma 3.6.14. Suppose the assumptions of Lemma 3.6.12 are satisfied and that k is the
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subsequence identified in that lemma. Further suppose that w is the limit function identified

in Lemma 3.6.13. Then ∂nw = 0, in the sense of distributions, on C1/2(0, 0) ∩ {xn = 0}.

Proof. Rescale so ρk ≡ 1 and define g(x, t) = 5 − 8(|x|2 + |t|). For (x, 0, t) ∈ C1/2(0, 0) we

observe f(x, 0, t) ≤ 1 ≤ g(x, 0, t). We shall work in the following set

Z := {(x, xn, t) | |x|, |t| ≤ 1, xn ∈ R}.

For any, φ(x, t) define Z+(φ) to be the set of points in Z above the graph {(X, t) | xn =

φ(x, t)}, Z−(φ) as set of points below the graph and Z0(φ) as the graph itself. Finally, let

Σk := {uk > 0} ∩ Z0(σkg).

Recall, for any Borel set A, we define the “surface measure”, µ(A) =
´∞
−∞H

n−1(A∩{s =

t})dt. If k is sufficiently large, and potentially adding a small constant to g, µ(Z0(σkg) ∩

∂{uk > 0} ∩ C1/2(0, 0)) = 0.

There are three claims, which together prove the desired result.

Claim 1:

µ(∂{uk > 0} ∩ Z−(σkg)) ≤ 1

(1− τk)hk(0, 0)

(ˆ
Σk

∂nuk − 1dxdt+ µ(Σk)

)
+ Cσ2

k

Proof of Claim 1: For any positive φ ∈ C∞0 (C1(0, 0)) we have

ˆ
∂{uk>0}

φdµ ≤
ˆ
∂{uk>0}

φ
hk(Q, τ)

(1− τk)hk(0, 0)
dµ(Q, τ)

=
1

(1− τk)hk(0, 0)

ˆ
{uk>0}

uk(∆φ− ∂tφ)dXdt

= − 1

(1− τk)hk(0, 0)

ˆ
{uk>0}

∇uk · ∇φ+ uk∂tφdXdt

(3.6.25)

(we can use integration by parts because, for almost every t, {uk > 0} ∩ {s = t} is a set

of finite perimeter). Let φ → χZ−(σkg)χC1
(as functions of bounded variation) and, since
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|t| > 3/4 or |x|2 > 3/4 implies u(x, σkg(x, t), t) = 0, equation (3.6.25) becomes

µ(∂{uk > 0} ∩ Z−(σkg)) ≤ − 1

hk(0, 0)(1− τk)

ˆ
Σk

∇uk · ν + σkuk sgn(t)√
1 + σ2

k(|∇xg(x, t)|2 + 1)
dµ

 ,

(3.6.26)

where ν(x, t) = (σk∇g(x, t),−1) points outward spatially in the normal direction.

We address the term with sgn(t) first; the gradient bound on uk tells us that |uk| ≤

Cσk(1 + τk)hk(0, 0) on Σk, so

∣∣∣∣∣∣ σk
(1− τk)hk(0, 0)

ˆ
Σk

σkuk sgn(t)√
1 + σ2

k(|∇xg(x, t)|2 + 1)
dµ

∣∣∣∣∣∣ ≤ Cσ2
k. (3.6.27)

To bound the other term note that dµ√
1+σ2

k(|∇xg(x,t)|2+1)
= dxdt where the latter inte-

gration takes place over Ek = {(x, t) | (x, σkg(x, t), t) ∈ Σk} ⊂ {xn = 0}. Then integrate by

parts in x to obtain

ˆ
Ek

(σk∇g(x, t),−1) · ∇uk(x, σkg(x, t), t)dxdt =

ˆ
∂Ek

σkuk(x, σkg(x, t), t)∂ηgdHn−2dt

−
ˆ
Ek

σkuk(x, σkg(x, t), t)∆xg(x, t) + σ2
k∂nuk(x, σkg(x, t), t)|∇g|2dxdt

−
ˆ
Ek

∂nuk(x, σkg(x, t), t)− 1dxdt+ Ln(Ek),

(3.6.28)

where η is the outward space normal on ∂Ek. Since uk = 0 on ∂Σk the first term zeroes out.

The careful reader may object that Ek may not be a set of finite perimeter and thus

our use of integration by parts is not justified. However, for any t0, we may use the coarea

formula with χ{u(x,σkg(x,t0),t0)>0} ∈ L1 and σkg(−, t0) smooth to get

∞ >

ˆ
σk|∇g(x, t0)|χ{u(x,σkg(x,t0),t0)>0}dx

=

ˆ ∞
−∞

ˆ
{(x,t0)|σkg(x,t0)=r}

χ{u(x,r,t0)>0}dH
n−2(x)dr.
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Thus {(x, t0) | σkg(x, t0) > r} ∩ {(x, t) | u(x, σkg(x, t0), t0) > 0} is a set of finite perimeter

for almost every r. Equivalently, {(x, t0) | σk(g(x, t0) + ε) > 0} ∩ {(x, t) | u(x, σk(g(x, t0) +

ε), t0) > 0} is a set of finite perimeter for almost every ε ∈ R. Hence, there exists a ε > 0

aribtrarily small such that if we replace g by g + ε then Ek ∩ {t = t0} will be a set of finite

perimeter for almost every t0. Since we can perturb g slightly without changing the above

arguments, we may safely assume that Ek is a set of finite perimeter for almost every time

slice.

Observe that ∆g is bounded above by a constant, |uk| ≤ Ch(0, 0)(1 + τk)σk on Σk,

|∂nuk| ≤ h(0, 0)(1 + τk) and finally µ(Σk) ≥ Ln(Ek). Thus,

µ(∂{uk > 0} ∩ Z−(σkg)) ≤ 1

(1− τk)hk(0, 0)

(ˆ
Ek

∂nuk − 1dxdt+ µ(Σk)

)
+ Cσ2

k.

As the difference between integrating over Ek and integrating over Σk is a factor of
√

1 + σ2
k

(which is comparable to 1 + σ2
k, for σk small) we can conclude

µ(∂{uk > 0} ∩ Z−(σkg)) ≤ 1

(1− τk)hk(0, 0)

(ˆ
Σk

∂nuk − 1dxdt+ µ(Σk)

)
+ Cσ2

k,

which is of course the claim.

Note, arguing as in equations (3.6.27) and (3.6.28),

ˆ
Σk

(σk∇xg(x, t), 0, σksgn(t))√
1 + ‖(σk∇xg(x, t), 0, σksgn(t))‖2

· (∇xwk, 0, wk)dµ
k→∞→ 0, (3.6.29)

which will be useful to us later.

Claim 2:

µ(Σk)− C2σ
2
k ≤ µ(∂{uk > 0} ∩ Z−(σkg)).

Proof of Claim 2: Let νk(x, t) the inward pointing measure theoretic space normal to

∂{uk > 0} ∩ {s = t} at the point x. Note that for almost every t it is true that νk exists
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Hn−1 almost everywhere. Defining νσkg(X, t) = 1√
1+256σ2

k|x|2
(−σk16x, 1, 0), we have

µ(∂{uk > 0} ∩ Z−(σkg)) =

ˆ
∂{uk>0}∩Z−(σkg)

νk · νkdµ ≥
ˆ
∂∗{uk>0}∩Z−(σkg)

νk · νkdµ ≥

ˆ
∂∗{uk>0}∩Z−(σkg)

νk · νσkgdµ
div thm

= −
ˆ
Z−(σkg)∩{uk>0}

div νσkgdXdt+

ˆ
Σk

1dµ.

In the last equality above we use the fact that on Z0(σkg), νσkg agrees with upwards pointing

space normal.

We compute |div νσkg| =

∣∣∣∣∣∣ −16σk(n−1)√
1+256σ2

k|x|2
+

3σ3
k(16∗256)|x|2√
1+256σ2

k|x|2
3

∣∣∣∣∣∣ ≤ Cσk. As the “width” of

Z−(σkg) ∩ {uk > 0} is of order σk we get the desired result.

Claim 3: ˆ
Σk

|∂nwk|
k→∞→ 0.

Proof of Claim 3: Recall that ∂nuk ≤ (1 + τk)h(0, 0), which implies, ∂nwk ≤ 0. To show

the limit above is at least zero we compute

ˆ
Σk

∂nwkdµ =

ˆ
Σk

∂nuk − 1

σkhk(0, 0)
dµ+

µ(Σk)

σkhk(0, 0)
− (1 + τk)µ(Σk)

σk
Claim1
≥ (1− τk)µ(∂{uk > 0} ∩ Z−(σkg))

σk
− (1 + τk)µ(Σk)

σk
− Cσk

Claim2
≥ (1− τk)µ(Σk)

σk
− (1 + τk)µ(Σk)

σk
− C̃σk

≥− C ′(σk +
4τk
σk

)→ 0.

(3.6.30)

We can now combine these claims to reach the desired conclusion. We say that ∂nw = 0,

in the sense of distributions on {xn = 0}, if, for any ζ ∈ C∞0 (C1/2(0, 0)),

ˆ
{xn=0}

∂nwζ = 0.
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Claim 3 implies

0 = lim
k→∞

ˆ
Σk

ζ∂nwkdµ. (3.6.31)

On the other hand equation (3.6.29) (and ζ bounded) implies

lim
k→∞

ˆ
Σk

ζ∂nwkdµ = lim
k→∞

ˆ
Σk

ζνΣk · (∇Xwk, wk)dµ, (3.6.32)

where νΣK is the unit normal to Σk (thought of as a Lispchitz graph in (x, t)) pointing

upwards. Together, equations (3.6.31), (3.6.32) and the divergence theorem in the domain

Z+(σkg) ∩ C1/2(0, 0) have as a consequence

0 = lim
k→∞

ˆ
Z+(σkg)

divX,t(ζ(∇Xwk, wk))dXdt

= lim
k→∞

ˆ
Z+(σkg)

∇Xζ · ∇Xwk + (∂tζ)wk + ζ(∆Xwk + ∂twk)dXdt

∆wk+∂twk=0
=

ˆ
{xn>0}

∇Xw · ∇Xζ + (∂tζ)wdXdt

integration by parts
=

ˆ
{xn=0}

wnζdxdt−
ˆ
{xn>0}

ζ(∆Xw + ∂tw)dXdt.

As w is adjoint caloric this implies that
´
{xn=0} ∂nwζ = 0 which is the desired result.

From here it is easy to conclude regularity of f .

Corollary 3.6.15. Suppose the assumptions of Lemma 3.6.12 are satisfied and that k is

the subsequence identified in that lemma. Then f ∈ C∞(C1/2(0, 0)) and in particular the

C2+α,1+α norm of f in C1/4(0, 0) is bounded by an absolute constant.

Proof. Extend w by reflection across {xn = 0}. By Lemma 3.6.14 this new w satisfies the

adjoint heat equation in all of C1/2(0, 0) (recall a continuous weak solution to the adjoint

heat equation in the cylinder is actually a classical solution to the adjoint heat equation).

Since ‖w‖L∞(C3/4(0,0)) ≤ 2, standard regularity theory yields the desired results about

−f = w|xn=0.
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We can use this regularity to prove Lemma 3.6.6.

Lemma (Lemma 3.6.6). Let θ ∈ (0, 1) and assume that u ∈ HCF (σ, σ, κ) in Cρ(Q, τ) in

the direction ν. There exists a constant 0 < σθ < 1/2 such that if σ < σθ and κ ≤ σθσ
2

then u ∈ H̃CF (θσ, θσ, κ) in Cc(n)ρθ(Q, τ) in the direction ν where |ν − ν| ≤ C(n)σ. Here

∞ > C(n), c(n) > 0 are constants depending only on dimension.

Proof of Lemma 3.6.6. Without loss of generality, let (Q, τ) = (0, 0) and we will assume

that the conclusions of the lemma do not hold. Choose a θ ∈ (0, 1) and, by assumption,

there exists ρk, σk ↓ 0 and κk/σ
2
k → 0 such that u ∈ HCF (σk, σk, κk) in Cρk(0, 0) in the

direction νk (which after a harmless rotation we can set to be en) but so that u is not in

H̃CF (θσk, θσk, κk) in Cc(n)θρk
(0, 0) in any direction ν with |νk − ν| ≤ Cσk and for any

constant c(n). Let uk(X, t) =
u(ρkX,ρ

2
kt)

ρk
. It is clear that uk is adjoint caloric, that its

zero set is a parabolic regular domain and that it is associated to an hk which satisfies

‖ log(hk)‖C1,1/2 ≤ C‖ log(h)‖C1,1/2 and hk(0, 0) ≡ h(0, 0).

By Lemma 3.6.12 we know that there exists a continuous function f such that ∂{uk >

0} → {(X, t) | xn = f(x, t)} in the Hausdorff distance sense. Corollary 3.6.15 implies that

there is a universal constant, call it K, such that

f(x, t) ≤ f(0, 0) +∇xf(0, 0) · x+K(|t|+ |x|2) (3.6.33)

for (x, t) ∈ C1/4(0, 0). Since (0, 0) ∈ ∂{uk > 0} for all k, f(0, 0) = 0. If θ ∈ (0, 1), then

there exists a k large enough (depending on θ and the dimension) such that

f+
k (x, t) ≤ ∇xf(0, 0) · x+ θ2/4K, ∀(x, t) ∈ Cθ/(4K)(0, 0),

where f+
k is as in Lemma 3.6.12.

Let

νk :=
(−σk∇xf(0, 0), 1)√
1 + |σk∇xf(0, 0)|2
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and compute

x · νk ≥ θ2σk/4K ⇒ xn ≥ σkx
′ · ∇xf(0, 0) + θ2σk/4K ≥ f+

k (x, t). (3.6.34)

Therefore, if (X, t) ∈ Cθ/(4K)(0, 0) and x · νk ≥ θ2σk/4K, then uk(X, t) > 0. Arguing

similarly for f−k we can see that uk ∈ H̃CF (θσk, θσk, κk) in Cθ/4K(0, 0) in the direction νk.

It is easy to see that |νk − en| ≤ Cσk and so we have the desired contradiction.

3.7 Higher Regularity

We begin by recalling the partial hodograph transform (see (KS80), Chapter 7 for a short

introduction in the elliptic case). Here, and throughout the rest of the paper, we assume

that (0, 0) ∈ ∂Ω and that, at (0, 0), en is the inward pointing normal to ∂Ω ∩ {t = 0}.

Before we can use the hodograph transform, we must prove that ∇u extends smoothly to

the boundary.

Lemma 3.7.1. Let s ∈ (0, 1) and ∂Ω be a C1+s,(1+s)/2 domain with log(h) ∈ Cs,s/2(Rn+1).

Then u ∈ C1+s,(1+s)/2(Ω).

Proof. We will show that u has the desired regularity in a neighborhood of (0, 0). For any

R > 0 let HR be as in Corollary 3.3.5: HR(X, t) = ϕR(X, t)∇u(X, t)−wR(X, t). Therefore,

we may estimate:

|∇u(X, t)− h(0, 0)en| =|HR(X, t)− h(0, 0)en|+ |wR(X, t)|

≤
ˆ
∂Ω
|h(Q, τ)n̂(Q, τ)ϕR(Q, τ)− h(0, 0)en|dω̂X,t + |wR(X, t)|.

(3.7.1)

Since ∂Ω is locally given by a C1+s,(1+s)/2 graph, for any δ > 0 there exists an Rδ > 0

such that ∂Ω ∩ Cr(Q, τ) is δ-flat for any (Q, τ) ∈ C100(0, 0) and any r < Rδ. In particular,

we can ensure that Lemma 3.2.1 applies at all r < Rδ/4 for a ε > 0 such that 1− ε > 1+s
2 .
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Arguing in the same way as in the proof of Lemma 3.3.4, we can deduce that

|wR(X, t)| ≤ C
‖(X, t)‖(1+s)/2

R1/2
. (3.7.2)

Furthermore, we may deduce (in much the same manner as (3.6.2)), that if ‖(X, t)‖ ≤ r and

k0 ∈ N is such that 2−k0−1 ≤ r < 2−k0 , then

1− ω̂(X,t)(C2−j (0, 0)) ≤ C2j(1+s)/2r(1+s)/2,∀j < k0 − 2. (3.7.3)

In light of the estimates (3.7.1), (3.7.2) and (3.7.3), we may conclude

|∇u(X, t)− h(0, 0)en| ≤ C

ˆ
∆4r(0,0)

(4r)sdω̂(X,t) + C
r(1+s)/2

R1/2
+ Cω̂(X,t)(∂Ω\CR(0, 0))

+ C

ˆ
∆R(0,0)\∆1(0,0)

dω̂(X,t) +

k0−2∑
j=0

ˆ
∆

2−j (0,0)\∆
2−(j+1)(0,0)

2−jsdω̂(X,t)

 ,

(3.7.4)

where C depends on the Hölder norm of h, of n̂ and on R. Also as above, k0 is such that

2−k0−1 ≤ r < 2−k0 .

We may bound

ω̂(X,t)(∆R(0, 0)\∆1(0, 0)) ≤ 1− ω̂(X,t)(∆1(0, 0))
eq.(3.7.3)
≤ CRr

(1+s)/2

ω̂(X,t)(∂Ω\∆R(0, 0)) ≤ 1− ω̂(X,t)(∆R(0, 0))
eq.(3.7.3)
≤ CRr

(1+s)/2

ω̂(X,t)(∆2−j (Q, τ)\∆2−(j+1)(0, 0)) ≤ 1− ω̂(X,t)(∆2−j (0, 0))
eq.(3.7.3)
≤ C2j(1+s/2r(1+s)/2.

Plug these estimates into equation (3.7.4) to obtain

|∇u(X, t)− h(0, 0)en| ≤Crs + Cr(1+s)/2 + Cr(1+s)/2
[log2(r−1)]∑

j=0

2j(1−s)/2)

≤Crs
(

1 + r(1−s)/2 (2[log2(r−1)])(1−s)/2 − 1

2(1−s)/2 − 1

)
≤ Csr

s.

(3.7.5)
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Since r = ‖(X, t)‖ we have proven that ∇u ∈ Cs,s/2(Ω).

With this regularity in hand, we may define F : Ω → H+ := {(x, xn, t) | xn > 0} by

(x, xn, t) = (X, t) 7→ (Y, t) = (x, u(x, t), t). In a neighborhood of 0 we know that un 6= 0

and so DF is invertible on each time slice (since ∇u ∈ C(Ω)). By the inverse function

theorem, there is some neighborhood, O, of (0, 0) in Ω that is mapped diffeomorphically to

U , a neighborhood of (0, 0) in the upper half plane. Furthermore, this map extends in a

Cs,s/2 fashion from O+ to U (by Proposition 3.6.1 and Lemma 3.7.1). Let ψ : U → R be

given by ψ(Y, t) = xn, where F (X, t) = (Y, t). Because F is locally one-to-one, ψ is well

defined.

If νQ,τ denotes the spatial unit normal pointing into Ω at (Q, τ) then u satisfies

ut(X, t) + ∆u(X, t) = 0, (X, t) ∈ Ω+

uνQ,τ (Q, τ) = h(Q, τ), (Q, τ) ∈ ∂Ω.

After our change of variables these equations become

0 = − ψt
ψn

+
1

2

(
1

ψ2
n

)
n

+
n−1∑
i=1

(
−
(
ψi
ψn

)
i

+
1

2

(
ψ2
i

ψ2
n

)
n

)
(3.7.6)

on U and

ψn(y, 0, t)h(y, ψ(y, 0, t), t) =

√√√√1 +
n−1∑
i=1

ψ2
i (y, 0, t) (3.7.7)

on the boundary.

Remark 3.7.2. The following are true of ψ:

• Let k ≥ 1. If ∂Ω is a Ck+s,(k+s)/2 graph and log(h) ∈ Ck−1+s,(k−1+s)/2 then u ∈

Ck+s,(k+s)/2(Ω).

• Let k ≥ 0 be such that h ∈ Ck+α,(k+α)/2(∂Ω) and ψ|{yn=0} ∈ Ck+1+s,(k+1+s)/2 for

0 < s ≤ α. If h̃(y, t) = h(y, ψ(y, 0, t), t), then h̃ ∈ Ck+α,(k+α)/2({yn = 0}).
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• ψn > 0 in U .

Justification. Let us address the first claim. When k ≥ 2 we note that u(x, xn, t) ≡

u(x, ψ(x, 0, t)+xn, t) is the strong solution of an adjoint parabolic equation in the upper half

space with zero boundary values and coefficients in Ck−1+s,(k+s)/2−1. Standard parabolic

regularity theory then gives the desired result. When k = 1, this is simply Lemma 3.7.1.

When k = 0 the second claim follows from a difference quotient argument and the fact

that |ψ(x + y, t + s) − ψ(x, t)| ≤ C(|y| + |s|1/2). We k ≥ 1 take a derivative and note

∂ih̃ = ∂ih + ∂nh∂iψ. As ψ has one more degree of differentiability than h it is clear that

∂nh∂iψ is just as regular as ∂nh. We can argue similarly for higher spatial derivatives and

for difference quotients or derivatives in the time direction.

Our third claim follows from the assumption that en is the inward pointing normal at

(0, 0) and that ∂nu(0, 0) > 0 in O.

To prove higher regularity we will use two weighted Schauder-type estimates due to

Lieberman (Lie86) for parabolic equations in a half space. Before we state the theorems, let

us introduce weighted Hölder spaces (the reader should be aware that our notation here is

non-standard).

Definition 3.7.3. Let O ⊂ Rn+1 be a bounded open set. For a, b /∈ Z define

‖u‖
Ca,a/2b (O)

= sup
δ>0

δa+b‖u‖Ca,a/2(Oδ)

where Oδ = {(X, t) ∈ O | dist((X, t), ∂O) ≥ δ}. It should be noted that Ca,a/2−a ≡ Ca,a/2.

For the sake of brevity, the following are simplified versions of (Lie86), Theorems 6.1 and

6.2 (the original theorems deal with a more general class of domains, operators and boundary

values that we do not need here).
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Theorem 3.7.4. Let v be a solution to the boundary value problem

vt(X, t)−
∑
ij

pij(X, t)Dijv(X, t) = f(X, t), (X, t) ∈ U

v(x, 0, t) = g(x, 0, t), (x, 0, t) ∈ U,

(3.7.8)

where P = (pij). Let a > 2, b > 1 be non-integral real numbers such that P ∈ Ca−2,a/2−1(U),

f ∈ Ca−2,a/2−1
2−b (U) and g ∈ Cb,b/2(U ∩ {xn = 0}). If v ∈ Ca,a/2−b (U) with v|∂U\{xn=0} = 0,

there exists a constant C > 0 (depending on the ellipticity, the Hölder norms of pij ,m and

the dimension) such that

‖v‖
Ca,a/2−b (U)

≤ C

(
‖g‖Cb,b/2 + ‖v‖L∞ + ‖f‖

Ca−2,a/2−1
2−b

)
.

Theorem 3.7.5. Let v be a solution to the boundary value problem

vt(X, t)−
∑
ij

pij(X, t)Dijv(X, t) = f(X, t), (X, t) ∈ U

~m(x, 0, t) · ∇xv(x, 0, t) = g(x, 0, t), (x, 0, t) ∈ U,

(3.7.9)

where P = (pij) is uniformly elliptic and mn(x, 0, t) ≥ c > 0. Let a > 2, b > 1 be

non-integral real numbers with pij ∈ Ca−2,a/2−1(U),m(x, 0, t) ∈ Cb−1,(b−1)/2(U ∩ {xn =

0}), f ∈ Ca−2,a/2−1
2−b (U) and g ∈ Cb−1,b/2−1/2(U ∩ {xn = 0}). Then, if v ∈ Ca,a/2−b (U) and

v|∂U\{xn=0} = 0, there exists a constant C > 0 (depending on the ellipticity, the Hölder

norms of pij ,m and the dimension) such that

‖v‖
Ca,a/2−b (U)

≤ C

(
‖g‖Cb−1,b/2−1/2 + ‖v‖L∞ + ‖f‖

Ca−2,a/2−1
2−b

)
.

With this theorem in hand we can use an iterative argument (modeled after one in

(Jer90) to prove optimal Hölder regularity. To reduce clutter we define, for f a function and
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~v ∈ Rn+1 with vn = 0,

δ2
~vf(X, t) = f((X, t) + ~v) + f((X, t)− ~v)− 2f(X, t). (3.7.10)

It will also behoove us to define the parabolic length of a vector ~v = (vx, vn, vt) by

‖~v‖p = |(vx, vn)|+ |vt|1/2. (3.7.11)

Recall that

‖f‖L∞ + sup
~v,(X,t)∈Rn+1

|δ2
~vf(X, t)|
‖~v‖αp

= ‖f‖Cα,α/2 ,

(see, e.g. (Ste70), Chapter 5, Proposition 8).

Proposition 3.7.6. Let Ω ⊂ Rn+1 be a parabolic regular domain, and k ∈ N, α ∈ (0, 1)

such that log(h) ∈ Ck+α,(k+α)/2(Rn+1). There is a δn > 0 such that if δn ≥ δ > 0 and Ω is

δ-Reifenberg flat then Ω is a Ck+1+α,(k+1+α)/2(Rn+1) domain.

Proof. Let us first prove the theorem for k = 0. By Proposition 3.6.1 and Remark 3.7.2 we

know that ψ ∈ C1+s,(1+s)/2(U). For any vector ~v ∈ Rn+1 with vn = 0 define wε(X, t) =

ψ((X, t) + 2ε~v) − ψ((X, t)). It is then easy to check that wε(X, t) satisfies the following

oblique derivative problem:

−∂twε(X, t)−
∑
ij

pij((X, t) + ε~v)Dijw
ε(X, t) = fε(X, t), (X, t) ∈ U

~m(y, 0, t) · ∇wε(y, 0, t) = gε(y, 0, t), (x, 0, t) ∈ U.

(3.7.12)
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Where

(pij(X, t)) =



−1 0 0 . . .
ψ1(X,t)
ψn(X,t)

0 −1 0 . . .
ψ2(X,t)
ψn(X,t)

... 0
. . . . . .

...

ψ1(X,t)
ψn(X,t)

. . .
ψi(X,t)
ψn(X,t)

. . . −

(√
1+
∑n−1
i=1 ψi(X,t)

2

ψn(X,t)

)2


,

~mj(y, 0, t) =

ˆ 1

0

∂

∂ψj
G(∇Xψ(y, 0, t) + s(∇Xψ((y, 0, t) + ε~v)−∇Xψ(y, 0, t)))ds,

G(∇Xψ) =

√
1 +

∑n−1
i=1 ψ

2
i

ψn
,

fε(X, t) =
∑
ij

(pij(X, t)− pij((X, t) + ε~v))Dijψ(X, t),

gε(y, 0, t) = h̃((y, 0, t) + ε~v)− h̃(y, 0, t).

It is a consequence of ψn > 0 (see Remark 3.7.2) that (pij) is uniformly elliptic and

mn(y, 0, t) ≥ c > 0 is uniformly in (y, t). Furthermore, pij(X + εv, t) and m(y + ε~v, 0, t) are

Cs,s/2 Hölder continuous, uniformly in ε,~v.

To apply Theorem 3.7.5 we need that wε is in a weighted Hölder space. Apply Theorem

3.7.4 with a = 2 + s, b = 1 + s to ψ in the space U ∩ {xn ≥ δ} and let δ ↓ 0 to obtain the a

priori estimate that ψ ∈ C2+s,1+s/2
−1−s (U) (note that ψ|xn=δ is uniformly in C1+s,(1+s)/2 by

Remark 3.7.2). As such, wε ∈ C2+η,1+η/2
−1−s , uniformly in ε > 0 for any 0 < η << s.

We will now compute the Hölder norm of gε and the weighted Hölder norm of fε. For

any (x, 0, t), (y, 0, r) ∈ U,

2‖h̃‖Cα,α/2(|x− y|s + |t− r|s/2)εα−s ≥

min{2(|x− y|α + |t− r|α/2)‖h̃‖Cα , 2εα‖h̃‖Cα} ≥

|h̃(x, 0, t)− h̃((x, 0, t) + ε~v)− h̃(y, 0, r) + h̃((y, 0, r) + ε~v)|.

(3.7.13)

Thus ‖h̃(−)− h̃(−+ ε~v)‖Cs,s/2 ≤ Cεα−s.
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For d > 0 we have that

|fε(x, d, t)− fε(y, d, r)| ≤ |pij((y, d, r) + ε~v)− pij(y, d, r)||Dijψ(x, d, t)−Dijψ(y, d, r)|

+|pij((x, d, t) + ε~v)− pij(x, d, t)− pij((y, d, r) + ε~v) + pij(y, d, r)||Dijψ(x, d, t)|.

Arguing as in equation (3.7.13) we can bound the first term on the right hand side by

ds−η−1‖ψ‖
C2+η,1+η/2
−1−s (U)

(|x− y|η + |t− r|η/2)‖∇ψ‖Cs,s/2ε
s−η.

The second term is more straightforward and can be bounded by

‖∇ψ‖Cs,s/2ε
sds−η−1‖ψ‖

C2+η,1+η/2
−1−s (U)

(|x− y|η + |t− r|η/2).

Therefore ‖fε‖
Cη,η/21−s

≤ C(εs−η + εs).

We may apply Theorem 3.7.5 to obtain

‖wε‖
C2+η,1+η/2
−1−s

≤ C(εs−η + εs + εα−s + ε) (3.7.14)

(as ‖wε‖L∞ ≤ Cε). The reader may be concerned that wε is not zero on the boundary of

U away from {xn = 0}. However, we can rectify this by multiplying with a cutoff function

and hiding the resulting error on the right hand side (see, e.g. the proof of Theorem 6.2 in

(ADN59)).

We claim that if wε ∈ C2+η,1+η/2
−1−s then in fact wε|{xn=0} ∈ C1+s,(1+s)/2 for any η > 0.

For any i = 1, ..., n − 1, the fundamental theorem of calculus gives (recall the notation in

159



(3.7.10) and (3.7.11))

|δ2
~vDiw

ε(x, 0, t)| ≤ |δ2
~vDiw

ε(x, ‖~v‖p, t)|+
ˆ ‖~v‖p

0
|δ2
~vw

ε
in(x, r, t)|dr

≤ C‖wε‖
C2+η,1+η/2
−1−s

‖~v‖−1+s−η
p ‖~v‖1+η

p + C‖wε‖
C2+η,1+η/2
−1−s

ˆ ‖~v‖p
0

‖~v‖ηp
r1−(s−η)

dr

≤ Cs,η‖wε‖C2+η,1+η/2
−1−s

‖~v‖sp.

(3.7.15)

Therefore, for i = 1, ..., n− 1 we have

|δ2
ε~vDiψ(x, 0, t)| =|Diwε((x, 0, t))−Diwε((x, 0, t)− ε~v)|

≤ ‖Dxwε‖Cs,s/2‖ε~vx‖
s
p

eqn (3.7.15)
≤ Cs,η‖wε‖C2+η,1+η/2

−1−s
‖ε~vx‖sp

eqn (3.7.14)
≤ Cs,η(εs−η + εα−s + ε+ εs)‖ε~v‖sp.

(3.7.16)

If ‖~v‖p = 1 and points either completely in a spacial or the time direction then we can

conclude that ψ ∈ C1+β,(1+β)/2(U ∩ {xn = 0}), where β = min{α, 2s − η}. As such,

∂Ω is a C1+β,(1+β)/2 domain and, invoking Remark 3.7.2, we can conclude that ψ ∈

C1+β,(1+β)/2(U). Repeat this argument until β = α to get optimal regularity.

When k = 1 (that is log(h) ∈ C1+α,(1+α)/2) we want to show that ψ ∈ C2+s,1+s/2 for

some s. Then we will invoke classical Schauder theory. We can argue almost exactly as

above, except that equation (3.7.13) cannot detect regularity in log(h) above C1,1/2. The

argument above tells us that ψ ∈ C1+s,(1+s)/2 for any s < 1, thus, h̃ ∈ C1+α,(1+α)/2.

Let ~ξ,~v ∈ Rn+1 be such that ξn, vn = 0. Then, in the same vein as equation (3.7.13), we

can estimate

|δ2
~ξ
h̃((x, 0, t) + ~v)− δ2

~ξ
h̃((x, 0, t))| ≤‖h‖C1+α,(1+α)/2 min{2‖~ξ‖1+α

p , 3‖~v‖p}

≤3‖h‖C1+α,(1+α)/2‖~ξ‖sp‖~v‖
1− s

1+α
p .

(3.7.17)
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Consequently, ‖h̃(−) − h̃(− + ~v)‖Cs,s/2 ≤ C‖~v‖
1− s

1+α
p . We may then repeat the argument

above until we reach equation (3.7.14), which now reads

‖wε‖
C2+η,1+η/2
−1−s

≤ C(εs−η + εs + ε1− s
1+α + ε). (3.7.18)

Resume the argument until equation (3.7.16), which is now,

|δ2
ε~vDiψ(x, 0, t)| ≤ Cs,η(εs−η + εs + ε1− s

1+α + ε)‖ε~v‖sp. (3.7.19)

If ‖~v‖p = 1 and points either completely in the spacial or time direction then we can conclude

that ψ ∈ C1+β,(1+β)/2({xn = 0}) where β = min{2s−η, 1+s, 1+s− s
1+α}. Pick η, s such that

2s− η > 1 and we have that there is some γ ∈ (0, 1) such that ψ ∈ C2+γ,1+γ/2({xn = 0}).

Remark 3.7.2 ensures that

ψ ∈ C2+γ,1+γ/2(U), (3.7.20)

for some γ ∈ (0, 1).

Now that we have the a priori estimate (3.7.20), we may apply Theorem 3.7.5 to wε, the

solution of (3.7.12), but with a = 2+β, b = 2+β. In this form, Theorem 3.7.5 comports with

classical Schauder theory. An iterative argument one similar to the above, but substantially

simpler, yields optimal regularity. In fact, we can use the same iterative argument to prove

that ψ ∈ Ck+α,(k+α)/2 given ψ ∈ Ck−1+α,(k−1+α)/2. Thus the full result follows.

We have almost completed a proof of Theorem 3.1.11–we need only to discuss what

happens when log(h) is analytic. However, the anisotropic nature of the heat equation

makes analyticity the wrong notion of regularity to consider.

Definition 3.7.7. We say that a function F (X, t) is analytic in X and of the second Gevrey

class in t if there are constants C, κ such that

|D`
X∂

m
t F | ≤ Cκ|`|+2m(|`|+ 2m)!.
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Let us recall Theorem 3.1.11:

Theorem (Theorem 3.1.11). Let Ω ⊂ Rn+1 be a parabolic regular domain with log(h) ∈

Ck+α,(k+α)/2(Rn+1) for k ≥ 0 and α ∈ (0, 1). There is a δn > 0 such that if δn ≥ δ > 0

and Ω is δ-Reifenberg flat then Ω is a Ck+1+α,(k+1+α)/2(Rn+1) domain.

Furthermore, if log(h) is analytic in X and in the second Gevrey class in t then, under

the assumptions above, we can conclude that Ω is the region above the graph of a function

which is analytic in the spatial variables and in the second Gevrey class in t. Similarly, if

log(h) ∈ C∞, then ∂Ω is locally the graph of a C∞ function.

It is clear that Proposition 3.7.6 implies the above theorem except for the statement

when log(h) analytic in X and second Gevrey class in t. This follows from a theorem of

Kinderlehrer and Nirenberg:

Theorem 3.7.8. [Modified Theorem 1 in (KN78)] Let v ∈ C∞(U) be a solution to

−F (D2v,Dv, v,X, t) + vt = 0 (X, t) ∈ U

vn = Φ(∂1v, ...., ∂n−1v, v, x, t), (x, 0, t) ∈ U ∩ {xn = 0}

where (Fvij ) is a positive definite form. Assume that F is analytic in D2v,Dv and Φ is

analytic in ∂xv and v. If F,Φ are analytic in X and in the second Gevrey class in t then v

is analytic in X and in the second Gevrey class in t.

More precisely, Theorem 1 in (KN78) is stated for Dirichlet boundary conditions. But

the remarks after the theorem (and, especially, equation 2.11 there) show that the result

applies to Neumann conditions also. Finally, it is easy to see that if log(h) is analytic in X

and in the second Gevrey class in t, then ψ satisfies the hypothesis of Theorem 3.7.8. This

finishes the proof of Theorem 3.1.11.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Proof of Theorem 2.8.4 for h < h0

Let us recall the statement we are trying to prove:

Theorem 2.8.4 Let uk, k = 1, 2 satisfy a system of coercive and elliptic equations with

proper weights. Suppose the coefficients in(2.8.3) and the Brkγ satisfy the h− µ-conditions

on a domain Γ ⊃ U , where 0 < µ < 1. Additionally, assume the following regularity:

fαj ∈ C
ρ,µ(U), ρ = max{0, h− sj + |α|}, grγ ∈ Cτ,µ(U) with τ = max{0, h + hr + |γ|} and

uk ∈ Ctk+h,µ(U). Then

∑
k

‖uk‖
Ctk+h,µ(U)

≤ C

∑
j,α

‖fαj ‖Cρ,µ(U) +
∑
r,γ

‖grγ‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 . (A.1.1)

Here C is independent of the uk’s, the f ’s and the g’s.

For simplicity’s sake, we establish the above in the special case where h0 = 0, h =

−1, t1 = t2 = 2, s1 = s2 = 0 and p1 = p2 = 0 (which is the case that is applied in the

proof of Proposition 2.8.5). However, our techniques work for h0 ≥ 0, h ≥ h0 − 1 and any

proper assignment of weights. To further simplify the proof, we will make the assumptions

that U is bounded and that uk ∈ C∞(U\{yn = 0}), i.e. that uk is infinitely smooth away

from {yn = 0}. In the context of the paper, these assumptions are clearly satisfied. This

simplification can be avoided through the use of cutoff functions (e.g. in the proof of Theorem

6.2 in (ADN59)).

Here we will follow closely the work of Agmon, Douglis and Nirenberg (see (ADN59),

(ADN64)). Our proof has three steps; first, we present a representation formula for solutions

to constant coefficient systems and show how this formula implies the desired result in that

circumstance. Second, we analyze the variable coefficient case. Finally, we will justify the
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representation formula introduced in the first step.

A.1.1 The constant coefficient case

We present a formula for solutions to constant-coefficient systems of the form (2.8.3) with

boundary conditions (2.8.4).

If every function involved is C∞ with compact support, then integration by parts and

(ADN64) Theorem 6.1 tell us

Diu
k(y′, yn)+Cki = Div

k(y′, yn)+Di

ˆ
Rn−1

2∑
r=1

Kkr(y
′−x′, yn)(g̃r(x′)−φr(x′))dx′ (A.1.2)

for any i = 1, ..., n − 1 (this is essentially equation 6.7 in (ADN64) with the addition of

a constant to compensate for h = h0 − 1). We need to define some of the above terms:

• The Cki s are constants.

• Let Γ be the fundamental solution to the linear operator (−1)χakχγD
γ+χ. We define

vk(Y ) =

ˆ
Rn

∑
|χ|≤mk

(−1)χΓk(Y −X)D
χ
X f̃

k
χ(X)dX.

Here f̃kχ is a smooth, compactly supported extension of fkχ to all of Rn. How the

extension is created is not particularly important.

• Similarly g̃r(x) is a smooth, compactly supported extension of gr to all of Rn−1. We

will abuse notation and refer to g̃ as g (similarly with f̃).

• φr(x′) :=
∑2
k=1B

r
k(Dx′ , Dxn)vk(x′, 0).

• Kkr are kernels so that if the ψrs have sufficient smoothness/growth properties and

Uk(y′, yn) :=

ˆ
Rn−1

∑
r

Kkr(y
′ − x′, yn)ψr(x′)dx′
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then (−1)χakχγD
γ+χUk = 0 and

2∑
k=1

Brk(Dy′ , Dyn)Uk(y′, 0) = ψr(y′).

Classical results imply that Γ(Z), DΓ(Z) are integrable (at zero) and that DχΓ (for

any |χ| = 2) is a Calderon-Zygmund kernel which integrates to zero on Rn. For the Poisson

kernels, K, we turn to (ADN59), Sections 2 and 3. When s = ord Brk = tk−hr−pr = 2−hr,

we can deduce that DsKkr is homogenous of degree−(n−1) (see (ADN59), equation (2.13)’).

In this case, we can write

DsKkr(y
′, yn) =

Ω( y
′

|Y | ,
yn
|Y |)

|Y |−n+1
, Y = (y′, yn).

As DsKkr satisfies the same differential equation as uk we conclude that

ˆ
|y′|=1

Ω(y′, 0)dσ(y′) = 0

(see the corollary on pg 645 of (ADN59)). Furthermore, DsK has bounded first derivatives

away from zero, so Ω is smooth. In particular, DsKkr(y
′, 0) is a Calderon-Zygmund kernel.

As the u’s, f ’s and g’s are assumed to be C∞c , we can differentiate under the integral

sign and rewrite (A.1.2) as

Diu
k(y′, yn) + Ck =

ˆ
Rn

∑
|χ|≤mk

Γ̃kχ(Y −X)fkχ(X)dX+

2∑
r=1

ˆ
Rn−1

D2−hr
Y Kkr(y

′ − x′, yn)Dhr−1
x′ (gr(x′)− φr(x′))dx′.

(A.1.3)

Where we define

Γ̃kχ(Y −X) := D
ei+χ
Y Γ(Y −X)
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(depending on the parity of tk − hr − pr the above equation may be missing some minus

signs, these omissions are irrelevant to future analysis). It should also be noted all the kernels

above are either integrable or Calderon-Zygmund kernels. We now make a crucial claim:

Claim: The above (A.1.3) holds for weak solutions of the constant-coefficient system (2.8.3)

and (2.8.4) under the regularity assumptions fαj ∈ Cρ,µ(U) where ρ = max{0, |α| − 1},

grγ ∈ Cτ,µ(U) with τ = max{0, hr − 1}, and uk ∈ C1,µ(U).

From this one can conclude:

Lemma A.1.1. Let uk, k = 1, 2 satisfy a system of constant-coefficient coercive and elliptic

equations with proper weights. Additionally, assume that for some for 0 < µ < 1: f
χ
j ∈

Cρ,µ(U) where ρ = max{0, |χ|−1}, gr ∈ Cτ,µ(U) with τ = max{0, hr−1} and uk ∈ C1,µ(U).

Then

∑
k

‖uk‖C1,µ(U) ≤ C1

∑
j,χ

‖fχj ‖Cρ,µ(U) +
∑
r

‖gr‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 . (A.1.4)

Here, C is independent of the uk’s, the f ’s and the g’s.

Proof assuming the Claim. It suffices to estimate the C1,µ norm of uk|{yn=0} (as each uk

satisfies an elliptic equation in U , the full estimate can be obtained using weighted Schauder

estimates. See, e.g., (GH80) Theorem 5.1 or (ADN59) Theorem 9.1).

We use the classical fact that

‖f‖C1 ≤ ε[Df ]α + Cε,α sup |f | (A.1.5)

where f ∈ C1,α(Rn−1) and [f ]α = supx 6=y
|f(x)−f(y)|
|x−y|α (see equations 7.4, 7.5 in (ADN59)).

From here it follows that we need only estimate [Diu
k|{yn=0}]µ, i = 1, ..., n − 1 in terms of

the norms on the right hand side. That such an estimate exists, follows immediately from

the theory of singular integrals and the fact that the kernels in (A.1.3) are either Calderon-

Zygmund kernels or integrable at 0.
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A.1.2 The variable coefficient case

Given Lemma A.1.1, the standard way to handle variable coefficients is to “freeze” the

coefficients at a point. For any y0 = (y′0, 0) ∈ U , we write:

ˆ
U

∑
|χ|≤m1
|γ|≤2−m1

a1
χγ(y0)Dγu1Dχζdx =

ˆ
U

∑
(f1
χ + [a1

χγ(y0)− a1
χγ(x)]Dγu1)Dχζdx

ˆ
U

∑
|χ|≤m2
|γ|≤2−m2

a2
χγ(y0)Dγu2Dχζdx =

ˆ
U

∑
(f2
χ + [a2

χγ(y0)− a2
χγ(x)]Dγu2)Dχζdx

(A.1.6)

for all ζ ∈ C∞0 (U). On the boundary

ˆ
{yn=0}

(
2∑

k=1

B1
k(Dx′ , Dxn , y

′
0)uk

)
ξdx′ =

ˆ
{yn=0}

(g1 +G1)ξdx′

ˆ
{yn=0}

(
2∑

k=1

B2
k(Dx′ , Dxn , y

′
0)uk

)
ξdx′ =

ˆ
{yn=0}

(g2 +G2)ξdx′
(A.1.7)

for all ξ ∈ C∞0 (∂U ∩ {yn = 0}). Here Gr :=
∑2
k=1(Brk(Dx′ , Dxn , y

′
0)−Brk(Dx′ , Dxn , x

′))uk.

However, näıve application of Lemma A.1.1 will not work as the semi-norms [Duk]µ may

appear with large coefficients on the wrong side of the inequality.

(A.1.5) allows us to argue

[Duk]µ ≤
1

2
‖uk‖C1,µ ⇒ ‖uk‖C1,µ ≤ C‖uk‖C0 ,

for k = 1, 2 (which renders our desired estimate trivially true). So, without loss of generality,

it suffices to consider the case

∃k = 1, 2 s.t. ∃P,Q ∈ U with
|Duk(P )−Duk(Q)|

|P −Q|µ
>

1

2
‖uk‖C1,µ . (A.1.8)
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Let λ > 0 be determined later and assume, without loss of generality, P = (0, t), k = 1.

We have three cases:

Case 1: |P − Q| ≥ λ. This easily implies 2 sup |Du1| ≥ λµ 1
2‖u

1‖C1,µ . From here, if λ is

sufficiently small, use (A.1.5) to get

Cλ‖u1‖C0 ≥ ‖u1‖C1,µ

which, as stated above, yields the desired estimate.

Case 2: |P − Q| < λ but t ≥ 2λ. In this case uk, k = 1, 2 are solutions to an elliptic

system of equations in B3λ/2(P ) ⊂ U . Interior Schauder estimates for weak solutions (see

e.g. (Mor66), Theorem 6.4.3 or (GT98) Chapter 8) give

∑
k

‖uk‖C1,µ(B5λ/4(P )) ≤ Cλ

∑
j,α

‖fαj ‖C0,µ(B3λ/2(P )) +
∑
k

‖uk‖C0(B3λ/2(P ))

 .

By assumption,

1

2
‖u1‖C1,µ(U) <

|Du1(P )−Du1(Q)|
|P −Q|µ

≤ ‖u1‖C1,µ(B5λ/4(P ))

and so, once we have fixed λ, we have the desired result.

Case 3: |P − Q| < λ and t < 2λ. Consider a smooth cutoff function, η ∈ C∞(Rn), such

that η(Y ) ≡ 1 when |Y | ≤ 3λ and η(Y ) ≡ 0 when |Y | ≥ 5λ. Additionally, η can be chosen

such that |D`η| ≤ Cλ−`. Now consider V k := ηuk. V k satisfies equations similar to (A.1.6)

and (A.1.7) but with different right hand sides.

We can use the representation (A.1.3) and thus Lemma A.1.1 on the V ks. We need

to estimate each term on the right. The term that comes from the interior equations is
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dominated by

‖
∑
χ,γ

η(fkχ + [akχγ(y0)− akχγ(x)]Dγu1)‖C0,µ + ‖
∑
|γ|=1

∑
χ

[akχγ(y0)− akχγ(x)]ukDγη‖C0,µ .

Note that η is supported on B5λ so sup |akχγ(y0) − akχγ(x)| < Cλµ. Also recall that the

h − µ-conditions imply the akχγ are Hölder continuous. Thus, the first term in the offset

equation above can be dominated by
∑
χ,k ‖fkχ‖C0,µ + Cλµ[Duk]µ + C sup |Duk|, where

the constants above are independent of λ. Similarly, the second term can be bounded by∑
χ,k Cλ

µ−1[u]µ + C sup |uk|λ−2 + Cλ−1 sup |uk|.

From the boundary terms we get

∑
r

(
‖

2∑
k=1

(Brk(Dx′ , Dxn , y
′
0)−Brk(Dx′ , Dxn , x

′))ηuk‖Chr−1,µ + ‖ηgr‖Chr−1,µ

)
.

As we have seen above, we need not worry when the derivatives in the boundary operators

land on η (as these terms will all be bounded by the C0,µ norms of the fs, gs and us and the

C1 norm of the us). When the derivatives all land on the uk term, we argue just as above

(recalling that that h − µ conditions imply that the Bs are Hölder continuous in position)

and conclude that the coefficient of [Duk]µ contains a positive power of λ.

We can then pick λ small enough so that the coefficient of [Duk]µ on the right hand side

is less than 1/4. This yields the estimate

∑
k

‖V k‖C1,µ(U) ≤
1

4

∑
k

[Duk]µ+C

∑
j,χ

‖fχj ‖Cρ,µ(U) +
∑
r

‖gr‖Cτ,µ(U) +
∑
k

‖uk‖C(U)

 .

But V k = uk on P,Q so we have that

1

2
‖u1‖C1,µ(U) <

|Du1(P )−Du1(Q)|
|P −Q|µ

≤ ‖V 1‖C1,µ(U)
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⇒ 1

2
‖u1‖C1,µ(U) ≤

1

4

∑
k

[Duk]µ+C

∑
j,χ

‖fχj ‖Cρ,µ(U) +
∑
r

‖gr‖Cτ,µ(U) +
∑
k

‖uk‖C(U)

 .

From here the desired estimate follows immediately. As such, we are done modulo the proof

that (A.1.3) holds for non-C∞ functions.

A.1.3 Justifying (A.1.3)

It remains to prove our claim above: namely, that the representation in (A.1.3) is valid

without the a priori assumption of C∞ regularity. Here we follow closely the discussion on

pages 673-674 of (ADN59). It should first be noted that the integrals on the right hand side

of (A.1.3) converge if fαj ∈ C
ρ,µ(U) and grγ ∈ Cτ,µ(U).

Let j(r) be an approximation to the identity and then define

Jεu(y′, yn) := ε−n+1
ˆ n−1∏

i=1

j

(
yi − xi
ε

)
u(x1, ..., xn−1, xn)dx′.

Similarly, we can define

Jε,ε̃u(y′, yn) :=
1

ε̃

ˆ ∞
0

j

(
yn + ε̃− s

ε̃

)
Jεu(y′, s)ds.

For any u it is clear that Jε,ε̃u is a C∞ function in the closed upper half plane.

Now assume the uk’s satisfy a coercive and elliptic system with constant coefficients and

let the f ’s and g’s be as in Definition 2.8.2. Then (as the system has constant coefficients)

it is true that Jε,ε̃u
k satisfies (2.8.3) with Jε,ε̃f

k
χ on the right hand side. So, with vk defined

as above, (A.1.3) becomes

Jε,ε̃Diu
k(y′, yn) + Cki (ε, ε̃) =

ˆ
Rn

∑
|χ|≤mk

Γ̃kχ(Y −X)Jε,ε̃f
k
χ(X)dX+

2∑
r=1

ˆ
Rn−1

D2−hr
Y Kkr(y

′ − x′, yn)Gε,ε̃(x
′, 0)dx′

(A.1.9)
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where

Gε,ε̃(x
′, 0) := (Jε,ε̃D

hr−1
x′

∑
k

Brk(Dx′ , Dxn)(uk(x′, xn)− vk(x′, xn)))xn=0.

Note that, for H ∈ C0,µ, Jε,ε̃H
ε̃↓0→ JεH uniformly (by Arzelà-Ascoli). By assumption

fkχ is Hölder continuous. To analyze the boundary terms, note first that Dhr−1
x′ Brk is an

operator of order 1 and, as such, Dhr−1
x′

∑
k B

r
k(Dx′ , Dxn)(uk(x′, xn)− vk(x′, xn)) is at least

as regular as C0,µ. So Jε,ε̃D
hr−1
x′

∑
k B

r
k(Dx′ , Dxn)(uk(x′, xn) − vk(x′, xn)) (and thus its

restriction to {xn = 0}) converges in the uniform topology.

Let ε̃ ↓ 0 to obtain

JεDiu
k(y′, yn) + Ck(ε) =

ˆ
Rn

∑
|χ|≤mk

Γ̃kχ(Y −X)Jεf
k
χ(X)dX+

2∑
r=1

ˆ
Rn−1

D2−hr
Y Kkr(y

′ − x′, yn)Gε(x
′, 0)dx′

(A.1.10)

where

Gε(x
′, 0) := (JεD

hr−1
x′

∑
k

Brk(Dx′ , Dxn)(uk(x′, xn)− vk(x′, xn)))xn=0.

Since Jε is a convolution in only the Rn−1 directions, we can set xn = 0 to obtain

Gε(x
′, 0) = JεD

hr−1
x′ (gr(x′)− φr(x′)).

We note, by assumption, that gr is at least Hölder continuous. As such, we can use the same

argument as above to justify taking ε ↓ 0; the validity of our claim follows.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Classification of “Flat Blowups”

A key piece of the blowup argument is a classification of “flat blowups”; Theorem 3.1.10.

The proof of this theorem follows from two lemmas which are modifications of results in

Andersson and Weiss (AW09). Before we begin, let us try to clarify the relationship between

this work and that of (AW09).

As was mentioned in the introduction, the results in (AW09) are for solutions in the sense

of domain variations to a problem arising in combustion. Although this is the natural class

of solutions to consider when studying their problem (see the introduction in (Wei03)), the

definition of these solutions is quite complex and it is unclear whether the parabolic Green

function at infinity satisfies it. For example, neither the integral bounds on the growth

of time and space derivatives (see the first condition in Definition 6.1 in (Wei03)) nor the

monotonicity formula (see the second condition in Definition 6.1 in (Wei03)), clearly hold a

priori for functions u which satisfy the conditions of Theorem 3.1.10.

Upon careful examination of (AW09) we identified which properties of solutions in the

sense of domain variations were crucial to the proof. The first of these was the following

“representation” formula which holds in the sense of distributions for almost every time, t0,

(see Theorem 11.1 in (Wei03))

∆u− ∂tu|t0 = Hn−1|R(t0) + 2θ(t0,−)Hn−1|Σ∗∗(t0) + λ(t)|Σz(t0). (B.1.1)

Without going too deep into details, we should think of R(t0) ⊂ ∂{u > 0} as boundary points

which are best behaved. In particular, blowups at these points are plane solutions with slope

1. Σ∗∗(t0) points are also regular in the sense that the set is countable rectifiable and the

blowups are planes, but the slope of the blowup solution is 2θ(t0,−) < 1. Σz(t0) consists of
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singular points at which blowups may not be planes. We observe that this situation is much

more complicated than the elliptic one in (AC81), but, as is pointed out in the introduction

(Wei03), this is an unavoidable characteristic of solutions to the combustion problem.

Lemma B.1.6 (which corresponds to Lemma 5.1 in (AW09) and is a parabolic version of

Lemma 4.10 in (AC81)) bounds from below the slope of blowup solutions at points which

have an exterior tangent ball. For solutions in the sense of domain variation, points in Σ∗∗(t0)

complicate matters and thus more information than is given by (B.1.1) is needed. Indeed, it

is mentioned in (AW09) that defining solutions merely as those which satisfy (B.1.1) would

not be sufficient to implement their approach. However, in our setting, Lemma 3.4.24 says

that k ≥ 1 at almost every point on the free boundary which suffices to show that any

blowup at a regular point must have slope at least 1.

Another property of solutions in the sense of domain variations which is critical to (AW09)

is that |∇u(X, t)|2 always approaches a value less than or equal to 1 as (X, t) approaches the

free boundary (Lemma 8.2 in (AW09)). In our setting we know that |∇u| ≤ 1 everywhere

(by Proposition 3.4.4) and so we need not worry. That |∇u| ≤ 1 (along with Lemma 3.6.9,

proven in Section 3.6 above), implies that blowups of u are precompact in the Lip(1, 1/2)

norm–which is another property of domain variations that is used in (AW09). Finally, it

is important to the arguments in (AW09) that the set R(t0) is rectifiable (e.g. in order to

apply integration by parts). In the setting of Proposition 3.1.10, Ahlfors regularity lets us

apply integration by parts as well (albeit, we must be more careful. See, e.g., the proof of

Lemma B.1.10 below).

By finding appropriate substitutes for the relevant properties of domain variations (as

described above) we were able to prove that the results of (AW09) apply mostly unchanged

to u, k,Ω which satisfy the hypothesis of Proposition 3.1.10. However, we needed to make

an additional modification, as the conclusions of Proposition 3.1.10 are global whereas the

main theorem in (AW09) is a local regularity result (see Corollary 8.5 there). In particular,

Theorem 5.2 and Lemma 8.1 in (AW09) roughly state that if a solution is flat in a certain
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sense in a cylinder, then it is even flatter in another sense in a smaller cylinder whose

center has been translated in some direction. This translation occurs because the considered

cylinders contain a free boundary point that is centered in the space variables but in the

“past” in the time coordinate. We want to improve flatness at larger and larger scales, so

we cannot allow our cylinders to move in this manner (otherwise our cylinder might drift off

to infinity).

To overcome this issue, we introduce the concept of “current flatness” (see Definition

B.1.1). However, the parabolic equation is anisotropic, so centering our cylinder in time

means that we have to accept weaker results. This leads to the notion of “weak current

flatness” (Definition B.1.3). Unfortunately, the qualitative nature of weak flatness is not

always sufficient so we still need to prove some results for “past flatness” (as introduced in

(AW09)). We also remark that this idea of “current flatness” could be used in the setting of

domain variations to analyze the global properties of those solutions.

Let us recall Theorem 3.1.10;

Theorem (Theorem 3.1.10). Let Ω∞ be a δ-Reifenberg flat parabolic regular domain with

Green function at infinity u∞ and associated parabolic Poisson kernel h∞ (i.e. h∞ = dω∞
dσ ).

Furthermore, assume that |∇u∞| ≤ 1 in Ω∞ and |h∞| ≥ 1 for σ-almost every point on

∂Ω∞. There exists a δn > 0 such that if δn ≥ δ > 0 we may conclude that, after a potential

rotation and translation, Ω∞ = {(X, t) | xn > 0}.

We define three notions of “flatness” for solutions. The definition of “past flatness” is

taken from Andersson and Weiss (AW09) (who in turn adapted it from the corresponding

elliptic definitions in (AC81)). As mentioned above, we also introduce two types of “current

flatness”. The first type is quantitative and we call it “strong current flatness.”

Definition B.1.1. For 0 < σi ≤ 1/2 we say that U ∈ CF (σ1, σ2) in Cρ(Q, τ) in the

direction ν ∈ Sn−1 if

• (Q, τ) ∈ ∂{U > 0}
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• U((Y, s)) = 0 whenever (Y −Q) · ν ≤ −σ1ρ and (Y, s) ∈ Cρ(Q, τ).

• U((Y, s)) ≥ (Y −Q) · ν − σ2ρ whenever (Y −Q) · ν − σ2ρ ≥ 0 and (Y, s) ∈ Cρ(Q, τ).

The parabolic nature of our problem means that it behooves us to introduce a “past”

version of this flatness:

Definition B.1.2. For 0 < σi ≤ 1 we say that u ∈ PF (σ1, σ2) in Cρ(X, t) in the direction

ν ∈ Sn−1 if for (Y, s) ∈ Cρ(X, t)

• (X, t− ρ2) ∈ ∂{U > 0}

• U((Y, s)) = 0 whenever (Y −X) · ν ≤ −σ1ρ

• U((Y, s)) ≥ (Y −X) · ν − σ2ρ whenever (Y −X) · ν − σ2ρ ≥ 0.

Our final notion of flatness is qualitative and weaker than strong current flatness. We

call it “weak current flatness.”

Definition B.1.3. For 0 < σi ≤ 1/2 we say that U ∈ C̃F (σ1, σ2) in Cρ(Q, τ) in the

direction ν ∈ Sn−1 if

• (Q, τ) ∈ ∂{U > 0}

• U((Y, s)) = 0 whenever (Y −Q) · ν ≤ −σ1ρ

• U((Y, s)) > 0 whenever (Y −Q) · ν > σ2ρ.

We may now state our two main lemmas, the first of which allows us to conclude flatness

on the positive side of ∂{u∞ > 0} given flatness on the zero side.

Lemma B.1.4. [“Current” version of Theorem 5.2 in (AW09)] Let Ω, u∞ satisfy the as-

sumptions of Proposition 3.1.10. Furthermore, assume u∞ ∈ C̃F (σ, 1/2) in Cρ(Q, τ) in

the direction ν. Then there is a constant K1 > 0 (depending only on dimension) such that

u∞ ∈ CF (K1σ,K1σ) in Cρ/2(Q, τ) in the direction ν.
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The second lemma provides greater flatness on the zero-side under the assumption of

flatness on both sides.

Lemma B.1.5. [“Current” version of Lemma 8.1 in (AW09)] Let u∞,Ω satisfy the assump-

tions of Proposition 3.1.10 and assume, for some σ, ρ > 0 that u∞ ∈ CF (σ, σ) in Cρ(Q, τ)

in the direction ν. For θ ∈ (0, 1), there exists a constant 1/2 > σθ > 0 which depends only

on θ, n, such that if 0 < σ < σθ then u∞ ∈ C̃F (θσ, θσ) in CK2θρ(0, 0) in the direction ν̃,

where ν̃ satisfies |ν̃ − ν| < K3σ. Here 0 < K2, K3 <∞ are constants depending only on the

dimension.

Our proof that these two lemmas imply that Ω∞ is a half-space is based on the analogous

result in the elliptic setting proven by Kenig and Toro in (KT04).

Proof of the Proposition 3.1.10 assuming the two lemmas. Pick θ′ ∈ (0, 1) small enough so

that max{θ′, K2
1θ
′, K2θ

′/4} < 1/2. Then let δn < min{1/2, σθ′/K1}. Here, and through the

rest of this proof, K1, K2, K3 and σθ′ are as in Lemmas B.1.4 and B.1.5.

Assume, without loss of generality, that (0, 0) ∈ ∂Ω. For every ρ > 0, there is an n-

plane, V (ρ), containing a line parallel to the t-direction, such that 1
ρD[V (ρ)∩Cρ(0, 0), ∂Ω∩

Cρ(0, 0)] < δ. Let νρ be the unit normal vector to V (ρ) correctly oriented so that if (X, t) ∈

Cρ(0, 0) and
〈
X, νρ

〉
≤ −δρ then (X, t) ∈ Ωc (similarly, (X, t) ∈ Cρ(0, 0),

〈
X, νρ

〉
≥ δρ

implies (X, t) ∈ Ω). Translated into the language of weak current flatness, u∞ ∈ C̃F (δ, δ)

in Cρ(0, 0) in the direction νρ.

Apply Lemma B.1.4 so that u∞ ∈ CF (K1δ,K1δ) in Cρ/2(0, 0) in the direction νρ. Then

Lemma B.1.5 implies that u∞ ∈ C̃F (K1θ
′δ,K1θ

′δ) in CK2θ′ρ/2(0, 0) in the direction ν
(1)
ρ

where |ν(1)
ρ − νρ| < K1K3δ. Returning to Lemma B.1.4 yields u∞ ∈ CF (K2

1θ
′δ,K2

1θ
′δ)

in CK2θ′ρ/4(0, 0) in the direction ν
(1)
ρ . Note that θ, δn were chosen small enough to justify

repeating this procedure arbitrarily many times. After m iterations we have shown u∞ ∈

CF (θmδ, θmδ) in Cηmρ(0, 0) in the direction ν
(m)
ρ where η ≡ K2θ

′/4 < 1/2. Additionally,

for m ≥ 1, |ν(m)
ρ − ν(m+1)

ρ | < K3θ
mδ. From now on we will abuse notation and refer to all
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constants which only depend on the dimension by C.

Define νρ := limm→∞ ν
(m)
ρ and compute

|νρ − ν
(m)
ρ | < Cδθm

1

1− θ
< Cδθm. (B.1.2)

For any (P, ξ) ∈ Cρ(0, 0); there is some m such that (P, ξ) ∈ Cηmρ(0, 0) but (P, ξ) /∈

Cηm+1ρ(0, 0). As u∞ ∈ CF (θmδ, θmδ) in the direction ν
(m)
ρ we can conclude

〈
P, ν

(m)
ρ

〉
≤ −θmδηmρ⇒ u∞(P, ξ) = 0〈

P, ν
(m)
ρ

〉
≥ θmδηmρ⇒ u∞(P, ξ) > 0.

(B.1.3)

We may write
〈
P, νρ

〉
=
〈
P, ν

(m)
ρ

〉
+
〈
P, νρ − ν

(m)
ρ

〉
and estimate, using equation (B.1.2),

|
〈
P, νρ − ν

(m)
ρ

〉
| < Cδθmηmρ. Then equation (B.1.3) implies,

〈
P, νρ

〉
≤ −Cθmδηmρ⇒ u∞(P, ξ) = 0〈

P, νρ
〉
≥ Cθmδηmρ⇒ u∞(P, ξ) > 0.

(B.1.4)

Hence,

1

ηmρ
D[Λ(ρ) ∩ Cηmρ(0, 0), ∂Ω ∩ Cηmρ(0, 0)] < Cθmδ,

where Λ(ρ) is the n-hyperplane containing (0, 0) that is perpendicular to νρ.

If ηm+1ρ ≤ s < ηmρ one computes

1

s
D[Λ(ρ) ∩ Cs(0, 0), ∂Ω ∩ Cs(0, 0)] ≤ 1

η
D[Λ(ρ) ∩ Cηmρ(0, 0), Cηmρ(0, 0) ∩ ∂Ω] ≤ Cδ

θm

η
.

As θ, η < 1 we can write θ = ηβ for some β > 0 and the above becomes

1

s
D[Λ(ρ) ∩ Cs(0, 0), ∂Ω ∩ Cs(0, 0)] ≤ Cηδ

(
s

ρ

)β
,∀s < ρ. (B.1.5)
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Pick any ρj → ∞. By compactness, Λ(ρj) → Λ∞ in the Hausdorff distance (though

we may need to pass to a subsequence that the limit plane may depend on the subsequence

chosen). Then for any s > 0, equation (B.1.5) implies

1

s
D[Λ∞ ∩ Cs(0, 0), ∂Ω ∩ Cs(0, 0)] = 0.

We conclude that ∂Ω = Λ∞, and that Λ∞ is, in fact, independent of {ρj}. After a rotation

and translation Ω = {(X, t) | xn > 0}.

B.1.1 Flatness of the zero side implies flatness of the positive side: Lemma

B.1.4

Before we begin we need two technical lemmas. The first allows us to conclude regularity

in the time direction given regularity in the spatial directions. We stated and proved this

Lemma in Section 3.6 so we will just state it again here.

Lemma. If f satisfies the (adjoint)-heat equation in O and is zero outside O then

‖f‖C1.1/2(Rn+1) ≤ c‖∇f‖L∞(O),

where 0 < c <∞ depends only on the dimension.

This second lemma allows us to bound from below the normal derivative of a solution at

a smooth point of ∂Ω∞. For ease of notation we will drop the subscript∞ from u∞,Ω∞ and

h∞. However, all these results are proven with the same assumptions as Theorem 3.1.10.

Lemma B.1.6. Let (Q, τ) ∈ ∂Ω be such that there exists a tangent ball (in the Euclidean

sense) B at (Q, τ) contained in Ω
c
. Then

lim sup
Ω3(X,t)→(Q,τ)

u(X, t)

d((X, t), B)
≥ 1.
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Proof. Without loss of generality set (Q, τ) = (0, 0) and let (Xk, tk) ∈ Ω be a sequence

that achieves the supremum, `. Let (Yk, sk) ∈ B be such that d((Xk, tk), B) = ‖(Xk, tk) −

(Yk, sk)‖ =: rk. Define uk(X, t) :=
u(rkX+Yk,r

2
kt+sk)

rk
, Ωk := {(Y, s) | Y = (X − Yk)/rk, s =

(t− sk)/r2
k, s.t. (X, t) ∈ Ω} and hk(X, t) := h(rkX + Yk, r

2
kt+ sk). Then

ˆ
Rn+1

uk(∆φ− ∂tφ)dXdt =

ˆ
∂Ωk

hkφdσ.

By assumption, the uk have uniform Lipschitz bound 1. Thus Lemma 3.6.9 implies

that the uk are bounded uniformly in C1,1/2. Therefore, perhaps passing to a subsequence,

uk → u0 uniformly on compacta. In addition, as there exists a tangent ball at (0, 0),

Ωk → {xn > 0} in the Hausdorff distance norm (up to a rotation). We may assume, passing

to a subsequence, that Xk−Yk
rk

→ Z0,
tk−sk
r2
k

→ t0 with (Z0, t0) ∈ C1(0, 0) ∩ {xn > 0} and

u0(Z0, t0) = `. Furthermore, by the definition of supremum, for any (Y, s) ∈ {xn > 0} we

have

u0(Y, s) = lim
k→∞

u(rkY + yk, r
2
ks+ sk)/rk

≤ lim
k→∞

`
pardist((rkY + yk, r

2
ks+ sk), B)

rk

= lim
k→∞

`pardist((Y, s), Bk)

=`yn,

(B.1.6)

where Bk is defined like Ωk above.

Let φ ∈ C∞0 (Rn+1) be positive, then

ˆ
{xn>0}

`xn(∆φ− ∂tφ)dXdt ≥
ˆ
{xn>0}

u0(X, t)(∆φ− ∂tφ)dXdt

= lim
k→∞

ˆ
Ωk

uk(X, t)(∆φ− ∂tφ)dXdt

= lim
k→∞

ˆ
∂Ωk

hkφdσ.

(B.1.7)
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Integrating by parts yields

`

ˆ
{xn=0}

φdxdt =

ˆ
{xn>0}

`xn(∆φ− ∂tφ)dXdt

eqn. (B.1.7)
≥ lim

k→∞

ˆ
∂Ωk

hkφdσ

hk≥1
≥ lim

k→∞

ˆ
{xn=0}

φdxdt

Hence, ` ≥ 1, the desired result.

We will first show that for “past flatness”, flatness on the positive side gives flatness on

the zero side.

Lemma B.1.7. [Compare with Lemma 5.2 in (AW09)] Let 0 < σ ≤ σ0 where σ0 depends

only on dimension. Then if u ∈ PF (σ, 1) in Cρ(X̃, t̃) in the direction ν, there is a constant

C such that u ∈ PF (Cσ,Cσ) in Cρ/2(X̃ + αν, t̃) in the direction ν for some |α| ≤ Cσρ.

Proof. Let (X̃, t̃) = (0, 0), ρ = 1 and ν = en. First we will construct a regular function which

touches ∂Ω at one point.

Define

η(x, t) = e
16(|x|2+|t+1|)

16(|x|2+|t+1|)−1

for 16(|x|2 + |t + 1|) < 1 and η(x, t) ≡ 0 otherwise. Let D := {(x, xn, t) ∈ C1(0, 0) |

xn > −σ + sη(x, t)}. Now pick s to be the largest such constant that C1(0, 0) ∩ Ω ⊂ D. As

(0,−1) ∈ ∂{u > 0}, there must be a touching point (X0, t0) ∈ ∂D∩∂Ω∩{−1 ≤ t ≤ −15/16}

and s ≤ σ.

Define the barrier function v as follows:

∆v + ∂tv = 0 in D,

v = 0 in ∂pD ∩ C1(0, 0)

v = (σ + xn) in ∂pD ∩ ∂C1(0, 0).

(B.1.8)
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Note that on ∂pD ∩C1(0) we have u = 0 because D contains the positivity set. Also, as

|∇u| ≤ 1, it must be the case that u(X, t) ≤ max{0, σ + xn} for all (X, t) ∈ C1(0, 0). Since,

v ≥ u on ∂pD it follows that v ≥ u on all of D (by the maximum principle for subadjoint-

caloric functions). We now want to estimate the normal derivative of v at (X0, t0). To

estimate from below, apply Lemma B.1.6,

1 ≤ lim sup
(X,t)→(X0,t0)

u(X, t)

pardist((X, t), B)
≤ −∂νv(X0, t0) (B.1.9)

where ν is the normal pointing out of D at (X0, t0) and B is the tangent ball at (X0, t0) to

D contained in Dc.

To estimate from above, first consider F (X, t) := (σ + xn)− v. On ∂pD,

−σ ≤ xn − v ≤ σ

thus (by the maximum principle) 0 ≤ F (X, t) ≤ 2σ. As ∂D is piecewise smooth domain,

standard parabolic regularity gives supD |∇F (X, t)| ≤ Kσ. Note, since s ≤ σ, that −σ +

sη(x, t) is a function whose Lip(1, 1) norm is bounded by a constant. Therefore, K does not

depend on σ.

Hence,

|∇v| − 1 ≤|∇v − en| ≤ Kσ

eqn (B.1.9)
⇒ 1 ≤− ∂νv(Z) ≤ 1 +Kσ.

(B.1.10)

We want to show that u ≥ v − K̃σxn for some large constant, K̃, to be choosen later

depending only on the dimension. Let Z̃ := (Y0, s0), where s0 ∈ (−3/4, 1), |y0| ≤ 1/2 and

(Y0)n = 3/4, and assume, in order to obtain a contradiction, that u ≤ v − K̃σxn at every
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point in {(Y, s0) | |Y − Y0| ≤ 1/8}. We construct a barrier function, w ≡ w
Z̃

, defined by

∆w + ∂tw = 0 in D ∩ {t < s0},

w = xn on ∂p(D{t < s0}) ∩ {(Y, s0) | |Y − Y0| < 1/8},

w = 0 on ∂p(D ∩ {t < s0})\{(Y, s0) | |Y − Y0| < 1/8}.

By our initial assumption (and the definition of w), u ≤ v − K̃σxn on ∂p(D ∩ {t < s0})

and, therefore, u ≤ v − K̃σxn on all of D ∩ {t < s0}. Since t0 ≤ −15/16 we know

(X0, t0) ∈ ∂p(D ∩ {t < s0}). Furthermore, the Hopf lemma gives an α > 0 (independent of

Z̃) such that ∂νw(X0, t0) ≤ −α. With these facts in mind, apply Lemma B.1.6 at (X0, t0)

and recall equation (B.1.10) to estimate,

1 = lim sup
(X,t)→(X0,t0)

u(X, t)

pardist((X, t), B)

≤− ∂νv(X0, t0) + K̃σ∂νw(X0, t0)

≤(1 +Kσ)− K̃ασ.

(B.1.11)

Setting K̃ ≥ K/α yields the desired contradiction.

Hence, there exists a point, call it (Y , s0), such that |Y − Y0| ≤ 1/8 and

(u− v)(Y , s0) ≥ −K̃σ(Y )n
(Y )n≤1
≥ −K̃σ.

Apply the parabolic Harnack inequality to obtain,

inf
{|X−Y0|<1/8}

(u− v)(X, s0 − 1/32) ≥ cn sup
{|X̃−Y0|<1/8}

(u− v)(X̃, s0) ≥ −cnK̃σ

v≥xn−σ⇒ u(X, s0 − 1/32) ≥ xn − σ − cnK̃σ,

for all X such that |X − Y0| < 1/8. Ranging over all s0 ∈ (−3/4, 1) and |y0| ≤ 1/2, the
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above implies

u(X, t) ≥ xn − Cσ,

whenever (X, t) satisfies |x| < 1/2, |xn − 3/4| < 1/8, t ∈ (−1/2, 1/2) and for some constant

C > 0 which depends only on the dimension. As |∇u| ≤ 1 we can conclude, for any (X, t)

such that |x| < 1/2, t ∈ (−1/2, 1/2) and 3/4 ≥ xn ≥ Cσ, that

u(X, t) ≥ u(x, 3/4, t)− (3/4− xn) ≥ (xn − Cσ). (B.1.12)

We now need to find an α such that (0, α,−1/4) ∈ ∂Ω. By the initial assumed flatness,

and equation (B.1.12), α ∈ R exists and −σ ≤ α ≤ Cσ (here we pick σ0 is small enough

such that Cσ0 < 1/4).

In summary we have shown that,

• (0, α,−1/4) ∈ ∂Ω, |α| < Cσ

• xn − α ≤ −3Cσ/2⇒ xn ≤ −σ ⇒ u(X, t) = 0.

• When xn − α ≥ 2Cσ ⇒ xn ≥ Cσ, hence equation (B.1.12)) implies u(X, t) ≥ (xn −

Cσ) ≥ (xn − α− 2Cσ).

Therefore u ∈ PF (2Cσ, 2Cσ) in C1/2(0, α, 0) which is the desired result.

Lemma B.1.4 is the current version of the above and follows almost identically. Thus

we will omut the full proof in favor of briefly pointing out the ways in which the argument

differs.

Lemma (Lemma B.1.4). Let Ω, u∞ satisfy the assumptions of Proposition 3.1.10. Further-

more, assume u∞ ∈ C̃F (σ, 1/2) in Cρ(Q, τ) in the direction ν. Then there is a constant

K1 > 0 (depending only on dimension) such that u∞ ∈ CF (K1σ,K1σ) in Cρ/2(Q, τ) in the

direction ν.
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Proof of Lemma B.1.4. We begin in the same way; let (Q, τ) = (0, 0), ρ = 1 and ν = en.

Then we recall the smooth function

η(x, t) = e
16(|x|2+|t+1|)

16(|x|2+|t+1|)−1

for 16(|x|2 + |t + 1|) < 1 and η(x, t) ≡ 0 otherwise. Let D := {(x, xn, t) ∈ C1(0, 0) |

xn > −σ + sη(x, t)}. Now pick s to be the largest such constant that C1(0, 0) ∩ Ω ⊂ D.

Since |xn| > 1/2 implies that u(X, t) > 0 there must be some touching point (X0, t0) ∈

∂D ∩ ∂Ω ∩ {−1 ≤ t ≤ −15/16}. Furthermore, we can assume that s < σ + 1/2 < 2.

The proof then proceeds as above until equation (B.1.12). In the setting of “past flatness”

we need to argue further; the boundary point is at the bottom of the cylinder, so after the

cylinder shrinks we need to search for a new boundary point. However, in current flatness the

boundary point is at the center of the cylinder, so after equation (3.6.16) we have completed

the proof of Lemma B.1.4.

B.1.2 Flatness on Both Sides Implies Greater Flatness on the Zero Side:

Lemma B.1.5

In this section we prove Lemma B.1.5. The outline of the argument is as follows: arguing

by contradiction, we obtain a sequence uk whose free boundaries ∂{uk > 0} approaches the

graph of a function f . Then we prove that this function f is C∞ and this smoothness leads

to a contradiction.

Throughout this subsection, {uk} is a sequence of adjoint caloric functions such that

∂{uk > 0} is a parabolic regular domain and such that, for all ϕ ∈ C∞c (Rn+1),

ˆ
{uk>0}

uk(∆ϕ− ∂tϕ)dXdt =

ˆ
∂{uk>0}

hkϕdσ.

We will also assume the hk ≥ 1 at σ-a.e. point on ∂{uk > 0} and |∇uk| ≤ 1. While we
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present these arguments for general {uk} it suffices to think of uk(X, t) :=
u(rkX,r

2
kt)

rk
for

some rk ↓ 0.

Lemma B.1.8. [Compare with Lemma 6.1 in (AW09)] Suppose that uk ∈ CF (σk, σk) in

Cρk(0, 0), in direction en, with σk ↓ 0. Define f+
k (x, t) = sup{d | (ρkx, σkρkd, ρ2

kt) ∈ {uk =

0}} and f−k (x, t) = inf{d | (ρkx, σkρkd, ρ
2
kt) ∈ {uk > 0}}. Then, passing to subsequences,

f+
k , f

−
k → f in L∞loc(C1(0, 0)) and f is continuous.

Proof. By scaling each uk we may assume ρk ≡ 1. Then define

Dk := {(y, d, t) ∈ C1(0, 0) | (y, σkd, t) ∈ {uk > 0}}.

Let

f(x, t) := lim inf
(y,s)→(x,t)

k→∞

f−k (y, s),

so that, for every (y0, t0), there exists a (yk, tk)→ (y0, t0) such that f−k (yk, tk)
k→∞→ f(y0, t0).

Fix a (y0, t0) and note, as f is lower semicontinuous, for every ε > 0, there exists a

δ > 0, k0 ∈ N such that

{(y, d, t) | |y − y0| < 2δ, |t− t0| < 4δ2, d ≤ f(y0, t0)− ε} ∩Dk = ∅, ∀k ≥ k0.

Consequently

xn − f(y0, t0) ≤ −ε⇒ uk(x, σkxn, s) = 0, ∀(X, s) ∈ C2δ(Y0, t0). (B.1.13)

Together with the definition of f , equation (B.1.13) implies that there exist αk ∈ R with

|αk| < 2ε such that (y0, σk(f(y0, t0)+αk), t0−δ2) ∈ ∂{uk > 0}. This observation, combined

with (B.1.13) allows us to conclude, uk(·, σk·, ·) ∈ PF (3σk
ε
δ , 1) in Cδ(y0, σk(f(y0, t0) +

αk), t0), for k large enough.

As τk/σ
2
k → 0 the conditions of Lemma B.1.7 hold for k large enough. Thus, uk(·, σk·, ·) ∈
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PF (Cσk
ε
δ , Cσk

ε
δ ) in Cδ/2(y0, σkf(y0, t0) + α̃k, t0) where |α̃k| ≤ Cσkε. Thus, whenever zn−

(σkf(y0, t0) + α̃k) ≥ Cεσk/2, we have uk(z, σkzn, t) > 0 for (Z, t) ∈ Cδ/2(yk, σkf
−
k (yk, tk) +

α, tk + δ2). In other words

sup
(Z,s)∈Cδ/2(y0,σkf(y0,t0)+α̃k,t0)

f+
k (z, s) ≤ f(y0, t0) + 3Cε. (B.1.14)

As f+
k ≥ f−k , if

f̃(y0, t0) := lim sup
(y,s)→(y0,t0)

k→∞

f+
k (y, s),

it follows (in light of (B.1.14) that f̃ = f . Consequently, f is continuous and f+
k , f

−
k → f

locally uniformly on compacta.

We now show that f is given by the boundary values of w, a solution to the adjoint heat

equation in {xn > 0}.

Lemma B.1.9. [Compare with Proposition 6.2 in (AW09)] Suppose that uk ∈ CF (σk, σk)

in Cρk(0, 0), in direction en with ρk ≥ 0, σk ↓ 0. Further assume that, after relabeling, k is

the subsequence given by Lemma B.1.8. Define

wk(x, d, t) :=
uk(ρkx, ρkd, ρ

2
kt)− ρkd

σk
.

Then, wk is bounded on C1(0, 0)∩{xn > 0} (uniformly in k) and converges, in the C2,1-norm,

on compact subsets of C1(0, 0)∩{xn > 0} to w. Furthermore, w is a solution to the adjoint-

heat equation and w(x, d, t) is non-increasing in d when d > 0. Finally w(x, 0, t) = −f(x, t)

and w is continuous in C1−δ(0, 0) ∩ {xn > 0} for any δ > 0.

Proof. As before we rescale and set ρk ≡ 1. Since |∇uk| ≤ 1 and xn ≤ −σk ⇒ uk = 0 it

follows that uk(X, t) ≤ (xn+σk). Which implies wk(X, t) ≤ 1+τk. On the other hand when

0 < xn ≤ σk we have uk(X, t)−xn ≥ −xn ≥ −σk which means wk ≥ −1. Finally, if xn ≥ σk

we have uk(X, t)−xn ≥ (xn−σk)−xn ⇒ wk ≥ −1. Thus, |wk| ≤ 1 in C1(0, 0)∩{xn > 0}.
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By definition, wk is a solution to the adjoint-heat equation in C1(0, 0) ∩ {xn > σk}. So

for any K ⊂⊂ {xn > 0} the {wk} are, for large enough k, a uniformly bounded sequence of

solutions to the adjoint-heat equation on K. As |wk| ≤ 1, standard estimates for parabolic

equations tell us that {wk} is uniformly bounded in C2+α,1+α/2(K). Therefore, perhaps

passing to a subsequence, wk → w in C2,1(K). Furthermore, w is also be a solution to the

adjoint heat equation in K and |w| ≤ 1. A diagonalization argument allows us to conclude

that w is adjoint caloric on all of {xn > 0}.

Compute that ∂nwk = (∂nuk − 1)/(σk) ≤ 0, which implies, ∂nw ≤ 0 on {xn > 0}.

As such, w(x, 0, t) := limd→0+ w(x, d, t) exists. We will now show that this limit is equal

to −f(x, t). If true, then regularity theory for adjoint-caloric functions implies that w is

continuous is C1−δ ∩ {xn > 0}.

First we show that the limit is less than −f(x, t). Let ε > 0 and pick 0 < α ≤ 1/2 small

enough so that |w(x, α, t)−w(x, 0, t)| < ε. For k large enough we have α/σk > f(x, t) + 1 >

f−k (x, t), therefore,

w(x, 0, t) ≤ w(x, α, t) + ε = wk(x, σk
α

σk
, t) + ε+ ok(1)

=

(
wk(x, σk

α

σk
, t)− wk(x, σkf

−
k (x, t), t)

)
+ wk(x, σkf

−
k (x, t), t) + ε+ ok(1)

∂nwk≤0
≤ wk(x, σkf

−
k (x, t), t) + ok(1) + ε.

(B.1.15)

By definition, wk(x, σkf
−
k (x, t), t) = −f−k (x, t) → −f(x, t) uniformly in C1−δ(0, 0). In

light of equation (B.1.15), this observation implies w(x, 0, t) ≤ −f(x, t) + ε. Since ε > 0 is

arbitrary, we have w(x, 0, t) ≤ −f(x, t).

To show w(x, 0, t) ≥ −f(x, t) we first define, for S > 0, k ∈ N,

σ̃k =
1

S
sup

(Y,s)∈C2Sσk
(x,σkf

−
k (x,t−S2σ2

k),t−S2σ2
k)

(f−k (x, t− S2σ2
k)− f−k (y, s)).
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Observe that if k is large enough (depending on S, δ), then (x, t − S2σ2
k) ∈ C1−δ(0, 0). By

construction, ∀(Y, s) ∈ C2Sσk(x, σkf
−
k (x, t− S2σ2

k), t− S2σ2
k),

yn − σkf−k (x, t− S2σ2
k) ≤ −Sσkσ̃k ⇒ yn ≤ σkf

−
k (y, s)⇒ uk(Y, s) = 0.

In other words, uk ∈ PF (σ̃k, 1) in CSσk(x, σkf
−
k (x, t − S2σ2

k), t). Note, by Lemma B.1.8,

σ̃k → 0.

Apply Lemma B.1.7, to conclude that

uk ∈ PF (Cσ̃k, Cσ̃k) in CSσk/2(x, σkf
−
k (x, t− S2σ2

k) + αk, t) where |αk| ≤ CSσkσ̃k.

(B.1.16)

Define Dk ≡ f−k (x, t − S2σ2
k) + αk/σk + S/2. Pick S > 0 large such that Dk ≥ 1

and then, for large enough k, we have Dk − αk/σk − f−k (x, t − S2σ2
k) − CSσ̃k > 0 and

(x, σkDk, t) ∈ CSσk/2(x, σkf
−
k (x, t−S2σ2

k)+αk, t). As such, the flatness condition, (B.1.16),

gives

uk(x, σkDk, t) ≥
(
σkDk − σkf−k (x, t− S2σ2

k)− αk − CSσ̃kσk/2
)+

=
Sσk

2
(1− Cσ̃k) .

(B.1.17)

Plugging this into the definition of wk,

wk(x, σkDk, t) ≥
S

2
(1− Cσ̃k)−Dk

=
S

2
(1− Cσ̃k)− (f−k (x, t− S2σ2

k) + αk/σk + S/2)

=− f−k (x, t− S2σ2
k) + ok(1) = −f(x, t) + ok(1).

(B.1.18)

We would like to replace the left hand side of equation (B.1.18) with wk(x, α, t) where α

does not depend on k. We accomplish this by means of barriers; for ε > 0 define zε to be
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the unique solution to

∂tzε + ∆zε = 0, in C1−δ(0, 0) ∩ {xn > 0}

zε = gε, on ∂p(C1−δ(0, 0) ∩ {xn > 0}) ∩ {xn = 0}

zε = −2, on ∂p(C1−δ(0, 0) ∩ {xn > 0}) ∩ {xn > 0},

(B.1.19)

where gε ∈ C∞(C1−δ(0, 0)) and −f(x, t) − 2ε < gε(x, t) < −f(x, t) − ε. By standard

parabolic theory for any ε > 0 there exists an α > 0 (which depends on ε > 0) such that

|xn| < α implies |zε(x, xn, t) − zε(x, 0, t)| < ε/2. Pick k large enough so that σk < α.

We know wk solves the adjoint heat equation on {xn ≥ σk} and, by equations (B.1.19)

and (B.1.18), wk ≥ zε on ∂p(C1−δ(0, 0) ∩ {xn > σk}). Therefore, wk ≥ zε on all of

C1−δ(0, 0) ∩ {xn > σk}.

Consequently,

wk(x, α, t) ≥ zε(x, α, t) ≥ zε(x, 0, t)− ε/2 ≥ −f(x, t)− 3ε.

As k →∞ we know wk(x, α, t)→ w(x, α, t) ≤ w(x, 0, t). This gives the desired result.

The next step is to prove that the normal derivative of w on {xn = 0} is zero. This will

allow us to extend w smoothly over {xn = 0} and obtain regularity for f .

Lemma B.1.10. Suppose the assumptions of Lemma B.1.8 are satisfied and that k is the

subsequence identified in that lemma. Further suppose that w is the limit function identified

in Lemma B.1.9. Then ∂nw = 0, in the sense of distributions, on {xn = 0} ∩ C1/2(0, 0).

Proof. Rescale so ρk ≡ 1 and define g(x, t) = 5 − 8(|x|2 + |t|). For (x, 0, t) ∈ C1/2(0, 0) we

observe f(x, 0, t) ≤ 1 ≤ g(x, 0, t). We shall work in the following set

Z := {(x, xn, t) | |x|, |t| ≤ 1, xn ∈ R}.

For any φ(x, t), define Z+(φ) to be the set of points in Z above the graph {(X, t) | xn =
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φ(x, t)}, Z−(φ) as set of points below the graph and Z0(φ) as the graph itself. Finally, let

Σk := {uk > 0} ∩ Z0(σkg).

Recall, for any Borel set A, we define the “surface measure”, µ(A) =
´∞
−∞H

n−1(A∩{s =

t})dt. If k is sufficiently large, and potentially adding a small constant to g, µ(Z0(σkg) ∩

∂{uk > 0} ∩ C1/2(0, 0)) = 0.

There are three claims, which together prove the desired result.

Claim 1:

µ(∂{uk > 0} ∩ Z−(σkg)) ≤
ˆ

Σk

∂nuk − 1dxdt+ µ(Σk) + Cσ2
k

Proof of Claim 1: For any positive φ ∈ C∞0 (C1(0, 0)) we have

ˆ
∂{uk>0}

φdµ ≤
ˆ
∂{uk>0}

φdµ =

ˆ
{uk>0}

uk(∆φ− ∂tφ)dXdt

=−
ˆ
{uk>0}

∇uk · ∇φ+ uk∂tφ

(B.1.20)

(we can use integration by parts because, for almost every t, {uk > 0} ∩ {s = t} is a set

of finite perimeter). Let φ → χZ−(σkg)χC1
(as functions of bounded variation) and, since

|t| > 3/4 or |x|2 > 3/4 implies u(x, σkg(x, t), t) = 0, equation (3.6.25) becomes

µ(∂{uk > 0} ∩ Z−(σkg)) ≤ −
ˆ

Σk

∇uk · ν + σkuk sgn(t)√
1 + σ2

k(|∇xg(x, t)|2 + 1)
dµ, (B.1.21)

where ν(x, t) = (σk∇g(x, t),−1) points outward spatially in the normal direction.

We address the term with sgn(t) first; the gradient bound on uk tells us that |uk| ≤ Cσk

on Σk, so ∣∣∣∣∣∣σk
ˆ

Σk

uk sgn(t)√
1 + σ2

k(|∇xg(x, t)|2 + 1)
dµ

∣∣∣∣∣∣ ≤ Cσ2
k. (B.1.22)

To bound the other term, note that dµ√
1+σ2

k(|∇xg(x,t)|2+1)
= dxdt where the latter inte-

gration takes place over Ek = {(x, t) | (x, σkg(x, t), t) ∈ Σk} ⊂ {xn = 0}. Then integrate by
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parts in x to obtain

ˆ
Ek

(σk∇g(x, t),−1) · ∇uk(x, σkg(x, t), t)dxdt =

ˆ
∂Ek

σkuk(x, σkg(x, t), t)∂ηgdHn−2dt

−
ˆ
Ek

σkuk(x, σkg(x, t), t)∆g(x, t) + σ2
k∂nuk(x, σkg(x, t), t)|∇g|2dxdt

−
ˆ
Ek

∂nuk(x, σkg(x, t), t)− 1dxdt+ Ln(Ek),

(B.1.23)

where η is the outward space normal on ∂Ek. Since uk(x, σkg(x, t), t) = 0 for (x, t) ∈ ∂Ek

the first term zeroes out.

The careful reader may object that Ek may not be a set of finite perimeter and thus

our use of integration by parts is not justified. However, for any t0, we may use the coarea

formula with the L1 function χ{u(x,σkg(x,t0),t0)>0} and the smooth function σkg(−, t0) to

get

∞ >

ˆ
σk|∇g(x, t0)|χ{u(x,σkg(x,t0),t0)>0}dx

=

ˆ ∞
−∞

ˆ
{(x,t0)|σkg(x,t0)=r}

χ{u(x,r,t0)>0}dH
n−2(x)dr.

Thus {(x, t0) | σkg(x, t0) > r} ∩ {(x, t) | u(x, σkg(x, t0), t0) > 0} is a set of finite perimeter

for almost every r. Equivalently, {(x, t0) | σk(g(x, t0) + ε) > 0} ∩ {(x, t) | u(x, σk(g(x, t0) +

ε), t0) > 0} is a set of finite perimeter for almost every ε ∈ R. Hence, there exists a ε > 0

aribtrarily small such that if we replace g by g + ε then Ek ∩ {t = t0} will be a set of finite

perimeter for almost every t0. Since we can perturb g slightly without changing the above

arguments, we may safely assume that Ek is a set of finite perimeter for almost every time

slice.

Observe that ∆g is bounded above by a constant, |uk| ≤ Cσk on Σk, |∂nuk| ≤ 1 and

finally µ(Σk) ≥ Ln(Ek). Hence,

µ(∂{uk > 0} ∩ Z−(σkg)) ≤
ˆ
Ek

∂nuk − 1dxdt+ µ(Σk) + Cσ2
k.
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Integrating over Ek is the same as integrating over Σk modulo a factor of
√

1 + |σk∇xg|2

(which is comparable to 1 + σ2
k). As |∂nuk − 1| is bounded we may rewrite the above as

µ(∂{uk > 0} ∩ Z−(σkg)) ≤
ˆ

Σk

∂nuk − 1dµ+ µ(Σk) + Cσ2
k,

which is the desired inequality.

Before moving on to Claim 2, observe that arguing as in equations (B.1.22) and (B.1.23),

ˆ
Σk

(σk∇xg(x, t), 0, σksgn(t))√
1 + ‖(σk∇xg(x, t), 0, σksgn(t))‖2

· (∇xwk, 0, wk)dµ
k→∞→ 0, (B.1.24)

which will be useful to us later.

Claim 2:

µ(Σk)− C2σ
2
k ≤ µ(∂{uk > 0} ∩ Z−(σkg)).

Proof of Claim 2: Let νk(x, t) the inward pointing measure theoretic space normal to

∂{uk > 0}∩ {s = t} at the point x. For almost every t it is true that νk exists Hn−1 almost

everywhere. Defining νσkg(X, t) = 1√
1+256σ2

k|x|2
(−σk16x, 1, 0), we have

µ(∂{uk > 0} ∩ Z−(σkg)) =

ˆ
∂{uk>0}∩Z−(σkg)

νk · νkdµ ≥
ˆ
∂∗{uk>0}∩Z−(σkg)

νk · νkdµ ≥

ˆ
∂∗{uk>0}∩Z−(σkg)

νk · νσkgdµ
div thm

= −
ˆ
Z−(σkg)∩{uk>0}

div νσkgdXdt+

ˆ
Σk

1dµ.

We compute |div νσkg| =

∣∣∣∣∣∣ −16σk(n−1)√
1+256σ2

k|x|2
+

3σ3
k(16∗256)|x|2√
1+256σ2

k|x|2
3

∣∣∣∣∣∣ ≤ Cσk. Since the “width” of

Z−(σkg) ∩ {uk > 0} is of order σk, the claim follows.

Claim 3: ˆ
Σk

|∂nwk|
k→∞→ 0.

Proof of Claim 3: We first notice that ∂nuk ≤ 1 and, therefore, ∂nwk ≤ 0. To show the
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limit above is at least zero we compute

ˆ
Σk

∂nwkdµ =

ˆ
Σk

∂nuk − 1

σk
dµ

Claim1
≥ µ(∂{uk > 0} ∩ Z−(σkg))

σk
− µ(Σk)

σk
− Cσk

Claim2
≥ µ(Σk)

σk
− µ(Σk)

σk
− Cσk → 0.

(B.1.25)

We can now combine these claims to reach the desired conclusion. We say that ∂nw = 0,

in the sense of distributions on {xn = 0}, if, for any ζ ∈ C∞0 (C1/2(0, 0)),

ˆ
{xn=0}

∂nwζ = 0.

By claim 3

0 = lim
k→∞

ˆ
Σk

ζ∂nwk. (B.1.26)

On the other hand equation (B.1.24) (and ζ bounded) implies

lim
k→∞

ˆ
Σk

ζ∂nwk = lim
k→∞

ˆ
Σk

ζνΣk · (∇wk, wk), (B.1.27)

where νΣK is the unit normal to Σk (thought of as a Lispchitz graph in (x, t)) pointing

upwards. Together, equations (B.1.26), (B.1.27) and the divergence theorem in the domain

Z+(σkg) ∩ C1/2(0, 0) have as a consequence

0 = lim
k→∞

ˆ
Z+(σkg)

divX,t(ζ(∇Xwk, wk))dXdt

= lim
k→∞

ˆ
Z+(σk)

∇Xζ · ∇Xwk + (∂tζ)wk + ζ(∆Xwk + ∂twk)dXdt

∆w+∂tw=0
=

ˆ
{xn>0}

∇Xw · ∇Xζ + (∂tζ)wkdXdt

integration by parts
=

ˆ
{xn=0}

wnζdxdt−
ˆ
{xn>0}

ζ(∆Xw + ∂tw).
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As w is a solution to the adjoint heat equation this implies that
´
{xn=0} ∂nwζ = 0 which is

the desired result.

From here it is easy to conclude regularity of f .

Corollary B.1.11. Suppose the assumptions of Lemma B.1.8 are satisfied and that k is

the subsequence identified in that lemma. Then f ∈ C∞(C1/2(0, 0)) and in particular the

C2+α,1+α norm of f in C1/4 is bounded by an absolute constant.

Proof. Extend w by reflection across {xn = 0}. By Lemma B.1.10 this new w satisfies the

adjoint heat equation in all of C1/2(0, 0) (recall a continuous weak solution to the adjoint

heat equation in the cylinder is actually a classical solution to the adjoint heat equation).

Since ‖w‖L∞(C3/4(0,0)) ≤ 2, standard regularity theory yields the desired results about

−f = w|xn=0.

We can use this regularity to prove Lemma B.1.5.

Proof of Lemma B.1.5. Without loss of generality let (Q, τ) = (0, 0) and we will assume that

the conclusions of the lemma do not hold. Choose a θ ∈ (0, 1) and, by assumption, there

exists ρk and σk ↓ 0 such that u ∈ CF (σk, σk) in Cρk(0, 0) in the direction νk (which after a

harmless rotation we can set to be en) but so that u is not in C̃F (θσk, θσk) in Cc(n)θρk
(0, 0)

in any direction ν with |νk − ν| ≤ Cσk and for any constant c(n). Let uk =
u(ρkX,ρ

2
kt)

ρk
. It is

clear that uk is adjoint caloric, that its zero set is a parabolic regular domain, that |∇uk| ≤ 1

and hk ≥ 1.

By Lemma B.1.8 we know that there exists a continuous function f such that ∂{uk >

0} → {(X, t) | xn = f(x, t)} in the Hausdorff distance sense. Corollary B.1.11 implies that

there is a universal constant, call it K, such that

f(x, t) ≤ f(0, 0) +∇xf(0, 0) · x+K(|t|+ |x|2) (B.1.28)
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for (x, t) ∈ C1/4(0, 0). Since (0, 0) ∈ ∂{uk > 0} for all k, f(0, 0) = 0. If θ ∈ (0, 1), then

there exists a k large enough (depending on θ and the dimension) such that

f+
k (x, t) ≤ ∇xf(0, 0) · x+ θ2/4K, ∀(x, t) ∈ Cθ/(4K)(0, 0),

where f+
k is as in Lemma B.1.8. Let

νk :=
(−σk∇xf(0, 0), 1)√
1 + |σk∇xf(0, 0)|2

and compute

x · νk ≥ θ2σk/4K ⇒ xn ≥ σkx
′ · ∇xf(0, 0) + θ2σk/4K ≥ f+

k (x, t). (B.1.29)

Therefore, if (X, t) ∈ Cθ/(4K)(0, 0) and x · νk ≥ θ2σk/4K, then uk(X, t) > 0. Arguing

similarly for f−k we can see that uk ∈ C̃F (θσk, θσk) in Cθ/4K(0, 0) in the direction νk. It is

easy to see that |νk − en| ≤ Cσk and so we have the desired contradiction.

B.2 Non-tangential limit of F (Q, τ): proof of Lemma 3.3.6

If ∂Ω is smooth and F (Q, τ) is the non-tangential limit of ∇u(Q, τ), then F (Q, τ) =

h(Q, τ)n̂(Q, τ). In this section we prove this is true when ∂Ω is a parabolic chord arc

domain; this is Lemma 3.3.6. Easy modifications of our arguments will give the finite pole

result, Lemma 3.3.10. Before we begin, we establish two geometric facts about parabolic

regular domains which will be useful. The first is on the existence of “tangent planes” almost

everywhere.

Lemma B.2.1. Let Ω be a parabolic regular domain. For σ-a.e. (Q, τ) ∈ ∂Ω there exists a

n-plane P ≡ P (Q, τ) such that P contains a line parallel to the t axis and such that for any
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ε > 0 there exists a rε > 0 where

0 < r < rε ⇒ |〈n̂(Q, τ), Z −Q〉| < rε, ∀(Z, t) ∈ ∂Ω ∩ Cr(Q, τ).

Proof. For (Q, τ) ∈ ∂Ω, r > 0 define

γ∞(Q, τ, r) = inf
P

sup
(Z,η)∈Cr(Q,τ)∩∂Ω

d((Z, η), P )

r

where the infinum is taken over all n-planes through (Q, τ) with a line parallel to the t-axis.

Let P (Q, τ, r) be a plane which achieves the minimum. For (Q, τ) ∈ ∂Ω, r > 0 we have

γ∞(Q, τ, r)n+3 ≤ 16n+3γ(Q, τ, 2r)

(see (HLN03), equation (2.2)).

Parabolic uniform rectifiability demands that
γ(Q,τ,2r)

2r be integrable at zero for σ-a.e.

(Q, τ). Thus it is clear that γ∞(Q, τ, r)
r↓0→ 0 for σ-a.e. (Q, τ). Let rj ↓ 0 and Pj :=

P (Q, τ, rj), which approximate ∂Ω near (Q, τ) increasingly well. Passing to a subsequence,

compactness implies Pj → P∞(Q, τ). Our lemma is proven if P∞(Q, τ) does not depend on

the sequence (or subsequence) chosen.

If K is any compact set then for L1-a.e. t, ∂Ω ∩ K ∩ {s = t} is a set of locally finite

perimeter. The theory of sets of locally finite perimeter (see e.g. (EG92)) says that for

Hn−1-a.e. point on this time slice there exists a unique measure theoretic space-normal.

Therefore, for σ-a.e. (Q, τ) ∈ ∂Ω there is a measure theoretic space normal n̂ := n̂((Q, τ))

(this vector is normal to the time slice as opposed to the whole surface). Let (Q, τ) be

a point both with a measure theoretic normal and such that γ∞(Q, τ, r) → 0. We claim

P∞(Q, τ) = n̂(Q, τ)⊥, and thus is independent of the sequence rj ↓ 0.

Restricting the equality, limj sup(Z,η)∈∆rj
(Q,τ)

d((Z,η),P (Q,τ,rj))
rj

= 0, to the time-slice,

{η ≡ τ}, we get limj sup(Z,τ)∈∆rj
(Q,τ)

d((Z,τ),P (Q,τ,rj))
rj

= 0. Since a point-wise tangent
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plane must also be a measure theoretic tangent plane, Pj → n̂⊥.

A consequence of the above lemma is a characterization of the infinitesimal behavior of

σ.

Corollary B.2.2. Let Ω be a parabolic chord regular domain. For σ-a.e. (Q, τ) ∈ ∂Ω and

any ε > 0, we can choose an R ≡ R(ε,Q, τ) > 0 such that for r < R,

∣∣∣∣σ(∆r(Q, τ))

rn+1
− 1

∣∣∣∣ < ε.

Proof. Let Ωr,(Q,τ) = {(P, η) | (Q + rP, r2η + τ) ∈ Ω}. Lemma B.2.1 tells us that, for any

compact set K containing 0, after a rotation which depends on (Q, τ), we have K∩Ωr,(Q,τ) →

K ∩ {(X, t) | xn > 0} in the Hausdorff distance sense. In particular χΩr,(Q,τ)
=: χr →

χ{xn>0} in L1
loc. This convergence immediately gives, using the divergence theorem (on

each time slice), that n̂rσr := n̂rσ|∂Ωr,(Q,τ)
converges weakly to enσ|{xn>0} (here n̂r is the

measure theoretic space normal to ∂Ωr,(Q,τ)).

n̂(Q, τ) ∈ L1
loc(dσ), therefore, σ-a.e. (Q, τ) ∈ ∂Ω is a Lebesgue point for n̂(Q, τ). Assume

that (Q, τ) is a Lesbesgue point and that the tangent plane at (Q, τ) is {xn = 0}. Then,

lim
r↓0

 
∆r(Q,τ)

n̂dσ = en ⇔ lim
r↓0

 
C1(0,0)∩∂Ωr,(Q,τ)

n̂rdσr = en.

Weak convergence implies (recall that σ(C1(0, 0) ∩ {xn = 0}) = 1)

lim inf
r↓0

1

σr(C1(0, 0) ∩ ∂Ωr,(Q,τ))
≤ 1 ≤ lim sup

r↓0

1

σr(C1(0, 0) ∩ ∂Ωr,(Q,τ))
.

As C1(0, 0) is a set of continuity for σ|{xn=0} we can conclude that limr↓0 σr(C1(0, 0) ∩

∂Ωr,(Q,τ)) = σ(C1(0, 0)∩ {xn = 0}) = 1. Recall σr(C1(0, 0)∩ ∂Ωr,(Q,τ)) = 1
rn+1σ(∆r(Q, τ))

(see (EG92), Chapter 5.7, pp. 202-204 for more details) and the result follows.

Our proof of Lemma 3.3.6 is in two steps; first, we show that F (Q, τ) points in the
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direction of the measure theoretic space normal n̂(Q, τ). Here we follow very closely the

proof of Lemma 3.2 in (KT06).

Lemma B.2.3. For σ-a.e. (Q, τ) ∈ ∂Ω we have F (Q, τ) = 〈F (Q, τ), ~n(Q, τ)〉~n(Q, τ).

Proof. Let (Q, τ) ∈ ∂Ω be a point of density for F and M1(h), be such that there is a tangent

plane at (Q, τ) (in the sense of Lemma B.2.1), satisfy F (Q, τ),M1(h)(Q, τ) <∞ and be such

that ∇u converges non-tangentially to F at (Q, τ).

In order to discuss the above conditions in a quantative fashion we introduce, for ε, η > 0:

δε(r) :=
1

rn+1
σ({(P, ζ) ∈ C2r(Q, τ) ∩ ∂Ω | |F (P, ζ)− F (Q, τ)| > ε})

δ′(r) :=
1

rn+1
σ({(P, ζ) ∈ C2r(Q, τ) ∩ ∂Ω |M1(h)(P, ζ) ≥ 2M1(h)(Q, τ)})

δ′′η (r) :=
1

rn+1
σ((P, ζ) ∈ C2r(Q, τ) ∩ ∂Ω\E(η)).

(B.2.1)

To define E(η), first, for any ε > 0 and λ > 0, let

H(λ, ε) := {(P, ζ) ∈ ∂Ω | |F (P, ζ)−∇u(X, t)| < ε, ∀(X, t) ∈ Γλ10(P, ζ)}.

By Corollary 3.3.5, for each ε > 0 and σ-a.e. (P, ζ) ∈ ∂Ω there is some λ such that

(P, ζ) ∈ H(λ, ε). Arguing as in the proof of Egoroff’s theorem (see, e.g., Theorem 3, Chapter

1.2 in (EG92)), for any η > 0 we can find a λ(ε, η) such that σ(∂Ω\H(λ(ε, η), ε)) < η. Let

εn = 2−n and ηn = 2−n−1η to obtain λn := λ(εn, ηn) as above. Then define E(η) =⋂
n≥0H(λn, εn). Note, that σ(∂Ω\

⋃
η>0E(η)) = 0, as such, for σ-a.e. (Q, τ) ∈ ∂Ω there is

some η > 0 such that (Q, τ) is a density point for E(η). At those points (for the relevant η)

we have δ′′η (r)→ 0.

(Q, τ) is a point of density for M1(h), F , hence δ′(r), δε(r) → 0 for any ε > 0. Addi-

tionally, ∂Ω has a tangent plane at (Q, τ), so there exists an n-plane V (containing a line
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parallel to the t-axis), a function `(r) and R, η > 0 such that

lim
r↓0

`(r)

r
=0

sup
(P,ζ)∈C2r(Q,τ)∩∂Ω

d((P, ζ), V ∩ C2r(Q, τ)) ≤`(r)

σ(C`(r)(P, ζ)) ≥ 2[δε(r) + δ′(r) + δ′′η (r)]rn+1, ∀(P, ζ) ∈ ∂Ω ∩ C2r(Q, τ).

(B.2.2)

For ease of notation, assume that (Q, τ) = (0, 0) and V (the tangent plane at (Q, τ)) is

{xn = 0}. Let D(r) := {(x, xn, τ) | |x| < r, xn = 1
2C0`(r)} where C0 is a large constant

satisfying the following constraint:

If (Y, 0) ∈ D(r) and (P, ζ) ∈ C2r(0, 0) are such that ‖(y, 0, 0)− (p, 0, ζ)‖ ≤ 2`(r) then

D(r) ∩ C`(r)(Y, 0) ⊂ Γ
C0`(r)
10 (P, ζ).

We make the following claim, whose proof, for the sake of continuity, will be delayed until

later.

Claim 1: Under the assumptions above, if r > 0 is small enough, (Y, 0) ∈ D(r), we have:

|u(Y, 0)| ≤ CM1(h)(0, 0)`(r) (B.2.3)

Given two points (Y1, 0), (Y2, 0) ∈ D(r), we want to estimate 〈F (0, 0), Y2 − Y1〉 in terms

of u(Y2, 0) − u(Y1, 0). Define R(Y1, Y2) = u(Y2, 0) − u(Y1, 0) − 〈F (0, 0), Y2 − Y1〉 . Equa-

tions (B.2.2) and (B.2.3) imply that, for r > 0 small, we have |u(Y1, 0)|, |u(Y2, 0)| <

CM1(h)(0, 0)`(r) < Cεr. Therefore, in order to show that 〈F (0, 0), Y2 − Y1〉 is small, it

suffices to show that R(Y1, Y2) is small.

Write u(Y2, 0)− u(Y1, 0) =
´ 1

0 〈∇u(Y1 + θ(Y2 − Y1), 0), Y2 − Y1〉 dθ which implies

|R(Y1, Y2)| ≤ |Y2 − Y1|
ˆ 1

0
|∇u(Y1 + θ(Y2 − Y1), 0)− F (0, 0)|dθ. (B.2.4)
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If we define I(r) = 1
r

ffl
D(r)

ffl
D(r) |R(Y1, Y2)|dY1dY2, then Fubini’s theorem and equation

(B.2.4) yields

I(r) ≤ Cn

 
D(r)
|∇u(X, 0)− F (0, 0)|dX (B.2.5)

(for more details see (KT03), Appendix A.2). We now arrive at our second claim:

Claim 2: For (Y, 0) ∈ D(r) we have |∇u(Y, 0)− F (0, 0)| < 2ε.

Claim 2 immediately implies that I(r) < Cε, which, as |u| ≤ Cεr on D(r), gives

 
D(r)

 
D(r)
| 〈F (0, 0), Y2 − Y1〉 |dY1dY2 ≤ rI(r) + 2Cεr < Cεr. (B.2.6)

Pick any direction e ⊥ en such that e ∈ Rn (i.e. has no time component) and let M :=

| 〈F (0, 0), e〉 |. Now consider the cone of directions Γ̃ in Sn−2 (i.e. perpendicular to both

the time direction and en) such that | 〈F (0, 0), ẽ〉 | ≥ M/2 for ẽ ∈ Γ̃. A simple calculation

reveals that Hn−2(Γ̃)/Hn−2(Sn−2) = cn a constant depending only on dimension. Thus

(B.2.6) implies

Cεr >

 
D(r)

 
D(r)
| 〈F (0, 0), Y2 − Y1〉 |dY1dY2 ≥

c(n)

rn−1

 
D(r)∩{(Y,t)||y|<r/2}

ˆ r/2

0

ˆ
θ∈Γ̃
〈F (0, 0), ρθ〉 ρn−2dSn−2dρ ≥ C̃Mr

which of course implies that M ≤ Cε. In other words
〈
F (0, 0), x′

〉
≤ Cε|x′| for any x′ ∈

Rn−1, which is the desired result.

Proof of Claim 1. For (Y, 0) ∈ D(r), we want to show that |u(Y, 0)| ≤ CM1(h)(0, 0)`(r). As

∂Ω is well approximated by {xn = 0} in C2r(0, 0), there must be a (P, 0) ∈ ∂Ω∩C3r/2(0, 0)

such that p = y, and, hence, |pn| < `(r). Let C(Y ) := C`(r)(P, 0). Note that equation (B.2.2)

implies σ(C(Y )) ≥ 2δ′(r)rn+1. Given the definition of δ′(r) we can conclude the existence of

(P̃ , ζ̃) ∈ C(Y ) ∩ ∂Ω such that M1(h)(P̃ , ζ̃) < 2M1(h)(0, 0). Furthermore (P̃ , ζ̃) ∈ C2r(0, 0)

and ‖(p̃, 0, ζ̃)− (y, 0, 0)‖ < 2`(r).

By the condition on C0 and the aperture of the cone we can conclude that (Y, 0) ∈

200



Γ
C0`(r)
10 (P̃ , ζ̃). Then, arguing as in Lemma 3.3.2 (i.e. using Lemma 3.2.2, the backwards

Harnack inequality for the Green’s function, ‖(Y, 0) − (P̃ , ζ̃)‖ ∼ C0`(r), Lemma B.3.4 and

that ω is doubling) we can conclude

u((Y, 0)) ≤ Cu(A−
C`(r)

(P̃ , ζ̃)) ≤

C

`(r)n
ω(CC`(r)(P̃ , ζ̃)) ≤ C`(r)

 
Cc`(r)(P̃ ,ζ̃)

h(Z, t)dσ(Z, t) ≤ C`(r)M1(h)(P̃ , ζ̃).

As M1(h)(P̃ , ζ̃) ≤ 2M1(h)(0, 0) we are done.

Proof of Claim 2. We want to show that for (Y, 0) ∈ D(r) we have |∇u(Y, 0)−F (0, 0)| < 2ε.

Arguing exactly like in Claim 1 produces a (P, 0) ∈ ∂Ω and then C(Y ). This time we use

equation (B.2.2) to give the bound σ(C(Y )) ≥ 2(δ′′(r) + δε(r))r
n+1. We can then conclude

that there exists a (P̃ , ζ̃) ∈ C(Y )∩∂Ω such that (P̃ , ζ̃) ∈ E(η,R) and |F (P̃ , ζ̃)−F (0, 0)| < ε.

Recall that (P̃ , ζ̃) ∈ E(η) ⇒ (P̃ , ζ̃) ∈ H(λn, 2
−n) for all n. So pick n large enough

that 2−n < ε and then r small enough so that C0`(r) < λn. Thus |∇u(Y, 0) − F (0, 0)| <

|∇u(Y, 0)− F (P̃ , ζ̃)|+ |F (P̃ , ζ̃)− F (0, 0)| < 2ε.

We now want to show that |F (Q, τ)| = h(Q, τ) dσ-almost everywhere. Here, again, we

follow closely the approach of Kenig and Toro ((KT06), Lemma 3.4) who prove the analogous

elliptic result. One difference here is that the time and space directions scale differently. To

deal with this difficulty, we introduce a technical lemma.

Lemma B.2.4. Let 1 < p <∞ and g ∈ Lploc(dσ). Then

1

σ(∆((Q, τ), r, s))

ˆ
∆((Q,τ),r,s)∩∂Ω

gdσ
s,r↓0→ g(Q, τ)

for σ-a.e. (Q, τ) ∈ ∂Ω. (Here, and from now on, C((Q, τ), r, s) = {(X, t) | |X − Q| ≤

r, |t− τ | < s1/2} and ∆((Q, τ), r, s) = C((Q, τ), r, s) ∩ ∂Ω.)
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Proof. Follows from the work of Zygmund, (Zyg34), and the fact that (∂Ω, σ) is a space of

homogenous type.

Proof of Lemma 3.3.6. We will prove the theorem for all (Q, τ) ∈ ∂Ω for which Proposition

B.2.3 holds, such that there is a tangent plane to ∂Ω at (Q, τ) and such that

lim
r↓0

σ(∆r(Q, τ))

rn+1
= 1

lim
r,s↓0

 
C((Q,τ),r,s)∩∂Ω

hdσ = h(Q, τ)

lim
r↓0

 
Cr(Q,τ)∩∂Ω

Fdσ = F (Q, τ)

lim
r↓0

 
Cr(Q,τ)∩∂Ω

M1(h)dσ = M1(h)(Q, τ)

lim
(X,t)→(Q,τ)

(X,t)∈Γ(Q,τ)

∇u(X, t) = F (Q, τ)

M1(h)((Q, τ)), F (Q, τ), h(Q, τ) <∞.

(B.2.7)

That this is σ-a.e. point follows from Proposition B.2.3, Lemmas B.2.1, B.2.2, B.2.4 and

3.3.5, and F, h,M1(h) ∈ L2
loc(dσ).

∂Ω ∩ {s = t} is a set of locally finite perimeter for almost every t, hence, for any

φ ∈ C∞c (Rn+1),

ˆ
∂Ω

φhdσ =

ˆ
Ω
u(∆φ− φt)dXdt = −

ˆ
Ω
∇φ · ∇u+ uφtdXdt. (B.2.8)

Let ρ1, ρ2 > 0 and set φ(X, t) = ζ(|X −Q|/ρ1)ξ(|t− τ |/ρ2
2). We calculate that ∇φ(X, t) =

ξ(|t−τ |/ρ2
2)ζ ′(|X−Q|/ρ1) X−Q

|X−Q|ρ1
and also that d

dρ1
ζ(|X−Q|/ρ1) = − |X−Q|

ρ2
1

ζ ′(|X−Q|/ρ1).

Together this implies

−∇φ(X, t) = ξ(|t− τ |/ρ2
2)ρ1

X −Q
|X −Q|2

d

dρ1
ζ(|X −Q|/ρ1). (B.2.9)

Similarly ∂tφ(X, t) = ζ(|X−Q|/ρ1)ξ′(|t−τ |/ρ2
2)

sgn(t−τ)

ρ2
2

and d
dρ2

ξ(|t−τ |/ρ2
2) = −2|t−τ |

ρ3
2
ξ′(|t−
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τ |/ρ2
2), therefore,

−∂tφ(X, t) = ζ(|X −Q|/ρ1)
ρ2

2(t− τ)

d

dρ2
ξ(|t− τ |/ρ2

2). (B.2.10)

Plugging equations (B.2.9), (B.2.10) into equation (B.2.8) and letting ξ, ζ approximate

χ[0,1] we obtain

ˆ
∂Ω∩C((Q,τ),ρ1,ρ2)

hdσ = ρ1
d

dρ1

ˆ
Ω∩C((Q,τ),ρ1,ρ2)

〈
∇u(X, t),

X −Q
|X −Q|2

〉
dXdt+

ρ2
d

dρ2

ˆ
Ω∩C((Q,τ),ρ1,ρ2)

u(X, t)

2(t− τ)
dXdt.

Differentiating under the integral and then integrating ρ1, ρ2 from 0 to ρ > 0 yields

ˆ ρ

0

ˆ ρ

0

ˆ
∂Ω∩C((Q,τ),ρ1,ρ2)

hdσdρ1dρ2︸ ︷︷ ︸
(I)

=

ˆ ρ

0

ˆ
Ω∩C((Q,τ),ρ,ρ2)

〈
∇u, X −Q
|X −Q|

〉
dXdtdρ2︸ ︷︷ ︸

(II)

+

ˆ ρ

0

ˆ
Ω∩C((Q,τ),ρ1,ρ)

udXdtdρ1︸ ︷︷ ︸
(III)

.

(B.2.11)

For any ε > 0 we will prove that there is a δ > 0 such that if ρ < δ we have

|(III)| < ερn+3

|(I)− 1

3n
h(Q, τ)ρn+3| < ερn+3

|(II)− 〈F (Q, τ), n̂(Q, τ)〉 1

3n
ρn+3| < ερn+3,

which implies the desired result. Note that throughout the proof the constants may seem a

little odd due to our initial normalization of Hausdorff measure.

Analysis of (III): u is continuous in Ω, hence for any ε′ > 0 there is a δ = δ(ε′) >

0 such that if δ > ρ then (X, t) ∈ Cρ(Q, τ) ⇒ u(X, t) < ε′. It follows that, |(III)| ≤

Cε′
´ ρ

0 ρ
n
1ρ

2dρ1 = ερn+3, choosing ε′ small enough.
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Analysis of (I): (Q, τ) is a point of density for h, so for any ε′ > 0 there exists a δ > 0

such that if ρ < δ then

|(I)− h(Q, τ)

ˆ ρ

0

ˆ ρ

0
σ(∆((Q, τ), ρ1, ρ2))dρ1dρ2| < ε′

ˆ ρ

0

ˆ ρ

0
σ(∆((Q, τ), ρ1, ρ2))dρ1dρ2.

Switching the order of integration,
´ ρ

0

´ ρ
0 σ(∆((Q, τ), ρ1, ρ2))dρ1dρ2 =

´
∆ρ(Q,τ)(ρ − |X −

Q|)(ρ−
√
|t− τ |)dσ. Consider the change of coordinates X = ρY +Q and t = sρ2 + τ . As

∂Ω has a tangent plane, V , at (Q, τ) the set {(Y, s) | (X, t) ∈ Cρ(Q, τ) ∩ ∂Ω} converges (in

the Hausdorff distance sense) to C1(0, 0) ∩ V . Therefore,

1

ρn+3

ˆ
∆ρ(Q,τ)

(ρ− |X −Q|)(ρ−
√
|t− τ |)dσ ρ↓0→

ˆ
|y|<1,|s|<1

(1− |y|)(1−
√
s)dyds =

1

3n
.

Which, together with the above arguments, yields the desired inequality.

Analysis of (II): Writing ∇u(X, t) = (∇u(X, t)− F (Q, τ)) + F (Q, τ) we obtain

(II) =

ˆ ρ

0

ˆ
Ω∩C((Q,τ),ρ,ρ2)

〈
∇u(X, t)− F (Q, τ),

X −Q
|X −Q|

〉
dXdtdρ2︸ ︷︷ ︸

(E)

+|F (Q, τ)|
ˆ ρ

0

ˆ
Ω∩C((Q,τ),ρ,ρ2)

〈
n̂(Q, τ),

X −Q
|X −Q|

〉
dXdtdρ2.

In the second term above, divide the domain of integration into points within ε′ρ of the

tangent plane V at (Q, τ) and those distance more than ε′ρ away. By the Ahlfors regularity

of ∂Ω, the former integral will have size < Cε′ρn+3. The latter (without integrating in ρ2)

is ˆ
Ω∩C((Q,τ),ρ,ρ2)∩{(X,t)|〈X−Q,n̂(Q,τ)〉≥ε′ρ}

〈
n̂(Q, τ),

X −Q
|X −Q|

〉
dXdt.

Again we change variables so that X = ρY +Q and t = sρ2 + τ , and recall that, under this

change of variables, our domain Ω converges to a half space. Arguing as in our analysis of
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(I), a simple computation (see equation 3.72 in (KT06)) yields

∣∣∣∣∣
ˆ

Ω∩C((Q,τ),ρ,ρ2)∩{(x,t)|〈x−Q,n̂(Q,τ)〉≥ε′ρ}

〈
n̂(Q, τ),

x−Q
|x−Q|

〉
dxdt−

ρ2
2ρ
n

n

∣∣∣∣∣ < Cε′ρnρ2
2.

Integration in ρ2 gives

|(II)− |F (Q, τ)| 1

3n
ρn+3| < Cε′ρn+3 + |(E)|.

The desired result then follows if we can show |(E)| < ε′ρn+3. To accomplish this we argue

exactly as in proof of Lemma 3.4, (KT06) but include the arguments here for completeness.

We first make the simple estimate

|(E)| ≤ ρ

∣∣∣∣∣
ˆ

Ω∩Cρ(Q,τ)

〈
∇u(X, t)− F (Q, τ),

X −Q
|X −Q|

〉
dXdt

∣∣∣∣∣ .
If (X, t) ∈ Cρ(Q, τ)∪{(X, t) | 〈X −Q, n̂(Q, τ)〉 ≥ 4ε′ρ} then δ(X, t) > 2ε′ρ for small enough

ρ (because we have a tangent plane at (Q, τ)). On the other hand we have ε′‖(X, t) −

(Q, τ)‖ ≤ 2ε′ρ < δ(X, t) which implies that (X, t) is in some fixed non-tangential region of

(Q, τ).

By the definition of non-tangential convergence (which says we have convergence for all

cones of all apertures), for any η > 0 if we make ρ > 0 even smaller we have |∇u(X, t) −

F (Q, τ)| < η. Therefore,

(E) ≤ Cηρn+3 + ρ

ˆ
Cρ(Q,τ)∩Ω∩{(X,t)||〈X−Q,n̂(Q,τ)〉|≤4ε′ρ}

|∇u(X, t)|+ |F (Q, τ)|dXdt.

Standard parabolic regularity results imply that |∇u(X, t)| ≤ C
u(X,t)
δ(X,t)

. As the closest

point to (X, t) on ∂Ω is in C2ρ(Q, τ) we may apply Lemma 3.2.1 and then Lemma 3.2.2 to
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get |∇u(X, t)| ≤ C
u(A−8ρ(Q,τ))√

δ(X,t)ρ
. Continue arguing as in Lemma 3.3.2 to conclude

(X, t) ∈ Cρ(Q, τ) ∩ Ω ∩ { ρ

2i+1
< δ(X, t) ≤ ρ

2i
} ⇒ |∇u(X, t)| ≤ C2i/2M1(h)(Q, τ).

Let i0 ≥ 1 be such that 1
2i0+1 < 4ε′ < 1

2i0
and recall |F (Q, τ)| <∞ to obtain,

ρ

ˆ
Cρ(Q,τ)∩Ω∩{(X,t)||〈X−Q,n̂(Q,τ)〉|≤4ε′ρ}

|∇u(X, t)|+ |F (Q, τ)|dXdt

< Cε′ρn+3 + ρ
∞∑
i=i0

ˆ
Cρ(Q,τ)∩Ω∩{ ρ

2i+1<δ(X,t)≤
ρ

2i
}
|∇u(X, t)|dXdt

< Cε′ρn+3 + CρM1(h)(Q, τ)
∞∑
i=i0

2i/2|Cρ(Q, τ) ∩ Ω ∩ { ρ

2i+1
< δ(X, t) ≤ ρ

2i
}|.

A covering argument (using the Ahlfors regularity of ∂Ω) yields

|Cρ(Q, τ) ∩ Ω ∩ { ρ

2i+1
< δ(X, t) ≤ ρ

2i
}| ≤ C2i(n+1)

( ρ
2i

)n+2
≤ C

ρn+2

2i
.

As
∑∞
i=i0

2−i/2 < C
√
ε′ the desired result follows.

B.3 Caloric Measure at ∞

We recall the existence and uniquness of the Green function and caloric measure with pole

at infinity (done by Nyström (Nys06b) ). We also establish some estimates in the spirit of

Section 3.2.

Lemma B.3.1. [Lemma 14 in (Nys06b)] Let Ω ⊂ Rn+1 be an unbounded δ-Reifenberg flat

domain, with δ > 0 small enough (depending only on dimension), and (Q, τ) ∈ ∂Ω. There
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exists a unique function u such that,

u(X, t) > 0, (X, t) ∈ Ω

u(X, t) = 0, (X, t) ∈ Rn+1\Ω

∆u(X, t) + ut(X, t) = 0, (X, t) ∈ Ω

u(A−1 (Q, τ)) = 1.

(B.3.1)

Furthermore u satisfies a backwards Harnack inequality at any scale with constant c depending

only on dimension and δ > 0 (see Lemma 3.2.6).

Proof. Without loss of generality let (Q, τ) = (0, 0) and for ease of notation write A ≡

A−1 (0, 0). Any u which satisfies equation (B.3.1) also satisfies a backwards Harnack inequality

at any scale with constant c depending only on dimension and δ > 0 (see the proof of Lemma

3.11 in (HLN04)). The proof then follows as in (Nys06b), Lemma 14.

Corollary B.3.2. [Lemma 15 in (Nys06b)] Let Ω, u be as in Lemma B.3.1. There exists a

unique Radon measure ω, supported on ∂Ω satisfying

ˆ
∂Ω

ϕdω =

ˆ
Ω
u(∆ϕ− ∂tϕ), ∀ϕ ∈ C∞c (Rn+1). (B.3.2)

Proof. Uniqueness is immediate from equation (B.3.2); for any (Q, τ) ∈ ∂Ω and r > 0 let ϕ

approximate χCr(Q,τ)(X, t). Existence follows as in Lemma 15 in (Nys06b).

Lemma B.3.3. [Lemma 3.2.7 for the caloric measure at infinity] Let u,Ω, ω, be as in Corol-

lary B.3.2. There is a universal constant c > 0 such that for all (Q, τ) ∈ ∂Ω, r > 0 we have

ω(∆2r(Q, τ)) ≤ cω(∆r(Q, τ)).

Proof. Follows as in Lemma 15 in (Nys06b).
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Corollary B.3.4. [Lemma 3.2.4 for caloric measure and Green’s function at infinity] Let

u,Ω, ω be as in Corollary B.3.2. There is a universal constant c > 0 such that for all

(Q, τ) ∈ ∂Ω, r > 0 we have

c−1rnu(A+
r (Q, τ)) ≤ ω(∆r/2(Q, τ)) ≤ crnu(A−r (Q, τ)) (B.3.3)

Proof. The inequality on the right hand side follows from (B.3.2); let χCr/2(Q,τ)(X, t) ≤

ϕ(X, t) ≤ χCr(Q,τ)(X, t) and |∆ϕ|, |∂tϕ| < C/r2. Inequality then follows from Lemma 3.2.2.

The left hand side is more involved: as in the proof of Lemmas B.3.1 and B.3.2 we can

write u as the uniform limit of ujs (multiples of Green’s functions with finite poles) and ω as

the weak limit of ωjs (multiplies of caloric measures with finite poles) which satisfy Lemma

3.2.4 at (Q, τ) for larger and larger scales. Taking limits gives that

c−1rnu(A+
r (Q, τ)) ≤ ω(∆r/2(Q, τ)).

That ω is doubling implies the desired result.

Proposition B.3.5. [see Theorem 1 in (HLN04)] Let Ω be a parabolic regular domain with

Reifenberg constant δ > 0. There is some δ = δ(M, ‖ν‖+) > 0 such that if δ < δ then

ω ∈ A∞(dσ). That is to say, there exists a p > 1 and a constant c = c(n, p) > 0 such that

ω satisfies a reverse Harnack inequality with exponent p and constant c at any (Q, τ) ∈ ∂Ω

and at any scale r > 0.

Proof Sketch. The proof follows exactly as in (HLN04), with Lemma B.3.3, Corollary B.3.4

and the fact that the Green function at infinity satisfies the strong Harnack inequality

substituting for the corresponding facts for the Green function with a finite pole.
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B.4 Boundary behaviour of caloric functions in parabolic

Reifenberg flat domains

In this appendix we prove some basic facts about the boundary behviour of caloric func-

tions in parabolic Reifenberg flat domains, culminating in an analogue of Fatou’s theorem

(Lemma B.4.1) and a representation formula for adjoint caloric functions with integrable

non-tangential maximal functions (Proposition B.4.4). Often the theorems and proofs mir-

ror those in the elliptic setting; in these cases we follow closely the presentation of Jerison

and Kenig ((JK82)) and Hunt and Wheeden ((HW68) and (HW70)).

In the elliptic setting, the standard arguments rely heavily on the fact that harmonic

measure (on, e.g. NTA domains) is doubling. Unfortunately, we do not know if caloric

measure is doubling for parabolic NTA domains. However, in Reifenberg flat domains,

Lemma 3.2.7 tells us that caloric measure is doubling in a certain sense. Using this, and

other estimates in Section 3.2, we can follow Hunt and Wheeden’s argument to show that

the Martin boundary of a Reifenberg flat domain is equal to its topological boundary. The

theory of Martin Boundaries (see Martin’s original paper (Mar41) or Part 1 Chapter 19 in

Doob (Doo84)) then allows us to conclude the following representation formula for bounded

caloric functions.

Lemma B.4.1. Let Ω be a parabolic δ-Reifenberg flat domain with δ > 0 small enough.

Then for any (X0, t0) ∈ Ω the adjoint-Martin boundary of Ω relative to (X0, t0) is all of

∂Ω ∩ {t > t0}. Furthermore, for any bounded solution to the adjoint-heat equation, u, and

any s > t0 there exists a g(P, η) ∈ L∞(∂Ω) such that

u(Y, s) =

ˆ
∂Ω

g(P, η)K(X0,t0)(P, η, Y, s)dω̂(X0,t0)(P, η). (B.4.1)

Here K(X0,t0)(P, η, Y, s) ≡ dω̂(Y,s)

dω̂(X0,t0) (P, η) which exists for all s > t0 and ω(X0,t0)-a.e.

(P, η) ∈ ∂Ω by the Harnack inequality.
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Finally, if u(Y, s) =
´
∂Ω g(P, η)K(X0,t0)(P, η, Y, s)dω̂(X0,t0)(P, η), then u has a non-

tangential limit, g(Q, τ), for dω̂(X0,t0)-almost every (Q, τ) ∈ ∂Ω.

Proof. Recall that the Martin boundary ∂MΩ of Ω with respect to (X0, t0) is the largest

subset of ∂Ω such that the Martin kernel V (X0,t0)(X, t, Y, s) :=
G(X,t,Y,s)
G(X,t,X0,t0)

has a continuous

extension V (X0,t0) ∈ C(∂MΩ ∩ {(X, t) ∈ Ω | t > t0} × {(Y, s) ∈ Ω | s > t0}). Martin’s

representation theorem (see the theorem on page 371 of (Doo84)) states that for any bounded

solution to the adjoint-heat equation, u, there exists a measure, µu, such that u(Y, s) =
´
∂MΩ V

(X0,t0)(Q, τ, Y, s)dµu(Q, τ) where ∂MΩ is the Martin boundary of Ω.

That V (X0,t0)(Q, τ, Y, s) exists for all τ, s > t0 (and is, in fact, Hölder continuous in

(Q, τ) for τ > s) follows from Lemmas 3.2.8 and 3.2.9. When s > τ it is clear that

V (X0,t0)(Q, τ, Y, s) = 0. So indeed the Martin boundary is equal to the whole boundary

(after time t0).

We will now prove, for a bounded solution u to the adjoint-heat equation, µu << ω̂(X0,t0)

on any compact K ⊂⊂ {t > t0}. To prove this, first assume that u is positive (if not, add a

constant to u to make it positive). Let (Q, τ) ∈ ∂Ω be such that τ > t0. Then there exists

an A ≥ 100 and an r0 > 0 such that for all r < r0 we have (X0, t0) ∈ T−A,r(Q, τ). Applying

Lemmas 3.2.4 and 3.2.6 and observing that lim(X,t)→(Q′,τ ′)∈∆r/4(Q,τ) ω
(X,t)(∆r/2(Q, τ)) = 1

we can conclude that there is some constant γ > 0 such that

ω̂(X0,t0)(∆r(Q, τ))V (X0,t0)(Q′, τ ′, A−r (Q, τ)) ≥ γ,

for all (Q′, τ ′) ∈ ∆r/4(Q, τ).
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It follows that,

µu(∆r/4(Q, τ))

ω̂(X0,t0)(∆r/4(Q, τ))
≤C

µu(∆r/4(Q, τ))

ω̂(X0,t0)(∆r(Q, τ))

≤Cγ−1
ˆ

∆r/4(Q,τ)
V (X0,t0)(Q′, τ ′, A−r (Q, τ))dµu(Q′, τ ′)

≤Cγ−1u(A−r (Q, τ)) ≤ Cγ−1‖u‖L∞ .

(B.4.2)

Therefore, there is a gu(P, η) = dµu
dω̂(X0,t0) such that (by Martin’s representation theorem)

u(Y, s) =

ˆ
∂Ω

gu(P, η)V (X0,t0)(P, η, Y, s)dω̂(X0,t0)(P, η). (B.4.3)

Assume that V (X0,t0)(Q, τ, Y, s) = K(X0,t0)(Q, τ, Y, s). Then equation (B.4.3) is equation

(B.4.1). The existence of a non-tangential limit follows from a standard argument (see e.g.

(HW68)) which requires three estimates. First, that ω(X0,t0) is doubling, which we know

is true after some scale for any point (Q, τ) with τ > t0. Second we need, for (Q0, t0) ∈

∂Ω, r > 0,

lim
(X,t)→(Q0,t0)

sup
(Q,τ)/∈∆r(Q0,t0)

K(X0,t0)(Q, τ,X, t) = 0.

This follows from Harnack chain estimates and Lemma 3.2.1 (see the proof of Lemma 4.15

in (JK82) for more details). Finally, for some α > 0, which depends on the flatness of Ω, we

want

K(X0,t0)(P, η, A−4R(Q, τ)) ≤ C2−αj

ω(X0,t0)(∆2−jR(Q, τ))
,

for all (P, η) ∈ ∆R2−j (Q, τ)\∆R2−j−1(Q, τ) and for values of R small. This follows from

Lemmas 3.2.1 and Lemmas 3.2.4 (see (JK82), Lemma 4.14 for more details).

So it suffices to show that V (X0,t0)(Q, τ, Y, s) = K(X0,t0)(Q, τ, Y, s). Fix r > 0, (Q, τ) ∈

∂Ω and consider the adjoint-caloric function U(Y, s) = ω̂(Y,s)(∆r(Q, τ)). By the Martin
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representation theorem and equation (B.4.2) there is a function g ≡ gQ,τ,r such that

U(Y, s) =

ˆ
V (X0,t0)(P, η, Y, s)g(P, η)dω̂(X0,t0). (B.4.4)

We are going to show that g(P, η) = χ∆r(Q,τ). If true then, by the definition of caloric

measure, we conclude

ˆ
∆r(Q,τ)

V (X0,t0)(P, η, Y, s)dω̂(X0,t0)(P, η) = ω̂(Y,s)(∆r(Q, τ))

=

ˆ
∆r(Q,τ)

K(X0,t0)(P, η, Y, s)dω̂(X0,t0)(P, η),

for all surface balls. It would follow that V = K.

For a closed E ⊂ ∂Ω, following the notation of (Mar41) Section 3, let UE be the unique

adjoint-caloric function in ∂Ω given as the limit inferior of super adjoint-caloric functions

which agree with U on open sets, O, containing E and which are adjoint-caloric on Ω\O with

zero boundary values on ∂Ω\O. In a δ-Reifenberg flat domain (where the Martin boundary

agrees with and has the same topology as the topological boundary) and if E = ∆ρ(P, η),

for some (P, η) ∈ ∂Ω and ρ > 0, it is easy to compute that UE(Y, s) = ω̂(Y,s)(E). By the

uniqueness of distributions (Theorem III on page 160 in (Mar41)) it must be the case that

UE(Y, s) =

ˆ
E
V (X0,t0)(P, η, Y, s)g(P, η)dω̂(X0,t0),

where g is as in equation (B.4.4). If (Y, s) = (X0, t0) and E = ∆ρ(P0, η0) ⊂ ∆r(Q, τ) then

the above equation becomes

ω̂(X0,t0)(∆ρ(P0, η0)) = ω̂(X0,t0)(∆ρ(P0, η0)) =

ˆ
∆ρ(P0,η0)

g(P, η)dω̂(X0,t0).

Letting (P0, η0) and ρ > 0 vary it is clear that g(P, η) = χ∆r(Q,τ) and we are done.

Our approach differs most substantially from the elliptic theory in the construction of
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sawtooth domains. In particular, Jones’ argument using “pipes” ((Jon82), see also Lemma

6.3 in (JK82)) does not obviously extend to the parabolic setting. The crucial difference is

that parabolic Harnack chains move forward through time, whereas elliptic Harnack chains

are directionless. The best result in the parabolic context is the work of Brown (Bro89), who

constructed sawtooth domains inside of Lip(1, 1/2)-graph domains. Our argument below,

which is in the same spirit as Brown’s, works for δ-Reifenberg flat domains. Before the proof

we make the following observation.

Remark B.4.2. Let Ω be a δ-Reifenberg flat domain and let (X, t) ∈ Ω. If (P, η) ∈ ∂Ω such

that

‖(P, η)− (X, t)‖ = δΩ(X, t) := inf
(Q,τ)∈∂Ω

‖(Q, τ)− (X, t)‖

then η = t. That is, every “closest” point to (X, t) has time coordinate t.

Justification. By Reifenberg flatness, for any (P, η) ∈ ∂Ω the point (P, t) is within distance

δ|t− η|1/2 of ∂Ω. Then δΩ(X, t) ≤ |P −X|+ δ|t− η|1/2 < ‖(P, η)− (X, t)‖.

We are now ready to construct sawtooth domains. Recall, for α > 0 and F ⊂ ∂Ω closed,

we define Sα(F ) = {(X, t) ∈ ∂Ω | ∃(Q, τ) ∈ F, s.t. (X, t) ∈ Γα(Q, τ)}.

Lemma B.4.3. Let Ω be a (δ10)-Reifenberg flat parabolic NTA domain and F ⊂ ∂Ω∩Cs(0, 0)

be a closed set. There is a universal constant c ∈ (0, 1) such that if c > δ > 0 then Sα(F )

is a parabolic δ-Reifenberg flat domain for almost every α ≥ α0(δ) > 0. Furthermore, if

(X, t) ∈ Sα(F ) then, on F , ω̂
(X,t)
Sα(F )

<< ω̂(X,t) << ω̂
(X,t)
Sα(F )

. Here ω̂
(X,t)
Sα(F )

is the adjoint-

caloric measure of Sα(F ) with a pole at (X, t).

Proof. To prove that Sα(F ) is δ-Reifenberg flat first consider (Q, τ) ∈ F ⊂ ∂Sα(F ) and

ρ > 0. Let V be an n-plane through (Q, τ) containing a vector in the time direction such

that D[∂Ω ∩ C2ρ(Q, τ), V ∩ C4ρ(Q, τ)] ≤ 2δ10ρ. If (X, t) ∈ ∂Sα(F ) ∩ Cρ(Q, τ) then (for

α ≥ 1) (P, t) ∈ C2ρ(Q, τ) ∩ ∂Ω where (P, t) ∈ ∂Ω satisfies δΩ(X, t) = dist((P, t), (X, t)). We
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can compute that

dist((X, t), V ) ≤ δΩ(X, t) + dist((P, t), V ) ≤ ρ

1 + α
+ 4ρδ10 ≤ ρδ/11

for δ < 1/2 and 1 + α ≥ 20/δ.

One might object that the above is a one sided estimate, and that Reifenberg flatness

requires a two sided estimate. However, Saard’s theorem tells us that, for almost every α,

Sα(F ) is a closed set such that Rn+1\Sα(F ) is disjoint union of two open sets. Since this

argument rules out the presence of “holes” in Sα(F ), our one sided estimates are enough to

conclude Reifenberg flatness. Hence, D[Cρ(Q, τ)∩∂Sα(F ), Cρ(Q, τ)∩V ] ≤ ρδ/11 for almost

every α ≥ 20
δ − 1.

We need to also show that ∂Sα(F ) is flat at points not in F . Let (Q, τ) ∈ ∂Sα(F )\F

and R := δΩ(Q, τ). Our proof of has four cases, depending on the scale, ρ, for which we are

trying to show ∂Sα(F ) is flat.

Case 1: ρ ≥ (1+α)R
10 . Observe that Cρ(Q, τ) ⊂ C11ρ(P, η) for some (P, η) ∈ F . The

computation above then implies that D[Cρ(Q, τ)∩∂Sα(F ), Cρ(Q, τ)∩{L+(Q, τ)−(P, η)}] ≤

ρδ where L ≡ L(P, η, 11ρ), is the plane through (P, η) which best approximates C11ρ(P, η)∩

∂Ω.

Case 2: 5
δR ≤ ρ <

(1+α)R
10 . We should note that this case may be vacuous for certain

values of α (i.e, if 1 + α < 50
δ ). Without loss of generality let (Q, τ) = (Q, 0) and let

(0, 0) ∈ ∂Ω be a point in ∂Ω closest to (Q, 0) (which is at time zero by Remark B.4.2). If

L(0, 0, 4ρ) is the plane which best approximates ∂Ω at (0, 0) for scale 4ρ, we will prove that

D[Cρ(Q, 0) ∩ ∂Sα(F ), Cρ(Q, 0) ∩ {L(0, 0, 4ρ) +Q}] ≤ δρ.

We may assume L(0, 0, 4ρ) = {xn = 0}. Note that δF (−) is a 1-Lipschitz function. Thus,

if (Z1, t1), (Z2, t2) ∈ Cρ((Q, 0))∩∂Sα(F ) then |δΩ(Z1, t1)−δΩ(Z2, t2)| < 2ρ
1+α <

R
5 . We may

conclude that δΩ(Y, s) < 2R for all (Y, s) ∈ Cρ(Q, 0) ∩ Sα(F ) and, therefore, if (P, s) ∈ ∂Ω
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is a point in ∂Ω closest to (Y, s) then (P, s) ∈ C2ρ(0, 0). By Reifenberg flatness,

||yn| − 4ρδ10| ≤ ||yn| − |pn|| ≤ δΩ(Y, s) ≤ 2R ≤ 2ρδ

5
⇒ |yn| ≤

3ρδ

5
.

On the other hand qn ≤ |Q| = R ≤ δρ
5 . Therefore, |yn − qn| ≤ |yn| + |qn| ≤ 3ρδ

5 + ρδ
5 ≤ ρδ,

the desired result.

Case 3: δ2R ≤ ρ < 5
δR. Let (X, t) be the point in ∂Sα(F )∩Cρ(Q, τ) which is furthest from

∂Ω and set δΩ(X, t) = R̃. We may assume that (X, t) = (0, R̃, 0) and (0, 0) is a point in ∂Ω

which minimizes the distance to (X, t). We will show that D[Cρ(Q, τ)∩ ∂Sα(F ), Cρ(Q, τ)∩

{xn = R̃}] < ρδ/2, which of course implies that D[Cρ(Q, τ) ∩ ∂Sα(F ), Cρ(Q, τ) ∩ {xn =

qn}] < δρ.

First we prove that L(0, 0, 4ρ), the plane which best approximates ∂Ω at (0, 0) for scale

4ρ, is close to {xn = 0}. If θ is the minor angle between the two planes then the law of

cosines (and the fact that δΩ((0, R̃, 0)) = R̃) produces

(R̃− 4ρδ10)2 ≤ L2 + R̃2 − 2LR̃ sin(θ)⇒ 2LR̃ sin(θ) ≤ L2 + 8ρR̃δ10

for any L ≤ 2ρ. If L ≡ δ4R̃ then

2δ4R̃2 sin(θ) ≤ δ8R̃2 + 8ρR̃δ10 δρ<5R̃⇒ 2δ4R̃2 sin(θ) ≤ 3δ8R̃2

2
.

For small enough δ, we conclude θ < δ4.

Therefore, for any (Y, s) ∈ Cρ(Q, τ) ∩ Sα(F ) the distance between (Y, s) and L(0, 0, 4ρ)

is ≤ yn + 2δ4ρ. On the other hand, Ω is (δ10)-Reifenberg flat so that means δΩ(Y, s) ≤ yn +

2δ4ρ+4δ10ρ ≤ yn+3δ4ρ. Recall, from above, that δF (−) is a 1-Lipschitz function. Therefore,

if (Z1, t1), (Z2, t2) ∈ Cρ((Q, τ)) ∩ ∂Sα(F ) then |δΩ(Z1, t1) − δΩ(Z2, t2)| < 2ρ
1+α < δρ

10 if we

pick 1 + α ≥ 20/δ. An immediate consequence of this observation is that R̃ < 2R (and thus
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δ4R̃ ≤ 2ρ above). This also implies that δΩ(Y, s) ≥ R̃− δρ
10 . Therefore,

R̃− δρ

10
≤ yn + 3δ4ρ⇒ R̃− δρ

2
≤ yn,

which is one half of the desired result.

On the other hand, it might be that there is a (Y, s) ∈ Cρ(Q, τ)∩∂Sα(F ) such that yn >

R̃+ ρδ/2. Arguing similarly to above we can see that L(0, 0, 4R̃+ 4ρ) satisfies D[C1(0, 0) ∩

L(0, 0, 4R̃+4ρ), C1(0, 0)∩{xn = 0}] < 2δ4. But if (P, s) is the point on ∂Ω closest to (Y, s) it

must be the case that (P, s) ∈ ∂Ω∩C
2R̃+2ρ

(0, 0). Therefore, pn < 4δ4(R̃+ρ)+4δ10(R̃+ρ) <

5δ4(R̃ + ρ) < 6δ2ρ. Of course this implies that ‖(Y, s)− (P, s)‖ ≥ R̃ + ρδ/2− 6δ2ρ > R̃ for

δ small enough. This is a contradiction as no point in Cρ(Q, τ) ∩ ∂Sα(F ) can be a distance

greater than R̃ from ∂Ω.

Case 4: ρ ≤ δ2R. Again let (X, t) be the point in ∂Sα(F )∩Cρ(Q, τ) which is furthest from

∂Ω. Let δΩ(X, t) = R̃ and without loss of generality, (X, t) = (0, R̃, 0) and (0, 0) is the point

in Ω closest to (X, t). We will show that D[Cρ(Q, τ)∩∂Sα(F ), Cρ(Q, τ)∩{xn = R̃}] < ρδ/2,

which of course implies that D[Cρ(Q, τ) ∩ ∂Sα(F ), Cρ(Q, τ) ∩ {{xn = 0}+ qn}] < δρ.

Assume, in order to obtain a contradiction, that there is a (Y, s) ∈ Cρ(Q, τ) ∩ ∂Sα(F )

such that yn < R̃ − ρδ/2 (we will do the case when yn ≥ R̃ + ρδ/2 shortly). Examine the

triangle made by (Y, s), (0, R̃, 0) and the origin. The condition on yn implies that the cosine

of the angle between the segments (0, R̃, 0)(Y, s) and (0, R̃, 0)(0, 0) times the length of the

segment between (Y, s) and (0, R̃, 0) must be at least ρδ/2. Consequently, by the law of

cosines

|Y |2 ≤ 4ρ2 + R̃2 − R̃ρδ. (B.4.5)

When 1 + α ≥ 30/δ and δ < 1/10 it is easy to see that

(R̃− 2δ10ρ− 2ρ

1 + α
)2 ≥ (R̃− δρ

10
)2 ≥ R̃2 − δρR̃

5

≥ R̃2 − δρR̃

5
(5− 20δ) = R̃2 + 4δ2ρR̃− δρR̃

(B.4.6)
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.

Equations (B.4.6) and (B.4.5) give |Y | < (R̃− 2δ10ρ− 2ρ
1+α). Hence, Reifenberg flatness

implies δΩ(Y, s) ≤ ‖(Y, s)− (0, s)‖+δΩ(0, s) ≤ (R̃−2δ10ρ− 2ρ
1+α)+2δ10ρ ≤ R̃− 2ρ

1+α , which,

as we saw in Case 2, is a contradiction.

Finally, it might be that there is a (Y, s) ∈ Cρ(Q, τ) ∩ ∂Sα(F ) such that yn > R̃+ ρδ/2.

Let (P, s) be the point in ∂Ω closest to (Y, s) and note that (Y, s) ∈ C
3R̃

(0, 0). Let L(0, 0, 5R̃)

be the plane that best approximates ∂Ω at (0, 0) for scale 5R̃. If θ is the angle between this

plane and {xn = 0} then δΩ((0, R̃, 0)) = R̃ implies that

R̃ ≤ R̃ sin(π/2− θ) + 5δ10R̃⇒ (1− 5δ10) < cos(θ)⇒ θ < δ4.

Therefore, pn < 3R̃δ4 +5R̃δ10 < 4R̃δ4. Thus, if β is the angle between the segment from

Y to P and the segment from (0, R̃) to Y it must be that β < π
2 − δ/4 + 10δ4. The law of

cosines (on the triangle with vertices (0, R̃, 0), (P, 0), (Y, 0)) gives

|(0, R̃)− P |2 ≤ 4ρ2 + R̃2 − 4ρR̃ sin(δ/4− 10δ4) < 4ρ2 + R̃2 + 40ρR̃δ4 − δρR̃/2. (B.4.7)

Note that

8ρ+ 80R̃δ2 + 8R̃δ10 ≤ δR̃ (B.4.8)

because ρ ≤ δ2R̃ by assumption and we can let δ < 1/100. With this in mind we can

estimate

4ρ2 + R̃2 + 40ρR̃δ4 − δρR̃/2 < (R̃− 2δ10ρ)2 + (4δ10ρR̃ + 40ρR̃δ4 + 4ρ2 − δρR̃/2)

eq. (B.4.8)
≤ (R̃− 2δ10ρ)2 + (ρ/2)(δR̃)− δρR̃/2 = (R̃− 2δ10ρ)2.

(B.4.9)

Combine equation (B.4.9) with equation (B.4.7) to conclude that |(0, R̃) − P | ≤ (R̃ −

2δ10ρ). On the other hand, by Reifenberg flatness, (P, 0) is distance < 2δ10ρ from a point

on ∂Ω. Hence, by the triangle inequality, δΩ((0, R̃, 0)) < R̃ a contradiction.
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Finally, we need to show the mutual absolute continuity of the two adjoint-caloric mea-

sures. In this we follow very closely the proof of Lemma 6.3 in (JK82). The maximum

principle implies that ω̂
(X0,t0)
Sα(F )

<< ω̂(X0,t0), for any (X0, t0) ∈ Sα(F ). Now take any

E ⊂ F such that ω̂
(X0,t0)
Sα(F )

(E) = 0. First we claim that there is a constant 1 > C > 0

(depending on α, n,Ω) such that ω̂(Y,s)(∂Ω\F ) > C for all (Y, s) ∈ ∂Sα(F )\F . Indeed, let

(Q, s) ∈ ∂Ω be a point in ∂Ω closest to (Y, s). Then there is a constant C(α, n) > 0 such that

ω̂(Y,s)(Cαδ(Y,s)(Q, s)) ≥ C(α, n), (see equation 3.9 in (HLN04)). As Cαδ(Y,s)(Q, s) ∩ F = ∅

(by the triangle inequality) the claim follows.

Armed with our claim we recall that a lower function Φ(X, t), for a set E ⊂ ∂Ω, is a

subsolution to the adjoint heat equation in Ω such that lim sup(X,t)→(Q,τ)∈∂Ω Φ(X, t) ≤

χE(Q, τ). Potential theory tells us that ω̂(Y,s)(E) = supΦ Φ(Y, s) where the supremum is

taken over all lower functions for E in Ω. By our claim, Φ(X, t) ≤ ω̂(X,t)(E) ≤ 1 − C for

(X, t) ∈ ∂Sα(F )\F for any lower function, Φ, of E in Ω. In particular, Φ(X, t)− 1 + C is a

lower function for E inside of Sα(F ). Therefore,

sup
Φ

Φ(X, t)− 1 + C ≤ ω̂
(X,t)
Sα(F )

(E) = 0⇒ Φ(X, t) ≤ 1− C, ∀(X, t) ∈ Sα(F ).

This in turn implies that ω̂(Y,s)(E) ≤ 1−C for every (Y, s) ∈ Sα(F ). By Lemma B.4.1, the

non-tangential limit of ω̂(Y,s)(E) must be equal to 1 for dω̂(X0,t0)-almost every point in E.

Therefore, ω̂(X0,t0)(E) = 0 and we have shown mutual absolute continuity.

The representation theorem for solutions to the adjoint heat equation with integrable

non-tangential maximal function follows as in the elliptic case.

Lemma B.4.4. [Compare with Lemma A.3.2 in (KT03)] Let Ω, δ be as in Lemma B.4.3

above, and let u be a solution to the adjoint heat equation on Ω. Assume also that for some

α > 0 and all (X, t) ∈ Ω, Nα(u) ∈ L1(dω̂(X,t)). Then there is some g ∈ L1(dω̂(X,t)) such

that

u(X, t) =

ˆ
∂Ω

g(P, η)dω̂(X,t)(P, η).
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