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ABSTRACT

In this paper we consider two free boundary problems, which we solve using a combination
of techniques and tools from harmonic analysis, geometric measure theory and partial differ-
ential equations. The first problem is a two-phase problem for harmonic measure, initially
studied by Kenig and Toro (KT06). The central difficulty in that problem is the possibility of
degeneracy; losing geometric information at a point where both phases vanish. We establish
non-degeneracy by proving that the Almgren frequency formula, applied to an appropriately
constructed function, is “almost monotone”. In this way, we prove a sharp Hélder regularity
result (this work was originally published in (Engl4)).

The second problem is a one-phase problem for caloric measure, initially posed by Hof-
mann, Lewis and Nystrom (HLNO04). Here the major difficulty is to classify the “flat
blowups”. We do this by adapting work of Andersson and Weiss (AW09), who analyzed
a related problem arising in combustion. This classification allows us to generalize results
of (KT03) to the parabolic setting and answer in the affirmative a question left open in the

aforementioned paper of Hofmann et al. (this work was originally published in (Engl5)).
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CHAPTER 1
INTRODUCTION

This thesis is concerned with free boundary problems; a class of partial differential equations
in which an unknown function, u, satisfies a PDE on a domain, €2, which itself depends on
u. The classical example of a free boundary problem is the Stefan problem, which describes
an ice cube melting in water. Heat flows differently through water than it does through
ice, thus the temperature solves two different partial differential equations (one in the water
and one in the ice) on two disjoint domains which are evolving with time (as the ice melts).
The interface between the water and ice (i.e. the layer of ice which is melting at any given
second) is called the “free boundary” (as opposed to a “fixed boundary”).

A prototypical free boundary problem for harmonic or caloric measure is the following;
for an open, unbounded, 2 C R"™ and a Radon measure, w, consider the boundary value
problem,

Au(z) =0, z € Q,
u(z) >0, x € Q,

(1.0.1)
u(z) =0, z € 09,

/ uApdx :/ pdw, Yo € CG°(R™).
Q o0

The function, u, (uniquely determined up to a constant multiple for sufficiently regular
Q) is the Green function of Q with a pole at infinity and the Radon measure, w, is the
corresponding harmonic measure. (1.0.1) is overdetermined and does not have a solution
for every combination of 2 and w (as, in a generalized sense, both Neumann and Dirichlet
boundary values for u are prescribed). Therefore, a priori assumptions on w could impose

additional conditions on the “free boundary”, 0€2. Thus, it makes sense to ask the question:

If we know w is “regular” what can we say about 0§27 (1.0.2)



1.1 Introduction to Harmonic and Caloric Measure

Intuitively, it is helpful to think of harmonic measure from a probabilistic perspective; given
an open domain € C R", a point X € 2 and a subset £ C 0N, the harmonic measure of E
with a pole at X, written w™ (E), is the probability that a Brownian motion starting at X
will first exit 2 at a point inside of E.

While the above definition is useful, the following formulation is more suited to our
purpose; let 2 C R" be a bounded open domain which admits a solution to the Dirichlet

problem. That is, for every f € C'(0€2) there exists a uy € C2(Q) N C(Q) such that

Aug(X) =0,X € Q

oim ur(X) =f(Q).Q € 99

(the class of domains in which the Dirichlet problem can be solved with continuous data in
quite broad see e.g. (Ken94), Chapter 1, Section 2 for more details).

The maximum principle then tells us that for every X € 9€) the map f — u f(X ) is a
linear functional from C(9€2) — R with norm 1. By the Riesz representation theorem, there

is a probability measure, wX , such that

FQ)dw™ (Q) = up(X). (1.1.1)
o0

X is the harmonic measure of  with a pole at X.

This probability measure, w
Caloric measure is defined similarly: we say that the parabolic Dirichlet problem is

solvable in @  R™L if, for every f C(0p2), there exists a uy € C21(Q)NC(Q) such that

pup(X,t) — Aug(X, ) =0, (X, 1) € Q

y Xot) = Q.
QB(X7;)IE>(Q7T) uf( 1) =f(Q,7),(Q,7) € Ip

Here (and throughout), 9,2 represents the parabolic boundary of €2; the points in J€ which
2



can be approached by paths contained in {2 that are monotonically decreasing in time. In

(X.t)

analogy to the elliptic situation, the caloric measure is the probability measure, w , given

by the parabolic maximum principle and the Riesz representation theorem. That is to say,

up(X,1) = /8 1@ 5@,

Harmonic measure is an object of interest in several different branches of mathematics.
In complex analysis, the harmonic measure of a simply connected domain, €2, with a pole at
X is the pushfoward of the uniform distribution on S along a conformal map ¢ : D — Q
such that ¢(0) = X. Thus, the complex geometry of a domain is intimately linked with the
harmonic measures it supports (for a beautiful introduction to this area see (GMO05)). In
probability, hitting measure plays an important role in understanding the behavior of Brow-
nian motion and random walks, see, e.g. (Law96). Additionally, from (1.1.1), it is clear that
a better understanding of harmonic measures should give insight into the boundary behavior
of solutions to elliptic boundary value problems. For example, Dahlberg, (Dah79), showed
that the mutual absolute continuity of harmonic measure with surface measure implied the
solvability of the Dirichlet problem in Lipschitz domains for data in L2?. For other ellip-
tic operators, there has been important work by Fefferman, Kenig and Piper, (FKP91), and
Hofmann, Kenig, Mayboroda and Pipher (HKMP15) along with many others, connecting the
regularity of the L-harmonic measure to questions of solvability. For a more comprehensive
survey of results in this area, we defer to (Torl0).

While the parabolic theory is much less well developed, there has been work linking caloric
measure to the study of the boundary behavior of caloric functions (see, e.g. (FGS86)) and
the solvability of the Dirichlet problem for parabolic operators (see, e.g., (LM95), (Nys97)
and (HLO01)). We hope that a deeper understanding of caloric measure will help transfer

some of the above results for elliptic operators to the time dependent setting.



1.2 Content and Structure of the Thesis

This thesis is broken up into two additional chapters and an appendix (which contains
supplementary material relevant to both chapters). Each chapter has its own introduction
which addresses that chapter’s contents and the relevant literature in some detail. To avoid
redundancy, we will summarize the contents of each chapter as briefly as possible.

Chapter 2 studies a two-phase free boundary problem for harmonic measure: let QF be
two disjoint NTA domains, (roughly, NTA domains are quantitatively open and quantita-
tively path connected, see Definition 2.2.1 for more details) such that R" = Ot NQ~ and
that 0O = 0Q~. Further assume that the harmonic measure for Q7 with pole X+ € QT
call it w™, and the harmonic measure for Q= with pole X~ € Q7, call it w™, are mutually
absolutely continuous and that h = gﬁ—; is the Radon-Nikodym derivative. We ask, “what
does the regularity of & tell us about the regularity of Q7?7

Our main result says that, assuming some a priori flatness, if log(h) € C*®, then 9
is locally the graph of a C*T1¢ function. This result is sharp and examples show that the
flatness assumption is necessary. This extends work of Kenig and Toro (KT03), who studied
the same problem under the assumption that log(h) € VMO(dw™).

The possibility of degeneracy is the largest obstacle to proving regularity in the two-
phase setting. The condition, log(h) € C%% does not rule out the possibility that there is
a portion of the boundary, E C 99, such that w*(E) = 0 but %" 1(E) > 0. On such an
E, we would have no hope of recovering any geometric information. Thus, the bulk of our
effort goes towards proving that such an E cannot exist (in fact, we prove a quantitative
statement, that w®(E)/H""1(E) is bounded from below). We establish non-degeneracy by
showing a certain formula is “almost-monotone” (i.e. has derivative bounded from below by
a function which is integrable at zero). To prove “almost-monotonicity” we use estimates
from harmonic analysis and geometric measure theory.

Later, we prove higher regularity of the free boundary using Schauder-type estimates for

weak solutions of elliptic and coercive systems and the partial Hodograph transform. We
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hope that our exposition in that section will be of interest, as some of the results, while
familiar to experts, do not seem to appear explicitly in the literature.

Chapter 3 studies a one-phase problem for caloric measure. Namely, we prove that the
oscillation of the parabolic Poisson kernel controls the regularity of the free boundary. Let
Q) be a parabolic chord arc domain (a generalization of the appropriate class of parabolic
Lipschitz domains) and let w be the caloric measure for 2 associated to a point (X, t) € Q.
Our final result is that with a priori assumed flatness, if log(%) e Ckta(k+a)/2  thep
OQN{s < t} is locally the graph of a Ok +1+a,(k+14+a)/2 fypnction. This is sharp and examples
show that the flatness assumption is necessary in three or more spatial dimensions.

This result is the parabolic analogue of theorems by Kenig and Toro, (KT03), and Alt
and Caffarelli, (AC81). In many instances, we adapt their techniques to the time-dependent
setting with only technical adjustments. However, one major obstacle was the lack of a
classification of “global” solutions to the free boundary problem. Specifically, it was unknown
whether an unbounded parabolic chord arc domain, €2, with additional assumed flatness and
(é_(; = 1 must be a half plane. We show this is the case by adapting work of Andersson and
Weiss, (AW09), who considered solutions, in the sense of “domain variations”, to a related
free boundary problem.

The definition of a parabolic chord arc domain is more complicated than the correspond-
ing elliptic one (see Section 3.1), thus we also required novel arguments to prove free boundary
regularity given that all flat “global” solutions are planes. To overcome this difficulty, we
approximate {2 at every point and every scale by graph domains and use harmonic analysis
and geometric measure theory to bound the relevant quantities for €2 by their counterparts
in these graph domains (these techniques were adapted from (HLNO03)).

Finally, the reader may also be interested in the appendix to Chapter 3 which proves
parabolic counterparts of several potential-theoretic results for harmonic functions in rough
domains. While many of these proofs mirror those for harmonic functions, some require new

ideas, in particular, the construction of interior sawtooth domains (Lemma B.4.3).



CHAPTER 2
A TWO-PHASE FREE BOUNDARY PROBLEM FOR
HARMONIC MEASURE

2.1 Introduction

In this paper we consider the following two-phase free boundary problem for harmonic mea-
sure: let Q1 be an unbounded 2-sided non-tangentially accessible (NTA) domain (see Defini-
tion 2.2.1) such that log(h) is regular, e.g. log(h) € C%%(9Q). Here h := i"j—; and wt is the
harmonic measure associated to the domain QF (Q~ := int((Q21)¢)). We ask the question:
what can be said about the regularity of 0027

This question was first considered by Kenig and Toro (see (KT06)) when log(h) €
VMO(dw™). They concluded, under the initial assumption of d-Reifenberg flatness, that
() is a vanishing Reifenberg flat domain (see Definition 2.2.2). Later, the same problem,
without the initial flatness assumption, was investigated by Kenig, Preiss and Toro (see
(KPT09)) and Badger (see (Badll) and (Bad13)). Our work is a natural extension of theirs,
though the techniques involved are substantially different.

Our main theorem is:

Theorem 2.1.1. Let Q be a 2-sided NTA domain with log(h) € CH®(dQ) where k > 0 is

an integer and o € (0,1).
o When n = 2: 0 is locally given by the graph of a Cchtla function.

o When n > 3: there is some 6, > 0 such that if 6 < oy, and Q is 0-Reifenberg flat then

O is locally given by the graph of a C*T1 function.

0. The contents of this chapter are taken from a paper of the same title, to appear in the Annales
scientifiques de I’Ecole mormale supérieure. While writing that paper I was partially supported by the
Department of Defense’s National Defense Science and Engineering Graduate Fellowship as well as by the
National Science Foundation’s Graduate Research Fellowship, Grant No. (DGE-1144082). I'd also like to
thank an anonymous referee for their comments.



Similarly, if log(h) € C® or log(h) is analytic we can conclude (under the same flatness

assumptions above) that ) is locally given by the graph of a C®° (resp. analytic) function.

When n > 2, the initial flatness assumption is needed; if n > 4, Q = {X € R" | x%%—x% >
x%—l—a:?l} is a 2-sided NTA domain such that w™ = w™ on dQ (where the poles are at infinity).
As such, h = 1 but, at zero, this domain is not a graph. In R3, H. Lewy (see (LewT7T7)) proved
that, for k£ odd, there are homogeneous harmonic polynomials of degree k whose zero set
divides S? into two domains. The cones over these regions are NTA domains and one can
calculate that log(h) = 0. Again, at zero, 0Q2 cannot be written as a graph. However, these

two examples suggest an alternative to the a prior: flatness assumption.

Theorem 2.1.2. Let ) be a Lipschitz domain (that is, 02 can be locally written as the graph
of a Lipschitz function) and let h satisfy the conditions of Theorem 2.1.1. Then the same

conclusions hold.

The corresponding one-phase problem, “Does regularity of the Poisson kernel imply reg-
ularity of the free boundary?”, has been studied extensively. Alt and Caffarelli (see (AC81))
first showed, under suitable flatness assumptions, that log(z—g) e CY(99) implies 99 is
locally the graph of a C* function. Jerison (see (Jer90)) showed s = o above and, fur-
thermore, if log(z%) e C1(99) then 0Q is locally the graph of a C2% function (from here,
higher regularity follows from classical work of Kinderlehrer and Nirenberg, (KN77)). Later,
Kenig and Toro (see (KT03)) considered when log(g—(;’) € VMO(do) and concluded that 02
is a vanishing chord-arc domain (see Definition 1.8 in (KT03)).

Two-phase elliptic problems are also an object of great interest. The paper of Alt,
Caffarelli and Friedman (see (ACF84)) studied an “additive” version of our problem. Later,
Caffarelli (see (Caf87) for part one of three) studied viscosity solutions to an elliptic free
boundary problem similar to our own. This work was then extended to the non-homogenous
setting by De Silva, Ferrari and Salsa (see (DFS14)). It is important to note that, while our

problem is related to those studied above, we cannot immediately apply any of their results.
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In each of the aforementioned works there is an a priori assumption of non-degeneracy built
into the problem (either in the class of solutions considered or in the free boundary condition
itself). Our problem has no such a priori assumption. Unsurprisingly, the bulk of our efforts
goes into establishing non-degeneracy.

Even in the case of n = 2, where the powerful tools of complex analysis can be brought
to bear, our non-degeneracy results seem to be new. We briefly summarize some previous

work in this area: let QT be a simply connected domain bounded by a Jordan curve and

Q~ = QF°. Then 99 = G+ U ST U NT where
e W (NT)=0
o wi << Hl <<wtonGt

e Every point of GT is the vertex of a cone in Q7. Furthermore, if CT is the set of all

cone points for Q1 then H(CT\GT) =0 =wT(CT\GT).
e HY(ST)=0.

(B(Q.r)

_l’_
e Forw™ a.e Q € ST we have lim sup;. | = - M =0

= +o0 and liminf,. | =

with a similar decomposition for w™. These results are due to works by Makarov, McMillan,
Pommerenke and Choi. See Garnett and Marshall (GM05), Chapter 6 for an introductory
treatment and more precise references.

In our context, that is where w™ << w™ << w™, Qis a 2-sided NTA domain and log(h) €

0% (99), one can use the Beurling monotonicity formula (see Lemma 1 in (BCGJ89))

w*(B(z,r)

= < oo. Therefore, w®(ST U S™) = 0 and we can write

to show limsup;. |,
00 = I'U N where wi(N ) = 0 and I' is 1-rectifiable (i.e. the image of countably many
Lipschitz maps) and has o-finite H!'-measure. This decomposition is implied for n > 2 by
the results of Section 2.5. In order to prove increased regularity one must bound from below

(B(Q:r)

liminf, | @ - , which we do in Corollary 2.6.4 and seems to be an original contribution

to the literature.



The approach is as follows: after establishing some initial facts about blowups and the
Lipschitz continuity of the Green’s function (Sections 2.3 and 2.4) we tackle the issue of
degeneracy. Our main tools here are the monotonicity formulae of Almgren, Weiss and
Monneau which we introduce in Section 2.5. Unfortunately, in our circumstances these
functionals are not actually monotonic. However, and this is the key point, we show that
they are “almost monotonic” (see, e.g., Theorem 2.5.8). More precisely, we bound the first
derivative from below by a summable function. From here we quickly conclude pointwise
non-degeneracy. In Section 2.6, we use the quantitative estimates of the previous section to
prove uniform non-degeneracy and establish the C'! regularity of the free boundary.

At this point the regularity theory developed by De Silva et al. (see (DFS14)) and
Kinderlehrer et al. (see (KN77) and (KNS78)) can be used to produce the desired conclusion.
However, these results cannot be applied directly and some additional work is required to
adapt them to our situation. These arguments, while standard, do not seem to appear
explicitly in the literature. Therefore, we present them in detail here. Section 2.7 adapts the
iterative argument of De Silva, Ferrari and Salsa (DFS14) to get C'1* regularity for the free
boundary. In Section 2.8 we first describe how to establish optimal C1¢ regularity and then
C%® regularity (in analogy to the aforementioned work of Jerison (Jer90)). This is done
through an estimate in the spirit of Agmon et al. ((ADN59) and (ADN64)) which is proven

in the appendix. Higher regularity then follows easily.

2.2 Notation and Definitions

Throughout this article 2 C R"™ is an open set and our object of study. For simplicity,
QF == Qand Q~ := Q°. To avoid technicalities we will assume that QF are both unbounded
and let uT be the Green’s function of QF with a pole at oo (our methods and theorems apply
to finite poles and bounded domains). Let w® be the harmonic measure of QF associated to
u™;

it will always be assumed that w™ << w™ << w™. Define h = iwd—; to be the Radon-

Nikodym derivative and unless otherwise noted, it will be assumed that log(h) € C%®(99).
9



Finally, for a measurable f : R" — R, we write fT(z) := |f(x)|x{f>0} (x) and f~(x) :=
|f(@)Ix{f<01(®). In particular, f(z) = fT(z) — f~(z). Define u™ outside of QF to be
identically zero and set u(z) := ut(x) — u~ (x) (so that these two notational conventions
comport with each other).

Recall the definition of an non-tangentially accessible (NTA) domain.

Definition 2.2.1. [See (JK82) Section 3] A domain 2 C R" is non-tangentially acces-

sible, (NTA), if there are constants M > 1, Ry > 0 for which the following is true:

1. Q satisfies the corkscrew condition: for any Q@ € 02 and 0 < r < Ry there exists

A=A (Q) € Q such that M~ 1r < dist(A4,0Q) < |A— Q| <.
2. QF satisfies the corkscrew condition.

3. Q satisfies the Harnack chain condition: let € > 0,x1,z0 € QN B(Ry/4,Q) for a
Q € 90 with dist(z;,dQ) > € and |x1 — x9| < 2Fe. Then there exists a “Harnack
chain” of overlapping balls contained in €2 connecting x1 to x9. Furthermore we can

ensure that there are no more than Mk balls and that the diameter of each ball is

bounded from below by M~! min;—q o{dist(xz;, 982)}

When Q is unbounded we also require that R™\0Q has two connected components and
that Ry = oo.
We say that ) is 2-sided NTA if both Q2 and QOF are NTA domains. The constants

M, Rqy are referred to as the “NTA constants” of 2.

It should be noted that our analysis in this paper will be mostly local. As such we
need only that our domains be “locally NTA” (i.e. that M, R can be chosen uniformly on
compacta). However, for the sake of simplicity we will work only with NTA domains. We

now recall the definition of a Reifenberg flat domain.

10



Definition 2.2.2. For QQ € 092 and r > 0,

0Q.r) =, dnl | DI BQ.r). (P +Q} N BQ.1)

where D[A, B] is the Hausdorff distance between A, B.

For 6 > 0, R > 0 we then say that Q is (§, R)-Reifenberg flat if for all Q € 0Q,r < R
we have 6(Q,r) < 8. When Q2 is unbounded we say it is 6-Reifenberg flat if the above holds
forall 0 < r < co.

Additionally, if K CC R™ we can define

Ok(r)= sup 0(Q,r).
QeKNON

Then we say that €2 is vanishing Reifenberg flat if for all K CC R", limsup,. o 0 (r) = 0.

Remark 2.2.3. Recall that a d-Reifenberg flat NTA domain is not necessarily a Lipschitz do-
main, and a Lipschitz domain need not be 6-Reifenberg flat. However, all Lipschitz domains

are (locally) 2-sided NTA domains (see (JK82) for more details and discussion).
Finally, let us make two quick technical points regarding h.

- w (B(@r)) _ : :
Remark 2.2.4. For every Q € 09, we have hmrwm = h(Q) (in particular the
limit exists for every Q € 0%2).
Justification of Remark. By assumption, g":}—; agrees with a Holder continuous function h
. + : : w (B(@r) _
where defined (i.e. w™-almost everywhere). For any Q € 99 we rewrite lim,.|, B =
lim,. fB(Q r) Z“:—I(P)dw"F(P) = lim, | JEB(Q r) h(P)dw™(P). This final limit exists and is

equal to h(Q) everywhere because h is continuous. O

We also note that h is only defined on 0€). However, by Whitney’s extension theorem,
we can extend h to h : R” — R such that h = h on dQ and log(h) € CY(R") (or, if
log(h) € CF®(99) then log(h) € C**(R™)). For simplicity’s sake, we will abuse notation

and let h refer to the function defined on all of R™.
11



2.3 Blowups on NTA and Lipschitz Domains

For any ) € JQ and any sequence of r; | 0 and (); € JQ such that @); — @, define the

pseudo-blowup as follows:

1

ui(rjx + Qj)rn_2

+ _ J
u; () = wi(B(Qij)) (2.3.1)
E(E) = wE(rjE + Q;)

wE(B(Qj,75))
A pseudo-blowup where @; = @, is a blowup. Kenig and Toro characterized pseudo-

blowups of 2-sided NTA domains when log(h) € VMO(dw™).

Theorem 2.3.1. [(KT06), Theorem 4.4] Let QF C R™ be a 2-sided NTA domain, u™ the
associated Green’s functions and w® the associated harmonic measures. Assume log(h) €
VMO(dw™). Then, along any pseudo-blowup, there exists a subsequence (which we shall
relabel for convenience) such that (1) §2; — Qo in the Hausdorff distance uniformly on

compacta, (2) ujc — ugco uniformly on compact sets (3) wji — wgzo. Furthermore, uso =

ul, —uX, is a harmonic polynomial (whose degree is bounded by some number which depends
on the dimension and the NTA constants of Q) and 0Qso = {tso = 0}.
Additionally, if n = 2 or § is a 6-Reifenberg flat domain with 6 > 0 small enough

(depending on n) then uso(x) = xy, (possibly after a rotation). In particular, ) is vanishing

Reifenberg flat.

This result plays a crucial role in our analysis. In particular, the key estimate in (2.5.5)
follows from vanishing Reifenberg flatness. Therefore, in order to prove Theorem 2.1.2 we

must establish an analogous result when 2 is a Lipschitz domain.

Corollary 2.3.2. Let Q C R" be as in Theorem 2.1.2. Then, along any pseudo-blowup we
have (after a possible rotation) that use(x) = . In particular, QF is a vanishing Reifenberg

flat domain.
12



Proof. We first recall Remark 2.2.3, which states that any Lipschitz domain is a (locally)
2-sided NTA domain. Therefore, the conditions of Theorem 2.3.1 are satisfied. A result of
Badger (Theorem 6.8 in (Bad1l3)) says that, under the assumptions of Theorem 2.3.1, the
set of points where all blowups are 1-homogenous polynomials is in fact vanishing Reifenberg
flat (“locally Reifenberg flat with vanishing constant” in the terminology of (Bad13)). Addi-
tionally, graph domains (i.e. domains whose boundaries are locally the graph of a function)
are closed under blowups, so all blowups of 02 can be written locally as the graph of a some
function. Observe that the zero set of a k-homogenous polynomial is a graph domain if and
only if £ = 1. In light of all the above, it suffices to show that all blowups of 02 are given by

the zero set of a homogenous harmonic polynomial. We now recall another result of Badger.

Theorem ((Badll), Theorem 1.1). If Q is an NTA domain with harmonic measure w and
Q € 09, then Tan(w,Q) C Py = Tan(w,Q) C F for some 1 < k < d. Pj is the set
of harmonic measures associated to a domain of the form {h > 0}, where h is a harmonic
polynomial of degree < d. Fy, is the set of harmonic measures associated to a domain of the

form {h > 0}, where h is a homogenous harmonic polynomial of degree k.

In other words, if every blowup of an NTA domain is the zero set of a degree < d harmonic
polynomial, then every blowup of that domain is the zero set of a k-homogenous harmonic
polynomial. This result, combined with Theorem 2.3.1, immediately implies that all blowups
of 0f) are given by the zero set of a k-homogenous harmonic polynomial. By the arguments
above, k =1 and 0f2 is vanishing Reifenberg flat.

That us = x, (as opposed to kx;, for some k # 1) follows from wso(B(0,1)) =

lim; w;(B(0,1)) = 1, and that uZ is the Green’s function associated to wno. O

Hereafter, we can assume, without loss of generality, that 2 is a vanishing Reifenberg flat

domain and that all pseudo-blowups are 1-homogenous polynomials.

13



2.4 wu is Lipschitz

The main aim of this section is to prove that wu is locally Lipschitz.] We adapt the method
of Alt, Caffarelli and Friedman ((ACF84), most pertinently Section 5) which uses the follow-
ing monotonicity formula to establish Lipschitz regularity for an “additive” two phase free

boundary problem.

Theorem 2.4.1. [(ACFS84), Lemma 5.1] Let f € CY(B(zg, R)) N WY2(B(zg, R)) where
f(zg) =0 and f is harmonic in B(xzg, R)\{f = 0}. Then

X " 1/2 o 1/2
J(z,r) = — / —| / 7|li2dy / —| / n|72dy
r B(z,r) |z —y| B(z,r) |z — |

is increasing in r € (0, R) and is finite for all v in that range.

In a 2-sided NTA domain, u € CY(B(Q,R)) N WL2(B(Q, R)) for any Q € 99 and

any R (as such domains are “admissible” see (KPT09), Lemma 3.6). This monotonicity

+
immediately implies upper bounds on %

Corollary 2.4.2. Let K CC R" be compact. There is a 0 < C = Cf ,, < 00 such that

wH(B(Q, 1))

7an—l

< C.

sup sup
0<r<1QeKnon

Proof. Using the Theorem 2.4.1 one can prove that

wh(B(Q,r) w (B(Q,7))

Tnfl rnfl

< Cllullzzpguay), Y0 <r <1,

(see Remark 3.1 in (KPT09)). Note that

wE )\ wT 7)) w” r)) wt r
sup <M) — e (B(Q.r) w™ (B(Q.1) wF(B(Q,))

1>150,Q€00NK rn-l 1>r50,Qeoonk ™! =l WwH(B(Q,r))

1. NB: In this section we need only assume that log(h) € C(0%2).
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wh(B(Q,1)) w™ (B(Q, 7))

< sup hFL(P) sup — T
PedQ, dist(P,K)<1 1>r>0,QedONK r r
By continuity, log(h) is bounded on compacta and so we are done. O]

(B(Q.r))

+
Blowup analysis connects the Lipschitz continuity of u to the boundedness of <21
r

Lemma 2.4.3. Let K CC R"™ be compact, Q € K NI and 1 > r > 0. Then there is a

constant C' > 0 (which depends only on dimension and K ) such that

1][ | < C.
r Jo(Qu)

Proof. We rewrite %fﬁB(Q,r) lu| = %faB(O,l) lu(ry + Q)|do(y). Standard estimates on NTA

+
domains imply u™ (ry + Q) < Cru™(A+(Q,r)) < C’K% (see (JK82), Lemmas 4.4

and 4.8). So
1 wT(B(Q,r w (B(Q,r
L s (LB o BemY
" JoB(Q.r) " r
Corollary 2.4.2 implies the desired result. O

We then prove Lipschitz continuity around the free boundary.
Proposition 2.4.4. If K CC R" is compact then |Du(z)| < C = C(n,K) < o0 a.e. in K.

Proof. As u is analytic away from 0§2 and u = 0 on 02 we can conclude that Du exists a.e.

Pick z € K and, without loss of generality, let x € Q. Define p(z) = dist(x, )
and let @ € 00 be such that p(z) = |z — Q|. If p > 1/5 then elliptic regularity implies
Dua)] < C(n, K).

So we may assume that p < 1/5. A standard estimate yields

C

Du(e)] < = ]g o N0 (2.4.1)

We may pick 3p < o < 5p such that y € 0B(x,p) = y € B(Q,0). As |u| is subharmonic

15



and dist(y, 0B(Q,0)) > ¢/3 we may estimate

o2 — |y — QIQ Lem 2.4.3 ,
e[ Tl <ef  fu)lie) < Co<Clp
9B(Q.0) Oly— 2| 9B(Q,0)
This estimate, with (2.4.1), implies the Lipschitz bound. O

Consider any pseudo-blowup Q; — @, r; | 0. It is clear that u; is a Lipschitz function
(though perhaps not uniformly in 7). If ¢ € C2°(B1;R™) then Corollary 2.3.2 implies (after

a possible rotation)

[o-viE == [(v- 0 - [(9- 00 = [0 i

Because Vu;-t converges in the weak-* topology on L°°(By;R"), \Vu;t] is bounded in
L°°(By). Therefore, |Vuji| converges in the weak-* topology on L°°(Bj) to some function
f. However, as Vu;[ A enXg+ it must be true that \Vu]i| converges pointwise to xy+ and
thus f = xg+ (more generally, converges to the indicator function of some half space which
may depend on the blowup sequence taken).

*(B(Q.r)

n—1

The existence of this weak- limit implies that ©"~H(w®, Q) := lim, 10 @ . exists,

and is finite, everywhere on 0f) (as opposed to H" L almost everywhere). Let r; | 0; one

W+(B(Q17Tj)) wf(B(QlJ’j))
T;L_ r?_

+o2 N\ 1/2 —n2 0\ 12
Tor (0,5 _1 / [Vl (y)l " / [V (y)] "
it s2 \JB(o,s) |yl 2 B0,s) |y]" 2
i|2

and u; is a blowup along the sequence (); = @ and r; | 0. By the arguments above, |Vuj

can compute that J(Q,r;) = JQﬂ"j(O’ 1) where

converges in the weak-x topology to the indicator function of some halfspace. Therefore,
JQ7rj(O, 1) e c(n), where c(n) is some constant independent of r; | 0 (the halfspace

may depend on the sequence, but the integral does not). Furthermore, by Theorem 2.4.1

16



J(Q,0) == lim,. o J(Q,r) exists. It follows that

i & BQ) & (BQ1) _ JQ.0)
rlo rn—l rn—1 c(n)

In particular, the limit on the left exists for every ) € 02, which (given Remark 2.2.4)

implies ©" 1 (w*, Q) exists for every Q € Q.

2.5 Non-degeneracy of 0" 1(w*, Q)

In this section we show 6"~ (w*, Q) > 0 for all Q € 9 (Proposition 2.5.10). Let

0@ (2) := h(Q)ut (z) — u™(2), Q € Q. (2.5.1)

r;-l_Qv(Q) (rjz+Q)

S BQ) et

For any r; | 0, we define the blowup of (@) along 7 to be vﬁQ)(x) =

us make some remarks concerning 0@ and its blowups.
Remark 2.5.1. The following hold for any @ € 0f).

e For any compact K, we have supge xnon [0(@) ||W1,oo 0.
loc

(Rn) <
(

° va)(:c) — x - en, uniformly on compacta (after passing to a subsequence and a possible

rotation). Additionally (as above), we have |VUJ(-Q)| A1 in L.
e If the non-tangential limit of |Vv(Q)| at Q ewists it is equal to O 1 (w™, Q).

Justification of Remarks. The first two statements follow from the work in Section 2.4.

To prove the third statement we first notice

r?_1VU(Q)(rjw + Q)
w=(B(Q,7j))

vol@ (z) = (2.5.2)
The second statement implies lim;_, |V?}J(~Q) ()] = 1 almost everywhere. The result follows.

U
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2.5.1 Almgren’s Frequency Formula

Remark 2.5.1 hints at a connection between the degeneracy of ©"1(w™, Q) and that of the
non-tangential limit of V(@) This motivates the use of Almgren’s frequency function (first

introduced in (Alm79)).

Definition 2.5.2. Let f € Hlloc(R”) and pick xog € {f = 0}. Define

H(T’x0>f):/ f2’

OBy (xq)

D(r.x, f) = /B N
r\Z0

and finally
rD(r,xg, f)
H(r,zq, f)

N(r,xo, f) =

Almgren first noticed that when f is harmonic, r — N(r, g, f) is absolutely continuous

and monotonically decreasing as r | 0. Furthermore, N(0,xq, f) is an integer and is the

order to which f vanishes at zq (these facts first appear in (Alm79). See (Mal09) for proofs
and a gentle introduction).

Throughout the rest of this subsection we consider v = (@) and, for ease of notation,

set @ = 0. v may not be harmonic and thus N(r,0,v) may not be monotonic. However, in

the sense of distributions, the following holds:

Av(z) = (h(0)dw™ — dw™)|pq = (% - 1) dw™ |- (2.5.3)

Therefore, log(h) € C*(09) implies that |Av(z)| < Clz|“dw™|gq. That v is “almost
harmonic” will imply that N is “almost monotonic” (see Lemma 2.5.6).

When estimating N’(r,0,v) we reach a technical difficulty; a priori v is merely Lipschitz,
and so Vv is not defined everywhere. To address this, we will work instead with v: = v * @,

where ¢ is a C* approximation to the identity (i.e. supp ¢ C By and [¢ = 1). Let
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Ne(r) :== N(r,0,v:) and similarly define He, De.

Remark 2.5.3. The following are true:

lim N(r,0,v) =1

rl0
Dg('r) :/ U(.:(U{.:)yda'_/ 'UgA'Ug
OB, B,
d -2 2
—Dc(r) = n / Ve |2dx + 2/ (ve)? — —/ (x,Vue) Avzdx
dr r B, OB, " JB,
d n—1
%Hg(?”) = . Hg(T) + Q/aBr Ug(Ug)ydO-.

Proof. The second equation follows from integration by parts and the third (originally ob-
served by Rellich) can be obtained using the change of variables y = x/r. The final equation
can be proven in the same way as the third.

To establish the first equality we take blowups. Pick any r; | 0. One computes,

Vo, |2
N(r;,0,v) = Jp, IVeil” 32| .
fa& v

Recall Remark 2.5.1; v; — 2y, uniformly on compacta and |Vv;| A 1in L (perhaps pass-
ing to subsequences and rotating the coordinate system). Therefore, lim; oo NV (rj, 0,v) =
lim; o N(1,0,v;) = N(1,0,2p). Almgren (in (Alm79)) proved that if p is a 1-homogenous

polynomial then N(r,0,p) =1 for all r. It follows that lim;_,~, N(r;,0,v) = 1. O

With these facts in mind we calculate N.(r).

HZ(r)NL(r) = 2r (L)BT(UE)%CZU /(9& 2do — /{)BT U€(U€)Vda]2>

—1—27’/ UEAvgd:c/ vg(vg)yda—QHg(r)/ (x, Vue) Avedx
B, 9B, B,

(2.5.4)
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Derivation of (2.5.4). By the quotient rule
HZ(r)NL(r) = De(r)He(r) + rDL(r)He(r) — rDe(r) HL(r).
Using the formulae for H., D, found in Remark 2.5.3 we rewrite the above as

H2(r)NL(r) = D-(r)H:(r) — 7D (r) (" ; 1H€(7~) +2 /a . ug(vg)yda)

-9 2
+rHe(r) (nT/B |va|2dx + 2/83 (vg)g — ;/B (x, Vue) Avgdx> )

Distribute and combine terms to get

H2)N0) = (D) + (0= 2 H0) [ 190 = (0= 002010

T

tor (Hg(r) /a 2o = D) /(‘3 . vg(vg),,da> —9HL(r) /B AN

The first set of parenthesis above is equal to zero (recalling the definition of D¢(r)). In

the second set of parenthesis use the formula for D, (r) found in Remark 2.5.3. This gives us

HZ(r)N2(r) = 20 (HE(T) /E)Br(vs)z%da - </{)Br ('U{;“)V'Ugd0'> 2)

—|—27“/ UgAUde/ vg(vg),,da—2Hg(r)/ (x, Vue) Aved.
B, OB,

r

]

The difference in parenthesis on the right hand side of (2.5.4) is positive by the Cauchy-
Schwartz inequality. Thus, to establish a lower bound on N.(r), it suffices to consider the

other terms in the equation.

Lemma 2.5.4. Let ¢ < r and define E-(r) = fBr (x,Vve) Avedx. Then there exists a

constant C' (independent of r,e) such that |E-(r)] < Crit®w=(B(0,r)).
20



Proof. Since Av: = (Av) * ¢¢ in terms of distributions, we can move the convolution from

one term to the other:

/ (x, Vve) Avedr = /[(XBT(SL’) (x,Vve)) * pe] Avdx.

r

Evaluate Awv, as in (2.5.3), to obtain

- | [txs, ) 90 (g 1)

< orlta / (IVvle)edw™,
ABr+e

‘/ (x, Vue) Aveda

where the last inequality follows from log(h) € C%, and |z| < C(r +¢) < Cr on the domain
of integration. The desired estimate then follows from the Lipschitz continuity of v and that

the harmonic measure of an NTA domain is doubling (see (JK82), Theorem 2.7). O

W™ (B(0,r))?

Lemma 2.5.5. Lete << r. Then Hs(r) > ¢ 3 for some constant ¢ > 0 independent

of r,e > 0.

Proof. By the corkscrew condition (see Definition 2.2.1 condition (1)) on €2, there is a point
xg € 0By N Q such that dist(zg, 02) > c¢r (¢ depends only on the NTA properties of Q).
The Harnack chain condition (see Definition 2.2.1 condition (3)) gives v(xg) ~ v(Ar(0)).
The Harnack inequality then implies that, for ¢ << r there is a universal k such that for
y € B(xq, kr) we have v:(y) ~ v(xg) ~ v(Ar(0)).

Therefore, there is a subset of 0B, (with surface measure ~ k|0B|) on which v, is
proportional to v(A,(0)). We then recall that in an NTA domain we have v(A;(0)) ~

W (BOr)) ((JK82), Lemma 4.8), which proves the desired result. O

rn—2

It is useful now to establish bounds on the growth rate of w¥(B(Q,r)). As Q is vanishing

Reifenberg flat, w® is asymptotically optimally doubling ((KT97), Corollary 4.1). This
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implies a key estimate: for any 6 > 0 and @) € 02 we have

' yn—1+0

Lemma 2.5.6. Let ¢ << R. There exists a function, C(R, ), such that
VR/4 <r <R, Ne(R)+ C(R,e)(R—7r) > Ng(r) (2.5.6)
C(R,e)R < kR®/? (2.5.7)
where k > 0 is a constant independent of €, R (as long as € << R).

Proof. If C(R,¢) := supR/4<r<R(N5(r)’)_, the first claim of our lemma is true by definition.
Recall (2.5.4):

H2(r)NL(r) = 2r </8Br(vg)l%da /8& vido — {/8& Ua(“&)ﬂda} 2)

+2r/ ngvgda:/ Ve(ve)pydo — 2H:(r)Es(1).
By 0By

As mentioned above, the difference in parenthesis is positive by the Cauchy-Schwartz

inequality. Therefore

E:(r)
H:(r)

2r fBr veAvedx fﬁBr Ve (ve)pdo
HE(T)2

(NL(r))™ <2 +

(A) Estimating 2r [p v-Avedx [3p ve(ve)vdo: On 0By, |(ve)y| < C,lve| < Cr by

Lipschitz continuity. Therefore, arguing as in Lemma 2.5.4, we can estimate

h
27”/ 'UEAvgdx/ ve(ve)pdo| < Cr”+1/ |ve e (ﬁ - )dw_
B, OB, By-NOQ h(z)

< Or"tet2,=(B(0, 1)),
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where the last inequality follows from |vz|c < Ce < Cr on 92 (by Lipschitz continuity).

From Lemma 2.5.5 it follows that

2r fBr veAvedx f@B,« Ve (vg)pdo
HE(T)2

_ Crntot2,2n—6 _ yn—1+a/6 3 0/2-1
w™(B(0,7))3 w=(B(0,7)) '

(B) Estimating 2 ‘ E‘ZET)) ‘: Lemma 2.5.4 and Lemma 2.5.5 imply

H:(r
E-(r) pn-2ta prlta/2 p0/2-1
Ha.m| = o mon ~ ¢ (w‘(B(O,T))) '

From (2.5.5) we can conclude

Rn—l—l—a/Z RSn—3+a/2 R0
= ) — 0.
w™(B(0, R))" w=(B(0, R))3

Combine the estimates in (A) and (B) to conclude that C(e, R)R < op(1)R*/2. O
We can now prove a lower bound on the size of N¢(r) for small r.
Corollary 2.5.7. limsup, | %(NE(T) —-1) > —Cre/2-1,

Proof. As limg o N(s) =1 there is some r’ << r such that [N(r') — 1| < Cr/2. Now pick
e << r’ small enough that Lemma 2.5.6 applies for ¢ and all ¥/ < R < r and such that
IN-(r") — N(')| < Cr®/2(recall N.(p) — N(p) for fixed p as £ | 0).

Let j be such that 2777 < ¢/ < 27J+1r Then
Jj—2 .
Ne(r) = Ne(r') > ) (Ne(27) = Ne(27 1) + Ne277 ) = NL() >
(=0

J—2 j—1
Lem 2.5.6
E 0(2_67’, 6)2_€T > /2 E 9~ta/2 > r/2,

=0 =0

. . 1
—C(2_3+1r, g) (2_3+17’ — 7“/) -3

Combining the inequalities above we have that N-(r) —1 > —Cr®/2 for small e > 0. [
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2.5.2  Monneau Monotonicity and Non-degeneracy

Our main tool here will be the Monneau potential, defined for f € Hlloc(]R”) and p €

C°(R™),

MO L) = i [ (et a0) = pPdo(a). 259

Monneau, (Mon09), observed that if f is a harmonic function vanishing to first order at xq
and p is a 1-homogenous polynomial then M¥0 is monotonically decreasing as r | 0.

We follow closely the methods of Garofalo and Petrosyan ((GP09), see specifically Sec-
tions 1.4-1.5) who studied issues of non-degeneracy in an obstacle problem. Their program,
which we adapt to our circumstances, has two steps: first relate the growth of the Mon-
neau potential to the growth of Almgren’s frequency function. Second, use this relation to
establish lower bounds on the growth of M and the existence of a limit at zero for M. As
before, v = v(@) and without loss of generality, Q = 0 € 0. Additionally, p will always be
a 1-homogenous polynomial. We drop the dependence of M on () and v when no confusion
is possible. Again v: = v * -, where ¢ is an approximation to the identity. Naturally,
Mc(r,p) :== MO(r, ve, p).

First we derive equations (2.5.9) and (2.5.10).

M. (r,p) = r”% /88 (ve = p)(x - V(ve — p) — (ve — p))do. (2.5.9)

2
Derivation of (2.5.9). Let x = ry so that Mc(r,p) = faBl (Ua(ry) — p(ry)) do(y). Differ-

r r

entiating under the integral gives

M) = [ 2 (S KO0 (L9 ) = plo) = sy (en(r0) = pl00)) doly)

r r
Changing back to x we have that

ML) = oy [ (0= e V0 =) = (02 = o),
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Next we establish a relation between the derivative of M and the growth rate of N (we
emphasize that (2.5.10) is true only when p is a 1-homogenous polynomial).

[:SJ(rl) (Ne(r)—1) = L (ve — p)Avedr + rML(r, p)/2 (2.5.10)

rh B,
Derivation of (2.5.10). Recall for all 1-homogenous polynomials p we have N(r, zg,p) = 1.

We “add zero” and distribute to rewrite

H | |
T;il) (Na(r) — ):T—n/ IV (v — p)|2 + 2V, - Vpdz — T /aB (v — p)? + 2vepdo.

Transform the first integral on the right hand side using integration by parts,

%mwwww=i/ - Ve —pe—p)+2 (3 V) v

7nnJrl

1 1
o B (ve — p)A(ve — p) + 20:Apdx — ) /83 (ve — p)2 + 2vepdo.

As p is a 1-homogenous polynomial, Ap = 0 and x - Vp — p = 0. The above simplifies to

He(r) 1 1
ntl (Ne(r) —1) = o BT(UE —p)Av: + yntl /aBr(x - V(ve —p) — (ve = p))(ve — p)do.
In light of (2.5.9), we are finished. O

The above two equations, along with Corollary 2.5.7, allow us to control the growth of

M from below.
Lemma 2.5.8. Let p be any 1-homogenous polynomial. Then for any R > 0 there exists a

constant C' (independent of R and p) such that

M(R,p) = M(r,p) > —(C + C|lpll poo(o,) ) B
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for any r € [R/4, R].

Proof. Recall (2.5.10),

M) /2 = T 0 = 1)+ [ e

7/-77,
Consider first the integral on the right hand side and argue as before to estimate,

1 / (h(w) ) _
< = Ve — P — —1]dw
" ] o0NB, . lve = Ple h(0)

w™(B(0, 7’))7“1‘“3‘

rn

1
T—n/ (Ue —p)Avg

< O+ IIpll < (a8,))

Y

where [ve| < Cr on 9Q because v is Lipschitz and [p(z)| < C|[pllp(gp,)r because p is

1-homogenous. By Corollary 2.4.2, %

is bounded uniformly in » < 1 and in ) € OS2
on compacta. Therefore, |7,ln fBT(vg —p)Ave| < C(1+ [pll g (ap,))r-
Returning to (2.5.10),

. _ _ : 1
limsup sup (Mc(r,p))” < C(1+ 1Pl oo (9B,)) B Uflimsup  sup  —(Ne(r) —1).

el0  R/4<r<R el0  R/4<r<RT

The bounds on the growth of N (Corollary 2.5.7) imply

limsup  sup  (Me(r,p))™ < (C + Clipllzoap,)) B>
el0 R/4<r<R

which is equivalent to the desired result. ]

When it is not relevant to the analysis (e.g. in the proofs of Lemma 2.5.9 and Proposition

2.5.10 below), we omit the dependence of the constant in Lemma 2.5.8 on [|p[|z<(9p,)-

Lemma 2.5.9. Let p be any 1-homogenous polynomial. Then M(0,p) = lim, o M(r,p)

exists.

Proof. Let a := limsup, g M(r,p). That a < oo follows from Lemma 2.5.8, applied itera-

@/2-1 ig integrable at zero). We claim that there exists a constant C' < oo such
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that M(r,p) —a > —Cr®/2 for any 0 < r < 1.

On the other hand, a — M (r,p) > —o(1) as r | 0 by the definition of limsup. This, with
the claim above, implies that lim,.|q M (r,p) = a.

Let us now address the claim: take rg < r. Let k be such that 2 kp > rog > 9—k=1p.

Then, by Lemma 2.5.8, we have

00
> _C«Toz/Q Z(Qa/Z)—f > —Coﬂ“a/2.
=0

The claim follows if we pick g small so that M (rq,p) is arbitrarily close to a. O
Finally, we can establish the pointwise non-degeneracy of "1 (w*, Q).
Proposition 2.5.10. For all Q € 9Q we have O" 1 (w®, Q) > 0.

Proof. 1t suffices to assume ) = 0 and to prove @”_1(u}_, 0) > 0.
We proceed by contradiction. Pick some r; | 0 so that v; — p uniformly on compacta

(where p is a 1-homogenous polynomial given by Corollary 2.3.2). Lemma 2.5.9 implies

- ; ;X 2
MO.9) = Jim Mryp) =t [ (vj@s)‘" (B0, 73) —p(é >> do(z).
1 Tj

As p(:;x) = p(z) and ©" 1 (w™,0) = 0, by assumption, we conclude M (0,p) = f831 p2do.

For any 7, the homogeneity of p implies

2
1 w™ (B(0,74))
M(rj,p)—M(0,p) = — (v—p)?— | p*= (v'(y)—n_ / —p> —p2do
J rj“ /83Tj /831 /8B1 J r 1

T r
J J

= /331 (w(@%) - 2vj(y)wp(y)da > —Crf/Q,
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where the last inequality follows from iterating Lemma 2.5.8 (as in the proof of Lemma
2.5.9).

Rewrite the above equation as

1 ] 7 —— 2vj(y)p(y)do = —Cr,

r
J J

w™ (B(0,75)) /aB il )zw_(B(O,rj)) a/2

Divide by w_(B(O,rj))/r?_l and let j — oo. By (2.5.5) the right hand side vanishes

n—1

and, by assumption, w_(B(O,rj))/Tj — 0. In the limit we obtain —2 f@Bl P> >0, a

contradiction. ]

At this point we have proven that co > ©" 1(w™,Q) > 0 everywhere on 99 and that
@”_l(w_, () is bounded uniformly from above on compacta. Using standard tools from
geometric measure theory this implies, for all dimensions, the decomposition mentioned in
the introduction (for n = 2): 9Q = ' U N, where w*(N) = 0 and I is a (n — 1)-rectifiable

set with o-finite H" ! measure.

2.6 Uniform non-degeneracy and initial regularity

2.6.1 O" Y w* Q) is bounded uniformly away from 0.

In order to establish greater regularity for 02 we need a uniform lower bound. Again the
method of Garofalo and Petrosyan ((GP09), specifically Theorems 1.5.4 and 1.5.5) guides

us. Our first step is to show that there is a unique tangent plane at every point.

Lemma 2.6.1. For each Q) € 0S) there exists a unique 1-homogenous polynomial, pQ, such
that for any r; | 0 we have v; — pQ uniformly on compacta (i.e. the limit described in

Corollary 2.3.2 is unique).

Proof. We prove it for () = 0. Pick r; | 0 so that Up; =P uniformly on compacta for some
l-homogenous polynomial p. Let 7; | 0 be another sequence so that Vi = p, where p is also

a 1-homogenous polynomial.
28



By Lemma 2.5.9, M(0,0" 1(w™,0)p) exists. Therefore,

M(0,0" (w™,0)p) = lim M(rj, 0" (w™,0)p)

j—00
2
—(B(0,r;
= lim L_lrj))vrj(x) — @”—1(w—,0)p do (2.6.1)
J—=0 JIB, T';-L
=0.

The last equality above follows by the dominated convergence theorem and that Up; = D.

Similarly,

M(0,0" 1w, 0)p) = lim M(7;,0" 1(w™,0)p)

j—00

_ N 2
_— (Mu o, o>p>
J—=0 JoB, Tj
_ran—1 W 2 ~ 20'
—(©"(w.0)) /anp p)2d

Again the last equality follows by dominated convergence theorem and that Vi, = p. As

0"~ 1(w™,0) > 0 (Proposition 2.5.10), we have p = p. O

We should note that Lemma 2.5.9 (the existence of a limit at 0) and Lemma 2.5.8
(estimates on the derivatives of M) both hold for M Q(T, (@) , p) where p is any 1-homogenous
polynomial and (as before) v(@)(y) = h(Q)ut(y) — u (y). Furthermore the constants in
Lemma 2.5.8 are uniform for ) in a compact set. We now prove the main result of this

subsection.

Proposition 2.6.2. The function Q — p%@ = @”_l(w_,Q)pQ is a continuous function
from Q2 — C(R™).

Proof. As ﬁQ is a 1-homogenous polynomial, it suffices to show that ¢) — ﬁQ is a continuous
function from 9Q — L?(9By).
Pick € > 0 and @ € 9092. Equation 2.6.1 implies that ]\/[Q(O, U(Q),ﬁQ) = 0. In particular,
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there is a - > 0 such that if » < r. then MQ(T,U(Q),ﬁQ) < e. Shrink r¢ so that r?/z < e.
v(@ e VVZIO’SO(R”) (uniformly for @ in a compact set) and h € C*(952), so there exists a

d = 0(re,e) > 0 such that for all P € Bs(Q) and x € B1(0) we have
W@z + Q) — vz + P)| < ere. (2.6.2)

Since sup pe g () [o(P) (= + P)|lps(9B,.) < e, (2.6.2) immediately implies that

1

MOre, o', 59) = /a 0@+ P) =) < Ce, VP € B5(Q).
13 Te

By definition, MQ(Tg, U(Q),f)Q) < g, so it follows that

MP(TE,U(P),ﬁQ) = L / (U(P)($+ P) —ﬁQ)2 < Ce, VP € Bs(Q).
9B,
Repeated application of Lemma 2.5.8 yields,
M (re, o) 59) = M (0,07, p9) > —(C'+ CI\ﬁQIILoo@Bl))T?/Q, VP € Bs(Q) =

Ce > MP(0,0(P) 5Q) = / (57 — 1002, WP € By(Q).

0B1

That the first line implies the second follows from ||5<| L%(0B)) = 0" Hw™,Q) < C uni-
formly on compacta, r?/Q < ¢ and MP<T5, U(P),ﬁQ) < (Ce. The equality in the second line
follows from the standard blowup argument (see the proof of Lemma 2.6.1) and allows us to

conclude that Q — p% is continuous from 99 — L2 (0B1). ]

Corollary 2.6.3. The function ) — @”_l(w_, Q) is continuous. Additionally, the function
Q — {p? = 0} is continuous (from 9Q to G(n,n —1)).

Proof. Clearly the first claim, combined with Proposition 2.6.2, implies the second.
For Q1,Q9 € 09), if P = {le =0},P = {pQ2 = 0} are distinct hyperplanes with
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normals 71,79, then both (17 + flg)J- and (nq — ’ﬁg)l consist of points equidistant from P;

and P». Elementary geometry then shows that there is some constant ¢ > 0 such that
max{D[(1 + fg)™ N B1(0), Py N By (0)], D[(Ry — f2)* N B1(0), Py N B1(0)]} > e.

Let P3(Q1,@2) be the plane which achieves this maximum. If P; = P» then pick P3(Q1, Q2)
to be any hyperplane such that D[P; N B1(0), P3N B1(0)] > c.
Recall Corollary 2.3.2, which implies that pQ is a monic 1-homogenous polynomial for all

Q € 00. Soif y € P3(Q1,Q2) NAB1(0), there is an universal ¢ > 0 such that ¢ < [p@1(y)| =
P92 (y).

Therefore,

590~ 592 e o) 2107w, Q1% (y) — 0" (™, Q) y)|

>¢0" ! (w™, Q1) — (sen pU (y)p?2 (1) (W, Qo).

If sgn p@1(y)p92(y) = —1 (p91(y) and p@2(y) have opposite signs), then

1690 = 592 oo (o) = O Hw ™, Q1) + 0w, Q2) 2 30" (W, Q).

Letting Qo — Q1, the continuity of Q — p% (Proposition 2.6.2) implies 0 > 0" 1(w™ Q1).
This contradicts the non-degeneracy of @1 (w™, Q1) (Proposition 2.5.10).
On the other hand, if sgn p@1(y)p92(y) = 1 (p¥1(y) and p92(y) share the same sign),

then

B9 = 592 oo (opy) > €0 Hw™, Q1) — 0" MW, Qa)],
and the continuity of Q — p< implies that Q — 0" 1w, Q) is continuous. ]

Uniform non-degeneracy immediately follows.
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Corollary 2.6.4. For any K CC R" there is a ¢ = ¢(K) > 0 such that, for all Q € K N0,

0" 1 (w*,Q) > ¢

2.6.2 09 is a C' domain

We define for Qg € 92 and r > 0

B(Qo,T) = inf1 sup dist(Q, P) (2.6.3)
P T QeannB,(Qo)

where the infimum is taken over all (n — 1)-dimensional hyperplanes through Qg (these
are a variant of Jones’ f-numbers, see (Jon90)). David, Kenig and Toro (see (DKTO01),
Proposition 9.1) show that, under suitable assumptions, 5(Qq,r) < 77 implies that 0 is
locally the graph of a C'17 function for any 1 > v > 0. We will adapt this proof to show
that 99 is locally the graph of a C'! function.

For any Qg € 012,

P(Qp) := {p?0 = 0}

(where pQO is the 1-homogenous polynomial guaranteed to exist by Corollary 2.3.2 and
which is unique by Lemma 2.6.1). By the definition of blowups, we know that P(Qq) + Qo
approximates 02 near ()g. The following lemma shows that this approximation is uniformly

tight in Q.

Lemma 2.6.5. [Compare to (DKTO01), equation 9.14] Let K CC R™ and e > 0. Then there
is an R = R(K,e) > 0 such that r < R and Qg € K NS implies

sup ldist (Q —Qo, P(Qq)) <e. (2.6.4)
QeINNB(Qo) "

Proof. The proof hinges on the following estimate (see (GP09) Theorem 1.5.5); for any K
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compact there exists a modulus of continuity o with lim; g og () = 0 such that
09 + Qo) = ()] < o (Ja]) | (265)

for any Qg € K N oS2.

Assume this estimate is true; let @ € Bp(Qp) N 0N and write Q@ = Qo + =. As
0" L(w™,Qp) > cforall Qy € KN (Corollary 2.6.4) it follows that dist(Q—Qg, P(Qp)) <
590(z)]. Then (2.6.5) yields that dist(Q — Qg, P(Qo)) < [p90(z)| < |z|ox(|z|) = rog(r).
Set R to be small enough so that » < R implies o (r) < € to prove (2.6.4).

Thus it suffices to establish (2.6.5). Let |z| = r and write = ry with |y| = 1. If we

divide by 7, (2.6.5) is equivalent to

10(90) (ry + Qo) /r — P (y)| < o (). (2.6.6)

As v(@) (ry+Q) /r is locally Lipschitz (uniformly in @ on compacta), the uniform estimate
(2.6.6) follows from an L? estimate: for all € > 0, there exists a R = R . > 0 such that if

r < R and Qp € K NS then

MO0 (r, 090 50) = 1|0 @) (ry 4 Q) fr — 59 (W) T2, < &

For each point @@ € K NN we can find an R = R:(Q) such that R << ¢ and for all
r< R, |M%r,v(@) Q)| < e/4. Furthermore, for every r > 0 there is a §(r) > 0 such that
for Q,Q' € K NoQ we have

Q= Q| <o(r) = | MY (r,0@) ) — MQUr 0@ )| < ¢/4.

The existence of 6(r) follows from the uniform Lipschitz continuity of v(@) | the Hélder

continuity of k and the continuity of Q — p«.
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As K is compact we can find Q1, ..., Qn € K N0 such that if 1 := 0(R:(Q1)), ..., 0 1=
0(Re(Qn)) then K NoQ C |UB;(Q;). By the definition of d;, if @' € Bs(Q;), then
MQ/(Rg(xi),U(Q/),ﬁQ/) < €/2. Recall, R:(Q;) << e and Lemma 2.5.8 to conclude that
for all Q' € Bs,(Q;) and r < Rg(Qi),MQ/(T,U(Q/),ﬁQ/) < ¢. Therefore, setting R . =
min;{ R-(Q;)} gives the L? estimate 7 < Ry Q e KNQ = MQ/(T', U(Ql),ﬁQ,) <e. O

We should note, (2.6.5) (along with the Whitney extension theorem) allows for an al-
ternative proof that dQ is a C1 domain (see (GP09) Theorem 1.3.8). We will, however,

continue our proof in the vein of (DKTO01).

Proposition 2.6.6. Let QQ C R" satisfy the conditions of Theorem 2.1.1 or Theorem 2.1.2.
If log(h) € CO*(09Q) then Q is a C! domain.

Proof. For Qg € 01, equation 2.6.4 shows that P(Qq) + Qo is a tangent plane to 9 at
Qo. Furthermore, Qo — P(Qq) is continuous (Corollary 2.6.3). Under the assumptions of
Theorem 2.1.2, Q is a Lipschitz domain with a tangent plane at every QQ € 902 that varies
continuously in (); thus we are done.

If we simply assume that €2 is Reifenberg flat (Theorem 2.1.1), we still need to show that
Q) is a graph domain (in fact we will show it is a Lipschitz domain). Let R = R . > 0 be
chosen later and let r < R. If R is small enough, vanishing Reifenberg flatness (Corollary

2.3.2), along with Lemma 2.6.5, implies
m({020 B(Qo,r) = Qo}) © P(Qo) N B(0,5), ¥Qo € KN < R.

Here 7 : R" — P(Qq) is a projection (for more details see the proof of (DKT01) Lemma 8.3
or (KT97) Remark 2.2).

We need only to show that 71 is a well defined function with bounded Lipschitz norm
on P(Qg) N B(0,7/2). Let ¥ := (02 — Qo) N B(0,7) N7 1(B(0,7/2)) and pick distinct

Q1,Q2 € 3. Perhaps shrinking R again, the continuity of @ — P(Q), combined with
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Lemma 2.6.5, implies

L ist(Q) — Qg P(Qy)) < . (2.6.7)
Q1 — Q2]

~1is well defined and ||7~ ||Ile P(Qo)nB(0,r/2)) < (1 — e~ L. O

Therefore,

It should be noted that if 2 is a C'! domain it is not necessarily true that u € C'1(Q) (see

(Pom92), pg 45). However, as ©"1(w™®, Q) is continuous, we can establish the following.
Corollary 2.6.7. Let Q,log(h) be as in Proposition 2.6.6. Then u™ € C’l(Q_i).

Proof. For @) € 092, let v(Q) be the inward pointing normal to Q at ). We will prove that

an Diu™(X) = w(Q) - €)0" 1 (wT,Q),Vi=1,..,n.
X—
XeQt

The desired result follows from @71 (wt, ), (=) € C(9Q) (Corollary 2.6.3 and Proposition
2.6.6). The proof for u~ is identical.

Pick 7 small so that B(Q,r) N 0 can be written as the graph of a C! function. Then
construct a bounded NTA domain Qg C Q such that 9QgNIQ = B(Q,r) NN (see (JK82)
Lemma 6.3 and (KT03) Lemma A.3.3). For X( € Qp, let wgo be the harmonic measure of
Qp with a pole at X. By local Lipschitz continuity, |D;u™| < C' on Qg and, therefore, D;u™

has a non-tagential limit g(P) for wgo—a.e. P in 0Qp (see Section 5 in (JK82)). Furthermore,
de
deO

if K(X,P):=

(P) we have the following representation (see (JK82) Corollary 5.12),

Diut(X) = /a o g(P)K (X, P)dw(P).

Using blowup analysis, one computes g(P) = (v(P) - ¢;)0" Y(w™T, P) for P € 0Qp N
B(Q,r/2). As g(P) is continuous on B(Q,r/2) N 0p, there is some s < r/2 such that
P e B(Q,s) N = |g(P) — g(Q)| < e. On the other hand, Jerison and Kenig (Lemma
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4.15) proved that limx e, x—Q SUPpeanz\ B(Q,s) X (X, P) = 0. This allows us to estimate,

)yng 1Dt (X) = (1(Q) - )" Hw™, Q)] = )}g% |Diu™(X) = 9(Q)]
XeQt XeQp

< lm K (X, P)|g(P) — 9(Q)|(xaa\B(Q.5)(P) + Xoazn5(Q.s) (P)dwi’(P)

XeQp

< lim Cwp®(925\B(Q,s)) sup K(X,P)+ewp (B(Q,s)) <e.

=L PEB(Q.s)

The first equality follows from the fact that any sequence in Q1 approaching ) must, apart
from finitely many terms, be contained in 2. The last line follows first from |g(P)| < C

and then from the fact that wg is a probability measure for any X € Qp. O

2.7 Initial Holder regularity: o) is C'*

In this section we will prove that 9 is locally the graph of a C'1»* function for some 0 < s < a.
Note that, in general, the best one can hope for is s = « (if 92 is the graph of a C' La function
then log(h) € C0:®).

Here we will borrow heavily from the arguments of De Silva et al. (DFS14), who prove
CL7 regularity for a wide class of non-homogenous free boundary problems. We cannot
immediately apply their results, as they assume a non-degeneracy in the free boundary
condition that our problem does not have (see condition (H2) in Section 7 of (DFS14)). It
should also be noted that our main result in this section is not immediately implied by the
remark at the end of Caffarelli’s paper, (Caf87). Indeed, Caffarelli’s free boundary condition
also contains an a priori non-degeneracy condition (see condition (a) at the top of page 158

in (Caf87)) which our problem lacks.
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2.7.1 The Iterative Argument

In this section we shall state the main lemma and show how that lemma, through an iterative

argument, implies our desired result. First we need two definitions.

Definition 2.7.1. Let g : R” — R. Then w € C(B1(0)) is a solution to the free

boundary problem associated to g if:
o weC?({w>0})NC*{w < 0})
o we O ({w>0})NCH({w <0}
e w satisfies, in B1(0), the following:

Aw(x) =0, z € {w # 0}

(W), (2)9(2) = = (W )y, (@), @ € {w =0}

(2.7.1)

where vy is the normal to {w = 0} at .

One observes that Corollary 2.6.7 implies that u is a solution to the free boundary problem

associated to h. We now need the notion of a “two-plane solution”.
Definition 2.7.2. Let v > 0 and g : R™ — R. Then for any xoy € B1(0) we can define the
two-plane solution associated to g at x:

U (1) := 3t = glag)yt™, t € R,
When no confusion is possible we drop the dependence on xg. It should also be clear from
context to which function g our U is associated.

The following remark, which follows immediately from Corollary 2.3.2 and (2.6.5), eluci-

dates the relationship between a two-plane solution and our function w.
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Remark 2.7.3. Let xg € 0N). Asr — 0 it is true that

+ x
Up g0 () 1= M — U(S)no_)l(w+7x0)(x V)

uniformly on compacta. Here U is the two-plane solution associated to h. Furthermore, the

rate of this convergence is independent of xg € K N0 for K compact.

Intuitively, the faster the rate of this convergence, the greater the regularity of 0€). This
relationship motivates the following lemma (compare with (DFS14), Lemma 8.3), which says
roughly that if u is close to a two-plane solution in a large ball, then « is in fact even closer

to a, possibly different, two-plane solution in a smaller ball.

Lemma 2.7.4. Let oo > C,c¢1 > 0 and k > 0. Let v be a solution to a free boundary
problem associated to g such that inf,cp, ) 9(x) = k > 0 and such that v(zg) = 0. Let

£>0,C01 >~ >cp,ve S and assume

U (v — &) S (e +20) < U (a v+ 2), = € By(0). (2.7.2)

lg(x)—9(y)| _ 2

Also, assume that sup, ,c g, (z) Ty

Then there exists some Ry = Rg(C1,c1,n) > 0 such that for all v < Ry there is a

g€ =2¢E(r,Cq,c1,n) > 0 so that if the ¢ above satisfies € < € then
(o). 1 _,.E (o). 1.
UW’ (x-v 7’2) <w(r+1z0) < UW’ (x -V + 7“2), x € Br(0), (2.7.3)

where [V| =1, |V —v| < Ce and |y —+'| < Cye. Here C = C(Cq,c1,n) > 0.
With this lemma we can prove Holder regularity by way of an iterative argument.
Proposition 2.7.5. Let Q C R™ be a 2-sided NTA domain with log(h) € C%(9Q).

o Ifn=2, then Q is a CY domain for some s > 0.
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o [fn > 3, assume that either Q is a d-Reifenberg flat domain for some 0 < & small

enough or that Q is a Lipschitz domain. Then Q is a CY* domain for some s > 0.

Proof of Proposition 2.7.5 assuming Lemma 2.7.4. Without loss of generality let 0 € 92 and
en be the inward pointing normal to Q at zg € B1(0)Nd. We will show that 3(xg,t) < C"'t5
for some s > 0 and some C” > 0 independent of t > 0,29 € 92N B1(0). A theorem of
David, Kenig and Toro ((DKTO01), Proposition 9.1) then implies that 02 is locally the graph
of a 18 function.

Set v = O™ 1(wt, () and let

1
Cl =2 sup @n_l(w+7z>a cl =% inf @n_l(w+,z).
290N B4(0) 2 2€90NB4(0)

By Corollary 2.6.4 and the work of Section 2.4 we have co > C7 > ¢ > 0.
Lemma 2.7.4 gives us an Ry. Pick 0 < 7 < Ry small enough so that 7 < % We then

get a € > 0 depending on 7. Pick € < € such that
o0 R o0 _
1/2 < <H(1 — Cs/Qk)) < (H(l + Ce/Qk)> <2
k=0 k=0

where C' is the constant from Lemma 2.7.4.
Recall Remark 2.7.3, that w) o (x) = Uy(2y) for x € By as p | 0. Thus, for small enough

p, we have

[wp,zo () — UV(xTL)HLOO(Bl) < Ke,

where K < min{cy,inf,cp, |[h(x)|c1}. This implies
Uy(zn —€) < upag(r) < Uy(zn +€), 2 € By(0).

Upzo s a solution to the free boundary problem associated to g(z) = h(pr + zp). In

particular, if p is small enough such that p®||h| 00 < 2 then g satisfies the growth and
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lower bound assumptions of Lemma 2.7.4.
If u%(z) == upz,(7), then we can apply Lemma 2.7.4 to u” in the direction ey with

~v,C1,¢1,T, € as above. This gives us a v; € S~ ! and a v; > 0 such that
_¢& 0 _€E

Uqyy (2 - v1 — 7‘5) <u(x) S Uy (z-v1 + 7"5), x € By(0).
Write © = 7y and divide the above equation by 7 to obtain,

%), y € By(0).

9 _ _
U (y-v1 = 3) < u(Fy) [F < Uy (y -1 + .

Let ul(z) := u?(72) /7 so that
Ui (y 01— /2) < ul(y) < Uy (y - v1+¢/2), y € Bi(0)

Apply Lemma 2.7.4 to w! in direction vy with C1, ¢, 7,€/2,7 and iterate.

In this way, we create a sequence of uk(y), 01, Vg, Vi such that
Un(y - vy, — 2/2%) < uF(y) <UL (y - vy +/25), y € By(0)

and | —vpyq| < és/Qk. We must prove that it is valid to apply Lemma 2.7.4 at each step.

By Lemma 2.7.4 and construction,

k-1

H (1—Ce/2F)yy <y < I (1 + Ce/2F)y <29 < 0,
=0 =0

1 <

er—t

so 7, is always in the acceptable range for another application of Lemma 2.7.4. Also in the

kth step we apply the lemma with 5/2k < ¢ < € and the same 7.

Finally, in the kth step we have u¥(y) = u o (y) Thus we need to make sure that

PR,
(p?‘"k)O‘HhHCo,a < (¢/2F)2. By construction, p Uhllcoa < 2 and 7R < %Ik and so the

conditions of Lemma 2.7.4 are satisfied for each k.
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After k steps,
Uy (y - vy, — £/2F) < uF(y) < Uy (y - v +2/28), y € B1(0) =

Uy (@ - v = pre/2%) < ulw + x0) < Uy (- g, + p7e/2%), 2 € B 11(0).

If x € Bka(O) is taken such that x + zg € 92 then the above equation implies
z v, —prre)2F <0<z + prte/2F =

- vy| < prFe /28 = B(ag, o) < /2.

If s := —log#(2) > 0, we have shown S(xg, pr*) < %(pfk)s < C'(pF*)* (Remark 2.7.3
implies that we can we can take p uniformly in ¢y € B1(0)). If ¢ is such that pri L <t < ph

we can estimate

=k —rk —k  [=k\® /
Pr _k 1P ks~ PT s [ PT ¢ 5 _ s
80, 1) < = Blag, o) < P () = 0P ( t ) < Tr=om
-k
where we used that % < % ]
It is worthwhile to note that the condition 7 < 1/4 implies s = —logz(2) < a/2. So

this argument does not give optimal Holder regularity.

2.7.2 Harnack Inequalities

It remains to prove Lemma 2.7.4. We first define a subsolution to the free boundary problem

(see Definition 2.7.1).

Definition 2.7.6. Let O be an open set in R" and g : R — R. We say that z € C(O) is a

strict-subsolution to the free boundary problem associated with g in O if:

o {z =0} is locally the graph of a C? function.
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e zcCl({z>01nO)NC' {2z <0} NO).
e On the set {z # 0} we have Az > 0.

o For xg € {z =0} we have

9(20)(= gy (20) + (= gy (0) > 0,

where vy, is the inward pointing normal at xq to {z > 0}.
We define a strict supersolution analogously.

With this definition we need a comparison principle (note that this comparison principle

can also be taken to be the definition of a sub/super solution, see e.g. (DFS14)).

Lemma 2.7.7. [Compare to (CS05) Lemma 2.1, (DFS14) Definition 7.2] Let O be an open
set in R"™. Let w,z be a solution and strict subsolution respectively to the free boundary
problem associated to a positive g in O. If w > z in O then w > z in O.

The analogous statement holds for supersolutions.

Proof. We proceed by contradiction and let  be a touching point. There are three cases:

Case 1: & € {z = 0}. {z = 0} is locally the graph of a C? function so there is a tangent
ball B C {z > 0} with BN{z =0} = Z. Since {z > 0} C {w > 0} we have BN{w =0} =z
and B C {w > 0}. As such {z = 0}, {w = 0} share a normal vector v at Z.

Since w > z, z # w we have that z—w attains a local maximum at Z. Thus (27 —w™), <0
and (—2~ +w ™ )—p = (27 —w" )y < 0. We then have 0 > g(Z)(2T —w™h), + (27 —w™ ), =
g(%)(2)y + (27)y > 0 a contradiction.

Case 2: 7 € {z > 0}. As {z > 0} C {w > 0}, both —w, z are subharmonic on {z > 0}.

So z — w cannot attain a local maximum on {z > 0} which implies w > z on {z > 0} N O.

Case 3: T € {z < 0}. In this case T € {w < 0}. As {w < 0} C {z < 0}, we have —w, z

are both subharmonic on {w < 0}. We can then argue as in Case 2. O
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With this comparison lemma we can prove a “one-sided” Harnack type inequality.

Lemma 2.7.8. [Compare with (DFS14), Lemmas 4.3 and 8.1] Let w be a solution to the
free boundary problem associated to a positive continuous function g on B1(0) (see Definition

2.7.1). Let k >0 and assume inf e p,(0) 9(2) = k. Also assume w satisfies
w(z) > U\ (@ v), 2 € B(0)
(where v € S*™ 1 and v > 0) and that at T = %y
w@ >\ (1/5+e). (2.7.4)

Finally, assume that supgcp, |9(0) — g(z)| < 10£2.
Then there exists € > 0 and 0 < ¢ < 1 (which depend only on the dimension and k), such

that if the above € < € we can conclude
w(x) > Uéo)(x ‘vHce), x € §1/2(O).

Analogously, if w(z) < Uy(z-v), v € By andw(T) < Uy(1/5—¢) then w(z) < Uy(z-v—ce)

m El/Q (0) .

Proof. For ease of notation we will drop the dependence of U on v,0 and let v = e,,. We
prove the inequality from below; the inequality from above, and the result for general v, is

proven similarly. Our first step is to widen the gap between w and U:

Claim: There exists a universal ¢; > 0 such that w(z) > (1+ c1e)yx,l — g(0)yz;, for all

T € ElQ/QO(O) and for universal c¢; > 0.

Proof of Claim: In EUQO(E) there is a universal constant ¢y > 0 such that w(z)—Usy(z) >
cove > coyexy by the Harnack inequality and (2.7.4).
Define O = (By N {zy, > 0})\B, /20(Z) and let ¢ be the harmonic function in O such
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that ¢ = 0 on (B N {zn > 0}) and ¢ =1 on 9By /90(T).
We have

w(z) —yry > 0 =vyepp(x)e/2,2 € (B N {xy > 0}).
Also, note
w(z) —yTn = coye = yepedp() /2,2 € aBl/zo(T)-

As w—yzy, and yegep(x) /2 are both harmonic on O we have that w — vz, > ycgep(x)/2 on
all of O. Finally, by the boundary Harnack principle there is a ¢ > 0 such that ¢ > ¢x, on
on Biga0- Therefore, ¢1 = min{cy, co¢/2,5/2} is such that w — yat > yecirt on §19/207

proving the claim.

Recall w(Z) — U(Ty) > ve > 0. Thus w(T) — (1 + c18)y(@Tn) " > v — c17e/5 > ve/2.

The Harnack inequality tells us that
w(z) = (14 cre)y(wn)™ > ey, € By g(T),
for ¢/ universal depending on dimension. If co is small enough that (1 + c1€)cg < ¢, then
w(z) — (14 c1e)y(xn +c2e)T >0, x € El/QO(f). (2.7.5)
Now we create a strict subsolution in the annulus
A= By 4(T)\By /90 (T)

and then use this subsolution to transfer the gap in (2.7.5) to a neighborhood of 0.
Let

() =1—c(lz—Z|™" = (3/4)™"), x € A,

where ¢ is such that ¢ = 0 on 9By j9(Z). Then 0 < ¢ <1 and —A¢ > k(n) > 0 in A. We

can extend 1) = 0 on By /9)(2).
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For t > 0 we write
0r(@) = (1+ e1)7(wn — ot (@) + 1)t — g(0)1(wn — centb(w) +12) 7, @ € By y(@). (2.7.6)

We will prove later that this is a family of strict subsolutions.
By the claim, vp(x) < (1+c1e)vz;, — g(0)yx, < w(z) forz € §3/4(T). So we can define

t* = sup{t | v(z) < w(z), Yz € 53/4(5)}. If t* > c9 we get
w(x) = vey(x) = Uy(an — ecoth + ce) = Uy(an + cg), © € By 9(0)

where ¢ := co(1 — sup,¢ By 5 ). This is the desired result.
Assume, to obtain a contradiction, t* < co. There must be some point ¥ € By /4(T) such

that v+ (Z) = w(z) (and everywhere else in §3/4 (T) we have v () < w(x)) .

Case 1: T € 0B3,4(T). As ¢(2) =1,
vpe () = (L4 c16)y(@n + (8 = e2)e) " = g(0)y(@n + (" — c2)e) ™

< (14 c1e)y(@n) " — g(0)v(@n) .

Note, §3/4(f) C §19/207 so the claim implies w(%) > (14c18)y(Zn) T —g(0)y(Zn) ™ > vy=(3),

a contradiction.
Case 2: T € El/QO(E). Here ¢ = 0 50 vy (7) = (1 +c18)y(Tp +t*e)T < (1 + c1e)y(in +
coe) T, as t* < cg. But (2.7.5) implies w(Z) > (1+c1€)y(Zn +coe)t, which is a contradiction.

Case 3: = € A. If v is a strict subsolution to the free boundary problem associated

with ¢ in A, then Lemma 2.7.7 (the comparison lemma) gives the desired contradiction.

Proof that v; is a strict subsolution: Note that in ({v > 0} N A) U ({vgx <0} N A)
we have Avp > —meca A > mecgk(n) > 0 where m = ymin{1, k}.
We then need to show that {v+ = 0} is locally the graph of a C2 function. Observe {vp =
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0} = {xn —ecotp(x) + t*e = 0}. As p € C°°(A) it suffices to show that |ep, — ecoVb(z)| # 0
on A. But this is accomplished simply by picking £ < CQLM where M = sup,c 4 |V (2)|. M
depends only on dimension so £ can still be chosen universally.

To verify the boundary condition, let zy € {vy = 0} and v the unit normal pointing into
{vr > 0} at wg. Then g(wo) (v, )y + (v; )y = (1 +c16)g(x0)y = 9(0)7) (en — £caV) - v. As v
points into {v¢ > 0} it must be the case that (e, —ecoV) - v > 0. So it is enough to prove
that (14 c1¢)g(zg) — g(0) > 0. By assumption |g(zg) — g(0)| < 10e? which means it suffices
to show cieg(zg) > 10e2. By picking £ > 0 small enough (now depending on k) this is true

on B1(0) and we are done. O
Using the one-sided Harnack inequality we can prove a two-sided Harnack type inequality.

Lemma 2.7.9. [Compare with (DFS14), Theorem 4.1] Let k > 0 and let g € C(B(0)) such
that infxEBg(O) g(x) > k. Let w be a solution to the free boundary problem associated to g in

Bs(0). Assume w satisfies at some point xy € Ba,
U§0)<$ v+ag) <w(z) < U»(YO)(.% v +bg), Vo € Br(xg) C By(0)

where v € S*1 v >0 and by — ag < er, SUpzeB, |9(z) — g(0)| < 2 for some e > 0.

Then there exists some & = £(n, k) > 0 such that if ¢ < & we can conclude

Uv(o)(x vtar) Sw(z) < Uéo)(z v b1), Vo€ B og(2o),

where ag < a1 < by < by and by — a1 < (1 —c)er. Here c = c(n, k) > 0.

Proof. Without loss of generality o = 0,7 = 1,v = e;,. There are three cases, each of which

produces a universal 0 < ¢ < 1. Take ¢ to be the minimum of these three.

Case 1: ag < —1/5. For small € > 0 we have z,, + by < 0 on B1/10- Therefore, by the
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assumed inequality on w,

0< U(ZE) — ’LU(&T) _9(0)7($n +a0) < 1’ Vo € Bl/l()'

9(0)ye

Additionally, Av = 0 on By /10-

So by the Harnack inequality there are constants 1 > k; > ko > 0 such that ky — ko =

1 — ¢ < 1 where ¢ is universal (though k1, ks may depend on w) and k1 > v(x) > ko on

By 90
This implies

Uy(zn + ag + koe) < w(x) < Uy(zn + ag + k1€), Vo € By g

Set a1 = ag + koe and by = ag + k1, so that ag < ay < by <bgand by —ay < (k] — ko)e =

(1—2¢)e.

Case 2: ag > 1/5. In this case ag + x,, > 0 on Bl/lO and so

Ogvmy:ww%~£m+aw§1

on By /10- The rest of the argument follows exactly as in Case 1.

Case 3: |ag| < 1/5. We can rewrite the main assumption as

Uy(zp + ag) < w(z) < Uy(zn +ag+¢), v € B1(0).

Without loss of generality, assume that

w(Z) > Uy(Tn + ag +¢/2)

where T = 4e;, /25 — agey, (the case with the reverse inequality is similar).
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If v(z) := w(z — agen) for v € By 5(0), then the above can be rewritten as

Uy(xp) < v(z) < Uy(xp +¢), Yo € Bys(0).
o e / (2.7.8)
v(4en/25) > Uy(4/25 4 ¢/2).
Note that v satisfies the free boundary problem associated to g which is a translate of g.

Thus we can apply Lemma 2.7.8 with /2 and inside B4/5 to get that
v(zr) > Uy(xn + Ce),x € §2/5(0) =

w(z) > Uy(xn + ag + ),z € §1/5(O),

for some universal 0 < ¢ < 1. Letting a; = ag + ¢e and by = by we have by — a1 =

bp —ag — ¢e < (1 — ¢)e. O

With these lemmata in hand we can prove the following regularity result. This will be

crucial in the proof of Lemma 2.7.4 (the iterative step).

Corollary 2.7.10. [Compare with (DFS1}), Corollary 8.2] Let w,~,qg,v, e,y satisfy the

assumptions of Lemma 2.7.9 with r = 1. Define

w, x € By(0) N {w > 0}

We = (2.7.9)

w(z) ;(g)(sc)jx & € By(0) N {w < 0}

Then we has a Hélder modulus of continuity at xo outside the ball of radius € /2, i.e. for
all x € By(zg) with |v — x| > ¢/

| e () — We(xo)| < Cla — wol¥

where C, x depend only n, k.
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Proof. Let v = e;,,. Repeated application of Lemma 2.7.9 gives

Uy(zn + am) < w(x) < Uy(Tn + bm), © € Byg—m(xp),

with by, — am < (1 — ¢)™e. However, we may only apply Lemma 2.7.9 when m is such that
(1 —¢)"20™Me <& (as we are taking = 207" at the mth step).

If 207X = (1 —c) then we have, for each acceptable m, that x € Byy—m(20)\Bgg-m—1(z0)
implies |we () — we(zg)| < Cla — xg|X. As above, m must satisfy 207™ > (1 — ¢)"*<, which

is true if 207" > £. So we have the desired continuity outside Be (). O

5

2.7.8 The Transmission Problem and Proof of Lemma 2.7.4

In order to prove Lemma 2.7.4, we will argue by contradiction and analyze the limit of the
We (see (2.7.9)) as £ | 0. This limit will be the solution to a transmission problem which we

introduce now.

Definition 2.7.11. We say that W € C(B)) is a classical solution to the transmission

problem at 0 in B, if:
o W e C®Byn{xy, >0})NC®(B,N{x, <0})

o W satisfies

AW =0, x € B,(0) N {zy # 0}
(2.7.10)

lim Wi, (2, ) — im W, (2, ) = 0, z € B,(0) N =0
tlﬁ)l n($ ) t%l n(x ) x p() {fn }

When no confusion is possible, we will simply say that W is a classical solution to the

transmission problem or a classical solution to (2.7.10).

We can deduce the following immediately from the definition:
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Lemma 2.7.12. Let W be a classical solution to the transmission problem in By. Then

there is a universal constant C' and a constant p (which depend on W) such that

W (x) = W(0) = (VW (0) - 2 + pry — pay)| < CIW||poo(py)r?s Yo = (2, 20) € Br(0).
(2.7.11)

Unfortunately, the conditions of Definition 2.7.11 are too difficult to verify directly. It

will be more convenient to work with viscosity solutions.

Definition 2.7.13. Let W € C(By). We say that Wis a viscosity solution to the transmais-

sion problem, (2.7.10), if:
o AW(&:) = 0, in the viscosity sense, when x € {xn # 0} N B).
e Let ¢ be any function of the form
¢(x) = A+ pry; —qzy, +BQ(x —y)
where
1
Q) = gl(n— a2 — '), y = (/,0), A€R, B >0
andp—q > 0. Then ¢ cannot touch 1% strictly from below at a point xg = (xf), 0) € B,.

o Ifp—q<0 then ¢ cannot touch W strictly from above on {zy, =0}.

The following result allows us to estimate the growth rate of viscosity solutions. We

will omit the proof as it is identical to the one provided by De Silva, Ferrari and Salsa in

(DFS14).

Theorem 2.7.14. [Theorem 3.3 and Theorem 3.4 in (DFS14)] Let W be a viscosity solution
to (2.7.10) in By such that HW”LOO < 1. Then, in By s, W is actually a classical solution
to (2.7.10). In particular, W satisfies the estimate (2.7.11).

With this machinery in hand we are ready to prove Lemma 2.7.4.
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Proof of Lemma 2.7.4. 1t suffices to assume that xg = 0 and v = e, (by the rotation in-
variance of the conditions). Fix any r > 0 small and let {v.}, {ex}, {wi}, {g;} be such that

C1 > v > c1,€; 4 0 and wy, is a classical solution to the free boundary problem associated

|9k (%) — 91 (y)]

2 .
Toyle <k and wy,(x) satisfies

to gp. Furthermore, infxeBl(O) gr(x) > k, SUD,. e By (0)
U (2 — &) < <yl B 2.7.12
i (@n —eg) S wg(x) < Uy (zn + &), « € Bi(0). (2.7.12)

However, to obtain a contradiction, assume the desired vy, 7]/{; do not exist.

Define wy, as in (2.7.9). Then (2.7.12) implies that {w; = 0} — {x, = 0} in the Hausdorff
distance norm and ||@wy ||z < 1. These observations, combined with Corollary 2.7.10 and
the Arzela-Ascoli theorem, show that wj, — @ uniformly in C(B1(0)) (after passing to

subsequences). Furthermore, Corollary 2.7.10 implies that @ is a CYX function defined on
By 2(0).
Claim: w is a viscosity solution in By o to the transmission problem.

If this is the case, w satisfies the estimate (2.7.11). So there is a p such that
() — (0) — (V@ (0) - 2 + pa;t — px))| < Cr?, Vo = (2f, 2,) € Br(0).

Because |||z < 1 we have |p| < 10. We will also pick r small enough so that 8Cr < 1.

As w0}, converges uniformly to @, for large enough k (depending on r possibly) we have

g (2) — (V@ (0) - &' + prt — px)| < 2072, Vo = (2, ) € B (0). (2.7.13)

Let v}, == 1 —— (5, V0(0),1) and v}, := (1 + exp). We will now prove

U]/C(x-uk—r—k) < wy(z) SU%(Q:-U;C+T%]€), x € B (0) (A)
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and also

Ve — V| < Cepv, len — vg] < Cey, (B)
for some universal C. This is the desired contradiction.

Proof of (A): Assume wy(x) > 0 (the other case follows similarly). (2.7.13) implies

(Vi 0) o'+ puf = pay) — 2072 < ML=k
k=k

<2072 + (Vyw(0) - 2’ + pat —px;,)
for z € B-(0). Consider the inequality on the left. Some algebraic manipulation yields

Vet + er(Vpd(0) - &’ + pat — pay) — 207%) < wy(x), Vo € Br(0) N {wy, > 0}.

We can rewrite this again to obtain, for all z € B,(0) N {w; > 0},

V1t IV 0(0) 2U (- 1) = =R [V (0) - 7] = 2073 ypey, < wy(e).

The Cauchy-Schwartz inequality, followed by some more algebraic manipulation, gives

2pey |V w(0)| + 4Cr
1+egp

g
Uy (x-vg) = VJIJEk < ) < wy(z), Vo € By(0) N {wy, > 0}.

Recall that r was chosen so that 8Cr < 1. Now pick k large enough so that 20|V w(0)| <
2pey |V 1w (0)|+4Cr

1/2. Together this implies ( ) < 1. In conclusion,

14-€rp
Uy (2 v - T%) < wy(x), Yo € By(0) N {wy, > 0}.

The upper bound on wy, and the inequalities for when w;, < 0 follow in the same fashion.

Proof of (B): We compute |y — ;| = expy < 10e7y. Also |y — enl? = (v — en, v —

en) = 2 —2(ep, Vi) = 2 — 2 . For large k (so that €|V _+w(0)] < 1/2) the
) = 2= Aenw) = 2= g For large k(s that 5/V(0)] < 1/

taylor series expansion of v1+ 22 vyields the estimate |v;. — ey, 2 < 2|V w(0)]2. Let
Yy y k AR
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C' = max{|V(0)|, 10} and we are done.

Proof of Claim: We want to establish that @ is a viscosity solution to the transmission
problem. As Awj, = 0, wherever {w; # 0}, it is clear that Aw = 0, in the viscosity sense,
when {z,, # 0}. It remains to verify the boundary condition.

So assume, in order to reach a contradiction, that there is a function

¢(z) = A+ pz,) — qr, + BQ(z —y),

with p—¢ > 0, which touches w strictly from below at xg = (xf), 0) (the case where p—q < 0
and ¢ touches from above follows similarly). Recall Q(z) = %[(n — Va2 — 2],y =

(v/,0), B> 0 and A € R. We now construct a family of functions which converge uniformly

to ¢. Define

1 2-n 1
[(x):= m[(m& +lzn — 112727 —1]and Ty(z) == B—%F(Bak(m —y) + ABeien).

Additionally, let

61(x) = (1 + k)T (2) = g(0) (1 + )T (2) + e ()22 4 g(0) e (dy ()25 2,

where d}, is the signed distance from z to 0B 1 (y + ep(Aep, — BL%)) Finally, we can define

~ Bey,
¢ as in (2.7.9).

A taylor series expansion gives I'(z) = z,, + Q(z) + O(]z|?) and thus
[p(x) = Aep, + xp + BepQ(x — y) + 0(6%), T € Bi.

Therefore, gz;k converges uniformly to #. The existence of a touching point zg implies a
sequence of constants, ¢j., and points, x} € Bl/Q, such that ¥ (z) := ¢p.(z +epcren) touches

wy, from below at xj. We will get the desired contradiction if 1}, is a strict subsolution to
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the free boundary problem associated to gj.

~Y

When v, # 0 we have Ay 2 Ad%(az + epcpen) > 0. If ¢ = 0 a straightfoward
computation shows 'y (z+epcren) = dp(v+epcren) = 0. Thus, |Vd%| = 0 whenever ;. = 0.
We can also compute (VF?)V = +1 on ¢;, = 0. Putting this together, g;.(z)(vy(2)")y +
Wr(2) )y = gr (@) (1 +ep) — 9(0)7x(1+exq). Recall, [gg(z) — g(0)] = |gx(2) — g (0)] < &7
which implies, gi,(z) > g(0) — &} Therefore, gp.(x)(Yp(2) )y + (Vr(2) v > 9(0)1eer(p —

q) — 8%’)%(1 +e.p). We are done if this last term is > 0. It is easy to see

9(0)1ex(p — q) — 2y (1 + exp) > 0 g(0)(p — q) > ex(1 + exp)

which is clearly true for k£ large enough.

2.8 Optimal Holder regularity and higher regularity

Proposition 2.7.5 tells us that if log(h) € C%¥(9Q) then 99 is locally the graph of a C'1*
function for some s > 0. In this section we will introduce tools from elliptic regularity theory

in order to establish the sharp estimate s = a. These tools will also allow us to analyze the

case when log(h) € C%®(9Q) for k > 1.

2.8.1 Partial Hodograph Transform and Elliptic Systems

We begin by recalling the partial hodograph transform (see (KS80), Chapter 7 for a short
introduction). Here, and throughout the rest of the paper, we assume that 0 € 9 and that,
at 0, e, is the inward pointing normal to 0f2.

Define F*: QY — HT by (z/,2,) = 2+ y = (2/,u"(z)). Because u, (0) = %(0) #0
(Proposition 2.5.10), DEF*(0) is invertible. So, by the inverse function theorem, there is
some neighborhood, OT, of 0 in Q" that is mapped diffeomorphically to U, a neighborhood

of 0 in the upper half plane. Furthermore, this map extends in a C'! fashion from OF to U
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(by Corollary 2.6.7).

Similarly, define FF~ : Q= — HT by (2/,2,) =2+ y = («/,u (x)). Again u, (0) # 0 so
DF~(0) is invertible. We can conclude, as above, that there is a neighborhood, O, of 0 in
2~ that is mapped diffeomorphically to U (perhaps after shrinking U) and that this map
extends in a C'! fashion from O~ to U.

Let ¢ : U — R be given by ¢¥(y) = xp,, where FT(2) = y. Because F* is locally one-to-
one, 1) is well defined. Similarly, define ¢ : U — R by ¢(y) = —x;, where F~(x) = y. Again,
F~ is locally one-to-one, so ¢ is well defined.

If vy denotes the normal vector to 92 pointing into €2 at y, then u satisfies

Aut(z) = 0, z€Q"
Au—(z) = 0, z€Q

(W), (@)h(x) = —(u )y, (@), = € O.

After our change of variables these equations become

L1 (i (v
0:5(177%)”?}( (), +2(¢—))

(2.8.1)

¢2

' (aﬁ_n)fz ( (), (aﬁn) )
with both equations taking place for y € U. On the boundary we have
o(y) +¢(y) =0, y € {yn =0} NT
h(y) 1 _ (2.8.2)
- = n = U,
(wncy)) o)~ Y o =0k0

where iL((y’,O)) = h((y, ¥ (y))).

Remark 2.8.1. The following are true of ¢,:
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o Assume 1h, ¢ € CF5(U N {y, = 0}) with k > 1,5 € (0,1) Then u* € Ck’s(@i) &
b, ¢ € CH3(T).

o Ifh e CH(0Q) and 1, ¢ € CFTL3(T) for any s,o0 € (0,1), then h € CF(U N {y, =

0}) with norm depending only on the Hélder norms of h and 1, ¢.
o ¢n, b >01inU.

Proof. Let us address the first statement; when £ > 2 this follows from standard elliptic reg-
ularity applied to the function @ (z) = u™ (z + ¢(2’,0)) (and a similarly defined @~). When
k =1, a theorem of Kellogg (Kel29) says that Vu® has non-tangential limit everywhere on
90N OF and that this non-tangential limit is in C%%. We can then argue as in the proof of
Corollary 2.6.7 to see that Vu™ € CO’S(@i); the desired result.

To prove the second statement when k& = 0, one computes

(1) —=R(y2)| = 1h((y1, (W) —h((Wh, v ()] < Cl(, (1) —(a, ¥ ()Y < Clyr—yal|®

where that last inequality follows because 1 € CL3(T). So h € CO({y, =0} NU). When
k > 1 we note that d;h(y,0) = 9;h(y, ¥(y)) + Onh(y, ¥ (1) (y). By assumption d;¢(y) is
at least as regular as dph(y, 1 (y)) so the result follows by induction.

The third claim follows immediately from construction. O

We now recall the concepts of an elliptic system of equations and coercive boundary
conditions. For the sake of brevity, our Definition 2.8.2 is not fully general—it considers
only a specific type of system in “divergence form”. A comprehensive introduction to elliptic
systems can be found in Morrey ((Mor66)), Chapter 6 (weak solutions in particular are

covered in Section 6.4).
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Definition 2.8.2. Let uk, k=1,2, satisfy

[ X d@pupe=[ S ap

Ix|<mq Ix|<ma
Iv|<t1+s1—mq

(2.8.3)
/ Z a?w(x)DWPDXC = / Z f;%DXQ
U izmg Y x1<me
|| <tatsa—mo
for all ¢ € C°(U). Additionally assume,
2 P
/ > <Z B,%X(Dx,Dy@)uk) DX¢dr = / > gyDiéda
UM =0} <y \k=1 N
B B (2.8.4)

2
2 k 2
/a > <Z B}, (Da, Dy, z)u )D%gdxz /8 — > GDide

UN{yn=0} |\ <py \k=1 =0} 1y 1<pe

for all § € C§°(OU N{yn = 0}). Throughout, v, x are multi-indices. Let hy, hy, be such that
B/%X is of order < tj, — h1 — p1 and BI%X s of order <t — ho — pa. This system has a
proper assignment of weights if there exists an hy such that hy and the ty,, m;, s;, hr, pr,

k,7,m = 1,2 satisfy the following conditions:
e min; s+t > 1 and min; gty +s; —m; >0
e minm; >0 and max s; = 0.
e minp, > 0 and min hg + hy +pr > 1
e mint; +hg > 0 and minhg — s; +m; > 0.
We say the above system is elliptic if the block diagonal matrix

1
M = (a7x)|X|=m17|7\=t1+81—m1 0

2
0 (avx)lx\:mz,lvlthHrmz

is an elliptic matrixz for any o € U. Additionally, when n = 2, we require that, for any
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linearly independent &, m € R2, half the roots of the equation

aflyx (5 + Zﬂ)x+v 0

det =0

0 G%X(f + 21)y+y

have positive imaginary part and the other half have negative imaginary part (above we
are using summation notation, where the upper left corner is taken over |x| = mq,|y| =
t1 + s1 —my and the lower right corner is taken over |x| = ma and |y| = to 4+ so — mo).

Finally, we say that the boundary equations are coercive if for all yo € U N {y, = 0}

the system
> ay (o) DT (y) = 0
[X[=m1,|v|=ti+s1—m
2 2
Z ax’y(?JO)DFH—XU (y)=0

Ix|=ma,|y|=ta+s2—mo

2 (2.8.5)
ST S B (Da, Dyyo)e* (4, 0) = 0
Ix|=p1 k=1
2
Z Z B’,%X(Dz, Dy, y0)0* ((4/,0)) = 0
IX[|=p2 k=1

has no solutions of the form v*((y,yn)) = eiy/'glﬁk(yn),k‘ = 1,2 where "(y,) — 0 as
Yn — 400 and & € R"1. Above, BZ‘X denotes the part of the operator ng which has order

tp, — hy — pr (the principle part).

Definition 2.8.3. We define the h — pu-conditions on the coefficients above:

(1) The agw satisfy the h — p-conditions, 0 < p1 < 1, in some open I':
Lif |yl = t; +s; —mj and [x| = m; then al, € CO¥(T)
2. if h—s; + x| > 0 then a}, € Ch=sitIXl#(T)

3. else, the as are in COH(T).
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(2) The operators B/:X satisfy the h — p-conditions, 0 < u < 1, in some open I, if
B}, (Dy, Dy, —) € CMHwpet(T A {y,, = 0}).

With these definitions in mind, we can state Theorem 6.4.8 of (Mor66) (note the theorem
in Morrey refers to a slightly more general class of elliptic systems). Our wording differs in

order to comport with the notation used above.

Theorem 2.8.4. [Theorem 6.4.8, (Mor66)] Let ub k= 1,2 satisfy an elliptic and coercive
system of equations on U (a neighborhood of 0 in the upper half plane with C°° boundary)
with a proper assignment of weights hg, hy, pr,ty, sj,m;. Let I' D U be an open domain.
Suppose the a’s and the coefficients in the By satisfy the h— p-conditions on T', 0 < p <1,
and suppose the a priori estimates: fg; € CPH(U), p=max{0,h — s; + |al}, g} € CTH(U)

with T = max{0, h + hy + ||} and u¥ € CttMi(U). Then

> HukHthh,u(U) <C|) ”fgz“CP#(U) + Y M5 lemnwy + D ¥ lcoqry |- (286)
K 7 k

g

Here C' is, again, independent of uk the f’s and the g’s.

2.8.2 Sharp CY regularity and C*% reqularity

It should be noted that in (Mor66) it is not explicitly made clear if Theorem 2.8.4 applies
when h < hg (nor if there should be additional restrictions on k). For the sake of completeness
we include a proof of Theorem 2.8.4 with hg = 0,h = —1 in Appendix A.1. This is exactly

the result we need to establish optimal C1¢ regularity.

Proposition 2.8.5. Let Q C R" be a 2-sided NTA domain with log(h) € C%*(9Q),a €
(0,1). In addition, if n > 3 also assume that ) is 6-Reifenberg flat, for § > 0 small, or that

Q is a Lipschitz domain. Then 0 is locally the graph of a CH® function.

Proof. Recall the functions ¢, which satisfy the system (2.8.1) with boundary conditions

(2.8.2). For t = (,0) € R we consider uM(z) 1= ¥(x + t) — ¢ (x) and u?>!(z) = d(z +
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2 gatisfy a system like the one in Definition 2.8.2.

t) — ¢(z); our plan is to show that ul?, u
Repeated applications of Theorem 2.8.4 will then give the desired result. Our proof has three

steps.

Step 1: constructing the elliptic and coercive system Both ¢ and 1 satisfy
divA(Du) = 0

. N2
where A(Du) = (—Z—}@, — - ( zn:_ll (3—;) + u%)) As such

1
div [ (D((a) + s((o + ) = ¥(a) D (a)ds = 0

1.t 2,

where a;;(p) = %Az(ﬁ) ¢ and u?! satisfy an analogous equation. Therefore, ul!, u?

satisfy (2.8.3) with allj(a:) = a;;(Dy(r)) and

1
=y (aijww(x)) - [ ai(Dta) + st 1) - ¢<x>>>>ds) Dyl

i

(and with corresponding definitions for 12, 4% in terms of ®). Notemqy =mg = 1,11 =to =2
e Lt 2t h(z) 2t 1 Lt _
and s1 = s9 = 0. On the boundary u"* 4+ u** = 0 and @+ Dypu ¢n(x+t)D”u =

iL(l‘) — h(z +t). Therefore, hy = 2,hy = 1 and p; = pp = 0. Set hg = 0. It is then easy to
see that this is a system with a proper assignment of weights. We will check in Step 3 that
our system satisfies the ellipticity, coercivity and regularity conditions of Definition 2.8.3.

Step 2: the iterative process By Proposition 2.7.5, u>t € C15(TU). In particular, the
k

aij’s and the Bs satisfy the h — p-conditions with h = —1 and p = s. It is also easy to

see that the f’s and g¢’s satisfy the conditions of Theorem 2.8.4 (we assume, of course, that
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a > s; otherwise the result is immediate). We conclude

2
||ij'||CS(U)+WNL(_)_}NL(_—HE)||08(Uﬂ{ynzo})+z ||Uk’t||C(U), (287)
k=1

b
[ u” ”CLS(U) S Z

n
i=1j=1
where the constant implicit in < is independent of . Some additional justification is needed
here: in Theorem 2.8.4 the constant may depend on the C%* norm of the a’s and B’s.
However, these coefficients have norms which can be bounded independently of ¢ and so the
constant intself may be taken to be independent of ¢.
For any x,y € U,
2||hllelz = yIP1t1*7* = min{2|z — y|“||hllca, 2[t|*[|A]|co}

] ) ) ) (2.8.8)
> |h(z) — h(z+1t) — h(y) + h(y +1)].

Thus ||(=) — h(— + t)HCO:S(UQ{yn:O}) < CJt|*~5. We also claim that if w,v € C%* then

[(w(=) = w(=+1))(v(=) = v(=+1)lgos < 4t [[wllcos vl cos

(this follows immediately from the triangle inequality and the fact that sup |w(—) — w(— +
t)] < [t|*|lw][co,s). From here we conclude ||f;||CO7S<U) < C|t|®. Plugging these estimates
into (2.8.7) we obtain ||ui’t||01,s(ﬁ) < K([t]° + ¢|*5 + |t]) (as Huk7t||CO(U) < Ct)).
Therefore, for j = 1,...,n, we have that
|Djib(z +t) + Dj(x — t) — 2D ()| = |Djub(z) — Djult(z — 1)

(2.8.9)
< [l st < Kt + [6]).

This implies ¢|Um{yn:0} e C1P where 8 = min{a, 2s} (see (Ste70), Chapter 5, Proposition
8). Remark 2.8.1 gives ¥, ¢ € Cl’ﬁ(U). Iterate until g = «.

Step 3: verifying the conditions of Definition 2.8.2 It is easy to calculate the
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symmetric (n X n)-matrix

=0 0 5
o =L o p2
DA(p) = Pn P
S | :
3
p Di 1 -1.2
B B =) (T

If 5 = D¢, D1, then p,, > 0 in U. Thus the matrices DA(D¢) and DA(Dv) are both elliptic
(justifying our above use of the Schauder estimates) and the system is also elliptic (with the

obvious weights t] = tg = 2,51 = s9 = 0). Addtionaly, when n = 2 we have the equation

1 1
—— (& +2m)? 2 (& 4 ) (& + em) — < (1 P&+ 2m)? = 0.
2 Py Py

All the coefficients of this polynomial are real, so if «, § are its roots it must be the case that
a = 8 which is exactly the desired result.

We must check coercivity at an arbitrary yo € U N {yp, = 0}. If ul = eiy/'flal(yn) solves
aij(Dw(yO))Dijul — 0 then @!(yy,) is a linear combination of functions of the form e"¥n

where 7 is a root of
SR P 1 2\ 2
—+2—%Zz§}x— —3(1+Zpi)x =0.
Pn Pn Pn

This equation has at most one root, call it 1, with strictly negative real part (as the sum
of the roots is purely imaginary). That @!(y,) — 0 as yn, — oo implies @' (y) = aqe¥n’,
Similarly, we define @2(y,) and conclude @2(y,) = a9e¥n™2, where ro has strictly negative
real part (if such an rq or ro does not exist then we are done).

As u! + 42 = 0 on the boundary it must be true that ay + ag = 0. Furthermore
7 2 1_
h(0)Dpu® — Dpu- =0 =
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h(O)a2r2 —ayry =0= B(O)Tg +r; =0.

But B(O)rg has strictly negative real part and r{ has strictly negative real part, so their sum

must have strictly negative real part and the system is coercive. O]

If log(h) € Ok for k> 1, the above argument can be modified slightly to give that 9

is locally the graph of a C* 74 function.

Proposition 2.8.6. Let 09 be a 2-sided NTA domain with log(h) € CHY(9Q) for 0 < o < 1.
If n > 3 also assume either that §2 is 6-Reifenberg flat for 6 > 0 small or that ) is a Lipschitz

domain. Then OS2 is locally the graph of a c*7ra function.

Proof. We follow the proof of Proposition 2.8.5; consider again ubt, ut. We have already
shown these functions satisfy an elliptic system with coercive boundary conditions. Note, by
Proposition 2.8.5, "t € C'1%(U) for all s € (0,1). In particular, the afj’s and the Bs satisfy
the h — p-conditions with h = —1 and p = s € (0, 1) to be choosen later. Furthermore, the
f’s and ¢’s satisfy the conditions of Theorem 2.8.4.

Follow Step 2 in the proof of Proposition 2.8.5 until we reach (2.8.8). Here we need an
estimate which incorporates the higher regularity of h. By Remark 2.8.1, heC LO‘(UQ {yn =

0}). For any z,y € R™ write, for the sake of brevity,

0y (x) = fla+y) + fla —y) —2f(2).
We can then estimate, for z,y € U N {y, = 0},

|62h(z + t) — 82h(x)| < ||Al| p1+a min{3|t], 2|y|' 0}
) ) (2.8.10)
< C|Al| sy [t T

Consequently, ||h(=) — h(— + H]lcos < C\t’l_p%a_

Proceed as in Step 2 of the proof of Proposition 2.8.5 until we reach (2.8.9), which now
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reads

Dyl + ) + Djh(w — 1) = 2Dj(x)| = |Djut () — Djult(z — 1) (2.8.11)
< M naltl® < K2 + 1) T,

Pick s € (0,1) such that

96 1+«
= 2s s = .
1+« 2+«

1+s—
Then ¢|Uﬂ{yn:0} c 0%7%a. By Remark 2.8.1 we can conclude that u € 02’2#%(5) and,

ergo, 1, ¢ € Cz’ﬁ(ﬁ). O

2.8.8 Higher reqularity

Once we have shown ¢, € C%5(U) for some s € (0,1), we can apply classical non-linear
“Schauder” type estimates (which require the C25. q priori, assumption). First we need to

define a non-linear, elliptic and coercive system.

Definition 2.8.7. Let uk, k=1,2 satisfy

Fy(y,ut,u?, Dut, Du?..., DSyl pletsi?)y — 0,y e U

(2.8.12)
Fy(y,ut,u?, Dut, Du?..., DI 52yl Dlets2y2)y — 0y e U
and on the boundary satisfy
Bi(y,ut,u?, Dut, Du?..., D=yl pla=hiy2y — 0y € U N {y, = 0}
(2.8.13)

Bo(y, ut,u?, Dut, Du?..., D =h2yl Dla=h2y2) = 0,y € U N {y, = 0}.

Where, max s; = 0 and min{t;, + s; }, min{t; — h;} > 0.

For a solution, v, to (2.8.12), we say that the system is elliptic along v at a point yy € U
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if the linear system

d
Li(yo, D)o + L3 (yo, D)o = Eﬂ(yo,vl ol .., DTS (0% 4 19?)))—0 510

d
Li(yo, D)é' + L3(yo. D)&* = — Falyo,v' + 10", .. D*F*2(0? + 16%) 1=

is elliptic. That is to say, if the block matriz A, where A;; = f/;, 18 elliptic. Here f/z 18 the
principle part of the operator L (for more details see Definition 3.1, Chapter 6 of (KS80)).

For a solution, v, to both equations (2.8.12) and (2.8.13) we say that the boundary con-
ditions are coercive along v at a point yo € U N {yn = 0} if the linear boundary conditions

d _
1 (0. D)o" + @i(yo. )" = - Bi(yo. v’ + o', ... D7 M(0? + 16%)) =g

d _
®3(yo, D)o + ®3(yg, D)* = EB2(?J0, ol 4ol D22 (02 41?2

(2.8.15)

are coercive for the (2.8.14) (see Definition 2.8.2, above, for the definition of coercive linear
boundary values. See Definition 3.2, Chapter 6 in (KS80) for more details). Note in all of

the above D" v is short hand for all nth-order derivatives of v.
We now recall the Schauder estimates for non-linear elliptic systems.

Theorem 2.8.8. [sece Theorem 12.2, (ADNG4), Theorem 3.3 in Chapter 6, (KS80) and
Chapter 6.8, (Mor66)] Assume b k=12 satisfy an elliptic and coercive non linear system
with proper weights like in Definition 2.8.7. Let 0 < a < 1 and {y = max(0, —h,) and assume
uk e C€0+tk’o‘(U) for k =1,2. Then for any { > {y if F; € C=5:% qnd B, € CtThra ip
all arguments, then ub € CHte(T7).

Additionally if F,G are C*° (analytic) functions, then uk is (analytic).
Our main theorem follows:

Theorem (Main Theorem). Let Q be a 2-sided NTA domain with log(h) € C*(9Q) where

k >0 is an integer and o € (0,1). Then:

e when n =2: 0N is locally given by the graph of a Chtla function.
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e when n > 3: there is some 0y, > 0 such that if § < d, and Q is §-Reifenberg flat or if

Q is a Lipschitz domain then 0 is locally given by the graph of a C*tL% function.

Similarly, if log(h) € C® or log(h) is analytic we can conclude (under the same flatness

assumptions above) that 0X) is locally given by the graph of a C°° (resp. analytic) function.

Proof. For k = 0 this result is contained in Proposition 2.8.5. For k£ = 1 Proposition 2.8.6
tells us that 99 is C25, u* € CQ’S(Qi) for some 0 < s < a. Theorem 2.8.8, applied as
below, combined with a standard difference quotient argument, like the ones above, gives
the optimal regularity; 99 given by the graph of a C>¢ function and u* € 02’0‘(ﬁi)

Let k> 2 and set g =0, =k —1,t] =t9 =2,51 = s9o =0 and hy = 2, hg = 1. First,
we will show that 1, ¢ satisfy an elliptic and coercive non-linear system with the above

weights (as defined in Definition 2.8.7). Argue similarly to prove C'° or analytic regularity.
Recall, divA(D¢) = 0 = divA(D)), where,

Therefore, the associated linear system at g is L% 1 dipiAj (w(yo))vilj, L% =0, L% =0 and
L%v2 = dipiAj (gzﬁ(yo))v?j. We have already established, in the proof of Proposition 2.8.5, that
this is an elliptic system.

We have Bi(y,v,¢,....) = ¢ + ¢ and Ba(y, v, 9,...) = h((y/,¥(y)))dn — 1, which are
unchanged by linearization. Again, in the proof of Proposition 2.8.5, we have shown that
these boundary conditions are coercive for the above linear equations. Furthermore, the
above values give a proper assignment of weights.

Finally, F}, F5, By are analytic in all arguments (recall that vy, ¢, # 0 in U) and By is
analytic in D, D¢ but has the same regularity in y and ¢ that A has in . By assumption,
h e Che = otth2a g5 By has the desired regularity. Additionally, by Proposition 2.8.6,
u has the required initial smoothness. Thus, applying Theorem 2.8.8 yields the desired
result. O
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CHAPTER 3
A FREE BOUNDARY PROBLEM FOR THE PARABOLIC
POISSON KERNEL

3.1 Introduction

In this paper we prove a parabolic analogue of Kenig and Toro’s Poisson kernel characteriza-
tion of vanishing chord arc domains, (KT03). This continues a program started by Hofmann,
Lewis and Nystrom, (HLN04), who introduced the concept of parabolic chord arc domains
and proved parabolic versions of results in (KT99) and (KT97) (see below for more details).
Precisely, we show that if € is a d-Reifenberg flat parabolic chord arc domain, with 6 > 0
small enough, and the logarithm of the Poisson kernel has vanishing mean oscillation, then
2 actually satisfies a vanishing Carleson measure condition (see (3.1.6)). The key step in
this proof is a classification of “flat” blowups (see Theorem 3.1.10 below), which itself was
an open problem of interest (see, e.g., the remark at the end of Section 5 in (HLN04)).

Let us recall the defintions and concepts needed to state our main results. In these we
mostly follow the conventions established in (HLN04). We then briefly sketch the contents of
the paper, taking special care to highlight when the difficulties introduced by the parabolic
setting require substantially new ideas. Throughout, we work in two or more spacial dimen-
sions (n > 2); the case of one spacial dimension is addressed in (Engl6). Finally, for more
historical background on free boundary problems involving harmonic or caloric measure we
suggest the introduction of (HLNO04).

We denote points (z1, ..., zp, t) = (X,t) € R” 1 and the parabolic distance between them
is d((X,1),(Y,s)) == |X = Y|+ |t — s|*2. For r > 0, the parabolic cylinder C,(X,t) :=

{(Y,s) | |s —t| < r%,|X —Y| < r}. Our main object of study will be Q, an unbounded,

0. The contents of this chapter are taken from a preprint with the same title which has been submitted
for publication. While writing that paper I was partially supported by the National Science Foundation’s
Graduate Research Fellowship, Grant No. (DGE-1144082). I also thank Abdalla Nimer for helpful comments
regarding Section 3.5 and Professor Tatiana Toro for helping me overcome a technical difficulty in Section
3.6.

67



connected open set in R”t! guch that QF is also unbounded and connected. As the time
variable has a “direction” we will often consider Q%0 := QN {(X,s) | s < ty}. Finally, for
any Borel set F' we will define o(F) = [pdosdt where doy := ’H”*l|{szt}, the (n — 1)-
dimension Hausdorff measure restricted to the time-slice t. We normalize H"~! so that
o(C1(0,0) N V) = 1 for any n-plane through the origin containing a direction parallel to
the time axis (we also normalize the Lebesgue measure, dXdt, by the same multiplicative

factor).

Definition 3.1.1. We say that Q is 6-Reifenberg flat, § > 0, if for R > 0 and (Q, 1) € 09
there exists a n-plane L(Q, T, R), containing a direction parallel to the time axis and passing

through (Q,T), such that

{(Y,s)+rneCr(Q,7)|r>0R,(Y,s) € L(Q,7,R)} CQ
(3.1.1)

{(Y,s) =i € CR(Q,7) | r >8R, (V,s) € L(Q,7, R)} C R"TI\Q.
Where v is the normal vector to L(Q, T, R) pointing into Q0 at (Q,T).

The reader may be more familiar with a definition of Reifenberg flatness involving the
Hausdorff distance between two sets (recall that the Hausdorff distance between A and B
is defined as D(A, B) = sup,ec 4 d(a, B) 4+ suppep d(b, A)). These two notions are essentially

equivalent as can be seen in the following remark (which follows from the triangle inequality).

Remark 3.1.2. If Q is a §-Reifenberg flat domain, then for any R > 0 and (Q,7) € 09
there exists a plane L(Q, T, R), containing a line parallel to the time azxis and through (Q,T),
such that D[Cr(Q,7) N L(Q, T, R),Cr(Q,7) N 09| < 40R.

Similarly, if (3.1.1) holds for some 0y and there always ezists an L(Q,T, R) such that
DICr(Q,7)NL(Q, 7, R),Cr(Q,7) N 0N < OR then (3.1.1) holds for 24.

Let 0((Q,7), R) := infp %D[CR<Q,T) N P,Cr(Q,7) N 0N where the infimun is taken

over all planes containing a line parallel to the time axis and through (Q, 7).
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Definition 3.1.3. We say that Q (or Q0 ) is vanishing Reifenberg flat if Q) is §- Reifenberg

flat for some & > 0 and for any compact set K (alternatively K CC {t < tp}),

lim sup  0((Q,7),7)=0. (3.1.2)
10 (Q,r)e Ko

Definition 3.1.4. 012 is Ahflors regular if there ezists an M > 1 such that for all (Q,T) €

o) and R > 0 we have

R n+1
(5) < o(CR(Q,7)NAN) < MR"

Note that left hand inequality follows immediately in a J-Reifenberg flat domain for

d > 0 small enough (as Hausdorff measure decreases under projection, and Cp /Q(Q,T) N

L(Q, 7, R) C projp.r.r)(Cr(Q,7) N 0L)).
Following (HLN04), define, for » > 0 and (Q, ) € 99,

7,7) = 1n r_n_?’ 20 e
2@ Pf( Loy 10 PP <X,t>) (3:13)

where the infimum is taken over all n-planes containing a line parallel to the t-axis and going
through (Q, 7). This is an L? analogue of Jones’ f-numbers ((Jon90)). We want to measure

how v, “on average”, grows in r and to that end introduce

dv(Q,7,7) = (Q, 7,7)do(Q, 7)r Ldr. (3.1.4)

Recall that y is a Carleson measure with norm ||p||+ if

sup sup p((CR(Q,7) NOQ) x [0, R]) < |lull+ R" . (3.1.5)
R>0(Q,7)edq

In analogy to David and Semmes (DS93) (who defined uniformly rectifiable domains in

the isotropic setting) we define a parabolic uniformly rectifiable domain;
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Definition 3.1.5. If Q C R"™ is such that OQ is Ahlfors reqular and v is a Carleson
measure then we say that Q is a (parabolic) uniformly rectifiable domain.

Asin (HLN04), if Q is a parabolic uniformly rectifiable domain which is also 6-Reifenberg
flat for some 6 > 0 we say that € is a parabolic regular domain. We may also refer to
them as parabolic chord arc domains.

Finally, if Q) is a parabolic reqular domain and satisfies a vanishing Carleson measure

condition,

lim sup  sup p_n_lu((C'p(Q,T) NoN) x [0,p]) =0 (3.1.6)
RI00<p<R (Q,7)€dN

we call  a vanishing chord arc domain. Alternatively, if (3.1.6) holds when the 0S) is

replaced by K for any K CC {s < to} then we say that Q0 4s a vanishing chord arc domain.

Readers familiar with the elliptic theory will note that these definitions differ from, e.g.
Definition 1.5 in (KT97). It was observed in (HLNO03) that these definitions are equivalent in
the time independent setting whereas the elliptic definition is weaker when €2 changes with
time. Indeed, in the time independent setting, uniform recitifiability with small Carleson
norm and being a chord arc domain with small constant are both equivalent to the existence
of big pieces of Lipschitz graphs, in the sense of Semmes (Sem91), at every scale (see Theorem
2.2 in (KT97) and Theorem 1.3 in Part IV of (DS93)). On the other hand, in the time
dependent case, even o(Ap(Q, 7)) = R"! does not imply the Carleson measure condition
(see the example at the end of (HLNO03)).

The role of this Carleson measure condition becomes clearer when we consider domains
of the form Q = {(X,t) | zp, > f(x,t)} for some function f. Dahlberg (Dah77) proved that
surface measure and harmonic measure are mutually absolutely continuous in a Lipschitz do-
main. However, Kaufman and Wu (KW88) proved that surface measure and caloric measure
are not necessarily mutually absolutely continuous when f € Lip(1,1/2). To ensure mutual
absolute continuity one must also assume that the 1/2 time derivative of f is in BMO (see

(LM95)). In (HLNO4) it is shown that the BMO norm of the 1/2 time derivative of f can

70



be controlled by the Carleson norm of v. Morally, the growth of o(AR(Q, 7)) controls the
Lip(1,1/2) norm of f but cannot detect the BMO norm of the 1/2-time derivative of f (for
n = 1 this is made precise in (Engl6)).

For (X,t) € Q, the caloric measure with a pole at (X,¢), denoted w(:t) (=), is the
measure associated to the map f — U f(X ,t) where U 1 solves the heat equation with Dirichlet
data f € Cp(092). If Q is Reifenberg flat the Dirichlet problem has a unique solution and

X.t)

this measure is well defined (in fact, weaker conditions on  suffice to show w( is well

defined c.f. the discussion at the bottom of page 283 in (HLNO04)). Associated to w(%:) is

the parabolic Green function G(X,t,—,—) € C(Q\{(X,t)}), which satisfies

G(X,t,Y,s) >0, V(Y,s) € Q\{(X,1)},

G(X,t,Y,s) =0, V(Y,s) € 09,

(FP)
_(as + AY)G(Xv t? Y» 8) :50((X7 t) - (}/7 8))7
/ odwt) :/ G(X,1,Y, s)(Ay — ds)pdYds, Yo € CO(R™),
\ o0 Q
(Of course there are analogous objects for the adjoint equation; G(—, —,Y, s) and o(Y:5) .) We

(X.t)

are interested in what the regularity of w can tell us about the regularity of 9€2. Observe

that by the parabolic maximum theorem the caloric measure with a pole at (X, ¢) can only

(X0 will only give information

“see” points (Q,7) with 7 < ¢t. Thus, any regularity of w
about QF (recall Q' := QN {(X,s) | s < t}). Hence, our results and proofs will often be
clearer when we work with w, the caloric measure with a pole at infinity, and u € C'(2), the

associated Green function, which satisfy

u(Y,s) >0, Y(Y,s) €,
u(Y,s) =0, Y(Y,s) € 09,
(IP)
—(0s + Ay)u(Y, s) =0, ¥(Y,s) € Q

/ wdw :/ u(Y, s)(Ay — ds)edYds, Vo € C°(R™H).
o0 Q
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(For the existence, uniqueness and some properties of this measure/function, see Appendix
B.3). However, when substantial modifications are needed, we will also state and prove our
theorems in the finite pole setting.

(X.1)

Let us now recall some salient concepts of “regularity” for w . Denote the surface ball

at a point (@, 7) € 9 and for radius r by A.(Q,7) := Cp(Q, 7) N IS

Definition 3.1.6. Let (X, ty) € 2. We say wXt) s q doubling measure if, for every
A > 2, there exists an c(A) > 0 such that for any (Q,7) € 9Q and r > 0, where | Xy — Q|* <

A(tg —7) and tg — 7 > 8r2, we have
W00 (Ag0(Q. 7)) < ()OO (AL(Q. 7)), (3.1.7)

Alternatively, we say w is a doubling measure if there exists a ¢ > 0 such that

wW(A9(Q, 7)) < cw(Ar(Q, 7)) for all r >0 and (Q,7) € ON.

Definition 3.1.7. Let (X, tg) € €, such that w(X0:0) 45 g doubling measure, wXoto) << o

on 80 and kX00)(Q, 1) = dw(;fg,to) (Q,7). We say that wX0:00) € A (do) (is an Asc-
weight ) if it satisfies a “reverse Hélder inequality.” That is, if there exists a p > 1 such that
if A>2(Q,7) € 9Q,r > 0 are as in Definition 3.1.6 then there exists a ¢ = ¢(p, A) > 0

where

p
f k<X0¢0><@,T>pda<@,T>sc(][ k<X0»t0><@,r>da<@m>>. (3.1.8)
Aoy (Q,7) A (Q,7)

We can similarly say w € Aso(do) if w << o on 00, h(Q,T) = g—‘;’, and there ezxists a

¢ > 0 such that

p
][ h(Q,T)Pdo(Q,T) < ¢ (7[ h(Q,T)dO’(Q,T)) : (3.1.9)
Agr(Qy7) Ar(Q,T)

In analogy to the results of David and Jerison (DJ90), it was shown in (HLNO4) that if

Q is a “flat enough” parabolic regular domain, then the caloric measure is an Ay, weight
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(note that (HLNO4) only mentions the finite pole case but the proof works unchanged for a

pole at infinity, see Proposition B.3.5).

Theorem (Theorem 1 in (HLNO04) ). If Q is a parabolic regular domain with Reifenberg

X0.to)

constant &y > 0 sufficiently small (depending on M, ||v||+) then w! is an Axo-weight.

Closely related to Asg weights are the BMO and VMO function classes.

Definition 3.1.8. We say that f € BMO(02) with norm || f|« if

sup s f () = Sy g ldo(Pon) < 1]
r>0(Q,7)edN Cr(Q,7)

where fCT(Q,T) = fCr(Q - f(P,n)do(P,n), the average value of f on Cp(Q,T).
Define VMO(0R) to be the closure of uniformly continuous functions vanishing at infinity
in BMO(99) (analogously we say that k(X010) € VMO(901) if k(Xo:to) € VMO(AL(Q, 7))

for any (Q,7) € 9Q,r > 0 which satisfies the hypothesis of Definition 3.1.6 for some A > 2).

This definition looks slightly different than the one given by equation 1.11 in (HLN04).
In the infinite pole setting it gives control over the behavior of f on large scales. In the finite
pole setting it is actually equivalent to the definition given in (HLN04) as can be seen by a
covering argument.

In analogy with the elliptic case, if {2 is a vanishing chord arc domain then we expect

control on the small scale oscillation of log(k(X0:t0)),

Theorem (Theorem 2 in (HLNO04)). If Q is chord arc domain with vanishing constant and

(Xo,t0) € Q then log(kXo-0)) € VMO(991).

Our main result is the converse to the above theorem and the parabolic analogue of the

Main Theorem in (KT03).

Theorem 3.1.9. [Main Theorem] Let Q C R™ 1 be a §-Reifenberg flat parabolic reqular

domain with log(h) € VMO(9RQ) (or log(kXo-10)) € VMO(9Q)). There is a 6, > 0 such
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that if 6 < 0p, then Q is a parabolic vanishing chord arc domain (alternatively, QU is a

vanishing chord arc domain).
Contrast this result to Theorem 3 in (HLNO04);

Theorem (Theorem 3 in (HLNO04)). Let Q be a §-Reifenberg flat parabolic reqular domain

with (X, 1) € Q. Assume that
(i) w(X’f)(—) asymptotically optimally doubling,
(ii) log k(X0 € VMO(90h),

(111) ||v||+ small enough.

Then QO is a vanishing chord arc domain.

Our main theorem removes the asymptotically optimally doubling and small Carleson
measure hypotheses. As mentioned above, this requires a classification of the “flat” limits of

pseudo-blowups (Definition 3.4.1 below), which was heretofore open in the parabolic setting.

Theorem 3.1.10. [Classification of “flat” Blowups| Let Qoo be a d-Reifenberg flat parabolic
reqular domain with Green function at infinity, uso, and associated parabolic Poisson kernel,
hoo (i-e. hoo = dé*i-}_aoo) Furthermore, assume that |Vus| < 1 in Qoo and |hoo| > 1 for o-
almost every point on 0. There exists a o, > 0 such that if o, > 6 > 0 we may conclude

that, after a potential rotation and translation, Qs = {(X,t) | x,, > 0}.

Nystrom (Nys06a) proved a version of Theorem 3.1.10 under the additional assumptions
that ) is a graph domain and that the Green function is comparable with the distance
function from the boundary. Furthermore, under the additional assumption that €2 is a graph
domain, Nystrom (Nys12) also proved that Theorem 3.1.10 implies Theorem 3.1.9. Our proof
of Theorem 3.1.10 (given in Appendix B.1) is heavily inspired by the work of Andersson and
Weiss (AW09), who studied a related free boundary problem arising in combustion. However,

we are unable to apply their results directly as they consider solutions in the sense of “domain
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variations” and it is not clear if the parabolic Green function is a solution in this sense. For

example, solutions in the sense of domain variations satisfy the bound

/ Ol < Cyr™, YCp(X, 1) € 9,
C (X 1)

and it is unknown if this inequality holds in a parabolic regular domain (see, e.g., the remark
at the end of Section 1 in (Nys12)). Furthermore, the results in (AW09) are local, whereas
Theorem 3.1.10 is a global result. Nevertheless, we were able to adapt the ideas in (AW09)
to our setting. For further discussion of exactly how our work fits in with that of (AW09)
see the beginning of Appendix B.1 below.

Let us now briefly outline this paper and sketch the contents of each section. The paper
follows closely the structure, and often the arguments, of (KT03). In Section 3.2 we prove
some technical estimates which will be used in Sections 3.3 and 3.4. Section 3.3 is devoted
to proving an integral bound for the gradient of the Green function. The arguments in
this section are much like those in the elliptic case. However, we were not able to find the
necessary results on non-tangential convergence in parabolic Reifenberg flat domains (e.g.
Fatou’s theorem) in the literature. Therefore, we prove them in Appendix B.4. Of particular
interest may be Proposition B.4.3 which constructs interior “sawtooth” domains (the elliptic
construction does not seem to generalize to the parabolic setting). Section 3.4 introduces
the blowup procedure and uses estimates from Sections 3.2 and 3.3 to show that the limit
of this blowup satisfies the hypothesis of Theorem 3.1.10. This allows us to conclude that 2
is vanishing Reifenberg flat and, after an additional argument, gives the weak convergence
of surface measure under pseudo-blowup.

By combining the weak convergence of o with the weak convergence of no under pseudo-
blowups (the latter follows from the theory of sets with finite perimeter) we can conclude
easily that n € VMO (morally, bounds on the growth of o(A,(Q, 7)) give bounds on the

BMO norm of 7, see Theorem 2.1 in (KT97)). Therefore, in the elliptic setting, the weak
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convergence of surface measure is essentially enough to prove that € is a vanishing chord
arc domain. On the other hand, to show that €) is a parabolic vanishing chord arc domain
one must establish a vanishing Carleson measure condition (equation (3.1.6)). Furthermore,
the aforementioned example at the end of (HLNO3) shows that control of the growth of
o(Ar(Q, 7)) does not necessarily give us control on ||v|4+. In Section 3.5 we use purely
geometric measure theoretical arguments to prove Theorem 3.5.1; that a vanishing Reifenberg
flat parabolic chord arc domain whose surface measure converges weakly under pseudo-
blowups must be a parabolic vanishing chord arc domain. To establish this (and thus finish
the proof of Theorem 3.1.9), we adapt approximation theorems of Hofmann, Lewis and
Nystrom, (HLNO03), and employ a compactness argument.

The remainder of our paper is devoted to free boundary problems with conditions above

the continuous threshold. In particular, we prove (stated here in the infinite pole setting),

Theorem 3.1.11. Let Q C R™"L be a parabolic reqular domain and k € N,a € (0,1) such
that log(h) € Ckte(k+a)/2(Rrtly * There is a 6, > 0 such that if 6, > 6 > 0 and Q is
d-Reifenberg flat, then Q is a Ck+1+a’<k+1+a)/2(Rn+l) domain.

Furthermore, if log(h) is analytic in X and in the second Gevrey class (see Definition
3.7.7) in t then, under the assumptions above, we can conclude that € is the region above
the graph of a function which is analytic in the spatial variables and in the second Gevrey

class in t. Similarly, if log(h) € C*° then 02 is locally the graph of a C*° function.

The case of k = 0 follows in much the same manner as the proof of Theorem 3.1.10 but
nevertheless is done in full detail in Section 3.6. For larger values of k, we use the techniques
of Kinderlehrer and Nirenberg (see e.g. (KN78)), parabolic Schauder-type estimates (see
e.g. (Lie86)) and an iterative argument inspired by Jerison (Jer90). These arguments are
presented in Section 3.7.

Finally, let us comment on the hypothesis of Theorem 3.1.11. For n > 3, this theorem
is sharp. In particular, Alt and Caffarelli, (AC81), constructed an Ahlfors regular domain

Q ¢ R3 with log(h) = 0 but which is not a C'* domain (it has a cone point at the origin). A
76



cylinder over this domain shows that the flatness condition is necessary. On the other hand,
Keldysh and Lavrentiev (see (KL37)) constructed a domain in R? which is rectifiable but
not Ahlfors regular, where h = 1 but the domain is not a C'! domain. A cylinder over this
domain shows that the Parabolic regular assumption is necessary. In one spatial dimension,
our upcoming preprint (Engl6) shows that the the flatness condition is not necessary (as
topology implies that a parabolic NTA domain is a graph domain). When n = 2 it is not
known if the flatness assumption is necessary and we have no intuition as to what the correct

answer should be.

3.2 Notation and Preliminary Estimates

As mentioned above, all our theorems will concern a d-Reifenberg flat, parabolic regular
domain 2. Throughout, § > 0 will be small enough such that €2 is a non-tangentially
accesible (NTA) domain (for the definition see (LM95), Chapter 3, Sec 6, and Lemma 3.3
in (HLN04)). In particular, for each (Q,7) € 99 and r > 0 there exists two “corkscrew”
points, AX(Q,7) = (XF(Q,7),t7(Q,7)) € Cr(Q,7)NQ such that d(AF(Q,7),dQ) > r/100
and min{t;7(Q,7) — 7,7 — t;(Q,7)} > r2/100.

Our theorems apply both to finite and infinite pole settings. Unfortunately, we will often
have to treat these instances seperately. Fix (for the remainder of the paper) (Xg,ty) € Q
and define u(XO’tO)(—, —) = G(Xo, tg,—, —), the Green function (which is adjoint-caloric),
with a pole at (Xo,%p). As above, w(Xo:10) is the associated caloric measure and k(X0:00) the
corresponding Poisson kernel (which exists by (HLNO04), Theorem 1). In addition, u is the
Green function with a pole at co, w the associated caloric measure and h the corresponding
Poisson kernel. We will always assume (unless stated otherwise) that log(h) € VMO(052) or
log(k(Xo:t0)) € VMO(901).

Finally, define, for convenience, the distance from (X, t) € 2 to the boundary

X = it 10 - @7
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3.2.1 Estimates for Green Functions in Parabolic Reifenberg Flat Domains

Here we will state some estimates on the Green function of a parabolic Reifenberg flat domain
that will be essential for the gradient bounds of Section 3.3. Corresponding estimates for
the Green function with a pole at infinity are discussed in Appendix B.3.

We begin by bounding the growth of caloric functions which vanish on surface balls.
The reader should note this result appears in different forms elsewhere in the literature (e.g.
(LM95), Lemma 6.1 and (HLN04) Lemma 3.6), so we present the proof here for the sake of

completeness.

Lemma 3.2.1. Let Q) be a -Reifenberg flat domain and (Q,7) € 0N2. Let w be a continuous
non-negative solution to the (adjoint)-heat equation in Cop(Q,T) N Q such that w = 0 on
Cor(Q,7) N ON. Then for any € > 0 there exists a 6y = dg(e) > 0 such that if § < &y there

exists a ¢ = ¢(dg) > 0 such that

w(X,t) <c (d((X’ 0. (@, T)))l_g sup w(Y,s) (3.2.1)
" (YvS)EC%“(Q?T)

whenever (X, t) € Cr(Q,7) N Q.

Proof. We argue is in the proof of Lemma 2.1 in (KT03). Let (@Q,7) € 99 and r > 0.
Let vy be adjoint caloric in Co,(Q,7) N 2 such that vg = 0 on Ag,.(Q,7) and vg = 1 on

OpCopr(Q,7) N Q. By the maximum principle,

w(X,t) <[ sup w(Y, s)|vo(X, t). (3.2.2)
(V,8)eCor (Q,T)

We will now attempt to bound vy from above.

Assume, without loss of generality, that the plane of best fit at (@), 7) for scale 2r is
{zp, = 0} and that (Q,7) = (0,0). Define A = {(X,t) = (z,zp,t) | zn > —4rd}. Tt is
a consequence of Reifenberg flatness that C)(0,0) N Q2 C Cy(0,0) N A. Define hy to be an

adjoint-caloric function in A N C9,.(0,0) such that hg = 0 on A N C,-(0,0) and hg = 1 on
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0pC2y(0,0)NA. By the maximum principle ho(X,t) > vo(X,t) for all (X,t) € Co,(0,0) N

Finally, consider the function gy defined by go(z, xn,t) = x, + 46r. It is clear that g
is an adjoint caloric function on A N C9,(0,0). Furthermore, hg, gy both vanish on OA N
C9-(Q, 7). Recall that (adjoint-)caloric functions in a cylinder satsify a comparison principle

(see Theorem 1.6 in (FGS86)). Hence, there is a constant C' > 0 such that

ho(X 1) ho(0,7/2,0)
o) SO0 XD ECL0,0nA (3.2.3)

Let (X,t) = (x,a,t). Then equation (3.2.3) becomes

ho(X, ) < ¢ 40T (3.2.4)

r

It is then easy to see, for any § < 1 and (X, t) € Cp,.(0,0), that vg(X,t) < ho(X,t) < C(0+49).

Let 6 = 6 and iterate this process. The desired result follows. n

Using the parabolic Harnack inequality, we can say more about SUD(Y,5)€Cs,(Q,7) w(Y, s).
Lemma 3.2.2. [Lemma 3.7 in (HLNOJ)] Let Q,w, (Q,T),0d be as in Lemma 3.2.1. There
is a universal constant c(dp) > 1 such that if (Y,s) € QN C,. 5(Q,7) then

w(Y.s) < cw(45(Q, 7)),

where we choose A~ if w is a solution to the adjoint-heat equation and AT otherwise.

As the heat equation is anisotropic, given a boundary point (@, 7) it will behoove us to

distinguish the points in € which are not much closer to (@, 7) in time than in space.
Definition 3.2.3. For (Q,7) € 02 and A > 100 define the time-space cone at scale r

with constant A, TiT(Q,T), by

Th Q7)) = {(X,1) € Q| |X = Q> < Alt — 7|, £(t — 7) > 4r*}.
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The next four estimates are presented, and proven, in (HLN04). We will simply state
them here. The first compares the value of the Green function at a corkscrew point with the

caloric or adjoint caloric measure of a surface ball.

Lemma 3.2.4. [Lemma 3.10 in (HLNO04)] Let Q,(Q,T),dy be as in Lemma 3.2.1. Addi-
tionally suppose from some A > 100,r > 0 that (X,t) € T;{T(Q,T). There exists some
c=c(A) > 1 (independent of (Q, 7)) such that

THG(X AT (Q,7)) < (AL 5(Q,7)) < e G(X, L AZ(Q,7)).
Similarly if (X,t) € TZ’T(Q, T) we have
IGAL(Q,7), X, 1) @A, 5(Q,7) < ar"GAF(Q, ), X 1),

We now recall what it means for an (adjoint-)caloric function to satisfy a backwards in

time Harnack inequality (see e.g. (FGS86)).

Definition 3.2.5. If (Q,7) € 9Q and p > 0 we say that w > 0 satisfies a backwards
Harnack inequality in Cy(Q,7) N provided w is a solution to the (adjoint-)heat equation in

Cy(Q,7) N and there exists 1 < X\ < oo such that

w(X,t) <  w(X, 1), V(X,1),(X,1) e Cr(Z,s),

where (Z,s),r are such that Co.(Z,s) C Cp(Q,T) NS
In Reifenberg flat domains, the Green function satisfies a backwards Harnack inequality.

Lemma 3.2.6. [Lemma 3.11 in (HLNO04)] Let Q,(Q,T),dy be as in Lemma 3.2.1. Addi-
tionally suppose from some A > 100,r > 0 that (X,t) € TXT(Q,T). There exists some

c=c(A) > 1 such that

G(X,t, A7 (Q,7)) < cG(X, 1, AT (Q.7)).
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On the other hand, if (X,t) € Ty (Q,T) we conclude
G(AS(Q,7), X, ) < cG(A; (Q.7), X, ).

Lemmas 3.2.4 and 3.2.6, imply that (adjoint-)caloric measure is doubling.

Lemma 3.2.7. [Lemma 3.17 in (HLNO4)] Let Q. (Q,T), g be as in Lemma 3.2.1. Addition-
ally suppose from some A > 100,r > 0 that (X,t) € TXT(Q, 7). Then there exists a constant

c=c(A) > 1 such that
WEDAHQ, 7)) € DA, (@, 7).

If (X,t) € Ty (Q,7) a similar statement holds for &.

In analogy to Lemma 4.10 in (JK82), there is a boundary comparison theorem for
(adjoint-)caloric functions in Reifenberg flat domains (see also Theorem 1.6 in (FGS86),

which gives a comparison theorem for caloric functions in cylinders).

Lemma 3.2.8. [Lemma 3.18 in (HLNOJ)] Let Q,(Q,7),d0 be as in Lemma 3.2.1. Let
w,v > 0 be continuous solutions to the (adjoint)-heat equations in Co,.(Q, T)NQ with w,v > 0
in QN Cor(Q,7) and w = v = 0 on Copn(Q,7) NON. If w,v satisfy a backwards Harnack

inequality in Cop(Q,T) N for some X > 1 then

w(AE(Q, 7))
v(AF(Q, 7))

< (V) V(Y. 8) € CpolQ.7) N

Where we choose A~ if w,v are solutions to the adjoint heat equation and A" otherwise.
As in the elliptic setting, a boundary comparison theorem leads to a growth estimate.

Lemma 3.2.9. [Lemma 3.19 in (HLN04)] Let Q, (Q, T), 6o, w, v be as in Lemma 3.2.8. There
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exists a 0 <y =7v(\) <1/2 and a ¢ = ¢(\) > 1 such that

w(X, t)v(Y,s)

P\
w(Y, s)v(X,t) 1' = C<_>  V(X1), (Y, s) € Cp(Q,7) N

whenever 0 < p < r/2.

3.2.2 VMO functions on Parabolic Chord Arc Domains

Here we state some consequences of the condition log(h) € VMO(9f2) or log(k(Xo-t0)) ¢
VMO(9Q%). Our first theorem is a reverse Holder inequality for every exponent. This is
a consequence of the John-Nirenberg inequality (JN16), in the Euclidean case (see Garnett
and Jones, (GJ78)). However, per a remark in (GJ78), the result remains true in our setting
as 0f) is a “space of homogenous type”. For further remarks and justification, see Theorem

2.1 in (KT03), which is the analogous result for the elliptic problem.

Lemma 3.2.10. Let Q C R be a parabolic chord arc domain and log(f) € VMO(99).

Then for all (Q,7) € 0 and r > 0 and 1 < g < oo we have

1/q
(7[ fqdo> <C ][ fdo. (3.2.5)
Ar(Q,7) Ar(Q,7)

Here C' depends only on the VMO character of f, the chord arc constants of ), n and q.

For the Poisson kernel with finite pole a localized analogue of the above Lemma holds

(and is proved in much the same way):

Lemma 3.2.11. Let (Xq,tg) € Q with (Q,7) € 02, A > 100, > 0 such that (Xq,tg) €
TX’T(Q,T). If log(k(Xo:t0)y € VMO(Q!0) then, for any 1 < q < 0o

1/q
(][ (k:XO’tO)qda> <C ][ (Xo:to) g (3.2.6)
A (Q,7) A (@)
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Here C' > 0 depends on n,q, A the VMO character of k(X00) and the chord arc constants

of €.

Substitute the poisson kernel, h := g—‘g, for f in Lemma 3.2.10 to glean information on
the concentration of harmonic measure in balls. This is the parabolic analogue of Corollary

2.4 in (KT03).

Corollary 3.2.12. If Q, h are as above, then for all e > 0,(Q,7) € 9Q,7 > 0 and E C
AT(QaT)

-1 ﬂ Ie ﬂ ﬂ 1—¢
¢ <0(Ar(62,7))) =A@ ¢ <a(AT(Q,T))) : (3.2.7)

Here C' depends on n, e, the chord arc constants of € and the VMO character of h.

Similarly, in the finite pole case we can conclude:

Corollary 3.2.13. Let (X, 1) € Q,log(k(Xo-0)) € VMO(9910), and A > 100,r > 0 and
(Q, 1) € O such that (X, tg) € TXT<Q,T). Then for alle >0 and E C Ar(Q,T)

-1 LE’) 14 w(XO’tO)(E) ﬂ 1—e
C (a( 7'))> = W(XOatO)(AT(Q77->> <C (U<AT(Q,T)>> : (3.2.8)

Here C depends on n,e, A, the chord arc constants of Q and the VMO character of k(Xo:to)

Finally, the John-Nirenberg inequality and the definition of VMO lead to the following
decomposition (see the discussion in the proof of Lemma 4.3 in (KT03) for more detail-

specifically equations 4.95 and 4.96).

Lemma 3.2.14. Let Q, h be as above. Givene > 0 and (Qg, m9) € ON2 there exists anr(e) > 0
such that for p € (0,7(¢)) and (Q,7) € A1(Qo, 70) there exists a G(Q, T, p) C Ap(Q,T) such
that o(Ap(Q. 7)) < (1 +€)a(G(Q, 7, p)) and, for all (P.n) € G(Q,T,p),

(1+5>—1][A o )hdagh(P,n)g(lJre)][A o )hda. (3.2.9)
pl&,T pl&,T
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And in the finite pole setting:

Lemma 3.2.15. Let €2, k:(XO’tO), (Q,7) € 0Q,r>0,A>100 be as above. Given € > 0 exists
an r(€) > 0 such that for p € (0,7(e)) and (Q,7) € Cr(Q,T) there exists a G(Q,7,p) C
Ap(Q. 7) such that o(Ap(Q, 7)) < (1+2)a(G(Q,7.p)) and, for all (P.n) € G(Q.7,p),

1+ 5)_1][  kKoto)gy < pKoto)(p o) < (1 + 5)][ - gXot)gy (3.2.10)
Ap(Q,7) Ap(Q,7T)

3.3 Bounding the Gradient of the Green Function

As mentioned in the introduction, the first step in our proof is to establish an integral
bound for Vu (and VG(Xg, tg, —, —)). Later, this will aid in demonstrating that our blowup
satisfies the hypothesis of the classification result, Theorem 3.1.10.

We begin by estimating the non-tagential maximal function of the gradient. Recall the

definition of a non-tangetial region:

Definition 3.3.1. For a > 0,(Q,7) € 09 define, I'n(Q,T), the non-tangential region at

(Q, ) with aperture a, as
Fa(@Q,7) ={(X,t) € Q[ (X, 1) = (Q,7)]| < (1 +a)d(X,1)}.

For R>0 let TR(Q,7) :=T(Q,7) N CRr(Q, ) denote the truncated non-tangential region.

Associated with these non-tangential regions are maximal functions

No(/)(Q,T) = sup |f(X,1)]

(X,t)EFQ(Q,T)

NEAQ, ) i=  sup [F(X,0)].
(X t)erf(Q,n)
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Finally, we say that f has a non-tangential limit, L, at (Q,T) € 0 if for any o > 0

lim f(X,t)=1L.
(X,t)=(Q,7)
(Xat)GFOé (QaT)

In order to apply Fatou’s theorem and Martin’s repesentation theorem (see Appendix
B.4) we must bound the non-tagential maximal function by a function in L2 We argue as in

the proof of Lemma 3.1 in (KT03) (which proves the analogous result in the elliptic setting).

Lemma 3.3.2. For any o > 0, R > 0, NE(|Vu|) € L? (do).

loc

Proof. Let K C R"! be a compact set and K be the compact set of all points parabolic
distance < 4R away from K. Pick (X,t) € TR(Q, 7). Standard estimates for adjoint-caloric

functions, followed by Lemmas 3.2.2 and B.3.4 yield

u(X, t) U(A;‘|(Q,7-)_(X7t)||(@77>> W(AQH(Q,T)—(XJ)H(Q7T))
VSO <O s = Ol @) - (ol

In the non-tangential region, 6(X,t) ~q ||(Q,7) — (X, t)||, which, as ¢ is Ahlfors regular and

w is doubling, implies

|VU(X,t)| < Ca][ hdJSCaMR(h)(Q,T)
Aj@r)-(x.0)(@7)

Mp(h)(Q,T) = supg<r<pr fCr(Q 9 |h(P,n)|do(P,n) is the truncated Hardy-Littlewood max-

2

i (do), so we may

imal operator at scale R. 0f) is a space of homogenous type and h € L

apply the Hardy-Littlewood maximal theorem to conclude

/ Mp(h)?do < (J/A h2do < co.
K K

The result in the finite pole setting follows in the same way;
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Lemma 3.3.3. For (Xg,tg) € Q let (Q,7) € 92, R > 0 and A > 100 be such that (Xo,tg) €
R/8
T1R<Q,T). Then for any o > 0, Na/ (]Vu(Xo’tO)D\AR/Q(Q,T) € L?(do).

Proof. Let (P,n) € Ap/9(Q,7) and pick (X, ) € Fg/S(P, n). Standard estimates for adjoint-

caloric functions, followed by Lemma 3.2.2 yield

W00,y I Ay (P
S(X, 1) (X, ) '

(vul&ol)(x 1) < ¢

Note (X, ) € TE/%(P,p) hence 4||(P,7) — (X, )| < R/2. By our assumption on (Q, 7)
and (P,n) € Ag/p(Q,7) we can compute that /2, (P,n),(Xo,tp) satisfy the hypothesis
of Lemmas 3.2.6 and 3.2.4 for some A > 100 which can be taken uniformly over (P,n) €
AR/Q(Q,T). Therefore,

W00 (g ) (09 (P 11)
(X, 0|(Pn) — (X, )|

IvulXoto) (X 4)| < C(A) (3.3.1)

In the non-tangential region, §(X,t) ~q [[(P,n) — (X, ?)||, which, as o is Ahlfors regular
and ||(P,n) — (X, t)|| < R/8 implies

P01 < Con f, KX00)dg < Cy g My (HEK010))(P ).
Aaj(Pay—(x.0)) (Pom)

The result then follows as in Lemma 3.3.2. OJ

Unfortunately, the above argument only bounds the truncated non-tangential maximal
operators. We need a cutoff argument to transfer this estimate to the untruncated non-
tangential maximal operator. We will do this argument first for the infinite pole case and
then in the finite pole setting. The following lemma is a parabolic version of Lemma 3.3 in

(KT03) or Lemma 3.5 in (KT06), whose exposition we will follow quite closely.

Lemma 3.3.4. Assume that (0,0) € 0Q and firt R > 1 large. Let o € C°(R"), pop =1

on Cr(0,0), 0 < ¢rp < 1 and assume spt(pr) C Cor(0,0). It is possible to ensure that
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\Vep| < C/R and |0yopl|, |Avg| < C/R%. For (X,t) € Q define
wn(X.0) = [ G5 Xot)(0 + Ay ion(Vuls)ldvds,  (332)
Q

here, as before G(Y, s, X,t) is the Green’s function for the heat equation with a pole at (X,t)
(i.e. (0s—Ay)(G(Y,s,X,t)) = O(x,0),(Y,s) and G(Y,s,—,—) =0 0n0). Then, wrlyn =0

and wgp € C(Q). Furthermore, if ||(X, 1) < %, then

5(X,t)3/4
wr(x, ) < ¢ Rl/)2 (3.3.3)
Additionally, if ||(X,t)|| > 4R, there is a constant C' = C(R) > 0 such that
lwp(X,t)| < C (3.3.4)

Proof. That wr|gn =0 and wr € C(Q2) follows immediately from the definition of wg. For

ease of notation let V(z,t) := Vu(X,t). By the product rule
(0s + Ay)[er(Y, s)V(Y, )] = V(Y,5)(Ay + 0s5)pr(Y,5) +2(Vep(Y,s), VV(Y,s)).
Split wr(X,t) = w%{(X, t)+ wQR(X, t) where,

w}%(X, t) = /QG(Y, s, X, O)V(Y,s)(Ay + 0s)pp(Y, s)dYds

wh(X, 1) = Z/QG(Y, 5, X, 1) (Veop(Y, ), VV (Y. 5)) dVds.

u(Y,s)
)

and |[VVu(Y,s)| < C(;“L;YS)

Regularity theory gives |Vu(Y,s)| < C W This, along
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with our bounds on ¢p, yields

C u(Y, s)

LX) < —/
R0 ((V,5)eQ|R<||(V,5)[| <2R} 0(Y, )
u(Y, s)

< — -~ ' 7
TR /{<xs>eﬂR<||<xs>||<2R} 0%(Y, )

G(Y,s, X,t)dYds
(3.3.5)
G(Y,s, X, t)dYds.

2
[wg (X, 1)|
Any upper bound on w% will also be an upper bound for w}z (as R 2 0(Y,s)). Assume
first, in order to prove (3.3.3), that [|(X,t)|| < R/2. We start by showing that there is a

universal constant, C' > 1 such that

3/4
G(Y,s, X, t)<C (&YTf)) G(AF5(0,0), X, 1) (3.3.6)

for all (Y,s) € QN (Cap(0,0)\Cr(0,0)) and (X,¢) € QN Cp/p(0,0). To prove this, first
assume that 0(Y, s) > R/10. We would like to construct a Harnack chain between A;{R(O, 0)
and (Y, s). To do so, we need to verify that the parabolic distance between the two points
is less than 100 times the square root of the distance between the two points along the
time axis. As we are in a J-Reifenberg flat domain the ¢ coordinate of A;R(O, 0) is equal
to (3R)? and so A;R(O, 0) and (Y, s) are seperated in the t-direction by a distance of 5R.
On the other hand HA;{R(O, 0) — (Y, )| < 20R < 100(5R2)1/2. So there is a Harnack chain
connecting (Y, s) and A;R(O, 0). In a §-Reifenberg flat domain the chain can be constructed
to stay outside of Cp/9(0,0) (see the proof of Lemma 3.3 in (HLNO4)). Furthermore, as
d(Y, s) is comparable to R, the length of this chain is bounded by some constant. Therefore,
by the Harnack inequality, we have equation (3.3.6) (note in this case (@)3/4 is greater
than some constant, and so can be included on the right hand side).

If 6(Y,s) < R/10, there is a point (Q, 7) € 92 such that CR/5(Q,T)HCR/2(O, 0) =), and
(Y.s) € Cry10(Q, 7). Lemma 3.2.1 yields G(Y, s, X, 1) < (MLR’S)>3/4 G(AE/E)(Q,T),X, t).
We can then create a Harnack chain, as above, connecting A]ng /5(Q,7') and A;)FR(O,O) to

obtain equation (3.3.6).
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G(A;‘R(O, 0), —, —) is an adjoint caloric function in Q@ N CR(0,0), whence,

3/4
6v,s %0 <0 (") Gz 0.0. %0

/ /
<c (5(25)>3 4 (5();, t))3 4G(A§R(0,0),A§(o,o)) .

o) (45 e

where the penultimate inequality follows from Lemma 3.2.1 applied in (X, ¢). The bound on
G (A;R(O, 0), Ax(0,0)) and, therefore, the last inequality above, is a consequence of Lemmas

3.2.6 and 3.2.4:
G(Af7(0,0), A5(0,0) < G(AF(0,0), A5(0,0)) < cR"wA3mOD (O 5(0,0)) < R

Lemma 3.2.1 applied to u(Y,s) and (3.3.7) allow us to bound

c uw(Y,s)G(Y, s, X, t)

R /02 R(0.0)\CR(0,0) 02(Y, s)

3/4 -
C <5<X, t>> / u(Agp(0.0)
Rt5/2\ R QNCyR(0,0) O(Y,5)1/2

Ahlfors regularity implies, for any 5 > (1/ (2R))1/ 2 that

dYds

Rn+1

52

{(Y,s) € QN Cyp(0,0) | 5(Y,5) "2 > Y] <

Therefore,

1

o0
1
/ —1/2de5 5Rn+1/ —dﬂ ~ Rn+1+1/2.
QNCoR(0,0) 6(Y, )

(1/(2R))/2 B2
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Putting everything together we get that

w(X, )] < C2

(A35(0,0)) (6<X, t))?’/‘* < A (3.3.8)

R R R/2 7

where the last inequality follows from the fact that u(A;p(0,0)) cannot grow faster than
RM™ for any a > 0. This can be established by arguing as in proof of Lemma 3.3.2 and
invoking Corollary 3.2.12.

We turn to proving equation (3.3.4), and assume that ||(X,t)|| > 4R. Following the proof

of equation (3.3.6) we can show

G(Y,s, X, t) < CG(Y,s, A 0,0)). (3.3.9)

2

Above, j is such that 2/72R < |(X,t)| < 2/7!R. Note that G(Y,s, A

o R) is a caloric

function in Cy;-1/(0,0) and apply Lemma 3.2.1 to obtain

(0,0), A= (0,0)) < C8(Y, )3/ (2 R)—"—3/4,

3/4
G(Y,s,X,1) < C (‘W’ 3)) G(AT Jinl

2j-1R 2i—1R
The last inequality follows from estimating the Green’s function as we did in the proof of

equation (3.3.7). Proceeding as in the proof of equation (3.3.3) we write

C u(Y, s)

R Jon(Cypn(0,0)\Cr(0,0)) 02(Y, s)

Putting everything together,

(447(0,0))

wr(X, )] < CZHAEZ 2o < O(R) (3.3.10)

]

Corollary 3.3.5. For any (Y,s) € Q, Vu has a non-tangential limit, F(Q,T), for do(Yes)

almost every (Q,7) € Q. In particular, the non-tangential limit exists for o-almost every
90



(Q,7) € 9Q. Furthermore, F(Q,7) € LL (do¥%)) and F(Q,7) € L2 (do).

loc loc

Proof. Theorem 1 in (HLNO04) implies that for any compact set K C 0N there exists (Y, s) €
Q such that @Y%) € Aso(o|x). Therefore, if the non-tangential limit exists d(¥5)-
almost everywhere for any (Y,s) € € we can conclude that it exists o-almost everywhere.
Additionally, Lemma 3.3.2 implies that if Vu has a non-tangential limit, that limit is in
L120c<d‘7) and therefore Llloc(ddj(y’s)) for any (Y, s) € Q.

Thus it suffices to prove, for any (Y, s) € Q, that Vu has a non-tangential limit do(Yes)
almost everywhere. Let R > 0 and define, for (X,t) € Q, Hr(X,t) = pp(X,t)Vu(X,t) —
wgr(X,t), where wg, pp were introduced in Lemma 3.3.4. Equation (3.3.4) and wg(X,t) €
C(Q) imply that wr(X,t) € L(Q), which, with Lemma 3.3.2, gives that N(Hp)(X,t) €
LY (dY+9)) for any (Y, s) € Q. By construction, Hp is a solution to the adjoint heat equation

(Ys)

in Q, hence, by Lemma B.4.1, Hr(X,t) has a non-tangential limit w -almost everywhere.

Finally, because wg,or € C(€2) we can conclude that Vu has a non-tangential limit for

»Y>%)_almost every point in C r(0,0). As R is arbitrary the result follows. O

If we assume higher regularity in 052, it is easy to conclude Vu(Q,7) = h(Q, 7)2(Q, T)
for every (Q,7) € 9. The following lemma, proved in Appendix B.2, says that this remains

true in our (low regularity) setting.
Lemma 3.3.6. For o-a.e. (Q,7) € 022 we have F(Q,T) = h(Q,7)n(Q,T)
Finally, we can prove the integral estimate.

Lemma 3.3.7. Let Q) be a d-Reifenberg flat parabolic reqular domain. Let u,h be the Green
function and parabolic Poisson kernel with poles at infinity respectively. Fix R >> 1, then

for any (X, t) € Q with ||(X,t)|| < R/2

3/4
[Vu(X, )| S/ hQ, 7)do N (Q, ) +C—”(X’t)H / .

3.3.11
Agr(0,0) R1/2 ( )
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Proof. For (X,t) € Q define Hr(X,t) = pr(X,t)Vu(X,t) — wr(X,t) where wg, pp were
introduced in Lemma 3.3.4. Hpi(X,t) is a solution to the adjoint heat equation (by con-
struction) and N(Hp) € L (do™%)) for every (Y, s) € Q (as shown in the proof of Corollary
3.3.5). Hence, by Proposition B.4.4 we have Hp(X,t) = [5 9(Q, 7)doX0(Q, 7), where
g(Q, 7) is the non-tangential limit of Hp.

Lemma 3.3.6 and wg|gn = 0 imply that ¢(Q,7) = ¢r(Q,7)h(Q,7)n(Q, 7). Estimate

(3.3.3) on the growth of wp allows us to conclude

3/4
Vu(X, 01 < HROX O]+ lwp(X. 01 < [ h(Q, 7)Ao X0(Q, 7) + I DI
0NCo5(0,0) R1/2

]

The finite pole case begins similarly; we start with a cut-off argument much in the style

of Lemma 3.3.4.

Lemma 3.3.8. Let (Xp,tg) € Q and fix any (Q,7) € 0Q,R > 0,A > 100 such that
(Xo,1t0) € TX’R(Q,T). Let ¢ € C°(CRy2(Q, 7). Furthermore, it is possible to ensure that
p=10nCpru(Q.7), 0 <9 <1,|Vy| < C/R and 0|, |Ap| < C/R?.

For (X,t) € Q define

W(X,¢) = /Q G, 5, X,1)(Ds + Ay) (Y, 5)VuX010) (v s)|avds. (3.3.12)

Then, Wgq =0 and W € C(Q). Additionally, if ||(X,t) — (Q,7)|| < R/8 then

3/4 (Xosto) T
W (X, 1) < C(A) (&Rt» Jéﬁﬁ?@’ ) (3.3.13)

Finally, if |(X,t) — (Q,7)|| > 32R there is a constant C > 0 (which might depend on
(X0, t0), (Q,T) but is independent of (X,t)) such that

W(X,8)| <C (3.3.14)
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Proof. Using the notation from Lemma 3.3.8, observe that ¢(X,t) = ng/4((X, t)—(Q,71)).
Therefore, the continuity and boundary values of W follows as in the infinite pole case.
Furthermore, arguing exactly as in the proof of equation (3.3.13) (taking into account our

modifications on ¢) we establish an analogue to equation (3.3.8) in the finite pole setting;

WX, ) <C (3.3.15)

W00 (AL Q7)) £5(x, )\ 3/
i )

By assumption, (X, tg), (@, 7) and R satisfy the hypothesis of Lemmas 3.2.4 and 3.2.6. As
such, we may apply these lemmas to obtain the desired inequality (3.3.13).

To prove equation (3.3.14) we follow the proof of equation (3.3.4) to obtain an analogue

of (3.3.10);

uXoo) (A= (Q, T
Arpa@7) il <cC (3.3.16)

WX, <C R (X, 8) — (@, 7)™ ~

]

Corollary 3.3.9. For (Xo,tg) € Q, let (Q,7) € 900, R > 0,A > 100 be as in Lemma
8.3.8. For any (Y,s) € Q, VU(XO’tO)(—,—) has a non-tangential limit, F(XovtO)(P, n), for
d(Y>$) _almost every (P,n) € AR/4(Q,T). In particular, the non-tangential limit exists for
o-almost every (P,n) € AR/4(Q,7-), Furthermore, F(Xo’t0)|AR/4(Q,T) c Ll(d@(KS)) and
F(XO’tO)|AR/4(Q7T) e L?(do).

Proof. Theorem 1 in (HLNO04) implies that 3(Y,s) € Q such that (IJ(Y’S)’AM €

Xo,tg)/4(@7)
Aso (0] Ap(Q,r))- Therefore, if the non-tangential limit exists diY8)_almost everywhere
on Apy(Q,7) for any (V,s) € & we can conclude that it exists o-almost everywhere
on Ap/(Q,7). Additionally, Lemma 3.3.3 implies that if Vu(Xo-0) (— —) has a non-
tangential limit on Ap/4(Q, 7), that limit is in L?(do)-integrable on AR/4(Q, ) and therefore
L (d(Y5))-integrable on Ap4(Q, ) for any (V,s) € Q.

Thus it suffices to prove, for any (V,s) € €, that Vu(X0:90)(— —) has a non-tangential
(Yss)

limit dw -almost everywhere on Ap /4(Q, 7). Let ¢, W be as in Lemma 3.3.8 and define,
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for (X,t) € Q, H(X,t) = o(X, t)Vulolo) (X )= W (X, t). Equation (3.3.14) and W (X, t) €
C(Q) imply that W(X,t) € L°°(Q). Lemma 3.3.3 implies that N(H)(P,n) € L (do®))
for any (V,s) € € (as outside of Cp/9(Q,7) we have H = —W, which is bounded). By
construction, H is a solution to the adjoint heat equation in 2, hence, by Lemma B.4.1,
H(X,t) has a non-tangential limit do(Y+5)_almost everywhere. Finally, because W, o € C(Q)

we can conclude that Vu(X040)(— —) has a non-tangential limit for dw®>%)-almost every

point in AR/4(Q,7'). ]

As in the infinite pole case, if we assume higher regularity in 0, it is easy to conclude
that Vu(Xot0)(— —)(P,n) = kXoto) (P, n)a(P,n) for every (P,n) € dQ. The following

lemma, proved in Appendix B.2, says that this remains true in our (low regularity) setting.

Lemma 3.3.10. For (X, tg) € Q let (Q,7) € 01, R > 0,A > 100 be as in Lemma 3.3.8.
Then for o-a.e. (P,n) € Ap4(Q,T) we have FXoto)(p ) = kXoto) (P, n)a(P,n)

Finally, we have the integral estimate (the proof follows as in the infinite pole case and

so we omit it).

Lemma 3.3.11. For (X, tg) € Q let (Q,7) € 9Q, R > 0,A > 100 be as in Lemma 3.5.8.
Then for any (X,t) € Q with |[(X,t) — (Q,7)]| <0R/8

VuXoto) (X, )] < /

1:(Xosto) g0 (X) 4 o <5(X, t)>3/4 W(XO’tO)(AR(Q’T))'
AR/ (Q.7)

R Rntl
(3.3.17)

Here C = C(A) < oo.

3.4 () is Vanishing Reifenberg Flat

In this section we use a blowup argument to prove Proposition 3.4.6, that 2 is vanishing

Reifenberg flat, and Lemma 3.4.7, that lim,.| SUD(,7)e KNS % = 1. To do this, we

invoke Theorem 3.1.10, the classification of “flat blow-ups”.

We now describe the blowup process,
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Definition 3.4.1. Let K be a compact set (in the finite pole case we require K = Ap(Q,T)
where (Q,7) € 00, R > 0 satisfy (Xg,ty) € TX4R(Q,7) for some A > 100), (Q;,7;) €
KNoQ and r; 0. Then we define

Qi ={(X,t) | (X + Qi, 72t +7;) € Q} (3.4.1a)
u(r; X + @, r2t + i)

J(X,t) = ? 3.4.1b

! ( ) T4 fCri (Qi,Ti)ﬂaﬂ hdo ( )

o(Cr(Qi, 7)) w({(P,m) € Q| (P —Qy)/ri,(n — 7)) /r7) € E})

wil B) ==—0 ACr (@i ) (34.10)
h(riP + Q;,m3n +77)

hi(P,n) = v 3.4.1d

( n) fCri (QZ‘,TZ‘)ﬁaﬂ hdo ( )

0; =00, (3.4.1e)

(Xo.to) u)(Xo,to) and k(Xo,to)

1 g} 1 )

Similarly we can define u

Remark 3.4.2. Using the uniqueness of the Green function and caloric measure it follows
by a change of variables that u; is the adjoint-caloric Green’s function for €; with caloric

measure w; and

dwi = thO'Z

(Xo.to)

Similarly, u; 1s the Green function for €2; with a pole at (XOT;ZQ", tor;;’) with asso-

(Xo,to) (Xoto) '

ciated caloric measure w; and Poisson kernel ki

We first need to show that (perhaps passing to a subsequence) the blowup process limits
to a parabolic chord arc domain. In the elliptic setting this is Theorem 4.1 in (KT03).
Additionally, in (Nys06b), Nystrom considered a related parabolic blowup to the one above

and proved similar convergence results.

Lemma 3.4.3. Let Q;,u;, h;,w; (or ul(-Xo’t()), kZ(XO’tO) and wZ(XO’tO)) be as in Definition 3.4.1.

Then there exists a subsequence (which we can relabel for convenience) such that for any
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compact K
DIKNQ;, KNQx] — 0 (3.4.2)

where Qoo is a parabolic chord arc domain which is 40-Reifenberg flat.

Moreover there is a uso € C(Qo0) such that

U — Uoo (3.4.3)

uniformly on compacta. Additionally, there is a Radon measure wso supported on 0~ such
that

Wi — Woo- (3.4.4)

Finally, uso,wso are the Green function and caloric measure with poles at infinity for 2so

(i.e. they satisfy equation (IP)).

Proof. Lemma 16 in (Nys06b) proves that €; — (s and that (2 is 46-Reifenberg flat.
In the same paper, Lemma 17 proves that u; — uco,w; — woo and that uso, we satisty
equation (IP). A concerned reader may point out that their blowup differs slightly from
ours (as their €2 is not necessarily a chord arc domain). However, using Ahlfors regularity
their argument works virtually unchanged in our setting (see also the proof of Theorem 4.1
in (KT03)).

Therefore, to finish the proof it suffices to show that {24 is a parabolic regular domain.
That is, 000 = g, is Ahlfors regular and <2 is uniformly parabolic rectifiable. Let us first
concentrate on ooo. Note that for each ) € R we have that (©2;):, = Q; N{(Y,s) | s =t}
is 0-Reifenberg flat (and thus the topological boundary coincides with measure theoretic
boundary). Furthermore, we claim that (€2;)y — (©0)¢, in the Hausdorff distance sense.
This follows from the observation that, in a Reifenberg flat domain 2, the closest point on
0 to (X,t) € Q is also at time ¢ (see Remark B.4.2).

For almost every sy we know that (s, is a set of locally finite perimeter in X € R" and
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thus (€2)¢, is a set of locally finite perimeter for almost every ty. We claim, for those t,
that xq; (X, t0) — xq. (X, tp) in L%OC(R”). Indeed, by compactness, there exists an Fy,
such that xq; (X, ty) — XEy,- That By, = (Q0)t, 18 a consequence of (€25)r, — (o)t
in the Hausdorff distance sense (for more details, see the bottom of page 351 in (KT03)).
Hence, for almost every tp, (€200)t, is a set of locally finite perimeter. In addition, lower

semicontinuity and Fatou’s lemma imply

n+R?

roolSn(Pa) = [ HI(X,5) | (X,5) € 060 |X = PI < s
-
n+R?
< / lim inf 1L ({(X, ) | (X,5) € 99, |X — P| < R})ds
n—RE 100 (3.4.5)
n+R?
< lim inf H' N {(X,s) | (X,s) € 8, | X — P| < R})ds

1—00 77_]{2

< MR"H.

(The last inequality above follows from the fact that o is Ahflors regular and the definition of
the blowup). The lower Ahlfors regularity is given immediately by the d-Reifenberg flatness
of Q0.

It remains to show that v (defined as in (3.1.4) but with respect to {2x) is a Carleson
measure. Define v()(Q, 7,7) := infpr—""3 fCr(QJ)ﬁ@Qoo d((Y,s), P)2doso (Y, s) where the
infinum is taken over all n-planes P containing a line parallel to the t-axis. Similarly define

’y(i)(Q, 7,7). We claim that

AN (P, r) < liminf O (P, r 4 &), V(P ) € 0900, (3.4.6)

1— 00

where (P, n;) € 0%; is the closest point in 9€; to (P,n) and ¢; | 0 is any sequence such that
& > QD[agz N CQT(P7 77)7 aQoo N CQT(Pa Tl)]
Let V; be a plane which achieves the infinum in fy(i)(Pi, n;, T + €;). Passing to a subse-

quence, the V; converge in the Hausdorff distance to some V. As such, there exists d; | 0
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with D[V; N C1(0,0), Ve N C1(0,0)] < 6;. Estimate,

. o0
YO (B s+ &) = (r+) 7" /0 2205({(Y,5) € Crye,(Pi,mi) | d((Y,5), Vi) > A})dA
o
> (r+¢)" " 3/ 200;({(Y,s) € Cr-(P,n) | d((Y, s),V;) > A})dA
0

>(r+e;) " /OOO 200;({(Y, 8) € Cr(Pym) | d((Y,8), Voo) > A 476} )dA

Y=A+10; o0
S / 207 o0)(Y,9) € Cr(Pom) [ (. 5) Vee) > 7))

Take liminfs of both sides and recall, as argued above, that for all open U, oso(U) <
liminf; .~ 0;(U). Equation (3.4.6) then follows from dominated convergence theorem, Fa-
tou’s lemma and Ahlfors regularity.

We claim, for any p > 0,

Lo A s oY) < limint | VY, 8,1+ &)doy(V,s) = Fi(r)
Cp(Pm) t Cp+6 (P;,mi)

(3.4.7)
where p > r > 0, (P,n) € 0Q, the (P;,n;) are as above and ¢; | 0 with ¢; > 3D[0€; N
C3,(P,1), 0000 NC3,(P,1)] — 0. The proof of equation (3.4.7) is in the same vein as that of
equation (3.4.6), and thus we will omit it. Observing that the ||v;||+ are bounded uniformly

in 7, Fatou’s lemma implies

- eq (3.4.7) o
(Co(P.) x [0,p)) = /O Foory S /O lim inf Fi(r) 2

r 1—00 r
<Timinf v;(Cpye;(Piym;) x [0,p+ ;) < Cp" L limsup [|v;]|4.-
1—00 7
(3.4.8)

O

We now want to show a bound on Vus (in hopes of applying Proposition 3.1.10). Here

we follow (Nys12) (see, specifically, the proof of Lemma 3.3 there).

Proposition 3.4.4. |Vuc(X,1)| <1 for all (X,1t) € Q.
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Proof: Infinite Pole case. Let (X,t) € Qoo and define d((X,t),0x) =: doo. There exists
an ig > 0 such that if ¢ > iy then 03500/4()(, t) C ;. By standard parabolic regularity
theory, Vu; — Voo uniformly on Cj_ /2(X ).

(); is a parabolic regular domain with (0,0) € 9€2; so by Lemma 3.3.7 we can write

X 3/4
[V (X, 1)) S/ h(Q. 1) (Q.7) + I DI (3.4.9)
9,NC(0,0) M1/2
3/4
as long as M/2 > max{2[[(X,t)||,1}. For e > 0, let M > 2 be such that CH()Jfé’[t—l)/'g/

g/2 and let ¢/ = &/(M,d8x,€) > 0 be a small constant to be chosen later. By Lemma
3.2.14 there exists an 7(¢') > 0 such that if (Q;,7;) € K N9Q and r;M < r(g’) there is a
set Gy i= G((Q4,73), Mr;) C Chpyp,(Q4,7) N O with the properties that (1 + &')o(G;) >
o(Crrr;(Q4,7;)) and, for all (P, n) € G,

(1+ g’)—l][ hdo < h(P,n) < (1 + 5’)][ hdo.
Cwvr; (i) Cur; (Qi7i)

Throughout we will assume that i is large enough such that Mr; < r(g’).
Define G; := {(P,n) € 89; | (r;P + Qi,r?n + 7;) € G;}, the image of G; under the

blowup. Then

h’(/rlp + QZ? T@QTI + 7—7,) ~ fAMTZ (Qi>Ti) hda

hi(P,n) = ~_ , Y(P,n) € Gy (3.4.10)
Z fA'Pl (inTi) hdo ) JCA’I“Z (inTi) hdo Z
where, as in (KT03), we write a >~ b if 1i€, <E<(1+€).
Observe
hdo > ———— hdo
A Qi1 N O_(ATZ‘(Q'>T')) /GZ'OAT. i3 Ti
(@i o Qi) (3.4.11)

O'(GZ N A’I‘(QWTZ»
i hdo.
= Wt o (A (Qim) 7[AMTZ.<Q@-,TZ-> 0

99



Combining this with equation (3.4.10) we can conclude

o(Ary(Qi, 7)) i

. 12 .
P = UG A @y T E G

Ahlfors regularity implies

o(G; N Ar(Qi, 7)) = (A (Q4, 7)) — 0 (A (Q4, 7)\G)
> O-(ATZ' (Q’MTZ)) - U(AMTZ' (Q’MTZ)\G’L)
> U(ATZ‘ (Qz» TZ)) - E/U(AMW(Q% Tz))

> O_(ATZ‘ (QZ»TZ))(l - CMTH_l‘S/)‘

(3.4.12)

Putting everything together h;(P,n) < (1+¢)2(1 — CM"™ e\~ V(P ) € G;. Hence,

2 N2
o) (L+)° X0 a (1+£)
/Nlhldwi < (1—0Mn+1g/)“i (G;) < 1 Caniier) (3.4.13)
as d)gX’t) is a probability measure.

Define F; = (Cpyp,(Q4, 1) N OQ)\G; and F; analogously to G;. Let A; € Q; be the
backwards non-tangential point at (0,0) and scale 30M. We want to connect A; with (X, )
by a Harnack chain in €2;. Thus we need to show that that the square root of the difference

in the t-coordinates of A; and (X t) is greater than %ﬁ(ﬂ@

. This follows after observing
that the ¢-coordinate of A; is < —9M?2. The Harnack inequality then tells us that there
is a C = C(n, M,ds) > 0 such that do) < Cdodi on Cyps(0,0) N 9. Furthermore,
A; € Ti)O,M(O’ 0) which implies, by Theorem 1 in (HLN04), that there is a p > 1 such that
A = % satisfies a reverse Holder inequality with exponent p and constant C' (as the
; are uniformly parabolic regular and J-Reifenberg flat, the arguments in (HLN04) ensure

that p,C can be taken independent of 7). Let g be the dual exponent; then, by Holder’s
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inequality,

1/q . 1/p
/ hido ™ < ¢ / hid@;“igc( / hgdai) ( / (kAi)pdaZ-) . (3.4.14)
F; F; F; F;

To bound the first term in the product note,

hido
/ hido; = v I, (3.4.15)

Ei (JCA'r’i (Qimi) hda> N

Per Lemma 3.2.10, k2 € As(do) (as log(hz) € VMO(092)). Apply Holder’s inequality and

then the reverse Holder inequality with exponent 2 to obtain

1/2
h2%>
Mr; (QiyTi)

] 1/2
e ( o(F)) ) / s (3.4.16)
AMT‘»L' (Ql’ Ti) AMri (Qimi)

< Vo (Bar (@) hdo,

Anrr; (Qii)

/ hido < (A, (Qiy ) 2o (Fy)/? (f

where that last inequality comes from the fact that Fj is small in Ay, (Q;, 7). Invoking
Lemma 3.2.10 again, h satisfies a reverse Holder inequality with exponent ¢q. This fact,

combined with equations (3.4.15), (3.4.16), implies

q

Ay (Qis i wa iaihda
/h?dai <oy Qi) [ TAnr, (@)

F, rit IAr, Qi) MO

eq (3.4.11) nit ((L+ENa(Ar Qi) \ ! (3.4.17)
< ovaur ()
eq (3.4.12

< )C\/?M”H(l — oM™

To bound the second term of the product in equation (3.4.14) we recall that kAi satisfies
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a reverse Holder inequality with exponent p at scale M,

R 1/p ) 1/p
( / <kAi>Pdaz«) < ( / <kAi>Pdai)
F; CM(O,())ﬂaQi

<Ca;i(Cyr(0,0) N OQ) P ][ Wido;
Cr (00109, (3.4.18)

<Coi(Cpr(0,0) N9 YP~1a4 (O (0,0))

1/p—1
< (J(AM”(Qz‘, Tz’))) < oM-(mtD)/g

n+1
T

Together, equations (3.4.14), (3.4.17) and (3.4.18), say

N1/(2q)
/~' hidwi(X,t) < C«M—(n+1)/q (C\/gMn—i—l(l . C’M“'Hg/)—q) 1/q _ C%‘
| (3.4.19)

Having estimated the integral over G; in equation (3.4.13) and the integral over F; in

equation (3.4.19) we can invoke equation (3.4.9) to conclude

X t 3/4
|Vuso (X, 1)] Slimsup/ hz‘(Q,T)dd}Z(X’t)(Q,T) + C’H< ) 1) !
i 0,;1C1(0,0) MY/
(1+¢€)? (/%) (3.4.20)
_(1—CM”+15’) 1 — O M+l +5/2
<l+e
/)2 1Y1/(20)
The last inequality follows by picking ¢’ > 0 small so that (1—(61‘1J\L/[€")+16’) 1_(50 )Mnflgl <
1+¢/2. O

Proof: Finite Pole Case. Let (X,t) € 05 and define d((X,t), 0Qc0) =: doo. There exists an

ig > 0 such that if ¢ > i then 03500/4()(, t) C Q; but 03500/2(X’ t)NoQ; # (. By standard

(XOatO)
1

be a point on 0f); closest to (X,?). Note that uZ(XO’tO) is the Green function of €2; with

parabolic regularity theory, Vu — Voo uniformly on C_ /2(X ,t). Let (XZ, t;) € 09

a pole at <X0+1Qi, t%ﬂ%) Let M > max{4R,1000s}, be arbitrarily large to be chosen

1
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later. We want to check that (XOT;iQ"', tOT;QTl) € T;;LM()AQ, t;) for i large enough (recall our

)

assumption that (Q;,7;) € Ar(Q, ) where (Xq,%) € TZ4R(Q’7—))'

Observe

to — T;
2

i

— ity > AM? &ty — 75 — r2i; > 4r2 M2

But tg—7; > 0 and |£;| < C(]t|+0x0) < C. So for i large enough tO_ZTi —1; > 4M?. Similarly,

L

2 lo—7;
< 2A 5
5

Xo—-Q; ) i A
‘—‘l_Xi — 1| & | Xo — Qi — ri Xi|* < 2Altg — 75 — .

T

As | Xo—Qi* < %Alto — 7;| we may conclude, for large i, (Xor;ic’gi, to—;#) € T2+A7M(Xi7 t;).

Invoking Lemma 3.3.11,

3/4, (Xosto) C o0
(Xoto) / (Xo,to) 1~ (X,t) (500) w; (Cym(Q,7) N OLY;)
va! X, 1) < g Koto) gy (X0 | o (2 .
Vi (X.1) Cr(Xid)noey; " i M Mt

(3.4.21)

For any ¢ > 0, pick an M = M (e) > 0 large such that

(% )3/4 w0 (Cur(Q.7) o)

Mrntl < 5/2'

For large enough ¢,

A

(P,n) € Cpp(X;, 1) N Oy =
(3.4.22)

(riP + Qi 120 + 73) € A py (riXi + Qi 124 +73) € Doy nr (Qin i) C Agp(Q, 7).

Therefore, we can apply Lemmas 3.2.11, 3.2.13 and 3.2.15 to k(Xo,t0) on Aoy ni (@, ;) for
large enough 4. Let ¢/ = ¢/(M, e) > 0 be small and chosen later. There exists an i € N such
that i > iy implies that equations (3.4.21) and (3.4.22) hold and that 2r;M < r(¢’) (where
r(¢’) is given by Lemma 3.2.15). We may now proceed as in the infinite pole case to get the

desired conclusion. O
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To invoke Theorem 3.1.10 we must also show that hy > 1 almost everywhere. Here we

follow closely the method of (KT03).

Lemma 3.4.5. Let oo, Uoo, Woo be as above. Then hoo = g‘;—;’: exists and

hoo(Q,7) > 1

for ocoo-a.e. (Q,7) € 0.

Proof. In Lemma 3.4.3 we prove that () is a d-Reifenberg flat parabolic regular domain.
By Theorem 1 in (HLNO04) (see Proposition B.3.5 for remarks when the pole is at infinity)
Woo € Axo(doso); thus heo exists.

By the divergence theorem, the limiting process described in Lemma 3.4.3, and (e, 7iso) =

1- %’ﬁoo - €’2 we have, for any positive ¢ € CZ° (R”H) and any e € S"1,

/ pdo; > / (e, ;) do; = —/ div(pe)d X dt
0 o Q;

(2 7 K3

i—p0 _/ div(pe)d X dt :/ (e, o) doso (3.4.23)
Qoo 0o

1
> / odoso — —/ Olfioe — €|?dose.
900 2 J9900

We claim, for any positive ¢ € C2° (R,

/ Yhsodose > lim sup/ wdo;. (3.4.24)
If our claim is true then faQoo Vhooldosg > faQoo odoao — %fagoo Qlfioo — €|?doso. For

(Qo,T0) € 0N, let e = Tine(Qq, T9) and ¢ — XC, (Qo,m) t0 Obtain

1

[ oo 2 0 (CrQuro) =3 [ fie(Pon) = (@ ) il (Po) =
Cr(Qo,70) Cr(Qo,m0)

1 5 5
][ hoodaoo 2 1- 5][ |nOO(Pa 77) - noo(QOaTO)|2dO_OO(P7 /'7)
Cr(Qo,70) Cr(Qosm0
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If (Qo,m9) is a point of density for 7ino, hoo letting r | 0 gives hoo(Qo, 79) > 1 for oso-a.e.
(Qo: 70)-

Thus we need only to establish equation (3.4.24). Pick any positive ¢ € CX(R"t1), e > 0
and let M > 0 be large enough such that ¢ € C2°(Cj7(0,0)) and |||/ e < M. Let & >0
to be choosen later (depending on M, e). We will prove equation (3.4.24) for the infinite
pole blowup. However, the arguments in the finite pole setting are completely unchanged;
for large enough 7 we have Cyy,., (Q;,7;) C Cor(Q,7) and hence can apply Lemmas 3.2.11,
3.2.13 and 3.2.15 to k(X0%0) on Ay (Qy, 7).

log(h) € VMO(09), so Lemma 3.2.14 gives an R = R(¢') > 0 such that for r;M <
R we can split Cyzp,(Q;,73) N OQ into Gy, Fi with o(Apy,,(Q4,73)) < (1+€')o(G;) and
fAMri(QiaTi) hdo ~ h(P,n) for (P,n) € G;. Define G; and F; as in the proof of Proposition

3.4.4.
fAMr,L- Qi) hdo
gl fAri (@Qprr) hdo

For (P,n) € G; we have h;(P,n) ~ , and consequently

fA (0. hdo
/ hl(pdo‘z N&J MTrL (Q’MTZ) / (pdo'z (3425)
Gi JCA,,Z. (Qiri) hdo ]

We can then estimate

/ odo; :/ wdo; —/ wdo; 2/ pdo; — Ce'M™ 2, (3.4.26)

K3 7 3 K3

using the Ahflors regularity of 9§; and the definition of o}, F;.
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Therefore,

/8(2 Yheodosx = lim ph;do; > lim Sup/~ h;pdo;

=00 J Q) i—oo JGj
(3.4.25) Fans (©pr) o
> limsup(1+¢')~! Mry (@17 / edo;
i—00 fAri (Qi,i) hdo )G,
(3.4.26) fang (0pr) PO
> limsup(l + 5/)_1 LACD (/ odo; — C’M"+25/) .
i—00 fAri (Qivry) Mo \Jog,
(3.4.27)
fA . hdo
To estimate —217: %7 from below, we write
fAri (Q4:7m) hdo

1
hdo =——— / hdo —1—/ hdo
][Ari(QiaTi) o(Ar;(Qi; 7)) ( Ar, (Q4,m)NG; A (Q4ymi)NE; )

o(Ar(Qi i) N Gj) w5 N Ay (Q4, 7))
i hd i
U(Ari(QiaTi)) ][AMTi(inTi) i O(Am(QiaTi»

| 12 1/2
<(1 ’][ hd (L> ][ h2d
S @ GBn@mn) \Tam ™

<(1+¢€) ][ hdo + (Ce' M H1)1/2 ][ hdo.
Anr; Qi) Ar, (Qis7i)

<(1+¢)

(3.4.28)

To justify the penultimate inequality above note, for any set £ C Ay (Q;,7;), Holder’s

inequality gives

1/2
w(E) < o(E)Y/? (/ h2da> .
Ari (Qis7i)

The last inequality in equation (3.4.28) follows from the fact that F; has small volume and
h satisfies a reverse Holder inequality with exponent 2 (Lemma 3.2.10).
After some algebraic manipulation, equation (3.4.28) implies

f _y hdo
AMri(Q“ i) > (1 +€/)—1(1 . (O€/Mn+1)1/2).

fATi (QiaTi) hdo
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Hence, in light of equation (3.4.27), and choosing &’ wisely,
/ Yhoodose > (1 — ) lim sup/ pdo; — €.
0o 1—00 09
Let € | 0 to prove equation (3.4.24). O

We have shown that our blowup satisfies the hypothesis of Proposition 3.1.10 (the clas-

sification of flat blowups).

Proposition 3.4.6. After a rotation (which may depend on on the sequences (Q;,T;),7;),
Qoo = {zn > 0}, oo = 2} and dwso = doso = ’H”_ll{xnzo}ﬂ{szt}dt. In particular, Q is

vanishing Reifenberg flat.

In the above we have shown that any pseudo-blowup (i.e. a blowup described in Definition
3.4.1) of Q is a half space. However, we will need a slightly stronger result, namely that

under this blowup ¢; — 0. In the elliptic setting this is Theorem 4.4 in (KT03).

Proposition 3.4.7. For any blowup described in Definition 3.4.1, 0; — 0. In particular,

for any compact set K (in the finite pole case K is as in Definition 3.4.1), we have

o(Cr(Q, ) N ON)
rn—i—l

lim sup

=1. (3.4.29)
0 (Q,7)eKNoQ

Proof. Observe that o; — 0o implies equation (3.4.29): let (Q;,7;) € KN9IQ and r; | 0 be

such that
. U(Cm<Qi>Ti) N o) T
lim = lim sup

o(Cr(Q,7) N Q)
i—00 ritl 10 (Q,r)e KNnan '

7“”+1

Blowing up along this sequence (possibly passing to subsequences) we get Q; — (o and,
by Proposition 3.4.6, we have that Qs = {x;, > 0} (after a rotation). Since o5o(0C1(0,0)) =
0, if 0; = 000 we have lim; 0;(C1(0,0)) = 000(C1(0,0)) = 1 (recall our normalization from
the introduction). By definition, ¢;(C1(0,0)) = T?%U(CW(Q,-,Q)) which implies equation

(3.4.29).
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Proposition 3.4.6 proved that oo = wso S0 to show o; — 0 it suffices to prove, for any
positive o € CO(RM 1),

lim pdo; = / Pdwee.
12)9)

=200/ 54,

Equation (3.4.24) says that the right hand side is larger than the left. Hence, it is enough
to show

lim inf wdo; > / Vdwse

i—oo /o0, 00
We will work in the infinite pole setting. The finite pole setting follows similarly (i.e. for
large 7 we may assume Cyy,, (Q;, 7)) C Cr(Q,7), where (Xq,tp) € T;LQR(Q,T), and then
adapt the arguments below).

Keeping the notation from the proof of Lemma 3.4.5, it is true that, for large i,

(3.4.25) A, (0. Mo
/ pdo; > / pdo; > (14 L@ hd / hiedoi
o1 Gi fAMri(Qiﬂ—i) 7/Gi

fa,. (Qim) hdo
e P
fAMrZ-(Qiﬂ'i) hdo \J og; Fi

7

hz‘@daz‘) (3.4.30)

(3.4.11)+(3.4.12)

> (14721 — oM (/ pdw; — [ hicpdal-) :
0Q; F;

7

We need to bound from above the integral of hj¢ on Fj,

~ ATZ‘ 1 1 FZ
Jr o <ty = =S BT S B
11t . 2
HOlderSgleq“ahtyMU(Am(Qz‘,Ti))U(AMW(QnTz’))l/QU(Fi)l/g <][ h2da> Y
B OJ(ATZ' (QZ? Ti))T?+1 AMri (Q’iaTi)
heAé(dU)CMU(ATi(in Ti))U(AM’I“i(Qia Ti))1/2 O'(Fi)l/2 ][ hdo
B W(ATi<Qi7 Ti))r?—’_l AMri (QiaTi)

hdo

< N
< 0(5/)1/2Mn+2 erz (QZ’Tz)hd
Ari (Qis7i) g

3.4.11)+(3.4.12
g )0(5’)1/2M”+2(1 +e)(1— oML

(3.4.31)
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From equations (3.4.30) and (3.4.31) we can conclude, for large 4, that

/m' pdo; > (14 ') "2(1 — ML /8Q pduw; — CM™Y2(N2(1 4 ),

W; — Woo, consequently, let i — oo and then &’ | 0 to obtain the desired result. O

3.5 The Vanishing Carleson Condition

In this section we prove the following geometric measure theory proposition to finish our

proof of Theorem 3.1.9.

Proposition 3.5.1. Let ) be a parabolic uniformly rectifiable domain which is also vanishing
Reifenberg flat. Furthermore, assume that

a(Ar(Q,7))

rn+1 =1

lim sup
0 (Q,r)eKNo

holds for all compact sets K. Then §2 is actually a vanishing chord arc domain.

Propositions 3.4.6 and 3.4.7 show that the assumptions of Proposition 3.5.1 are satisfied
and therefore Proposition 3.5.1 implies Theorem 3.1.9 (restricting to K CC {t < tp} in
Proposition 3.5.1 implies Theorem 3.1.9 in the finite pole setting).

In the elliptic case, Proposition 3.5.1 is also true but the proof is substantially simpler
(see the proof beginning on page 366 in (KT03)). This is due to the fact (mentioned in
the introduction) that the growth of the ratio % controls the oscillation of 7 (see,
e.g. Theorem 2.1 in (KT97)). However, as we also alluded to before, the behaviour of
%ﬂ does not give information about the Carleson measure v; see the example at the
end of (HLN03) in which o(A.(Q,7)) = "1 but v is not a Carleson measure. So we
cannot hope that the methods in (KT03) can be adapted to prove Proposition 3.5.1 above.
We also mention that the previous example in (HLN03) shows that Proposition 3.5.1 is not

true without the a priori assumption that v is a Carleson measure (i.e. that the domain is
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parabolic uniformly rectifiable).
When Q = {(x,zn,t) | zn, > ¥(x,t)} and ¢ € Lip(1,1/2) with Dtl/21/1 € BMO(R"*1)
(see the introduction of (HLNO04) for precise definitions), Nystrom, in (Nys12), showed that

vanishing Reifenberg flatness implies the vanishing Carleson condition. To summarize his

argument, for any r; | 0, (Q;, ) € 02 N K we can write

r " (Cry Qi) X [0,7i]) S /1/ 3l Yl 9, 917) g sy, (3.5.1)
’ ' T Jo J{@nel<t)t<1y r

Y(riz+q;,rit+7;)
T

where ¥;(z,t) :=

and 7; is defined as in equation (3.1.4) but with respect
to the graph of ;. By vanishing Reifenberg flatness, ~;(—,—,r) J 0 pointwise and the
initial assumptions on ¥ imply that {7;/r} is uniformly integrable. Hence, we can apply the
dominated convergence theorem to get the desired result.

The argument above relies on the fact that, for a graph domain, o; = /1 + Vi;dyds <
dyds, where the implicit constant in < is independent of i. In general, §2 need not be a graph
domain and, although o; — ¢ and ~; — 0 pointwise, we cannot, a priori, control the integral
of v;do;. Instead, for each i, we will approximate ), near (Q);, 7;) and at scale r;, by a graph
domain and then adapt the preceeding argument. Our first step is to approximate §2; by
graphs whose Lip(1,1/2) and Carleson measure norms are bounded independently of i. The
proof follows closely that of Theorem 1 in (HLNO03), which shows that parabolic chord arc
domains contain big pieces of graphs of f € Lip(1,1/2) with Dt1/2f € BMO. However, we

don’t need to bound the BMO norm of Dﬁ1 / 2% so the quantities we focus on are different.

Lemma 3.5.2. Let Q) satisfy the conditions of Proposition 3.5.1. Also letr; L 0 and (Q;, ;) €
K NoQ. Then, for every e > 0, there exists an iy = ig(e, K) > 1 where i > iy implies the
existence of a 1; € Lip(1,1/2)(R"™1 x R) such that:

1. sup; [[YillLip(1,1/2) < € = Cln, ) < 0.

2. Let P, = P((Q;,7;),r;) be the plane which best approximates ) at scale r; around
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(Qi, 7). Define Q; be the domain above the graph of v; over P((Q;,7i),7i). Then

(A (Qi, 7)\0) < er?tl (3.5.2)

4. If U; is the Carleson measure defined as in equation (3.1.4) but with respect to Q; then

7i(Cry(Qi i) x [0,73]) < K (n,e, |lv|)riH! (3.5.3)

Proof. Let ¢ > 0 and r; | 0, (Q;,7;) € K NS By the condition on o there exists an i; > 0
such that (1—e2)p" ™! < o(A,(P,n)) < (1+2)p" T for all p < 2ri,, (P,n) € 90N K. There
is also an 49 such p < r;, implies that A,(P,7) is contained in a 2p neighborhood of some
n-plane which contains a line parallel to the t-axis. Let ig(e) = max{iq,is} and i > ig.
Henceforth, we will work at scale ; and so, for ease of notation, let r; = R, (Q;, ;) = (0,0)
and P = P((0,0),R) = {zp = 0}. If D = £D[CR(0,0) N P,CR(0,0) N 99, then, by
assumption, D < e2. Let p : R*1 — P be the orthogonal projection, i.e. p(Y,s) = (y,0,s).

Fix a 6 € (0,1) to be choosen later (depending on n,¢) and define
E ={(P,n) € Ag(0,0) | 3p < R, s.t., H"(p(Ap(P,1))) < 0p" 1}, (3.5.4)

The Vitali covering lemma gives (P;,n;) € E, such that E C |J; Ay, (P, 1;) C Aag(0,0),

the C), /5(P;, ;) are pairwise disjoint and H" (p(Ap, (F;, 1)) < Qplm'l. Then
) < ZH“ Api(Pimi)) < GZp”“

< 5n+1 102 0 /5 7,77]1)) S 10n+1(1 - 52)_1(1 _’_52)9Rn+1

If F:= Ap(0,0)\E then o(F) > H"(p(F)) > H"(p(AR(0,0)\p(E)) > (1 — e2)R"+1 —
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o(p(E)) by Reifenberg flatness. This implies o(E) < (1 + e2)R" T — ¢(F) < 22R"F! 4
107111 — e2)71(1 + £2)dR" L. So if 6 = 10~ ("1 /100 then o(E) < eR"1/2 (as long is
e > 0 is sufficiently small).

We want to show that F' is the graph of a Lipschitz function over P. Namely, that if
(Y, s), (Z,t) € F then ||(Y, s)— (Z,8)|| < C(ly—z|+|s—t|?). Let p := 2(|y — 2| +|s — t|*/?)
and note that if p > R then the flatness of (2 at scale R implies the desired estimate. Write
Z=7"+7"and Y =Y'+Y" where (Y’ s),(Z',t) are the projections of (Y,s) and (Z,t)

on P((Y,s), p). By vanishing Reifenberg flatness |Y”|,|2"| < £2p. We can write

p(Z" = Y")|

Minge p((v,s),p) 10— (0 en)en|

Y'-Z' (Y =Z")-en)en = pY'-Z") = Y -Z'| < (3.5.5)

Define v = minge p((y,s),p) [0 — (0 - €n)en|. Combine the above estimates to obtain

p(Z' -Y

/
1(,8)= (Z, D)) < [s— 124V 2"+ Y = 2] < p2e2p V< 1r0:24071,

It remains only to bound 7 from below. As p(Cp(Y,s) N P((Y,s),p)) is a convex body
in P, equation (3.5.5) implies H"(p(C,(Y,s) N P((Y,s),p))) < cyp™t! for some constant
¢ (depending only on dimension). As C,(Y,s) N 0N is well approximated by C,(Y,s) N
P((Y, s), p) it must be the case that H" (p(C,(Y,s)N0N)) < c(y+e2)p"t. As (Y, s) € F we
know (¢y+¢e2) > 0 = ¢(n)e = v > é. In particular we have shown that for (Y,s),(Z,t) € F
that

1Y, 8) = (Z, )]l < C(n,)(|ly — 2l +|s — ¢1/2). (3.5.6)

In order to eventually get the bound, (3.5.3), on the Carleson norm we need to shrink F’

slightly, to F;. €2 is a parabolic regular domain so if

2R
() = /O (P, )~ Ldr, (P.) € CR(0,0)
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then

[ smdetp) < 2Ry
CQR(Oa())

Hence, by Markov’s inequality,
o({(P,n) € Cap(0,0) | f(P,n) > (2~ )" lv[}) < "R

Let Fy = F\{(P,n) € Cor(0,0) | f(P,n) > (2~ H"TY|v||}. It is clear that equation (3.5.6)
holds for (Y, s), (Z,t) € F| and that

F(Pm) < 27 || (P, ) € Ry, (3.5.7)
Finally, we have the estimate
o(CR(0,0) NIQ\F;) < eR™1, (3.5.8)

At this point we are ready to construct ¢ using a Whitney decomposition of {z,, = 0}.
Let ¢* be such that if (y,0,s) € p(F) then (y,¢*(y,s),s) € Fi. Let Q; := Qp,(#;,1;) C
{zn, = 0} be such that

L {zn = 0H\p(F1) =U Q.

2. Each Q; is centered at (#;,%;) with side length 2p; in the spacial directions and 2922 in

the time direction.
3. Qiﬂsz(bforalli#j
4. 1071d(Q;, p(FY)) < pi < 107d(Q;, p(FY))-
Then let v; be a partition of unity subordinate to ;. Namely,
(D) >Z5vi =1 on R™\p(Fy).
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(IT1) v; =1 on %QZ and v; is supported on the double of Q;.
(ITI) v; € C*°(R™) and pf|8£vi| + ,022€|8fvi| <c(l,n) for ¢ =1,2,..

For each i there exists (x;,t;) € p(F7]) such that

di == d(p(F),Q;) = d((wj, t;), Q;).

Finally let A = {i | Q; N Cor(0,0) # 0} and define

oy, 5) = V*(y,s), (y,s) € p(Fy) (35.9)

>ien (W (@i ti) + Ddi)vily, s). (y,s) € R™\p(F1)

where, as before, D = %D[C’R(O, 0) N P,Cr(0,0) NN < £2.

Let Q) be the graph of ¢ over {z,, = 0} and recall the conditions we want ¢ and Q
to satisfy. Condition (2) is a consequence of equation (3.5.8). Condition (3) follows as
|4 < C(n)D.

It remains to show Condition (1): [(y,s) — ¥ (z, )| < C(n, M,e)(ly — z| + |s — t|}/2).
Equation (3.5.6) says this is true when (y,s),(z,t) € p(F1). When (y,s) € p(F1) and

(z,t) ¢ p(F1) we can estimate

[ (y, s) —(z, )] < > vi(2, )| (y, 8) — ¥ (a5, t;)] + C(n)e*d((2, ), p(F1))
{ieA|(z,t)€2Q;}
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as vj(z,t) # 0 implies d; < 10d((z,t), p(F1)). Apply the triangle inequality to conclude

[6ly,5) — (DI <O (ly— 2l +ls— )+ Xy -l s — bl
{ieA]|(z,t)e2Q;}

<Ce) (ly—al+ls—t?)+ > le—ail -t
{ieA|(z,)€2Q;:}

< C(n,e) |y—z|+|s—t|1/2+ Z d;
{ieA|(z,t)€2Qi}

<C(n,e)ly — 2|+ |s — t|l/2.
(3.5.10)

In the above, we used that [{i € A| (z,t) € 2Q;}| < C and, if (2,t) € Q; that d; <
C(n)d((z,t),p(F1)). From now on we write, a < b if there is a constant C, (which can
depend on ¢, the dimension and the parabolic uniform regularity constants of €2) such that
a < Ch.

The last case is if (y,s),(z,t) ¢ p(F1). When max{d((y, s),p(F1)),d((z,t),p(F1))} <
1(y, ) = (=, )| estimate [y (y, 5) —¥(z, )] < [ (y, 8) =@, 5)| + (7, 5) = (2, 1) +[¥(2,1) -
Y(2,t)| where (7,3) is the closest point in p(Fy) to (y,s) and similarly (Z,%). The Lips-
chitz bound is then a trivial consequence of the fact that d((7,3), (2,1)) < d((y, s), p(F1)) +
d((z,t),p(F1)) + |(y,s) — (2, t)]] < 3]|(y,s) — (2,t)] and the above analysis.

Now assume min{d((y, s), p(F1)),d((z,t),p(F1))} > ||(y,s)—(z,t)]|. Recall that if (y, s) €

2Q); then d; < C(n)d((y, s),p(F1)) < |[(y,s) — (z,t)||. Similarly if 4, j are such that (y,s) €
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2Q; and (z,t) € 2Q; then ||(x;,t;) — (v5,15)]| < C(n)|(y,s) — (2,1)]|. Then we can write

(Y, )= (2. 1) = |> (" (@i, t;) + Ddi)vily, s) = Y (¥*(xj,t;) + Ddj)v;(z,t)

€A JjeA
<3 (i ti) = O (w15 + DId; — dj|yoiy, s)vj(=, 1)
i,jEA
< >, C(n,e)ll(xi, t;) — (zj, t5) | + C(n)|(y, ) — (2, 1)]]

{i7j€A|(y7$)€2Qi,(Z7t)€2Qj}

<C(n,e)l(y,s) — (2, 1)l
(3.5.11)

In the above we use that |{i,j € A | (y,s) € 2Q;, (2,t) € 2Q;}| < C(n) and equation (3.5.6).
Finally, we may assume, without loss of generality, that d((y,s),p(F1)) < |[(y,s) —
(z, )| < d((z,t),p(F1)). Then

¥ (y, (2] <> ((W* (@i, ti) = (Y, 8)) + Ddy)vi(y, s) = vilz, )| (3.5.12)
€A

as 35 U(y, s)(vi(y, s) — vi(z,1)) = 0. Arguing as in equation (3.5.10), [¢*(z;, ;) — ¥(y, s)| <
C(n.e)ll(y,s) — (23, ti)]l. As before, if (y,5) € 4Q; then ||(y,5) — (x5, 1)) < C(n)d; <
c(n)d((y, s), p(F1)) < c(n)ll(y, s) — (z,1)[|. If (y,s) ¢ 4Q; then we may assume (z,1) € 2Q;
(or else v;(y, s) = vi(z,1) = 0). So [|(y,s) — (z, L) || < [I(y,8) = (Ol + [1(z,1) = (w3, )| <
(v, s) = (2 )]l + c(n)pi < E)lI(y,s) = ()]l (as [[(y.5) = (z,8)[| = '(n)p;). Either way,

1y, 8) = (zi, o)l di < C(n)|(y, s) = (2,8)]|. Hence,

[0y, 5) = ¥(z,1)] < Cln, o)y, 5) = (2] Y vily s (z,0)] < C(n,e)l(y, s) — (2, )]
€A

It remains only to estimate the Carleson norm of 7. Our first claim in this direction is

that if (Y,s) € 92N Cyp(0,0) then

d((Y,s),00) < C(n,M,e)d((y, s), p(F1)). (3.5.13)
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Indeed, if (7, 5) € p(F1) be the point in p(F7) closest to (y, s) then,

d((Y,s),09Q) < d((y,s),p(F1)) + ¥ (y, s) — (4, 8)] < C(n, M, £)d((y, s), p(F1))

by the boundedness of ¥’s Lip(1,1/2) norm.

Define T'; to be the graph of ¢ over Q;, and, for r > 0,(X,t) € Fy, define (X, ¢,r) :=
{i | T; NCr(X,t) # 0}. By equation (3.5.13) and standard covering theory there are
constants k = k(n, M,e),k = k(n, M, ) such that T; C Uj Cra;(Zi g 7ij) € C (X 1)
where (Z; j,7; ;) € 0% and the Cpy./5(Z; j,7; j) is disjoint from Cyy./5(Z; ¢, 7 ¢) for j # L.
For any (Z,7) € I'; N Cpq,(Z; j,7i7) and any n-plane P containing a line parallel to the

t-axis we have

d(Z. 7)., P2 < C d((Y.s), P)2 + k242 | . 3.5.14
((Z,7),P)" <C(n) ((sz)eckdj?l?w%)mm ((Y,s), P)* + z) ( )

Define 7 as in equation (3.1.3) but with respect to Q. For any (X,t) € F}, equation
(3.5.14) gives:

i 1 _
Xt S g | [ Az PR Y [ a(7,7), P)ds
r{4&, 1 ice ked; ( ”,r”)maQ
J
Eq.(3.5.14) d:
< X )+ C(n k)Y (f) n+3 ZZ/ d((Z,7), P)*do.
i€ ice j 7 Bkd;/s(ZigiTig)

As Q; can be adjacent to at most c¢(n) many other @y we can be sure that Cyg, /5(Z; j, 7i ;) in-
tersects at most ¢(n) other Cyg,/5(Zy 5,7 7). Additionally, the Cyq. /5(Z; 5,7 j) € C, (X, t)

for all 4, j. Hence, we can control 7 on F7:

X tr) < e(Mn,e) | Y (di/r)™ +y(X 8 kr) |, V(X 1) € Y. (3.5.15)
1€€
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Integrating equation (3.5.15) over Fy and then in r from [0, R], allows us to conclude

R N\ 3
o(Fy % [0, R)) < ||v]|(kR)" ! + / / Yy (ﬂ) drdxzdt.  (3.5.16)
(xat)ep(Fl) 0 r

i€€(X,tr)

Note that ¢ € £(X,t,7) implies that Q; N Cr(X,t) # 0 = r > d((z,t),Q;) > d;. Therefore,

R d: n+3
Pl (_2) drdwdt < / ldrdt < C(n)R" ",
/(z,t)Ep(Fl) /0 in%t,T) r (z,t)ep(F1) ie{(XZ,tQR)

as F1 C CR(0,0). Putting this together with equation (3.5.16) gives us

o(Fy % [0,R]) < C(||v]|,n,e)R" ! (3.5.17)

If (z,t) € Q; (ie. (X,t) € CRr(0,0) N IN\F;) then approximation by affine functions

and a Taylor series expansion yields

A(X 1) < eln, M,e)r?d; 2, (x,t) € Q; Vr < 8d;, (3.5.18)

(see (HLNO3) pp 367, for more details). When r > 8d; we can lazily estimate ¥(X,¢,7r) <
F(Xi, ti, kr) where (X;,t;) = (zj,¢(x, 1), 1;) and (z;,8;) € p(F1) such that d(p(F1), Q;) =

d((,t;), Q;) (as in the definition of ¢). This is because Cy(X,t) C Cf, (X, t;) (where k is

as above). Hence,
R R )
/ ’?(X,t,r)r_ldrg/ (X, by, kryrLdr
8d; 8d;

Eq.(?;5.15) R s R s |

< V(X ti kor)yr—dr + [ r > (dj/r)"dr, ¥(X 1) €T,
8d; 8d; . .
JEE(Xistiyr)

(3.5.19)
Note that (X;,t;) € Fy, thus ffv(Xi,ti,l%Qr)rfldr < gntle=n=Ly|| As before, j €
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§(Xj,ti,m) = r > d;. So we can bound

R
/8 rl Z (dj/r)”+3dr < c¢(n) Z 1.

d; . .
: JEE( X ti,r) JEE(X;,ti,2R)

If we combine these estimates and integrate over I'; we get

R
/ / (X, t,r)r tdrds < C(||v]|,e,n) (&(Fi) —i—/ {j € f(Xi,ti,2R)}|d6> :
T, J8d; T;
Use equation (3.5.18) to bound the integral for small r and sum over all Q;s to obtain:

P((Cr(0,0\F1) x [0,R) S R"™ 4+ Y &) SR (3.5.20)
j€£(0,0,2R)

Combine equations (3.5.17) and (3.5.20) to obtain

7(CR(0,0) x [0, R]) < C(n, e, ||v])R"T.

We now want to control the Carleson norm of €2 by that of the graph domain.

Lemma 3.5.3. Let Q be a parabolic uniformly rectifiable domain and let W be a Lip(1,1/2)
function such that

a(C1(0,0) N ON\IN) < e, (3.5.21)

where Q) is the domain above the graph of U over some n-plane P which contains a line
parallel to the t-axis.

Then, if U is defined as in (3.1.5) but associated OS2 we have

v(Cy9(0,0) x [0,1/2]) < e((C34(0,0) x [0,3/4]) +&'/2), (3.5.22)
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where ¢ > 0 depends on n, ||v|| and the Ahlfors reqularity constant of Q.

Proof. This proof follows closely the last several pages of (HLN04). For ease of notation
let P = {x;, = 0}, so that 9Q = {(y, ¥(y,s),s)}. Let ¥ be the characteristic function of

A1(0, 0)\8@. The Hardy-Littlewood maximal function of y with respect to o is

My (3)(Y, 5) = sup 2 Ce¥:5) 192N C1(0, 0000

, (Y)s) € 00

The Hardy-Littlewood maximal theorem states

(Y, | Ma(0V,5) 2 VED) = Clo) PIE < Clnpe

As such, there exists a compact set E C 9Q N A1(0,0), such that My (¥)(Y,s) < /2 for all
(Y,s) € E and
o(A1(0,0)\F) < e+ C(n)ve < C(n)v/e. (3.5.23)
Let {Q;} be a Whitney decomposition of R\ E. That is to say,

1. Q; := Qr;(P;,n;) is a parallelogram whose cross section at any time is a cube of side
length 2r; centered at P; and whose length (in the time direction) is 27’1-2, centered

around the time 7;.
2.Q;NQ;=0,i#j
3. 107107d(Q;, B) < ry < 107°7d(Qy, B),
4. For cach i, {j | Q; N Q; # 0} has cardinality at most ¢
5. RMNE = Q;.

For (Q,7) € Eand 0 < p < 1/2, let £(Q,7,p) = {i | Q; N Ap(Q,T) # 0}. We claim

3 ’ n+3
Qo< (s@ngn+ X (4) ). (3.5.24)
i€(Q,7p)
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To wit, let P be a plane containing a line parallel to the ¢ axis such that (Q, 7, 3p/2) is

achieved by P. By definition

3 3 —n—3
&(QJT7 50) = <§) pn3/~ d((Y, 5),P>2d5'(}/, 8)
90NC3,/2(Q;7)

On the other hand

AQ7.p) <p / A(Y.s), PY2do + / A(Y,5), P)2do
ENC,(Q,7) Ap(Q\E

(3.5.25)
<3(Q,7,p)+p "3 / (Y, s), P)*do,
( Z iNA, QT ) F)
as do =do on E.
Note that the parabolic diameter of @; is < ¢(n)r;. Hence if
§(Q.7.p) =={i €£(Q,7,p) | Y, s) € Qs s.t. d((Y,5), P) <}
then d((Y,s), P) < d(n)r; for all (Y,s) € Q; and all i € &(Q, 7, p). Therefore,
pmE d((Y,s), P)?do < C(n,M) > (ri/p)"*?.  (3.5.26)

i€&1(Q,T,p) QiNA, (@) i€&1(Q.7.p)

Ifi € £(Q,7,0)\&1(Q, 7, p) let (Y]", s7) € Q; be such that d(Q;, E) = d((Y;", s7), E) =: 0;.
We estimate SUD (v 5\, d((Y,s), P) < d((Y}, s7), P)+c(n)r; < é(n)d((Y;,s7), P) (because

i ¢ &(Q,T,p)). This implies,
/ A(Y, ), PY2do (Y, s) < c(n)r L d((V, 55), P)>.
T:nA(Qr)

The distance between (Y;*,s7) and E is d;, as such, C’(;Z,/g(f/i,%) C Cios;0(Y;"57)
for some (Y;,5;) € E C 99Q. Furthermore, recall §; ~ r;, hence, 6(05/9(}72',%) NnoQ) >
c(n )5"+1 > dr ”+1 . Arguing as above, d((Y,s), P) +c(n)d; > d((Y;",s7), P) for any (Y, s) €
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010&/9(5/;-*, s7). Putting all of this together,

2 n+1 * 2
S / g )PP < 3 ()i d((YF 7). P)

i€€(Q,m,p)\&1(Q,7,p) i€(Q,m,p)\&1(Q,7,p)

< Z c(n) (/ ; _d((Y,s), P)2d6 + 52-27’;“1) _
; Cs. 19(Y5,5;,)NOQ
i€(Q,7,p)\&1(Q,7,p) i/9

Observe that, if i € §(Q,7,p) then, & < p and Ujice(,rp)\é1(Q.mp) C(;i/g(ﬁ, 5;) C
C3,/2(Q, 7). Furthermore for each i € £(Q, 7, p), #{j € {(Q, 7, p)\&1(Q, 7, p) | U(;i/g(ffi, 5i)N
65j /9(§7j, 5;)} < c(n). Plugging these estimates into the offset equation above yields

()7

i€€\&1
(3.5.27)

_n ~y 3
3 Z /ZﬁA Y, s), P)?do < c(n) (’Y(Qﬂ', 5:0) +

i€€\&1

Our claim, equation (3.5.24), follows from equations (3.5.25), (3.5.26) and (3.5.27).
By definition, if i € £(Q, T, p) then p > d(Q;,(Q,7)). Integrate equation (3.5.24) in p
from 0 to 1/2 and over (Q,7) € ENCy/5(0,0) to obtain

v((ENC(0,0)) x 0,1/2]) < C(o((E N C5/4(0,0)) x [0,3/4])

1/2 (3.5.28)
+/ > m/p )" ldp | do(Q, 7).
ENCY /5(0,0) it (Qr1/2) d(Q;,(Q,)

Here, and for the rest of the proof, C' will refer to a constant which may depend on the
dimension, [|v|| and the Ahlfors regularity constant of € but not on ¥ or e.

Evaluate the integral in p to bound

1/2
/ Z / n/ p)"Bp~tdp | do
ENCY /5(0,0) d(Q;(Q,7)

Q? 71/2
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) n+3
e 5 Lunliin)
iEf(XO,:O,l) EQCI/Q(O,O) d(QZv(Q7T)) ’

For every A > c¢(n)r;, let

Ey:={(Q,7) € E]d(Q;,(Q,7)) <A}

Trivially E\ = {(Q,7) € E | r;/d(Q;,(Q,7)) > r;/\}. By construction of the Whitney

decomposition, diam(Q;) < ¢(n)A, so Ahlfors regularity implies
o(E)) < XL
Recall that 7;/d(Q;, (Q, 7)) < r;/6; < 107°™. Let v = r;/A and evaluate,

r. n+3d _ 105 42 5 7 p
_ o <n ey T —2
Joves o (mam) o), Tet@nesl oz he

1
2 1. —m—1 1
< /0 N ) et

Now recall, that Qz € £(0,0,3/4) form a cover of Az;4(0,0)\E. In light of equation
(3:5.23), X ice(0,0 3/4) L < ¢(n)o(A1(0,0)\E) < C+/e. Which allows us to bound,

1/2
/ ( Z / rz/p n+3p1dp) do < Cy/e.
ENCY 15(0,0)

Q7 ’1/2 Q'u Qa

Plugging the above inequality into equation (3.5.28) proves

V((E N Cy(0,0)) x [0,1/2]) < C(#((E N Cy4(0,0)) x [0,3/4]) + v/5). (3.5.29)
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It remains to estimate v((Ag/9(0,0)\E) x [0,1/2]). By the Cauchy-Schwartz inequality

1/2
V((A1/2(0,0\E) x [0,1/2]) = /A 00) XEe(Q,7) (/0 R, T, p)p_ldp> do(Q, )
1/2(0,

1/2 - 2
< \/U(AI/Q(Oa O\E) </A1/2(0,0) </0 1@, 7. p)p 1dp> dU(Q,T))

As above, let f(Q,T) := f01/2 Y(Q, 7, p)p~tdp. We claim that f(Q,7) € BMO(C /2(0,0)).

1/2

(3.5.30)

Let Cp(P,n) C C1/2(0,0) with (P,n) € 9. Define k = k(p, P,n) = fp1/2 ~(P,n,r)rtdr.

Additionally, let f1(Q,7) := [ v(Q,7,7)r tdr and fo(Q,7) = f(Q,7)—f1(Q.7) for (Q,7) €
Cy(P,n). By the triangle inequality,

/ £(@Q.7) — Kldo < / £1(Q,7)do + / 2(Q.7) — Kldo
AP(Pvn) Ap(Pan) A (Pﬂ?)

p

< |lvlp" +/ | /2(Q,7) — k|do.

Ap(Pﬂ?)

(3.5.31)

If (Q,7) € Ap(P,n) then o((Ar(Q,7) U AP, n)\(Ar(Q,7) N Ar(P,n))) < Cp”‘H (by
Ahlfors regularity). Therefore, |y(P,n,r) —v(Q,7,7)| < C’;Z’%. Hence,
1/2 dr
[ ip@n-te@n< [ [T prnn 2@ Taen)
Cp(Pﬂ?) CP(Pvn) P r

1/2 n+1
1 14 -1 1
<Cp"t /p P dr < Cp"T.

Together with equation (3.5.31), this proves || f(@, T)||BMO(01/2(0,O)) <C.
Let ky /g = f01/2(070) f(Q,7)do (hence ky o < [[v[[). By the definition of f(Q, 7) € BMO,

2 2
/01/2(070) £(Q,7) = by ol *do <e(m) I F(Q, )iBno ey 0000 =
(3.5.32)
/01/2(0,0) 1£(Q,7)do(Q, 7) SC(n)(Hf(Q,T)H%Mo(cl/g(o,o)) + vl
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Combine equations (3.5.30) and (3.5.32) to produce
({1021 Cy (0, 0\E] x [0,1/2]}) < C=/* (3.5.33)

which, with (3.5.29), is the desired result. O

We are now ready to prove Proposition 3.5.1, and by extension, complete the proof of

Theorem 3.1.9.

Proof of Proposition 3.5.1. Fixane > 0 and let r; | 0 and (Q;, 7;) € 0QNK for any compact
set K. For each i, apply Lemma 3.5.2 inside of C;,(Q;,7;). This produces a sequence of
functions, {;}, with bounded Lipschitz norms whose graphs are good approximations to
Cr,(Qi, ;) N 0Q. We write, for ease of notation, P; = P((Q;,7;),7;). As there is no harm in
a rotation (and we will be considering each i seperately) we may assume that P; = {z), = 0}.
We can define ®;(x,t) := %wi(rzx—qu, ; r2t4;) — (QZ) . Then, after a rotation which possibly
depends on i, €2; and ®; satisfy the requirements of Lemma 3.5.3. In particular, there exists
an ig(e) > 0 such that for i > i,

V(A j2(Q4,7i) x [0,77/2]) 3/4 dr
T / ] S Kn7”y”7€ / / ’)/q)z (ZE, t, T)dl‘dt— + Kn’”l/”51/2
r; 0 03/4(0,0 r

(3.5.34)

It is important to note that while both constants above can depend on the dimension, ||v||

and the Ahlfors regularity of €2, only K

vl will depend on ¢ and both constants are

independent of 1.

Conclusion (4) of Lemma 3.5.2 implies that f;(x,t) fo (z,t,7)r~Ldr is uniformly
integrable on C3/4(0,0) N {zn = 0}. Furthermore the ®; are uniformly bounded in the
Lip(1,1/2) norm so by the Arzela-Ascoli theorem there is some @, such that ¢; = O It

follows that f;(z,t) = foo(x,t) := f()3/4 Voo, (z,t,7)r~Ldr. Thus, the dominated convergence
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theorem implies

. V(Cri/Q(QiaTi) X [0,”/2]) 1/9
lim sup P < KT’L,I/,E/ fOO(xvt)dxdt+Kn,|\l/||5 / . (3535)
Ty 03/4(070)

1—00 i

On the other hand, condition (3) in Lemma 3.5.2 and vanishing Reifenberg flatness tells us
that the graph of ®; in the cylinder C'1(0,0) is contained in increasingly smaller neighbor-
hoods of P;. Hence, ®oo(w,t) = 0 inside of C1(0,0), and foo(z,?) = 0in ' /9(0,0). Plugging

this into equation (3.5.35) yields the bound,

) 1
limsup ———=v(A,, 9(Q4,7i) x [0,7;/2]) < Kn7||y||51/2. (3.5.36)
t—oo T
Since ¢ is arbitrarily small the result follows. O]

3.6 Initial Holder Regularity

We turn our attention to proving Proposition 3.1.11 and assume that log(h) (or log(k(Xo-10)))
is Holder continuous. As before, €2 will be a d-Reifenberg flat parabolic regular domain. We
will state and prove all the results in the infinite pole setting, however, almost no modifica-
tions are needed for kernels with a finite pole.

This section is devoted to proving an initial Holder regularity result:

Proposition 3.6.1. Let Q@ ¢ R™ be a parabolic regular domain and o € (0,1) such that
log(h) € CO"O‘/Q(R”+1). There is a 0y, > 0 such that if 6, > 6 > 0 and Q is d-Reifenberg flat

then 0 is a CLT0F)/2(RHLY domain,

We follow closely the structure and exposition of Appendix B.1, occasionally dealing with
additional complications introduced by the Holder condition. We should also mention that
this section is strongly influenced by the work of Andersson and Weiss in (AW09) and Alt
and Caffarelli in (AC81). To begin, we introduce flatness conditions (these are in the vein

of Definitions B.1.1 and B.1.3 but adapted to the Holder regularity setting).
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First, “current flatness” (compare to Definition 7.1 in (ACS81)).

Definition 3.6.2. For 0 < 0; < 1,k > 0 we say that w € HCF(01,09,k) in Cp(X,t) in the

direction v € S"Lif for (Y, s) € Cp(X,t)

o (X,1) € d{u>0}

u((Y,s)) = 0 whenever (Y — X)-v < —o1p

u((Y,s)) > h(X,t) (Y — X) - v — o9p) whenever (Y — X)-v—o9p > 0.

IVu(Y,s)| < h(X,t)(1+ k)

. OSC(QJ)EAP(X’t)h(Q,T) < kh(X,t).

In some situations we will not have a estimate on the growth of u in the positive side.

Thus “weak current flatness”:

Definition 3.6.3. For 0 < o; < 1,k > 0 we say that u € fI\C’?(al, 09, k) in Cp(X,t) in the

direction v € S"Lif for (Y, s) € Cp(X,t)

o (X,t) € 0{u> 0}

u((Y,s)) =0 whenever (Y — X)-v < —o1p

e u((Y,s)) >0 whenever (Y — X)-v —ao9p > 0.

IVu(Y,s)| < h(X,t)(1+ k)

° OSC(Q,T)EAP(X,t)h<Q7 7) < kh(X,t).

Finally, in our proofs we will need to consider functions satisfying a “past flatness”
condition (first introduced for constant h in (AW09), Definition 4.1).
Definition 3.6.4. For 0 < 0; < 1,k > 0 we say that v € HPF (01,09, k) in Cy(X, 1) in the
direction v € S"Lif for (Y, s) € Cp(X,t)

127



(X,t—p?) € 00

u((Y,s)) =0 whenever (Y — X)-v < —oy1p

u((Y,5)) > h(X,t —p?) (Y — X) - v — o9p) whenever (Y — X)-v —a9p > 0.

IVu(Y,s)| < h(X,t — p*)(1 + k)

. OSC(Q,T)EAP(X’t)h(Q,T) < kh(X,t — p?).

Proposition 3.6.1 will be straightfoward once we prove three lemmas. The first two allow
us to conclude greater flatness on a particular side given flatness on the other (they are
analogues of Lemmas B.1.4 and B.1.5 in the Holder setting). We will postpone their proofs

until later subsections.

Lemma 3.6.5. Let 0 < kv < o < og where oqg depends only on dimension. If u &

HCF(0,1/2,K) in Cy(Q,T) in the direction v, then there is a constant C1 > 0 (depend-

ing only on dimension) such that w € HCF(C1o,C10,K) in Cp/Q(Q, T) in the direction v.

Lemma 3.6.6. Let 6 € (0,1) and assume that w € HCF(0,0,k) in Cy(Q,T) in the direction
v. There exists a constant 0 < op < 1/2 such that if 0 < og and k < 090 then u €
E&?(@a, 00, k) in Coy),p(Q,T) in the direction v where [V —v| < C(n)o. Here oo >

C(n),c(n) > 0 are constants depending only on dimension.

The third lemma is an adaptation of Proposition 3.4.4 and tells us that |Vu(X,t)| is

bounded above by h(Q, T) as (X, t) gets close to (Q, 7).

Lemma 3.6.7. Let u,$), h be as in Proposition 3.6.1. Then there exists a constant C' > 0,

which is uniform in (Q,T) € 02 on compacta, such that for all r < 1/4,

sup  |Vu(X, 1) < W(Q,7) + Crmint3/hal,
(X ,t)eCr(Q,7)
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Proof. Fix an R >> 1 and (Q, 1) € 0. Lemma 3.3.7 says that there is a uniform constant

C > 0 such that, for any (X,t) € Q with [|[(X,t) — (Q,7)| < R/2,

IVu(X,t)| < / h(P,n)de 0 (P ) + ol = @) (3.6.1)

Asr(Q7) R1/?

Let ||(X,t)—(Q,7)|| < r and let ky € N be such that 27%0~1 < < 27k0 The inequality
1— 0D (Cy i (Q, 7)) < C239/43/4 i < kg — 2, (3.6.2)
follows from applying Lemma 3.2.1 to 1 — @(Y’S)(C’Q_j(Q, 7)). We can write

/ h(P,m)d X0 (P,) < 1(Q, ) + Clh]| oo / (4r)de %)
Azr(Q.T) Agr(Q7)

Xt | Z/ o—Jja g, (Xt)

+ Ch oo /
AQR(Q,T)\Al(Q, )

We may bound

S Qop(@Q TNANQ M) < 1= (A(Qr) < Cprt/t

eq.(3.6.2 .
XD (g 5(Q Ny (@ 7)) <1 - 8XD (A, ;@7 L coita, i,

Plug these estimates into equation (3.7.4) to obtain

[logy (r~1)]
/ (P, n)d XD (P) < W(Q, )+ Cr® + Cpr¥/t 4 o3/t N~ 21B/47a),
Agr(Q,7) =0
(3.6.4)
If o« > 3/4 then we can let the sum above run to infinity and evaluate to get the desired
result. If & < 3/4 then the geometric sum above evaluates to ~ 23/43—/a*1 < 4ro—3/4, Plug
this into estimate (3.7.5) and we are done. Finally, if & = 3/4 then we may apply Lemma

3.2.1 with e just slightly less than 1/4 to get a version of equation (3.6.2) with a different
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exponent, which will allow us to repeat the above argument without issue. O]
These three results allow us to iteratively improve the flatness of the free boundary.

Corollary 3.6.8. For every 6 € (0,1) there is a opq > 0 and a constant ¢y € (0, 1), which
depends only on 6,a and n, such that if u € ﬁb?’(a, 1/2,k) in Cy(Q,T) in direction v
then u € E&f(&a, 00,62kK) in Cepp(Q,T) in direction U as long as 0 < opa, K < an,a02
and OSCASP(O’O)h < ks®h(0,0). Furthermore U satisfies |[v — v| < Co where C' depends only

on dimension. Finally, there is constant C > 1, which depends only on n, and a number

v € (0,1), which depends only on n,«, such that C’cg >0 > 03/2.

Proof. We may assume that p = 1,(Q,7) = (0,0) and v = e,. By Lemma 3.6.5 we know
that u € HCF(Cio0,C10,k) in Cp/5(0,0) in direction ey. Let 61 € (0,1) be chosen later
(to depend on the dimension and «), and set o o = 05, /C1 Where op, is the constant
given by Lemma 3.6.6. Then if 0 < oy and k < Un7a0'2, Lemma 3.6.6 implies u €
I?E’f’(C’lQla, C1010, k) in Cg, (0,0) in the direction vy where |11 —ep| < C(n)o.

We turn to improving the bound on Vu. Observe that U = max{|Vu(X,t)| — h(0,0),0}
is an adjoint-subcaloric function in C7(0,0). Let V be the solution to the adjoint heat
equation such that V' = kh(0,0)x,,>—s on the adjoint parabolic boundary of C1(0,0).
That u € }/I\C’f’(a, 1/2, k) implies U < V on 9,C1(0,0). The maximum theorem and Harnack
inequality then imply U < V' < (1 —¢)xh(0,0) on all of Cy 5(0,0), where ¢ depends only on

dimension. Furthermore, by assumption,
0SCA . (0,0 < £(€01)"h(0,0).

Hence, if ) = /1 — ¢ and §; = min{y/C1, Qg/a/é} we have that u € %(900‘, 0o, 03r)
in Czp, (0,0) in direction v7.

Iterate this scheme m times to get that u € ﬁéf’(%na, 0o, «9(2)7”/{) in Cémgvlﬂ(o, 0) in the
direction vy, where |en, — vm| < Co 3772, 96 < C(n)o. Let m be large so that 4" < 0 <

96n_1. Then, since 6y, ¢, 01 are constants which depend only on the dimension, n, and «,
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we see that (¢01)"" = ¢y where ¢y depends on 6,n,a. By the definition of 6, there is some

X > 2/a > 1 (but which depends only on n, ) such that éf; = 6. Then

()2 < ()X = (e00) ¥ =07 <0< 05" = Lo = 1o
Letting C' = % and v = % implies that
§? <0< 0. (3.6.5)
which are the desired bounds on cy. ]

Proposition 3.6.1 then follows from a standard argument:

Proof of Proposition 3.6.1. We want to apply Corollary 3.6.8 iteratively. But before we can
start the iteration, we must show that the hypothesis of that result are satisfied.
By Lemma 3.6.7 and that fact that log(h) is Holder continuous, there exists a constant

C > 0 for any compact set K such that ¥(Q,7) € 00N K and 1/4 > p > 0,

[Vu(X, )] <h(Q.7) + Cp*/?
(3.6.6)
0sca,,(Q.r)h <Ch(Q,T)s%p", Vs € (0,1].

Fix a compact set K and a op < op o (where oy ¢ is as in Corollary 3.6.8). As € is vanishing
Reifenberg flat, there exists an R := R, ¢ > 0 with the property that for all p < R and
(Q,7) € 002N K, there is a plane P (containing a line parallel to the time axis and going
through (@, 7)) such that

D[C,(Q,7) N P;Cp(Q,7) NN < po.

Then fix a kg < amaa(%. Obviously, we can choose pg small enough (and smaller than

R, i above) such that h(Q,7) + C’pg/2 < (1 + ko)h(Q,7) and Ch(Q,T)pg < kg. Further-
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more, this pg can be choosen uniformly over all (), 7) € K. These observations, combined
with equation (3.6.6), means for 0 < p < pg, u € ﬁgl?(a, o,kp) in Cp(Q,7) for some
direction v.

Then for any (P,n) € C,,(Q,7) there is a vy(P,n) such that u € ﬁ(\ff(o, 0, Kg) in
Cpo(P,n) in the direction vo(P,7n). Let § € (0,1) and apply Corollary 3.6.8 m times to get
that u € I?E’?’(@ma, 0", 0% k) in ch“pg(Pa n) in the direction vy, (P, 7). We should check
that the conditions of Corollary 3.6.8 are fulfilled at every step. In particular, that for any
m, we have OSCAscglpo(Pm)h < 0% kgh(P, 7). Indeed,

0sCA h < Ch(P,n)(spocy’)™ < roh(P, ’f?)CZma/Q < rkoh(P,n)0*™.

chnpo (Pm)

The last inequality above follows from equation (3.6.5), and the penultimate one follows
from the definition of pg.

Letting m — oo it is clear that 02 has a normal vector v(P,n) at every (P,n) € Cp,(Q,T)
and |vy, (P,n) — v(P,n)] < Cyf0™c . Furthermore, if (P',7) € Apocg”(P’ n)\Apocg‘H(P’ n)
then |vp (P, n) — vm (P, 7')| < C6™a. Hence, |v(P,n) — v(P',1)] < C™o. By equation
(3.6.5) we know that C'of < CO"™ < C’cgm. Let 8 € (0,1) be such that B(m + 1) = ym.
Hence, [v(P,n) — v(P',1)| < C||(P,n) — (P',7')||® which is the desired result. O

3.6.1 Flatness of the zero side implies flatness of the positive side: Lemma

3.06.5

Before we begin we need two technical lemmas. The first allows us to conclude regularity in

the time dimension given regularity in the spatial dimensions.

Lemma 3.6.9. If f satisfies the (adjoint)-heat equation in O and is zero outside O then

1 lgrare@niny < cllVF o0,
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where 0 < ¢ < 0o depends only on the dimension.

Proof. 1t suffices to show that for any (X,t),(X,s) € O we have |f(X,t) — f(X,s)] <
C|s — t|'/2 where C does not depend on X, ¢ or s. Assume s > ¢ and let r = /s — {. Before

our analysis we need a basic estimate:

CollV £l o0
][ iy ][ AMX‘: c_n][ vf ol < IV fll oo (0
B'((X,t),r) B'((X,t),r) T JOB'((X,t),r)

as long as B'((X,t),r) :={(Y,;t) | |Y = X| <r} CO.

r

(3.6.7)

There are two cases:

Case 1: {(Y,7)||Y — X| <r,t <7 <s}C O. By Lipschitz continuity,

< ClIVfligeer.

X, t) — Y. t)dY
if( LR )

Note that by Fubini’s theorem and the mean value theorem there is a € [t, s] such that

) ']aY_XlSr} /ts Or f(Y,7)drdY

:(s—t)][ Ry
BI((X.0).r)

f FY, )Y — f F(Y, 5)dY
B'((X,t),r) B'((X,s),r)

We may combine the two equations above to conclude,

FOX0) = JC)] S CITflor (= 0)|f (Vi)Y
B'((X,t),r)
eqn (3.6.7) _
P O+ C D) = O o) VAR

Case 2: {(YV,7)||Y = X| <r,t <7 <s}¢g O. If neither B'((X,t),r) or B'((X,s),r) are
contained in O then |f(X,t) — f(X,s)| < [f(X, )|+ |f(X, s)| < [|[Vf| eer by the Lipschitz
continuity of u. Therefore, without loss of generality we may assume B'((X,t),7) C O .

Let ¢t < ¢* < s be such that t* = inf;<, B'((X,a),7) ¢ O. Since B'((X,a),r) C O is an
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open condition, we can argue as in Case 1 so that, |f(X,t) — f(X,t*)| < C’||Vf||Loo(O) (t* —
t)/r < C|Vfllp(©)v's —t. On the other hand, as B'((X,t*),r) ¢ O we know |f(X,t*)| <
IV f|| Loo|s — t]1/2. Therefore, |f(X, )] < C||V £l oo|s —t|}/2. Arguing similarly at s we are

done. O

This second lemma allows us to bound from below the normal derivative of a solution at

a smooth point of 0.

Lemma 3.6.10. Let (Q,7) € 00 be such that there exists a tangent ball (in the Euclidean

sense) B at (Q,7) contained in Q°. Then

. u(X, 1)
1 U S Q7).
asCen by ) A1), B) = T

Proof. Without loss of generality set (Q,7) = (0,0) and let (Xp,t;) € 2 be a sequence

that achieves the supremum, ¢. Let (Y}, s;) € B be such that d((Xg, t), B) = |[(Xp, t) —

reX+Y5 ,T,%t-i—sk)
Tk

(t — sk)/r]%, s.t. (X, t) € Q} and hy (X, t) := h(rp, X + Yk,r%t + sp,). Then

(Y, sp)|| =: 1. Define up (X, t) := u

=AY, 8) | Y = (X = Y)/r, 8 =

/R (26— 0) Xt = / hyodo. (3.6.8)

Y,

As k — oo we can guarentee that (rp X + Yk,r,%t + s5) € C1/100(0,0). Apply Lemma
3.6.7 to conclude that, for (X,t) € C1(0,0),

1 \"?
Vug (X, )] = [Vu(rpX + Vi, r2t + s)| < Ch(0,0) + (1_00) |

In particular, the uj, are uniformly Lipschitz continuous. By Lemma 3.6.9 the ;. are bounded
uniformly in cli/2, Therefore, perhaps passing to a subsequence, uj — ug uniformly on
compacta. In addition, as there exists a tangent ball at (0,0), 2 — {x, > 0} in the

Hausdorff distance norm (up to a rotation). We may assume, passing to a subsequence,
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that 2tk — 7y B2k s po with (Zo,t0) € C1(0,0) N {zy > 0} and ug(Zo, to) = L.
k

Tk

Furthermore, by the definition of supremum, for any (Y, s) € {z,, > 0} we have

up(Y, s) = lim u(rpY +yy, res + 5) /7

pardist((r,.Y + s, r,%s + s1.), B)

< lim /¢

k—r00 Tk (3.6.9)
= lim {pardist((Y,s), By.)

k—o0
:gyn,

where B, is defined like §2;, above.

Let ¢ € Cgo(Rn+1) be positive, then

/ lrp(Ap — 0rp)dXdt > / ug(X, ) (A¢p — Orp)d X dt
{l'n>0} {In>0}

= lim up (X, t)(A¢ — Orp)d X dt (3.6.10)
k—o0 JQ,

= lim hi¢do.
k=00 J oy,

Integrating by parts yields

¢ / drdt = / Con(Ad — Op)dX dt
{fn:()} {xn>0}

eqn. (3.6.10)
> lim hpodo
k=00 J oy,

> lim inf  h(rpP + Y, o + sp,) / pdadt
k—ro0 ((Pm)esupp ¢ k {z,=0}

Hence, ¢ > limj,_,o, h(Y}, si.) — Cry, by the Holder continuity of h. As (Y}, s;) — (@, 7)

and 7 | 0 the desired result follows. ]

We will first show that for “past flatness”, flatness on the positive side gives flatness on

the zero side.
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Lemma 3.6.11. [Compare with Lemma 5.2 in (AW09)] Let 0 < k < o/4 < og where o
depends only on dimension. Then if u € HPF(o,1,K) in Cp(X,f) in the direction v, there
is a constant C' such that u € HPF(Co,Co,3k) in Cp/Q(f( + av,t) in the direction v for

some |a| < Cop.

Proof. Let (X,1) = (0,0),p = 1 and v = e,,. First we will construct a regular function which
touches 0f) at one point.

Define
16(|z|2+[t+1])
n(x,t) = el6(z+t+1)-1
for 16(|z|® + |t + 1|) < 1 and n(z,t) = 0 otherwise. Let D := {(x,xp,t) € C1(0,0) |
xp > —o + sn(x,t)}. Now pick s to be the largest such constant that C1(0,0) N Q C D. As
(0, —1) € 0{u > 0}, there must be a touching point (X, ty) € 0DNINN{—-1 <t < —15/16}

and s < o.

Define the barrier function v as follows:

Av+ 0w =0in D,
v=01in d,D N C1(0,0) (3.6.11)

v="n(0,-1)(1+0)(0c + 2,) in Ip,D N IC1(0,0).

Note that on d,D N C1(0) we have u = 0 because D contains the positivity set. Also, as
|IVu| < h(0,-1)(1+ k) < h(0,—1)(1 + o), it must be the case that u(X,t) < h(0,—1)(1 +
o)max{0,0 + z,} for all (X,t) € C1(0,0). As v > u on 9pD it follows that v > u on all of
D (by the maximum principle for subadjoint-caloric functions). We now want to estimate

the normal derivative of v at (X, y). To estimate from below, apply Lemma 3.6.10,

X, t
h(Xo,tg) < limsup u(X, 1)

i < —0v(Xo,t 3.6.12
(X.1) > (Xo.to) Pardist((X, 1), B) v(Xo, to) (3.6.12)

where v is the normal pointing out of D at (Xg,ty) and B is the tangent ball at (X, ) to
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D contained in DF¢.

To estimate from above, first consider F/(X,t) := (1 + o)h(0, —=1)(c + ) —v. On 0,D,
—(140)h(0,-1)o <v—(1+0)h(0,—1)zy < (14 0)h(0,—1)0 (3.6.13)

thus (by the maximum principle) 0 < F(X,t) < 2(1 4+ 0)h(0,—1)o. As 0D is piecewise
smooth domain, standard parabolic regularity gives supp |VF(X,t)| < K(1+ o)h(0,—1)o.
Note, since s < o, that —o + sn(z,t) is a function whose Lip(1,1) norm is bounded by a
constant. Therefore, K does not depend on o.

Hence,

Vol — (1 +0)h(0,—1) <|Vv — (1 +0)h(0,—1)en| < K(1+ 0)h(0,—1)0

.6.14
eqn (i6.12) (3.6.1)

h(Xo,to) < — dyv(Z) < (1+ Ko)(1 4 a)h(0, —1).

We want to show that v > v — K(1 + 0)h(0, —1)oz, for some large constant K to be
choosen later, depending only on the dimension. Let Z := (Y, sg) with sg € (—3/4, 1), [yg| <
1/2 and (Yy)n = 3/4 and assume, in order to obtain a contradiction, that u < v — K (1 +
o)h(0, —1)oxy, at every point in {(Y,sg) | |Y — Yy| < 1/8}. We construct a barrier function,

w = w, defined by

Aw+ dpw =0in DN {t < sp},
w=xpon dp(DN{t<sp})N{(Y.,s0) | Y —Yp| <1/8},

w=00ndy(DN{t<so)\{(Y,s0) | Y — Yo| < 1/8}.

By our initial assumption (and the definition of w), v — Ko (1 + o)h(0,—1)w > u on
Op(D N {t < s0}) and, therefore, v — Ko(1+ o)h(0, —1)w > u on all of DN {t < sg}. Since
tg < —15/16 we know (Xq,t0) € Op(D N {t < sp}). Furthermore, the Hopf lemma gives an

a > 0 (independent of Z) such that dyw(Xg,ty) < —a. With these facts in mind, apply
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Lemma 3.6.10 at (X, ?g) and recall estimate (3.6.14) to estimate,

: u(X, 1)
h(Xg,tp) = limsup :
(Xo.to) (X.1)—=(Xo.t0) pardist((X,t), B)
< — dyw(Xo, to) + K(1 + 0)h(0, —1)ed,w(Xo, to) (3.6.15)

<(1+ Ko)(1+0)h(0,-1) — Ka(l 4+ o)h(0,—1)o < (1 — 20)h(0, 1)

if K > (K+3)/a. On the other hand, our assumed flatness tells us that k(Xg, tg)—h(0, —1) >
—kh(0,—1) > —oh(0,—1). Together with equation (3.6.15) this implies —oh(0, —1) <
—20h(0, —1), which is absurd.

Hence, there exists a point, call it (Y, sg), such that [Y — Yy| < 1/8 and

_ N _ (M1
(u—v)(Y,s0) > —Ko(1+a)h(0,=1)(Y)n, > —K(1+0)h(0,-1)0o.

Apply the parabolic Harnack inequality to obtain,

inf  (u—0)(X,s0—1/32)>¢,  sup  (u—v)(X,s0) > —K'(1+0)h(0,—1)o
|X—Yo[<1/8 | X —Yp|<1/8

BEI8) (X, 50— 1/32) > (1 + 0)h(0, ~1)(an — o) — O(L + 0)h(0, —1)o,

for all X such that |X — Yy| < 1/8 and C which depends only on the dimension. Ranging

over all sg € (=3/4,1) and |yg| < 1/2 the above implies
uw(X,t) > (14 0)h(0,—-1)zy, — C(1 4 0)h(0,—1)0,

whenever (X, t) satisfies || < 1/2,|zp, — 3/4] < 1/8,t € (—=1/2,1/2). As |Vu| < (1 +
0)h(0,—1) we can conclude, for any (X,t) such that |z| < 1/2,t € (—=1/2,1/2) and 3/4 >

rp > Co, that

w(X, 1) > u(z,3/4,8) — (1 + 0)h(0, —1)(3/4 — 2n) > (1 + 0)h(0, —1)(an — Co).  (3.6.16)
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We now need to find an « such that (0,a, —1/4) € 9Q. By the initial assumed flatness,
and equation (3.6.16), a € R exists and —o < a < Co (here we pick o( is small enough such
that Cog < 1/4).

Furthermore, by the assumed flatness in C7(0,0),

h(0,c,—1/4) — h(0,0,—1) > —xh(0,0,—1)

(3.6.17)
= 3h(0,c, —1/4) > (1 — &) "h(0,ar, —1/4) > h(0,0, —1).

Hence,

eqn (3.6.17)
08CCy o (0,0,0)0 < 08¢y 0,00 < KR(0,0,=1) < 2kh(0, @, ~1/4).

In summary we know,

(0,0, —1/4) € 092, |a| < Co
o vy —a<-3Cc/2= 1z, < —0=u(X,t)=0.

e When z, — o > 2Co = x, > Co hence equation (3.6.16) implies u(X,t) > ((1 +

V0, —1))(wn — Co) > (1+ 26)1(0, , —1/4) (wn — a — 2C0).

As written above 08001/2(0’a,0)h < 3kh(0,a, —1/4).

1—k

Finally SUPC) 15(0,0,0) [Vul < supc, (,0) [Vul < (1 +£)h(0,-1) < e R0, 0, —1/4) <

(1+3k)h(0,, —1/4), where the penultimate inequality follows by (3.6.17).
Therefore u € HPF(2C0,2C0,3k) in C} /5(0, a, 0) which is the desired result. O

Lemma 3.6.5 is the current version of the above and follows almost identically. Thus

we will omit the full proof in favor of briefly pointing out the ways in which the argument

differs.
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Lemma (Lemma 3.6.5). Let 0 < k < o < oy where og depends only on dimension. If
u € ﬁél/f(a, 1/2, k) in Cy(Q, 7) in the direction v, then there is a constant C1 > 0 (depending

only on dimension) such that w € HCF(Cy0,Ch0,k) in C,/5(Q,T) in the direction v.

Proof of Lemma 3.6.5. We begin in the same way; let (Q,7) = (0,0),p = 1 and v = ey.

Then we recall the smooth function

16(|z|2+|t+1])
n@j) — e 16(lz2+[t+1))—-1

for 16(|z|® + |t + 1|) < 1 and n(z,t) = 0 otherwise. Let D := {(x,xp,t) € C1(0,0) |
xp > —o + sn(z,t)}. Now pick s to be the largest such constant that C1(0,0) N Q C D.
Since |zy| > 1/2 implies that u(X,¢) > 0 there must be some touching point (Xo,t) €
oD N N{-1<t<—15/16}. Furthermore, we can assume that s < o +1/2 < 2.

The proof then proceeds as above until equation (3.6.16). In the setting of “past flatness”
we need to argue further; the boundary point is at the bottom of the cylinder, so after the
cylinder shrinks we need to search for a new boundary point. However, in current flatness the
boundary point is at the center of the cylinder so after equation (3.6.16) we have completed
the proof of Lemma 3.6.5. In particular, this explains why there is no increase from « to 3x

in the current setting. [

3.6.2 Flatness on Both Sides Implies Greater Flatness on the Zero Side:

Lemma 3.6.6

In this section we prove Lemma 3.6.6. The outline of the argument is as follows: arguing
by contradiction, we obtain a sequence u; whose free boundaries, 0{uy > 0}, approach
the graph of a function f. Then we prove that this function f is C°° which will lead to a
contradiction.

Throughout this subsection, {uy} is a sequence of adjoint caloric functions such that
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d{uy, > 0} is a parabolic regular domain and such that, for all ¢ € C2°(R"+1),

/ up(Ap — Opp)d X dt = / hy.edo.
{up>0} O{up>0}

We will also assume the hy, satisfy || log(hg)||caa2 < Cll10g(h)|| pasas2 and b (0,0) = 2(0,0).

While we present these arguments for general {uj} it suffices to think of w(X,t) =
u(rkX,r]%t)

™ for some 7y, | 0.

Lemma 3.6.12. [Compare with Lemma 6.1 in (AW09)] Suppose that uj, € HCF (o}, 0, T1)
in Cp, (0,0) in direction en, with o, | 0 and Tk/dz — 0. Define f]j(x,t) = sup{d |
(or, opppd, ppt) € {up = 0}} and f; (,t) = inf{d | (ppz,opppd, pjt) € {uj, > 0}}.

Then, passing to subsequences, f]j,fk_ — fin L3S (C1(0,0)) and f is continuous.

Proof. By scaling each u;, we may assume p;, = 1. Then define
Dy :=A{(y,d, 1) € C1(0,0) | (y, o3, t) € {uy, > 0}}.

Let

flot) = Timinf f7(y,s),
(y,5)—(2,t)
k—o0

so that, for every (yo, o), there exists a (y, t) — (Yo, to) such that f (y, t) hope f(vo,to)-
Fix a (yg,tp) and note, as f is lower semicontinuous, for every ¢ > 0, there exists a

0 > 0, kg € N such that
{(y.d.t) | ly — ol <20, |t —to| < 46%,d < f(yo.to) — €} N Dy =0, Vk > ko.
Consequently
zn — f(yo,t0) < —e = up(z,0p2pn,s) =0, V(X,s) € Cys(Yp, to)- (3.6.18)
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Together with the definition of f, equation (3.6.18) implies that there exist o, € R with
lag| < 2¢ such that (yo, o, (f(vo,to) + o), to — 62) € d{uy, > 0}. Furthermore, for any
(Y, s) € C1(0,0) by assumption h(0,0) — hi(Y,s) < 7.h(0,0) = h(0,0) < (1 + %Tk)hk(Y, s)
for k large enough. This observation, combined with equation (3.6.18) allows us to conclude,
up (-, 01, +) € HPF(3015,1,47,) in Cs(yo, 0 (f(yo, to) + ), to), for k large enough.

As 11,/ a]% — 0 the conditions of Lemma 3.6.11 hold for k large enough. Therefore,
u(,0x,) € HPF(Coy§, Coys,87) in Cso(yo, oxf(yo, to) + dg, to) where || < Coye.
Thus whenever z, — (o,.f(yo,to) + &) > Ceo/2, we have uy(z,0p2n,t) > 0 for (Z,t) €

05/2(907 Uk;fk,_(yo,to) + ay,, tg). In other words

sup f]:'(z, s) < f(yo,to) + 3Ce. (3.6.19)
(Z,5)€Cs 2 (y0,0n.f (yo.to)+d.to)

As ff > fp it

flyo.to) == limsup f;f (y,s),
(y,S)H(yo,to)
k—o00

it follows (in light of equation (3.6.19)) that f = f. Consequently, f is continuous and

f]j' , [, — [ locally uniformly on compacta. O

We now show that f is given by the boundary values of w, a solution to the adjoint heat

equation in {x;, > 0}.

Lemma 3.6.13. [Compare with Proposition 6.2 in (AW09)] Suppose uy, € HCF (0., 0, T))
in Cp, (0,0), with pi, > 0,0, 1 0 and Tk/O']% — 0. Further assume that, after relabeling, k is

the subsequence given by Lemma 3.6.12. Define

up (e, prd, piit) — (14 73)h(0,0)ppd

wp(z,d,t) == h(0.0)o7

Then, wy, is bounded on C1(0,0)N{x,, > 0} (uniformly in k) and converges, in the C*'-norm,
on compact subsets of C1(0,0)N{xy > 0} to w. Furthermore, w is a solution to the adjoint-
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heat equation and w(x,d,t) is non-increasing in d when d > 0. Finally w(x,0,t) = —f(x,t)

and w is continuous in C1_s(0,0) N {xy > 0} for any § > 0.

Proof. As before we rescale and set p;. = 1. Since |Vug| < h(0,0)(1 + 73,) and x, < —0p =
u, = 0 it follows that uy(X,t) < h(0,0)(1+ 73)(zy + 0p). Which implies wy (X, t) < 14 7.
On the other hand, when 0 < x, < o} we have u,(X,t) — (1 + 7)h(0,0)z, > —(1 +
73.)h(0,0)zy, > —(1 + 73,)R(0,0)0y, hence w;, > —1 — 7. Finally, if 2, > o5 we have
up(X,t)— (1+72.)h(0,0)xy > (14+74)h(0,0)(xn —0p) — (L +71)R(0,0)z, = wy, > —(1+72).
Thus, for k large enough, |wy| < 2 in C1(0,0) N {x, > 0}.

By definition, wj, is a solution to the adjoint-heat equation in C1(0,0) N {xy > o1} So
for any K CC {x,, > 0} the {w;.} are, for large enough k, a uniformly bounded sequence of
solutions to the adjoint-heat equation on K. As |wy| < 2, standard estimates for parabolic
equations tell us that {wy} is uniformly bounded in Cc2talta/ 2(K). Therefore, perhaps
passing to a subsequence, wy, — w in C>!(K). Furthermore, w must also be a solution
to the adjoint heat equation in K and |w| < 1. A diagonalization argument allows us to
conclude that w is adjoint caloric on all of {z;, > 0}.

Compute that dpwy, = (Opup —(1+75)h(0,0))/(h(0,0)0p) < 0, which implies dpw < 0 on
{xn > 0}. Assuch, w(z,0,t) := lim; ,y+ w(zx,d, t) exists. We will now show that this limit is

equal to —f(z,t) (which, recall, is a continuous function). If true, then regularity theory for

adjoint-caloric functions immediately implies that w is continuous in C7_5(0,0) N {x, > 0}.
First we show that the limit is less that —f(x,t). Let ¢ > 0 and pick 0 < o < 1/2 small
enough so that |w(x, a,t) —w(z,0,t)| < e. For k large enough we have o/op, > f(z,t) +1 >

fr (z,t) therefore,

w(@,0,t) < w(x, a,t) + & = wy(x, 04—, 1) + & + oy (1)
Ok

= (wk(xa O-ko_gkv t) - wk(xv O-kfk_(x7 t>7 t)) + wk(xv O-kfk_<x> t)a t) +te+ Ok<1)
Onwi <0
wy(x, 01 f1 (2,),1) + o (1) + &
(3.6.20)
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Note, wy,(x, 01 f (2,1),1) = —(1 + 7,) fi. (x,¢) = —f(,t) uniformly in C7_4(0,0). In
light of (3.6.20), this observation implies w(x,0,t) < —f(x,t) +¢&. Since £ > 0 was arbitrary

we have w(z,0,t) < —f(z,t).
To show w(x,0,t) > —f(z,t) we first define, for S > 0,k € N,

! (fi (.t — S202) — f7 (1,9)).

O = — sup
(Y7S)€CQSUk(,’E,ka];(l’,t—ngz),t—SQO’z)

N

Observe that if k is large enough (depending on S, 0) then (z,t — 520]%) € C1_5(0,0).

Then, by construction, V(Y s) € Cygq, (7, 0% f1 (2, — 52013),15 — 520,%,),
Yn — o fy (@t — S%0%) < —Sopby = yn < opfy (. 5) = up (Y, s) = 0.

Bounding the oscillation of hj as in the proof of Lemma 3.6.12, v, € HPF(5,1,47.) C

HPF(o),1,47;) in Cg,, (2,04 f) (7,1 — S2ai),t), where 7, = max{167y,5.}. Note, by
Lemma 3.6.12, ;. — 0 and, therefore, o5, — 0.

Apply Lemma 3.6.11 to conclude that

u € HPF(Coy, Coy,87y) in Cgy, jo(x, o fr, (2,6 — 520%) + ay, t) where |aj| < CSopoy.
(3.6.21)

Define Dy, = f~(z,t — 520%) + ay /oy, + S/2. Pick S > 0 large such that D;. > 1 and then,
for large enough k, we have Dy — oy, /oy, — fi (2, — 52013) — CS7y, > 0 and (z,0Dy,t) €

Csg, /2(@, 0 f) (2,6 — 520,%) + ay.,t). The flatness condition, (3.6.21), gives

ug(w, 01Dy, t) > hy(x, 01 f; (2.t — S%07) + ay,, t — S0 /4)(Soy, — CSTRoE) /2 ( )
3.6.22

> (1 — Tk)h(o, O)S(Tk(l — Cﬁk)/z
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Plugging this into the definition of wy,,

wk(x,aka,t) > (1 — Tk)S(l — Cﬁk)/Q — (1 + Tk)Dk
= (1—13,)S(1 — C7y)/2 — (1 + ) (f;, (.t — S?0}) + ag /oy, + 5/2)

= —fp (z,t - 520,%) +op(1) = —f(x,t) + op(1).
(3.6.23)

We would like to replace the left hand side of equation (3.6.23) with wy(x, o, t), where d
does not depend on k. We accomplish this by means of barriers; for ¢ > 0 define 2. to be

the unique solution to

Orze + Aze =0, in C_5(0,0) N {zp, > 0}
ze = ge, on Op(C1_5(0,0) N {zy, > 0}) N {zp =0} (3.6.24)

ze = =2, on 0p(C1_5(0,0) N {xy > 0}) N {xy > 0},

where g. € C*°(C1_5(0,0)) and —f(x,t) — 2¢ < ge(x,t) < —f(x,t) —e. By standard
parabolic theory, for any ¢ > 0 there exists an @ > 0 (which depends on ¢ > 0) such that
|zn| < a implies |ze(z, xp,t) — 2:(2,0,t)| < €/2. Pick k large enough so that o, < a. We
know wy, solves the adjoint heat equation on {x,, > o0}} and, by equations (3.6.24) and
(3.6.23), wg, > ze on 9p(C1_5(0,0) N {zp > ok }). Therefore, wy, > 2 on all of C7_5(0,0) N
{zn > o}

Consequently,
wi(x, a,t) > ze(x,0,t) > 2e(2,0,t) — /2 > —f(x,t) — 3e.

As k — oo we know wy(z, o, t) = w(x, o, t) < w(x,0,t). This gives the desired result. [J

The next step is to prove that the normal derivative of w on {z,, = 0} is zero. This will

allow us to extend w smoothly over {z,, = 0} and obtain regularity for f.

Lemma 3.6.14. Suppose the assumptions of Lemma 3.6.12 are satisfied and that k is the
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subsequence identified in that lemma. Further suppose that w is the limit function identified

in Lemma 3.6.13. Then Opw = 0, in the sense of distributions, on Cy9(0,0) N {zn = 0}.

Proof. Rescale so p;, = 1 and define g(x,t) = 5 — 8(|z|? + [t|). For (x,0,t) € C1/2(0,0) we

observe f(z,0,t) <1 < g(x,0,t). We shall work in the following set

For any, ¢(x,t) define Z7(¢) to be the set of points in Z above the graph {(X,t) | z, =
oz, 1)}, Z7 () as set of points below the graph and Z9(¢) as the graph itself. Finally, let
Yy = {uy, > 0} N Z%0y,9).

Recall, for any Borel set A, we define the “surface measure”, p(A) = ffooo H L (AN{s =
t})dt. If k is sufficiently large, and potentially adding a small constant to g, (Z%(org) N
OH{uy, >0} N Cl/Q(O, 0))=0.

There are three claims, which together prove the desired result.

Claim 1:

1 2
(1 —73)h4(0,0) (/Ek Ontay — Lt + M(Ek)) O

Proof of Claim 1: For any positive ¢ € C5°(C1(0,0)) we have

p({ug, > 0y N Z7 (0p9)) <

hip(Q,7)
d d
/5'{uk>0} P < /5'{uk>0} gb(l — 71)hi(0,0) wQ.7)
1
1

= — Vur - Vo + uporod X dt
<1—Tk>hk<o,o>/{uk>0} e VO + upOd

(we can use integration by parts because, for almost every ¢, {u; > 0} N {s = t} is a set

of finite perimeter). Let ¢ — x Z(o19)XC1 (as functions of bounded variation) and, since
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It| > 3/4 or |z|? > 3/4 implies u(x, og(z,t),t) = 0, equation (3.6.25) becomes

1 / Vuy, - v + ouy, sg(t)
P00 =m0 \ S\ 14 02(1Vag(a, )2 + 1)

p{uy, >0y N 2 (0pg)) < — dp |

(3.6.26)
where v(z,t) = (6, Vg(z,t), —1) points outward spatially in the normal direction.
We address the term with sgn(t) first; the gradient bound on u tells us that |ug| <
Coyp.(1+ 713.)h.(0,0) on X, so

/ opuy sgn(t)
(1_Tk hk 0,0) /g, \/1+0'k |Vaeg(z,t)2 +1)

du| < Co?. (3.6.27)

du
1402 (1 Vag(at)2+D)
gration takes place over By, = {(x,t) | (z,019(z,t),t) € ¥} C {5, = 0}. Then integrate by

To bound the other term note that = dxdt where the latter inte-

parts in x to obtain

/ (1Y (2, 1), 1) - Vug(, opg (e, 1), t)dwdt = / o (2, o (2, 1), £)OpgdH" 2t
I8 0L}
- / O-kuk(l" O-kg<x> t)v t)A$g(x7 t) + U%@nuk(m, O-kg(w7 t), t) |Vg|2d$dt
By,

— / Onuy(x,op.g(x,t),t) — ldxdt + L™ (E}),
o (3.6.28)
where 7 is the outward space normal on 0F}. Since ug, = 0 on 9%, the first term zeroes out.
The careful reader may object that Ej. may not be a set of finite perimeter and thus
our use of integration by parts is not justified. However, for any ¢p, we may use the coarea

formula with x ¢, )>0) € L' and o1.g(—, to) smooth to get

LE,O’kg(l',tO),tO

00 > /UkIVg(x,to)\X{u(x,akg(x,to),t0)>o}dﬂf

- X{u(z,r dHn_2(l’)dT.
/_00 /{($7to)akg(x7t0):r} {u(a,r.10)>0}
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Thus {(x,tg) | opg(x,tg) > r} N {(z,t) | u(z,org(z,tg),t9) > 0} is a set of finite perimeter
for almost every r. Equivalently, {(x,tg) | or(g9(x,tg) +¢) > 0} N {(x,t) | u(z, op(g(x, tg) +
g),tg) > 0} is a set of finite perimeter for almost every ¢ € R. Hence, there exists a ¢ > 0
aribtrarily small such that if we replace g by g + ¢ then E;. N {t = to} will be a set of finite
perimeter for almost every tj. Since we can perturb g slightly without changing the above
arguments, we may safely assume that E}. is a set of finite perimeter for almost every time
slice.

Observe that Ag is bounded above by a constant, |u;| < Ch(0,0)(1 + 73)0 on X,

|Onug| < h(0,0)(1 4 73) and finally u(X;) > L"(E}). Thus,

1 2
(1= ) (0.0) (/Ek Opuy, — ldxdt + u(Zk)) + Coy,.

p({ug, > 0y N Z~ (op9)) <

As the difference between integrating over F;. and integrating over Y. is a factor of 1/1 + az

(which is comparable to 1 + 0]%, for oj, small) we can conclude

1

w(Of{up >0yNZ (0r9)) < A=) (0.0) (/Ek Opuy, — ldxdt + ,u(Zk)> + C’a]%,

which is of course the claim.

Note, arguing as in equations (3.6.27) and (3.6.28),

t),0 t
S V1 + (01 Vag(z,1),0,0psgn(t))]]

which will be useful to us later.

Claim 2:

n(Ex) = Coojy < p(0{ug > 0y N 2~ (019))-

Proof of Claim 2: Let vp(x,t) the inward pointing measure theoretic space normal to

O ug > 0} N {s =t} at the point x. Note that for almost every ¢ it is true that v, exists
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H"1 almost everywhere. Defining Vorg(X, 1) = —— L (—03,162,1,0), we have
\/ 1425602 |2 |2

v - vpdp >

u(O{ug > 0} N 2 (04g)) = /

Vg - Vpdp > /
Hup>0INZ~(org) O {ur>0INZ~ (o19)

div thm

Vi * Vopgdp = div vy, gd X dt +/ ldp.

/E)*{uk>0}ﬂZ(0kg) - /Z(okg)ﬂ{uk>0} X,

In the last equality above we use the fact that on Z O(O'k 9), Vo,g agrees with upwards pointing

space normal.

—160;(n—1) , 303(16%256)|z|2

2|2 22
1425607 x> /1425607 2|

Z~ (op9) N {uy, > 0} is of order o we get the desired result.

We compute |div vy, 4| = < Coyp. As the “width” of

Claim 3:

/ Onag] "5 0.
X

Proof of Claim 3: Recall that Opuy < (1+ 7)h(0,0), which implies, Opwy, < 0. To show

the limit above is at least zero we compute

R = ) (S
Zk Zk

o1.h;(0,0) o1.hi(0,0) Ok
Claiml (1 — ) p(0{ug > 0} N Z7 (opg)) (L +7)u(Eg)
Z OO’k
| Ok Tk (3.6.30)
Claim2 (1 — r)u(Sy) (L4 m)u(Sy) -
2 CO‘;C
(o™ Ok
4
>—Cl(0'k+ﬂ)—>0
Ok

We can now combine these claims to reach the desired conclusion. We say that d,w = 0,

in the sense of distributions on {z,, = 0}, if, for any ¢ € C5°(C1 2(0,0)),

/ Opw¢ = 0.
{zn=0}
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Claim 3 implies

0= lim/ (Onwydp. (3.6.31)
Yk

k—o0

On the other hand equation (3.6.29) (and ¢ bounded) implies

lim / (Opwidp = lim Cvy, - (Vxwyg, wy)dp, (3.6.32)
2k

k—oo k—oo )y,

where vy, is the unit normal to ¥ (thought of as a Lispchitz graph in (z,t)) pointing
upwards. Together, equations (3.6.31), (3.6.32) and the divergence theorem in the domain

ZF(o9) N C1/2(0,0) have as a consequence

0= lim diVXt(C(Vka,wk))dth
k=00 J Z+(o4,9) ’

= lim Vx(-Vxw,+ (0iQwy + C(Axwy, + 0wy, )dX dt
k=00 J Z+(o1,9)

Awpt Q=0 / Vxw - Vx(+ (0,O)wdXdt
{xn>0}

integration by parts / wnCdadt — / C(Axw + dyw)d X dt.
{2, =0} {zn>0}

As w is adjoint caloric this implies that [ {2n=0} Onw( = 0 which is the desired result. O]

From here it is easy to conclude regularity of f.

Corollary 3.6.15. Suppose the assumptions of Lemma 3.6.12 are satisfied and that k s
the subsequence identified in that lemma. Then f € C°°(C}/5(0,0)) and in particular the

C2renlta porm of fin 01/4(0,0) s bounded by an absolute constant.

Proof. Extend w by reflection across {x;, = 0}. By Lemma 3.6.14 this new w satisfies the
adjoint heat equation in all of C} /2(0, 0) (recall a continuous weak solution to the adjoint
heat equation in the cylinder is actually a classical solution to the adjoint heat equation).
Since ||wl| Lo°(Cy4(0,0)) < 2, standard regularity theory yields the desired results about
-/ = w|xn=0~ L
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We can use this regularity to prove Lemma 3.6.6.

Lemma (Lemma 3.6.6). Let 6 € (0,1) and assume that u € HCF(0,0,k) in Cp(Q,T) in
the direction v. There exists a constant 0 < og < 1/2 such that if 0 < og and Kk < ogo?
then u € E\C’?(ea, 0o, k) in Coin)pp(Q, 7) in the direction v where [V — v| < C(n)o. Here

oo > C(n),c(n) > 0 are constants depending only on dimension.

Proof of Lemma 3.6.6. Without loss of generality, let (Q,7) = (0,0) and we will assume
that the conclusions of the lemma do not hold. Choose a # € (0,1) and, by assumption,
there exists pg, o0 4 0 and mk/ag — 0 such that u € HCF(oy, 0, k) in Cp, (0,0) in the
direction v, (which after a harmless rotation we can set to be e,) but so that u is not in
ﬁa—f(ﬁakﬁak,/@k) in C()gp, (0,0) in any direction v with |vg — v| < Coy, and for any
constant c(n). Let wuy(X,t) = M. It is clear that wj is adjoint caloric, that its

Pk

zero set is a parabolic regular domain and that it is associated to an hj which satisfies
Hog ()l 1172 < Clllog(h)l 1,172 and Ay, (0,0) = A(0,0).

By Lemma 3.6.12 we know that there exists a continuous function f such that o{uj >
0} — {(X,t) | zp, = f(z,t)} in the Hausdorff distance sense. Corollary 3.6.15 implies that

there is a universal constant, call it K, such that
F(@.t) < £(0,0) + Vaf(0,0) -z + K(Jt| + |2[?) (3.6.33)

for (z,t) € C1/4(0,0). Since (0,0) € 0{uy > 0} for all k, f(0,0) = 0. If 6 € (0,1), then

there exists a k large enough (depending on ¢ and the dimension) such that
i e,) < Vaf(0,0) -+ 624K, ¥(z.1) € Cyyaze)(0.0),

where f]j' is as in Lemma 3.6.12.

Let
(=0 Ve f(0,0),1)
1+ [0V f(0,0)]2
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and compute
v > 020p [AK =y > opa’ - Vi f(0,0) + 00y /AK > [T (2,1). (3.6.34)

Therefore, if (X,t) € Cy/45)(0,0) and @ - vj, > 020, /4K, then uy(X,t) > 0. Arguing
similarly for f,~ we can see that uy, € 551/7(6014;, 0o, ki) in Cy 45 (0,0) in the direction vy

It is easy to see that |y, — ep| < Coy, and so we have the desired contradiction. ]

3.7 Higher Regularity

We begin by recalling the partial hodograph transform (see (KS80), Chapter 7 for a short
introduction in the elliptic case). Here, and throughout the rest of the paper, we assume
that (0,0) € 0N and that, at (0,0), e, is the inward pointing normal to 02 N {t = 0}.
Before we can use the hodograph transform, we must prove that Vu extends smoothly to

the boundary.

Lemma 3.7.1. Let s € (0,1) and 09 be a C1T5:(145)/2 gomain with log(h) € C3/2(R7H1).
Then u € Cls:(1+5)/2(Q).

Proof. We will show that u has the desired regularity in a neighborhood of (0,0). For any
R > 0let Hp be as in Corollary 3.3.5: Hp(X,t) = pp(X,t)Vu(X,t) —wpr(X,t). Therefore,

we may estimate:

[Vu(X,t) = h(0,0)en| =[Hp(X,t) = h(0,0)en| + [wr (X, 1)]
< [ Q7). VoR(@.7) = HO.0)enldi™ + fup(X. )]
(3.7.1)
Since 012 is locally given by a Ccl+s,(1+s)/2 graph, for any § > 0 there exists an R5 > 0

such that 0Q N C(Q, ) is d-flat for any (Q,7) € C190(0,0) and any r < Rj. In particular,

we can ensure that Lemma 3.2.1 applies at all r < Rg/4 for a ¢ > 0 such that 1 —¢ > 5’;5

152



Arguing in the same way as in the proof of Lemma 3.3.4, we can deduce that

[ERIaRE
R1/2

lwr(X, 1) < C (3.7.2)

Furthermore, we may deduce (in much the same manner as (3.6.2)), that if ||(X,?)|| < r and

ko € N is such that 9~ hko—1 <r< 2_k0, then
1—0&D(Cy-;(0,0)) < 0270F+9)/2.(049)/2 vy < g — 2, (3.7.3)

In light of the estimates (3.7.1), (3.7.2) and (3.7.3), we may conclude

r(1+s)/2

IVu(X,t) — h(0,0)en| < C (4r)Pdaot) + ¢ + coXh 90\ CR(0,0))

Agr(0,0) R/
ko—2

+C / (Xt Z/ 2775 (Xt |
AR(O»O)\ANO,O) 5 (0,00N\A,—(j+1)(0,0)

where C' depends on the Holder norm of h, of n and on R. Also as above, kg is such that

(3.7.4)

2~ ko—1 < p < 9ko,

We may bound

3.
SED(AR(0,00\A1(0,0)) < 15D (A1(0,0)) < )ORH”S)/?

3.
XD ONAR(0,0)) <1 - &) (AR(0,0) < >cRr<1+5>/2

eq.(3.7.3 .
DDAy (Q. TN\A Y511y (0,0)) < 1 —5ED (Ay;(0,0)) T gl 2 (1402

Plug these estimates into equation (3.7.4) to obtain

llogy(r~1)]
IVu(X, 1) — h(0,0)en| <Cr® + Cr1H+9)/2 4 op(1+5)/2 > 9i(1-5)/2)
A (3.7.5)
floga (r1)]y(1-5)/2 _
s (1-5)/2(2 ) 1 s
<Cr <1—|—r SA=9/2 _ < Cyr®.
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Since r = ||(X, )| we have proven that Vu € C5%/2(Q). O

With this regularity in hand, we may define F : Q — HT := {(x,2,t) | 5, > 0} by
(x,xn,t) = (X,t) = (Y,t) = (z,u(x,t),t). In a neighborhood of 0 we know that wu, # 0
and so DF is invertible on each time slice (since Vu € C(Q)). By the inverse function
theorem, there is some neighborhood, O, of (0,0) in 2 that is mapped diffeomorphically to
U, a neighborhood of (0,0) in the upper half plane. Furthermore, this map extends in a
C55/2 fashion from OF to U (by Proposition 3.6.1 and Lemma 3.7.1). Let ¢ : U — R be
given by ¥(Y,t) = xp, where F(X,t) = (Y,t). Because F' is locally one-to-one, 1 is well
defined.

If v 7 denotes the spatial unit normal pointing into © at (Q, 7) then u satisfies

w(X,t) + Au(X,t) = 0, (X,t)eQt

Uy, (Q,7) = h(Q,7), (Q,T) € Q.

After our change of variables these equations become

EAEECRAE)

on U and

n—1
Uy, 0,600y, ¥y, 0,8),8) = \ [ 1+ > ¢2(y,0,t) (3.7.7)
1=1
on the boundary.

Remark 3.7.2. The following are true of ¥:

o Let k> 1. If 9 is a Ckts:(k+5)/2 graph and log(h) € Chk=14s,(k=145)/2 tpep 4 €
Ck—ks,(k—i—s)/Q(ﬁ).

o Let k> 0 be such that h € CHa(k+0)/2(50) and Uliy,=01 € Chtlts,(k+1+5)/2 g5

0<s<a. If h(y,t) = h(y,¥(y,0,1),1t), then h € CFre(+a)2(fy, — 0}).
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o Yy >0inU.

Justification. Let us address the first claim. When & > 2 we note that u(z,zpn,t) =
u(z,¥(x,0,t)+xp,t) is the strong solution of an adjoint parabolic equation in the upper half
space with zero boundary values and coefficients in Ck—1+s,(k+5)/2-1 " Standard parabolic
regularity theory then gives the desired result. When k£ = 1, this is simply Lemma 3.7.1.

When k = 0 the second claim follows from a difference quotient argument and the fact
that |W(z + y,t +s) — ¥z, t)] < C(ly| + |s|/2). We k > 1 take a derivative and note
dih = O;h + phd;b. As ¢ has one more degree of differentiability than & it is clear that
Onh0;1 is just as regular as dph. We can argue similarly for higher spatial derivatives and
for difference quotients or derivatives in the time direction.

Our third claim follows from the assumption that e, is the inward pointing normal at

(0,0) and that 0,,u(0,0) > 0 in O. O

To prove higher regularity we will use two weighted Schauder-type estimates due to
Lieberman (Lie86) for parabolic equations in a half space. Before we state the theorems, let
us introduce weighted Holder spaces (the reader should be aware that our notation here is

non-standard).

Definition 3.7.3. Let O C R™"L be a bounded open set. For a,b ¢ 7 define

— a+b
||u||CZ’a/2((')) - 21;%5 ||u||(ca,a/2(06)
where Oy = {(X,t) € O | dist((X,t),00) > §}. It should be noted that (Cci’g/Q = Coe/2,

For the sake of brevity, the following are simplified versions of (Lie86), Theorems 6.1 and
6.2 (the original theorems deal with a more general class of domains, operators and boundary

values that we do not need here).
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Theorem 3.7.4. Let v be a solution to the boundary value problem

szj X, )Djju(X,t) = f(X,1), (X,t) €U
(3.7.8)
v(z,0,t) = g(x,0,t), (x,0,t) € U,

where P = (p;j). Leta > 2,b> 1 be non-integral real numbers such that P € co—2a/2-1(py),
7€y PN W) and g € COUXT A {my = 0)). I v € CA(U) with vlgrp g~y = 0
there ezists a constant C' > 0 (depending on the ellipticity, the Hélder norms of pij,m and

the dimension) such that

< oo .
lolgaara gy < € (allgns + Dollze + 1l ga-soras

Theorem 3.7.5. Let v be a solution to the boundary value problem

me (X, )Djjv(X,t) = f(X,t), (X,t) €U
(3.7.9)
m(xz,0,t) - Vyv(z,0,t) = g(x,0,t), (z,0,t) € U,

where P = (p;j) is uniformly elliptic and mp(x,0,t) > ¢ > 0. Let a > 2,b > 1 be
non-integral real numbers with p;; € Co=20/2-1(17) m(z,0,t) € CO-LO-D/2(T N {z, =

U‘@U\{xnzo} = 0, there ezists a constant C > 0 (depending on the ellipticity, the Hélder

“HU) and g € COLY/ 27V 2T A {z, = 0}). Then, if v € C” a/2(U) and
norms of p;j,m and the dimension) such that

lolgaaragry < € (I9lco-ssamve + Iolie + 1fla-zons )
b 2 b

With this theorem in hand we can use an iterative argument (modeled after one in

(Jer90) to prove optimal Holder regularity. To reduce clutter we define, for f a function and
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7 e R" with v, = 0,
S2F(X,t) = F((X,t) +0) + F((X,t) — ¥) — 2f(X,1). (3.7.10)
It will also behoove us to define the parabolic length of a vector v = (vg, vn, vt) by
15p = |(va, vn)] + [oe] /2. (3.7.11)

Recall that

62f(X,1)]
Ifllpec +  sup L4

= = [fllcaar
17,(X,t)€Rn+1 ||U||g Coa/2)

(see, e.g. (Ste70), Chapter 5, Proposition 8).

Proposition 3.7.6. Let Q C R"! be a parabolic regular domain, and k € N,a € (0,1)
such that log(h) € Ckte(k+a)/2(Rr41y " There is 4 6, > 0 such that if 6, > 6 > 0 and € is

0-Reifenberg flat then Q is a Ck+1+o"(k+1+a)/2(R”+1) domain.

Proof. Let us first prove the theorem for £ = 0. By Proposition 3.6.1 and Remark 3.7.2 we
know that ¢ € C1T5:(1+5)/2(T7). For any vector & € R"1 with v, = 0 define w®(X,t) =
(X, t) + 2e0) — ((X,t)). It is then easy to check that w®(X,t) satisfies the following

oblique derivative problem:

—0pw®(X,t) = Y pij (X, 1) +e0) Dijjus(X,t) = f(X,1), (X,t) €U
ij (3.7.12)

m(y,0,t) - Vw(y,0,t) = ¢°(y,0,t), (x,0,t) € U.
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Where

P1(X,t)
100 In(X0)
P2 (Xt)
0 -1 0 zbz(X,t)
(pij(X, 1) = : o . : :
2
Y1 (X.t) Yi(X.t) (Vi e
Un(X,t) Un(X,t) U (X,t)
19
J
1+ 305 w2
G(Vx) = = Sl

fE(X7 t) = Z(pZ](X7 t) _pij((Xv t) + 517))D2j¢)(X’ t),
ij

¢ (y,0,t) = h((y,0,t) + e¥) — h(y,0,1).

It is a consequence of 1n, > 0 (see Remark 3.7.2) that (p;;) is uniformly elliptic and
mn(y,0,t) > ¢ > 0 is uniformly in (y,t). Furthermore, p;;(X +ev,t) and m(y + v, 0,t) are
C%5/2 Holder continuous, uniformly in ¢, v.

To apply Theorem 3.7.5 we need that w® is in a weighted Holder space. Apply Theorem
3.7.4 with a =24 s,b =1+ s to ¢ in the space U N {x, > 0} and let § | 0 to obtain the a
priori estimate that ¢ € (C%J;‘iJrS/Q(U) (note that 1|, _s is uniformly in Clts.(1+s)/2 py
Remark 3.7.2). As such, w® € CQ_TE;—H?/Q, uniformly in € > 0 for any 0 < n << s.

We will now compute the Holder norm of ¢° and the weighted Holder norm of f¢. For

any (,0,t), (y,0,7) € U,

2||E||(Ca,o¢/2(|l' —ylP+ ]t — T|8/2)€a_3 >
min{2(|$ - yla + |t - r|04/2)||}~l||©a’ 25a||ib||(ca} > (3.7.13>

|iL($, 0,t) — iL((:B, 0,t) + ev) — iL(y, 0,7)+ iL((y, 0,7) + ev)].

Thus [[A(=) — h(— + &0)[| o2 < C¥75.
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For d > 0 we have that
|fg(x7d7 t) - fg(y7d7 T)| < |plj((y7dvr) + 517) _plj(yad7 T)||D1j¢($,d, t) - Dzjw(y7d7 T)|

+pij((z,d,t) + &) — pij(z,d, ) — pij((y, d, ) + €v) + pij(y, d, 7)||Dij(x, d, t)].

Arguing as in equation (3.7.13) we can bound the first term on the right hand side by

—n—1 2 -
TG anainyz,, (2 =yl + [t = 7[72) V]| g e2* .
C (U)

—1-s

The second term is more straightforward and can be bounded by

—n—1 2
IVl s o d T N otz g, (2 =yl + [t = 7 [12).

—1-s

(U)(

Therefore HfEH(C’f’”/Z < C(e%7M4¢€%).
We may apply Theorem 3.7.5 to obtain

[l g2 tmime < O + 67 +%77 +¢) (3.7.14)

—1-s

(as ||w®||fo < Ce). The reader may be concerned that w® is not zero on the boundary of
U away from {z,, = 0}. However, we can rectify this by multiplying with a cutoff function
and hiding the resulting error on the right hand side (see, e.g. the proof of Theorem 6.2 in
(ADN59)).

We claim that if w® € (CQ_TE;HI/Q then in fact w5|{xn:0} e CL1s:(149)/2 fo1 any n > 0.

For any ¢« = 1,...,n — 1, the fundamental theorem of calculus gives (recall the notation in
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(3.7.10) and (3.7.11))

—

17l

62D (x,0,4)] < [02D;0% (x, | ]y, £)] + /0 62, (2,7, £)|dr

<C Ls=n a0 100 oy, Il ”UHZ d (3.7.15)
o gzl + Clla | ganaons [ sty (7

—1—5 —1—5

< Cs 77““’ | 2+n 1+n/2||UHp

——s

Therefore, for i = 1,...,n — 1 we have

625Dt (w0, 8)| =|Diw?((w,0,1)) — Dyw®((x,0,t) — 0|

< [1Daw || gs a2 ety

eqn (3.7.15) (3.7.16)
< Csm”“’ | 2+n 1+n/2H5Upr

—1-s
eqn (3.7.14) - aes St s
< Csp(e® "+ + e +¢7)[lev].

If ||]]p = 1 and points either completely in a spacial or the time direction then we can
conclude that ¢ € CAATH/2(T N {z, = 0}), where # = min{a,2s — n}. As such,
o9 is a CHAA+A)/2 qomain and, invoking Remark 3.7.2, we can conclude that ¢ €
C1+8(1+8)/2(T7). Repeat this argument until 8 = « to get optimal regularity.

When k = 1 (that is log(h) € C1t(142)/2) we want to show that ¢ € C25:1+5/2 for
some s. Then we will invoke classical Schauder theory. We can argue almost exactly as
above, except that equation (3.7.13) cannot detect regularity in log(h) above C11/2. The
argument above tells us that ¢ € Clts(1+)/2 for any s < 1, thus, h € clta,(l+a)/2,

Let 5, 7 € R™" be such that &,, v, = 0. Then, in the same vein as equation (3.7.13), we

can estimate

|52~h((93 0,t) + ) — 5£h((frf 0, )] <[l 11402 min{2[1€]L, 7, 3]}
. (3.7.17)

§3|’hHCl+a,(l+a)/2 HfH;HUHp_ o
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- - 1— -5
Consequently, [[h(—) — h(— + 0| cs,s2 < Cll7lp 1% We may then repeat the argument

above until we reach equation (3.7.14), which now reads

HwEH@un,Hnn <SO@ET4ef +e! T to), (3.7.18)

—1—s

Resume the argument until equation (3.7.16), which is now,

_ -5 .
162Dt (,0,1)] < Ci (57 + &% + & T + ) |[edl]| . (3.7.19)
If [|]|p = 1 and points either completely in the spacial or time direction then we can conclude

that ¢ € C1HA-0+8)/2({z, = 0}) where 8 = min{2s—n, 1+s, 1+-s—2-}. Pick 5, s such that

Tra
25 —n > 1 and we have that there is some € (0,1) such that ¢ € C2+71+7/2({z,, = 0}).
Remark 3.7.2 ensures that

¥ e C2HIH/2(T, (3.7.20)

for some v € (0,1).

Now that we have the a priori estimate (3.7.20), we may apply Theorem 3.7.5 to w®, the
solution of (3.7.12), but with a = 2+ 3,b = 2+ . In this form, Theorem 3.7.5 comports with
classical Schauder theory. An iterative argument one similar to the above, but substantially

simpler, yields optimal regularity. In fact, we can use the same iterative argument to prove

that ¢ € Ckta.(k+a)/2 given 1) € Ck—1+a,(k=1+a)/2 Thys the full result follows. H

We have almost completed a proof of Theorem 3.1.11-we need only to discuss what
happens when log(h) is analytic. However, the anisotropic nature of the heat equation

makes analyticity the wrong notion of regularity to consider.
Definition 3.7.7. We say that a function F(X,t) is analytic in X and of the second Gevrey

class in t if there are constants C, k such that

DS O F| < CrlH2m (0] 4 2m)!.
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Let us recall Theorem 3.1.11:

Theorem (Theorem 3.1.11). Let Q € R"" be a parabolic regular domain with log(h) €
Chras(k+)/2(Rr+1y for k> 0 and o € (0,1). There is a 8, > 0 such that if 6, > 6 > 0
and  is d-Reifenberg flat then Q is a Ck+1+o"(k+1+o‘)/2(R”+l) domain.

Furthermore, if log(h) is analytic in X and in the second Gevrey class in t then, under
the assumptions above, we can conclude that ) is the region above the graph of a function

which is analytic in the spatial variables and in the second Gevrey class in t. Similarly, if

log(h) € C®°, then 0N is locally the graph of a C™° function.

It is clear that Proposition 3.7.6 implies the above theorem except for the statement
when log(h) analytic in X and second Gevrey class in ¢. This follows from a theorem of

Kinderlehrer and Nirenberg:

Theorem 3.7.8. [Modified Theorem 1 in (KN78)] Let v € C*°(U) be a solution to

—F(D%,Dv,v,X,t) +u=0(X,t)eU

vy = ®(0, ..., Op_1v, v, 2,t), (2,0,t) € UN {z, =0}

where (Fvij) is a positive definite form. Assume that F is analytic in D*v, Dv and ® is
analytic in Ozv and v. If F,® are analytic in X and in the second Gevrey class in t then v

s analytic in X and in the second Gevrey class in t.

More precisely, Theorem 1 in (KN78) is stated for Dirichlet boundary conditions. But
the remarks after the theorem (and, especially, equation 2.11 there) show that the result
applies to Neumann conditions also. Finally, it is easy to see that if log(h) is analytic in X
and in the second Gevrey class in ¢, then ¢ satisfies the hypothesis of Theorem 3.7.8. This

finishes the proof of Theorem 3.1.11.
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APPENDIX A
APPENDIX FOR CHAPTER 2

A.1 Proof of Theorem 2.8.4 for h < hy

Let us recall the statement we are trying to prove:

Theorem 2.8.4 Let uF k = 1,2 satisfy a system of coercive and elliptic equations with
proper weights. Suppose the coefficients in(2.8.3) and the By satisfy the h — p-conditions
on a domain I' D U, where 0 < p < 1. Additionally, assume the following reqularity:
[t e CPIU), p=max{0,h — s; + |al}, gy € CTHU) with T = max{0, h + hy + ||} and

uk e Ctethl(U)Y. Then

ZHukHctww(U) <O DM Nermwy + D Nlomllemnwy + D 1 lcoqry | - (A1)
k 7y k

Jrex
Here C' is independent of the uk s, the f’s and the g’s.

For simplicity’s sake, we establish the above in the special case where hg = 0,h =
—1,t1 = t9g = 2,51 = s9 = 0 and p; = po = 0 (which is the case that is applied in the
proof of Proposition 2.8.5). However, our techniques work for hg > 0,h > hg — 1 and any
proper assignment of weights. To further simplify the proof, we will make the assumptions
that U is bounded and that u¥ € C®°(TU\{y, = 0}), i.e. that u¥ is infinitely smooth away
from {y, = 0}. In the context of the paper, these assumptions are clearly satisfied. This
simplification can be avoided through the use of cutoff functions (e.g. in the proof of Theorem
6.2 in (ADN59)).

Here we will follow closely the work of Agmon, Douglis and Nirenberg (see (ADN59),
(ADNG64)). Our proof has three steps; first, we present a representation formula for solutions
to constant coefficient systems and show how this formula implies the desired result in that

circumstance. Second, we analyze the variable coefficient case. Finally, we will justify the
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representation formula introduced in the first step.

A.1.1 The constant coefficient case

We present a formula for solutions to constant-coefficient systems of the form (2.8.3) with
boundary conditions (2.8.4).
If every function involved is C'*° with compact support, then integration by parts and

(ADN64) Theorem 6.1 tell us

2
Dk (yf  yn)+CF = D (y ym +D/ ZK;W ) (@) — ¢ (') (A1.2)

for any i = 1,...,m — 1 (this is essentially equation 6.7 in (ADN64) with the addition of

a constant to compensate for h = hg — 1). We need to define some of the above terms:

e The C’st are constants.

e Let I' be the fundamental solution to the linear operator (—1)Xa§€wD7+X . We define

/ > (DAY — X)DY R (X)dX.

Ix|<my,

Here f;g is a smooth, compactly supported extension of ff to all of R"™. How the

extension is created is not particularly important.

e Similarly ¢"(x) is a smooth, compactly supported extension of ¢" to all of R?1 We

will abuse notation and refer to § as g (similarly with f ).

o ¢'(z') :=37_1 B}(Dy, Dy, 0¥ (2!, 0).

e K}, are kernels so that if the ¢"s have sufficient smoothness/growth properties and

R ) = [ 3 Kl =)o
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then (—1)Xa§“wD7+XUk =0 and
2
Z g Dy U, 0) = v (),

Classical results imply that I'(Z), DI'(Z) are integrable (at zero) and that DXI' (for
any |x| = 2) is a Calderon-Zygmund kernel which integrates to zero on R™. For the Poisson
kernels, K, we turn to (ADN59), Sections 2 and 3. When s = ord B, = t}, —hy —py = 2—hy,
we can deduce that D® K}, is homogenous of degree —(n—1) (see (ADN59), equation (2.13)").
In this case, we can write

y/ Yn

DK (v, yn) = Ty Y = (', un).

k

As D? K}, satisfies the same differential equation as u” we conclude that

/ QY 0)do (/) = 0
ly'|=1

(see the corollary on pg 645 of (ADN59)). Furthermore, D*K has bounded first derivatives
away from zero, so €0 is smooth. In particular, D*K},.(¢/,0) is a Calderon-Zygmund kernel.
As the u’s, f’s and g’s are assumed to be C2°, we can differentiate under the integral

sign and rewrite (A.1.2) as

Dy aun) + Co= [ 30 ¥ = X)E(X)x+
s (A.13)

2
2—hy hy—1
S [ DR ) Dl ) -
r=1

Where we define
Ty (Y — X) = DYDY - X)
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(depending on the parity of ¢, — h, — p, the above equation may be missing some minus
signs, these omissions are irrelevant to future analysis). It should also be noted all the kernels

above are either integrable or Calderon-Zygmund kernels. We now make a crucial claim:

Claim: The above (A.1.3) holds for weak solutions of the constant-coefficient system (2.8.3)
and (2.8.4) under the regularity assumptions fi' € CPH(U) where p = max{0, |a| — 1},
gry € CTH(U) with 7 = max{0, b — 1}, and ub e CLIU).

From this one can conclude:

Lemma A.1.1. Let uF k=1,2 satisfy a system of constant-coefficient coercive and elliptic
equations with proper weights. Additionally, assume that for some for 0 < p < 1: f]X S
CPI(U) where p = max{0, |x|—1}, gr € CTH(U) with T = max{0, hy—1} and uF € CLH(U).
Then

Sl ey < O | S annw) + 3 lorlomaqy + 3 e llcowy | - (A14)
k r k

JiX
Here, C' is independent of the uk ’s, the f’s and the g’s.

Proof assuming the Claim. Tt suffices to estimate the C1# norm of u”| {yn=0) (as each b
satisfies an elliptic equation in U, the full estimate can be obtained using weighted Schauder
estimates. See, e.g., (GH80) Theorem 5.1 or (ADN59) Theorem 9.1).

We use the classical fact that

[fller < elDfla + Ceasup|f] (A.1.5)

where f € CLY(R" 1) and [f]q = SUD £y Uﬁ?_—w (see equations 7.4, 7.5 in (ADN59)).
From here it follows that we need only estimate [Diuk\{ynzo}]u,i =1,..,n—1 in terms of
the norms on the right hand side. That such an estimate exists, follows immediately from

the theory of singular integrals and the fact that the kernels in (A.1.3) are either Calderon-

Zygmund kernels or integrable at 0. O
166



A.1.2  The variable coefficient case

Given Lemma A.1.1, the standard way to handle variable coefficients is to “freeze” the

coefficients at a point. For any yg = (yé, 0) € U, we write:

/U >y (y0)DTu! DX(da = /U > _(Fy + laxs (90) — ays (2)]DVu') DX

[x|<mq
|v|<2—my

/U > a} (yo)D P DX¢dx = /U > (f5 + (63, (o) — a3 ()] DVu?) DX¢da

[x|<mg
[v[<2—m2

(A.1.6)

for all ¢ € C§°(U). On the boundary

2
/ (Z By(Dy: D, yé)u""‘) §da’ = / (9" + Gh)gds’
n="0 _ n=0
=0 = tn=0} (A.1.7)

2
/ (Z B(D,s, Dy, yé)uk> cda’ = / (4% + G)eda!
{ynZO} {ynzo}

k=1

for all £ € C§°(OU N{yn = 0}). Here G" := Z%:l(Bz(th Dxn,yf)) — Bi.(Dys, Dy, x/))uk

However, naive application of Lemma A.1.1 will not work as the semi-norms [DuF] p may
appear with large coefficients on the wrong side of the inequality.

A.1.5) allows us to argue
( g
k Lok k k
[Du”], < §Hu ot = [[u" ]l crn < Cllu”| oo,

for k = 1,2 (which renders our desired estimate trivially true). So, without loss of generality,
it suffices to consider the case

|Du*(P) — DuM(Q)|

Ik =1,2s.t. IP,Q € U with
1P — QI

Lok
> §H'LL HCLM' (A18)
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Let A > 0 be determined later and assume, without loss of generality, P = (0,t),k = 1.

We have three cases:

Case 1: |P — Q| > A. This easily implies 2sup |Dul| > )\“%HulHOLu. From here, if A is

sufficiently small, use (A.1.5) to get
1 1
Callu™lico = llullgrm

which, as stated above, yields the desired estimate.

Case 2: [P — Q| < A but t > 2\. In this case uF k = 1,2 are solutions to an elliptic
system of equations in Bgy /Q(P) C U. Interior Schauder estimates for weak solutions (see

e.g. (Mor66), Theorem 6.4.3 or (GT98) Chapter 8) give
k o k
> e lernssy u(py < On | 2157 lconpyy (py + 2 10" oy, (P
k 7,0 k
By assumption,

1 Dul(P) — Dul(Q
lons < g < I lcrving, ey

and so, once we have fixed A, we have the desired result.
Case 3: |P— Q| < X and t < 2)\. Consider a smooth cutoff function, n € C*°(R"), such
that n(Y) = 1 when |Y| < 3X and n(Y') = 0 when |Y| > 5\. Additionally, n can be chosen
such that |D£7]| < At Now consider V¥ := nuF. V¥ satisfies equations similar to (A.1.6)
and (A.1.7) but with different right hand sides.

We can use the representation (A.1.3) and thus Lemma A.1.1 on the V¥s. We need

to estimate each term on the right. The term that comes from the interior equations is
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dominated by

1Y " n(fE + [a (yo) — ab @)DV o + 11 Y- Y ek (wo) — ak (2)]uF DTl o,
XY lv|=1 X

Note that 7 is supported on Bs)y so sup |a§7(yg) — afw(xﬂ < CAM. Also recall that the
h — p-conditions imply the afm are Holder continuous. Thus, the first term in the offset
equation above can be dominated by >, ||f]>§||007u + C'/\“[Duk]lu + C'sup | DuF|, where
the constants above are independent of A. Similarly, the second term can be bounded by
>k CANul, + C'sup [uFIA=2 + CALsup |uP|.

From the boundary terms we get

r

2
Z (H Z(B]Z(Dx” Dxnay(/)) - BZ(DJ?,’ Dwnvl‘/))nuknchr*l,u + ”nngC’hrl,u) :
k=1

As we have seen above, we need not worry when the derivatives in the boundary operators
land on 7 (as these terms will all be bounded by the CY:H norms of the fs, gs and us and the
C' norm of the us). When the derivatives all land on the uF term, we argue just as above
(recalling that that h — pu conditions imply that the Bs are Holder continuous in position)
and conclude that the coefficient of [DuF] . contains a positive power of .

We can then pick A small enough so that the coefficient of [Duk] p on the right hand side

is less than 1/4. This yields the estimate
1
k k k
S 1VH et < § P +C [ S onsy + 3 larllonsy + 3 Ie¥loq)
k k 75X r k
But VF = u¥ on P, () so we have that

1 Dul(P) — Dul
sl < PR <o
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L1 1 k
= §HU et ZZ p+C ZHfX”Cp# +Z!lgr|!cw(U)+ZHu o)
2 T 2

JiX

From here the desired estimate follows immediately. As such, we are done modulo the proof

that (A.1.3) holds for non-C'*® functions.

A.1.8  Justifying (A.1.3)

It remains to prove our claim above: namely, that the representation in (A.1.3) is valid
without the a priori assumption of C'*° regularity. Here we follow closely the discussion on
pages 673-674 of (ADN59). It should first be noted that the integrals on the right hand side
of (A.1.3) converge if f3* € CPH(U) and gpy € CTH(U).

Let j(r) be an approximation to the identity and then define

— Xy
J€u<y ?/n = n+1/H (yZ ) (x17"'axn—17$n>d$l'

Similarly, we can define

L[> +Ee—s5s
Js,éu(?/lyyn) = E/O J (%T) Jgu(y/, s)ds.

For any u it is clear that J; zu is a C°° function in the closed upper half plane.

Now assume the u*’s satisfy a coercive and elliptic system with constant coefficients and
let the f’s and ¢’s be as in Definition 2.8.2. Then (as the system has constant coefficients)
it is true that Jg,guk satisfies (2.8.3) with Jg’gf!? on the right hand side. So, with v* defined

as above, (A.1.3) becomes

JggDu(y yn)—l—C g, €) / Z FkXY X) Effx( )d X+

" <
= (A.1.9)

2
> /Rn_l DY Ky (y — 2! yn)Ge 2’ 0)da’
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where

Gee(@,0) = (JozD" 1S " BI(D,y, Day) (w2 2n) — 0% (2! 20))) 0.
k

Note that, for H € CU#, JeeH 619 JeH uniformly (by Arzela-Ascoli). By assumption
f;g is Holder continuous. To analyze the boundary terms, note first that D;lflez is an
operator of order 1 and, as such, Dz}"_l >k Bi(D,r, Dy, ) (P (2!, 20) — 0F (2, 2)) is at least
as regular as CO#. So J&gD;l}"_l Dok B%(Dx/,Dxn)(uk(a:’,xn) — oF(2! x)) (and thus its
restriction to {z; = 0}) converges in the uniform topology.

Let € | 0 to obtain

JDa o)+ Coe) = [ 3D B = X)Jp )X+

<
= (A.1.10)

2
> /Rn_l D Ky (y — o yn) Ge(a,0)da’
r=1

where

G-(2',0) = (JgDZ}"_l Z Bi(D,, Dmn)(uk(m/, Tn) — vk(x/, Tn)))z,=0-
k

Since J: is a convolution in only the RrR1 directions, we can set x;,, = 0 to obtain
Ge(a',0) = JDr 7 (g () — ¢" ("))

We note, by assumption, that ¢" is at least Holder continuous. As such, we can use the same

argument as above to justify taking € | 0; the validity of our claim follows.
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APPENDIX B
APPENDIX FOR CHAPTER 3

B.1 Classification of “Flat Blowups”

A key piece of the blowup argument is a classification of “flat blowups”; Theorem 3.1.10.
The proof of this theorem follows from two lemmas which are modifications of results in
Andersson and Weiss (AW09). Before we begin, let us try to clarify the relationship between
this work and that of (AW09).

As was mentioned in the introduction, the results in (AW09) are for solutions in the sense
of domain variations to a problem arising in combustion. Although this is the natural class
of solutions to consider when studying their problem (see the introduction in (Wei03)), the
definition of these solutions is quite complex and it is unclear whether the parabolic Green
function at infinity satisfies it. For example, neither the integral bounds on the growth
of time and space derivatives (see the first condition in Definition 6.1 in (Wei03)) nor the
monotonicity formula (see the second condition in Definition 6.1 in (Wei03)), clearly hold a
priort for functions v which satisfy the conditions of Theorem 3.1.10.

Upon careful examination of (AW09) we identified which properties of solutions in the
sense of domain variations were crucial to the proof. The first of these was the following

“representation” formula which holds in the sense of distributions for almost every time, %,

(see Theorem 11.1 in (Wei03))
Au = dgulty = H" (e + 2000, =7 H" s ) + MO, 1) (B.1.1)

Without going too deep into details, we should think of R(ty) C d{u > 0} as boundary points
which are best behaved. In particular, blowups at these points are plane solutions with slope
1. Ysx(tg) points are also regular in the sense that the set is countable rectifiable and the

blowups are planes, but the slope of the blowup solution is 26(tg, —) < 1. ¥,(¢p) consists of
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singular points at which blowups may not be planes. We observe that this situation is much
more complicated than the elliptic one in (AC81), but, as is pointed out in the introduction
(Wei03), this is an unavoidable characteristic of solutions to the combustion problem.

Lemma B.1.6 (which corresponds to Lemma 5.1 in (AW09) and is a parabolic version of
Lemma 4.10 in (AC81)) bounds from below the slope of blowup solutions at points which
have an exterior tangent ball. For solutions in the sense of domain variation, points in Y. (tq)
complicate matters and thus more information than is given by (B.1.1) is needed. Indeed, it
is mentioned in (AW09) that defining solutions merely as those which satisfy (B.1.1) would
not be sufficient to implement their approach. However, in our setting, Lemma 3.4.24 says
that £k > 1 at almost every point on the free boundary which suffices to show that any
blowup at a regular point must have slope at least 1.

Another property of solutions in the sense of domain variations which is critical to (AW09)
is that |Vu(X, t)]Q always approaches a value less than or equal to 1 as (X, t) approaches the
free boundary (Lemma 8.2 in (AW09)). In our setting we know that |Vu| < 1 everywhere
(by Proposition 3.4.4) and so we need not worry. That |Vu| < 1 (along with Lemma 3.6.9,
proven in Section 3.6 above), implies that blowups of u are precompact in the Lip(1,1/2)
norm—which is another property of domain variations that is used in (AW09). Finally, it
is important to the arguments in (AW09) that the set R(t() is rectifiable (e.g. in order to
apply integration by parts). In the setting of Proposition 3.1.10, Ahlfors regularity lets us
apply integration by parts as well (albeit, we must be more careful. See, e.g., the proof of
Lemma B.1.10 below).

By finding appropriate substitutes for the relevant properties of domain variations (as
described above) we were able to prove that the results of (AW09) apply mostly unchanged
to u, k, €2 which satisfy the hypothesis of Proposition 3.1.10. However, we needed to make
an additional modification, as the conclusions of Proposition 3.1.10 are global whereas the
main theorem in (AW09) is a local regularity result (see Corollary 8.5 there). In particular,

Theorem 5.2 and Lemma 8.1 in (AW09) roughly state that if a solution is flat in a certain
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sense in a cylinder, then it is even flatter in another sense in a smaller cylinder whose
center has been translated in some direction. This translation occurs because the considered
cylinders contain a free boundary point that is centered in the space variables but in the
“past” in the time coordinate. We want to improve flatness at larger and larger scales, so
we cannot allow our cylinders to move in this manner (otherwise our cylinder might drift off
to infinity).

To overcome this issue, we introduce the concept of “current flatness” (see Definition
B.1.1). However, the parabolic equation is anisotropic, so centering our cylinder in time
means that we have to accept weaker results. This leads to the notion of “weak current
flatness” (Definition B.1.3). Unfortunately, the qualitative nature of weak flatness is not
always sufficient so we still need to prove some results for “past flatness” (as introduced in
(AWO09)). We also remark that this idea of “current flatness” could be used in the setting of
domain variations to analyze the global properties of those solutions.

Let us recall Theorem 3.1.10;

Theorem (Theorem 3.1.10). Let Qo be a d-Reifenberg flat parabolic reqular domain with
Green function at infinity uso and associated parabolic Poisson kernel hoo (i.€. hoo = dzlv_goo)
Furthermore, assume that |Vuse| < 1 in Qs and |heo| > 1 for o-almost every point on

0o. There exists a 6 > 0 such that if 0, > & > 0 we may conclude that, after a potential

rotation and translation, Qo = {(X,t) | z, > 0}.

We define three notions of “flatness” for solutions. The definition of “past flatness” is
taken from Andersson and Weiss (AW09) (who in turn adapted it from the corresponding
elliptic definitions in (AC81)). As mentioned above, we also introduce two types of “current

flatness”. The first type is quantitative and we call it “strong current flatness.”

Definition B.1.1. For 0 < o; < 1/2 we say that U € CF(o1,09) in Cy(Q,T) in the

direction v € SP1 if

o (Q, 7)€ d{U >0}
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o U((Y,s)) =0 whenever (Y —Q)-v < —o1p and (Y,s) € Cy(Q, 7).
e U((Y,5)) > (Y = Q) -v—o9p whenever (Y —Q)-v—o09p >0 and (Y,s) € Cp(Q, 7).

The parabolic nature of our problem means that it behooves us to introduce a “past”

version of this flatness:

Definition B.1.2. For 0 < 0; < 1 we say that v € PF(o1,02) in Cy(X,t) in the direction
ve S if for (V,s) € Cp(X,1)

o (X,t—p?) €d{U >0}
o U((Y,s)) =0 whenever (Y — X)) -v < —o1p
e U((Y,s)) > (Y — X)-v— o9p whenever (Y — X)-v —a9p > 0.

Our final notion of flatness is qualitative and weaker than strong current flatness. We

call it “weak current flatness.”

Definition B.1.3. For 0 < o; < 1/2 we say that U € CF(oq,09) in Cp(Q, ) in the

direction v € SP1 4f
e (Q,7)€{U >0}
o U((Y,s)) =0 whenever (Y — Q) -v < —o1p
o U((Y,s)) > 0 whenever (Y — Q) - v > aap.

We may now state our two main lemmas, the first of which allows us to conclude flatness

on the positive side of 0{us > 0} given flatness on the zero side.

Lemma B.1.4. [“Current” version of Theorem 5.2 in (AW09)] Let ), ux satisfy the as-
sumptions of Proposition 3.1.10. Furthermore, assume Uuoo € 6\]5(0, 1/2) in Cp(Q,T) in
the direction v. Then there is a constant K1 > 0 (depending only on dimension) such that
Uso € CF(Kqo,K10) in CP/Q(Q,T) in the direction v.
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The second lemma provides greater flatness on the zero-side under the assumption of

flatness on both sides.

Lemma B.1.5. [“Current” version of Lemma 8.1 in (AW09)] Let uso, 2 satisfy the assump-
tions of Proposition 8.1.10 and assume, for some o,p > 0 that use € CF(0,0) in Cp(Q,T)
in the direction v. For 6 € (0,1), there exists a constant 1/2 > og > 0 which depends only
on 0,n, such that if 0 < 0 < oy then ux € /C\Z/W(@a, 0) in Cg,g,(0,0) in the direction v,
where U satisfies |V — v| < K3o. Here 0 < Ko, K3 < 0o are constants depending only on the

dimension.

Our proof that these two lemmas imply that {2 is a half-space is based on the analogous

result in the elliptic setting proven by Kenig and Toro in (KT04).

Proof of the Proposition 3.1.10 assuming the two lemmas. Pick 6/ € (0,1) small enough so
that max{¢’, K%é”, K0’ /4} < 1/2. Then let &, < min{1/2,04/K1}. Here, and through the
rest of this proof, K1, Ko, K3 and oy are as in Lemmas B.1.4 and B.1.5.

Assume, without loss of generality, that (0,0) € 9Q. For every p > 0, there is an n-
plane, V(p), containing a line parallel to the ¢-direction, such that %D[V(p) NCy(0,0),00N
Cy(0,0)] < 6. Let v, be the unit normal vector to V'(p) correctly oriented so that if (X, t) €
Cy(0,0) and (X,v,) < —dp then (X,t) € Q° (similarly, (X,¢) € Cy(0,0),(X,vp) > dp
implies (X, ¢) € €). Translated into the language of weak current flatness, uso € CF(8, )
in C,(0,0) in the direction v,.

Apply Lemma B.1.4 so that uso € CF(K16, K16) in C),/5(0,0) in the direction v. Then
Lemma B.1.5 implies that us € 67?([(19’5, K10'6) in C’KQQ//)/2(O,O) in the direction Vgl)
where ]yl()l) — vp| < K1K36. Returning to Lemma B.1.4 yields us € CF(K%Q'(S, K129’(5)
in CKQGIP/4(07 0) in the direction l/él). Note that 6,6, were chosen small enough to justify
repeating this procedure arbitrarily many times. After m iterations we have shown us, €
CF(0™4,0™5) in Cpym,(0,0) in the direction yém) where n = K90’ /4 < 1/2. Additionally,

for m > 1, |V[()m) — l/éerl)\ < K36"§. From now on we will abuse notation and refer to all
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constants which only depend on the dimension by C'.
Define 7, = limy,—o0 ygm) and compute

p—vp | < OO < O™

7 (B.1.2)

For any (P,§) € C)(0,0); there is some m such that (P,§) € Cym,(0,0) but (P,¢) ¢

Cpym+1,(0,0). As uce € CF(66,6™0) in the direction V,()m) we can conclude

<P» V/gm)> < =070 p = uco(P,§) =0

(B.1.3)
<P, ng)> > 0" p = use(P, &) > 0.

We may write <P, ﬁp> = <P, Vf(ym)>+<P, vy — u[()m)> and estimate, using equation (B.1.2),

| <P, Uy — V/()m)> | < C90™n"p. Then equation (B.1.3) implies,

(P,v,) < —=CO™0n" p = use(P,€) =0

(B.1.4)
(P,U,) > CO0™n™ p = uso(P,€) > 0.
Hence,
1
where A(p) is the n-hyperplane containing (0,0) that is perpendicular to 7.
If ™+ ) < s < ™p one computes
1 1 o
ED[A(p) N Cs(0,0),00N Cs(0,0)] < ED[A(p) N Cpym(0,0), Cpym,(0,0) N O < 057.
As 6,n < 1 we can write § = 775 for some 3 > 0 and the above becomes
1 s\ 72
gD[A(p) N Cs(0,0),00 N Cs(0,0)] < Cypo p Vs < p. (B.1.5)
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Pick any p; — oo. By compactness, A(p;) — Ao in the Hausdorff distance (though
we may need to pass to a subsequence that the limit plane may depend on the subsequence

chosen). Then for any s > 0, equation (B.1.5) implies
1
s

We conclude that 92 = A, and that A is, in fact, independent of {p;}. After a rotation

and translation Q = {(X,t) | z, > 0}. O

B.1.1 Flatness of the zero side implies flatness of the positive side: Lemma

B.1.J

Before we begin we need two technical lemmas. The first allows us to conclude regularity
in the time direction given regularity in the spatial directions. We stated and proved this

Lemma in Section 3.6 so we will just state it again here.

Lemma. If f satisfies the (adjoint)-heat equation in O and is zero outside O then

[l graregnsry < ellV £y

where 0 < ¢ < 0o depends only on the dimension.

This second lemma allows us to bound from below the normal derivative of a solution at
a smooth point of 0€2o. For ease of notation we will drop the subscript co from uso, {25 and

hoo. However, all these results are proven with the same assumptions as Theorem 3.1.10.

Lemma B.1.6. Let (Q,7) € 00 be such that there exists a tangent ball (in the Euclidean

sense) B at (Q,7) contained in Q°. Then

lim sup M >1
QB(X,t)%(Q,T) d((X>t>7B) -
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Proof. Without loss of generality set (Q,7) = (0,0) and let (Xj,t;) € © be a sequence

that achieves the supremum, ¢. Let (Y}, s;.) € B be such that d((Xy,t), B) = |[(Xp, t) —

u(’l‘kX+Yk,’l"%t+Sk)
Tk

(Yk, sp)l| =: rp. Define uy (X, 1) := i ={Y,8) | Y = (X = Yy)/1),5 =

(t—sg)/r7, st (X,t) € Q}F and hg(X,t) := h(rg X + Y, 72t + ;). Then

/R L uk(Ad— 0y9)dXdt = / hybdo.

a9,

By assumption, the u; have uniform Lipschitz bound 1. Thus Lemma 3.6.9 implies
that the uy are bounded uniformly in cl1/2, Therefore, perhaps passing to a subsequence,
up — wug uniformly on compacta. In addition, as there exists a tangent ball at (0,0),

Q. — {zy, > 0} in the Hausdorff distance norm (up to a rotation). We may assume, passing

to a subsequence, that XkT;Yk — 72, tkr_gs’“ — to with (Zg,tg) € C1(0,0) N {z, > 0} and
k

ug(Zp, tg) = ¢. Furthermore, by the definition of supremum, for any (Y, s) € {z, > 0} we

have
ug(Y,s) = lim u(rpY + s, r,%s + s.) /71

k—00

< lim gpardist((rkY + g, r,%s + sp.), B)
k—o0 Tk (B.1.6)

= lim /¢pardist((Y,s), By,)
k—oo

:Eyn;

where By, is defined like §2;, above.

Let ¢ € Cg°(R™1) be positive, then

/ Can(Ad — Or0)dX dt > / (X, 1)(Ad — Oyd)d X dt
{xn>0} {.%‘n>0}

= lim up (X, t)(A¢ — Orp)d X dt (B.1.7)
k—o00 Q

= lim hipodo.
k=00 J oy,
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Integrating by parts yields

e/ mmu:/‘ Cen(Ad — yd)dX dt
{:L’n:()} {Zn>0}

eqn. (B.1.7)
> lim hypdo
k—00 JoQ,

hip>1
> lim odxdt

Hence, ¢ > 1, the desired result. O

We will first show that for “past flatness”, flatness on the positive side gives flatness on

the zero side.

Lemma B.1.7. [Compare with Lemma 5.2 in (AW09)] Let 0 < o < oo where oy depends
only on dimension. Then if u € PF(o,1) in C\(X,%) in the direction v, there is a constant

C such that w € PF(Co,Co) in CP/Q(X + av,t) in the direction v for some |a| < Cop.

Proof. Let (X,f) = (0,0),p =1 and v = e,. First we will construct a regular function which
touches 0f) at one point.

Define

16(|z|2+[t+1])
n(:p’t) = 616(\x| +[t+1])-1

for 16(|z|? + |t + 1) < 1 and 75(z,t) = 0 otherwise. Let D = {(x,xp,t) € C1(0,0) |
xp > —o + sn(z,t)}. Now pick s to be the largest such constant that C1(0,0) N C D. As
(0,—1) € 9{u > 0}, there must be a touching point (X, tg) € 0DNINN{—1 <t < —15/16}
and s < o.

Define the barrier function v as follows:

Av+ 0w =0in D,
v =01in d,D N Cy(0,0) (B.1.8)

v = (0 +zy)in dp,DNOCL(0,0).
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Note that on d,D N C1(0) we have u = 0 because D contains the positivity set. Also, as
|Vu| <1, it must be the case that (X, t) < max{0,0 + z,} for all (X,¢) € C1(0,0). Since,
v > u on OpD it follows that v > v on all of D (by the maximum principle for subadjoint-
caloric functions). We now want to estimate the normal derivative of v at (Xp,tg). To

estimate from below, apply Lemma B.1.6,

1< limsup ,U(X’ 2
(X,1)=(Xo,to) Pardist((X, 7), B)

< —0yv(Xo, to) (B-1.9)

where v is the normal pointing out of D at (X, ty) and B is the tangent ball at (X, ty) to
D contained in D°.

To estimate from above, first consider F/(X,t) := (¢ 4+ x) —v. On 9,D,
—oc<xp,—v<o0

thus (by the maximum principle) 0 < F(X,t) < 20. As 0D is piecewise smooth domain,
standard parabolic regularity gives supp |[VF(X,t)| < Ko. Note, since s < o, that —o +
sn(z,t) is a function whose Lip(1, 1) norm is bounded by a constant. Therefore, K does not
depend on o.

Hence,

V| =1 <|Vv —ep| < Ko
(B.1.10)

B.1.9
e B - 5 0(2) <1+ Ko

We want to show that u > v — Ko, for some large constant, K&, to be choosen later
depending only on the dimension. Let Z := (Y, sg), where so € (—3/4,1), lyg| < 1/2 and

(Yo)n = 3/4, and assume, in order to obtain a contradiction, that u < v — Koz, at every

181



point in {(Y;sg) | [Y — Y| <1/8}. We construct a barrier function, w = w, defined by

Aw + 0w =0in DN {t < sp},
w = xp on Gp(D{t < so}) N{(Y,s0) | [Y — Yo <1/8},

w=0o0ndp(DN{t<so})\{(Y,s0) | |Y —Yo| < 1/8}.

By our initial assumption (and the definition of w), u < v — Koay, on dp(D N {t < s})
and, therefore, u < v — Koz, on all of DN {t < sg}. Since tyg < —15/16 we know
(Xo,t0) € Op(D N {t < sp}). Furthermore, the Hopf lemma gives an o > 0 (independent of
Z) such that d,w(Xg,ty) < —a. With these facts in mind, apply Lemma B.1.6 at (Xg, ()

and recall equation (B.1.10) to estimate,

X
1= limsup u( 1)
(X,t)—(Xo,to) Pardist((X, 1), B)

< — dyv(Xo, to) +I~(06Vw(X0,t0) (B.1.11)

<(1+ Ko) — Kao.

Setting K > K /a yields the desired contradiction.

Hence, there exists a point, call it (Y, sg), such that [Y — Y| < 1/8 and

V)<l
(u—2v)Y,s9) > —-Ko(Y), > —Ko.

Apply the parabolic Harnack inequality to obtain,

inf (u—v)(X,s0—1/32) > ¢y sup (u—v)(X,s0) > —cnKo
{IX=Yo|<1/8} {|X—Yp|<1/8}
Uzgig w(X,s9—1/32) > xp —0 — enKo,

for all X such that | X — Yp| < 1/8. Ranging over all sy € (—3/4,1) and |yg| < 1/2, the
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above implies

uw(X,t) > x, — Co,

whenever (X, t) satisfies |z| < 1/2,|zy, —3/4| < 1/8,t € (—1/2,1/2) and for some constant
C' > 0 which depends only on the dimension. As |Vu| < 1 we can conclude, for any (X, 1)

such that |z| < 1/2,t € (—1/2,1/2) and 3/4 > x,, > Co, that
u(X,t) > u(x,3/4,t) — (3/4 — xy) > (xy, — Co). (B.1.12)

We now need to find an « such that (0,a, —1/4) € 9€2. By the initial assumed flatness,
and equation (B.1.12), a € R exists and —o < a < Co (here we pick oq is small enough
such that Cog < 1/4).

In summary we have shown that,
o (0,a,—1/4) € 09, |a| < Co
o 1y —a< -3C0/2= 1z, <—0=u(X,t)=0.

e When z,, — a > 2Co = x, > Co, hence equation (B.1.12)) implies u(X,t) > (x, —

Co) > (v —a—2C0).
Therefore u € PF(2C0,2C0) in C /5(0, o, 0) which is the desired result. O

Lemma B.1.4 is the current version of the above and follows almost identically. Thus

we will omut the full proof in favor of briefly pointing out the ways in which the argument

differs.

Lemma (Lemma B.1.4). Let Q,uso satisfy the assumptions of Proposition 3.1.10. Further-
more, assume Uso € 6'\]5(0, 1/2) in Cp(Q,T) in the direction v. Then there is a constant
K1 > 0 (depending only on dimension) such that us € CF (K0, K10) in Cp/Q(Q, T) in the

direction v.
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Proof of Lemma B.1.4. We begin in the same way; let (Q,7) = (0,0),p = 1 and v = ey.

Then we recall the smooth function

16(|z|2+[t+1])
n(x,t) = e16(z+t+1)-1

for 16(|z|*> + |t + 1|) < 1 and n(z,t) = 0 otherwise. Let D = {(x,xp,t) € C1(0,0) |
xp > —o + sn(x,t)}. Now pick s to be the largest such constant that C1(0,0) N Q C D.
Since |z,| > 1/2 implies that w(X,¢) > 0 there must be some touching point (Xg,%y) €
ODNINN{—1<t < —15/16}. Furthermore, we can assume that s < o+ 1/2 < 2.

The proof then proceeds as above until equation (B.1.12). In the setting of “past flatness”
we need to argue further; the boundary point is at the bottom of the cylinder, so after the
cylinder shrinks we need to search for a new boundary point. However, in current flatness the
boundary point is at the center of the cylinder, so after equation (3.6.16) we have completed

the proof of Lemma B.1.4. O

B.1.2  Flatness on Both Sides Implies Greater Flatness on the Zero Side:

Lemma B.1.5

In this section we prove Lemma B.1.5. The outline of the argument is as follows: arguing
by contradiction, we obtain a sequence uy, whose free boundaries d{u;. > 0} approaches the
graph of a function f. Then we prove that this function f is C'°° and this smoothness leads
to a contradiction.

Throughout this subsection, {uy} is a sequence of adjoint caloric functions such that

d{uy, > 0} is a parabolic regular domain and such that, for all ¢ € C2°(R"+1),

/ up(Ap — Opp)dXdt = / hy.do.
{ur>0} {uy,>0}

We will also assume the hj > 1 at g-a.e. point on d{u; > 0} and |Vuy| < 1. While we
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u(rkX,T,%t)
Tk

present these arguments for general {u;} it suffices to think of uy(X,t) = for

some 1, | 0.

Lemma B.1.8. [Compare with Lemma 6.1 in (AW09)] Suppose that uj, € CF(oy,0) in
Cp,.(0,0), in direction e, with o, L 0. Define f]j(x,t) = sup{d | (ppz, opppd, p%t) € {u, =
0t} and f, (x,t) = inf{d | (ppx, opp1d, p%t) € {ug > 0}}. Then, passing to subsequences,

f;,fk_ — fin LS (C1(0,0)) and f is continuous.

loc

Proof. By scaling each uj, we may assume p; = 1. Then define
Dy, :=A{(y,d,t) € C1(0,0) | (y,0xd,t) € {uy, > 0}}.

Let

Pty = Toninf f (3.5),
5>t F
k—oo

so that, for every (yo, to), there exists a (y, t) — (Yo, to) such that f(y, ) h2po f(yo, to)-
Fix a (yg,tp) and note, as f is lower semicontinuous, for every ¢ > 0, there exists a

0 > 0, kg € N such that
{(. d.t) | ly — yol <20, [t — to| < 46%,d < f(yo,to) — e} N Dy, =0, Vk > ky.
Consequently
xn — flyo, tg) < —& = up(z, 0p2n,5) =0, V(X,s) € Cys(Yo, to)- (B.1.13)

Together with the definition of f, equation (B.1.13) implies that there exist ;. € R with
la| < 2¢ such that (yo, o (f (¥, to) + ), to—02) € d{uy > 0}. This observation, combined
with (B.1.13) allows us to conclude, uy(-,03-,-) € PF(30;5,1) in Cs(yo, o1(f(yo, to) +
ap),tg), for k large enough.

As Tk/O‘]% — 0 the conditions of Lemma B.1.7 hold for & large enough. Thus, u(-, 0%, ) €
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PF(Coyg,Cor%§) in Cs (o, ox.f (o, to) + ag, to) where |dy| < Coge. Thus, whenever z, —
(0%f (W0, to) + &) = Ceoy/2, we have ug(z, o 2n,t) > 0 for (Z,1) € Csjo(yg, on fy, (yg t) +

o, ty, + 02). In other words

sup f,:r(z, s) < f(yo,to) + 3Ce. (B.1.14)
(Z.8)€C52(y0,0k.f (yo,to) +cg,to)
As fif > fif

fyo,to) = limsup ff(y,s),
(y,8)=(yg>to)
k—o0

it follows (in light of (B.1.14) that f = f. Consequently, f is continuous and f]j S = f

locally uniformly on compacta. [

We now show that f is given by the boundary values of w, a solution to the adjoint heat

equation in {x, > 0}.

Lemma B.1.9. [Compare with Proposition 6.2 in (AW09)] Suppose that uj, € CF(oy, 0})
in Cp, (0,0), in direction en with py > 0,0 | 0. Further assume that, after relabeling, k is
the subsequence given by Lemma B.1.8. Define

ur(pr, prd, pit) — prd

w(x,d,t) ==

Then, wy, is bounded on C1(0,0)N{xy, > 0} (uniformly in k) and converges, in the C*1-norm,
on compact subsets of C1(0,0)N{xy > 0} to w. Furthermore, w is a solution to the adjoint-

heat equation and w(zx,d,t) is non-increasing in d when d > 0. Finally w(z,0,t) = —f(z,t)

and w is continuous in C1_s(0,0) N {zy > 0} for any § > 0.

Proof. As before we rescale and set p, = 1. Since |Vuy| < 1 and a2, < —0p, = up, = 0 it
follows that uy (X, t) < (xzy,+0p). Which implies wy (X, t) < 1+74. On the other hand when
0 < zp, < 0p we have up (X, t)—x, > —xy > —oy, which means wy, > —1. Finally, if z,, > o},

we have up (X, t) —xpn > (v —0p) —xp = wy, > —1. Thus, |wi| < 1in C1(0,0) N {xy > 0}.
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By definition, wy, is a solution to the adjoint-heat equation in C(0,0) N {zy > o1}. So
for any K CC {zy, > 0} the {wy} are, for large enough k, a uniformly bounded sequence of
solutions to the adjoint-heat equation on K. As |wg| < 1, standard estimates for parabolic
equations tell us that {wy} is uniformly bounded in C2t®:1T/2(K)  Therefore, perhaps
passing to a subsequence, w;, — w in (Cz’l(K ). Furthermore, w is also be a solution to the
adjoint heat equation in K and |w| < 1. A diagonalization argument allows us to conclude
that w is adjoint caloric on all of {x;,, > 0}.

Compute that opwy = (Opup — 1)/(0}) < 0, which implies, d,w < 0 on {x, > 0}.
As such, w(z,0,t) := limy_,o+ w(x,d,t) exists. We will now show that this limit is equal

to —f(x,t). If true, then regularity theory for adjoint-caloric functions implies that w is

continuous is Cy_g5 N {z, > 0}.
First we show that the limit is less than — f(z,t). Let ¢ > 0 and pick 0 < a < 1/2 small
enough so that |w(z, a,t) —w(x,0,t)] < e. For k large enough we have a/oy, > f(z,t)+1 >

fi. (z,t), therefore,

w(x,0,t) <w(z,a,t) + e = w(x, ng,t) +e+oi(1)
O
= (1 20wl (00).0)) + vl oy 0. 000) + (1) (BLID)
k
Onwi <0
<

U)k(x,a'kfk_(.%',t),t) + Ok(l) t+e.

By definition, wy(z, 0 f, (z,t),t) = —f, (z,t) = —f(x,t) uniformly in C7_5(0,0). In
light of equation (B.1.15), this observation implies w(z,0,t) < —f(z,t) + €. Since € > 0 is
arbitrary, we have w(z,0,t) < —f(z,t).

To show w(x,0,t) > — f(x,t) we first define, for S > 0,k € N,

1 _ _
= sup (7 (ot = $02) = fi (1.9)
(KS)ECQSJk(xvakfk_(myt—S2O_]%)7t_S2U]%)
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Observe that if k is large enough (depending on S,4), then (z,t — S%c ) € C1_5(0,0). By

construction, V(Y s) € Cogq, (7, 04 f1 (2, — 2o ) t—S% )
Un — o fy (2.t — S207) < —Sop6k = yn < opfy (y,5) = up(Y,s) = 0.

In other words, u, € PF(6y,1) in Csg, (z, 04 f; (2,1 — 520%),15). Note, by Lemma B.1.8,
5k — 0.

Apply Lemma B.1.7, to conclude that

u € PF(Coy,Coy) in Cgg, jo(@, o fy (2,8 — 5’20/%) + ay, t) where |ay| < CSop.6y.
(B.1.16)
Define Dy, = f, (v, — 520]%) + ap /o + S/2. Pick S > 0 large such that D, > 1
and then, for large enough k, we have Dy — ay /oy, — f (z,t — 820,%) — CS6;, > 0 and
(x,01.Dy,t) € CSUk/Q(x, akf];(x,t—SZUz)+ak,t). As such, the flatness condition, (B.1.16),

gives

_l’_
u(w, 0D, t) = <Uka — opfy, (.t — SP0}) — oy — CS&kaﬂ)

(B.1.17)
S
2% (1—-Cay,).
2
Plugging this into the definition of wy,,
S .
wi (2, 0% Dy, 8) 25 (1 = Cop) — Dy
S
=5 (1= Cap) = (fi (a1 o7) + ap/op + 5/2) (B.1.18)

=—f} (ot — 520']%) +o0p(1) = —f(x,t) + 01(1).
We would like to replace the left hand side of equation (B.1.18) with wy,(z, «, t) where «

does not depend on k. We accomplish this by means of barriers; for € > 0 define z: to be

188



the unique solution to

2e = ge, on Op(C1_5(0,0) N {zy, > 0}) N {zy, =0} (B.1.19)

ze = =2, on 0p(C1-5(0,0) N {xy > 0}) N {zy > 0},

where g € C(C1_5(0,0)) and —f(x,t) — 2e < ge(z,t) < —f(x,t) —e. By standard
parabolic theory for any € > 0 there exists an « > 0 (which depends on € > 0) such that
|zn| < « implies |ze(x,zp,t) — z:(x,0,t)| < €/2. Pick k large enough so that o5, < a.
We know wy, solves the adjoint heat equation on {z, > 03} and, by equations (B.1.19)
and (B.1.18), wy > 2z on 0p(C1_s(0,0) N {xp, > o}}). Therefore, wy > z: on all of
Ci1_5(0,0) N {zp > o1}

Consequently,
wi(x,a,t) > ze(z,a,t) > 2ze(x,0,t) —e/2 > —f(x,t) — 3e.

As k — oo we know wy(z, o, t) = w(x, a,t) < w(x,0,t). This gives the desired result. [

The next step is to prove that the normal derivative of w on {zy, = 0} is zero. This will

allow us to extend w smoothly over {z,, = 0} and obtain regularity for f.

Lemma B.1.10. Suppose the assumptions of Lemma B.1.8 are satisfied and that k is the
subsequence identified in that lemma. Further suppose that w is the limit function identified

in Lemma B.1.9. Then Opw = 0, in the sense of distributions, on {xn =0} N Cy/5(0,0).

Proof. Rescale so p;, = 1 and define g(x,t) = 5 — 8(|z|? + [t|). For (z,0,t) € C1/2(0,0) we

observe f(x,0,t) <1 < g(x,0,t). We shall work in the following set
Z = (e, t) [ |2, [t] < 1,20 € R}

For any ¢(z,t), define Z7(¢) to be the set of points in Z above the graph {(X,t) | z,, =
189



oz, 1)}, Z7 () as set of points below the graph and Z9(¢) as the graph itself. Finally, let
%y o= {ug, > 0} N Z%o19).

Recall, for any Borel set A, we define the “surface measure”, p(A) = [0 HP N AN{s =
t}dt. If k is sufficiently large, and potentially adding a small constant to g, u(Z%(org) N
Huy, >0} N Cl/Q(O, 0)) = 0.

There are three claims, which together prove the desired result.

Claim 1:

w(O{ug, >0yNZ (0r9)) < / Opuy, — ldzdt + p(X) + Co*,%
Xk

Proof of Claim 1: For any positive ¢ € C5°(C1(0,0)) we have

/ ddy < / by = / up(Ap — Op)dX dt
8{uk>0} 8{uk>0} {uk>0}

(B.1.20)
= - / Vug - Vo + uporo
{ur>0}

(we can use integration by parts because, for almost every t, {u; > 0} N {s = t} is a set
of finite perimeter). Let ¢ — x Z=(opg) XC1 (as functions of bounded variation) and, since

|t| > 3/4 or |z|? > 3/4 implies u(x, og(z,t),t) = 0, equation (3.6.25) becomes

. t
w(0{ug > 0yNZ (019)) / Vg - v+ gy sen(t) du, (B.1.21)
S 1+ ([ Vag(e, )2 + 1)

where v(x,t) = (0, Vg(z,t), —1) points outward spatially in the normal direction.
We address the term with sgn(t) first; the gradient bound on wy, tells us that |ug| < Coy

on X, SO

uy, sgn(t)

Uk/
S 1+ 03(|Vagle, )2 + 1)

To bound the other term, note that dp = dxdt where the latter inte-
V1R (Vag(wt) 2+1)

gration takes place over B}, = {(x,t) | (z,019(z,t),t) € ¥} C {x;, = 0}. Then integrate by

du| < Cao?. (B.1.22)
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parts in x to obtain
| (@900, -1) - Vurlo.opg(o,0). Odsdt = [ oy (o, gl ), 00,901
IO 0L},

- / OfU (l‘, ng(l‘, t)’ t)Ag(ZL“, t) + O-I%anuk(m7 O-kg(x: t), t) |Vg|2d$dt
Ey,

- Onuy(z,or9(x,t),t) — ldadt + L"(E}),

o (B.1.23)
where 7 is the outward space normal on 0E). Since uy(z,org(z,t),t) = 0 for (z,t) € 0F}
the first term zeroes out.

The careful reader may object that £} may not be a set of finite perimeter and thus
our use of integration by parts is not justified. However, for any tp, we may use the coarea

formula with the L' function x {ul >0}y and the smooth function ojg(—,%9) to

z,019(x,to),to)
get

00 >/%IVQ(CE,to)!X{u(x,akg(x,to),to)>o}dx

= 0 Xeular dHn_Q(l')dT.
/—oo /{(m,t0)|akg(m7t0):7ﬂ} {u(z,rto)>0}

Thus {(x,t9) | opg(x,tg) > r} N{(z,t) | u(z, org(x,tg),t9) > 0} is a set of finite perimeter
for almost every r. Equivalently, {(z,ty) | or(g9(x,tg) + ) > 0} N {(x,t) | u(z, op(g(x, tg) +
g),tg) > 0} is a set of finite perimeter for almost every e € R. Hence, there exists a ¢ > 0
aribtrarily small such that if we replace g by g + ¢ then E,. N {t = tg} will be a set of finite
perimeter for almost every tj. Since we can perturb g slightly without changing the above
arguments, we may safely assume that E}. is a set of finite perimeter for almost every time
slice.

Observe that Ag is bounded above by a constant, |ug| < Co} on X, |Opug| < 1 and
finally u(X) > L™(E}). Hence,

w(0{ug, >0yNZ (09)) < / Opup — ldxdt + (X)) + CU]%,.
Ey,
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Integrating over E}, is the same as integrating over X;, modulo a factor of \/1 + |0,V zg|?

(which is comparable to 1 + a]%). As |Opuy. — 1| is bounded we may rewrite the above as

Ok > 041 2~ (ox) < [ Bug = -+ (Sy) + Cof
Xy,

which is the desired inequality.

Before moving on to Claim 2, observe that arguing as in equations (B.1.22) and (B.1.23),

/ (05 Vag(,t),0,0sgn(t)) (T, 0, wp)d koo . (B.1.24)
S V14 (04 Vag(z, 1), 0, opsgn(t)) |

which will be useful to us later.

Claim 2:

u(Sy) — Cao} < p(@{uy, > 0} N 2 (o49)).

Proof of Claim 2: Let vi(x,t) the inward pointing measure theoretic space normal to

d{uy, >0} N{s =t} at the point 2. For almost every ¢ it is true that v, exists H" ! almost

: 1
everywhere. Defining vg4, (X, t) = —————(—03162,1,0), we have
719X 1) ,/1+2560,3\a:|2< F )

v - vpdp >

(O > 011 2~ (o) = [

Vg - vpdp > /
H{up>0INZ~(org) O*{urp>0INZ~ (o19)

Vi * Voygdit div_thm div vg, gd X dt + / ldu.

/3*{Uk>0}ﬂZ(0k9) - /Z(ng)ﬂ{Uk>0} Xk

—160),(n—1) " 30;3(16*256) ||

21,2 2 23
1425607 [x[2 | /14256022

Z~ (o.9) N {uy, > 0} is of order o}, the claim follows.

We compute |div vg, 4] = < Coy,. Since the “width” of

Claim 3:
/ Oy, ¥ 0,
2k

Proof of Claim 3: We first notice that d,u;, < 1 and, therefore, Opw;, < 0. To show the
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limit above is at least zero we compute

-1
s Y, Ok

Claiml (9{uy, > 0}y N 2~ (03,9) _ p(Xp)

> — Coy, (B.1.25)
Ok Ok
Claim2 (%] 3
S (X)) pl k)_cak_)()‘
Ok Ok

We can now combine these claims to reach the desired conclusion. We say that 0w = 0,

in the sense of distributions on {zy, = 0}, if, for any ¢ € C§°(C1 /5(0,0)),

/ Opw( = 0.
{zn=0}

By claim 3

0= lim COpw. (B.1.26)
k=00 J%,,

On the other hand equation (B.1.24) (and ¢ bounded) implies

k—o0

lim/ (Opwy = lim/ (v, - (Vwy, wy,), (B.1.27)
Y k—oo J3,

where vy, is the unit normal to ¥j, (thought of as a Lispchitz graph in (z,t)) pointing
upwards. Together, equations (B.1.26), (B.1.27) and the divergence theorem in the domain

Zt(o9) N C1/2(0,0) have as a consequence

0= lim div x4+ (C(V xwp, wy,))dX dt
k=00 ) Z+(0},9) ’

= lim VxC-Vxw,+ (0:Qwy + C(Axwy + 0wy, )dX dt
k=00 J Z+ (o)

BB [V Vo @0upd X
{zn>0

integration by parts /

wpCdxdt — / C(Axw + dw).
{anO} {$n>0}
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As w is a solution to the adjoint heat equation this implies that f{xn:()} Opw(¢ = 0 which is

the desired result. O
From here it is easy to conclude regularity of f.

Corollary B.1.11. Suppose the assumptions of Lemma B.1.8 are satisfied and that k s
the subsequence identified in that lemma. Then f € COO(C’I/Q(O,O)) and in particular the

C2renlta porm of fin 01/4 s bounded by an absolute constant.

Proof. Extend w by reflection across {z;, = 0}. By Lemma B.1.10 this new w satisfies the
adjoint heat equation in all of € /5(0,0) (recall a continuous weak solution to the adjoint
heat equation in the cylinder is actually a classical solution to the adjoint heat equation).

Since [[wl| o0, 14(0,0)) < 2, standard regularity theory yields the desired results about

—f= w|xn:0- ]
We can use this regularity to prove Lemma B.1.5.

Proof of Lemma B.1.5. Without loss of generality let (Q,7) = (0,0) and we will assume that
the conclusions of the lemma do not hold. Choose a 6 € (0,1) and, by assumption, there
exists p and oy, | 0 such that u € CF (o, 0y,) in C), (0,0) in the direction vy (which after a

harmless rotation we can set to be ey ) but so that u is not in é\ﬁ(eak, Ooy) in Cen),,, (0,0)

U(PkX»Pzt)

o It is

in any direction v with |v, — v| < Coy, and for any constant c(n). Let uj =
clear that uy, is adjoint caloric, that its zero set is a parabolic regular domain, that |Vug| <1
and hy > 1.

By Lemma B.1.8 we know that there exists a continuous function f such that 0{u; >

0} = {(X,t) | , = f(z,t)} in the Hausdorff distance sense. Corollary B.1.11 implies that

there is a universal constant, call it K, such that

Fla,t) < £(0,0) + Vi f(0,0) -z + K(|t| + |z]?) (B.1.28)
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for (z,t) € C1/4(0,0). Since (0,0) € d{uy > 0} for all k, f(0,0) = 0. If 6 € (0,1), then

there exists a k large enough (depending on 6 and the dimension) such that
Fif(@t) < Ve f(0,0) -+ 02 /4K, ¥(x,t) € Cya50)(0,0),

where f]j is as in Lemma B.1.8. Let

oV f(0,0),1)
T+ [0hVL T (0,0)2

and compute
z-vp > 0%0p/AK = xp > o2 - Vi f(0,0) + 020, JAK > f];"(x,t) (B.1.29)

Therefore, if (X,t) € Cp/4x)(0,0) and x - v > 020, /4K, then uy(X,t) > 0. Arguing
similarly for f,~ we can see that uj, € C/Tﬁ(ﬁak, fo) in Cpja5c(0,0) in the direction vg. It is

easy to see that |1 — en| < Cop. and so we have the desired contradiction. O

B.2 Non-tangential limit of F(Q),7): proof of Lemma 3.3.6

If 99 is smooth and F(Q,7) is the non-tangential limit of Vu(Q,7), then F(Q,7) =
h(Q,7)n(Q, 7). In this section we prove this is true when 0f) is a parabolic chord arc
domain; this is Lemma 3.3.6. Easy modifications of our arguments will give the finite pole
result, Lemma 3.3.10. Before we begin, we establish two geometric facts about parabolic
regular domains which will be useful. The first is on the existence of “tangent planes” almost

everywhere.

Lemma B.2.1. Let Q be a parabolic reqular domain. For o-a.e. (Q,T) € 0X) there exists a

n-plane P = P(Q, 1) such that P contains a line parallel to the t axis and such that for any
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€ > 0 there exists a r- > 0 where
O<r<re=|(n(Q,71),Z—Q)| <re, Y(Z,t) € 002N Cr(Q, T).
Proof. For (Q,7) € 0, r > 0 define

d((Z,n), P
Voo(@, 7,7) = inf sup d((Z,n), P)
P (zmeC(@mnan T
where the infinum is taken over all n-planes through (@, 7) with a line parallel to the ¢-axis.

Let P(Q, T,7) be a plane which achieves the minimum. For (Q,7) € 09, > 0 we have
Yoo (@, 7, 7)™ < 16" 3y(Q, 7, 2r)

(see (HLNO3), equation (2.2)).

Parabolic uniform rectifiability demands that be integrable at zero for o-a.e.

(Q,7,2r)
-
(Q,7). Thus it is clear that voo(Q,T,7) T—MQ 0 for o-a.e. (Q,7). Let r; | 0 and P; :=
P(Q,7,7j), which approximate JQ2 near (@, 7) increasingly well. Passing to a subsequence,
compactness implies Pj — Poo(Q, 7). Our lemma is proven if Poo(Q, ) does not depend on
the sequence (or subsequence) chosen.

If K is any compact set then for Ll-ae. ¢, 90N K N {s =t} is a set of locally finite
perimeter. The theory of sets of locally finite perimeter (see e.g. (EG92)) says that for
H ' L ae. point on this time slice there exists a unique measure theoretic space-normal.
Therefore, for o-a.e. (Q,7) € 0N there is a measure theoretic space normal 7 := n((Q, 7))
(this vector is normal to the time slice as opposed to the whole surface). Let (Q,7) be

a point both with a measure theoretic normal and such that 75 (Q,7,7) — 0. We claim

Pyo(Q,7) = 1(Q,7)*, and thus is independent of the sequence 7 4 0.

d((Z»ﬂ)aP(Q,TaTj))
Q7T) Ty

Q,7,75))

Restricting the equality, lim; SUD(Z.m)eA, . ( = 0, to the time-slice,

d((Z,r)

= 0. Since a point-wise tangent

— : LP(
{n = 7}, we get lim; SUD(Z,r)eA,, (Q.r) 7
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plane must also be a measure theoretic tangent plane, P; — nt. O]

A consequence of the above lemma is a characterization of the infinitesimal behavior of

Corollary B.2.2. Let Q be a parabolic chord regular domain. For o-a.e. (Q,7) € 02 and

any € > 0, we can choose an R = R(e,Q,7) > 0 such that for r < R,

o(Ar(@, 7))

yn+1 -1

< E.

Proof. Let . (o -y = {(P,n) | (Q+ 1P, r?n+7) € Q}. Lemma B.2.1 tells us that, for any
compact set K containing 0, after a rotation which depends on (@, 7), we have K mQT,(Q,T) —
K n{(X,t) | x, > 0} in the Hausdorff distance sense. In particular XQ, g = Xr =
X{z,>0} in LllO .- This convergence immediately gives, using the divergence theorem (on

each time slice), that fy0, == fyolgq (. Converges weakly to enoly, gy (here iy is the

)
measure theoretic space normal to GQT’(Q,T)).

a(Q, ) € L (do), therefore, o-a.e. (Q,7) € O is a Lebesgue point for #(Q, 7). Assume

loc

that (@, 7) is a Lesbesgue point and that the tangent plane at (Q, ) is {x;, = 0}. Then,

lim ndo = e, < lim nrdoy = ep.
rl0 A (Q,7) 710 1 (070)0897,7(@7-)

Weak convergence implies (recall that o(C71(0,0) N {z, =0}) =1)

1 1
lim inf <1 <limsup )
rl0 - or(C1(0,0) N0y (7)) rlo - or(C1(0,0) N0, (o )

As C1(0,0) is a set of continuity for o¢, _gy we can conclude that lim, g o7-(C1(0,0) N
Q. (0,r)) = 0(C1(0,0) N {zn = 0}) = 1. Recall 0,-(C1(0,0) NOQ,. () +)) = TH%U(AT(Q, 7))
(see (EG92), Chapter 5.7, pp. 202-204 for more details) and the result follows. O

Our proof of Lemma 3.3.6 is in two steps; first, we show that F(Q,7) points in the
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direction of the measure theoretic space normal n(Q, 7). Here we follow very closely the

proof of Lemma 3.2 in (KT06).
Lemma B.2.3. For o-a.e. (Q,7) € 0 we have F(Q,7) = (F(Q,T),7(Q, 7)) 7(Q, T).

Proof. Let (Q, ) € 02 be a point of density for ' and Mj(h), be such that there is a tangent
plane at (@, 7) (in the sense of Lemma B.2.1), satisfy F'(Q, 1), M1(h)(Q, T) < 0o and be such
that Vu converges non-tangentially to F' at (Q, 7).

In order to discuss the above conditions in a quantative fashion we introduce, for €, > 0:

5:(r) = 1o (L(P.Q) € Con(Qur) NOR| [F(P.) ~ F(Q.7)] > <)

5 (r) = T%a({ua, 0) € Con(Q,7) M AN | My()(P.C) > 201 (h)(Q,7)})  (B.2.1)

() = —g1o((P.0) € Corl@.7) 1 OO\E()).

To define E(n), first, for any € > 0 and A > 0, let
H(\ €)= {(P,¢) € 02| |F(P,¢) — Vu(X,t)| <&, ¥(X,t) € [{y(P,O)}.

By Corollary 3.3.5, for each ¢ > 0 and o-a.e. (P,{) € 0% there is some A such that
(P,¢) € H(\, ). Arguing as in the proof of Egoroff’s theorem (see, e.g., Theorem 3, Chapter
1.2 in (EG92)), for any n > 0 we can find a A\(e,n) such that o(OQ\H (A(e,n),€)) < n. Let
enp, = 27" and n, = 2_”_177 to obtain A\, := A(ep,nn) as above. Then define E(n) =
n>0 H (A, en). Note, that o(9\ U, ~o E(n)) = 0, as such, for g-a.e. (Q,7) € 08 there is
some 7 > 0 such that (Q, 7) is a density point for E(n). At those points (for the relevant 7)
we have 5,’7/(7“) — 0.

(Q, ) is a point of density for My (h), F, hence & (r),dz(r) — 0 for any ¢ > 0. Addi-

tionally, 02 has a tangent plane at (@, 7), so there exists an n-plane V' (containing a line
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parallel to the t-axis), a function ¢(r) and R,n > 0 such that

sup d((P,¢),V N Co(Q,T)) <l(r) (B.2.2)
(P7C)€CQT(Q,T)ﬂaQ

o (Cyry (P, Q) = 200(r) + ' (r) + 8 ()], V(P,¢) € 92N Cop(Q, 7).

For ease of notation, assume that (Q,7) = (0,0) and V' (the tangent plane at (@, 7)) is
{zn = 0}. Let D(r) == {(z,zp,7) | 2| < ryzy = %Coé(r)} where Cj is a large constant
satisfying the following constraint:

If (Y,0) € D(r) and (P, () € C9,(0,0) are such that ||(y,0,0) — (p,0,¢)| < 2¢(r) then
Col
D(r) N Cyy (Y. 0) < TSP 0).
We make the following claim, whose proof, for the sake of continuity, will be delayed until

later.

Claim 1: Under the assumptions above, if r > 0 is small enough, (Y,0) € D(r), we have:

(Y, 0)] < CM; (R)(0,0)¢(r) (B.2.3)

Given two points (Y1,0), (Y2,0) € D(r), we want to estimate (F(0,0),Ys — Y]) in terms
of u(Y2,0) — u(Y1,0). Define R(Y7,Y2) = u(Y3,0) — u(Y7,0) — (F(0,0),Ys — Y7). Equa-
tions (B.2.2) and (B.2.3) imply that, for » > 0 small, we have |u(Y7,0)|,|u(Y2,0)| <
CM;y(h)(0,0)¢(r) < Cer. Therefore, in order to show that (F(0,0),Ys —Y7) is small, it
suffices to show that R(Y7,Y3) is small.

Write u(Y2,0) — u(Y7,0) = fol (Vu(Y1 +0(Ya — Y1),0), Yo — Y7) df which implies
1
R(YA, Ya)| < [V — Vi /O Vu(Yi + 0(Ya — Y1), 0) — F(0,0)]db. (B.2.4)
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If we define I(r =1 fD JCD |R(Y1,Y5)|dY1dY>, then Fubini’s theorem and equation
(B.2.4) yields
I(r) < C’n][ |IVu(X,0) — F(0,0)]dX (B.2.5)
D(r)

(for more details see (KT03), Appendix A.2). We now arrive at our second claim:
Claim 2: For (Y,0) € D(r) we have |Vu(Y,0) — F(0,0)| < 2e.

Claim 2 immediately implies that I(r) < Ce, which, as |u| < Cer on D(r), gives
][ ][ F(0,0), Yy — Y1) [dY1dYs < rI(r) + 2Cer < Cer. (B.2.6)

Pick any direction e L ey, such that e € R™ (i.e. has no time component) and let M :=
| (F(0,0),¢)|. Now consider the cone of directions T' in S?~2 (i.e. perpendicular to both
the time direction and e;;) such that | (F(0,0),é)| > M/2 for € € T. A simple calculation
reveals that H" 2(T')/H"?(S"2) = ¢, a constant depending only on dimension. Thus
(B.2.6) implies

Cer > ][ ][ F(0,0),Yy — Y1) |dY1dYs >

c(n) r/2 9o s
n—1 ][ / / _(F(0,0), p8) p"~2dS" " *dp > CMr
r D(r)n{(Y:H)lly[<r/2} JO gel

which of course implies that M < Ce. In other words <F (0,0), ’> < Celd/| for any 2’ €

R~ ! which is the desired result. H

Proof of Claim 1. For (Y,0) € D(r), we want to show that |u(Y,0)| < CMy(h)(0,0)¢(r). As
02 is well approximated by {x;, = 0} in C9,(0,0), there must be a (P,0) € 9QN 037’/2(07 0)
such that p =y, and, hence, |pn| < £(r). Let C(Y) := Cy, (P, 0). Note that equation (B.2.2)
implies o(C(Y)) > 26 (r)r"*1. Given the definition of & (r) we can conclude the existence of
(P,¢) € C(Y) N dQ such that My (h)(P,{) < 2M1(h)(0,0). Furthermore (P,{) € Co,.(0,0)
and [|(7,0,¢) — (4,0,0)]| < 2¢(r).

By the condition on Cj and the aperture of the cone we can conclude that (Y,0) €
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F%)E(T)(If’, (). Then, arguing as in Lemma 3.3.2 (i.e. using Lemma 3.2.2, the backwards

Harnack inequality for the Green’s function, ||(Y,0) — (P,¢)|| ~ Col(r), Lemma B.3.4 and

that w is doubling) we can conclude

u((Y,0)) < CulAgy,, (P.0) <

Ty Cenn(P0) < Ottr) ]g iy 2D < CUNMBP.D)

As My (h)(P,¢) < 2M1(h)(0,0) we are done. O

Proof of Claim 2. We want to show that for (Y,0) € D(r) we have |[Vu(Y,0)—F(0,0)| < 2e.
Arguing exactly like in Claim 1 produces a (P,0) € 92 and then C(Y). This time we use
equation (B.2.2) to give the bound ¢(C(Y)) > 2(6"(r) 4 d-(r))r™ 1. We can then conclude
that there exists a (P, ) € C(Y)NdQ such that (P,¢) € E(n, R) and |F(P,{)—F(0,0)| < «.

Recall that (P,¢) € E(n) = (P,() € H(M,2™™) for all n. So pick n large enough
that 27" < ¢ and then r small enough so that Cpl(r) < Ap. Thus [Vu(Y,0) — F(0,0)] <
IVu(Y,0) — F(P,{)|+ |F(P,¢) — F(0,0)] < 2e. O

We now want to show that |F(Q,7)| = h(Q,T) do-almost everywhere. Here, again, we
follow closely the approach of Kenig and Toro ((KT06), Lemma 3.4) who prove the analogous
elliptic result. One difference here is that the time and space directions scale differently. To

deal with this difficulty, we introduce a technical lemma.

Lemma B.2.4. Let 1 < p < oo and g € LY (do). Then

loc

1

5,10
d Y
o(Al@Q 7)) /A«Q,T),r,s)nagg 7= 6@

for g-a.e. (Q,7) € OQ. (Here, and from now on, C((Q,7),r,s) = {(X,t) | |[X — Q| <
|t — 7] < 542} and A(Q,7),7,5) = C(Q,7),7,5) N IN.)
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Proof. Follows from the work of Zygmund, (Zyg34), and the fact that (0€2, o) is a space of

homogenous type. [

Proof of Lemma 3.3.6. We will prove the theorem for all (Q,7) € 09 for which Proposition

B.2.3 holds, such that there is a tangent plane to 992 at (@, 7) and such that

. o(Ar(Q, 7))
iR
lim hdo = h(Q, 1)
rsi0JC(Q,r),r,s)NOQ
lim Fdo = F(Q,T)
r10 )¢, Q7)o (B.27)
lim My (h)do = My(h)(Q, )

r10 JC, (Q,1)no0
lim Vu(X,t)=F(Q,T)
(X,t)=(Q,7)
(X,1)el(Q,7)

Ml(h)((QaT))aF(Q77—)ah(Q,T) < Q.

That this is o-a.e. point follows from Proposition B.2.3, Lemmas B.2.1, B.2.2, B.2.4 and
3.3.5, and F,h, My(h) € L? (do).

loc

0N {s = t} is a set of locally finite perimeter for almost every ¢, hence, for any

¢ € CER"™),

ohdo = / wW(Ap — ¢p)dXdt = — / Vo - Vu+ ugdXdt. (B.2.8)
o0 Q 9]

Let p1,p2 > 0 and set (X, t) = (| X — Q|/p1)&(|t — 7'|/p%) We calculate that Vo(X,t) =

&1t =71/ ) (1X — QU p1) gy and also that g C(1X —Ql/p1) =~ 541X =Q1/pn).

Together this implies

X-Q d

— — 2 v A9 7
—VOX ) =&t =Tl — o g

C(1X = @Ql/p1). (B.2.9)

Similarly 046(X. 1) = C(1X—Ql/p1)€ (t=71/p3) 25 and Ge(jt—r|/p3) = ~2771¢/ (1~
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7|/ p%), therefore,

~0r0(X.) = C(1X = Q) 52 (it rl/ed) (B.2.10)

Plugging equations (B.2.9), (B.2.10) into equation (B.2.8) and letting &, { approximate

X[0,1] We obtain

d
hdo = p1—

/ <Vu(X, t), X—_Q> dX dt+
AONC((Q,7),p1,02) dp1 Jonc((Q.r).p1.p2)

d u(X,t)

pP2— dXdt.
dp2 Joanc(Q.r)p1.p2) 2(E = T)

Differentiating under the integral and then integrating p1, p2 from 0 to p > 0 yields

prp
/ / / hdodpydps —
Jo Jo Joonc((Q.7).e1.02) B

(1)
) X-0Q ) (B.2.11)
/ / <Vu, —> dXdtdpo +/ / udXdtdpy .
Jo Jancy@mppn) \ X —Q  Jo Jenc@r)pnp) )
(11 (1t

For any ¢ > 0 we will prove that there is a 6 > 0 such that if p < § we have

(1) < g+

(DR

(11) = (F(Qu7). A(Qu7)) 5] < e,

WQ,7)p" 3 < ep"t?

which implies the desired result. Note that throughout the proof the constants may seem a

little odd due to our initial normalization of Hausdorfl measure.

Analysis of (III): u is continuous in €, hence for any ¢ > 0 there is a § = §(¢') >
0 such that if § > p then (X,t) € Cp(Q,7) = u(X,t) < . It follows that, [(III)] <

Ce’ fop P?ﬂzdl)l = 5,0n+3, choosing ¢’ small enough.
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Analysis of (I): (Q, ) is a point of density for h, so for any &’ > 0 there exists a § > 0

such that if p < 0 then

@, / / ((Q,7),p1,p2))dp1dpa| < £ / / ((Q,7), p1, p2))dp1dps.

Switching the order of integration, fO fO A(Q,T), p1,p2))dprdps = fA QT —|X -
Q) (p — /|t — 7)do. Consider the change of coordinates X = pY 4+ Q and t = sp? + 7. As

00 has a tangent plane, V, at (Q,7) the set {(Y,s) | (X,t) € Cp(Q,7) NN} converges (in

the Hausdorff distance sense) to C1(0,0) N'V. Therefore,

75 [y 71X QD= Vi 22 (- 1 - Viods = L

ly|<1,|s|<1 n

Which, together with the above arguments, yields the desired inequality.

Analysis of (IT): Writing Vu(X,t) = (Vu(X,t) — F(Q, 7)) + F(Q, ) we obtain

p X-Q >
IT) = Vu(X,t) — F(Q, dXdtd
" f)/flﬂC((Q,T),p,pz)< R L A

(E)

P ) X-Q >
F dXdtdps.
el [Uf (@, ) A

In the second term above, divide the domain of integration into points within £’p of the

tangent plane V' at (Q,7) and those distance more than &’p away. By the Ahlfors regularity
of 09, the former integral will have size < Ce’p"+3. The latter (without integrating in pg)

1S
X_
/ (i@ =g
QNC((Q,7),0,p2) (X ) [ (X—Q,(Q,7)) ¢ p} X =

> dXdt.

Again we change variables so that X = pY + Q and t = sp? + 7, and recall that, under this

change of variables, our domain €2 converges to a half space. Arguing as in our analysis of
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(I), a simple computation (see equation 3.72 in (KT06)) yields

< Ce'p”p%.

2 n
<ﬁ(Q, ). ﬂ> dadt — 20

/QFWC((Q,T),,O,,OQ)H{(%I?)I<x—Q,ﬁ(QJ)>Ze/p} |z — Q)

Integration in po gives
1
(1) — !F(Q,T)I%ﬂw?’l < P +|(B)].

The desired result then follows if we can show |(E)| < &/p"*3. To accomplish this we argue
exactly as in proof of Lemma 3.4, (KT06) but include the arguments here for completeness.
We first make the simple estimate

X-Q

(E)[ <p X Q]

>dth

/ <Vu(X, 1= F(O,7)
QQCP(Q,T)

If (X, 1) € Cp(Q,7)U{(X,t) | (X — Q,n(Q, 7)) > 4¢'p} then §(X,t) > 2¢'p for small enough
p (because we have a tangent plane at (Q,7)). On the other hand we have ¢|(X,t) —
(Q,7)| < 2¢/p < §(X,t) which implies that (X,t) is in some fixed non-tangential region of
(@, 7).

By the definition of non-tangential convergence (which says we have convergence for all

cones of all apertures), for any n > 0 if we make p > 0 even smaller we have |Vu(X,t) —

F(Q, )| <n. Therefore,

(E) < Cnp™* 4 p / Vu(X,1)] + |F(Q.7)|dXdt.
Cp(Q,m)NQAN{(X,)|(X-Q,n(Q,7))|<4e p}

Standard parabolic regularity results imply that |Vu(X,t)| < C 158((’3 As the closest

point to (X,t) on 98 is in Cg,(Q, 7) we may apply Lemma 3.2.1 and then Lemma 3.2.2 to
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u(Ag,(Q.7))

get [Vu(X,t)| < C ST

. Continue arguing as in Lemma 3.3.2 to conclude
(X,0) € CGpl@7) QN {7 < 6(X,0) < T} = [Vu(X, 0] < C272 My ()(@, 7).

Let iy > 1 be such that ——1 < 4¢’ < i~ and recall |F(Q,7)| < oo to obtain,

2Z+ 2

) / Vu(X, 1)+ [F(Q, 7)|dXdt
Cp(Q,m)NQN{(X,t)|(X —Q,2(Q,7))|<4e’ p}

< Cep"3 4+ p Z / IVu(X,t)|dXdt
(QINN{ A7 <d(X )<L}

=10

< C<p"3 1 CpMy (R)(Q, T ZQZ/2|CpQ,)ﬂQﬂ{2+1 B(X.1) < 2y,

1=10

A covering argument (using the Ahlfors regularity of 0€2) yields

n+2
22'

P i(n+1) (P n+2 P
Cp@ NN {zhy <olx. <] i< <22) <C

As 9-1/2 « Ve the desired result follows. O

zzo

B.3 Caloric Measure at oo

We recall the existence and uniquness of the Green function and caloric measure with pole
at infinity (done by Nystrom (Nys06b) ). We also establish some estimates in the spirit of
Section 3.2.

Lemma B.3.1. [Lemma 14 in (Nys06b)] Let Q@ € R™ ! be an unbounded §-Reifenbery flat

domain, with 6 > 0 small enough (depending only on dimension), and (Q,T) € 0. There
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exists a unique function u such that,

w(X,t) >0, (X,1) €Q
w(X,t) =0, (X,t) e R"TI\Q
(B.3.1)
Au(X,t) +up(X, 1) =0, (X, 1) € Q

u(A7(Q, 7)) =1.

Furthermore u satisfies a backwards Harnack inequality at any scale with constant ¢ depending

only on dimension and § > 0 (see Lemma 3.2.6).

Proof. Without loss of generality let (Q,7) = (0,0) and for ease of notation write A =
A7(0,0). Any u which satisfies equation (B.3.1) also satisfies a backwards Harnack inequality
at any scale with constant ¢ depending only on dimension and ¢ > 0 (see the proof of Lemma

3.11 in (HLNO04)). The proof then follows as in (Nys06b), Lemma 14. O

Corollary B.3.2. [Lemma 15 in (Nys06b)] Let Q,u be as in Lemma B.3.1. There exists a

unique Radon measure w, supported on 0S) satisfying

/ pdw = / w(Ap — 8yp), Yo € CX(R"MH), (B.3.2)
o0 Q

Proof. Uniqueness is immediate from equation (B.3.2); for any (Q,7) € 9 and r > 0 let ¢

approximate X ¢, (Q,7) (X, t). Existence follows as in Lemma 15 in (Nys06b). ]

Lemma B.3.3. [Lemma 3.2.7 for the caloric measure at infinity] Let u, Q,w, be as in Corol-

lary B.3.2. There is a universal constant ¢ > 0 such that for all (Q,7) € 9Q, 7 > 0 we have

w(A2r(Q, 7)) < cw(Ar(Q,7)).

Proof. Follows as in Lemma 15 in (Nys06b). O
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Corollary B.3.4. [Lemma 3.2.4 for caloric measure and Green’s function at infinity] Let
u,Qd,w be as in Corollary B.3.2. There is a universal constant ¢ > 0 such that for all

(Q,7) € 9Q,r > 0 we have
C_lTnU(A;F(Q,T)) < W(AT/Q(Q,T)) < er"u(A,(Q, 7)) (B.3.3)

Proof. The inequality on the right hand side follows from (B.3.2); let Xc, /2(Q,r)(X 1) <
(X, 1) < Xc,(Q,r)(X, 1) and [Ap|, |9pp| < C/r?. Inequality then follows from Lemma 3.2.2.

The left hand side is more involved: as in the proof of Lemmas B.3.1 and B.3.2 we can
write u as the uniform limit of u;s (multiples of Green’s functions with finite poles) and w as

the weak limit of w;s (multiplies of caloric measures with finite poles) which satisfy Lemma

3.2.4 at (Q,7) for larger and larger scales. Taking limits gives that

(AT Q7)) < w(B,p(@iT)).

That w is doubling implies the desired result. O

Proposition B.3.5. [see Theorem 1 in (HLNOJ)] Let 2 be a parabolic reqular domain with
Reifenberg constant § > 0. There is some 0 = 0(M,||v||+) > 0 such that if 6 < & then
w € A®(do). That is to say, there exists a p > 1 and a constant ¢ = c(n,p) > 0 such that
w satisfies a reverse Harnack inequality with exponent p and constant ¢ at any (Q,T) € 0N

and at any scale r > 0.

Proof Sketch. The proof follows exactly as in (HLN04), with Lemma B.3.3, Corollary B.3.4
and the fact that the Green function at infinity satisfies the strong Harnack inequality

substituting for the corresponding facts for the Green function with a finite pole. m
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B.4 Boundary behaviour of caloric functions in parabolic

Reifenberg flat domains

In this appendix we prove some basic facts about the boundary behviour of caloric func-
tions in parabolic Reifenberg flat domains, culminating in an analogue of Fatou’s theorem
(Lemma B.4.1) and a representation formula for adjoint caloric functions with integrable
non-tangential maximal functions (Proposition B.4.4). Often the theorems and proofs mir-
ror those in the elliptic setting; in these cases we follow closely the presentation of Jerison
and Kenig ((JK82)) and Hunt and Wheeden ((HW68) and (HW70)).

In the elliptic setting, the standard arguments rely heavily on the fact that harmonic
measure (on, e.g. NTA domains) is doubling. Unfortunately, we do not know if caloric
measure is doubling for parabolic NTA domains. However, in Reifenberg flat domains,
Lemma 3.2.7 tells us that caloric measure is doubling in a certain sense. Using this, and
other estimates in Section 3.2, we can follow Hunt and Wheeden’s argument to show that
the Martin boundary of a Reifenberg flat domain is equal to its topological boundary. The
theory of Martin Boundaries (see Martin’s original paper (Mar41) or Part 1 Chapter 19 in
Doob (Doo84)) then allows us to conclude the following representation formula for bounded

caloric functions.

Lemma B.4.1. Let Q be a parabolic 6-Reifenberg flat domain with 6 > 0 small enough.
Then for any (Xo,tg) € Q the adjoint-Martin boundary of Q relative to (Xg,tg) is all of
QN A{t > tg}. Furthermore, for any bounded solution to the adjoint-heat equation, u, and

any s > tq there exists a g(P,n) € L>(09) such that

u(Y, s) = /a 9P ) K X00)(P g, Y, 5)d(Xot0) (P ). (BA.1)
Here KXolo)(P Y, s) = %(F, n) which exists for all s > ty and wX010) g e,
w ’

(P,n) € 022 by the Harnack inequality.
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Finally, if w(Y,s) = [509(P, n) K Xo:10) (P, Y, s)d(Xo10) (P, ), then u has a non-

tangential limit, g(Q,T), for diy(X0:0) _glmost every (Q, 1) € 0N,

Proof. Recall that the Martin boundary 0MQ of Q with respect to (Xg, ) is the largest

G(X,t,Y,s)
G(X7t7XOat0)

extension V&0lo) ¢ C(oMan{(X,t) € Q |t > to} x {(V,s) € Q| s > ty}). Martin’s

subset of 9 such that the Martin kernel V' (Xo:to) (X,t,Y,s) = has a continuous
representation theorem (see the theorem on page 371 of (Doo84)) states that for any bounded
solution to the adjoint-heat equation, w, there exists a measure, p,, such that u(Y,s) =
Jamq V(XO’tO)(Q, 7, Y, 8)dpu(Q, 7) where 9MQ is the Martin boundary of €.

That V(XO’tO)(Q,T, Y, s) exists for all 7,5 > ty (and is, in fact, Holder continuous in
(Q,7) for 7 > s) follows from Lemmas 3.2.8 and 3.2.9. When s > 7 it is clear that
V(Xo’to)(Q,T, Y,s) = 0. So indeed the Martin boundary is equal to the whole boundary
(after time t).

We will now prove, for a bounded solution u to the adjoint-heat equation, p, << &(Xo.to)
on any compact K CC {t > ty}. To prove this, first assume that wu is positive (if not, add a
constant to u to make it positive). Let (Q,7) € 92 be such that 7 > t5. Then there exists
an A > 100 and an ry > 0 such that for all » < ry we have (X, tg) € TZ’T(Q,T). Applying
Lemmas 3.2.4 and 3.2.6 and observing that hm(X,t)—)(Q’,T’)EAr/4(Q,T) w(X’t)(Ar/z(Q, 7)) =1

we can conclude that there is some constant v > 0 such that
SR (A(Q, )V IXO(Q' 7 AL (Q,7)) = .

for all (Q',7') € Ay g (Q, 7).
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It follows that,

i B s(@7) il Bys(Q.7)
S8, 14(@7)) G (A,(Q,7))

<0y~ / vE(Q 7 AL Q (@) (BA2)
Ar/4(Q,T)

<Cv (A7 (Q.7)) < CyHullzes.

— i quch that (by Martin’s representation theorem)

Therefore, there is a g, (P,n) = dioXo0:t0)
w b

uY,s) = /(9 ) gu(P, )V &t (p g v, s)de(Xoto) (p ). (B.4.3)

Assume that V(XO’tO)(Q, 7,Y,s) = K<X0’t0>(Q, 7,Y,s). Then equation (B.4.3) is equation
(B.4.1). The existence of a non-tangential limit follows from a standard argument (see e.g.
(HW68)) which requires three estimates. First, that w(X0:0) is doubling, which we know
is true after some scale for any point (@, 7) with 7 > ¢3. Second we need, for (Qq,ty) €
o, r >0,

lim sup K(XO’tO)(Q, 7, X,t) =0.
(X,0)—=(Qo:to) (Q,7)¢Ar(Qo.to)

This follows from Harnack chain estimates and Lemma 3.2.1 (see the proof of Lemma 4.15
in (JK82) for more details). Finally, for some o > 0, which depends on the flatness of 2, we

want

K&Xosto)(p oy A— < e
( y 1y 4R(Q’T)) - w(XOvtO)(AQ—jR<QuT))’

for all (P,n) € Apy—j(Q,7)\Apy—j-1(Q,7) and for values of R small. This follows from
Lemmas 3.2.1 and Lemmas 3.2.4 (see (JK82), Lemma 4.14 for more details).
So it suffices to show that V(X07t0)(Q, 7,Y,s) = K<X0’t0)(Q,T,Y, s). Fixr >0, (Q,7) €

99 and consider the adjoint-caloric function U(Y,s) = &(Y*3)(A.(Q,7)). By the Martin
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representation theorem and equation (B.4.2) there is a function g = g¢ ;, such that
U(Y.s) = [ VOR(P g, Y. (P s Yot (B.4.4)

We are going to show that g(P,n) = XA (Q,r)- If true then, by the definition of caloric

measure, we conclude

/ VI d0)(p .y, 5)do 00 (P ) = o) (AL(Q, 7))
AT(QaT)

— / K&Xot0)(p oy v, s)doKoto) (p ),
AT’(Q7T)

for all surface balls. It would follow that V = K.

For a closed E C 012, following the notation of (Mar41) Section 3, let Ug be the unique
adjoint-caloric function in 0f) given as the limit inferior of super adjoint-caloric functions
which agree with U on open sets, O, containing £ and which are adjoint-caloric on Q\O with
zero boundary values on 9Q\O. In a é-Reifenberg flat domain (where the Martin boundary
agrees with and has the same topology as the topological boundary) and if F = m,
for some (P,n) € 0 and p > 0, it is easy to compute that Ug(Y,s) = o(Y*3)(E). By the

uniqueness of distributions (Theorem III on page 160 in (Mar41)) it must be the case that
Up(Y,s) = / V(Xo,to)(p’ n,Y,s)g(P, n)d@(Xoio)’
E

where g is as in equation (B.4.4). If (Y, s) = (Xo,%9) and £ = Ay(FPy,nm0) C Ap(Q,7) then

the above equation becomes

X0l (R, (Py,m)) = X0 (A (Py,mo)) = / g(P,m)di o).
AP(P07770)
Letting (Py,n9) and p > 0 vary it is clear that g(P,n) = XA (Q,7) and we are done. O

Our approach differs most substantially from the elliptic theory in the construction of
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sawtooth domains. In particular, Jones’ argument using “pipes” ((Jon82), see also Lemma
6.3 in (JK82)) does not obviously extend to the parabolic setting. The crucial difference is
that parabolic Harnack chains move forward through time, whereas elliptic Harnack chains
are directionless. The best result in the parabolic context is the work of Brown (Bro89), who
constructed sawtooth domains inside of Lip(1,1/2)-graph domains. Our argument below,
which is in the same spirit as Brown’s, works for d-Reifenberg flat domains. Before the proof

we make the following observation.

Remark B.4.2. Let Q) be a §-Reifenberg flat domain and let (X,t) € Q. If (P,n) € 0 such
that

1(P,m) = (X, 1) = (X, 1) := (Q}Iﬁm”@”) — (X, 1)]]

then n =t. That is, every “closest” point to (X,t) has time coordinate t.

Justification. By Reifenberg flatness, for any (P,n) € 02 the point (P,t) is within distance
St —n|Y/2 of BQ. Then 6q(X,t) < |P — X| + 0|t — 0|2 < ||(P,n) — (X, 1)]|. O

We are now ready to construct sawtooth domains. Recall, for a > 0 and F' C 0f2 closed,

we define So(F) = {(X,t) € 0Q | I(Q,7) € F, s.t. (X,t) € [o(Q,7)}.

Lemma B.4.3. Let Q be a (6'0)-Reifenberg flat parabolic NTA domain and F € 9QNCs(0,0)
be a closed set. There is a universal constant ¢ € (0,1) such that if ¢ > § > 0 then So(F)
is a parabolic §-Reifenberg flat domain for almost every a > ag(d) > 0. Furthermore, if
A(Xat) (th)

Sl F) 15 the adjoint-

) Here @

caloric measure of So(F') with a pole at (X,t).

Proof. To prove that So(F) is 6-Reifenberg flat first consider (Q,7) € F C 0S4 (F) and
p > 0. Let V be an n-plane through (@, 7) containing a vector in the time direction such
that D[0Q N C9,(Q, ),V N Cyy(Q, 7)] < 26%0p. If (X,t) € 0Sa(F) N Cy(Q,7) then (for
a>1) (Pt) € C,(Q,7) NOQ where (P,t) € 92 satisfies (X, t) = dist((P, 1), (X,t)). We

213



can compute that

dist((X,1), V) < (X, 1) + dist((P,1), V) < 5 P4 4p510 < ps/11

1+a
for 6 <1/2 and 1+« > 20/6.

One might object that the above is a one sided estimate, and that Reifenberg flatness
requires a two sided estimate. However, Saard’s theorem tells us that, for almost every «,
Sa(F) is a closed set such that R"T1\ S, (F) is disjoint union of two open sets. Since this
argument rules out the presence of “holes” in S, (F'), our one sided estimates are enough to
conclude Reifenberg flatness. Hence, D[C,(Q,7)N0OSa(F), Cyp(Q,7)NV] < pd/11 for almost
every o > % —1.

We need to also show that 05, (F) is flat at points not in F. Let (Q,7) € 0S4 (F)\F
and R := dq(Q, 7). Our proof of has four cases, depending on the scale, p, for which we are
trying to show 05, (F') is flat.

Case 1: p > (1JT3)R. Observe that Cp(Q,7) C C11,(P,n) for some (P,n) € F. The

computation above then implies that D[C\(Q,7)N0Sa(F), Cp(Q, 7){L+(Q,7)—(P,n)}] <
pé where L = L(P,n, 11p), is the plane through (P, ) which best approximates C11,(P, 1) N
o0.

Case 2: %R <p< %. We should note that this case may be vacuous for certain

values of a (e, if 1 + a < @). Without loss of generality let (Q,7) = (Q,0) and let
(0,0) € 02 be a point in 0N closest to (Q,0) (which is at time zero by Remark B.4.2). If
L(0,0,4p) is the plane which best approximates 02 at (0,0) for scale 4p, we will prove that
D[Cy(Q,0) N 0S(F),Cp(Q,0) N {L(0,0,4p) + Q}] < dp.

We may assume L(0,0,4p) = {x;, = 0}. Note that dp(—) is a 1-Lipschitz function. Thus,
if (Z1,11), (Za.t2) € Cp((Q,0))NDSa(F) then [5g(Z1,11) —do(Za. t)| < £ < . We may
conclude that dq(Y,s) < 2R for all (Y,s) € Cp(Q,0) N Su(F) and, therefore, if (P,s) € 09
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is a point in 9N closest to (Y, s) then (P,s) € C9,(0,0). By Reifenberg flatness,

2pd 3pd
[lym] = 4p0™°] < [[yn] = [pal| < (Y, 5) < 2R < == = |yn| < =

On the other hand g, < |Q| = R < %. Therefore, [yn — qn| < |yn| + lgn| < £ + 2> < p5,

the desired result.

Case 3: 2R< p < %R. Let (X,t) be the point in 0So(F)NC,(Q, 7) which is furthest from
90 and set g (X,t) = R. We may assume that (X,t) = (0, R,0) and (0,0) is a point in 9
which minimizes the distance to (X,t). We will show that D[C)(Q,7) N0Sa(F),Cp(Q,7)N
{xn = R}] < pd/2, which of course implies that D[C,(Q,T) N 0Sa(F),Cp(Q,7) N {zy =
an}] < dp-

First we prove that L(0,0,4p), the plane which best approximates 92 at (0,0) for scale
4p, is close to {x;, = 0}. If € is the minor angle between the two planes then the law of

cosines (and the fact that do((0, R,0)) = R) produces
(R —4ps™2 < L2 + R? — 2LRsin(d) = 2LRsin(h) < L? + 8pR5°

for any L < 2p. If L = §*R then

~ ~ R = B 8 p2
25 B2 sin(8) < 63 B2 + 8pks'0 PF 954 2 sin(9) < 30 2R .

For small enough 4, we conclude 6 < 6%,

Therefore, for any (Y, s) € Cp(Q,7) N Sa(F) the distance between (Y, s) and L(0, 0, 4p)
is < yn +26%p. On the other hand, Q is (610)-Reifenberg flat so that means 6q (Y, s) < yn +
20%p+4610p < 4, +36%p. Recall, from above, that §z(—) is a 1-Lipschitz function. Therefore,
if (Z1,11),(Z2,t2) € Cp((Q,7)) N OSa(F') then |0(Z1,t1) — dq(Z2,t2)| < 1—1% < % if we

pick 1+« > 20/6. An immediate consequence of this observation is that R < 2R (and thus
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6*R < 2p above). This also implies that dg(Y,s) > R — % Therefore,

=%

~ ~ 5{7
4
R—— < +30r=R— —<

which is one half of the desired result.

On the other hand, it might be that there is a (Y, s) € C)(Q, 7) NOSu(F') such that y, >
R+ pd/2. Arguing similarly to above we can see that L(0,0,4R + 4p) satisfies D[C1(0,0) N
L(0,0,4R+4p), C1(0,0)N{zy = 0}] < 26%. But if (P, s) is the point on 99 closest to (Y, s) it

must be the case that (P, s) € 0QNC 0,0). Therefore, p, < 46*(R+p)+4619(R+p) <

2R+2p(
56%(R + p) < 602p. Of course this implies that ||(Y,s) — (P, s)|| > R+ pd/2 — 662p > R for
4 small enough. This is a contradiction as no point in C,(Q, 7) N 9S4 (F') can be a distance

greater than R from 9.

Case 4: p < 62R. Again let (X, ) be the point in dS, (F) N Cy(Q,7) which is furthest from
99. Let 6q(X,t) = R and without loss of generality, (X,t) = (0, R,0) and (0, 0) is the point
in Q closest to (X,#). We will show that D[C,(Q, 7)NISa(F),Cy(Q,7)N{zn = R}] < pi/2,
which of course implies that D[C,(Q,7) N 0Sa(F),Cp(Q,7) N {{zn =0} + gn}] < dp.
Assume, in order to obtain a contradiction, that there is a (Y,s) € Cyp(Q,7) N 0Su(F)
such that y, < R — pd/2 (we will do the case when y, > R + pd/2 shortly). Examine the

triangle made by (Y, s), (0, R,0) and the origin. The condition on ¥, implies that the cosine

of the angle between the segments (0, R,0)(Y,s) and (0, R,0)(0,0) times the length of the
segment between (Y,s) and (0, R,0) must be at least pd/2. Consequently, by the law of

cosines

Y)? < 4p% + R? — Rpo. (B.4.5)
When 1+ a > 30/ and 6 < 1/10 it is easy to see that

. ) . . 2
(R—2510p— 20 25 (g %y 2 9



Equations (B.4.6) and (B.4.5) give |Y| < (R —26'9p — 1—3%) Hence, Reifenberg flatness
implies 3 (Y, s) < ||(Y, ) — (0, 5)]| +00(0,s) < (R—26'0p— 22.)+25'0p < R— {22 which,
as we saw in Case 2, is a contradiction.

Finally, it might be that there is a (Y, s) € C)(Q, 7) N 0Sa(F) such that y, > R+ pd/2.
Let (P, s) be the point in 92 closest to (Y, s) and note that (Y, s) € C55(0,0). Let L(0,0, 5R)
be the plane that best approximates 952 at (0,0) for scale 5R. If 0 is the angle between this

plane and {zy, = 0} then dq((0, R, 0)) = R implies that
R < Rsin(n/2 — 0) +56°R = (1 — 5610) < cos(0) = 0 < 6.

Therefore, p, < 3R6*+5R510 < 4R6%. Thus, if 3 is the angle between the segment from
Y to P and the segment from (0, R) to Y it must be that § < 5—0/4+ 106%. The law of

cosines (on the triangle with vertices (0, R, 0), (P,0), (Y,0)) gives
(0, R) — P> < 4p® + R% — 4pRsin(0/4 — 106%) < 4p® + R + 40pRS* — 6pR/2. (B.A.7)

Note that

8p + 80R6? + 8RH10 < 6R (B.4.8)

because p < 6°R by assumption and we can let § < 1 /100. With this in mind we can

estimate

4p? + R? + 40pR6* — 6pR/2 < (R — 20'9p)? + (461°pR + 40pRs* + 4p> — 6pR/2)
T R 2010002 ¢ (o12)0R) — pi/2 = (- 20102
(B.4.9)
Combine equation (B.4.9) with equation (B.4.7) to conclude that |(0,R) — P| < (R —
2(510;)). On the other hand, by Reifenberg flatness, (P,0) is distance < 2(510p from a point
on 9. Hence, by the triangle inequality, o ((0, R,0)) < R a contradiction.
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Finally, we need to show the mutual absolute continuity of the two adjoint-caloric mea-

sures. In this we follow very closely the proof of Lemma 6.3 in (JK82). The maximum

principle implies that @g:f?;g])

E C F such that @qu?}jf?)

(depending on a,n, ) such that @Y3)(9Q\F) > C for all (Y, s) € 9S4 (F)\F. Indeed, let
(

<< @Xoto) for any (Xo,tg) € Sa(F). Now take any

(E) = 0. First we claim that there is a constant 1 > C' > 0

@, s) € 0N be a point in 02 closest to (Y, s). Then there is a constant C'(«,n) > 0 such that
dJ(Y’S)(C’a(g(y,s)(Q, s)) = C(a,n), (see equation 3.9 in (HLNO04)). As Cps50y,4)(Q,s) N F =0
(by the triangle inequality) the claim follows.

Armed with our claim we recall that a lower function ®(X,t), for a set E C 09, is a
subsolution to the adjoint heat equation in € such that lim SUD( X 1) (Q,7) €0 O(X,t) <
XE(Q, 7). Potential theory tells us that d)(Y’S)(E) = supg (Y, s) where the supremum is
taken over all lower functions for E in Q. By our claim, ®(X,¢) < Xt (E) <1 - C for
(X,t) € 0Sa(F)\F for any lower function, @, of E in €. In particular, ®(X,¢) —1+Cis a
lower function for E inside of S, (F'). Therefore,

(Xt)

sup ®(X,¢) =1+ C < wg (F)
@ «

(B)=0= &(X,t) <1—C, ¥(X,t) € Sa(F).

This in turn implies that @Y>%)(E) < 1 — C for every (V,s) € So(F). By Lemma B.4.1, the

X0.t0)

non-tangential limit of @(Y>%)(E) must be equal to 1 for d -almost every point in E.

Therefore, dJ(XO’tO)(E) = 0 and we have shown mutual absolute continuity. ]

The representation theorem for solutions to the adjoint heat equation with integrable

non-tangential maximal function follows as in the elliptic case.

Lemma B.4.4. [Compare with Lemma A.3.2 in (KT03)] Let Q,0 be as in Lemma B.4.3
above, and let u be a solution to the adjoint heat equation on 2. Assume also that for some
a >0 and all (X,t) € Q, N*(u) € LY(doXD). Then there is some g € LY(doXb)) such
that

w(X,t) = /8 oPde S O(Py).
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