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ABSTRACT

This dissertation studies multi-lateral incentive provision and contagion in the financial

system. I develop a model of the financial system with liquidity shocks, moral hazard, and

asymmetric information. Banks share liquidity by forming lending relationships with and

without commitment. The decision to make lending relationships committed or uncom-

mitted involves a trade-off between liquidity provision and moral hazard. I highlight how

uncommitted lending relationships, such as the credit lines between banks in the federal

funds market, expose banks to potential liquidity shortages. However, liquidity shortages,

which induce early default, can also align banks’ screening incentives. If banks collectively

use uncommitted lending relationships, incentive alignment can be multi-lateral. Liquid-

ity shortages can exacerbate or ameliorate contagion, depending on information quality.

These effects result from informed banks exerting externalities on uninformed banks. The

model suggests the “tightness” of connections in the financial system should be an active

consideration for policies targeting systemic risk-mitigation.
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CHAPTER 1

INTRODUCTION

The recent financial crisis has, once again, underlined the importance of a functioning

financial system to a healthy economy. At the core of the financial system, is the prevalent

use of debt. Although a large body of research exists on how debt contracts can provide

incentives, reallocate funds, and hedge risks, the literature focuses on contracts written

in a bilateral setting.1 However, the financial system is itself a multi-lateral environment

consisting of a collection of bilateral contracts. This paper argues that a full understanding

of debt contracts within the financial system, and thus their importance to the economy,

requires a careful examination of the characteristics of debt in a multi-lateral environment.

I develop a model of the financial system with liquidity shocks, moral hazard, and

asymmetric information. In the model, banks allocate their funds between a liquid asset

that is held as insurance against liquidity shocks, and a profitable but risky collection of

illiquid assets. At the same time, banks decide whether to reduce the riskiness of their

illiquid assets through costly screening. In the absence of a liquidity-sharing mechanism,

I assume banks elect to self-insure against liquidity shocks and forgo screening. However,

because liquidity shocks hit only a subset of banks, and bank liabilities are fixed ex-ante,

both self-insurance and a lack of screening are socially suboptimal.2

To allow these decisions to become relevant, and to study them in a setting that mimics

the real world, I allow banks to form bilateral lending relationships. A prominent exam-

ple of bilateral lending relationships within the financial sector is the direct credit lines

1. For example, see Calomiris and Kahn (1991), Flannery (1994), and Holmstrom and Tirole (1998).

2. Self-insurance by all banks is socially suboptimal because it implies excess liquidity in the economy.
A standard assumption in the literature is that screening is socially optimal.
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between banks within the federal funds market. Banks with liquidity shortages regularly

access these credit lines to meet their overnight liquidity needs. Similar to the credit lines

in the federal funds market, lending relationships facilitate liquidity sharing. In equilib-

rium, banks hit by liquidity shocks borrow the required liquidity from banks with liquidity

surpluses. Consequently, banks are able to ex-ante tilt their portfolios towards the relatively

profitable illiquid assets.

I consider committed and uncommitted lending relationships. Commitment is a key

component of any lending relationship.3 The decision to make lending relationships com-

mitted or uncommitted involves a trade-off between liquidity provision and moral hazard.

Banks with uncommitted lending relationships can face liquidity shortages if a sufficient

number of lenders refuse to provide liquidity, especially if lenders perceive the borrower

as particularly risky. Liquidity shortages are costly because they lead to the premature de-

fault of banks and the inefficient liquidation of bank assets. However, because liquidity

shortages are more common for risky banks, and a failure to screen induces additional risk,

uncommitted lending relationships can provide banks with incentives to screen, and thus

allay moral hazard. Moreover, because ex-ante, banks do not know which among them will

require liquidity, the collective use of uncommitted lending relationships can provide in-

centives in a multi-lateral manner. That is, each bank is both assisting in incentive provision

to all other banks, and simultaneously experiencing the alignment of its own incentives by

other banks within the financial sector. By contrast, committed lending relationships ensure

liquidity provision, but exacerbate moral hazard.

I then study the consequences of inter-linkages that arise from lending relationships in

such a multi-lateral environment. Lending relationships in such an environment provide a

channel through which individual bank distress can spread across the financial system. That

3. Empirical evidence suggests the majority of lending relationships lack full commitment. For example,
Sufi (2009) shows that almost all syndicated loans contain material adverse change clauses.
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is, the formation of lending relationships opens up banks to the possibility of contagion. I

define a contagious default to be lender default induced by borrower default. I define infor-

mation quality to be the probability that a lender becomes informed about a risky borrower.

I show that the amount of contagion depends on both the choice of lending relationships,

and information quality. In particular, for uncommitted lending relationships, the relation-

ship between information quality and contagion is non-monotone, with intermediate levels

of information causing the greatest amount of contagion.

The intuition for the non-monotonicity is as follows. If information quality is high, a

higher fraction of lenders are likely to be informed, and thus fewer uninformed lenders exist

to provide liquidity to the borrower. On the one hand, the presence of fewer uninformed

lenders increases the probability that the borrower will experience a liquidity shortage and

thus a premature default. Premature default by a borrower is costly to the uninformed

lenders because it wipes out any possibility of repayment, and thus increases their own

probability of default. On the other hand, the presence of fewer lenders implies fewer banks

that become connected to the borrower, and thus fewer banks that can default contagiously.

Taken together, contagion is maximized for intermediate levels of information quality.

I highlight two important policy implications. First, policy makers must understand

that commitment and liquidity provision in the interbank market are intertwined with in-

centive provision. Thus, any policy aimed at either restricting or encouraging bank-lending

activity in interbank markets, or alternatively, targeted to induce (or relax) commitment,

must take into account the effect it will have on banks’ screening incentives. For example,

a policy structured to reduce contagion by facilitating the provision of liquidity to a dis-

tressed bank, is likely to reduce bank incentives to screen, and thus increase the probability

of future bank distress. Note that in principle, such a policy does not necessarily constitute

a bailout. Rather, organizing liquidity provision to a distressed bank is akin to the action

taken by the Federal Reserve in 1998 when the hedge fund giant Long-Term Capital Man-
3



agement (LTCM) was near collapse. In the case of LTCM, the intervention of the Federal

Reserve, which induced lending, was arguably collectively beneficial to LTCM’s lenders.

Therefore, perhaps unsurprisingly, many of the banks that participated in the LTCM liquid-

ity negotiations found themselves in a similar situation merely 10 years later.4

Second, from a network perspective, recent work has emphasized the importance of

both the size of financial interdependencies and the density of the financial network as

key determinants of systemic risk in the economy. To the extent that the information en-

vironment encapsulates the amount of liquidity provision, it also reflects the “tightness”

of connections within the financial system. A rich information environment gives rise to

connections that break apart frequently when borrowers become distressed, whereas con-

versely, a poor information environment is consistent with connections that are less likely

to rupture. Taken together, this result implies contagion is a function of how tight connec-

tions are, and how easily the financial system breaks apart. As such, any policy designed

to mitigate systemic risk generated within the financial system ex-ante should take into ac-

count both the current and future “tightness” of financial connections, instead of only the

size and density of the connections the financial network comprises.

Finally, the model assumes no pre-existing connections within the financial system.

Alternative connections, such as long-term debt and cross-holdings of equity, introduce

additional channels through which distress may spread. Moreover, because I do not allow

banks to earn rents from liquidity provision, the economy lacks precautionary liquidity.

As such, incentive provision, which relies on the combination of liquidity shortages at

distressed banks and the willingness of lending banks to allow distressed banks to fail, may

be diluted. However, I also focus on a symmetric equilibrium, and thus, if the model is

4. In fact, of the banks at the negotiating table with the Federal Reserve, only Lehman Brothers and Bear
Stearns refused to provide liquidity. See Lowenstein (2000).
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extended to incorporate some asymmetry, either in information arrival or bank connections,

incentives may in fact be enhanced. I leave these questions to future research.

1.1 Literature Review

This paper is closely related to multiple strands of economic literature. First, as a

model of multi-lateral incentive provision within the banking sector, the paper has ties

to the literature on the incentive provision through debt. In early work, Calomiris and

Kahn (1991) illustrate the role of demandable (short-term) debt in aligning bank-risk taking

incentives through forced liquidation. I build on Calomiris and Kahn by considering the

problem in a multi-lateral setting where banks simultaneously provide and receive incentive

alignment. I argue the mechanism through which incentives are aligned, liquidity sharing

without commitment, is a double-edged sword in that it can exacerbate contagion ex-post.

In related work, Rajan and Winton (1995) emphasize the role of covenants in incentivizing

banks to monitor loan contracts. I deviate from Rajan and Winton by focusing on the

importance of a lack of commitment in providing incentives for potential borrowers. That

is, whereas Rajan and Winton argues covenants are necessary for inducing monitoring by

lenders, I argue that a lack of commitment, similar to the material adverse change clause

covenants, is crucial for the borrower’s screening incentives.

More generally, my paper is related to the vast literature on the role of banks as in-

termediaries and the optimality of debt.5 I contribute to this literature by modeling the

interbank liquidity-provision role of banks in the presence of moral hazard, and the cor-

5. Seminal papers in this literature include Diamond (1984), Rochet and Tirole (1996), Kiyotaki and
Moore (1997), Bolton and Scharfstein (1996), Diamond and Rajan (2005), Hart and Moore (1994), Flannery
(1994), and Calomiris and Kahn (1991).
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responding implications for liquidity sharing, incentives, the distribution of bank defaults,

and contagion.

Second, my paper is related to the growing literature on network failures, contagion,

and systemic risk in financial markets.6 In their seminal work, Allen and Gale (2000)

showed how regional shocks can propagate through an interbank network to produce ag-

gregate fragility. Subsequent work by Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015a,

2015b) characterizes the relationship between the architecture of the financial system and

the likelihood of systemic failures due to contagion. However, to my knowledge, this liter-

ature does not allow for ex-post responses from financial institutions to shocks to members

of the network. Although my model is not a network model in the traditional sense, I add to

this literature by emphasizing the importance of looking beyond current characterizations

of the financial system architecture to consider the types of connections within the financial

system. In particular, my paper highlights how the tightness of financial connections is a

key determinant of systemic risk, because tightness influences both the avenues through

which financial distress can spread, as well as the level of distress at a given source.

Finally, my paper has ties to the literature on credit lines. From a theoretical perspec-

tive, Homlstrom and Tirole (1998) examine the role of committed credit lines in providing

liquidity to the real sector. Empirically, the work of Sufi (2009) has documented the preva-

lence of material adverse change clauses in syndicated loans.

Section 2 outlines the key features of the model, and section 3 describes the optimiza-

tion problem of banks and the economy under autarky. Section 4 presents a simple econ-

omy with perfect information in order to explain the intuition behind some of the key forces

of the model. Section 5 describes the equilibrium and provides the results for the general

6. See Allen and Gale (2000), Freixas, Parigi, and Rochet (2000), Cifuentes, Ferucci, and Shin (2005),
Allen, Babus, and Carletti (2012), Zawadowski (2013), Caballero and Simsek (2013), Acemoglu, Ozdaglar,
and Tahbaz-Salehi (2015a, 2015b), Garleanu, Panageas, and Yu (2015), and Elliot, Golub, and Jackson
(2014).
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model. Section 6 discusses some applications and some potential extensions, and section 7

concludes.
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CHAPTER 2

MODEL

The model has three periods, t = {0,1,2}, and N risk-neutral banks indexed by

i = {1,2, ...,N}. Each bank maximizes its expected profits and has a charter value Vi = V

that is lost if it goes bankrupt. The financial system consists of banks, their investments,

and a set of bilateral exposures that represent lending and borrowing relationships between

banks.

Each bank is endowed at t = 0 with one unit of funds from a mass of depositors, D= 1.1

Bank funding is subject to liquidity shocks, or the early withdrawal of funds by depositors.

At t = 1, up to one random bank receives a liquidity shock that requires it to raise f units of

liquidity. If a bank fails to raise f units of liquidity, it defaults and loses its charter value V .

A bank that raises the required f at t = 1, survives until t = 2 and has remaining deposits

of D�f .

2.1 Investment Opportunities

Each bank has two investment decisions to make at t = 0. First, banks must decide

how to allocate their funds between two potential investment opportunities that I will call

“liquid” and “illiquid” assets. Liquid assets can be thought of as securities that can be easily

traded for cash, such as government bonds, whereas illiquid assets represent more complex

and long term investments with an uncertain return, such as commercial and industrial

1. I do not model depositors, and thus D provides a default boundary in the absence of interbank lending.
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loans. Let ai denote the fraction of liquid assets bank i chooses in its portfolio, and thus

1�ai is the fraction of illiquid assets bank i holds in its portfolio.

Second, providing ai < 1, banks must also decide whether to screen their illiquid assets

at t = 0. The decision to screen can be thought of as a tradeoff between the risk of the

investments and the private benefits captured by the bank shareholders. Let the binary

variable ei = {0,1} denote bank i’s screening decision, with ei = 1 indicating that bank i

opts to screen its illiquid assets.

Liquid assets are the numeraire. They have a per-unit cost of 1 at t = {0,1}, provide a

return of 1 at t = {1,2}, and their primary purpose is to deal with liquidity shocks. Illiquid

assets also have a per-unit cost of 1 at t = 0 but provide an uncertain return to bank i of

R̃i at t = 2. Returns are independent and identically distributed across banks. I denote the

probability density function (pdf) for illiquid asset returns at t = 0 by g(R̃i) and assume

illiquid assets are more profitable investments than liquid assets (E(R̃i)> 1). Illiquid assets

are perfectly illiquid at t = 1, and thus premature liquidation returns zero funds.

Illiquid assets are also subject to solvency shocks. Throughout, I will refer to banks

that have received solvency shocks as “distressed” and banks that have not as “healthy.”

Let li (si) be the indicator variable that is equal to 1 if bank i receives a liquidity (solvency)

shock and zero otherwise. At t = 1, bank i’s illiquid assets receive a solvency shock with

probability ps(ei, li). I denote g1(R̃i) = g(R̃i|si = 1) as the conditional pdf of bank i’s

illiquid asset returns if bank i is distressed, and g0(R̃i) = g(R̃i|si = 0) as the conditional pdf

of bank i’s illiquid asset returns if bank i is healthy.2 I assume g0(R̃i) ⇠ Uni f [R, R̄], with

2. I do not model the underlying reason for the occurrence of solvency shocks, because I am mostly
interested in what happens following the solvency shock. The economy contains many potential candidates
for a micro-foundation. For example, a negative shock to house prices for a bank that is heavily invested in
real estate would cause a significant reduction in the value of the bank’s portfolio of assets.

9



R = 1,3 and g0(Ri �D) = g1(Ri). That is, the illiquid assets of a distressed bank have a

future returns distribution that is a leftward shift of the healthy banks’ illiquid assets future

returns distribution. Thus, we can view g(R̃i) as a mixture of the distributions g1(R̃i) and

g0(R̃i) such that:

g(R̃i) =

8

>

>

<

>

>

:

g0(R̃i)⇠Uni f [R, R̄] with probability 1� ps(ei, li)

g1(R̃i)⇠Uni f [R�D, R̄�D] with probability ps(ei, li)

Bank i’s screening choice is unobservable and unverifiable, and presents bank i with

a trade-off between private benefits and risk. Whereas screening reduces the probability

bank i receives a solvency shock, opting not to screen provides bank i with private benefits

that creditors cannot appropriate.4

More formally, I assume the probability bank i is hit by a solvency shock ps(ei, li) takes

the form ps(ei, li) = pei
s ⇥ li, where pei

s = {p0
s , p1

s}. In words, if bank i does not receive

a liquidity shock (li = 0), it cannot receive a solvency shock. However, if bank i is hit

by a liquidity shock (li = 1), it has probability pei
s of also receiving a solvency shock.5

Because screening reduces bank i’s probability of distress, it follows that 0 < p1
s < p0

s . I

define P(ai,ei) = (1�ai)Pei to be the private benefits bank i receives given liquid assets

3. R = 1 implies that banks in autarky with ai � f require a solvency shock to default.

4. In this sense, screening can be thought of as bank i doing its due diligence, which reduces the proba-
bility of investing in a set of bad illiquid assets.

5. Defining the probability of a solvency shock in this way allows me to focus on the response of lending
banks to solvency shocks that hit borrowing banks. An interesting extension of the model is to allow solvency
shocks to hit banks that did not receive a liquidity shock. This extension introduces the possibility of lender-
side distress. I discuss this possibility in section 6.

10



ai and screening choice ei, where Pei = {P0,P1}. I assume P0 > P1, and without loss of

generality set P0 = P and P1 = 0.

Finally, I assume that screening is socially optimal. That is, the private benefits accruing

from not screening are less than the increase in the sum of the expected losses from sol-

vency shocks and the additional expected default costs. Mathematically, social optimality

is equivalent to P < pl

⇣

p0
s � p1

s

⌘

D
R̄�R

⇣

R̄�R+ 1
(1�f)V

⌘

.6

2.2 Lending Relationships

Banks also face a decision over their lending relationships at t = 0. Lending relation-

ships are in essence agreements to share liquidity at t = 1, and can be thought of either as

lines of credit with material adverse change clauses or implicit promises between banks. A

natural example of these lending relationships in the financial sector is the direct lines of

credit between banks that exist in the fed funds market alongside the deposits kept at the

federal reserve.

I allow each bank i to form lending relationships with other banks j at t = 0. Lending

relationships are costless to form,7 and are characterized by a borrower i, a lender j, and

an amount of liquidity Bi j that the lender has the option to provide upon the borrower’s

request. I assume all lending relationships are implemented using standard debt contracts.

Repayments occur at t = 2 and are junior to the payments made to depositors.

6. This condition is taken under autarky with ai = f .

7. One possible extension is to introduce a cost to forming lending relationships. This cost would cause
banks to trade-off over the number of relationships with the amount of liquidity held in equilibrium but would
not change the main results of the model.
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Consistent with empirical evidence, I assume lending relationships lack commitment.

For example, Sufi (2009) shows the majority of syndicated loans contain material adverse

change clauses that enable lenders to refuse funding when a borrower becomes distressed.8

Later, I will relax this assumption and show banks can endogenously opt for a lack of com-

mitment in their lending relationships. Lending relationships without commitment imply

potential lenders cannot be compelled to provide liquidity. That is, although a relation-

ship is formed at t = 0, the lender is not required to honor its promise at t = 1. As such,

liquidity provision at t = 1 depends on the borrower’s ability to supply the lender with a

normal rate of return.9 To avoid any hold-up problems potentially associated with a lack of

commitment, I assume borrowers make take-it-or-leave-it offers to lenders.

Lending relationships can provide the lender with information about the borrower. If

bank i forms a lending relationship with bank j at t = 0, I assume bank j becomes informed

about bank i’s status (healthy or distressed) with probability q . Conversely, with probability

1�q , bank j will remain uninformed. Importantly, I assume learning (becoming informed)

is independent across banks. Thus, imperfect information creates the possibility of a het-

erogeneously informed group of potential lenders at t = 1. To prevent the uninformed from

learning from the informed, I assume information about the borrower is private and unver-

ifiable, and that liquidity provision from lender j to borrower i is unobservable to lender

k.

Finally, I place two restrictions on borrower behavior at t = 1 to ensure tractability.

First, I assume borrowers always use the same set of lending relationships when borrowing,

8. Moreover, within the financial sector, few contracts entail full commitment. Perhaps the best examples
are letters of credit or loan guarantees.

9. The normal rate of return is with respect to the lender’s information set.
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irrespective of whether they are distressed.10 Second, I assume banks can only acquire

liquidity through a direct lending relationship. As such, if bank i and bank j do not have a

lending relationship at t = 0, bank i cannot borrow from bank j at t = 1.11

2.3 Timing

The timeline below summarizes the sequence of events in the model:

Figure 2.1. Timeline

At t = 0, each bank makes a portfolio allocation decision, a screening decision, and a

decision over its lending relationships. At t = 1, banks are subject to liquidity and solvency

shocks. A bank hit by a liquidity shock can use its lending relationships to help cover

f , whereas unaffected banks can decide whether to lend. A liquidity-shocked bank that

is unable to raise f defaults immediately and loses its charter value V . Finally, at t = 2,

returns for the illiquid asset are realized, banks return money to their depositors, pay off

any interbank debt they owe, and return remaining funds to equity. Any bank that is unable

to meet its liabilities, defaults, and loses its charter value V .

10. In practice, a distressed borrower concerned about its ability to borrow from informed lenders may
want to attempt to borrow from more relationships than a healthy borrower. However, such a situation will
not be of concern in the equilibria on which I focus.

11. I will revisit this assumption in section 5.3.
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Finally, for reference, below is a summary of some of the key notation used throughout.

Table 2.1: Key Parameter List

Variable Parameter Variable Parameter
Liquid Asset Choice ai Solvency Shock Size D

Screening Choice ei Bank Charter Value V
Lending Relationship Choice Bi j Bank Private Benefits P

Illiquid Asset Returns Ri Information Quality q

Liquidity Shock Size f Pr. Liquidity (Solvency) Shock pl (ps)

I now move to the banks’ optimization problem and a discussion of the baseline autarky

economy.
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CHAPTER 3

OPTIMIZATION PROBLEM AND BASELINE

Define the functions Pi
�

ai,ei,Bi j, li,si,zi,Ri
�

, Ai
�

ai,ei,Bi j, li,si,zi,Ri
�

, and

Li
�

ai,ei,Bi j, li,si,zi,Ri
�

to be bank i’s t = 2 profits, assets, and liabilities, respectively.

Also define the function zi
�

ai,ei,Bi j, li,si
�

to be the state-contingent fraction of bank i’s

illiquid assets that remain following any liquidation at t = 1, and the function

Di
�

ai,ei,Bi j, li,si,zi,Ri
�

to be the payment made by bank i to its depositors at t = 2. Fi-

nally, define the functions Fi j
�

ai,ei,Bi j, li,si,zi,Ri
�

and ri j
�

ai,ei,Bi j, li,si,zi,Ri
�

to be

the payment on interbank debt from bank i to bank j, and the associated interest rate, re-

spectively. To save on notation, I will hereafter take the brackets to be implicit and shorten

the respective functions to Pi, Ai, Li, zi, Di, Fi j, and ri j. Note that as of t = 0, each of

these functions is a random variable, and as of t = 1, all functions except zi remain random

variables.

First, consider the function zi. If bank i receives a liquidity shock and cannot raise suf-

ficient funds from its own liquid assets and/or the interbank market, it will have to liquidate

its entire portfolio of illiquid assets. By contrast, if bank i can raise sufficient funds, no

liquidation will be required. Thus, we have:

zi = 1
ai+Bi�lif

Given all decisions made prior to t = 2, and any realization of {Ri}, we can write bank

i’s assets at t = 2 as the sum of (i) liquid asset holdings, (ii) illiquid asset holdings, and (iii)

interbank debt payments received. If bank i received a liquidity shock at t = 1, we must

15



also subtract payments made to the f depositors that withdrew early:

Ai = ai +(1�ai)ziRi +Â
j

Bi j +Â
j

F̄ji � lif

Where F̄i j is bank i’s maximum repayment to bank j at t = 2. In a similar fashion,

liabilities can be written as the sum of payments owed to depositors D� lif and other

banks Â j F̄i j:

Li = D� lif +Â
j

F̄i j

Depositors are senior to interbank debt at t = 2 and thus it follows that:

Di = min(Ai,D� lif)

Bank i’s interbank debt is junior to its depositors, and I assume all banks j = {1,2, ...,n}

from which bank i borrows are of equal seniority. If we define F̄i = Â F̄i j,1 bank i pays its

counter-parties a total of2

Fi = max(min(Ai �Di, F̄i) ,0)

All lending relationships require lenders to make a normal rate of return. That is,

lenders require repayment for both the principal they lend as well as the expected de-

fault costs incurred from lending. Define the function p̂d,i j
�

ai,ei,Bi j, li,si,zi,Ri
�

to be

1. Note that the mapping between F̄i and the average interest rate ri is F̄i = Bi(1+ ri), where Bi = ÂBi j.

2. I make the simplifying assumption that when bank i is only able to partially repay the principal it
borrows from its counter-parties, all repayments to counter parties are proportionate to each counterparty’s
share of the total principal borrowed. For a technical discussion of this assumption, see Appendix.
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the probability of default for bank j resulting from lending to bank i,3 which I denote as

p̂d,i j for short. Let I j be the information set of potential lender j. The lender’s participa-

tion constraint at t = {0,1} requires:

E(F̃i j|I j)� Bi j + p̂d,i jV

Borrowers also face a second constraint whereby they cannot borrow more liquid assets

than the lender possesses in its portfolio:

Bi j  a j

We can write Pi as the difference between bank i0s Assets, Ai, and Liabilities, Li. We

must also bound this difference at zero to reflect limited liability:

Pi = max(Ai �Li,0)

= max(ai +(1�ai)ziRi +Â
j

Bi j +Â
j

Fji � (D� lif)�Â
j

Fi j,0)

Moreover, let di be the indicator function that is equal to 1 if bank i defaults, and zero

otherwise. Default occurs either when banks’ fail to meet their liquidity shock at t = 1 or

when banks’ liabilities are greater than their assets at t = 2, and in this case, a bank’s profits

are zero because of limited liability. With this notation, bank i’s optimization problem can

3. Bank j would have zero probability of default otherwise, so p̂d,i j is in fact the marginal default proba-
bility.
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be written as:

max
ai,ei,Bi j

Li(ai,ei,Bi j) = E(Pi)+(1�E(di))V +(1�ai)Pe
i

s.t. E(F̃i j|I j) � Bi j + p̂d,i jV

a j � Bi j

Here, the expectations are taken over both the occurrence of liquidity shocks, li, and

solvency shocks, si (at t = 1), the realization of the illiquid asset returns, Ri (at t = 2), and

in the case of profits, lender behavior at t = 1. Then, because V is a constant, we can rewrite

the expectation of the bank-default indicator function as a probability function for bank i’s

default. Define the function pd,i
�

ai,ei,Bi j, li,si,zi,Ri
�

as bank i’s probability of default.

Again, to save on notation, I will often drop the brackets and simply write pd,i. Thus, we

can rewrite the bank’s objective function as:

max
ai,ei,Bi j

Li(ai,ei,Bi j) = E(Pi)+(1�pd,i)V +(1�ai)Pe
i

Subject to the same set of constraints.

3.1 Autarky

Before continuing to the general economy, a useful baseline for the full model is an

autarky economy in which lending between banks is prohibited. To this end, consider such

an economy with N banks i = {1,2, ...N} that are unable to lend to each other. We can

write the profits of bank i Pi as the difference between its assets Ai and liabilities Li:

Pi = max(Ai �Li,0) = max(ai +(1�ai)ziRi � (D� lif),0)
18



Note that no Fi j are here, because the interbank lending channel has been shut down.

In similar fashion, we can proceed to write bank i’s objective function as:

max
ai,ei

Li(ai,ei) = E(Pi)+(1�ai)Pe
i +(1�pd,i)V

Constraints are absent because banks are unable to form lending relationships. To en-

sure liquid and illiquid assets both play a role in the economy, I constrain the parameter

space such that a mix of the two is optimal under autarky.

Moreover, to (later) highlight how lending relationships can align incentives in a multi-

lateral setting, I also constrain the parameter space such that the social and private incen-

tives of banks are misaligned under autarky. Because screening is socially optimal, any

condition that provides incentives for banks to opt not to screen must work by giving banks

the ability to push onto their depositors the losses from not screening. The following propo-

sition provides a set of sufficient conditions:

Proposition 1. If (pl , ps,D,V,f , R̄,P) satisfy the following three conditions, then all banks

i choose ai = f , ei = 0, and obtain a realized value of their objective function L0:

(pl �f)
R̄�R

2
� pl ps(1�f)D

✓

1� D/2
R̄�R

◆

+ pl

✓

1� ps
D

R̄�R

◆

V � fPe

Dpl ps
R̄�R

V
1�f

� pl ps
R̄�R

1
2
(R̄�R�D)2 � (1� pl ps)(R̄�R)

1
2

 Pe

pl(p0
s � p1

s )
D

R̄�R

✓

(R̄�R� 1
2

D)+ V
1�f

◆

< P

Proof. See Appendix.
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Proposition 1.1 and 1.2 ensure a = f , and imply neither liquid assets (a = 0) nor

illiquid assets (a = 1) are redundant in the autarky economy, whereas under Proposition

1.3, individual banks will opt not to screen their illiquid assets when lending relationships

are prohibited.

Importantly, because all banks are identical, Proposition 1 applies to all banks, and

thus implies aggregate liquidity in the N bank economy without liquidity sharing equals

Nf . Restricting banks such that they cannot lend to each other can be inefficient. Recall

that at most one liquidity shock hits the economy, and thus the total liquidity needs of the

economy are merely f . Therefore, if liquidity cannot be shared between any banks i and j,

a minimum of (N � 1)f units of liquidity will remain unused at t = 1. However, if banks

could share liquidity, each bank could potentially reduce its holdings of the liquid asset,

shift investment to the more profitable illiquid asset, and still have sufficient funds to cover

potential liquidity shocks.
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CHAPTER 4

ECONOMY WITH PERFECT INFORMATION

To illustrate some of the key features of liquidity sharing in my model, starting with a

simplified economy with perfect information (q = 1) is useful. That is, if bank i and bank

j formed a lending relationship at t = 0, the latter can perfectly observe at t = 1 whether

the former is distressed or healthy.

Recall bank i’s optimization problem is:1

max
ai,ei,Bi j

Li(ai,ei,Bi j) = E(Pi)+(1�ai)Pe +(1�pd,i)V

s.t. E(F̃i j|I j) � Bi j + p̂d,i jV

a j � Bi j

I will first discuss in section 4.1 the properties of lending relationships with perfect

information, before turning my focus in section 4.2 to the equilibrium and its properties.

4.1 Lending Relationship Properties

Because banks that are not hit with a liquidity shock have little reason to borrow at

t = 1, I focus on the borrowing behavior of the bank hit with the liquidity shock. Moreover,

throughout section 4.1, I will assume banks hold a < f liquid assets.2

1. Note the one difference from autarky is that in addition to choosing liquid assets ai and screening ei,
bank i must also choose which links to form with the other banks j, Bi j. Moreover, B ji does not enter bank i’s
optimization problem, because any lending from bank i to bank j must provide bank i a normal rate of return.

2. If a bank held a � f liquid assets, no reason would exist to secure a lending relationship.
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The opportunity to engage in lending relationships serves two key roles in the economy:

(i) reduces excess liquidity holdings, and (ii) potentially aligns bank-screening incentives

with the social optimum.

Suppose liquid asset holdings from other banks are a j, and define a i = max(0,f �

Â j a j). The next proposition outlines joint properties of a bank’s portfolio-allocation and

lending-relationship decisions:

Proposition 2. Suppose banks �i hold a�i liquid assets and Proposition 1 holds. If bank

i chooses to form lending relationships with banks j 2 {1,2, ...n}, then the following are

true:

1. If bank i holds ai < f liquid assets, the total size of bank i’s lending relationships

must satisfy Â j Bi j = Bi � f �ai.

2. If bank i opts to use lending relationships, instead of remain in autarky for some

ai 2 [a i,f ,), bank i will hold ai = a i liquid assets.

Proposition 2.1 states that when holding ai liquid assets, bank i will not form lending

relationships that leave it with too little liquidity to survive a liquidity shock. The intuition

is straightforward. Any collection of liquid assets ai and lending relationships Bi j that fail

to offer any insurance against liquidity shocks (ai +Bi < f ) must be strictly dominated by

self-insurance (ai = f ). Thus, if banks use lending relationships, it must be the case that

Proposition 2.1 is satisfied.

Proposition 2.2 states banks that opt to engage in lending relationships will prefer to

hold as little liquidity possible. To understand this result, assume lenders only provide liq-

uidity to healthy banks.3 On the one hand, relative to autarky, bank i has higher default costs

3. The result is not contingent on this assumption.
22



when using lending relationships, because it now defaults whenever it becomes distressed.

However, its probability of default is independent of ai over the interval ai 2 [a i,f). On

the other hand, a reduction in ai increases the profitability of bank i’s portfolio. Thus,

when opting to engage in lending relationships, banks effectively pay a small fixed cost

in the form of increased default costs. However, once paid, banks receive benefits that

scale linearly with the amount of illiquid assets they choose to hold. Thus, if banks prefer

using lending relationships to remaining in autarky, they will opt to use as many lending

relationships as possible.

However, allowing banks to tilt their portfolios towards illiquid assets is not the only

benefit of lending relationships. Lending relationships can also provide banks with incen-

tives to screen. To understand how lending relationships induce screening, first note that

because screening decisions are unobservable, any mechanism designed to induce screen-

ing cannot directly target screening. Rather, such a mechanism must act indirectly. Recall

the decision to (not) screen trades off the increased probability of distress with larger private

benefits. Thus, one possible approach to induce screening is to use lending relationships to

punish distressed banks, which in turn increases the relative cost of forgoing screening.

To implement such an approach, lenders must be able to make liquidity provision at

t = 1 contingent on borrower health. Here, the lack of commitment inherent in lending

relationships plays a key role.4 Recall that a lack of commitment implies that if bank i

has a lending relationship with bank j, bank j is under no obligation to provide liquidity to

bank i when bank i is in distress. Moreover, even if bank j always provides liquidity to bank

i, the lack of commitment in the lending relationship could allow bank j to make interest

rates contingent on bank i’s health. However, bank j’s ability to charge higher interest

rates (or engage in liquidity rationing) is constrained by bank j’s willingness to provide

4. Section 5.3 relaxes this assumption and discusses the trade-offs associated with commitment.
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liquidity when offered a normal rate of return, or put differently, pure profit maximization.

Thus, to confirm that lending relationships can indeed provide screening incentives, we

must verify that higher interest rates (and/or liquidity rationing) are incentive compatible

for the liquidity provider.

To this end, recall that under perfect information, all lenders know whether a borrower

is healthy or distressed. Then, because a healthy borrower is always able to repay its lenders

at t = 2,5 lenders incur no incremental default costs from lending to a healthy borrower,

and require only E(F̃i)� Bi when si = 0 for a normal rate of return. Consequently, healthy

borrowers will request F̄i = Bi, which amounts to borrowing at a zero interest rate.

By contrast, distressed borrowers are not always able to repay their interbank debt.6 An

inability to repay, and the default costs it imposes on lenders, means lenders will only lend if

the borrower promises a positive interest rate. If D is relatively small, an interest rate exists

which a distressed bank will be able to borrow from its potential lenders. However, for large

values of D, the distressed bank can offer no interest rate that provides lenders a normal rate

of return, in which case, potential lenders will refuse to provide the distressed bank with

liquidity, and the distressed bank will experience a liquidity shortage. Importantly, in each

scenario (D large or small), lenders effectively punish borrowers for their distress, and thus

bank j’s decision to lend at t = 1, and the interest rate it charges, can be used as a tool to

affect bank i’s screening incentives.

Suppose borrower i is distressed and needs to borrow Bi = f �ai liquidity to meet its

own liquidity shock. Define D̄i to be the maximum solvency shock such that borrower i is

5. If a borrower requires f �ai units of liquidity to cover a liquidity shock, and borrows Bi � f �ai, then
following payments to depositors, it will have a minimum of Bi funds remaining at t = 2 to repay its lenders.

6. In the worst state, a distressed bank has (ai +Bi)+ (1�ai)(R�D)� 1 = Bi � (1�ai)D funds from
which to repay other banks, which is strictly less than Bi.
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able to avoid a liquidity shortage. If D> D̄i, borrower i will not be able to raise the liquidity,

and defaults immediately at t = 1, whereas if D  D̄i, borrower i will survive until t = 2.

The next proposition provides conditions for the alignment of banks’ screening incen-

tives through the use of lending relationships.

Proposition 3. Suppose banks �i hold a�i liquid assets, Proposition 1 holds, and bank i

chooses to form lending relationships with banks j 2 {1,2, ...n}. Bank i’s lending relation-

ships will provide bank i with the incentive to screen when:

1. P < pl(p0
s � p1

s )
⇣

R̄�R
2 + V

1�ai

⌘

if D > D̄

2. P < pl(p0
s � p1

s )
⇣

R̄�R
2 + V

1�ai
� yi

R̄�R

⇣

1
2yi +

V
1�ai

⌘⌘

if D  D̄7

Proof. See Appendix.

The two conditions in Proposition 3 represent the two channels through which lenders

provide incentives. When solvency shocks are relatively small, incentives are provided

through interest rates (prices), whereas when solvency shocks are relatively large, incen-

tives comes through liquidity rationing (quantities).8 Although incentives can be aligned

by lending relationships for both regions of D, higher interest rates and liquidity rationing

have vastly different ex-post consequences. I return to this distinction in section 5.

The channel through which incentive provision occurs when distress is large is also

analogous to a setting where banks are disciplined by the threat of creditors refusing to roll

7. Here yi is a function of the interest rate. Importantly, it is monotone decreasing in D. See appendix for
details.

8. This result is very similar to that of Diamond (1991) where borrowers with high profitability borrow at
low interest rates, borrowers with intermediate profitability borrow at high interest rates and are monitored,
and borrowers with low profitability are shut out of capital markets.
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over bank short-term debt. For example, Calomiris and Kahn (1991) showed how demand-

able (short-term) debt can align bank risk-taking incentives through forced liquidation. My

work difers from Calomiris and Kahn by considering a multi-lateral environment, where

each bank does not know ex-ante if it will be providing or receiving liquidity. As such,

lending relationships play a dual role in incentive provision. That is, if an individual bank

both borrows when hit by a liquidity shock, and engages in liquidity provision to other

banks hit by liquidity shocks, then ex-ante it is both (potentially) experiencing the align-

ment of its own incentives by other banks, and simultaneously contributing to incentive

provision within the financial sector.

4.2 Equilibrium and Discussion

I begin by defining the Bayes-Nash equilibrium concept used throughout the remainder

of the paper:

Definition. An equilibrium at t = 0 consists of vectors of investment and screening deci-

sions by banks �!
a , �!e , a set of lending relationships between banks i and j {Bi j} 8i, j 2

{1, ...,N}, and a set of beliefs at t = 0 for other banks’ choices of screening at t = 0 and

lending behavior at t = 1 such that

1. All banks maximize expected profits. No bank i can be strictly better off by changing

(ai,ei,Bi j).

2. Bank lending behaviors at t = 1 are consistent with beliefs held at t = 0.

3. The borrower’s incentive compatibility constraint and all lenders’ participation con-

straints are satisfied.
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I focus on symmetric equilibria where ai = a j 8ai,a j. By abstracting away from

asymmetric equilibria, I ensure tractability while still being able to generate several inter-

esting insights. One nice property of the symmetric equilibrium is that 8i, j D̄i = D̄ j. Thus,

a unique D̄ will exist such that if D  D̄, lending to distressed banks will take place under

perfect information, whereas if D > D̄, distressed banks will experience liquidity rationing.

Proposition 4 describes one symmetric equilibrium:9

Proposition 4. Suppose the conditions in Propositions 1 and 3 are satisfied. If borrowing

banks i hold beliefs in which lending banks j provide liquidity if and only if Bi j + p̂d,i jV 

E(F̃i j|I j), a symmetric equilibrium exists in which all banks i hold ai =
f

N units of liq-

uidity, opt to screen ei = 1, and form lending relationships with all other banks j of size

Bi j =
f

N , providing L
⇣

f

N ,1,{ f

N}
⌘

� L0. Moreover, if D  D̄, lenders provide incentives

through interest rates, and if D > D̄, lenders provide incentives through liquidity rationing.

Proof. See Appendix.

Under perfect information, Proposition 4 tells us that if banks form lending relation-

ships, they will also hold as little liquidity as possible. Thus, in a symmetric equilibrium

with perfect information, it must be that 8i, j ai = { f

N } and Bi j = { f

N }. The decision to

screen follows from Proposition 3, whereas the lenders’ behavior matches what was dis-

cussed in the preceding section.

Note that unlike in autarky, Âi ai = f , and thus the efficient level of liquid assets are

held in equilibrium. As a result, bank profits are substantially larger. However, although

the efficient amount of liquidity is held in equilibrium, f , the distribution of liquidity is not

9. The equilibrium is not unique, but I will focus on it (and its extensions when q < 1) throughout the rest
of the paper.

27



always ex-post efficient. That is, a wedge exists between D̄, the threshold where lenders

no longer provide liquidity, and D⇤ , which is defined as the socially optimal threshold for

liquidity provision.10

Finally, counterintuitively, contagious defaults11 only occur when distress is small. To

see why, note that a necessary condition for a contagious default is for liquidity to be pro-

vided to a distressed bank. With perfect information and large solvency shocks, lenders

ration liquidity to distressed borrowers. Consequently, distressed banks are effectively iso-

lated, and their distress is unable to spread to the rest of the financial system. Of course,

the idea that greater distress leads to less contagion is somewhat unrealistic, and in section

5, with the introduction of imperfect information, I will show this intuition generally no

longer holds. However, the intuition that lenders’ responses to borrower distress can affect

contagion is a key insight that will underscore much of the remaining analysis.

10. The wedge exists because borrowers are unable to offer V as repayment to lenders.

11. A contagious default is defined as a borrower default spilling over and causing a lender default.
28



CHAPTER 5

ECONOMY WITH IMPERFECT INFORMATION

I now turn my attention to the general economy with imperfect information, 0 < q < 1.

Recall that under imperfect information, a lending relationship formed at t = 0 between

bank i and bank j, only provides information about the health of bank i to bank j with

probability q . Imperfect information introduces asymmetric information and heterogene-

ity. First, information asymmetry is present between the borrower and its lenders: the

borrower knows whether it is healthy or distressed, but each individual lender only knows

the borrower’s health with probability q . Thus, banks that do not receive a signal are

uninformed about the borrowing bank’s health. Second, because each lender learns inde-

pendently about the borrower’s health, potential heterogeneity exists among lenders: those

that are informed at t = 1 about the health of the borrower and those that are uninformed.

Both asymmetric information and heterogeneity will play a role in the outcomes of the

model.

To preserve asymmetric information and heterogeneity, I make additional assumptions.

First, all banks - including the borrower - are unable to share information. Second, I as-

sume lenders cannot observe lending by other banks. Together, these assumptions prevent

uninformed lenders from learning about the borrower’s health from the informed lenders.

1

1. In practice, in all likelihood, no bank is completely uninformed. However, information can be both
(a) relative in the sense that two potential lenders may each know something about the borrowers health, but
one lender knows more precisely, and (b) revealed over time, such that one lenders learns of the borrowers
distress before the other. Such considerations may provide fruitful avenues for future research.
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Thus, recall bank i’s optimization problem is:

max
ai,ei,Bi j

Li(ai,ei,Bi j) = E(Pi)+(1�ai)Pe +(1�pd,i)V

s.t. E(F̃i j|I j) � Bi j + p̂d,i jV

a j � Bi j

Because much of the following discussion focuses on what I call the distressed bank,

I emphasize again that a distressed bank is a bank that has received a solvency shock.2

Although many of the properties of lending relationships flow through from section 4,

allowing for imperfect information adds new forces to the model. First, uninformed lenders

- those who do not receive a signal - must infer distress from the borrower’s behavior.

Specifically, information might be conveyed through the borrower’s requested interest rate.

A distressed borrower has two options: reveal its distress to the lenders, or behave as

if it were a healthy borrower. The former involves borrowing using what I refer to as

the separating interest rate and similarly the latter, the pooling interest rate. Note that a

distressed borrower can only borrow using the separating interest rate when it has sufficient

future funds to pledge to its lenders. That is, the borrower can only reveal its distress when

D  D̄, where D̄ is defined as it was under perfect information.

Thus, a separating interest rate implies the distressed borrower reveals its distress to

all potential lenders, and requests liquidity at a rate that provides informed lenders with a

normal rate of return. Provided ps is small, the interest rate is greater than what an unin-

formed lender would accept. The distressed borrower receives liquidity with probability

one, and may or may not default at t = 2. A pooling interest rate implies the distressed

borrower attempts to conceal its distress by requesting liquidity at an interest rate that pro-

2. Note my definition of a distressed bank differs from other parts of the literature that considers distressed
banks as solvent banks that merely lack liquidity.
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vides uninformed lenders with a normal rate of return. Although pooling interest rates are

lower, distressed borrowers run the risk of informed lenders refusing them liquidity. Conse-

quently, if the number of informed lenders is sufficient, a distressed borrower that requests

funds at the pooling interest rate will experience a liquidity shortage and default at t = 1.

Second, if banks request liquidity at pooling interest rates, they may consider securing

promises of size Bi > f �ai. This behavior arises because banks recognize the pooling

interest rate risks a liquidity shortage; thus, securing precautionary liquidity promises might

be beneficial. In what follows, I will restrict focus to cases in which ps is sufficiently

small such that any competitive symmetric equilibrium with pooling offers has ai =
f

N

and Bi j =
f

N . This restriction is not strong. Intuitively, the only scenario in which banks

benefit from holding additional liquidity greater than f

N is when they are distressed. If

the probability of a solvency shock is sufficiently small, the opportunity cost in the form

of additional profits from illiquid assets will dominate the incentive to hold precautionary

liquidity. Although banks may still prefer to obtain promises such that Bi > f �ai, all

banks will have the incentive to hold as little liquidity as possible. Thus, in equilibrium, no

bank can obtain liquidity promises greater than f �ai.

Third, the introduction of imperfect information has consequences for the amount of

contagion in the financial system. Specifically, consider a distressed borrower that attempts

to borrow from its lenders at the pooling interest rate, and suppose a subset of the lenders

are informed. As noted above, informed lenders will reject the pooling offer because it

does not provide them with a normal rate of return, whereas uninformed lenders will opt to

provide liquidity. If sufficient lenders are informed, the distressed borrower will experience

a liquidity shortage and default at t = 1. As a result, the uninformed banks that opted to

lend will both lose their principal and experience a significant spike in their probability of a

contagious default. Thus, whereas previously, decisions among lenders were synchronous,
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imperfect information generates variation in lender behavior. The relationship between

information and contagion is the focus of section 5.2.

5.1 Equilibrium and Discussion

Define rp
i to be the pooling interest rate, and rd

i to be the separating interest rate for

the distressed bank. Recall si = {0,1} is the indicator variable for whether bank i received

a solvency shock, and let ai 2 [0,1] be the lending strategy played by an uninformed po-

tential lender. Define the function U(si,ri,ai) to be the bank i’s benefit from requesting

liquidity with interest rate ri at t = 1. Finally, define rh
i to be the separating interest rate for

the healthy bank.3 The next proposition compares the symmetric separating and pooling

equilibria with lending relationships.

Proposition 5. Suppose the conditions in Propositions 1 and 3 are satisfied, and ps is

sufficiently small such that ai =
f

N and Bi j =
f

N is an equilibrium. If Pr(ai+Bi � f |rp
i ,si =

1)U(1,rp
i ,1) < U(1,rd

i ,1), the distressed bank separates in equilibrium, and the healthy

bank picks rh
i = max(0,r0

i ), where r0
i is argmin(U(r0

i ) = U(rd
i )|r

0
i  rp

i ). Otherwise, the

distressed bank pools with the healthy bank in equilibrium.

Proof. Sketch below.

Proposition 5 describes when pooling and separating equilibria take place. Below, I

plot the boundary between separating and pooling equilibria for the case when R̄ = 2.5,

R = 1, f = 0.3, N = 5, pl =
1
N , V = 3, and P ⇡ 0.027. Above the line is the region where

3. Here, rp
i satisfies the uninformed lender’s participation constraint, rd

i satisfies the informed lender’s
participation constraint, and rh

i is the minimum interest rate a healthy bank can charge and have separation
occur.
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the equilibrium is of the separating variety, whereas below the line represents the pooling

equilibrium. Note that when D > 0.55 = D̄, the line is flat. The flat boundary arises because

here, even under perfect information, a distressed bank has insufficient funds to separate.

That is, when signaling its own distress, bank i will have insufficient funds in excess of its

payments to depositors at t = 2 to provide lenders a true normal rate of return.

Figure 5.1. Pooling and Separating Equilibria

From the plot, we see the incentive for a distressed bank to behave as a healthy bank is

minimized when (potential) solvency shocks are small (D small) and information is good

(q large). Intuitively, when a distressed bank mimics a healthy bank, its requested interest

rate from lenders does not provide informed lenders with a normal rate of return. Because

all lenders are marginal, the distressed bank needs to receive liquidity from all lenders in

order to survive until t = 2. When information is good, the probability of an early default is

high, and when solvency shocks are small, the costs of an early default in the form of lost
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future profits are relatively large. As such, for large q and small D, distressed banks will

tend to request liquidity at separating interest rates.

The implications of separating and pooling equilibria differ considerably. First, note

that banks in aggregate are holding the efficient amount of liquidity, f . In the separating

equilibrium, liquidity is always allocated efficiently. That is, the bank that needs liquidity,

and has the means to pay lenders irrespective of distress, receives liquidity and survives un-

til t = 2. Consequently, no inefficient liquidation takes place in the separating equilibrium.

However, under the pooling equilibrium, with probability 1� (1� q)n, the distressed

bank does not receive sufficient liquidity to survive until t = 2. Moreover, a fraction of liq-

uidity remains in the hands of banks for which it has no alternative use. If D < D⇤, too little

liquidity provision and too much inefficient liquidation takes place. This scenario corre-

sponds to the bottom-left quadrant where bank distress is minimal and providing liquidity

to distressed banks will be socially optimal. Conversely, when D > D⇤, too much liquidity

provision is possible, because uninformed banks will continue to naively provide liquidity

to a bank that is almost certain to go under.4

Second, default probabilities for healthy borrowers are significantly higher when they

are forced to pool due to the higher interest rates their debt requires. Higher interest rates

are a result of the linear mapping between the interest rate and the probability of default

for a healthy bank. By contrast, differences in the default probabilities for the distressed

borrower when borrowing at separating versus pooling interest rates are less obvious. For

example, if D > D̄, separating interest rates induce higher default probabilities as distressed

banks attempting to separate default with probability one. Conversely, if D  D̄, liquidity

requests at separating interest rates ensure the distressed bank survives until t = 2, whereas

4. Note D > D⇤ is not a sufficient condition for too much liquidity provision. The transfers to depositors,
and the loss of V by the borrowing bank must be weighed against the losses of the lending banks.
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pooling interest rate requests are likely to result in liquidity shortages and premature de-

fault.

Broadly speaking, one can view the two types of equilibria as representing two very

different states of the economy. On the one hand, when information is good (high q ) and

potential solvency shocks are small (small D), the economy can be viewed as being in a

“normal” state. On the other hand, when either information is poor or potential solvency

shocks are large (or both), one might think of the economy as being in times of high uncer-

tainty, or perhaps a crisis state.

The preceding discussion appears to indicate the economy in “normal” times functions

relatively well. Not only do lending relationships provide screening incentives; liquidity is

always provided efficiently at a fair interest rate to those who need it. By contrast, when

the economy experiences “bad” times, lending relationships do not function nearly as well.

Liquidity can be both over- or under-provided to distressed banks, depending on the infor-

mation quality and the size of distress, whereas healthy banks are charged inefficiently high

interest rates that expose them to default risk significantly above what otherwise might be

expected. Moreover, we will see in the next section that spillovers can be large if informa-

tion is poor, even though banks have no previously existing interdependencies or correlated

assets.

5.2 Contagion

This section looks at the impact of lending relationships on the distribution of lender

defaults. Throughout this section, I rule out separating equilibria by considering large

solvency shocks (D > D̄). I also focus on a symmetric equilibrium with ai =
f

N 8i and

Bi j =
f

N 8i, j.
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I define a contagious default to be a default by a bank that was not initially distressed.

The only channel through which such a default can take place in my model is when dis-

tressed banks fail to repay healthy lenders, and thus contagious defaults only occur at t = 2.

Contagion in this sense can only go one level deep in the system because following the re-

alization of shocks at t = 1, healthy lenders do not have any other connections.

Suppose bank i receives both a liquidity shock and a solvency shock, and banks j =

{1, ...,n} represent bank i’s potential lenders. Given the previous discussion, define p̂d,(0)

to be the conditional probability lender j defaults given that lender j opts to lend, but

another lender opts to renege. Similarly, define p̂d,(1) to be the conditional probability

lender j defaults given that lender j opts to lend, and all other potential lenders opt to lend.

It can be shown that:

p̂d,(0) =
1

R̄�R
f/N

1�f/N

p̂d,(1) =
1

(R̄�R)2
f/N

1�f/N

⇢

D� 1
2
(N �1)f

1�f

�

Note that p̂d,(0) > p̂d,(1). Let Ck be the probability that k banks default from contagion

when bank i is distressed, given all choices made at t = 0. For example, C3 is the conditional

probability that three banks default from contagion when bank i is distressed. Define C to be

the expected number of defaults from contagion in the economy when bank i is distressed.
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Under these definitions, we have:

Ck =
n�k
Â

m=1

0

B

@

n

m

1

C

A

q

m(1�q)n�m

0

B

@

n�m

k

1

C

A

p̂

k
d,(0)(1� p̂d,(0))

n�m�k

+(1�q)n

0

B

@

n

k

1

C

A

p̂

k
d,(1)(1� p̂d,(1))

n�k

C =
n
Â

k=0
kCk

In the Appendix, I show that:

Ck = Bin
⇣

k; n, p̂d,(0)(1�q)
⌘

+(1�q)nBin
⇣

k; n, p̂d,(1)

⌘

� (1�q)nBin
⇣

k; n, p̂d,(0)

⌘

Where Bin(k; n, p) is the probability of k successes under a binomial distribution with

parameters n and p. Moreover, using the above fact, it can be shown that:

C = np̂d,0(1�q)+n(1�q)n �
p̂d,1 � p̂d,0

�

The next two propositions look at the expected number of contagious defaults and the

distribution of contagious defaults when a given bank is distressed.

Proposition 6. Suppose bank i receives a solvency shock and has lending relationships

with banks j = {1, ...,n} and that D > D̄. The following are true:

1. The function C(q) is strictly concave.

2. If n�1
n

p̂d,(0)
p̂d,(1)

< 1, C(q) obtains a unique maximum at q = 0. If n�1
n

p̂d,(0)
p̂d,(1)

> 1, C(q)

obtains a unique maximum at q̄ , where q̄ solves:

0 =
⇣⇣

n(1� q̄)n�1 �1
⌘

p̂d,(0)�n(1� q̄)n�1
p̂d,(1)

⌘

.
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Proof. See Appendix.

Proposition 6 is best illustrated graphically, which I do below. The plot below depicts

C(q) following a solvency shock in the N = 5 bank economy, with parameters R̄= 2, R= 1,

D = 0.5, f = 0.3, pl =
1
N , p1

s = 0.01, p0
s = 0.05, V = 6, and P ⇡ 0.027. Under this setup,

each bank holds ai =
f

5 and has four potential lenders.

The plot highlights an interaction between the information quality and the probability of

contagion in the economy. Define q as that q that satisfies C(q) =C(0). For relatively poor

information (0 < q < q ), lending relationships lead to relatively high amounts of contagion

following a solvency shock, with q̄ ⇡ 0.25, whereas for good information q (q < q < 1),

contagious defaults are significantly more rare.

Figure 5.2. Expected Contagion
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The non-monotonicity is a result of two opposing forces that act through the probability

of the signal. The intuition for the non-monotonicity is as follows. Consider the perspective

of bank j, which may or may not lend to the distressed bank i. First, because D > D̄,

all informed banks will refuse to provide liquidity. Second, with ai =
f

N , banks that are

hit by liquidity shocks require all banks to lend in order to survive until t = 1. Thus,

whenever informed lenders exist, liquidity shortages ensue and the distressed bank defaults

prematurely. As such, when the distressed bank defaults, the probability of default for all

banks that continued to lend spikes from p̂d,(1) to p̂d,(0). Thus, conditional on bank j

lending to bank i, a higher q implies bank j is more likely to have a conditional probability

of default equal to p̂d,(0).

However, the probability of the signal also has implications for how many banks con-

tinue to lend, conditional on one bank opting to renege. For bank j, a higher q implies a

greater chance of learning a borrower is distressed, and thus reduces the probability bank

j lends to a distressed bank and experiences the state where its probability of default is

p̂d,(0). Moreover, this property is also true for all other potential lenders, and thus a higher

q implies in expectation fewer banks lending when bank i is distressed. Thus, the signal

probability q affects both the lender’s conditional probability of default as well as the ex-

pected number of banks that continue to lend to the distressed bank and thus could default

contagiously.

The aforementioned non-monotonicity is important for two reasons. First, on the one

hand, when information is relatively imprecise following a solvency shock (q < q), the

action of a small subset of lenders can cause significant harm to the rest of the financial

sector. Banks that are able to get a head start on their competitors in terms of disassoci-

ating themselves from a distressed counter-party can potentially profit; however, such an

action could come at the expense of the financial system as a whole. On the other hand,
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when banks are relatively well informed (q > q ), preventing bank distress from spreading

through the system might be possible.5

Second, recall that lending relationships can potentially align banks’ screening incen-

tives with the social optimum and reduce the probability of individual bank distress. When

information is sufficiently poor (q < q ), incentive alignment is a double-edged sword. That

is, although the use of lending relationships can reduce the probability of an individual bank

becoming distressed, it can also drastically increase the probability of multiple concurrent

defaults and systemic failure.

This result should not be confused with the finding that a more connected system can

exacerbate the probability of a systemic failure.6 Rather, this non-monotonicity emphasizes

the role the types of connections in a financial system play in exacerbating or attenuating

systemic risk. Another way to interpret this result is the following. To the extent that the

information environment encapsulates the amount of liquidity provision, it also reflects the

“tightness” of connections within the financial system. A rich information environment

gives rise to connections that break apart frequently when borrowers become distressed,

whereas conversely, a poor information environment is consistent with connections that are

less likely to rupture. Taken together, this result implies that contagion is a function of how

tight connections are, and how easily the financial system breaks apart.

5. One could extend the model to allow for endogenous information acquisition. Specifically, suppose
we allow each lending bank j to pay c(q) at t = 0 in order to obtain information with probability q about
borrowing bank i at t = 1. The amount of information obtained within the financial system will depend on
each bank’s beliefs about other banks’ actions and the nature of the cost function. Given the structure of the
model, information acquisition would likely exhibit strong strategic complementarities. Moreover, if the cost
function is very steep, the level of information acquired by banks in lending relationships likely corresponds
to a moderate level of q , say q = 0.25.

6. Such a result is already well known. For example, see Blume et al. (2009) and Acemoglu et al. (2015a,
2015b) among others.
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Looking at how information quality affects the distribution of contagious defaults con-

ditional on a solvency shock is also interesting.

Proposition 7. Suppose bank i receives a solvency shock and has lending relationships

with banks j = {1, ...,n} and that D > D̄. The following are true:

1. The functions C0(q) and Cn(q) are globally convex. Also, Cn(q) is strictly decreas-

ing, whereas C0(q) is strictly increasing iff
(1�p̂d,(1))

n

(1�p̂d,(0))
n�1 > 1.

2. For 0 < k < n, the functions Ck(q) are maximized for some qk > 0 if and only if

n�k
n

⇣

qa
qb

⌘k (1�p̂d,(0))
n�k�1

(1�p̂d,(1))
n�k > 1.

3. C0(1) = 1, and for k > 0, Ck(1) = 0.

Proof. See Appendix.

Proposition 7 provides conditions on the behavior of the functions Ck(q). First, Propo-

sition 7 states that the probability that n banks default contagiously is strictly decreasing in

q . This result is reassuring because banks that do not lend cannot default, and the greater

q is, the fewer the number of banks expected to lend.7 Second, Proposition 6.1 provides a

condition for which C0(q) is strictly increasing. Equivalently, if C0(q) is strictly increas-

ing, it follows that the probability that at least one contagious default (Âk>0Ck(q)) occurs

must be strictly decreasing. However, unless p̂d,(0) and p̂d,(1) are approximately equal, or

n is small, the probability that at least one contagious default occurs will not be maximized

at q = 0. Proposition 6 also provides related conditions focusing on a specific number of

defaults k.

7. In a network with pre-existing connections, this result may no longer hold.
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Proposition 7 is depicted graphically below for the same parameters as the preceding

plot.

Figure 5.3. Probability of k Contagious Defaults

Notice how the probability of k defaults for k < n are all maximized for q > 0. For

q ⇡ 0.2, we see the economy is far more likely to experience one, two, or three contagious

defaults following a solvency shock than if banks had opted instead for lending relation-

ships that had some sort of inherent commitment. The exception is the case in which

k = n = 4, but as explained above, C4(q) must be decreasing in q as the probability that n

banks remain connected (which is required for n defaults) is strictly decreasing in q .

If the model is extended to allow for pre-existing connections, so that banks may default

contagiously even if they opt not to provide liquidity, overturning the k = 4 case would be

possible. I defer this extension for future research.
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5.3 Commitment

One drawback of uncommitted lending relationships illustrated in section 5.2 is they

increase the probability of multiple bank defaults within the financial system. In particular,

when information is relatively poor, the expected number of contagious defaults is high.

Note that contagious defaults occur only when a borrower fails to repay the principal to

a lender. Moreover, contagious defaults are especially common when information is poor

due to the failure of informed lenders to consider the impact of their decision on both the

borrower and the uninformed lenders.

A natural question arises: What if lending relationships involved commitment? That

is, what if lending relationships contractually required lenders to provide liquidity to a

borrower with a liquidity shortage, regardless of whether the borrower was healthy or dis-

tressed?

Intuitively, commitment would prevent informed lenders from imposing costs ex-post

on uninformed lenders, because all lenders would have the same obligation to lend. More-

over, relative to autarky, borrowers would seem to benefit because they would be able to

hold more illiquid assets than if they remained in autarky, while still guaranteeing their own

survival until t = 2.

To this end, suppose now that bank i and bank j can form lending relationships of size

Bi j where bank j is committed to providing liquidity Bi j at t = 1 should bank i request the

liquidity. Because lending is still assumed to take place through standard debt contracts,

I assume the interest rate is fixed at t = 0. Fixing the interest rate has the advantage of

ensuring lenders make a normal rate of return ex-ante, as well as mitigating any poten-

tial hold-up problems. In practice, due to the associated credit risk, contracts similar to
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committed lending relationships are uncommon in the financial sector, with probably the

closest example being a loan guarantee.

Equivalently, one could instead assume such contracts are not possible, but allow banks

to opt against forming any lending relationships at t = 0 and instead go to a market con-

sisting of all uninformed banks at t = 1 should they require liquidity. Depending on the

number of uncommitted lending relationships a bank possesses, access to this market may

reveal information about its health. However, if banks do not hold any uncommitted lending

relationships, information revelation should not be a problem. As such, the interest rates

set on the contracts would be equivalent to the lending relationships with commitment.

Henceforth, I consider lending relationships with commitment.

Thus, if bank i forms a committed lending relationship with bank j of size Bi j at t = 0,

bank j will be required to lend bank i Bi j if bank i is hit with a liquidity shock at t = 1. In

return, bank i must make an expected payment to bank j at t = 2 equal to the amount bank

i borrowed plus bank j’s expected additional default costs from lending. That is, if bank i

borrows from bank j, it sets a promised payment on its debt to bank j that satisfies:

E(F̃i j|I j) = Bi j + p̂d,i jV

Where the expectation is taken using bank j’s t = 0 information set. The following

proposition outlines the relevant properties of lending relationships with commitment.

Proposition 8. Suppose banks �i hold a�i liquid assets and Proposition 1 holds. If bank

i chooses to form committed lending relationships with banks j 2 {1,2, ...n}, then the fol-

lowing are true:

1. If bank i holds ai liquid assets, the total size of bank i’s committed lending relation-

ships will equal Â j Bi j = Bi = f �ai.
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2. If bank i prefers committed lending relationships to autarky for some ai 2 [a i,f ,),

bank i will hold ai = a i liquid assets.

3. Bank i will not screen.

4. When banks use committed lending relationships, the expected number of conta-

gious defaults conditional on a solvency shock equals C(0) for uncommitted lending

relationships.

Proof. See Appendix.

Propositions 8.1 and 8.2 are analogous to Proposition 2. Importantly, we see banks

will use the lending relationships with commitment in a similar way. Specifically, banks

will always secure sufficient lending relationships to cover their liquidity shocks, and if

they prefer to use lending relationships with commitment to remaining in autarky, they will

attempt to hold as few liquid assets as possible.

However, Proposition 8.3, which states that banks using lending relationships with com-

mitment will not screen, is of particular interest. Recall that under autarky, banks opted

against screening because they could profit by pushing some of the losses incurred onto

their depositors whose payment was capped at a fixed amount D. Similarly, the use of

lending relationships with commitment effectively increases bank i’s total future debt by a

fixed amount in certain states of the world. Because screening is unobservable and unveri-

fiable, committed lending relationships weaken banks’ screening incentives.

Furthermore, bank i’s potential lenders recognize bank i’s weak screening incentives.

As such, lenders will ex-ante request a higher interest rate than what would be required if

bank i chose to screen. The higher interest rate required by bank i’s counter-parties both

reduces bank i’s profits and increases bank i’s expected default costs following a liquidity

45



shock. In fact, bank i’s inability to commit to screen when using committed lending rela-

tionships harms bank i, because the costs associated with the higher interest rate typically

outweigh the private benefits bank i receives from not screening. Moreover, although the

interest rate is fixed at t = 0, the problem is unlikely to be resolved by a market at t = 1,

because a set of uninformed lenders at t = 1 will charge the same interest rate set by those

with committed lending relationships at t = 0.

Proposition 8.4 states that when q = 0, the expected amount of contagion following a

solvency shock is equivalent for committed and uncommitted lending relationships. Al-

though this equivalence is perhaps unsurprising, what is crucial is that unlike uncommitted

lending relationships, contagion under committed lending relationships is independent of

q . Importantly, this difference between committed and uncommitted lending relationships

suggests that the amount of contagion within the financial system is a function of the types

of lending relationships within the economy. Lending relationships without commitment,

akin to implicit promises between banks, allow lenders to renege at the first sign of danger.

Although these lending relationships may be designed to prevent the spread of distress, they

in fact may only serve to exacerbate problems within the financial system if the information

quality is sufficiently poor. By contrast, committed lending relationships provide a type of

insurance to the borrower, at the expense of leaving lenders with a lack of flexibility to

respond to borrower distress. Relative to lending relationships without commitment, they

may simply make today’s problem tomorrow’s disaster.

Finally, Proposition 8, combined with earlier results, suggests a trade-off between com-

mitted and uncommitted lending relationships. On the one hand, commitment ensures

liquidity provision, but comes at the expense of good screening incentives. Moreover,

although conditional on distress, commitment may reduce ex-post contagion when infor-

mation is poor, the probability of an individual bank becoming distressed will be higher

ex-ante. On the other hand, a lack of commitment aligns incentives by inducing potentially
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undesirable ex-post outcomes such as liquidity shortages at distressed banks, early default,

and significant contagion. Section 6 discusses some policy implications of this trade-off.

5.4 Social Planner

The symmetric equilibrium with uncommitted lending relationships represents a private

solution to a dual investment-screening problem using a specific set of contracts. One

question that arises asks whether a planner can improve on the private solution. This section

focuses on whether a planner facing a set of contracting restrictions and liquid asset choices

by each bank can design a liquidity-sharing contract for banks which increases total surplus.

I also provide a brief discussion of two other options for the planner: liquidity requirements

and alternate financial system configurations. Throughout this section, to remain consistent

with the earlier analysis on financial contagion, I assume D > D̄ and q < 1.

Suppose each bank holds liquid assets of ai =
f

N as per proposition 5, and the planner

is tasked with designing a contract that increases total surplus subject to the following set

of contracting restrictions.8 First, no contract can be written between bank i and bank j

that can provide bank j information about bank i with probability greater than q . Second,

no bank is able to directly or indirectly (through the planner) share its information at t = 1

with another bank. This assumption also means no bank can observe the actions of another

banks at t = 1 unless those actions are directed towards them. Third, contracts can be

written on actions, but cannot be written on solvency shocks, si, or screening, ei. This

8. Each contracting restriction is made to ensure the fairest comparison with the lending relationships
discussed throughout the paper.
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assumption implies the planner cannot tax banks in a state-contingent manner. Fourth, I

assume that at t = 1, the following game takes place:9

1. Bank i receives a liquidity shock, and potentially a solvency shock.

2. Each bank j = {1,2, ...,n} that did not receive a shock but had a contract with bank

i at t = 0, can potentially learn about bank i’s health with probability q .

3. Based on the contracts agreed upon at t = 0, bank i attempts to borrow liquidity by

making simultaneous offers to each bank j.

4. Each bank j responds to bank i’s offer according to the pre-agreed-upon contract.

Finally, all contracts must satisfy individual rationality constraints in order for each

bank to be willing to participate. Proposition 9 outlines when a planner can increase total

surplus relative to the private benchmark through the use of a hybrid contract.10I define

the hybrid contract as a contract between bank i and bank j in which bank i can request

liquidity at any rate specified in the contract ri = {r(1)i ,r(2)i , ...}, and bank j is required to

provide liquidity at the requested rate or pay a tax t (that is redistributed to all other banks

that provided liquidity). Privately, banks cannot implement the hybrid contract because

they cannot enforce the payment of the tax when the borrowing bank defaults at t = 1. 11

By contrast, the planner implements the hybrid contract by imposing a fine f > t on any

bank that does not pay a tax it owes.

9. This game nests what happened under committed and uncommitted lending relationships.

10. In the Appendix, I argue that given the assumptions, the hybrid contract represents the only method
through which the planner can increase total surplus.

11. More specifically, lender j (which provided liquidity) is assumed to be unable to enforce the contract
and require lender k (which did not provide liquidity) to pay the tax when borrower i is in default. Lender k
recognizes this fact, and thus its effective tax when making its liquidity provision at t = 1 is t = 0.
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Proposition 9. Assume the above contracting restrictions, q < 1, D > D̄, and banks hold

liquid assets ai =
f

N . A planner can increase total surplus relative to the private benchmark

through the use of the hybrid contract with interest rates ri = {rh0
i ,rd0

i } and tax t if and only

if the following conditions are satisfied:

(1� p1
s )Uj(0,A,rh0

i ,1)+ p1
sUj(1,A,rd0

i ,1) � 0

Ui(1,rd0
i ,1) � E

⇣

Ui(1,rh0
i ,a j)

⌘

Li(ai,1,Bi j|rh0
i ,rd0

i ,t) � Li(ai,0,Bi j|rh0
i ,rd0

i ,t)

Uj(1,A,rd0
i ,1) � �t

Proof. See Appendix.

If the conditions in Proposition 9 are satisfied, the planner can implement the hybrid

contract and increase total surplus relative to the private benchmark. The hybrid contract

allows the planner to force a separating equilibrium that was not possible under uncom-

mitted lending relationships when D > D̄. The key lever at the planner’s disposal is the

ability to tax banks that refuse to provide liquidity. The tax is important because under

the private benchmark, when a bank received both a liquidity shock and a solvency shock,

the existence of an informed liquidity provider would cause the bank to suffer a liquidity

shortage and a premature default. However, with the hybrid contract and its tax on liq-

uidity providers that renege, the planner is able to shift the point of indifference between

providing liquidity and reneging for potential liquidity providers, which in turn encourages

a separating offers from the liquidity-shocked bank, and ensures that any bank that needs

liquidity receives it. Under the separating equilibrium, defaults, depositor losses, and liq-
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uidation are all reduced relative to the private benchmark, and thus total surplus is greater

than the private benchmark.

However, should the conditions of Proposition 9 fail to be satisfied, the planner cannot

use the hybrid contract to increase total surplus. In fact, in the Appendix, I argue the

planner does not have any other levers through which it can increase total surplus, and

thus it follows that when Proposition 9 is violated, uncommitted lending relationships are

optimal.

Applying different contracts to the private benchmark is not the only way a planner

might seek to increase total surplus. Two other alternatives worth a brief discussion are

liquidity requirements and policies that lead to alternate structures of the financial system.

I do not provide a complete analysis here, but a couple of important points are worth noting.

First, liquidity requirements can increase total surplus. In the equilibrium on which I

focus, each bank picks ai =
f

N , implying the economy has no precautionary liquidity. Here,

each individual bank has chosen its liquid assets to maximize Li. No precautionary liquid-

ity is held, because it is valuable to each bank only when the bank itself receives a solvency

shock, which occurs with probability ps
N . However, each bank’s choice fails to take into

account of the value of its liquid assets to other banks that might receive a solvency shock.

In particular, precautionary liquidity is potentially valuable from a social perspective when-

ever any bank receives a solvency shock, because it can reduce the amount of inefficient

failures, and depending on the quality of information, expected financial contagion. That

is, precautionary liquidity is potentially valuable with probability ps. Thus, banks under-

value liquid assets from a social perspective, and a planner that can institute a liquidity

requirement can potentially increase total surplus.12

12. Of course the requirement must trade off the reduced liquidation / contagion with the lost profits from
fewer illiquid assets and the potentially adverse impact on screening incentives.

50



Second, alternate network structures are another possibility the planner might consider.

One structure a planner might want to induce in the financial system is a star. Here, one

bank would exist at the center of the financial system, and it would distribute liquidity to a

series of banks on the periphery. The advantage of this configuration is that by construction,

no heterogeneity exists in information sets among liquidity providers because only one

liquidity provider exists. As such, no externality is imposed on uninformed lenders as

was the case in section 5.2. However, the star configuration has potential drawbacks. If

information is poor (low q ), incentive provision by the bank at the center of the system

will be weaker than the private benchmark discussed in section 5.1. Moreover, if the sole

liquidity provider is able to make rents due to its monopoly power (which is outside the

model, but potentially realistic), it will likely extort banks in need of liquidity for profits,

and potentially reduce total surplus. A complete analysis of other networks is beyond the

scope of this paper, and thus I defer associated questions to future research.
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CHAPTER 6

POLICY IMPLICATIONS

I highlight two important policy implications. First, policy makers must understand

commitment and liquidity provision in the interbank market go hand in hand with incen-

tives. Policy aimed at increasing commitment ex-ante, will improve liquidity provision at

the expense of incentives. For example, if the government restricted the use of material

adverse change clauses, such an action would increase ex-ante commitment and improve

liquidity provision in times of distress. However, with stronger liquidity promises ex-ante,

borrower incentives will be adversely affected, and thus the policy will counterproductively

increase the frequency of bank distress itself. Similarly, policies that relax commitment ex-

ante align incentives through the threat of liquidity shortages.

Second, from a network perspective, a relatively recent but fast-growing body of re-

search has focused on the nature of the systemic risk created within the financial system.1

In particular, this literature seeks to understand the determinants of such risk and to design

optimal policy responses. Two key determinants that have been identified are the size of

the exposures between banks, and the density of the connections that make up the financial

system.

In my model, to the extent that the information environment encapsulates the amount of

liquidity provision, it also reflects the “tightness” of connections within the financial sys-

tem. High-quality information is consistent with connections that break apart frequently

when borrowers become distressed, whereas conversely, low-quality information corre-

sponds to connections that are less likely to rupture. Taken together, the implication is

1. See Elliot, Golub, and Jackson (2014) and Acemoglu, Ozdaglar, and Tabhaz-Salehi (2015a, 2015b),
amongst others.
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contagion is a function of how tight connections are and how easily the financial system

breaks apart. The model suggests the “tightness” of connections in the financial system

should be an active consideration for policies targeting systemic risk-mitigation.2

Also note that the model predicts liquidity provision to distressed banks will be the

most cost-effective when connections are of moderate tightness. Although “tightness” in

my model is a function of information quality and commitment, other features of financial

contracts such as covenants, collateral, and maturity are also likely to be important factors.

In the case of LTCM, its connections indeed appear ex-post to have been of moderate

tightness. Whereas LTCM’s liquidity-sharing agreements were often implicit, and thus

loose, the hedge fund had many tight connections with counter-parties that stood to lose

billions of dollars should it default. Again, the fact that the Federal Reserve was able to

organize a “bailout” of LTCM that required zero public funds, is a testament to the fear of

a catastrophic fallout stemming from the hedge fund’s failure. Thus, this relatively cheap3

“bailout” is broadly consistent with the ex-post observation that LTCM’s connections were

of moderate tightness.

Finally, the model provides a framework for future research on other important policy

questions. For example, one extension of the model is to allow for a pre-existing network

between banks. Presently, the only source of interdependencies in the model is through the

lending relationships formed at t = 0 and (potentially) activated at t = 1. A direct result of

this setup is that banks that form lending relationships at t = 0 but refuse to lend at t = 1 face

no consequences for their decisions. Alternative connections, such as long-term debt and

cross-holdings of equity, introduce additional channels through which distress may spread.

2. Measuring tightness is difficult, but possible dimensions include maturity (shorter is less tight than
longer), asset liquidity (liquid assets are less tight than illiquid ones), and contractual (loose covenants are
less tight than strict covenants).

3. Zero public funds
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Such connections are likely to dilute incentive provision, but exacerbate ex-post contagion

when financial interconnections are severed. Moreover, asymmetries in such networks

are particularly interesting. In particular, with asymmetric pre-existing connections, the

potential for divergent bank incentives within the multi-lateral setting that is the financial

system becomes increasingly likely, and as such, creates a new set of considerations for

policy makers.
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CHAPTER 7

CONCLUSION

At the core of the financial system, debt contracts are ubiquitous. A complete under-

standing of debt contracts within the financial system, and thus their importance to the

economy, requires a careful examination of the characteristics of debt in a multi-lateral en-

vironment. To understand debt in a multi-lateral environment, this paper developed a model

of liquidity sharing in which banks became interlinked through the use of committed and

uncommitted lending relationships. The model illustrates that the choice of commitment in

a multi-lateral setting trades off incentives with liquidity provision. I highlight how uncom-

mitted lending relationships, such as the lending relationships between banks in the federal

funds market, expose banks to potential liquidity shortages. However, liquidity shortages,

which induce early default, can align banks’ screening incentives. Moreover, if banks col-

lectively use uncommitted lending relationships, incentive alignment can be multi-lateral.

Liquidity shortages can also exacerbate contagion. I show that when banks use uncom-

mitted lending relationships, the relationship between information quality and contagion is

non-monotone. The non-monotonicity is the result of informed banks exerting externalities

on uninformed banks.

The model produces two key policy implications. First, policy makers should con-

sider the ex-ante impact of any intervention in interbank markets on bank incentives. This

intuition does not rely on interventions in the form of a bailout. Second, the model un-

derscores the “tightness” of connections in the financial system as an important additional

consideration for any policy targeted at mitigating the systemic risk generated within the

financial system. Note such policies must also take into account features not present in

the model. Specifically, prices, existing connections such as cross-holdings of equity, and
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network asymmetries are likely to also play fundamental roles in shaping incentives, liquid-

ity provision, and contagion. Such considerations provide an interesting avenue for future

research.
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APPENDIX A

PROOFS OF PROPOSITIONS

This section outlines the proofs of the various propositions detailed throughout the paper.

A.1 Proof of Proposition 1

Let Li(ai,ei,Bi) be bank i’s objective function, which I will abbreivate to Li where

possible. The autarky objective function, derived in Appendix 2, is as follows:

Li =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1� pl)(1�ai)
R̄�R

2 +(1�ai)Pe +(1� pl)V i f ai 2 [0,f)

(1�ai)
n

R̄�R
2 � pl psD

⇣

1� D/2
R̄�R

⌘

+Pe
o

+
⇣

1� D
R̄�R pl ps

⌘

V i f ai 2 [f ,1)

V i f ai = 1

Within each region, the probability of default does not depend on ai, and pd,i(ai 2

[0,f)) > pd,i(ai 2 [f ,1)) > pd,i(ai = 1). By contrast, E(Pi) and (1�ai)Pe are strictly

decreasing in ai. Together, these properties impliy the objective function under autarky

has three unique local maxima at ai = {0,f ,1}. Thus, Li takes the following values at the

local maxima:

Li =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1� pl)
R̄�R

2 +Pe +(1� pl)V i f ai = 0

(1�f)
n

R̄�R
2 � pl psD

⇣

1� D/2
R̄�R

⌘

+Pe
o

+
⇣

1� D
R̄�R pl ps

⌘

V i f ai = f

V i f ai = 1
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Thus, ai = f is optimal if and only if Li(f ,ei,0) � Li(0,ei,0) and Li(f ,ei,0) �

Li(1,ei,0), which is equivalent to:

(pl �f)
R̄�R

2
� pl ps(1�f)D

✓

1� D/2
R̄�R

◆

+ pl

✓

1� ps
D

R̄�R

◆

V � fPe

(1�f)

✓

R̄�R
2

� pl psD
◆

+ pl ps(1�f)D D/2
R̄�R

+(1�f)Pe � D
R̄�R

pl psV

The final condition of Proposition 1 implies that when bank i chooses a

⇤
i = f , it will

also pick e⇤i = 0. Again, we simply rearrange the objective function above. Note that if

bank i chooses ei = 0, it receives:

Li(f ,0,0) = (1�f)

⇢

R̄�R
2

� pl p0
s D

✓

1� D/2
R̄�R

◆

+P
�

+

✓

1� D
R̄�R

pl p1
s

◆

V

And if it chooses ei = 1, it receives:

Li(f ,1,0) = (1�f)

⇢

R̄�R
2

� pl p1
s D

✓

1� D/2
R̄�R

◆�

+

✓

1� D
R̄�R

pl p1
s

◆

V

Thus, if Li(f ,0,0)� Li(f ,1,0), bank i will choose e⇤i = 0, which occurs when:

pl

⇣

p0
s � p1

s

⌘

(1�f)D
✓

1� D/2
R̄�R

◆

+
D

R̄�R
pl

⇣

p0
s � p1

s

⌘

V < (1�f)P

As required.

A.2 Proof of Proposition 2

Assume bank i holds ai < f and needs to borrow the difference through uncommitted

lending relationships. First, bank i would never form uncommitted lending relationships
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of total size Bi < f �ai as no lender would ever lend at t = 1 (and thus autarky strictly

dominates this case). Thus, Bi � f �ai.

Second, with q = 1, if lenders play a strategy in which lending takes place only when

solvency shocks do not occur, bank i always defaults following a solvency shock at t = 1.

If a solvency shock does not occur, bank i has debt of 1�f +Bi and assets of (1�ai)R̃i+

(Bi � (f �ai)). It follows that:

min(Ai|li = 1,si = 0) = (1�ai)R+Bi � (f �ai) = 1�f +Bi

Thus, bank i is always able to pay its liabilities in the state where a solvency shock does

not occur, and never defaults if it does not receive a solvency shock. As a result, the interest

rate at which bank i borrows in the absence of a solvency shock is zero. Thus, given ai,

bank i is indifferent for all Bi � f �ai.

For the second part of the statement, recall that under autarky, a choice of ai = f gave

bank i:

Li(f ,ei,0) = (1�f)

⇢

R̄�R
2

� pl psD
✓

1� D/2
R̄�R

◆

+Pe
�

+

✓

1� D
R̄�R

pl ps

◆

V

Whereas uncommitted lending relationships with q = 1 gives:

Li(f �d ,ei,d ) = (1�f +d )(1� pl ps)
R̄�R

2
+(1�ai +d )Pe +(1� pl ps)V

Taking the difference, we have:

Li(f ,ei,0)�Li(f �d ,ei,d ) = �d (1� pl ps)
R̄�R

2
+

pl ps
R̄�R

1�f

2
(R̄�R�D)2

�dPe + pl ps

✓

1� D
R̄�R

◆

V
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If we then take the limit as d ! 0, we have:

lim
d!0

(Li(f ,ei,0)�Li(f �d ,ei,d )) =
pl ps

R̄�R
(R̄�R�D)

✓

1�f

2
(R̄�R�D)+V

◆

> 0

Thus, a discontinuous drop occurs in the objective function immediately below ai =

f when a bank engages in uncommitted lending relationships with perfectly informed

lenders.

However, differentiating with respect to d gives:

∂

∂d

(Li(f ,ei,0)�Li(f �d ,ei,d )) =�(1� pl ps)
R̄�R

2
�dPe < 0

Thus, if engaging in uncommitted lending relationships leads to an increase in Li for

some feasible Bi, banks can maximize Li by choosing the minimum possible

a i = max
�

Â j 6=i a j,0
�

and setting Bi = f �a i.

As required.

A.3 Proof of Proposition 3

If D > D̄, lenders are unwilling to provide liquidity at any interest rate. Thus, under

uncommitted lending relationships, bank i’s choices ei = 0, ei = 1 give:

Li(ai,1,Bi) = (1�ai)(1� pl p1
s )

R̄�R
2

+(1�ai)P1 +(1� pl p1
s )V

Li(ai,0,Bi) = (1�ai)(1� pl p0
s )

R̄�R
2

+(1�ai)P0 +(1� pl p0
s )V
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Taking a difference, we have:

Li(ai,1,Bi)�Li(ai,0,Bi) = (1�ai)pl(p0
s � p1

s )
R̄�R

2
� (1�ai)P+ pl(p0

s � p1
s )V

Thus, banks prefer ei = 0 if and only if:

pl(p0
s � p1

s )

✓

R̄�R
2

+
V

1�ai

◆

< P

This is the first condition of Proposition 3.

If D  D̄, lenders are willing to provide liquidity, but charge bank i a higher interest rate

when it receives a solvency shock. Note that banks do not want to “over-borrow” in this

instance, because doing so will only increase their total cost of borrowing (see Proposition

8 - this scenario is analogous to committed lending relationships). It can be shown that:

Li(ai,1,Bi) = (1�ai)
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Where:

Zi = 1+
1

R̄�R Â
�i

V
1�a�i

Thus, taking differences and rearranging, we have that incentive alignment takes place

when:

P < pl

⇣

p0
s � p1

s

⌘

⇢

R̄�R
2

+
V

(1�ai)
� yi

R̄�R

✓

yi
2
+

V
(1�ai)
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Where:

yi =

s

(R̄�R�D)2 +2
✓

1
2
(f �ai)2

(1�ai)2 � f �ai
1�ai

D
◆

Zi

As required.

A.4 Proof of Proposition 4

If the conditions in Proposition 1 are satisfied, we know that ai = f and ei = 0 8i is

the unique equilibrium when no lending relationships exist. Now, suppose banks engage

in lending relationships. Conjecture a set of beliefs whereby bank i believes it can borrow

from bank j if and only if bank i is able to promise bank j with a normal rate of return.

Proposition 2.1 implies banks with lending relationships must have ai < f and Bi � f �

ai. Moreover, Proposition 2.2 implies banks that use lending relationships will hold the

minimum liquid assets possible, a i = max
�

0,f �Â j 6=i a j
�

. Because every bank i that

uses lending relationships wants to hold a i, it immediately follows that an equilibrium

involving lending relationships and the conjectured beliefs must satisfy both Âi ai = f

and ai +Bi = f , 8i. Focusing on a symmetric equilibrium, we have that ai =
f

N 8i, and

Bi j =
f

N 8i, j. Because Bi j  a j, 8i, j, we have that lenders’ participation constraints are

satisfied. Moreover, if the conditions in Proposition 3 are satisfied, it follows that ei = 1

in equilibrium. I appeal to Propositions 1-3 to argue that as long as Li
⇣

f

N ,1,{ f

N }
⌘

� L0
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(i.e., autarky is dominated), no bank i can unilaterally change its choice of ai,ei,{Bi j} and

increase Li.

Next, note that when D > D̄, lending does not take place following a solvency shock,

because borrowers cannot provide lenders with a normal rate of return. Similarly, when D<

D̄, lending occurs following a solvency shock, because borrowers still have sufficient future

funds they can promise lenders. Importantly, we see that beliefs over lending decisions

are consistent with actions, and lenders’ incentive compatibility constraints are satisfied.

Finally, to prevent downward deviations in the choice of liquid assets by individual banks, I

specify a set of off-equilibrium beliefs in which any bank that deviates to some âi <a

⇤
i = f

N

will be unable to borrow in interbank markets.1

Thus, given the conjectured beliefs, a symmetric equilibrium exists with ai =
f

N 8i,

ei = 1 8i, and Bi j =
f

N 8i, j, providing Li
⇣

f

N ,1,{ f

N}
⌘

� L0.

A.5 Proof of Proposition 5

Consider the signalling game between borrower i and a potentially uninformed lender

j, which takes place at the intermediate date of the model. For exposition purposes, assume

only one lender exists, and borrower i defaults at the intermediate date if the lender decides

not to lend.2

Let Ui(si,ri,a j) be the utility of the borrower, Uj(si, t j,,ri,a j) be the utility of the lender,

si = {0,1} be the borrower’s type, and t j = {A,B} be the lender’s type. A borrower of type

1. If, instead, bank i believed that a downwards deviation of size ei to some âi would be met by a cor-
responding increase in liquidity of e j by bank j and continued access to interbank markets, the above set of
choices would not constitute an equilibrium.

2. The proof has a natural extension to n lenders. In this situation, we assume lenders receive the same
signal from borrowers but do not know each other’s type or action.
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si = 0 is a healthy borrower (did not receive solvency shock), whereas a borrower of type

si = 1 is a distressed borrower (received solvency shock). A lender of type t j = A is an

informed lender (knows si), and a lender of type t j = B is an uniformed lender (does not

know si).

Let ri be the borrower’s signal, which is a linear transformation of both F̄i and gi. I de-

fine a normal rate of return offered by a borrower as the ri that sets E
�

Uj(si, t j,,ri,a j)|I j
�

=

0. Recall that the lender’s reservation utility is zero, and ri = 0 provides an informed lender

with a normal rate of return if the borrower is type 0. I define rd
i to be the interest rate

the type 1 borrower offers that provides an informed lender a normal rate of return, and r̄i

to be the interest rate offers that promises the entire future funds of the type 1 borrower

to the lender. Similarly, let a j 2 [0,1] be the lender’s action, where a j = 0 is equivalent

to providing liquidity with probability zero. I allow ri to be conditional on the borrower’s

type, and a j to be conditional on the borrower’s signal and lender’s type.

The structure of the game is as follows:

1. Borrower i learns its type si = {0,1}, with Pr(si = 1) = ps.

2. Lender j learns its type t j = {A,B} with Pr(t j = A) = q .

3. Borrower i, which knows its type, makes an offer to lender j to borrow the liquidity

it requires to survive at interest rate ri.

4. Conditional on its type t j, lender j plays action a j, accept with probability 0< a j < 1.

If lender j accepts, the borrower gets Ui(si,ri,1) and the lender gets U(si, t j,,ri,1).

If lender j rejects, both parties get 0.
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Before continuing, I state without proof that for both types si = {0,1}:

∂Ui
∂ ri

< 0 ri 2 [0,rd
i ), ai > 0

∂Ui
∂ai

> 0 ri 2 [0,rd
i ), ai > 0

Note that regardless of the borrower’s type, if ri < 0, the lender’s best response is a j = 0

because a j > 0 will give Uj < 0. Moreover, assuming rd
i  r̄i, then regardless of the

borrower’s type, if ri > rd
i , the lender’s best response is a j = 1 because a j > 0 will give

Uj > 0 and ∂Uj
∂a j

> 0. Thus, because the borrower is profit maximizing, I restrict attention

to signals ri 2 [0,rd
i ]. For exposition, I assume type A lenders take action a j = 1 if and only

if the borrower promises them at least a normal rate of return.3

Assume for now that ri 2 [0,rd
i ). I will first construct the best pooling and separating

equilibria from the borrower’s perspective, before later arguing why other equilibria do not

survive the D1 criterion.

Consider the pooling equilibrium discussed in the paper. In this pooling equilibrium,

ri(si = 1) = ri(si = 0) and a j = 1 for the type B lender.4 Given the pooling strategy played

by the borrower, the type B lender places prior probability ps on the type 1 borrower. More-

over, the pooling interest rate rp
i must be set to maximize borrower profits. I conjecture this

interest rate is equivalent to the interest rate at which an uninformed lender makes exactly

a normal rate of return:

psUj(1,B,r
p
i ,1)+(1� ps)Uj(0,B,r

p
i ,1)� 0 (A.1)

3. One can generalize and allow for mixed strategies when the borrower offers exactly a normal rate of
return, but doing so adds very little.

4. Note these interest rates do not mean the lender always provides liquidity; it simply means an unin-
formed lender always provides liquidity (those that do not receive the q signal).
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Note that when this condition is satisfied, a type B lender will always (weakly) choose

to lend. Thus, a j = 1 is a best response for the type B lender. Moreover, any pooling

interest rate below rp
i would result in the type B lender playing a j = 0; otherwise, it would

receive Uj < 0. However, any pooling interest rate above rp
i is not possible because such

a rate would not be profit maximizing from the borrower’s perspective. Given rp
i , it is also

immediate that the type A lender is playing its best response. A second condition is required

for the pooling equilibrium to ensure both borrower types are playing a best response:

Ui(0,r
p
i ,1)� qUi(0,0,1) (A.2)

Condition (2) guarantees a type 0 borrower does not want to deviate to an interest rate

of ri = 0. Note the type 1 borrower would never want to deviate downwards because doing

so would result in Uj = 0 (neither type of lender would be willing to lend to it). Thus, if

we restrict ri 2 [0,rd
i ), the conditions (1) and (2) are sufficient for the pooling equilibrium.

We now focus on separating equilibria. Conjecture a separating equilibrium where

ri(si = 1) 6= ri(si = 0). It follows that the type B lender’s best response is ai(ri(si = 1)) = 0

and ai(ri(si = 0))= 1 because lending to the type 1 borrower guarantees Uj < 0 and lending

to the type 0 borrower guarantees Uj > 0 (with ∂Uj
∂a j

> 0). Note this strategy is identical to

the one played by the type A lender (who is also informed). Because lending to the type

1 borrower never occurs, it always receives its reservation utility, Ui = 0. Thus, what is

conjectured cannot constitute an equilibrium, because the type 1 borrower has the incentive

to deviate and mimic the type 0 borrower for Ui > 0. Thus, no separating equilibrium exists

when ri(si = 1)< rd
i .

However, a separating equilibrium might occur when ri(si = 1) = rd
i . To see why, note

rd
i gives the lender a normal rate of return, regardless of borrower type. Thus, if the type

1 borrower separates using ri = rd
i , both lender types would be willing to play a j = 1 in
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response. Consequently, the type 1 borrower can achieve Ui > 0 provided rd
i < r̄i. I then

conjecture that a type 0 borrower sets an interest rate 0  rh
i  rp

i . It follows that the type

1 borrower has no incentive to deviate and mimic the type 0 borrower so long as:

Ui(1,rd
i ,1)> (1�q)Ui(1,rh

i ,1) (A.3)

Interestingly, because higher interest rates are more costly, one might think the type 0

borrower would signal through this more costly action. However, the possible presence

of a type A lender is in fact what deters the type 1 borrower from mimicking the type 0

borrower when it chooses a lower interest rate in the separating equilibrium. That is, the

threat of liquidity rationing is the deterrent, because it encourages the distressed borrower

to accept the higher interest rate. As such, we are able to construct a separating equilibrium

where ri(si = 1) = rd
i , ri(si = 0) = rh

i , and a j = 1 for both lender types.

Note condition (3) is also a condition for the existence of the pooling equilibrium once

we allow ri 2 [0,rd
i ]. If this condition is violated, the type 1 borrower would deviate to

ri = rd
i , and the separating equilibrium would cease to exist. Moreover, I leave it to the

reader to verify that if r̄i < rd
i , only pooling equilibria exist.5

One can also generalize conditions (2) and (3) to a case with n lenders. For example, in

the case in which each of the n lenders is marginal,6 the conditions are:

Ui(0,r
p
i ,1) � q

nUi(0,0,1)

Ui(1,rd
i ,1) > (1�q)nUi(1,rh

i ,1)

5. The argument relies on the fact that the type 0 borrower can send no (costly) signal that would encour-
age the type 1 borrower to pick a different interest rate.

6. Marginal here means each is required to lend in order for the borrower to survive until t = 2.
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Finally, other equilibria are possible depending on the specified off-equilibrium beliefs.

For example, we could have a pooling equilibrium with ri = rp
i + d for d small and pos-

itive. However, such an equilibrium does not survive the D1 criterion, because the type 0

borrower can increase its Ui by deviating downwards to ri = rp
i (and still have the lender

provide liquidity as long as the off-equilibrium beliefs are not crazy). A similar argument

can be applied to eliminate other pooling equilibria (supported by various off-equilibrium

beiefs) where ri(si = 0)> rh
i and/or ri(si = 1)> rd

i .

However, note we cannot use D1 to eliminate the pooling equilibrium. Recall the sepa-

rating equilibrium exists when (3) holds, because the type 1 borrower is unwilling to mimic

the type 0 borrower due to the threat of liquidity rationing from the type A lender. Thus,

in effect, the type 0 borrower’s signal is costly to the type 1 borrower because it satisfies

rh
i < rd

i .7 Now, for any rh
i < rd

i , mimicking the type 0 borrower’s choices of ri is less costly

for the type 1 borrower. Thus, because the type 0 borrower will never set ri > rp
i , if condi-

tion (3) is violated for rh
i = rp

i , a pooling equilibrium must ensue. Put differently, the most

costly signal the type 0 borrower is willing to send is ri = rp
i , and if the type 1 borrower is

willing to mimic it, then a pooling equilibrium is the only outcome.

A.6 Proof of Proposition 6

Appendix 2 shows:

C(q) =
n
Â

k=0
kCk = n

⇣

p̂d,(0)(1�q)+(1�q)n(p̂d,(1)� p̂d,(0))
⌘

7. In fact, conditional on being able to borrow, the signal is less costly in terms of interest rate.
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Where:

p̂d,(0) =
1

R̄�R
f/N

1�f/N

p̂d,(1) =
1

(R̄�R)2
f/N

1�f/N

⇢

D� 1
2
(N �1)f

1�f

�

The first statement follows immediately from the second derivative of the function

C(q):
∂

2C
∂q

2 = n2(n�1)(1�q)n�2(p̂d,(1)� p̂d,(0))< 0

For the second statement, note the concavity of C(q) implies the maximum occurs at

either q = 0 (if C0(0) < 0), or at q = 1 (if C0(1) > 0), or at an intermediate q̄ that solves

C0(q̄) = 0. Because by construction, (i) C(q) � 0, (ii) C(0) > 0, and (iii) C(1) = 0, we

can rule out q = 1 as a maximum. Thus, we simply need to check the derivative at q = 0,

which can be shown to be:

∂C
∂q

|
q=0 µ (n�1)p̂d,(0)�np̂d,(1)

Thus, the maximum occurs at q = 0 if and only if:

∂C
∂q

|
q=0 < 0 ()

(n�1)p̂d,(0)
np̂d,(1)

< 1

Likewise, if the inequality is reversed, it immediately follows that the maximum occurs

at q = q̄ where q̄ solves:

n
⇣

�p̂d,(0)�n(1� q̄)n�1(p̂d,(1)� p̂d,(0))
⌘

= 0

As required.
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A.7 Proof of Proposition 7

For C0(q), note that:

C0 =
⇣

q +(1�q)(1� p̂d,(0))
⌘n

+(1�q)n
⇣

(1� p̂d,(1))
n � (1� p̂d,(0))

n
⌘

Then taking derivatives:

∂C0
∂q

= np̂d,(0)

⇣

q +(1�q)(1� p̂d,(0))
⌘n�1

�n(1�q)n�1
⇣

(1� p̂d,(1))
n � (1� p̂d,(0))

n
⌘

∂

2C0
∂q

2 = (n2 �n)p̂2
d,(0)

⇣

q +(1�q)(1� p̂d,(0))
⌘n�2

+(n2 �n)(1�q)n�2
⇣

(1� p̂d,(1))
n � (1� p̂d,(0))

n
⌘

> 0

Thus, C0 is globally convex. Now C0 will be strictly increasing if and only if ∂C0
∂q

|
q=0 >

0. We can show:
∂C0
∂q

|
q=0 = n(1� p̂d,(0))

n�1 �n(1� p̂d,(1))
n

Which is positive if and only if:

(1� p̂d,(0))
n�1

(1� p̂d,(1))
n > 1

For Cn(q), note that:

Cn = (1�q)n
p̂

n
d,(1)
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Then taking derivatives:

∂Cn
∂q

= �n(1�q)n�1
p̂

n
d,(1) < 0

∂

2Cn
∂q

2 = n(n�1)(1�q)n�2
p̂

n
d,(1) > 0

Which proves Cn is both globally convex and strictly decreasing in q .

Next, consider the second statement, which covers 0 < k < n. Note that:

Ck =

0

B

@

n

k

1

C

A

⇣

p̂d,(0)(1�q)
⌘k⇣

q +(1�q)(1� p̂d,(0))
⌘n�k

+(1�q)n

0

B

@

n

k

1

C

A

⇣

p̂

k
d,(1)(1� p̂d,(1))

n�k � p̂

k
d,(0)(1� p̂d,(0))

n�k
⌘

It follows that:

∂Ck
∂q

=

0

B

@

n

k

1

C

A

p̂d,(0)

✓

�k
⇣

p̂d,(0)(1�q)
⌘k�1⇣

q +(1�q)(1� p̂d,(0))
⌘n�k

◆

+

0

B

@

n

k

1

C

A

p̂d,(0)(n� k)
⇣

p̂d,(0)(1�q)
⌘k⇣

q +(1�q)(1� p̂d,(0))
⌘n�k�1

�

0

B

@

n

k

1

C

A

n(1�q)n�1
⇣

p̂

k
d,(1)(1� p̂d,(1))

n�k � p̂

k
d,(0)(1� p̂d,(0))

n�k
⌘

∂Ck
∂q

|
q=0 = (n� k)

0

B

@

n

k

1

C

A

p̂

k
d,(0)(1� p̂d,(0))

n�k�1 �n

0

B

@

n

k

1

C

A

p̂

k
d,(1)(1� p̂d,(1))

n�k
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Which means for fixed k, the maximizing q is greater than zero if and only if:

(n� k)
n

 

p̂d,(0)
p̂d,(1)

!k
(1� p̂d,(0))

n�k�1

(1� p̂d,(1))
n�k > 1

Finally, to prove the third statement note that if q = 1 Ck(q) simplifies to

Ck =

0

B

@

n

k

1

C

A

(0)k(1)n�k

Which is equal to 1 if and only if k = 0, and zero otherwise.

A.8 Proof of Proposition 8

For the first statement, note from bank i’s objective function that for a given ai, bor-

rowing over and above Bi = f �ai affects Li negatively through the compensation bank i

owes its lenders p̂d,iV and through its impact on bank i’s own probability of default. The

proof shows that both p̂d,i and pd,i are increasing in Bi for Bi > f �ai.

Fix bank i’s choice of ai, and assume ai +Bi � f (note that if it were less, repayment

would never be possible and the bank would be better off in autarky). Define di = Bi�(f �

ai) to be the extra amount borrowed by bank i above what it needs to pay for a liquidity

shock. Assume for now that di  d̄i = 1�f � (1�ai)(R�D).

Step 1: I show the probability of default is increasing in Bi (equivalently di) for di 2

[0, d̄i]. Consider the following:

p̂d,i j =
1

(R̄�R)2
Bi j

1�a j

⇢

D� 1
2

Bi
1�ai

�
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Thus:

p̂d,iV = Â
j

p̂d,i jV

= Â
j

1
(R̄�R)2

Bi j
1�a j

⇢

D� 1
2

Bi
1�ai

�

V

∂ p̂d,iV
∂Bi j

µ (1�ai)D� 1
2 Â
�i6= j

Bi�i �Bi j �
1
2

Bi

= (1�ai)D�Bi

� (1�ai)D� (f �ai +(1�f � (1�ai)(R�D))

= 0

Step 2: Consider the probability the principal is repaid in full:

Pr
�

d1 +(1�ai)R̃i  1�f +Bi
�

= Pr
✓

R̃i 
1�f +Bi �d

1�ai

◆

= Pr
✓

R̃i 
1�f +Bi � (Bi � (f �ai))

1�ai

◆

= Pr(R̃i  1)

Thus, we see that conditional on ai+Bi � f , the probability the principal for interbank

debt is repaid in full does not depend on ai or Bi. Thus, we can partition R̃i into two disjoint

and exhaustive subsets. Define E = [R̃i < 1] and E c = [R̃i � 1].
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Step 3: For lender j to break even on its lending, we require:

Bi j + p̂d,i jV = E(F̃i j)

= Pr(E )E(F̃i j|E )+Pr(E c)E(F̃i j|E c)

= Pr(R̃i < 1)E(F̃i j|E )+Pr(R̃i � 1)E(F̃i j|E c)

=) 0 = Pr(R̃i < 1)
�

Bi j �E(F̃i j|E )
�

+Pr(R̃i � 1)
�

Bi j �E(F̃i j|E c)
�

+ p̂d,i jV

Now, taking a derivative, and noting that Pr(E ) and Pr(E c) are fixed, we have:

0 = Pr(R̃i < 1)
∂ (Bi j �E(F̃i j|E ))

∂Bi j
+Pr(R̃i � 1)

∂ (Bi j �E(F̃i j|E c))

∂Bi j
+

∂ p̂d,i j
∂Bi j

V

Step 4: Solve for ∂ (Bi j�E(F̃i j|E ))
∂Bi j

. Note that E = {R̃i < 1}= {F̃i < Bi}. Also note that

{E |s = 0}= /0. We have:

Bi �E(F̃i|F̃i < Bi) = Bi �E(F̃i|s = 1, F̃i < Bi)

= Pr(F̃i = 0|s = 1, F̃i < Bi)
�

Bi �E(F̃i|s = 1, F̃i = 0)
�

+Pr(F̃i > 0|s = 1, F̃i  Bi)
�

Bi �E(F̃i|s = 1,0 < F̃i < Bi)
�

= G(R⇤⇤)⇥0+(G(R)�G(R⇤⇤))
✓

Bi �
Bi
2

◆

=
1

R̄�R
(R�R⇤⇤)

Bi
2

=
1

R̄�R

✓

D� 1
2

Bi
1�ai

◆

Bi
2

Where R⇤⇤
i is defined as:

8R > R⇤⇤
i : Fi j(R⇤⇤

i )> 0
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Then, taking the derivative with respect to Bi we have:

∂

�

Bi �E(F̃i|F̃i < Bi)
�

∂Bi
µ (1�ai)D�Bi

= (1�ai)D� (f �ai +di)

� (1�ai)D� (f �ai +(1�f � (1�ai)(R�D))

= 0

Step 5: Thus, for Bi  1�f +(1�ai)(R�D), ∂ p̂d,i
∂Bi

V > 0, and ∂ (Bi�E(F̃i|E ))
∂Bi

> 0, it

follows that ∂ (Bi�E(F̃i|E c))
∂Bi

< 0, which means F̃i must be increasing more quickly than Bi,

or in words, as we increase Bi over the range di 2 [0,1�f �(1�ai)(R�D)], the promised

payment must increase by even more.

Step 6: By extension, because Fi �Bi is increasing over the range di 2 [0,1�f � (1�

ai)(R�D)], we know the probability of default must be increasing:

∂pd,i
∂Bi

=
1

R̄�R
∂

∂Bi

✓

F̄i �Bi
1�ai

+ psD
◆

µ ∂ (F̄i �Bi)

∂Bi
> 0

Finally, to complete the proof, we must consider the case in which di > 1� f � (1�

ai)(R�D). When di = d̄i, notice the minimum amount of assets bank i has available at

t = 2 is:

(1�ai)(R�D)+Bi = (1�ai)(R�D)+1�f � (1�ai)(R�D)

= 1�f

= Di

That is, if bank i borrows Bi = 1 � f � (1 � ai)(R � D), it is always able to repay

depositors at t = 2. Thus, any additional borrowing above this point does not alter either

75



the promised payment or the lender’s probability of default. That is, the additional amount

is borrowed at t = 1, and is available at t = 2 for immediate repayment to whomever loaned

it. Thus, for 8di > d̄i, F(di) = F(d̄i), p̂d,i(di) = p̂d,i(d̄i), and therefore pd,i(di) = pd,i(d̄i).

Putting the pieces together, we see pd,i(di) is increasing for di 2 [0, d̄i] and flat for

di > d̄i. Thus, bank i would never want to borrow more than f �ai when using committed

lending relationships, and will always obtain promises of Bi = f �ai.

For the second statement, the objective function can be written as:

Li = (1�ai)

 

R̄�R
2

� pl psD+ pl ps
1
2

D2

R̄�R

!

�pl
ps

R̄�R
(f �ai)

✓

D� 1
2

f �ai
1�ai

◆

Zi +(1�ai)Pe

+

 

1� pl +
pl

R̄�R

s

(R̄�R� psD)2 �2ps
f �ai
1�ai

✓

D� 1
2

f �ai
1�ai

◆

Zi

!

V

The key to the proof is to show the second derivative is positive (objective function

is convex). If we have convexity, and some a

0
i 2 [a i,f) exists that gives a greater return

(with its associated lending relationships) than ai = f , then convexity implies the objective

function must be strictly decreasing over the range ai 2 [a i,a
0
i ], and therefore the optimal

ai is a i.

Thus, to show convexity, first note that due to the linearity of some terms, we have:

∂

2Li
∂a

2
i

µ ∂

∂a

2
i

(

�ci +
1

R̄�R

s

(R̄�R� psD)2 �2
1

1�ai
(R̄�R)ciV

)

= � ∂ci
∂a

2
i
� V

R̄�R
1

X3/2

 

X
∂

∂a

2
i

✓

(R̄�R)
1�ai

ci

◆

+

✓

∂

∂ai

(R̄�R)
1�ai

ci

◆2
!
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Where:

X = (R̄�R� psD)2 �2
1

1�ai
(R̄�R)ci

ci =
psZi

R̄�R
(f �ai)

✓

D� 1
2

f �ai
1�ai

◆

It can then be shown:

∂

2ci
∂a

2
i

= � psZi
R̄�R

(1�f)2

(1�ai)3 < 0

∂

∂ai

✓

(R̄�R)
1�ai

ci

◆

= � 2(1�f)

(1�ai)3 (D(1�ai)� (f �ai)) psZ

∂

2

∂a

2
i

✓

(R̄�R)
1�ai

ci

◆

= � 1
(1�ai)4 ((1�f)+2(D�f)+2(1�D)ai) psZ < 0

To prove convexity, we just need to show the inner part of ∂Li
∂ai

is negative. The first

and second terms are strictly negative, as shown above. However, the third term is strictly

positive. If we define:

Y =

 

X
∂

∂a

2
i

✓

(R̄�R)
1�ai

ci

◆

+

✓

∂

∂ai

(R̄�R)
1�ai

ci

◆2
!
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It can be shown that:

Y µ �(1�ai)
2 (R̄�R� psD)2 ((1�f)+2(D�f)+2(1�D)ai)

+(2(1�ai)(f �ai)D� (f �ai)) psZ ((1�f)+2(D�f)+2(1�D)ai)

+(1�f)(D(1�ai)� (f �ai))
2 psZ

 �(1�ai)
2 (R̄�R� psD)2 ((1�f)+2(f �f)+2(1�f)ai)

+(2(1�ai)(f �ai)D� (f �ai)) psZ ((1�f)+2(f �f)+2(1�f)ai)

+(1�f)(D(1�ai)� (f �ai))
2 psZ

= Ŷ

Ŷ µ �
⇣

(1�ai)
2 (R̄�R� psD)2 � (2(1�ai)(f �ai)D� (f �ai)) psZ

⌘

(1+2ai)

+(D(1�ai)� (f �ai))
2 psZ

 �(R̄�R� psD)2
⇣

1�3a

2
i +2a

3
i

⌘

+
⇣

1�f +f

2
⌘

psZ

µ �(R̄�R� psD)2 +

⇣

1�f +f

2
⌘

�

1�3a

2
i +2a

3
i
� psZ

Thus, a sufficient condition for convexity is

⇣

1�3a

2
i +2a

3
i

⌘

�

1�f +f

2� (R̄�R� psD)2 � psZ

Which is easily satisfied for any small ps.

For the third part of the proposition, recall that under autarky risk-shifting was desired

if and only if:

pl

⇣

p0
s � p1

s

⌘

(1�f)D
✓

1� D/2
R̄�R

◆

+
D

R̄�R
pl

⇣

p0
s � p1

s

⌘

V < (1�f)P
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Thus, assume for d1 > 0, we can write:

P = pl

⇣

p0
s � p1

s

⌘

D
✓

1� D/2
R̄�R

◆

+
D

R̄�R
pl

⇣

p0
s � p1

s

⌘ V
1�f

+d1

Denote h

e
j as the premium paid to bank j to compensate bank j for its default risk, and

h

e = Âh

e
j . If lenders break even, h

e = ce = Bi + p̂d,iV . However, note bank j cannot

observe the effort choice of bank i, and because the lending relationship is committed, the

promised payment is fixed regardless of effort choice. Thus, for a fixed promised payment

F̄i j, it must be the case that h

1 > h

0 as g(R̃|ei = 1) first-order stochastically dominates

g(R̃|ei = 0). Define h

1 �h

0 = d2

With a committed lending relationship, the objective function is:

Li = (1�ai)

 

R̄�R
2

� pl pe
sD+ pl pe

s
1
2

D2

R̄�R

!

+ pl(Bi �h

e)+(1�ai)Pe +(1�p

e
d,i)V

Thus, banks choose low effort iff:

pl(p0
s � p1

s )
1
2

D2

R̄�R
+P� plD(p0

s � p1
s )+ pl(1�ai)

�1(h0 �h

1)�
p

0
d,i �p

1
d,i

1�ai
V > 0

For a fixed promised payment F̄i j, we have that:

p

0
d,i �p

1
d,i = pl

⇣

p0
s � p1

s

⌘ 1
R̄�R

D

Substituting back in for each of P, h

0 �h

1, and p

0
d,i �p

1
d,i, and simplifying, we get:

pl

⇣

p0
s � p1

s

⌘

D 1
R̄�R

(f �ai)V
(1�ai)(1�f)

+d1 +
pl

1�ai
d2 > 0
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Notice the RHS is strictly greater than zero, providing d1 > 0. Thus, we have shown

that if banks want to risk shift without interbank borrowing, they will always desire to do

so when using committed lending relationships.

Finally, for the last statement in the proposition, recall that the expected amount of

contagion when q = 0 is:

C(q) =
n
Â

k=0
kCk = np̂d,(1)

However, p̂d,(1) is the level of contagion when no breakages occur. Committed lending

relationships have exactly this property, and thus it follows that the q = 0 case when un-

informed banks always lend (despite having uncommitted lending relationships) must be

equivalent to the committed lending relationships case.

A.9 Proof of Proposition 9

First, let’s consider the contract between bank i and bank j. For ease of exposition,

I will assume throughout that bank i receives the liquidity shock (and potentially the sol-

vency shock), and bank j is asked to provide liquidity. We know bank j cannot make

negative profits, because individual rationality implies it would not engage in such a con-

tract. Moreover, any positive profits bank j might make from its contract with bank i are

merely a transfer from bank i. However, a contract giving bank j positive profits does not

increase or decrease bank j’s probability of default, yet does increase bank i’s probability

of default. Consequently, such a contract cannot be surplus maximizing, unless it affects

bank i’s incentives.

Second, note that because bank i must go first and must make all its actions simultane-

ously, it cannot base its decisions at t = 1 off the information sets of any bank j. Moreover,

because bank i cannot write a contract on whether it receives a solvency shock, we can
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rule out any contract that does not offer each bank j a normal rate of return when each

bank j makes its liquidity-provision decision. Thus, bank i can offer bank j either (i) an

unconditional contract in which bank j commits at t = 0 to provide liquidity at a fixed rate

were bank i to receive a liquidity shock at t = 1, or (ii) a conditional contract in which bank

j has the option to refuse to provide liquidity based on bank i’s action when it receives a

liquidity shock at t = 1.

The unconditional contract is equivalent to a committed lending relationship where

lenders make zero profits. We know from Proposition 8 that this contract cannot align

incentives and thus cannot be optimal. The conditional contract nests several possibilities,

one of which is the uncommitted lending relationship. Consider the uncommitted lending

relationships. If D > D̄, we know bank i does not have sufficient funds to promise each

bank j following a solvency shock at t = 1, and thus each informed bank j will refuse to

provide liquidity. The only way to prevent liquidity rationing is through an unconditional

penalty.8

Consider a penalty that takes the form of a tax t on informed liquidity providers that

is paid to the uninformed liquidity providers.9 Moreover, suppose for now that every bank

plays the same strategy, which ensures each bank in expectation makes zero profits from the

tax, and the tax does not affect the interest rate at which bank i requests liquidity. If the tax

is sufficiently large, t > t̄ such that when implemented, informed bank j would be willing

to provide liquidity at interest rate rp
i , then bank i will no longer be disciplined if it opts

against screening. However, we know rp
i is lower than the interest rate paid on committed

8. The penalty is unconditional because contracts cannot be written on information sets or the occurence
of a solvency shock.

9. Paying the tax to bank i does not work, because bank i is going to default unless at t = 1. I rule out
paying the tax to the planner that redistributes it optimally at t = 2 in order to minimize defaults.
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lending relationships.10 Thus, if bank i were to deviate and opt against screening, each

bank j would be unwilling to enter into the conditional contract with t > t̄ .

Suppose instead that t  t̄ . It can be shown that if banks j = {1, ...,k} are informed

(type A) and banks j = {k+ 1, ...,n} are uninformed (type B), each bank’s probability of

default is:

p̂d,A =
1

R̄�R
t

1�a

p̂d,B = max

 

1
R̄�R

a � k
n�kt

1�a

,0

!

Summing these up, we have:

kp̂d,A +(n� k)p̂d,B =
1

R̄�R
min

✓

(n� k)a
1�a

,
kt

1�a

◆

Thus, conditional on the interest rate bank i requests and a given realized signal to each

bank j, the tax does not reduce the expected number of contagious defaults. Moreover,

because depositors are senior claims and illiquid asset returned are uniformly distributed,

it follows that the tax does not affect expected depositor losses. Thus, the only way such a

contract can increase total surplus is if it affects bank i’s willingness to request liquidity at

a separating interest rate. We find that if the following conditions are satisfied, the planner

can improve on the private allocation by implementing conditional contracts that give bank

i the option to borrow liquidity at interest rates ri = {rd0
i ,rh0

i }, and tax bank j at rate t if it

10. Otherwise, banks would strictly prefer committed lending relationships, and I focus throughout on
cases in which this is not true.
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refuses to provide liquidity to bank i.

(1� p1
s )Uj(0,A,rh0

i ,1)+ p1
sUj(1,A,rd0

i ,1) � 0

Ui(1,rd0
i ,1) � E

⇣

Ui(1,rh0
i ,a j)

⌘

Li(ai,1,Bi j|rh0
i ,rd0

i ,t) � Li(ai,0,Bi j|rh0
i ,rd0

i ,t)

Uj(1,A,rd0
i ,1) � �t

This contract works because (i) condition (1) guarantees bank j a normal rate of return,

(ii) condition (2) ensures a distressed bank i will opt to borrow at a separating interest rate,

(iii) condition (3) aligns bank i’s screening incentives, and (iv) condition (4) ensures bank

j is always willing to provide liquidity. If any of these conditions are violated, a separating

offer is not possible when D > D̄ under any potential tax instituted by the planner.

Finally, if separating offers are not possible, we are left with a set of conditional con-

tracts in which liquidity is requested at an interest rate independent of bank i’s state, with

each bank j granted the (potentially costly) option of refusal. In these scenarios, the ex-

pected number of defaults, expected losses to depositors, and the expected amount of liq-

uidation are identical to what takes place under an uncommitted lending relationship.
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APPENDIX B

FUNCTIONAL FORMS

This section provides the reader with a summary of a series of functional forms that are

used throughout the paper.

B.1 Autarky

Under autarky, three distinct regions exist: ai 2 [0,f), ai 2 [f ,1), and ai = 1.

Begin by deriving bank i’s probability of default. First, no default occurs in the absence

of liquidity shocks. Second, if bank i sets ai 2 [0,f), it will have insufficient liquidity to pay

for a liquidity shock, which implies pd,i = pl . Third, if bank i sets ai = 1, it cannot default,

because it holds only liquid assets that will return exactly 1 in the future, and this amount

is sufficient to pay all depositors. Finally, if bank i sets ai 2 [f ,1), it has sufficient liquidity

to pay for the liquidity shock, and should no solvency shock occur, the bank will also have

sufficient assets to pay its remaining depositors, because min
�

(ai �f)+(1�ai)R̃i
�

= 1�

f . Thus, bank i cannot default without receiving a solvency shock. If bank i does receive

a solvency shock, it defaults with probability Pr
�

(ai �f)+(1�ai)R̃i < 1�f |s = 1
�

=

Pr
�

R̃i < 1|s = 1
�

= D
R̄�R . Thus, if bank i picks ai 2 [f ,1), its probability of default is

pl ps
D

R̄�R . Thus, we have:

pd,i =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

pl i f ai 2 [0,f)

pl ps
D

R̄�R i f ai 2 [f ,1)

0 i f ai = 1
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Next, consider bank profits. If bank i picks ai 2 [0,f), and receives a liquidity shock

(as it defaults immediately) at t = 1, it will be forced to liquidate its assets and receives

nothing. Otherwise, it survives untill t = 2 and receives profits of ai + (1�ai)R̃i �D.

Thus, we have:

E(Pi|ai 2 [0,f)) = (1� pl)(1�ai)(E(R̃i)�1)

= (1� pl)(1�ai)
R̄�R

2

Second, if bank i picks ai 2 [f ,1), we know from before that bank i has sufficient liquid

assets to survive until t = 2. Given this information, we also know that if bank i doesn’t

receive a solvency shock, it receives profits of ai+(1�ai)R̃i�D at t = 2. However, if the

solvency shock hits bank i, with probability 1�D/(R̄�R), it receives ai +(1�ai)R̃i �D

(with R̃i > 1), and otherwise it receives nothing. Thus expected profits are:

E(Pi|ai 2 [f ,1)) = (1� pl ps)(1�ai)(E(R̃i)�1)

+pl ps

✓

1� D
R̄�R

◆

(ai +(1�ai)E(R̃i|s = 1, R̃i > 1)�D)

= (1�ai)

✓

R̄�R
2

� pl psD
◆

+
pl ps

R̄�R
(1�ai)

D2

2

Finally, if bank i sets ai = 1, bank i has liquid assets that will always be worth 1, and

always returns D = 1 to depositors. Thus, we have E(Pi|ai = 1) = 0.
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Given profits and the probability of default, we can write the autarky objective function

in piecewise fashion as:

Li =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1� pl)(1�ai)
R̄�R

2 +(1�ai)Pe +(1� pl)V i f ai 2 [0,f)

(1�ai)
n

R̄�R
2 � pl psD

⇣

1� D/2
R̄�R

⌘

+Pe
o

+
⇣

1� D
R̄�R pl ps

⌘

V i f ai 2 [f ,1)

V i f ai = 1

B.2 Lending Relationships

For the duration of this section, assume bank i holds ai < f liquid assets and has lending

relationships equal to Bi � f �ai. Second, I assume throughout that lending banks provide

liquidity if and only if borrowing banks promise a normal rate of return. I assume that

beliefs are correct, and for simplicity, I abstract away from the bank’s choice of screening.

I begin with the probability of default for a bank that receives a liquidity shock and becomes

a borrower.

First, if the borrower is only able to borrow Bi < f �ai, the probability of default is 1

because the borrower must liquidate all assets at t = 1. However, if the borrower is able to

obtain Bi = f �ai, it survives untill t = 2, and we have the probability of default as:

pd,i = Pr
�

ai +(1�ai)R̃i +Bi < 1+ F̄i
�

= Pr
�

R̃i < R⇤�

Where:

R⇤ =
1+ F̄i �Bi

1�ai
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Consider two specific cases. If F̄i  R̄�D, we have:

pd,i = Pr
�

R̃i < R⇤�

= (1� ps)Pr
✓

R̃i <
1�f + F̄i

1�ai
|s = 0

◆

+ psPr
✓

R̃i <
1�f + F̄i

1�ai
|s = 1

◆

=
1

R̄�R

✓

(1� ps)

✓

1�f + F̄i
1�ai

�R
◆

+ ps

✓

1�f + F̄i
1�ai

� (R�D)
◆◆

=
1

R̄�R

✓

F̄i �Bi
1�ai

+ psD
◆

If F̄i > R̄�D, it can be shown that:

pd,i =
1

R̄�R

✓

ps +(1� ps)
F̄i �Bi
1�ai

◆

If q̂ is the probability that the borrower (bank i) defaults at t = 1 because insufficient

lenders followed through on their promises, we can write the borrowers probability of

default as:

pd,i = q̂ +(1� q̂)Pr(R̃i < R⇤)

=

8

>

>

<

>

>

:

q̂ + (1�q̂)
R̄�R

⇣

F̄i�Bi
1�ai

+ psD
⌘

i f R̄�D � F̄i

q̂ + (1�q̂)
R̄�R

⇣

ps +(1� ps)
F̄i�Bi
1�ai

⌘

i f R̄�D < F̄i

Next, I derive the probability of default for a lender. By construction, a lender is some

bank j that did not receive a liquidity shock, whereas a borrower is some bank i that both

received a liquidity shock and has insufficient funds to pay for the liquidity shock on its

own. Formally, suppose bank i holds ai < f liquid assets and has lending relationships of

size Bi j with other banks j = {1,2, ...,n} such that ÂBi j = Bi � f �ai. All lenders have

some promised payment on their lending equal to F̄i j. As a technical note, I assume that

when a borrower is unable to repay the entire principal it borrows, the payout to each lender
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is proportionate to the size of the principal it lent. Thus, define x j =
Bi j
Bi

as the fractional

repayment lender j receives when bank i is unable to repay all borrowed principal.

Each lender’s probability of default is conditional on both whether the borrower has

sufficient liquidity to pay for its liquidity shock, and whether the borrower received a sol-

vency shock. Without loss of generality, assume that if no solvency shock occurs, bank

i is able to borrow liquidity such that ai +Bi � f . Thus, three potential states exist for

the borrower; (i) no solvency shock; (ii) solvency shock and insufficient liquidity; and (iii)

solvency shock and sufficient liquidity. An uninformed lender’s probability of default will

be an expectation across these three potential states.

Consider the first case in which the borrower did not receive a solvency shock. In this

case, the minimum repayment made by the borrower is:

Fi(R) = max(min((1�ai)R� (1�f), F̄i) ,0)

= Bi

Which means the lender repays each borrower a minimum amount of Bi, j. When

lenders receive the minimum repayment, their probability of default equals:

Pr(De f j|Fi = Bi j) = Pr((a j �Bi j)+(1�a j)R̃ j +Bi j < D)

= 0

Thus, if borrowers do not receive a solvency shock, lending is riskless.

Now consider the second case in which the borrower receives a solvency shock, and is

unable to borrower sufficient liquidity from its lenders (ai+Bi < f ). In this case, if lender

j were to provide liquidity of Bi j to borrower i, it would take a loss of Bi j because bank i is

unable to cover its liquidity shock and is forced into early liquidation. Thus, the probability
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of default for bank j conditional on lending amount Bi j is:

Pr(De f j|Fi j = 0) = Pr
�

(a j �Bi j)+(1�a j)R̃ j < D
�

=
1

R̄�R
Bi j

1�a j

Finally, consider the third case, in which the borrower receives a solvency shock and

raises sufficient liquidity from its lenders (ai+Bi � f ). In what follows, I focus on the case

in which ai +Bi = f . A similar method can be applied to the case in which ai +Bi > f

but because this scenario is not of great importance in this paper, I leave the proof to the

reader. Now, because the lender will not default if the borrower repays the principal in full,

we only need to consider the region where the borrower repays Fi(Ri) Bi. Moreover, note

that Fi(R) = Bi, and thus we can write:

Fi j(R̃i|R̃i  Bi) = max
�

0,x j ((1�ai)Ri � (1�f))
 

Define R⇤⇤
i as:

8R > R⇤⇤
i : Fi j(R⇤⇤

i )> 0

=) R⇤⇤
i =

1�f

1�ai
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Finally, define the function X̃ j = a j �Bi j +(1�a j)R j +Fi j(R̃i), and the event E j =

{a j �Bi j +(1�a j)R̃ j < D}. Now, we can write the probability of default as:

Pr(De f j|si = 1,ai +Bi = f) = Pr(X̃ j < D)

= Pr(R⇤⇤
i < R̃i < R)Pr

�

X̃ j < D|R⇤⇤
i < R̃i < R

�

+Pr(R̃i < R⇤⇤
i )Pr

�

X̃ j < D|R̃i < R⇤⇤
i
�

= Pr(E j)Pr(R⇤⇤
i < R̃i < R)Pr

�

X̃ j < D|R⇤⇤
i < R̃i < R,E j

�

+Pr(E j)Pr(R̃i < R⇤⇤
i )

We know Pr(E j)=G0

⇣

1+ Bi j
1�a j

⌘

, Pr(R⇤⇤
i < R̃i <R)=G1(R)�G1(R⇤⇤

i ), and Pr(R̃i <

R⇤⇤
i ) = G1(R⇤⇤

i ), which leaves Pr
�

X̃ j < D|R⇤⇤
i < R̃i < R,E j

�

. Notice that:

Pr
�

X̃ j < D|R⇤⇤
i < R̃i < R,E j

�

= Pr
�

c1Ri + c2R j < c3|R⇤⇤
i < R̃i < R,E j

�

Where I define the constants c1 = x j(1�ai), c2 = 1�a j, and c3 = (1�a j +Bi j)+

x j(1�f). One can easily verify that:

c1R+ c2R = c1R⇤⇤+ c2

✓

1+
Bi j

1�a j

◆

= c3

Then, using convolution, it can be shown that:

1
Bi j

Z c3

z

z� z
Bi j

dz =
1
2
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Where z = c1R⇤⇤+ c2R. Finally, we can put the pieces together:

Pr(De f j|si = 1,ai +Bi = f) = Pr(E j)Pr(R⇤⇤
i < R̃i < R)Pr

�

X̃ j < D|R⇤⇤
i < R̃i < R,E j

�

+Pr(E j)Pr(R̃i < R⇤⇤
i )

= G0

✓

1+
Bi j

1�a j

◆⇢

1
2
(G1(R)�G1(R⇤⇤

i ))+G1(R⇤⇤
i )

�

=
1

(R̄�R)2
Bi j

1�a j

⇢

D� 1
2

f �ai
1�ai

�

Note that the probability of default when si = 1 and ai +ÂBi j = f has two main com-

ponents. The term outside the brackets is an exposure-type term for the lending bank. The

larger the amount lent, or the fewer the illiquid assets held by the lender (because illiq-

uid assets are more profitable), the higher the probability of default. The part inside the

brackets is how the risk of default for the borrower affects the lender.

In summary, we have:

Pr(De f j|si = 0,ai +Bi � f) = 0

Pr(De f j|si = 1,ai +Bi < f) =
1

R̄�R
Bi j

1�a j

Pr(De f j|si = 1,ai +Bi = f) =
1

(R̄�R)2
Bi j

1�a j

⇢

D� 1
2

f �ai
1�ai

�

Finally, to derive the expected probability of default for an uninformed lender, one

simply takes an expectation of the conditional probabilities with respect to the uninformed

lender’s information set.

I now derive the interest rate on interbank debt. Let B̄i be the maximum amount bank

i can borrow from all of its lenders. For simplicity, assume all lending relationships are of

equal size. I define k⇤ to denote the maximum number of lenders that can refuse to provide

liquidity before the borrower will be unable to pay for its liquidity shock. It can be shown
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that:

E(B̃i)+ p̂d,iV = E
✓

max
✓

min
✓

X̃i,
n� k

n
F̄i

◆

,0
◆◆

= (1� ps)

✓

F̄i �
1
2

1
R̄�R

✓

F̄i �Bi
1�ai

◆

F̄i +
1
2

1
R̄�R

✓

F̄i �Bi
1�ai

◆

B̄i

◆

+ps
n
Â

K=k
Pr(K = k)

✓

1+
1

R̄�R
1

(1�ai)
min(X(k),0)

◆

n� k
n

F̄i

�ps
n
Â

K=k
Pr(K = k)

1
2

1
R̄�R

1
(1�ai)

✓

n� k
n

F̄i �max(0,X(k))
◆2

We can then write the LHS as

E(B̃i)+ p̂d,iV = (1� ps)B̄i + ps
n
Â

k=0

0

B

@

n

k

1

C

A

q

k(1�q)n�k n� k
n

B̄i +pdV

Define gi as the “premium” that needs to be repaid (i.e., the amount of compensation

a borrower must pay its lenders for (i) the lender’s default risk that results from providing

liquidity and (ii) the losses lenders incur from a lender’s default). Note that:

gi = F̄i �Bi

ri =
gi
Bi
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It can be shown that:

RHS = � 1
R̄�R

1
(1�ai)

g

2
i
2

 

1� ps + ps Â
kk⇤

✓

n� k
n

◆2 n!
k!(n� k)!

q

k(1�q)n�k
!

+gi

 

1� ps + ps

✓

1� D
R̄�R

◆

Â
kk⇤

✓

n� k
n

◆

n!
k!(n� k)!

q

k(1�q)n�k
!

+
ps

R̄�R Â
kk⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k 1
1�ai

X(k)

Where:

X(k) =
1
2

B̄i(k)2 � (1�ai)DB̄i(k)�
1
2

min(0,(1�ai)D�Bi(k))2

Next, define p1 as the probability bank i defaults on its liquidity shock at t = 1:

p1 = ps

 

1� Â
kk⇤

✓

n� k
n

◆

n!
k!(n� k)!

q

k(1�q)n�k
!

Similarly, let:

p̂1 = ps

 

1� Â
kk⇤

✓

n� k
n

◆2 n!
k!(n� k)!

q

k(1�q)n�k
!

Also define p2 to be the probability bank i receives a solvency shock at t = 1 and

survives until t = 2:

p2 = ps Â
kk⇤

✓

n� k
n

◆

n!
k!(n� k)!

q

k(1�q)n�k
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The final term is unique, in that it is the expected loss at t = 2 to lenders when the

borrower is unable to repay the principal:

X(k) =

8

>

>

<

>

>

:

1
2 B̄i(k)2 � (1�ai)DB̄i(k) i f Bi(k)� (1�a)D  0

�1
2(1�ai)

2D2 i f Bi(k)� (1�a)D > 0

Thus, we have:

c(2)i =
ps

R̄�R
1

1�ai
Â

kk⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�kX(k)

=
ps

R̄�R
1

1�ai
Â

kk⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k (1�ai)
2

2
D2

� ps
R̄�R

1
1�ai

Â
kk⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k max((1�ai)D� B̄i(k),0)
2

Where I define this term as the expected losses to bank i’s lenders (a cost), conditional

on bank i’s survival to t = 2, or c(2)i . We can also define the expected losses at t = 1 in a

similar way as:

c(1)i =
n
Â

k>k⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k n� k
n

B̄i

I will rewrite the equation and place c(2)i on the LHS. Thus, we have that the RHS is:

RHS =� 1
R̄�R

1
(1�ai)

g

2
i
2
(1� p̂1)+ gi

✓

1� p1 � p2
D

R̄�R

◆

Define ci to be the expected cost of lending to bank i (for all banks in aggregate), which

is equal to each bank’s expected default costs plus its expected losses from lending to a risky
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borrower aggregated across all lenders (conditional on the lender’s providing liquidity). It

follows that:

LHS = ci

=
1
2

ps
R̄�R

1
(1�ai)

Â
kk⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k(1�ai)
2D2

�1
2

ps
R̄�R

1
(1�ai)

Â
kk⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k max((1�ai)D� B̄i(k),0)
2

+ps
n
Â

k>k⇤

0

B

@

n

k

1

C

A

q

k(1�q)n�k n� k
n

B̄i + p̂dV

= c(1)i + c(2)i + p̂d,iV

Combining LHS and RHS, we have the following quadratic:

0 =
1

R̄�R
1

(1�ai)

g

2
i
2
(1� p̂1)� gi

✓

1� p1 � p2
D

R̄�R

◆

+ ci

Which has solution:

gi =

⇣

1� p1 � p2
D

R̄�R

⌘

�
r

⇣

1� p1 � p2
D

R̄�R

⌘

2 �2(1� p̂1)(R̄�R)�1(1�ai)�1ci

(1� p̂1)(R̄�R)�1(1�ai)�1

Thus, we have derived the interest rate premium promised on lending. Finally, to map

to promised payments and interest rates, we simply make the following transformation:

ri =
gi
Bi

F̄i = gi +Bi
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Now, consider profits, which can be written state contingently as:

Pi = ai +(1�ai)R̃i �Di +Bi �Fi

It can be shown that expected profits are:

E(Pi) = (1�ai)

 

R̄�R
2

� pl psD+ pl ps
1
2

D2

R̄�R

!

�pl p1(1�ai)

 

R̄�R
2

�D+
1
2

D2

R̄�R

!

� plci

Where ci is as before. Here, the first term is essentially baseline profits. That is, it

represents what a bank would make if it could invest ai in the risk-less asset and borrow

liquidity at an interest rate of ri = 0. The second term represents the losses to the bank –

from a profit standpoint – that occur when liquidity shortages take place. Finally, the third

and final term is the cost of borrowing, which is the expected premium that must be paid to

lenders on the interbank market.

B.3 Contagion

Derive the functions Ck(q) and C(q). Recall:
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Here, I derive the case k = 0 before specifying the general form for Ck(q). I leave

it to the reader to verify that all other cases for k are nested in the general form. Let

k = (q +(1�q)(1�pd,(0)))
n:
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The general form is:

Ck(q) =
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Note that:
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As above. Moreover:

1�q � (1�q)(1�pd,0) = (1�q)pd,(0)

Which means we can rewrite the solution as a mixture of three binomial distributions:
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Given the general form of Ck(q) we can now derive C(q). Recall:

C(q) =
n
Â

k=0
kCk(q)

And thus:
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