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ABSTRACT

Conventional low cost computational methods in quantum chemistry such as Hartree-Fock

and density functional theory often fail to properly describe electron correlation. Of the two

types of electron correlation, dynamic and static, or multi-reference, correlation is partic-

ularly difficult to obtain using low cost methods. This type of electron correlation results

when multiple Hartree-Fock reference states are needed to describe a system. One class

of methods which are able to describe both types effectively are 2-electron reduced density

matrix (2-RDM) methods. These methods use the 2-electron density matrix as the primary

variable in the electronic Schrödinger equation in place of the wavefunction. By circumvent-

ing the wavefunction, one replaces an exponentially scaling problem with a polynomially

scaling one, and unlike density functional theory, the energy is a linear functional of the

2-RDM. The lowest cost 2-RDM method currently available is known as the parametric

2-electron reduced density matrix method (p2-RDM). The method has equivalent scaling

to configuration interaction with single and double excitations (CISD) and is able to treat

both dynamic and static correlation. This work examines both the correlation recovery abil-

ities of the p2-RDM method and potential scaling improvements to the method using tensor

factorization. We first investigated several molecular systems including the conversion of hy-

droxylamine to ammonia oxide, the hydridotrioxygen atmospheric radical, and the benzene

and cyclobutadiene diradicals. The purpose of these studies was to further clarify the ability

of the parametric method to capture various mixes of both types of correlation. We then

investigated using two different tensor factorizations, low rank spectral expansion and ten-

sor hypercontraction, to reduce the scaling of the p2-RDM toward that of Hartree-Fock and

density functional theory. Based on these results, we developed a new tensor factorization

to address the shortcomings of previous methods and provide a promising, new technique

to generate a fourth order p2-RDM method capable of capturing both dynamic and static

correlation.
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CHAPTER 1

INTRODUCTION

One of the key problems for modern chemical theory is how to treat large molecular systems

at a reasonable computational cost, particularly those of organic or biological origin such

as small proteins and organic semiconductors. While many theories, in principle, provide

exact or near exact solutions to chemical problems, the computational cost required is of-

ten intractable for current computational systems. This is particularly true for electronic

structure methods where the cost of the most accurate available method scales exponentially

with the system size. While various computationally cheaper, approximate methods exist,

the accuracy losses caused by these approximations can result in calculated values that are

significantly different from the experimental results. To better understand why these prob-

lems exist, we need to examine the basic concepts behind electronic structure methods.

1.1 Hartree-Fock

Traditional ab initio electronic structure methods generally attempt to solve the time inde-

pendent electronic Schrödinger equation to obtain an N-electron wavefunction [1],

ĤΨ = EΨ, (1.1)

where Ĥ is the electronic Hamiltonian used to describe the motion of N electrons in a field

of M nuclear point charges,

Ĥ = (−1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
K=1

ZK

riK
) +

N∑
i=1

N∑
j>i

1

rij
. (1.2)

Solving this equation directly is not possible for systems with more than 1 electron and

several layers of approximations are required for even the smallest of molecules. The first,

the Born-Oppenheimer approximation, has already been applied to the Hamilitonian given in
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Equation 1.2 above. In the Born-Oppenheimer approximation, the wavefunction is separated

into electronic and nuclear parts as the electrons move much faster than the nuclei which

can be considered effectively stationary in comparison. The next approximation is one in

which each electron is assigned its own separate spin orbital so that the wavefunction can

be expressed as a product of X orthonormal, one-electron molecular spin orbitals,

Ψ = θ(1) ∗ θ(2)....θ(N). (1.3)

This formulation does not account for the anti-symmetry principle/Pauli Exclusion Principle

which states that a wavefunction must be antisymmetric with respect to the interchange of

any two electrons,

θi(1) ∗ θj(2)....θx(N) = −θi(2) ∗ θj(1)....θx(N). (1.4)

The preceding problem can be solved by using a normalized linear combination of product

wavefunctions. This is often expressed as a determinant referred to as a Slater determinant,

Ψ(1, 2, 3, ..., N) = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

θi(1) θj(1) . . . θx(1)

θi(2) θj(2) . . . θx(2)

...
...

...
...

θi(N) θj(N) . . . θx(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.5)

We can represent this determinant in a shorthand form which shows only the diagonal

elements and implicitly includes the normalization constant,

Ψ(1, 2, 3, ..., N) = |θi(1)θj(2)....θx(N)⟩ = |θiθj ....θx⟩. (1.6)

If the wavefunction is approximated using only a single Slater determinant and a Hartree-

Fock formulation (see Ref. [2] for details) is used for the ground state Schrödinger equation
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the resulting method is known as the Hartree-Fock method. Due to these approximations,

the Hartree-Fock method allows for only one configuration of electrons and replaces the

direct interactions between electrons with interactions between an electron and the average

electric fields of the other electrons. It has excellent computational scaling of approximately

o(r3) to o(r4) with r being the number of molecular orbitals, but due to the approximations

discussed, the method is often not quantitatively accurate due to a lack of electron correlation

energy [1].

1.2 Electron Correlation

Correlation energy is defined to be the energy difference between the Hartree-Fock and

full configuration interaction (FCI) electronic energies for a system[2]. Full configuration

interaction addresses the lack of correlation in the Hartree-Fock method by including all

possible spin orbital configurations (or all possible Slater determinants) in its wavefunction,

|ΨFCI⟩ = C0|Θ0⟩+
∑
ia

Ca
i |Θ

a
i ⟩+

1

4

∑
ijab

Cab
ij |Θ

ab
ij ⟩+

1

36

∑
ijkabc

Cabc
ijk |Θ

abc
ijk⟩+ . . . . (1.7)

Here Θ0 is the Hartree-Fock wavefunction. Θa
i , Θ

ab
ij , and Θabc

ijk are singly excited, doubly

excited, and triply excited wavefunctions respectively. For each excitation, an electron is

removed from an occupied Hartree-Fock orbital i,j, or k and placed in an unoccupied (virtual)

orbital a,b, or c. The C values are the weighting coefficients for each configuration.

The correlation recovered by full configuration interaction can be divided into two types:

static and dynamic correlation. Dynamic or single reference correlation results from the

direct electrostatic interaction of electrons which Hartree-Fock theory replaces with the in-

teraction between electron clouds. Static or multi-reference correlation occurs when more

than one Slater determinant is needed to represent a molecular system which the Hartree-

Fock method can not account for, as it has only one Slater determinant (single-reference).

Neglecting correlation energy can lead to large errors in the potential energy surface with the
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calculated barriers being several kcal/mol different from experimental results [3]. The full

configuration interaction method is usually considered to be the most accurate time indepen-

dent ab initio approach possible as, by definition, it recovers all possible correlation energy.

Unfortunately its computational cost scales exponentially with the number of electrons, as

each electron added requires adding a new and larger set of summations. This limits the

method to only very small molecular systems of 14 or less orbitals. To deal with limitation,

various correlated approximate methods have been developed such as truncated configura-

tion interaction (CI), coupled cluster (CC), multi-configurational self-consistent field theory

(MCSCF), and perturbation theory (PT).

1.3 2-Electron Reduced Density Matrix

While these correlated methods are less expensive than full configuration interaction, most

of them have notable drawbacks in terms of computational scaling, convergence in large sys-

tems, or the ability to simultaneously capture both dynamic and static correlation energy.

Individual methods often come with their own unique flaws. Two well known families of

methods are the truncated configuration interaction methods which predict energies that

do not scale linearly with the size of the system .i.e. are not size extensive and the per-

turbation theory methods which have problems with potential energy surface divergences.

For most known methods, recovering static correlation is particularly difficult and is usually

accomplished by performing a full configuration interaction calculation on a subset, i.e. ac-

tive space, of the total number of orbitals. Ideally, we would prefer a method that is able

to handle both types of correlation energy simultaneously without having to perform a cost

prohibitive configuration interaction computation. Additionally, the method should be size

extensive and free of divergence problems or similar errors. One class of methods that have

these properties are the 2-electron reduced density matrix (2-RDM) family of methods.

Since the Hamiltonian of an N-electron system contains at most pairwise interactions,

the N -electron wavefunction can be mapped onto the two-electron reduced density matrix
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(2-RDM), without the loss of its energetic and 1-/2-electron properties [4–6]. This allows

for the energy to be expressed as a functional of the 2-RDM and the reduced Hamiltonian,

2 K, without needing prior knowledge of the wavefunction of a system,

E = Tr( 2K 2D), (1.8)

where 2K is the Hamiltonian matrix corresponding to the following reduced Hamiltonian

operator,

2K̂ = N

(
−1

2
∇2
1 −

∑
k

Zk

r1k

)
+

N(N − 1)

2

1

r12
, (1.9)

and 2 D is the 2-electron reduced density matrix whose elements are given by,

2 D
pq
st = ⟨Ψ| a†p a†q at as|Ψ⟩. (1.10)

In this notation the a operators are annihilation operators which remove an electron from an

orbital of the wavefunction on the right side of Equation 1.10. The a† operators are creation

operators which add an electron to an orbital of the wavefunction on the right side of the

equation. The reverse is true if the operators act on the ajoint wavefunction on the left side.

The compact notation for 2 D is shown on the left side of equation 1.10. In this notation,

the superscript indices represent the orbitals to which electrons added and the subscripts

are the indices of the orbitals from which the electrons are removed.

With the proper constraints, one can solve for the electronic energy considering only

a polynomial scaling number of variables compared to the exponential scaling number of

variables in CI wavefunction methods. The least expensive 2-RDM method, the parametric

2-electron reduced density matrix method, scales equivalently to configuration interaction

with single and double excitations (CISD) at a computational cost on the order of o(r6) with

r being the number of molecular orbitals.
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1.4 Computational Cost Reduction in Chemistry

For many problems in chemistry however, even sixth order scaling is insufficient. For prob-

lems involving large organic and inorganic molecules such as proteins and organic semicon-

ductors, correlated ab initio electronic structure methods beyond perturbation theory are

too computationally costly to use. As a result, many scientists employ density functional

theory based methods to study these kinds of systems which generally have a computational

scaling on the order of o(r3) to o(r4). Density functional theory, like the 2-RDM meth-

ods, rewrites the energy to be a functional of a density matrix, in this case the 1-RDM.

Density functional methods, however, have many well known drawbacks compared to tra-

ditional ab initio methods particularly their general inability to capture static correlation.

No widely accepted electronic structure method currently exists which can reliably capture

both dynamic and static correlation at a cost of o(r4) or less. As will be demonstrated

in Chapters 3, 4, and 5 of this work, being able to capture both correlation types is very

important to ensuring accurate results even in systems where only one type of correlation is

expected to be of importance.

Producing a less than o(r4) method that is size extensive, free of potential energy di-

vergence errors, and which can capture both types of electron correlation is not a trivial

problem. As noted before, the cheapest 2-RDM method, the p2-RDM method, which pro-

cesses those three characteristics has 2 orders of magnitude higher computational scaling

than density functional theory at o(r6). It is possible however to reduce the cost of p2-RDM

and similar double excitation ab initio methods such as coupled cluster and configuration

interaction with single and double excitations and to understand how we need to examine

the 2 primary driving causes, tensor summation and storage costs, of the scaling of this

class of methods. The first primary determination factor for the computational scaling is

the summations of pairs of fourth-order tensors (higher order matrices) summations such as
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the p2-RDM expression for the energy of the occupied orbitals,

Eocc =
1

2

∑
i<j,k<l

2 V kl
ij

∑
ab

2 T ab
ij

2 T ab
kl . (1.11)

where 2 T ab
ij is the double excitation tensor and 2 V kl

ij is the 2-electron integral tensor,

2 V kl
ij =

1

2

∫
θ∗k(1)θ

∗
l (2)(

1

r12
)θi(1)θj(2) d1 d2. (1.12)

In this summation, there are are total of 6 non-matching indices resulting in computational

cost of o(r6) in order to compute this summation. In addition to the summation cost, the

amount of computer storage space needed for the for these summation is often prohibitive.

For a 1000 orbital molecular system, storing the full 2-electron integrals without consider-

ation of any integral or point group symmetries would require 8000 Gigabytes of storage

space while a comparable 2-index tensor would only require a few Gigabytes. In order to

reduce these costs and make such systems accessible to ab initio methods, the tensors and

their summations need to be replaced. One way to accomplish this is to break up the fourth

order tensors, 2 T and 2 V , and represent them using summations of the products of lower

order tensors, which is known as tensor factorization.

1.5 Tensor Factorization

Tensor factorizations are a well studied approach in numerical linear algebra for treating

large, sparse matrices and tensors. They are particularly useful for applications such as sig-

nal processing, data analysis, and computational cost reduction [7]. The last application has

been of particular interest since the tensor factorization was first applied to quantum chem-

istry in the 1970s and has received increased interest in recent years for reducing both storage

costs and computational time [8–12]. Many different factorizations have been adopted and

further developed for chemistry since then, such as the spectral expansion and tensor hyper-
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contraction factorizations [13–15]. As an example, one of the simplest factorizations used in

chemistry is the CANDECOMP/PARAFAC factorization [7, 14],

2 V kl
ij =

∑
a

El
aF

k
aG

i
aH

j
a. (1.13)

This factorization breaks an nth order tensor into n second order tensors (matrices). Each of

the n types of second order tensors has a molecular index (i, k, j, and l) and a factorization

index (a). The factorization tensors and indices can be thought of as forming a new basis

set for the factorization which is not necessarily related to the original molecular basis set.

The quality of the new basis and similarly the accuracy of the factorization depend heavily

on both the factorization chosen and the size of the factorization basis. Using this new

factorization basis, we can rewrite the higher order summations, such as that shown in

Equation 1.11, into multiple lower order partial summations such as:

∑
i

Gc
i
2 T ab

ij = Bab
cj ∼ o(r5). (1.14)

The actual computational cost reduction achieved depends on the size of the factorization

basis, order of the factorization tensors, and how many of the higher order tensors are

factorized. Consideration of both the accuracy and likely computational cost motivated

the work in Chapters 6 and 7. The overall goal of this portion of the work presented in

these chapters was to find the factorization best suited to treating the particular tensors and

summations found in double excitation methods such as the parametric 2-RDM.

1.6 Chapter Overview

In the following chapters, we will explore both the ability of the parametric 2-RDM method

to serve as a low cost method for treating molecular systems containing both dynamic and

static correlation as well as the effectiveness of tensor factorization methods. In Chapter 2,
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we review the theory behind the parametric 2-RDM method. We examine its effectiveness

for treating systems of small to moderate amounts of static correlation in Chapters 3 and 4.

In Chapter 3, we compare the parametric 2-RDM treatment of hydroxylamine to a previous

study of oxywater to determine how the method behaves at varied but moderate levels of

static correlation. We follow this in Chapter 4 with an examination of another moderately

correlated system, the HO3 radical. We then examine the ability of the parametric method

to treat multi-reference correlation in diradical systems by examining the benzene and cy-

clobutadiene diradicals in Chapter 5. In Chapter 6, we examine both the accuracy and

potential cost reduction capabilities of two different tensor factorizations, low-rank spectral

expansion and tensor hypercontraction, as applied to the parametric 2-RDM method. In

this study, we obtain a clearer picture of the strengths and weaknesses of each factorization

as well as a better understanding of what type of factorization is needed to improve ab initio

methods. Based on the results of this study, we introduce a new family of tensor factor-

izations known as the positive semi-definite factorizations in Chapter 7 which improves on

existing factorizations for reducing the scaling of double excitation methods like parametric

2-RDM.
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CHAPTER 2

THEORY: PARAMETRIC 2-ELECTRON REDUCED DENSITY

METHOD (P2-RDM)

2.1 Introduction and Overview

Since Coulson first issued his challenge to develop a viable two-electron reduced density

matrix (2-RDM) method in 1959, 2-RDM methods have gathered much attention as possible

replacements for traditional wavefunction- based approaches. Since the Hamiltonian of an N-

electron system contains at most pairwise interactions, the N -electron wavefunction can be

mapped onto the two-electron reduced density matrix (2-RDM) without loss of its energetic

and 1- and 2-electron properties [1–3]. One can then calculate the ground state energy as

a functional of the 2-RDM. A direct variational calculation of the energy, however, yields

energy results that are well below the results predicted by the full configuration interaction

(FCI) method, violating the variational principle [4]. This is due to the fact that the set

of possible 2-RDMs is larger than the set of those derivable from N -electron wavefunctions.

In order to insure that the 2-RDM can be mapped from an N -electron wavefunction, a set

of constraints known as the N -representability conditions must be imposed [4–7]. Using

N -representability conditions to directly minimize the 2-RDM is known as the variational

2-RDM method.

While direct 2-RDM minimization significantly reduces computational cost compared to

wavefunction methods of similar accuracy, it is possible to lower computational costs still

further. Truncated configuration interaction methods reduce the cost of an energy minimiza-

tion compared to the full configuration interaction method by redefining the wavefunction in

terms of only a limited number of expansion coefficients. For example, a normalized, trun-

cated configuration interaction wavefunction which depends only on the double excitations
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coefficients, Cab
ij , can be written as follows

|ΨCID⟩ = |Ψ0⟩+
1

4

∑
ijab

2 Cab
ij |Ψ

ab
ij ⟩. (2.1)

In a similar manner, the computational cost of the 2-RDM energy minimization can be

reduced by redefining our 2-RDM in terms of a limited number of parameters. This was

first demonstrated by Kollmar in 2006 [8–15]. In 2008, Mazziotti developed an alternative

parametrization of the 2-RDM elements which exceeds the accuracy of the coupled cluster

with single and double excitations method (CCSD)[13, 14]. The resulting M parametriza-

tion scales linearly with system size (this is called size extensive) is approximately N -

representable, and returns more correlation energy than coupled cluster with single and

double excitations (CCSD). The p2-RDM method has a computational cost similar to that

of configuration interaction with single and double excitations (CISD), which is lower than

CCSD by an integer pre-factor [13–15]. The resulting parametric 2-RDM method with the M

functional, or p2-RDM, has been used to study a variety of closed- and open-shell molecules.

Most importantly, it is capable of describing moderate amounts of both types of correlation

[13–17]. The following chapter contains an overview of the theory behind the parametric

2-RDM method. It is based on the 2010 Physical Review paper by David Mazziotti which

gives a comprehensive overview of parametric theory [14].

2.2 Parametric 2-RDM

As was discussed in the previous chapter, the energy of an N -electron system can be calcu-

lated without approximation using the two-electron reduced density matrix (2-RDM),

E = Tr( 2K 2D), (2.2)
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where 2K is the Hamiltonian matrix corresponding to the following reduced Hamiltonian

operator,

2K̂ =
1

N − 1

(
−1

2
∇2
1 −

∑
k

Zk

r1k

)
+

1

2

1

r12
, (2.3)

and 2 D is the 2-electron reduced density matrix whose elements are given by,

2 D
pq
st = ⟨Ψ| a†p a†q at as|Ψ⟩. (2.4)

In this notation, the molecular orbitals indices are specified by p, q, s, and t, which represent

an arbitrary set of orbitals. Occupied orbitals in this chapter will be specified using the

letters i through o, and unoccupied orbitals will be specified using the letters a through h.

To parametrize the 2-RDM, we express it as a wedge product of 1-RDMs. The wedge

product is anti-symmetric operator and is used in place of a Slater determinant. The 1-RDM

alone does not contain enough information to fully describe the 2-RDM and the missing

information is added to the expansion in the form of a term known as the cumulant,2∆, [18–

20]

2D
pq
st = 2 1D

p
s ∧ 1D

q
s +

2∆
pq
st , (2.5)

2D
pq
st = 1D

p
s
1D

q
t −

1D
p
t
1D

q
s +

2∆
pq
st . (2.6)

The 1-RDM can be written in a similar manner although it is not a cumulant expansion,

1D
p
q = ( 1 D0)

p
q +

1∆
p
q . (2.7)

The cumulant 2- and 1-RDMs represent the correlated (or connected) parts of the RDM

which are not contained in the lower order RDMs and which vanish in the absence of electron

correlation[14].

For the parametric method, we want to re-express the cumulant terms 1∆ and 2∆

in terms of their lowest order components. If a parameter λ is defined such that λ = 0
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corresponds to the Hartree-Fock solution for the quantum system and λ = 1 corresponds to

the fully correlated quantum system, we can express our 2-RDM as an expansion in terms

of λ and the excitation coefficient 2 T ,

2 D = 2 D0 +
2∆, (2.8)

2 D = 2 D0 + λ 2T +O(λ2). (2.9)

These cumulant 2-RDM and 1-RDM can be written as the sum of their first and second

order Hermitian parts or 2 T and 1 T respectively and a higher order remainder, R,

2∆ = 2T + 2R(λ2), (2.10)

1∆ = 1T + 1R(λ3). (2.11)

where the only non-zero part of the first order 2-RDM cumulant is

2 ∆ab
ij ≈ 2T ab

ij . (2.12)

In order to simplify the remaining discussions and equations in this chapter, we assume

that the single excitations vanish until the third order ( 1T vanishes). This can be accom-

plished by performing a second-order rotation of the Hartree-Fock orbitals to Brueckner-like

orbitals [21]. Adding in explicit single excitations will be discussed in the last paragraph of

this chapter.

In a similar manner to expressing RDMs as products of lower order RDMs, an RDM can

also be expressed as a sum of higher order RDMs. In a finite orbital basis, an RDM of order

p-1 can be represented by a sum (contraction) of p-RDMs over a single index,

p−1 D
q,r,...,t
v,x,...,z =

∑
u

p D
q,r,...,t,u
v,x,...,z,u. (2.13)
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As the higher order RDMs contain all the information needed to reconstruct the lower order

ones, no cumulant expansion is needed.

Contracting the 3- and 4-RDMs over 1 electron and equating the connected parts gives

the following approximate relations since the correlated part of 1∆ vanishes until the third

order in λ,

n
p
s
1∆

p
s =

∑
q

2∆
pq
sq +O(λ4) (2.14)

n
pq
tu

2∆
pq
tu =

∑
s

3∆
pqs
tus +O(λ3), (2.15)

n
pqs
uyv

3∆
pqs
uvy = −

∑
t

Â( 2∆
pt
uv ∗ 2∆

ty
qs) +O(λ3), (2.16)

2∆
jb
ia = −

∑
s

3∆
jbk
iak +O(λ3). (2.17)

where Â is an anti-symmetric permutation operator and

n
p
s = np + ns − 1, (2.18)

n
pq
tu = np + nq + nt + nu − 2, (2.19)

n
pqs
uyv = np + nq + ns + nu + ny + nv − 3. (2.20)

Here np is either 0 or 1 depending on whether the Hartree-Fock orbital is unoccupied

or occupied. By combining these relations with equations 2.10 and 2.11, we obtain the

following 1- and 2-cumulant relations.

2∆kl
ij =

∑
a<b

2T ab
kl

2T ab
ij +O(λ4), (2.21)
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2∆
jb
ia = −

∑
kc

2T ac
jk

2T bc
ik +O(λ4), (2.22)

2∆cd
ab =

∑
i<j

2T cd
ij

2T ab
ij +O(λ4), (2.23)

1∆
j
i = −

∑
k

2∆
jk
ik +O(λ4), (2.24)

1∆b
a =

∑
c

2∆bc
ac +O(λ4). (2.25)

The 1-RDM elements can now also be represented in terms of 2 T ,

1∆
j
i = −

∑
k,a<b

2T ab
jk

2T ab
ik +O(λ4), (2.26)

1∆b
a =

∑
c,i<j

2T ac
ij

2T bc
ij +O(λ4). (2.27)

Using these contraction relations, we can re-express our 2-RDM cumulant elements from

Equation 2.10 as four new equations,

2 Dkl
ij = 4 2 Iklij + 4( 1 ∆i

k ∧
1 I lj) +

2 ∆kl
ij +O(λ4), (2.28)

2 D
jb
ia = 1 Iij

1 ∆i
k +

2 ∆
jb
ia +O(λ4), (2.29)

2 Dcd
ab =

2 ∆cd
cd +O(λ4), (2.30)

2 Dab
ij = 2 ∆ab

ij +O(λ3), (2.31)

where 2 I is the 2-electron identity matrix,

2 I
pq
st =1 I

p
s ∧1 I

q
t . (2.32)
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Likewise the 1-RDM elements are now

1 D
j
i =1 I

p
s
1∆

j
i +O(λ4), (2.33)

1 Db
a = 1∆b

a +O(λ4). (2.34)

This allows us to write the 2-RDM as a function of only its first order part,

2 ∆ab
ij = 2T ab

ij . (2.35)

This parametrization of the 2-RDM is equivalent to the method known as CEPA. It is size

extensive but not N -representable [8, 13]. The lack of N -representability leads to large

correlation energy errors and makes the method almost unusable. We need to consider an

alternative parameterizamation

2.2.1 The M Parametrization

To construct a parametrization that is N -representable, consider the following parametriza-

tion for 2 ∆ab
ij ,

2∆ab
ij = 2T ab

ij

√
1− 1

4

∑
klcd

| 2T cd
kl |

2. (2.36)

This is the parametrization of 2∆ab
ij that arises if one constructs the 2-RDM using a config-

uration interaction with double excitations wavefunction,

|ΨCID⟩ = |Ψ0⟩+
∑
ia

1 T a
i |Ψ

a
i ⟩+

∑
ijab

2 T ab
ij |Ψ

ab
ij ⟩. (2.37)

All other cumulant terms of the CID parametrization are identical to the ones given above

for the CEPA-like parameterization. A CID-like parametrization is N -representable as its

corresponding 2-RDM is directly derived from an N -electron wavefunction, but it is no longer

size extensive, a well-known problem with truncated CI methods.
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To make the parametrization that is both approximately N -representable and size ex-

tensive, consider a subset of the N -representability conditions known as the 2-positivity

conditions,

2D ≽ 0, (2.38)

2Q ≽ 0, (2.39)

2G ≽ 0. (2.40)

These conditions ensure that the probabilities of finding 2-particles, 2-holes, and 1-

particle, 1-hole are non negative and that the corresponding density matrices have non-

negative eigenvalues. These two-positivity conditions imply another set of N -representablity

conditions known as the Cauchy-Schwarz inequalities. The inequalities for the 2-particle and

2-hole density matrices are

( 2D
ij
ab)

2 ≤ 2D
ij
ij

2Dab
ab (2.41)

( 2Q
ij
ab)

2 ≤ 2Q
ij
ij

2Qab
ab. (2.42)

Similar inequalities can be defined for the 1-particle, 1-hole matrix. Averaging these two

inequalities and equating the connected parts then applying it to Equation 2.36 yields a new

definition of the 2∆ab
ij term known as the M functional or p2-RDM [13–15]. We can rewrite

Equation 2.36 in a more general form to include this functional form as well as the CID and

CEPA functionals,

2∆ab
ij = 2T ab

ij

√
1− 1

4

∑
klcd

fabcdijkl | 2T
cd
kl |2. (2.43)

The valve of topological factor, f , given in Table 2.1 depends on the number of indices

shared between 2T ab
ij and 2T cd

kl . Using different averages of the Cauchy-Schwarz inequalities
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Table 2.1: The table below contains the topological factors for equation [12]. The factor in
the table fnonv , represents the factor fabcdijkl from above where n0 is the number of occupied

spin orbitals shared by i,j and k,l , and nv is the number of virtual orbitals shared by a,b
and c,d . This gives a total of nine possible combinations for the topological factor, as shown
this table. The D and Q factors given below represent the parametrizations that result from
applying the D and Q Cauchy-Schwarz inequalities to the 2-RDM elements [13, 14].

Topological factor, fnonv
Method 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2
CEPA 0 0 0 0 0 0 0 0 0
CID 1 1 1 1 1 1 1 1 1
D 0 1 1 0 0 1 1 1 1
Q 0 0 0 1 1 1 1 1 1
M 0 0 1 0 1 1 1 1 1

given in Equation 2.41 gives a family of 2-RDM parametrizations. The removal of the

unconnected 0/0 terms ensures linear scaling with the system size of the parametrization,

and the averaging of the D and Q factors maintains the approximate N -representablity.

While the previous equation only implicitly includes single excitations, it is possible to add

them explicitly to the M parametrization as demonstrated by Mazziotti in 2010 [14]. This

version of the M parametrization is used for the computations in the following chapter. An

extension of the method to open-shell systems which allows for orbitals to be occupied by only

1 electron instead of requiring double occupation, as is the case with closed-shell methods,

has also been developed and was used for all computations in the remaining chapters of this

work [16].
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CHAPTER 3

ISOELECTRONIC ANALOGUE OF OXYWATER: A

PARAMETRIC 2-ELECTRON REDUCED-DENSITY-MATRIX

STUDY OF AMMONIA OXIDE

This chapter contains parts of an article that was originally published in Molecular Physics.

Reprinted with permission from [E. P. Hoy, C. A. Schwerdtfeger, and D. A. Mazziotti, Mol.

Phys., 110, 765 (2012)]. Copyright 2012, Taylor and Francis.

3.1 Introduction

Parametrization of the 2-RDM can be used to calculate electronic ground-state energies

directly without using the N -electron wavefunction [1–5]. This density-matrix parametriza-

tion is derived using a subset of the N-representability conditions on the 2-RDM that ap-

proximately preserve its relationship to an N -electron wavefunction [6–9]. In 2006 Kollmar

employed Cauchy-Schwarz inequalities, based on 2-positivity conditions, to parametrize the

2-RDM; in 2008 Mazziotti introduced a general family of parametrizations including Koll-

mar’s (K) parametrization [10–14] as well as the M parametrization [1, 2, 15–17]. The

2-RDMs computed with the M parametrization are nearly N -representable with size exten-

sive energies. The results from the M parametric 2-RDM method improve on the results

from coupled cluster with single and double excitations (CCSD) at a computational cost

equivalent to configuration interaction with single and double excitations (CISD) [1, 2, 15].

The M parametric 2-RDM method was recently applied to study oxywater by Schwerdt-

feger, DePrince and Mazziotti [15]. The water oxide molecule or “oxywater” is connected to

its isomer, hydrogen peroxide, by an intramolecular hydrogen transfer. Although oxywater

has never been observed experimentally, its stability has been investigated in multiple theo-

retical studies [15, 18–22]. While coupled cluster methods predict a barrier from oxywater to

the transition state between 4 to 6 kcal/mol, multi-reference perturbation theory methods
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(CASPT2) predict a small energy barrier of 0.2 kcal/mol or show no barrier at all [15, 23, 24].

The parametric 2-RDM method predicted a barrier between these two results, a small 2.1

kcal/mol barrier at the extrapolated basis set limit.

In this work, we study a system whose molecular states are isoelectronic to hydrogen

peroxide and oxywater, hydroxylamine’s conversion to ammonia oxide. Similar to oxy-

water, ammonia oxide is believed to form from hydroxylamine through an intramolecu-

lar hydrogen transfer reaction. Unlike oxywater, whose existence is not currently exper-

imentally supported, experimental evidence for the existence of ammonia oxide has re-

cently emerged [19, 25, 26]. Kirby et al. found ammonia oxide molecules in crystalline

(NH2OH)2HCl using X-ray crystallography and suggested that ammonia oxide might com-

prise up to 18 percent of 1 M hydroxylamine solutions at 25 ◦C [25, 26].

Several studies employing electronic structure methods have been performed on the hy-

droxylamine/oxywater system [18, 27–34, 34–37]. It has been shown using coupled cluster

methods and perturbation theory that ammonia oxide is stable relative to the transition

state by 24-27 kcal/mol. In contrast to the oxywater system, a method that can capture

multi-reference correlation has not yet been applied to this reaction pathway. The disagree-

ment between single and multi-reference methods for the oxywater system transition barriers,

suggests that it is worthwhile to examine the ammonia oxide system using the parametric

2-RDM method.

3.2 Applications

In the first section we describe the computational methods employed to study the isomeriza-

tion reaction between hydroxylamine and ammonia oxide. In Section 3.2.2 we present and

the results and compare them to those from the oxywater calculations.
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3.2.1 Computational Methods

We studied three molecules in the ammonia oxide system, hydroxylamine, ammonia oxide,

and their transition state, using the parametric 2-RDM(M) method as well as three cou-

pled cluster methods, coupled cluster with single and double excitations (CCSD) [38, 39],

completely renormalized coupled cluster [CR-CC(T)] [39–41], and coupled cluster with per-

turbative triple excitations [CCSD(T)] [38, 39]. The computations were preformed in three

basis sets, augmented correlation-consistent polarized double-zeta (aug-cc-pVDZ), triple-zeta

(aug-cc-pVTZ), and quadruple-zeta (aug-cc-pVQZ) basis-sets [38, 42] with the results being

extrapolated to the basis-set limit. The aug-cc-pVQZ is the largest basis set yet employed to

study the hydroxylamine to ammonia oxide isomerization. Coupled cluster and Hartree-Fock

calculations were carried out using the electronic structure package GAMESS [43], and the

parametric 2-RDM calculations were performed using the implementation in Ref. [15]. We

optimized the geometries of all three molecules using the aug-cc-pVDZ and aug-cc-pVTZ ba-

sis sets, freezing two core orbitals, and we calculated single-point energies for each molecule

in the aug-cc-pVQZ basis set at the aug-cc-pVTZ optimized geometries. These results were

extrapolated to the basis set limit (EBSL) using a two part scheme. The Hartree-Fock en-

ergies [44–46] were fitted to an exponential function, a + b exp(−cx), and the correlation

energies [47, 48] were fitted to a polynomial function, a + b/x3 + c/x5, where x equals 2,

3, and 4. The variables a, b, and c were fit using the aug-cc-pVDZ, aug-cc-pVTZ, and

aug-cc-pVQZ energies with a representing the extrapolated energy.

3.2.2 Results

Optimized Hartree-Fock energies and the electronic correlation energies for ammonia oxide,

hydroxylamine, and their transition state are contained in Table 3.1. For each molecule the

2-RDM(M) method recovers more correlation energy than CCSD but less than CCSD(T).

For hydroxylamine the parametric method recovers 84.1% of the energy improvement of

CR-CC(T) over CCSD at the extrapolated basis-set limit. At the transition state agreement
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Table 3.1: Correlation energies for hydroxylamine(HA), ammonia oxide(AO), and their tran-
sition state(TS) were calculated using the parametric 2-RDM(M) method as well as several
coupled cluster methods in aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets with
extrapolation to the basis-set limit (EBSL).

Energy (H) Correlation energy (H)
Molecule Basis Set HF CCSD 2-RDM(M) CR-CC(T) CCSD(T)

HA aug-cc-pVDZ -131.0152 -0.4115 -0.4218 -0.4223 -0.4241
aug-cc-pVTZ -131.0472 -0.4887 -0.5024 -0.5044 -0.5083
aug-cc-pVQZ -131.0559 -0.5136 -0.5281 -0.5305 -0.5346

EBSL -131.0591 -0.5341 -0.5492 -0.5519 -0.5560
TS aug-cc-pVDZ -130.9157 -0.4237 -0.4383 -0.4366 -0.4404

aug-cc-pVTZ -130.9477 -0.5008 -0.5180 -0.5188 -0.5248
aug-cc-pVQZ -130.9555 -0.5257 -0.5438 -0.5449 -0.5501

EBSL -130.9586 -0.5461 -0.5651 -0.5663 -0.5715
AO aug-cc-pVDZ -130.9627 -0.4097 -0.4191 -0.4201 -0.4227

aug-cc-pVTZ -131.0076 -0.4875 -0.5000 -0.5030 -0.5067
aug-cc-pVQZ -131.0160 -0.5126 -0.5257 -0.5293 -0.5333

EBSL -131.0180 -0.5333 -0.5468 -0.5509 -0.5549

between the CR-CC(T) and the 2-RDM(M) results further improves with the parametric

method recovering 96.7% of the energy change from CCSD to CR-CC(T). This recovery of

CR-CC(T)’s correlation energy is consistent with the earlier results for the conversion of

oxywater to hydrogen peroxide where the 2-RDM(M) method captured 96.7% of the change

in correlation energy from CCSD to CR-CC(T) at the oxywater transition state [15]. The

2-RDM(M)’s improvement in energy relative to CCSD is consistent with the derivation of

the M parametrization [1], which parameterizes the 2-RDM to approach the boundary of its

N -representable set as closely as possible upon minimization of the energy. The proximity of

the optimized 2-RDM to its boundary enables the treatment of correlation effects in the 2-

RDM(M) method that typically require wavefunction methods with triple excitations and/or

a multi-configuration reference.

Table 3.2 gives the natural-orbital occupation numbers (eigenvalues of the 1-RDM) for the

ammonia oxide and oxywater reactions [49]. Deviation of these numbers from the Hartree-

Fock case where the highest occupied orbital occupation number is 1 and the lowest un-
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occupied orbital occupation number is 0 implies a more correlated (multi-reference) state.

Comparing all six molecules, we can see that the molecules in the ammonia-oxide reactions

are less correlated than their oxywater counterparts according to both the CCSD and 2-

RDM(M) results. For both the ammonia oxide and oxywater systems, the transition state

is the most correlated state followed by the lowest state (hydroxylamine and hydrogen per-

oxide respectively) and then the oxide state. We also note that for all states the 2-RDM

occupation numbers predict more multi-reference character than CCSD. The differences be-

tween the CCSD and 2-RDM(M) occupation numbers are notably larger for the molecules

of oxywater reactions than for the molecules of the ammonia-oxide reaction, especially at

the oxywater transition state which is the most multi-referenced molecule of the six studied.

The lowest eigenvalues of the positive semidefinite metric matrices 2D, 2Q, and 2G

provide a measure for the N -representability of the 2-RDM. These eigenvalues are reported

for oxywater, hydrogen peroxide, and its transition state in Ref. [15]. While negative, the

absolute values of these eigenvalues are approximately three orders of magnitude smaller than

the largest positive eigenvalues, which are on the order of unity, except for 2G where the

largest eigenvalue is on the order of N . Similar results (not shown) are found for ammonia

oxide, hydroxylamine, and its transition state. Hence, the parametric 2-RDM(M) method

produces 2-RDMs that are nearly N -representable.

The results from geometry optimization in the aug-cc-pVTZ basis set are presented in

Table 3.3. Overall the hydrogen-bond lengths and angles predicted by the parametric 2-

RDM method show good agreement with those from the CR-CC(T) and CCSD(T) methods

for all molecules. The most noticeable difference between the parametric 2-RDM and the

coupled cluster results is the nitrogen-oxygen bond length of the ammonia-oxide transition

state. The parametric 2-RDM(M) method predicts a bond length that is 0.0235 Å longer

than the bond length predicted by CR-CC(T) and 0.0165 Å longer than the one predicted

by CCSD(T). In contrast to the transition-state results, the nitrogen-oxygen bond lengths

predicted by the parametric 2-RDM method for hydroxylamine and ammonia oxide, 1.3797
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Table 3.2: The occupation numbers of the highest occupied natural orbital (HONO) and
the lowest unoccupied natural orbital (LUNO) for all six molecules are presented in the
aug-cc-pVTZ basis set from the CCSD and 2-RDM(M) methods.

Natural orbital occupation numbers
HONO LUNO

Molecule CCSD 2-RDM(M) CCSD 2-RDM(M)
Ammonia Oxide 0.9727 0.9687 0.0218 0.0255
Transition State 0.9655 0.9530 0.0300 0.0431
Hydroxylamine 0.9711 0.9649 0.0239 0.0299

Oxywater 0.9683 0.9594 0.0316 0.0462
Transition State 0.9607 0.9446 0.0394 0.0639

Hydrogen Peroxide 0.9635 0.9504 0.0333 0.0468

Table 3.3: Optimized geometries for hydroxylamine, ammonia oxide, and their transition
state are presented from the parametric 2-RDM(M) method and the coupled cluster methods
in the aug-cc-pVTZ basis set. The molecular point groups employed were Cs for hydroxy-
lamine and the transition state and C3v for ammonia oxide.

Bond lengths (Å) and angles (◦)
Molecule Parameter HF CCSD 2-RDM(M) CR-CC(T) CCSD(T)

Hydroxylamine rno 1.3969 1.4364 1.4502 1.4459 1.4499
rhn 0.9989 1.0147 1.0167 1.0173 1.0177
roh 0.9393 0.9588 0.9610 0.9613 0.9621
ahon 104.85 102.48 102.00 102.07 101.91
ahno 105.66 103.92 103.39 103.55 103.39
dh2no 113.48 110.41 109.70 109.95 109.76
dhnoh 123.23 124.79 125.15 125.02 125.12

Transition State rno 1.4912 1.5206 1.5553 1.5318 1.5388
rnho 1.1029 1.1075 1.1086 1.1078 1.1084
rnh 0.9939 1.0084 1.0103 1.0101 1.0109
ahno 54.31 56.19 55.68 56.39 56.39
anho 110.18 109.61 108.64 109.39 109.23
dhnoh 116.25 116.89 117.36 117.02 117.10
dh2no 127.51 126.22 125.28 125.97 125.79

Ammonia Oxide rno 1.3621 1.3735 1.3797 1.3776 1.3796
rhn 1.0074 1.0238 1.0265 1.0259 1.0268
ahno 111.48 111.82 111.82 111.86 111.87
dh2no 120.00 120.00 120.00 120.00 120.00
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and 1.4502 Å respectively, are within 0.0003 Å of those from CCSD(T). A similar lengthening

of the oxygen-oxygen bond was observed for all three molecules in the oxywater study [15].

The parametric 2-RDM method predicted an oxygen-oxygen bond length of 1.6841 Å in

the transition state, which is 0.02 Å longer than that predicted by CCSD(T) method and

0.05 Å longer than that from CCSD. The oxywater study also found smaller deviations,

0.03 to 0.04 Å, from CCSD for the hydrogen peroxide and oxywater molecules. All of these

molecules are more correlated than the ammonia-oxide transition state. Multi-reference

character is known to be statistically correlated with bond lengthening, and the oxygen-

oxygen bond is more likely to have multi-reference character than the nitrogen-oxygen bond

due to the greater energy-level degeneracy of a homogenous bond.

A comparison of the energy differences for the ammonia-oxide and oxywater reactions

at the extrapolated basis-set limit are presented in Table 3.4. CCSD predicts the highest

barriers of the correlation methods. For the ammonia oxide CCSD predicts a 54.63 kcal/mol

barrier for the hydroxylamine-to-ammonia-oxide transition and a 29.90 kcal/mol barrier for

the ammonia-oxide-to-hydroxylamine transition. For oxywater CCSD predicts a hydrogen-

peroxide-to-oxywater barrier of 52.69 kcal/mol and a 6.43 kcal/mol barrier for the oxywater-

to hydrogen-peroxide transition. The CR-CC(T) method, which predicts correlation energies

between CCSD and CCSD(T), lowers the barriers predicted by CCSD by 1-2 kcal/mol for

both oxywater and ammonia oxide. The CCSD(T) method further lowers the CCSD barriers

by 2-3 kcal/mol for both systems. Adding additional correlation energy lowers the barriers

for both the oxywater and ammonia oxide systems.

Comparing the parametric 2-RDM(M) results for the ammonia oxide and oxywater sys-

tems to the coupled cluster results reveals differences in the degree of multi-reference corre-

lation in these isoelectronic reactions. For ammonia oxide the parametric 2-RDM method

predicts reaction and barrier energies within 1 kcal/mol of those from the CCSD(T) and

CR-CC(T) methods. Furthermore, the energy barrier for the transition from hydroxylamine

to ammonia oxide is similar for both the parametric method and CCSD(T) (52.32 and 52.15

28



Table 3.4: Energy differences of the ammonia-oxide reaction are compared with those of the
oxywater reaction. All energy differences were computed from energies at the extrapolated
basis-set limit. The oxywater energies are vibrationally corrected by a harmonic zero-point
correlation [15], but the ammonia-oxide results are not since such corrections are small
relative to the reaction and barrier energies. The chemical formulas (or abbreviations) used
for the molecules are NH2OH (hydroxylamine), NH3O (ammonia oxide), HOOH (hydrogen
peroxide), H2OO (oxywater), and TS (transition state).

∆EX-Y
Molecule Set X-Y CCSD 2-RDM(M) CR-CC(T) CCSD(T)

Ammonia Oxide TS-NH2OH 54.63 52.36 52.87 52.15
NH3O-NH2OH 24.73 24.83 24.55 24.46

TS-NH3O 29.90 27.53 28.33 27.69
Oxywater TS-HOOH 52.69 48.35 51.21 50.39

H2OO-HOOH 46.26 46.25 46.08 46.19
TS-H2OO 6.43 2.12 5.13 4.21

kcal/mol), and the reaction energy from hydroxylamine to ammonia oxide shows only a

slight lowering (0.16 kcal/mol) to 27.53 kcal/mol when compared to the CCSD(T) result.

In contrast, for the oxywater reaction the parametric 2-RDM(M) method predicts energy

barriers that are over 2 kcal/mol lower than those from CCSD(T); specifically, it lowers the

barrier from hydrogen peroxide to oxywater down from 50.39 to 48.35 kcal/mol and the bar-

rier from oxywater to hydrogen peroxide from 4.21 kcal/mol to 2.12 kcal/mol. Therefore, in

agreement with the occupation numbers, the parametric 2-RDM(M) method predicts greater

multi-reference correlation in the oxywater reaction than in its isoelectronic analogue—the

ammonia-oxide reaction.

Complementing Table 3.4, Figure 3.1 compares the 2-RDM(M) energies of the ammonia-

oxide and oxywater reactions at the extrapolated basis-set limit. The similarity in the size of

the forward barriers is readily apparent as is the difference in the reverse barriers. We observe

that the barrier from oxywater to hydrogen peroxide is much smaller than the barrier from

ammonia oxide to hydroxylamine. The transition state of the oxywater reaction is much

closer in both energy and geometry to oxywater than the transition state of the ammonia

oxide reaction is close to ammonia oxide.
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Table 3.5: Trends in barrier heights across basis sets are compared for the ammonia-oxide-to-
hydroxylamine and the oxywater-to-hydrogen-peroxide reactions. Coupled cluster methods
are represented by the highest level method CCSD(T), but the trends are the same for both
CCSD and CR-CC(T).

∆EX-Y
X-Y Basis Set 2-RDM(M) CCSD(T)

TS-NH3O aug-cc-pVDZ 26.78 27.03
aug-cc-pVTZ 26.74 26.95
aug-cc-pVQZ 27.17 27.32

EBSL 27.53 27.69
TS-H2OO aug-cc-pVDZ 2.96 3.60

aug-cc-pVTZ 2.96 3.59
aug-cc-pVQZ 2.58 4.01

EBSL 2.12 4.21

A comparison of the trends in barrier heights across basis sets of the ammonia-oxide-

to-hydroxylamine and oxywater-to-hydrogen-peroxide reactions can be found in Table 3.5.

From ammonia oxide to hydroxylamine the barrier height increases from aug-cc-pVDZ to the

basis-set limit with a small dip at aug-cc-pVTZ for both the 2-RDM(M) and CCSD(T) meth-

ods. The parametric 2-RDM(M) method raises the predicted barrier from 26.78 kcal/mol

to 27.53 kcal/mol while CCSD(T) raises its predicted barrier from 27.03 to 27.69 kcal/mol.

These small changes in barrier heights are notable compared to the larger changes in bar-

rier eights observed in the oxywater system. For the oxywater-to-hydrogen-peroxide tran-

sition the 2-RDM(M) barrier decreases by 0.84 kcal/mol as the basis set increases from

aug-cc-pVDZ to the basis-set limit while it increases for the coupled cluster methods by

0.61 kcal/mol. In contrast to coupled cluster, the parametric 2-RDM(M) method lowers the

transition-state energy relative to oxywater as the size of the basis set increases.

3.3 Discussion and Conclusions

Using the parametric 2-RDMmethod, we studied the conversion of ammonia oxide to hydrox-

ylamine and compared the results to the isoelectronic conversion of oxywater [15] to hydrogen

30



0

10

20

30

40

50

60

70
E

n
er

g
y
 (

k
ca

l/
m

o
l)

NH2OH
0.0

TS
52.4

NH3O
24.8

(a)

0

10

20

30

40

50

60

70

E
n
er

g
y
 (

k
ca

l/
m

o
l)

HOOH
0.0

TS
48.4

H2OO
46.3

(b)

Figure 3.1: Isomerization reactions from the parametric 2-RDM(M), (a) the conversion of
hydroxylamine to ammonia oxide and (b) the conversion of hydrogen peroxide to oxywater,
are compared at the extrapolated basis set limit. The oxywater energies include a harmonic
zero-point correction.
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peroxide. The parametric 2-RDM(M) method and the computationally more expensive CR-

CC(T) method recovers a similar amount of correlation energy, which is consistent with the

previous study of the oxywater reaction. The correlation energies and the natural-orbital oc-

cupation numbers show that the most correlated molecule for both systems is the transition

state and that the oxywater set of molecules is slightly more correlated than the ammonia

oxide set of molecules. The addition of electron correlation stabilizes the transition state and

hence, lowers the energy barrier within the reaction. Correlation also affects the ammonia

oxide and oxywater geometries with notable bond lengthening of the O-O bonds in hydrogen

peroxide, oxywater, and their transition state and the N-O bond in the transition state of

the ammonia-oxide reaction.

For the relative energy differences between hydroxylamine, ammonia oxide, and their

transition state, we found that the 2-RDM(M) results for the hydroxylamine-to-ammonia-

oxide barrier and the ammonia-oxide-to-hydroxylamine barrier are comparable to the coupled

cluster methods across all three basis sets and at the extrapolated basis-set limit. The

differences between the parametric 2-RDM(M) and coupled cluster methods noted in this

paper are not likely to be thermodynamically significant as they involve differences of at

most 2 kcal/mol when the reverse barrier has been shown to be 27-29 kcal/mol. The size

of the reverse barrier compared to the forward barrier supports the stability of ammonia

oxide as seen in previous theoretical studies [18, 34–36]. The increase in barrier height with

increasing basis-set size, observed for both the parametric and coupled cluster methods,

suggests increased stability for ammonia oxide relative to its transition state in the basis-set

limit.

In contrast to the results for ammonia oxide, because the barrier from oxywater to hy-

drogen peroxide is small, differences in electron correlation between methods can have a

significant effect on reaction probabilities. The parametric 2-RDM(M) method predicts a

small oxywater-to hydrogen-peroxide isomerization barrier of only 2.12 kcal/mol at the ex-

trapolated basis-set limit while CCSD(T), the closest of the tested methods to the parametric
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2-RDM method in terms of the barrier heights, gave a reverse barrier of 4.21 kcal/mol at the

basis-set limit. Notably, this is a larger difference in both relative and absolute terms than

was found for the ammonia-oxide isomerization where the ammonia oxide to hydroxylamine

barrier calculated by CCSD(T) was only 0.34 kcal/mol higher than the parametric method.

In addition, we find that the relative stabilization with increasing basis set size of the oxy-

water transition state with respect to oxywater is unique among the methods and states

tested. In considering the role of multi-reference correlation in causing these differences, we

note that for oxywater the energy barrier from the parametric 2-RDM(M) lies between those

predicted by the coupled-cluster methods and the multi-reference methods [23, 24].

In this study we employed the parametric 2-RDM method with the M functional and

several coupled cluster methods to compare the conversion of ammonia oxide to hydroxy-

lamine to the conversion of oxywater to hydrogen peroxide. We used multiple basis sets

including the largest basis set aug-cc-pVQZ that has yet to be applied to ammonia oxide.

We found that the parametric 2-RDM(M) method gives similar results to coupled cluster

methods and previous studies in contrast to the results for its isoelectronic cousin oxywa-

ter, where the parametric 2-RDM(M) method significantly lowers the barrier predicted by

coupled cluster methods. The parametric 2-RDM method agrees with dynamic correla-

tion methods such as coupled cluster when the multi-reference character of the system is

minimal but incorporates additional multi-reference correlation, usually requiring specially

designed multi-reference methods, as the amount of multi-reference correlation increases.

This demonstrates the ability of the parametric method combined with the M functional to

describe both dynamic and multi-reference correlation simultaneously to provide chemically

accurate results at a low computational cost.

The M parametric 2-RDM method has been recently applied to studying the kinetic

stability of oxywater [15], the relative populations of carbonic acid at 210 K [16], and the

barrier to rotation separating the cis and trans isomers of diazene [17]. These results in

conjunction with the present results for the conversion of ammonia oxide to hydroxylamine
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demonstrate the ability of the parametric 2-RDM method to treat a broad range of chemi-

cal problems. Importantly, the parametric 2-RDM method with the M functional generally

yields energies that approach the accuracy of coupled cluster theory with full triple exci-

tations. Calculations of diradical transition states and bond stretches also indicate the M

parametric 2-RDM method correctly treats some multi-reference correlation effects that are

typically inaccessible to tradition single-reference wavefunction methods. With a computa-

tional cost like CISD the parametric 2-RDM method is more cost efficient than CCSD. A

comparison of computational timings for oxywater is presented elsewhere [15]. Because the

M parametrization of 2-RDM is derived from general relations from N -representability, the

method with its combination of accuracy and efficiency has wide application to studying

electron correlation in chemistry and physics.
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CHAPTER 4

RELATIVE ENERGIES AND GEOMETRIES OF THE CIS-

AND TRANS-HO3 RADICALS FROM THE PARAMETRIC

2-ELECTRON DENSITY MATRIX METHOD

This chapter contains parts of an article that was originally published in the Journal of

Physical Chemistry A. Reprinted with permission from [E. P. Hoy, C. A. Schwerdtfeger,

and D. A. Mazziotti, J. Phys. Chem. A, 117(8), 1817 (2013)]. Copyright 2013, American

Chemical Society.

4.1 Introduction

In 1952 at a conference in Chalk River A. John Coleman recognized that the ground-state

energy and properties of an N -electron atom or molecule could in principle be computed

as a linear functional of the 2-electron reduced density matrix (2-RDM) rather than the

N -electron wave function [1]. This observation was the beginning of a new field in electronic

structure—namely, reduced-density-matrix mechanics [2, 3]—in which the 2-RDM rather

than the many-electron wave function is the basic computational variable.

Direct calculation of the 2-RDM requires that it be constrained by a set of conditions

to derive from the integration of an N -electron density matrix. These constraints, called

N -representability conditions by Coleman in 1963 [4], are necessary to ensure that the 2-

RDM represents a realistic N -electron system [5–8]. Three general approaches for the direct

calculation of the 2-RDM include: (i) the minimization of the energy with the 2-RDM con-

strained explicitly by N -representability conditions, which leads to a problem in semidefinite

programming [9–13], (ii) the minimization of the energy with the 2-RDM parameterized (or

constrained implicitly) by N -representability conditions [3, 14–18], and (iii) the calculation of

the 2-RDM from the solution of the contracted Schrödinger equation (or its anti-Hermitian

part) with cumulant-based reconstruction of the higher RDMs [3, 19–23]. In this paper we
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focus on the second category of methods, the parametric 2-RDM methods, and their appli-

cation to a problem representative of computing small energy differences in chemistry, the

relative electronic energies of the HO3 radical’s two isomers.

Weinhold and Wilson [24, 25] developed one of the earliest parametric 2-RDM methods.

They parameterized the 2-RDM as a functional of the parameters of the configuration interac-

tion doubles (CID) wave function with the aim of developing a more general parametrization

beyond a specific wave-function ansatz. More recently, Kollmar [26] and Mazziotti [14, 15]

extended the work of Weinhold and Wilson to obtain 2-RDM parameterizations that are

size extensive generalizations of the CID parametrization. The derivation of the Mazziotti

parametrization is detailed in Chapter 2. Mazziotti’s family of parameterizations can be

shown to be a significant generalization of the traditional coupled electron-pair methods.

While the traditional CEPA methods are based solely on perturbative arguments, the para-

metric 2-RDM methods have parameterizations that consider the N -representability of the

2-RDM. Here we employ the parametric 2-RDM method with the M parametrization, which

we denote as the 2-RDM(M) method [3, 14, 15]. The 2-RDM(M) method has an accuracy

approaching that of coupled cluster with single, double, and triple excitations, especially

in the presence of some multi-reference correlation, at a computational cost that is less

than coupled cluster with single-double excitations. Applications have been made to several

closed-shell molecular systems [3, 14–18] including the calculation of (i) the small barrier

separating oxywater from hydrogen peroxide [16], (ii) the relative energies of the cis-cis and

cis-trans isomers of carbonic acid, and (iii) the rotational barrier separating cis and trans

diazene [17]. Recently the 2-RDM(M) method has been extended to open-shell systems [27],

which often require a multi-configurational reference to obtain chemically accurate energies

and barriers [28]. In this chapter we apply the open-shell version of the 2-RDM(M) method

to the isomers of the HO3 radical.

The hydridotrioxygen molecule (HO3) has been the subject of many experimental and

computational studies due to its potential importance in atmospheric, combustion, and or-
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ganic/biochemical oxidation processes [29–32]. In recent years the molecule’s potential role

as a reservoir for atmospheric OH has been particularly well examined [33–40]. HO3 was

first observed experimentally by Cacace et al. in 1999 using neutralization-reionization mass

spectrometry [41]. The following year Nelander et al. reported its presence in Ar and H2O

ice matrices based on infrared spectroscopy results [42, 43]. The rotational spectrum of

HO3 was measured by Suma et al. in 2005 using Fourier-transform microwave spectroscopy.

Based on the experimental rotational constants and theoretical dipole moment calculations,

Suma et al. determined that the trans isomer of HO3 was the source of this rotational spec-

trum. Subsequent experiments observed the fundamental HOO bend around 1250 cm−1

by irradiating H18
2 O + O2 ice mixtures [44, 45]. The amount of energy required to disso-

ciate HO3( X
2A′′) to OH( 2Πi)+O2(

3Σ−
g ) was established to have an experimental upper

limit between 5.31 to 6.12 kcal/mol by a series of studies in 2007 and 2008 [33–36] and

was given a value of 2.97 ± 0.07 kcal/mol (barrierless) by Le Picard et al. based on kinetic

studies [37, 38]. Additionally, Lester and co-workers confirmed that the trans isomer is

the primary contributor to the HO3 rotational spectrum and suggested that cis-HO3 likely

appears in the spectrum as broad, unstructured peak [30, 33–36].

The HO3 molecule has also received significant theoretical attention due to its potential

importance in atmospheric processes and the notable difficulties in reconciling theoretical

and experimental results [29, 31, 32, 39, 40, 46–53, 53–73]. In this study we investigate

two of these issues: matching the theoretical to the experimental geometric parameters for

the trans-HO3 state (especially the unusually long central oxygen-oxygen bond) [32, 74] and

determining whether the cis- or trans-HO3 isomer is more favorable energetically [31, 35, 36,

39, 48, 73, 74]. Some disagreement exists as to the importance of multi-reference correlation

and/or higher-order excitations to the HO3 problem [31, 32, 39, 73]. The parametric 2-

RDM(M) method’s results for the cis- and trans-HO3 states are compared to those from

single-reference coupled cluster methods as well as previous experimental and theoretical

results [36, 73, 74] in order to better understand the role of correlation in the energies and
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geometries of the HO3 states.

4.2 Applications

4.2.1 Computational Methods

We examined two isomers of the HO3 radical and their transition state: cis- HO3, trans-

HO3, and their isomerization transition state, using the open-shell versions of 2-RDM(M),

coupled cluster with single and double excitations [CCSD] [75, 76], completely renormalized

coupled cluster exploiting left eigenstates [CR-CCSD(T)L or CR-CCL] [75, 76], and coupled

cluster with single and double excitations plus perturbative triple excitations [CCSD(T)] [77–

82]. The CCSD and CR-CCL calculations were performed with the GAMESS electronic

structure package [83], and the CCSD(T) results were computed using Gaussian 09 [84].

The open-shell parametric 2-RDM calculations were performed using a GAMESS implemen-

tation of the method discussed in Refs. [3, 15, 16, 27]. Using the numerical finite-difference

optimization in GAMESS for the CCSD, CR-CCL, and 2-RDM(M) methods, we optimized

the geometries of each molecule to a tolerance of 10−7 Hartrees/Å in the cc-pVTZ and

aug-cc-pVTZ basis sets and then calculated single-point energies at these minimum-energy

geometries in the cc-pVQZ and aug-cc-pVQZ basis sets. The core orbital of each oxygen

was frozen for both the optimization and single-point calculations. The energy differences

involving the two isomers and their transition state were calculated in the cc-pVQZ and

aug-cc-pVQZ basis sets both with and without the addition of harmonic zero-point vibra-

tional energies. The harmonic zero-point energies were calculated in the cc-pVDZ basis set

by numerical finite differences using the GAMESS electronic structure package for CCSD,

CR-CCL, and 2-RDM(M) and the Gaussian 09 package for CCSD(T) [83, 84].
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Table 4.1: The natural-orbital occupation numbers as calculated by the 2-RDM(M) method
in the cc-pVQZ and aug-cc-pVQZ basis sets are presented.

Natural-orbital occupation numbers
HONO-1 HONO LUNO

Molecule cc-pVQZ aug-cc-pVQZ cc-pVQZ aug-cc-pVQZ cc-pVQZ aug-cc-pVQZ
trans 0.9485 0.9410 0.4992 0.4954 0.0585 0.0674
cis 0.9521 0.9449 0.4990 0.4966 0.0538 0.0612
TS 0.9486 0.9401 0.5012 0.4996 0.0542 0.0645

4.2.2 Results

We calculated the natural-orbital occupation numbers for each isomer and their transition

state using the 2-RDM(M) method in the cc-pVQZ and aug-cc-pVQZ basis sets. The results

of these calculations can be found in Table 4.1. The deviations of the second highest occupied

natural-orbital (HONO-1) occupation number from 1.0, the highest occupied natural-orbital

(HONO) occupation number from 0.5, and the lowest unoccupied natural-orbital (LUNO)

occupation number from 0.0 indicate increasing multi-reference character. Both the HONO-

1 and LUNO numbers show that cis-HO3, trans-HO3, and their transition state have a

small but noticeable amount of multi-reference character. The trans isomer is the most

multi-referenced with the transition state having slightly less multi-reference character. In

previous studies of ammonia oxide and oxywater by Hoy et al. and Schwerdtfeger et al.,

small differences in multi-reference character were found to alter the relative energy differ-

ences between isomers noticeably, especially when the energy differences were small [16, 18].

The energies from all of the methods including coupled cluster are not invariant to orbital ro-

tations between the occupied and virtual orbitals. Because the natural occupation numbers

are not too far from 0 and 1, energy variations from changes in the reference determinant are

likely not large. The parametric 2-RDM method also has a slight invariance with respect to

rotations between occupied orbitals and between virtual orbitals. Calculations of this latter

invariance, to be published elsewhere, show that typically it also has a small effect on the

energy.
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Table 4.2: The total electronic energies before harmonic zero-point vibrational energies plus
225 Hartrees are given for the cc-pVQZ and aug-cc-pVQZ basis sets.

Total electronic energy +225 (H)
Molecule Basis Set CCSD 2-RDM(M) CR-CCL CCSD(T)
trans-HO3 cc-pVQZ -0.802560 -0.837671 -0.838718 -0.839630
cis-HO3 -0.803949 -0.837227 -0.839737 -0.840244

TS -0.802261 -0.834424 -0.837823 -0.838569
trans-HO3 aug-cc-pVQZ -0.810248 -0.850797 -0.845735 -0.848349
cis-HO3 -0.811341 -0.850146 -0.846471 -0.848597

TS -0.810000 -0.847562 -0.844740 -0.847217

Table 4.2 contains the total electronic energies before the addition of harmonic zero-point

vibrational energies (harmonic ZPEs) for each of the states studied in the cc-pVQZ and aug-

cc-pVQZ basis sets. In the cc-pVQZ basis set the parametric 2-RDM(M) method recovers

an amount of correlation energy between CCSD and CCSD(T), which is consistent with the

results from previous studies of closed-shell molecules [16–18, 85]. In the aug-cc-pVQZ basis

set the parametric 2-RDM(M) method yields correlation energies that are lower than those

from CCSD(T) by 0-0.0024 H. Previous calculations with the 2-RDM method indicate that it

recovers more correlation energy than CCSD(T) only when there are significant contributions

from multi-reference effects [17]. In conjunction with the natural-orbital occupation numbers,

this finding suggests that the 2-RDM(M) method is capturing additional multi-reference

correlation beyond that from the coupled cluster methods.

The energy differences between the HO3 isomers before and after the addition of harmonic

zero-point vibrational energies are given in Tables 4.3 and 4.4 respectively. Considering the

uncorrected results first, we see that the 2-RDM(M) method predicts that the trans-HO3

isomer is lower in energy than the cis isomer in the cc-pVQZ basis set by 0.28 kcal/mol.

The addition of augmented functions to the basis set lowers the trans further relative to

the cis and thereby increases the predicted energy gap between the two isomers to 0.41

kcal/mol. With the addition of harmonic zero-point vibrational energies (Table 4.4), the

2-RDM(M) predicts a trans-cis energy difference of -1.71 kcal/mol in the cc-pVQZ basis set
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Table 4.3: The energy differences between states before the addition of harmonic zero-point
energies are presented for cc-pVQZ and aug-cc-pVQZ basis sets. For comparison, MRCI(Q)
cc-pVQZ and aug-cc-pVQZ trans-cis energy differences calculated by Varandas in 2012 are
provided [73].

∆EX-Y(kcal/mol)
X-Y Basis Set CCSD 2-RDM(M) CR-CCL CCSD(T) MRCI(Q)

trans-cis cc-pVQZ 0.87 -0.28 0.64 0.39 -0.05
TS-trans 0.19 2.04 0.56 0.65
trans-cis aug-cc-pVQZ 0.69 -0.41 0.46 0.16 -0.22
TS-trans 0.16 2.03 0.62 0.71

Table 4.4: The energy barriers after the inclusion of harmonic zero-point vibrational energies
for cc-pVQZ and aug-cc-pVQZ basis sets are reported in this table.

∆EX-Y(kcal/mol)
X-Y Basis Set CCSD 2-RDM(M) CR-CCL CCSD(T)

trans-cis cc-pVQZ 0.61 -1.71 0.39 0.02
TS-trans -0.04 2.04 0.55 0.11
trans-cis aug-cc-pVQZ 0.42 -1.84 0.21 -0.21
TS-trans -0.07 2.04 0.61 0.17
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and -1.84 kcal/mol in the aug-cc-pVQZ basis set due to cis state having a harmonic zero-

point vibrational energy which is 1.43 kcal/mol larger than the trans harmonic zero-point

vibrational energy. The addition of harmonic zero-point vibrational energies or augmented

functions does not noticeably change the energy difference between the transition state and

the trans isomer for the 2-RDM(M) method which remains at ∼2.04 kcal/mol for all the

cases studied.

Without including harmonic zero-point vibrational energies (Table 4.3), all of the coupled

cluster methods predict that the cis-HO3 isomer is lower in energy than the trans-HO3

isomer. Among the coupled cluster methods, the energetic favorability of the cis isomer is

largest for the CCSD method which predicts a 0.87 kcal/mol difference in favor of the cis

isomer in the cc-pVQZ basis set and smallest for the CCSD(T) method which predicts a

0.39 kcal/mol difference in favor of the cis isomer. Similarly to the 2-RDM(M) method,

the trans state is lowered in energy relative to the cis state by the addition of augmented

functions to the basis set resulting in a smaller trans-cis gap for all three coupled cluster

methods. In the aug-cc-pVQZ basis set, the CCSD method predicts a trans-cis gap of 0.69

kcal/mol while the CCSD(T) method predicts a difference of 0.16 kcal/mol in favor of the

cis isomer. Additionally, the couple cluster methods all predict that the trans state is less

than 1 kcal/mol lower than the transition state before the addition of harmonic zero-point

vibrational energies.

Once harmonic zero-point vibrational energies are included, as shown in Table 4.4, the

CCSD and CR-CCL methods in the aug-cc-pVQZ basis set predict that cis-HO3 remains

lower than trans-HO3 by 0.42 and 0.21 kcal/mol, respectively. Of the coupled cluster meth-

ods, only the CCSD(T) method predicts that the relative ordering of the cis and trans

states changes once harmonic zero-point vibrational energies are included. The CCSD(T)

method predicts that the trans isomer is 0.02 kcal/mol higher than the cis isomer in the

cc-pVQZ basis set but that the trans isomer is 0.21 kcal/mol lower than the cis isomer in

the aug-cc-pVQZ basis. With the addition of harmonic zero-point energies to the CCSD
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Table 4.5: The harmonic frequencies calculated in the cc-pVDZ basis set for each molecule
and method are provided in the table below. Experimental results from Derro et al. for the
trans isomer are provided for comparison[36].

Harmonic Frequencies (cm−1)
Molecule Basis Set CCSD 2-RDM(M) CR-CC(T) CCSD(T) Exp
trans-HO3 ω1 106.67 72.66 145.55 120.92 122

ω2 466.75 136.75 316.33 179.96 144
ω3 681.05 449.47 562.53 475.62 482
ω4 1233.95 979.20 1178.43 1055.72 998
ω5 1369.38 1425.01 1360.24 1455.06
ω6 3774.56 3727.83 3737.22 3722.39 3528

Transition State ω2 483.83 111.52 345.60 63.73
ω3 695.15 480.72 627.59 462.60
ω4 1217.50 1015.18 1243.47 973.89
ω5 1296.31 1353.19 1336.75 1421.32
ω6 3778.68 3843.99 3738.20 3710.66

cis-HO3 ω1 230.79 352.46 220.71 206.00
ω2 494.19 414.63 362.15 242.77
ω3 723.56 779.94 623.80 569.41
ω4 1220.48 1167.89 1217.89 1213.71
ω5 1423.75 1452.61 1361.33 1346.41
ω6 3722.78 3630.43 3690.99 3686.54
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methods energy results, the CCSD method predicts in both the cc- pVQZ and aug-cc-pVQZ

basis sets that the trans isomer is higher in energy than the transition state by less than

0.1 kcal/mol. The CCSD(T) method predicts that the addition of harmonic zero-point en-

ergies lowers of the transition state to ∼0.2 kcal/mol above the trans state. The addition of

harmonic zero-point vibrational energies to our total electronic energies does not noticeably

change this energy difference in the CR-CCL method. Comparison of Tables 4.3 and 4.4

shows that the addition of the harmonic zero-point energies stabilizes the trans relative to

the cis for all of the methods. The 2-RDM(M) method manifests the largest stabilization

of ≈1.4 kcal/mol, which is approximately 1 kcal/mol greater than that found in CCSD(T).

The origin of this stabilization can be seen in the harmonic vibrational frequencies in Ta-

ble 4.5. While the 2-RDM(M)’s predicted frequencies for cis are close to those from CCSD,

the predicted frequencies for trans are close to those from CCSD(T). This subtle difference

between the frequencies for cis and trans is enough to account for the increased stabilization

from 2-RDM(M).

The parametric 2-RDM(M) method predicts that the trans isomer is more stable than

the cis isomer both before and after harmonic zero-point vibrational energies are added

while CCSD(T) only favors the trans in the aug-cc-pVQZ basis set after harmonic zero-point

vibrational energies are added. Figure 4.1 graphically compares the relative energies with

harmonic zero-point energies included from the 2-RDM(M), CCSD, and CCSD(T) methods

in the (a) cc-pVQZ and (b) aug-cc-pVQZ basis sets. When we compare these results to

the multi-reference configuration (MRCI) results of Suma et al. and Varandas et al., we see

some interesting parallels between the predictions of the MRCI and 2-RDM(M) method [31,

48, 73, 74]. Suma et al. optimized the HO3 using the multi-reference single and double

excitation configuration interaction method with the Davidson correction (MRCI+Q) in the

aug-cc-pVTZ basis set, which predicted an energetic favoring of the trans isomer by 0.266

kcal/mol and an isomerization barrier of 0.921 kcal/mol. In a 2012 paper Varandas, using

the MRCI and MRCI+Q methods in multiple correlation-consistent basis sets with and
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Table 4.6: The oxygen bond lengths calculated in the aug-cc-pVTZ basis set are reported.
The total correlation energy recovered in the aug-cc-pVQZ basis set for each molecule is given
in the rows marked CE (correlation energy) below the relevant parameters. The experimental
values for the trans-HO3 boo1 bond length are 1.225* Å [74] and 1.235 Å [32] while the
values for the boo2 bond length are 1.688 Å [74] and 1.648 Å [32]. *Fixed at the MRCI+Q
value in order to estimate the other geometric parameters.

Geometries(Å or ◦)
Molecule Parameter CCSD 2-RDM(M) CR-CCL CCSD(T)
trans-HO3 boo1 1.2489 1.2446 1.2387 1.2304

boo2 1.4917 1.6187 1.5595 1.6050
CE -0.7718 -0.8297 -0.8156 -0.8248

cis-HO3 boo1 1.2611 1.2652 1.2576 1.2520
boo2 1.4667 1.5740 1.5129 1.5403
CE -0.7725 -0.8252 -0.8126 -0.8176

TS boo1 1.2558 1.2527 1.2505 1.2416
boo2 1.4863 1.6173 1.5448 1.5875
doooh 124.04 84.76 90.28 80.44
CE -0.7700 -0.8262 -0.8120 -0.8210

without extrapolation to the basis-set limit, predicts the trans-cis differences between 0.1 to

0.6 kcal/mol in favor of the trans isomer. The MCRI(Q) results from the Varandas paper in

the cc-pVQZ and aug-cc-VQZ basis sets are given in Table 4.3 for comparison. Overall, we

find that the 2-RDM(M)’s predicted results are closer to those predicted by multi-reference

calculations than those from single-reference CCSD, especially in the energetic stability of

the trans isomer relative to the cis isomer and the height of the barrier to isomerization

(≈ 2 kcal/mol).

Table 4.6 contains the oxygen bond lengths for each of the two isomers and their transition

states calculated in the aug-cc-pVTZ basis set. We focus on the oxygen bond lengths here

since they are typically underestimated by theoretical methods relative to experiment [32, 74].

For completeness, the full set of geometries for both the optimizations and the harmonic

zero-point vibrational energy calculations are available in the supplemental information of

the published paper. Comparing the 2-RDM(M) results to CCSD results for the trans-

HO3 state, we find that the parametric 2-RDM(M) method predicts a geometry with longer
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Figure 4.1: Relative energies of the two HO3 isomers and their transition state from the
2-RDM(M), CCSD, and CCSD(T) methods are shown for the (a) cc-pVQZ and (b) aug-cc-
pVQZ basis sets. MRCI(Q) calculations in the cc-pVQZ (a) and aug-cc-pVQZ (b) basis
sets including harmonic vibrational zero-point energies extrapolated to the basis set limit
from Ref. [73].
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Figure 4.2: Figures show the (a) cis- and (b) trans-HO3 geometries as calculated by the
2-RDM(M) method in the aug-cc-pVTZ basis set.

oxygen-oxygen bonds than CCSD in both basis sets. Compared to the experimental results

of McCarthy et al. (boo1 = 1.235 and boo2 = 1.684), 2-RDM(M) gives a longer bond length,

1.2446 Å , for the boo1 bond and a shorter one, 1.6187 Å , for the boo2 at the aug-cc-pVTZ

level. Both the CCSD and CR-CCL methods predict much shorter bond lengths for the boo2

bond than the 2-RDM(M) method. The best coupled cluster method in terms of matching

the experimental geometries, CCSD(T), predicts a boo1 bond length of 1.2304 in the aug-cc-

pVQZ basis set; however, the boo2 bond length predicted by CCSD(T) is shorter (1.6050)

than the one predicted by the 2-RDM(M) method and farther from the experimental value.

Looking at the trends in the coupled cluster methods, we can see that in moving from CCSD

to CCSD(T) the boo1 bond length decreases while the boo2 bond length increases. Although

not shown in Table 4.6, the 2-RDM(M) method displays a similar behaviour when augmented

functions are added to the basis set. Taken together these results suggest that increasing the

dynamic correlation energy recovered shortens the boo1 bond and lengthens the boo2 bond

while the addition of multi-reference correlation lengthens both bonds. To help explain and

support these results, we consider the correlation energy recovery of the 2-RDM(M) method

as compared to the coupled cluster methods.

For the HO3 isomers we find that the 2-RDM(M) method recovers 101-103% of the
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correlation energy added to CCSD by CR-CC(L) at the cc-pVQZ level. At the aug-cc-pVQZ

level, this increases to 130-132%. These results are indicative of multi-reference character as

the 2-RDM(M) method only recovered more correlation energy than CR-CC or CCSD(T)

in the presence of multi-reference correlation such as seen in the transition state of diazene

studied by Sand, Schwerdtfeger, and Mazziotti in 2012 [17]. Both natural-orbital occupation

numbers and the total energy recovered suggest that multi-reference correlation plays a

non-trivial role in describing the energetics of this system in line with some previous HO3

studies [31, 48, 73]. The longer oxygen-oxygen bonds of the HO3 isomers, as predicted by

2-RDM(M), are a likely consequence of the multi-reference correlation. A similar effect is

caused by the addition of perturbative triples to CCSD [CCSD(T)]. Therefore, it is likely

that a high level of both dynamic and multi-reference correlation is need to describe the

geometry of this system.

4.3 Discussion and Conclusions

In this study we employed the parametric 2-RDM(M) method and several coupled clus-

ter methods to study the HO3 molecular system in the cc-pVQZ and aug-cc-pVQZ basis

sets. The study represents the first application of the parametric 2-RDM(M) method to

an open-shell system of significant chemical interest. The two key features examined were

(i) the relative orderings of the cis and trans isomers of HO3 and (ii) the experimental

geometries of trans-HO3. Experimental results suggest that the trans-HO3 isomer is the

lower in energy than the cis-state and possesses a long central oxygen-oxygen bond that is

difficult for theoretical methods to match [30, 32–36, 74]. The 2-RDM(M) method predicted

that the trans-HO3 isomer is lower in energy than the cis-HO3 isomer by between 1.71 to

1.81 kcal/mol once harmonic zero-point vibrational energies are added and between 0.28

to 0.41 kcal/mol without including the zero-point energies. The CCSD and CR-CCL meth-

ods both predict that cis-HO3 is lower in energy than trans-HO3. Of the coupled cluster

methods, only the CCSD(T) method in the aug-cc-pVQZ basis set predicted that the trans
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isomer is lower in energy by 0.21 kcal/mol once harmonic zero-point vibrational energies are

included.

A key difference between the CCSD(T) and 2-RDM(M) results points to the ability of

the 2-RDM(M) method, as seen in Ref. [17], to capture some electron correlation which

is traditionally as multi-reference correlation. Without including harmonic zero-point vi-

brational energies in the results, only the 2-RDM(M) method predicts that trans-HO3 is

electronically favored over the cis isomer. Based on the natural-orbital occupation numbers

and correlation energy recovered, we find that the difference is based, at least in part, on the

degree of multi-reference correlation captured by the 2-RDM(M) method. This conclusion is

consistent with previous studies on the topic which suggest that multi-reference correlation

is necessary to describe this system [31, 40, 45, 48, 52, 63, 65, 73, 74, 86]. Most notably,

we find that the CCSD method, the least multi-referenced of the coupled cluster methods

employed, showed the largest energetic favoring of the cis-isomer before and after harmonic

zero-point vibrational energies are added while the 2-RDM(M), which is capable of describing

multi-referenced systems, predicted the largest energy difference in favor of trans-HO3.

After considering the geometry results, we found that the parametric 2-RDM(M) method

predicted longer oxygen-oxygen bonds overall than predicted by the coupled cluster methods.

In the aug-cc-pVTZ basis set the 2-RDM(M) method predicted a central oxygen-oxygen bond

length (boo2) for trans-HO3 of 1.6187 Å compared to the 1.4917 Å bond length predicted

by CCSD and the 1.6050 Å bond length predicted by CCSD(T). Compared to the coupled

clusters results, the 2-RDM(M) result was closer to but still shorter than the experimen-

tal bond length of 1.684/1.688 Å [32, 74]. In the same basis set the second oxygen-oxygen

bond (boo1) was predicted by the 2-RDM(M) method to be 1.2446 Å long. The addition of

augmented functions notably improved the geometry results which depend heavily on corre-

lation energy recovery. Other multi-referenced methods from previous studies, particularly

MRCI and MRCI(Q) results extrapolated to the basis-set limit, have been able to match

the experimental central oxygen-oxygen bond length even more closely than 2-RDM(M)
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[31, 52, 73, 74]. Considering this along with the lengthening of the central bond and short-

ening of the boo1 bond with basis set size, we speculate that a 2-RDM(M) optimization in

the aug-cc-pVQZ or larger basis set would potentially yield further improvements to the

geometries and hence, should be considered for future studies of this system.

With the extension of the parametric 2-RDM(M) method to open-shell systems, we

have a method that is capable of treating a large variety of systems with a high degree of

accuracy [3, 14–18, 85]. With a computational cost equivalent to configuration interaction

with single and double excitations (CISD) and less than that of CCSD, the 2-RDM(M)

method is capable of approaching the accuracy of coupled cluster with full triple excitations

in single-reference cases as well as being able to treat some multi-reference cases. In this

study, we found that the 2-RDM(M) method predicts that trans-HO3 is lower in energy than

cis-HO3 in both the cc-pVQZ and aug-cc-pVQZ basis sets in line with experimental results;

furthermore, it improves on the predicted oxygen-oxygen bond lengths predicted by CCSD

relative to experimental results. Both the energetic and geometric predictions are consistent

with previous results from multi-reference methods. Even though the parametric 2-RDM

method is a single-reference theory, the present results in addition to earlier calculations [14–

17] demonstrate its ability to capture multi-reference correlation effects. The open-shell 2-

RDM(M) method, which performs similarly to its closed-shell counterpart, is applicable to

a wide range of moderately correlated open-shell chemical systems.
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CHAPTER 5

ENERGIES AND STRUCTURES IN BIRADICAL

CHEMISTRY FROM THE PARAMETRIC TWO-ELECTRON

REDUCED-DENSITY MATRIX METHOD: APPLICATIONS

TO THE BENZENE AND CYCLOBUTADIENE BIRADICALS

This chapter contains parts of an article that was originally published in Physical Chemistry

Chemical Physics. Reprinted with permission from [A. L. McManus, E. P. Hoy and D. A.

Mazziotti, Phys. Chem. Chem. Phys., 17, 12521 (2015)]. Copyright 2015, Royal Society of

Chemistry.

5.1 Introduction

The general class of organic biradicals has motivated a multitude of experimental and theo-

retical studies [1–16]. These species have been identified as intermediates in many relevant

organic reactions, including photochemical processes [6–8], the Bergman cyclization reac-

tion [9–12], and a number of cycloaddition reactions [13–16]. Meanwhile, the electronic

structure of biradicals makes them challenging for theoretical studies.

A species is classified as a biradical if it contains two degenerate molecular orbitals on

separate atomic centers and two electrons with which to fill them [17–19]. These species are

distinguished from the more general class of diradicals, which contain two unpaired electrons

that may or may not be localized on separate atomic centers [20]. Biradical systems in which

the unpaired electrons do not interact significantly have been referred to as biradicaloids [21].

The pair of singly occupied degenerate orbitals in biradical systems generates multi-

reference correlation, in which two or more determinants contribute significantly to the

wavefunction at the zeroith order of perturbation theory. The description of highly multi-

referenced systems is difficult for single-reference methods, methods in which a single
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determinant is employed in the lowest order of the perturbation theory. The parametric

two-electron reduced-density matrix (p2-RDM) method [22–24] is a single-reference method

that has recently been shown to perform well on some forms of multi-reference correla-

tion, including the treatment of diradical chemistry [25, 26] (for further details, see below).

Recently, further efforts have been undertaken to better describe multi-reference electron

correlation using single-reference methods [27, 28].

Two specific classes of organic biradicals, the benzene and the cyclobutadiene biradicals,

are investigated in this work. The benzynes represent a more widely studied class of organic

biradicals, and p-benzyne has been of particular interest due to its identification as an in-

termediate in the Bergman cyclization reaction, the process by which enediyne anti-tumor

agents are observed to cleave DNA [2, 9–12]. The relative energies of o-, m-, and p-benzyne

have been determined experimentally and investigated with a variety of theoretical methods,

but theoretical results have so far proven difficult to reconcile with experiment. [1, 3, 5, 29, 30]

Relative energy predictions within experimental error have so far been obtained only by per-

forming configuration interaction (CI) singlepoint calculations at geometries optimized with

multi-reference methods, as seen in Nicolaide’s and Wierschke’s studies [29, 30]. The second

class of organic biradicals, those derived from cyclobutadiene, have not been studied exten-

sively, owing to the instability of cyclobutadiene relative to other cyclic polyenes [31, 32].

The cyclobutadiene biradicals thus represent a class of organic biradicals that are of interest

from a theoretical standpoint, particularly for the potential comparison of their electronic

structure to that of the benzynes.

In this work, we use the p2-RDM method [22–24] to investigate two classes of biradicals,

the benzene and the cyclobutadiene biradicals, in terms of their molecular energies, equilib-

rium geometries, and natural-orbital occupations. The p2-RDM method scales in floating-

point operations as κ N2(r − N)4, where r is the rank of the one-electron basis set, N is

the number of electrons, and κ is a constant prefactor, here equal to that of configuration-

interaction with single and double excitations. The p2-RDM method has been previously

61



applied to similar systems that cannot be well-described by single-reference methods, in-

cluding the prediction of the transition state energy between the cis- and trans- isomers

of diazene [25], the determination of the relative stability of the cage and prism isomers

of the water hexamer [33], and the prediction of the energies of the diradical isomers of

olympicene [26]. In each of these cases, the p2-RDM method was seen to return energies

and molecular structures comparable to those obtained from multi-reference methods.

We compare the p2-RDM method’s predictions with experimentally-determined relative

energies of the benzynes and with predictions obtained from wavefunction-based methods.

In the extrapolated basis set limit, the p2-RDM method predicts relative energy values

nearly consistent with experiment, giving a level of accuracy that improves upon traditional

single-reference wavefunction methods.

5.2 Applications

5.2.1 Methodology

Geometry optimizations were performed on the cyclobutadiene biradicals and the benzynes

using the parametric 2-RDM method [p2-RDM] [23–25, 34] and select coupled cluster meth-

ods: coupled cluster with single and double excitations [CCSD] [35, 36], coupled clus-

ter with a triples correction [CCSD(T)] [36], and completely renormalized coupled clus-

ter [CR-CC] [37]. For the cis- and trans-cyclobutadiene biradicals, multi-configurational

self-consistent field [MCSCF] optimizations were also performed using an active space of

(5,5) [38, 39]. All optimizations utilized the correlation-consistent valence polarized double-

ζ basis set (cc-pVDZ) [40].

For the benzynes, singlepoint calculations using the larger basis set of correlation-consistent

valence polarized triple-ζ (cc-pVTZ) were also performed, and Hartree-Fock energies were

obtained using the correlation-consistent valence polarized quadruple-ζ (cc-pVQZ) basis

set [40]. Correlation energies were obtained using the cc-pVDZ and cc-pVTZ basis sets
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with all methods. A three-point complete basis set (CBS) extrapolation of the Hartree-

Fock energy was then implemented by the formula EX
RHF = ECBS

RHF + β X−3, using values

from the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. The extrapolation of the correlation

energy was first performed for all methods according to the less precise two-point formula

EX
corr = ECBS

corr + β exp(−αX), using values from the cc-pVDZ and cc-pVTZ basis sets. For

the p2-RDM method, the calculation of the correlation energy was also performed according

to the three-point formula, using the value obtained with the cc-pVQZ basis set as the third

point.

Geometric optimizations with the p2-RDM method were performed through a combina-

tion of finite-differentials that approximate the gradient as well as derivative-free methods.

Both the coupled-cluster and MCSCF calculations were performed with the GAMESS elec-

tronic structure package [41], while p2-RDM calculations were performed using the imple-

mentation in Ref. 24. We were unable to obtain an equilibrium CCSD(T) geometry for

p-benzyne. Subsequent p-benzyne energy values for CCSD(T) are therefore calculated at

the CR-CC equilibrium geometry.

Natural-orbital occupation numbers were calculated at the CCSD and p2-RDM equilib-

rium geometries of the benzynes and the cyclobutadiene biradicals [42]. For the benzynes,

MCSCF(5,5) natural-orbital occupation numbers were calculated at the optimized p2-RDM

geometries, while for the cyclobutadiene biradicals, MCSCF(5,5) natural-orbital occupation

numbers were taken from the fully-optimized MCSCF(5,5) geometries. The natural-orbitals

of the benzynes from the p2-RDM method were visualized for the N th and (N+1)th natural-

orbitals. Visualizations of natural-orbitals were obtained using MacMolPlt [43].

5.2.2 Results

The p2-RDMmethod is applied to two distinct families of organic biradicals, the cyclobutadi-

ene biradicals and the benzynes, with respect to their molecular energies, equilibrium geome-

tries, and natural-orbital occupations. These results are compared to those of wavefunction-
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a) b) c)

Figure 5.1: Molecules (a) cyclobutadiene, (b) the cis-cyclobutadiene biradical, and (c) the
trans-cyclobutadiene biradical are shown at the p2-RDM/cc-pVDZ optimized geometries.

based methods and, in the case of the benzynes, to experimental results.

Cyclobutadiene and its Biradicals

Molecular geometries for the optimized cyclobutadiene and its cis- and trans-biradicals are

presented in Table 5.1, with labeled atoms corresponding to the scheme in Figure 5.1. Be-

cause geometries did not vary substantially by method, we present only the values predicted

by the p2-RDM and the CCSD methods. The optimized cyclobutadiene geometry was found

to be rectangular, with the C(1)C(2) and C(2)C(3) bonds measuring 1.582 and 1.365 Å in

the p2-RDM prediction, consistent with previous theoretical studies. [44, 45] In the trans-

biradical, which resembles a parallelogram, the radical separation is predicted by the CCSD

and the p2-RDM methods to be 1.759 and 1.763 Å, respectively. In the cis-biradical, which

resembles a trapezoid, the radical separation is predicted to be 1.614 and 1.626 Å, respec-

tively. The p2-RDM method in general predicts longer bond lengths, with the difference

being more more substantial in the biradicals than in cyclobutadiene.

The energy values at the equilibrium geometries are presented in Table 5.2. For both

cyclobutadiene and its biradicals, the CCSD(T) method recovers the greatest amount of

correlation energy and thus predicts the lowest absolute energy of the four methods tested.

The p2-RDMmethod’s predictions of correlation and absolute energy compare to those of the

CR-CC method in the case of the cis- and trans-biradicals. For cyclobutadiene, the species

displaying the greatest amount of correlation energy, the p2-RDM method’s predictions
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Table 5.1: Geometric parameters (angstroms and degrees) of p2-RDM and CCSD optimized
cyclobutadiene and its cis- and trans-biradicals. All optimizations performed with the cc-
pVDZ basis set.

Bond Lengths (Å) and Angles (◦)
Molecule Parameter CCSD p2-RDM

cyclobutadiene C(1)C(2) 1.582 1.582

C(2)C(3) 1.355 1.365

C(1)H(5) 1.093 1.093

θ(C(1),C(2),C(3)) 90.0 90.0

θ(C(1),C(2),H(6)) 135.1 135.1

cis-biradical C(1)C(2) 1.385 1.387

C(2)C(3) 1.493 1.497

C(3)C(4) 1.614 1.626

C(1)H(5) 1.105 1.107

θ(C(1),C(2),C(3)) 85.6 85.5

θ(C(2),C(3),C(4)) 94.4 94.6

θ(C(1),C(2),H(6)) 132.4 132.7

trans-biradical C(1)C(2) 1.592 1.585

C(2)C(3) 1.300 1.320

C(1)C(3) 1.759 1.763

C(2)H(5) 1.078 1.083

θ(C(1),C(2),C(3)) 74.2 74.1

θ(C(2),C(3),C(4)) 105.8 105.9

θ(C(1),C(2),H(5)) 135.2 135.8
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Table 5.2: Comparison of absolute energy values of cyclobutadiene and its cis- and trans-
biradicals optimized with the p2-RDM method and coupled-cluster methods. All optimiza-
tions were performed with the cc-pVDZ basis set. Absolute and correlation energy values
are reported in Hartrees.

Energy
Method Total Correlation

cis-biradical CCSD -152.8452 -0.4969
CR-CC -152.8624 -0.5149
p2-RDM -152.8646 -0.5169
CCSD(T) -152.8691 -0.5220

trans-biradical CCSD -152.9320 -0.5348
CR-CC -152.9533 -0.5579
p2-RDM -152.9554 -0.5576
CCSD(T) -152.9629 -0.5694

cyclobutadiene CCSD -154.2177 -0.5644
CR-CC -154.2175 -0.5837
p2-RDM -154.2396 -0.5865
CCSD(T) -154.2431 -0.5920

compare to those of the CCSD(T) method.

The relative energies of cyclobutadiene and its biradicals are presented in Table 5.3.

The energy ordering of the three molecules is seen to be consistent across all four methods,

with cyclobutadiene on the order of 180 and 240 kcal/mol lower in energy than the trans-

and cis-biradical, respectively. The predicted cyclobutadiene/cis-biradical relative energy

values vary less than 1.00 kcal/mol among methods, while the predicted relative energies

of cyclobutadiene and its trans-biradical vary less than 4 kcal/mol. The p2-RDM method

consistently predicts relative energy values lower than the CCSD predictions but higher than

the CR-CC predictions.

The natural-orbital occupation numbers of cyclobutadiene and its biradicals are presented

in Table 5.4. If N represents the highest occupied natural-orbital, then multi-reference

character is demonstrated by the deviation of the occupation numbers of N and (N + 1)

from 1 and 0, respectively. For cyclobutadiene as well as the trans-biradical, the p2-RDM

method predicts occupation numbers that more closely resemble those obtained from the
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Table 5.3: Relative energies of cyclobutadiene and its cis- and trans-biradicals calculated
with the p2-RDM, CCSD, CR-CC, and CCSD(T) methods. All calculations are performed
with a basis set of cc-pVDZ. Relative energies of the biradical species are calculated as the
difference between the energy of cyclobutadiene and the energy of the biradical plus two
hydrogen atoms at a large distance from one another.

Relative Energy (kcal/mol)
Method cyclobutadiene trans- cis-
CCSD 0.00 183.85 238.34
CR-CC 0.00 181.79 238.76
p2-RDM 0.00 182.98 238.96
CCSD(T) 0.00 180.45 239.31

Table 5.4: Natural-orbital occupation numbers of cyclobutadiene and its cis- and trans-
biradicals calculated with the p2-RDM, CCSD, and MCSCF(5,5) methods. All calculations
utilized a cc-pVDZ basis set.

Natural-Orbital Occupation Numbers
N (N + 1)

Molecule CCSD MCSCF(5,5) p2-RDM CCSD MCSCF(5,5) p2-RDM
cyclobutadiene 0.941 0.924 0.906 0.050 0.076 0.083
trans-biradical 0.953 0.943 0.940 0.042 0.061 0.054
cis-biradical 0.959 0.903 0.946 0.032 0.104 0.045

MCSCF calculations. The p2-RDM and MCSCF N th natural-orbital occupations are 0.906

and 0.924 for cyclobutadiene, and 0.940 and 0.943 for the trans-biradical. For the cis-

biradical, however, the p2-RDM occupations more closely resemble those obtained from

the CCSD calculations. The natural-orbital occupation numbers indicate a small degree of

variation in multi-reference character between the three species investigated. None of the

methods employed predict any of the three species to be highly multi-referenced, meaning

all three species possess biradical character.
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The Benzynes

Molecular geometries for the equilibrium geometries of o-, m-, and p-benzyne are presented

in Table 5.5, with labeled atoms corresponding to the scheme in Figure 5.2. In contrast to

the optimized cyclobutadiene biradical geometries, the benzyne geometries vary appreciably

between methods. In general, the CCSD(T) method predicts the longest bond lengths. The

p2-RDM method predicts bond lengths that are shorter than but comparable to those pre-

dicted by the CCSD(T) method. The shortest bond lengths of the four optimized geometries

are predicted by the CCSD method, and the CR-CC results typically lie between those of

the CCSD and p2-RDM methods.

In the optimized o- and m-benzyne geometries, the distance between the radical centers

is seen to decrease relative to the distance of the carbon atoms in the parent benzene. This

effect is most obvious in the m-benzyne case, in which the angle θ(C(1),C(2),C(3)) measures

71.6◦, 95.6◦, 100.1◦, and 100.1◦ for the CCSD, CR-CC, CCSD(T), and p2-RDM methods,

respectively. These angle values correspond to a radical center separation distance of 1.596,

2.045, 2.132, and 2.128 Å, meaning the CCSD method predicts a radical center separation

distance of approximately the length of a carbon-carbon single bond. A similar but less

pronounced effect is seen in the o-benzyne case, in which the distance between the radical

centers is predicted to be 1.267, 1.273, 1.280, and 1.277 Å by the CCSD, CR-CC, CCSD(T),

and p2-RDM methods, respectively.

Unlike o- and m-benzyne, p-benzyne is predicted to show increased radical center sep-

aration as well as increased C(2)C(3) bond lengths relative to the parent benzene. This

lengthening effect is most dramatic in the CR-CC and CCSD optimizations, which predict

radical center separations of 2.746 and 2.750 Å and C(2)C(3) bond lengths of 1.460 and

1.455 Å, respectively, compared to the p2-RDM predictions of 2.699 and 1.421 Å.

The predicted energies associated with the equilibrium benzyne geometries are presented

in Table 5.6. The recovery of electron correlation energy is seen to increase as ortho < meta

< para, indicating that multi-reference character in turn increases along that sequence. For

68



Table 5.5: Geometric parameters (angstroms and degrees) of o-, m-, and p-benzyne are pre-
sented for four different methods: p2-RDM, CCSD(T), CR-CC, and CCSD. Optimizations
were performed with the cc-pVDZ basis set.

Bond Lengths (Å) and Angles (◦)
Molecule Parameter CCSD CR-CC CCSD(T) p2-RDM

o-benzyne C(1)C(2) 1.267 1.273 1.280 1.277

C(2)C(3) 1.402 1.404 1.406 1.404

C(3)C(4) 1.415 1.418 1.422 1.421

C(4)C(5) 1.422 1.423 1.424 1.422

θ(C(1),C(2),C(3)) 126.7 126.6 126.5 126.1

θ(C(2),C(3),C(4)) 110.7 110.9 111.0 111.5

θ(C(3),C(4),C(5)) 122.5 122.5 122.5 122.3

m-benzyne C(1)C(2) 1.365 1.380 1.390 1.388

C(1)C(3) 1.596 2.045 2.132 2.128

C(3)C(4) 1.395 1.390 1.394 1.392

C(4)C(5) 1.421 1.413 1.416 1.415

θ(C(1),C(2),C(3)) 71.6 95.6 100.1 100.1

θ(C(2),C(3),C(4)) 160.0 138.8 135.1 135.2

θ(C(3),C(4),C(5)) 108.3 116.6 117.6 117.4

θ(C(4),C(5),C(6)) 111.8 113.5 114.5 118.4

p-benzyne C(1)C(2) 1.370 1.377 —— 1.400

C(2)C(3) 1.460 1.455 —— 1.421

θ(C(1),C(2),C(3)) 118.0 118.1 —— 117.1

θ(C(3),C(4),C(5)) 124.0 123.9 —— 125.8

a) b) c)

Figure 5.2: Molecules (a) o-benzyne, (b) m-benzyne, and (c) p-benzyne are shown at the
p2-RDM/cc-pVDZ optimized geometries.
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Table 5.6: Comparison of absolute energy values of the benzynes optimized with the p2-RDM
method and coupled-cluster methods, using the cc-pVDZ and the cc-pVTZ basis sets. The
calculated complete basis set extrapolation is also presented. Hartree-Fock and correlation
energy values are reported in Hartrees.

Energy
cc-pVDZ cc-pVTZ CBS

Molecule Method HF Corr. HF Corr. HF Corr.
para CCSD -229.4013 -0.8703 -229.4559 -1.0095 -229.4751 -1.0681

CR-CC -229.4000 -0.9117 -229.4542 -1.0617 -229.4734 -1.1248
p2-RDM -229.3986 -0.9451 -229.4529 -1.0951 -229.4721 -1.1583

CCSD(T)1 -229.4013 -0.9731 -229.4521 -1.0971 -229.4718 -1.1493
meta CCSD -229.3886 -0.8062 -229.4432 -0.9509 -229.4622 -1.0117

CR-CC -229.3619 -0.8623 -229.4158 -1.0152 -229.4349 -1.0797
p2-RDM -229.3553 -0.8725 -229.4062 -1.0251 -229.4256 -1.0894
CCSD(T) -229.3545 -0.8888 -229.4076 -1.0470 -229.4267 -1.1136

ortho CCSD -229.2848 -0.8174 -229.3382 -0.9603 -229.3576 -1.0204
CR-CC -229.2826 -0.8471 -229.3352 -1.0006 -229.3547 -1.0653
p2-RDM -229.2678 -0.8525 -229.3202 -1.0045 -229.3398 -1.0685
CCSD(T) -229.2826 -0.8649 -229.3352 -1.0238 -229.3547 -1.0906

the ortho- and meta-benzynes, the p2-RDM method’s correlation energy predictions agree

with those of the CR-CC method. For the para case, the p2-RDM prediction agrees most

closely with that of the CCSD(T) method.

The natural-orbital occupation numbers are presented for the benzynes in Table 5.7,

with natural-orbital visualizations presented in Figure 5.3. Both o- and m-benzyne exhibit

a low degree of multi-reference correlation according to all three methods, indicating their

biradicaloid character. The p2-RDM method predicts the N th orbital occupation numbers

of o- and m-benzyne to be 0.909 and 0.865, respectively. These values are comparable to

those obtained from the MCSCF method: 0.913 for o-benzyne and 0.864 for m-benzyne. The

electron density of the N th and (N +1)th natural-orbitals of o- and m-benzyne reveal bond-

ing and antibonding orbitals, respectively, which supports a primarily single-determinant

description of their chemistry.

Unlike o- and m-benzyne, p-benzyne is shown to be highly multi-referenced according
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Table 5.7: Natural orbital occupation numbers of benzene and its biradicals calculated with
a cc-pVDZ basis set.

Natural-Orbital Occupation Numbers
N (N + 1)

Molecule CCSD MCSCF(5, 5)a p2-RDM CCSD MCSCF(5, 5)a p2-RDM
Benzene 0.957 0.968 0.946 0.035 0.032 0.046
o-benzyne 0.937 0.913 0.909 0.060 0.090 0.089
m-benzyne 0.956 0.864 0.865 0.036 0.137 0.128
p-benzyne 0.848 0.621 0.543 0.150 0.381 0.454

to the p2-RDM and MCSCF descriptions. The N th natural-orbital occupation number

of p-benzyne is predicted to be 0.621 and 0.543 by the MCSCF and the p2-RDM methods,

respectively. TheN th and (N+1)th natural-orbital densities of p-benzyne also indicate a high

degree of multi-reference character, with the N th orbital taking the form of an antibonding

orbital and the (N+1)th orbital resembling a bonding orbital. Notably, the p2-RDM natural

orbitals closely resemble the MCSCF natural orbitals obtained by Wierschke et al. [30]

Table 5.8 shows the predicted relative energies of the benzynes calculated with a variety of

methods and levels of theory. All methods tested predict an energy ordering of ortho < meta

< para, a result consistent with preexisting theoretical results as well as with experimental

determinations [1, 3–5, 29].

These may be compared to Wenthold et al.’s experimental relative energy values [5]. Tak-

ing into account the experimental error of ±3.1 kcal/mol, all methods and basis sets tested

predict an ortho/meta energy splitting consistent with the experimentally-determined values.

The ortho/para energy splitting poses a greater challenge; the only calculated result consis-

tent with experimental data, 33.2 kcal/mol, is predicted by the CR-CC method with a basis

set of cc-pVDZ. The CCSD method consistently overestimates the energy splitting, and its

accuracy decreases with increasing basis-set size. While the CR-CC results are accurate for a

smaller basis set, they too increasingly overestimate the ortho/para energy splitting as basis

set size increases, predicting an ortho/para energy difference 7.6 kcal/mol above the exper-
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Molecule

Natural Orbitals

N (N+1)

o-benzyne

m-benzyne

p-benzyne

Figure 5.3: Visualizations of the N th and (N+1)th natural-orbitals of o-, m-, and p-benzyne
are shown at the p2-RDM/cc-pVDZ optimized geometries.
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Table 5.8: Comparison of calculated relative energies of the benzynes with values from the-
ory and experiment. Values for the cc-pVDZ basis set are calculated at fully optimized
geometries, while cc-pVTZ values represent singlepoints calculated at cc-pVDZ geometries.
Relative energy values for the complete basis set (CBS) extrapolation are reported. Unless
otherwise noted, CBS extrapolations for the Hartree-Fock energy were performed according
to the three-point cc-pVDZ/cc-pVTZ/cc-pVQZ formula, while CBS extrapolations for cor-
relation energy were carried out according to the two-point cc-pVDZ/cc-pVTZ formula. All
energies are reported relative to o-benzyne in kcal/mol.

Relative Energy (kcal/mol)
cc-pVDZ cc-pVTZ CBS

Method m-benzyne p-benzyne m-benzyne p-benzyne m-benzyne p-benzyne
CCSD 15.0 39.8 13.8 42.9 13.6 43.8
CR-CC 14.4 33.2 15.0 36.4 15.2 37.2

CCSD(T)2 12.4 16.5 13.4 27.4 13.9 36.6

p2-RDM 14.7 24.0 16.4 26.4 16.1/16.53 26.7/27.5b

CCSD(T)4 14.6 27.2
CASPT2c 10.1 21.7

Expt.5 15.3±3.1 31.2±3.1

imental value in the complete basis set. Given the notable difference between Debbert’s [1]

DFT/BPW91-optimized CCSD(T) results and the CCSD(T) results presented in this work,

the CCSD(T) predictions must be regarded as sensitive to geometry and therefore less reli-

able. However, the CCSD(T) results presented here indicate that the CCSD(T) method in

the complete basis set predicts a fairly accurate ortho/para energy splitting of 5.4 kcal/mol

above the experimental value. Similar to the CCSD(T) method, the p2-RDM method shows

an improvement with increased basis set size, predicting an ortho/para energy splitting of

26.7 kcal/mol in the complete basis set, a value 4.5 kcal/mol below the experimental value,

or within 1.4 kcal/mol of the experimental range. Furthermore, when the p2-RDM corre-

lation energy is calculated according to the three-point extrapolation formula, the p2-RDM

method predicts an ortho/para energy splitting of 27.5 kcal/mol in the complete basis set

limit. This prediction is 3.7 kcal/mol below the observed value and nearly consistent with

experiment.
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5.3 Discussion and Conclusion

The molecules investigated in this work are primarily biradicals whose electronic structure by

definition has the potential to display multi-reference (strong) electron correlation and thus

deviate from the Hartree-Fock description. The correlation energy present could potentially

be recovered by multi-reference methods. However, only one biradical species investigated in

this work, p-benzyne, was found to require a multi-reference description for the identification

of its equilibrium geometry. Single-reference descriptions were found to be adequate for all

species that displayed biradicaloid character; that is, the cyclobutadiene biradicals and o- and

m-benzyne. The visualization of the p2-RDM method’s predicted natural orbitals identifies

the reason for this fundamental difference between p-benzyne and its isomers: while the

N th natural orbitals of o- and m-benzyne feature sharing of electron density and therefore

favor a single-reference description, the extent of radical separation in p-benzyne prohibits

any lowering in energy from the sharing of electron density, thus giving the multi-reference

description the energetic advantage.

The variation in degree of multi-reference character among biradical isomers has im-

plications for the congruence of the 2-RDM method’s predictions with other theoretical

predictions and experimental values. When the level of multi-reference electron correlation

is low or moderate, as it is for o- and m-benzyne and both cyclobutadiene biradicals, the

p2-RDM energies are comparable to those from the CR-CC method. In the p-benzyne case,

however, in which the level of multi-reference electron correlation is substantial enough to

require a multi-reference treatment, the p2-RDM method predicts an electronic energy that

is 11-12 kcal/mol below the CR-CC prediction. This lowering of the p-benzyne electronic

energy in turn allows the p2-RDM method in the extrapolated basis-set limit to predict

relative energies within 3.7 kcal/mol of experimental values [5].

The accuracy of the p2-RDM method’s relative-energy predictions compares to that of

the CCSD(T) method. Debbert’s CCSD(T) calculations underestimate the ortho/para en-

ergy difference by 0.9 kcal/mol [1], a prediction very similar to that obtained by the p2-RDM
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method. The CCSD(T) results obtained in this work compare to those obtained from the

p2-RDM method in terms of magnitude of error but not in their sign, with the CCSD(T)

method overestimating the ortho/para energy difference by 2.3 kcal/mol. Full configuration

interaction (CI) and correlation-consistent configuration interaction (CCCI) calculations per-

formed by Nicolaides [29] and Wierschke [30] accurately predict experimental relative energy

values, thus potentially improving upon the p2-RDM predictions, but these methods con-

fer additional computational cost that may not be transferrable to larger biradical systems.

In describing the electronic energies of the benzynes, the p2-RDM method yields results

that agree with traditional single-reference wavefunction methods in the cases of o- and

m-benzyne and yet agree with multi-reference methods in the case of p-benzyne, where

multi-reference electron correlation becomes important. This resiliency in the description of

electron correlation allows the p2-RDM method to be nearly consistent with experimental

results.

Accurate treatment of biradical chemistry requires the ability to describe systems that

feature varying degrees of multi-reference electron correlation. Building upon recent ap-

plications to biradical molecular systems, we demonstrate that the p2-RDM method is a

potentially useful means by which to study a variety of biradical systems, including those

with a lesser degree of multi-reference correlation. Biradical chemistry is important to a

range of problems in chemistry, physics, and molecular biology, and the treatment of birad-

ical systems with the p2-RDM method has a broad range of potential applications.
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CHAPTER 6

COMPARISON OF LOW-RANK TENSOR EXPANSIONS FOR

THE ACCELERATION OF QUANTUM COMPUTATIONS

This chapter contains parts of an article that was originally published in the Journal of

Chemical Physics. Reprinted with permission from [E. P. Hoy, N. Shenvi, and D. A. Mazz-

iotti, J. Chem. Phys , 139, 034105 (2013)]. Copyright 2013, American Institute of Physics.

6.1 Introduction

The high computational scaling of ab initio quantum mechanical methods is an important

outstanding problem and the subject of numerous recent studies [1–12]. Popular ab initio

methods such as coupled cluster with single and double excitations (CCSD) require at least

r6 floating point operations per energy calculation where r is the total number of basis

functions [13]. While this scaling is acceptable for small- to medium-sized molecular systems,

larger systems such as those found in biology, solid-state chemistry, or polymer chemistry

are often beyond the reach of these methods. Reducing their scaling would open many new

problems to quantum chemical treatment.

In 2012, two new techniques for reducing the scaling of quantum methods by factoriz-

ing the two-electron amplitudes were introduced. The low-rank spectral expansion method

developed by Schwerdtfeger and Mazziotti [10] decomposes the 2-excitation amplitudes us-

ing the three forms of the 2-electron reduced density matrix (2-RDM): the 2-particle(2 D),

2-hole(2 Q), and particle-hole (2 G) matrices [14–18]. This method was shown to reduce the

theoretical scaling of the parametric 2-RDM method from O(r6) to O((r2D + r2Q + r2G)r
4)

where rD, rQ, and rG, much less than r, are the ranks of 2-particle, 2-hole, and particle-hole

decompositions in the expansion. Additionally, the spectral expansion can be applied to

any method which employs two-electron excitations such as configuration interaction with

single and double excitations (CISD) and CCSD. The tensor hypercontraction method which
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was originally developed to reduce the size of the electron repulsion integral tensor [6] was

extended to the two-electron amplitudes by Hohenstein, Parrish, Sherrill, and Martinez [8].

This factorization has been applied to multiple quantum methods including the MP2, MP4,

CISD, CCSD, and CC2 methods [6–9, 11].

While both approaches have been independently shown to be effective methods for de-

composing the 2-excitation amplitudes, a direct comparison between the two methods has

not yet been published. In this paper, we compare the two factorizations by applying them

to the parametric 2-RDM method with the Mazziotti (M) functional or p2-RDM [19–21].

The p2-RDM method, which was developed to expand and improve on the functional origi-

nally developed by Kollmar in 2006 [22], has been utilized to study small energy differences

including the energy barrier between oxywater and hydrogen peroxide [23, 24], the relative

populations of cis and trans carbonic acid at 210 K [25], the diradical barrier to rotation

of cis and trans diazene [26], the energies of the cis and trans HOOO radical [27], and the

relative energies of olympicene and its isomers [28]. It is one of the fastest 2-RDM methods

currently available with equivalent computational scaling to that of CISD, O(r6). To assess

the accuracy and efficiency of these two factorizations, we present the correlation energies

recovered of several inorganic molecules and the potential energy curves of HF and OH+. We

also examine the scaling of the factorizations with system size by calculating the correlation

energy recoveries for a series of alkane chains, the dissociation of ethane to methyl radicals,

and the size consistency of non-interacting helium atoms.

6.2 Theory

6.2.1 Low-Rank Spectral Expansion

The two-electron excitation amplitudes (2T ab
ij ) can be decomposed into three spectral ex-

pansions based on the three forms of the 2-RDM, the 2-particle (2 D), the 2-hole (2 Q), and
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the particle-hole (2 G) matrices, as detailed in 2012 by Schwerdtfeger and Mazziotti [10]:

2T ab
ij =

N(N−1)/2∑
u=1

⟨Ψ|â†aâ†b|ηu⟩⟨ηu|âj âi|Ψ0⟩, (6.1)

2T ab
ij =

H(H−1)/2∑
u=1

⟨Ψ|âiâj |χu⟩⟨χu|â
†
bâ

†
a|Ψ0⟩, (6.2)

2T ab
ij =

NH∑
u=1

⟨Ψ|â†aâi|ξu⟩⟨ξu|â
†
bâj |Ψ0⟩, (6.3)

where (ηu), (χu), and (ξu) are (N − 2)-, (N + 2)-, and N -electron wavefunctions, N and

H are the number of particles and holes, i and j are occupied orbitals, and a and b are

unoccupied orbitals. These equations can be rewritten in tensor notation and combined to

obtain a single expansion with significantly improved convergence,

2T ab
ij =

rD∑
u=1

Rab
u Su

ij +

rQ∑
u=1

V
ij
u Wu

ab +

rG∑
u=1

Xai
u Y u

bj . (6.4)

By restricting rD, rQ, and rG to be less than their theoretical maximums of N(N − 1)/2,

H(H − 1)/2, and NH respectively, we generate a lower-rank approximation to the full 2T ab
ij

amplitudes. For details on restricting 2T ab
ij to be antisymmetric, refer to Ref. [10].

6.2.2 THC Factorization

The tensor hypercontraction (THC) method was originally developed by Hohnstein, Parrish,

and Martinez in 2012 to reduce the scaling of the 2-electron integral tensor [6]. While this

is sufficient for lowering the scaling of perturbation theory methods such as MP2 and MP3,

for methods such as CISD and CCSD this was not sufficient to reduce the overall scaling of

the methods below O(N5) due to the presence of the 2-electron excitation amplitudes. As

shown in a later paper, the tensor hypercontraction approximation can be applied to the

2-excitation amplitudes as well [8].
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For this study, we decompose the 2-excitation amplitudes by defining a set of auxiliary

basis X, for each molecular orbital, giving us the following form for the amplitudes

2T ab
ij =

f∑
p

f∑
q

Xap Xbq Zpq Xip Xjq. (6.5)

We treat X and Z as arbitrary matrices of dimensions rxf and fxf , respectively where both

X and Z are determined variationally to minimize the energy. To ensure that the overall

method remains antisymmetric, the tensor hypercontraction decomposition can be rewritten

in terms of α and β spin orbitals. While the αβ coefficients are the same as those of Eq.

(6.5), the αα and ββ coefficients assume the following form

2T ab
ij =

f∑
p

f∑
q

[Xap(α)Xbq(α)− Xbp(α)Xaq(α)]

× Zpq(αα)[Xip(α)Xjq(α)− Xjp(α)Xiq(α)]

(6.6)

to maintain antisymmetry with an arbitrary Z matrix.

6.2.3 Theoretical Scaling

Decomposing the 2T coefficients using either the low-rank spectral expansion or tensor hyper-

contraction method allows for a reduction in theoretical scaling compared to the full-rank

method. The p2-RDM method employing the spectral expansion factorization scales as

(r2D + r2Q + r2G)r
4 in floating-point operations [10]. Small values of rD, rQ, rG of either 1 or

2 are typically sufficient to obtain ≈ 99% of the correlation energy for 10 electron systems

in any basis set. Hence, the ranks rD, rQ, rG are generally much less than r. According to

calculations in Ref. [10] and Section 6.3, the ranks rD, rQ, and rG must increase linearly

with the system size to maintain the size extensivity of the p2-RDM method. Hence, in the

asymptotic limit of r the method scales in floating-point operations as O(r6) with a small

prefactor. As discussed in the Conclusions, however, the scaling of both the spectral expan-
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sion method can be further improved through tensor decomposition of the Hamiltonian, i.e.

through density fitting [29, 30] or Cholesky decomposition [31–34].

By using similar procedure to Ref. [10], we can determine the reduction in theoretical

scaling that occurs when one decomposes the 2-RDM 2 T coefficients using the tensor hy-

percontraction method. For the tensor hypercontraction version of the 2-RDM method, the

term with the highest cost in terms of floating-point operations scales as O(fr4) where f

is the number of auxiliary functions, which results in fourth-order scaling when the size of

the auxiliary basis set is fixed. As with the spectral expansions, the results in Section 6.3

show that the number f of auxiliary functions must be increased linearly with system size to

maintain the size extensivity of the p2-RDM method. Because the floating-point operations

scale linearly with f , in the asymptotic limit of r the method scales as O(r5). As shown in

Ref. [12], however, tensor hypercontraction of the 2-excitation amplitudes can be combined

with a tensor hypercontraction of the Hamiltonian to achieve an O(r4) p2-RDM method.

Asymptotically, storage of the 2-excitation tensors in the spectral expansion method

scales as O(r3) while storage of the 2-excitation tensors in the tensor hypercontraction scales

as O(r2). For both the spectral expansion and tensor hypercontraction method, the number

of iterations to minimize the energy is larger than it is for the conventional p2-RDM with-

out tensor factorization because the tensor factorizations introduce additional nonlinearity

into the optimization. However, the spectral expansion method requires significantly fewer

iterations than tensor hypercontraction (see Table 6.2), which results in a lower constant

prefactor.

6.3 Applications

6.3.1 Computational Methods

All calculations in this paper were performed using a modified implementation of the para-

metric 2-RDM method in Ref. [23]. The results given are for the cc-pVDZ basis set with
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lowest core orbitals frozen unless otherwise stated. Energy minimizations are performed with

a limited-memory quasi-Newton method (L-BFGS) [35]. The derivatives for the low-rank

spectral expansion and tensor hypercontraction methods were obtained using the chain rule.

As a result, we do not present computational timings as the full-rank derivatives must still

be calculated to obtain the low-rank derivatives in the current implementation.

6.3.2 Results

Table 6.1 contains the correlation energies from the factorization calculations given as a

percentage of the full-rank correlation energy (or correlation energy recovery) for both the

spectral expansion and tensor hypercontraction p2-RDM calculations. We can see that both

approximations recover a significant percentage of the correlation energy of the full-rank

method even at low values of rD/rQ/rG and f . The two factorizations achieve a correlation

energy recovery above 90% at rD/rQ/rG = 1/1/1 for the spectral expansion method and 10

auxiliary functions for the tensor hypercontraction method. However, the spectral expansion

achieves > 99% recovery at rD/rQ/rG = 2/2/2 while the tensor hypercontraction requires

40 auxiliary functions to achieve the same level of accuracy for all three molecules. This is

also shown by Fig. 6.1 which displays the convergence of both factorizations to the full-rank

method with increasing numbers of their respective ranks (or auxiliary functions).

The number of L-BFGS iterations required to obtain the results in Table 6.1 are reported

in Table 6.2. Tensor elements in both methods were initialized by random guesses. For the

spectral expansion factorization, the calculations converged within at most 900 iterations,

and four of the calculations converged in less than 200 iterations. As the value of rD/rQ/rG

goes from 1/1/1 to 4/4/4, the number of L-BFGS iterations required generally decreased ex-

cept for the H2O and CO+ calculations at 2/2/2 where an increase in the number of iterations

was observed. Tensor hypercontraction required over 1000 iterations for the calculations to

converge and in two cases it only converged after the tolerance controlling convergence was

lowered from 10−6 to 10−5 a.u. The latter problem was observed frequently for the tensor
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Table 6.1: The percentage of the full-rank correlation recovered by the low-rank spectral
expansion and tensor hypercontraction methods is reported for three simple molecules for
the cc-pVTZ basis set.

rD/rQ/rG
Molecule Full correlation energy (a.u.) 1/0/1 1/1/1 2/2/2 3/3/3 4/4/4
H2O -0.27404 78.8 93.9 99.9 100.0 100.0
CO+ -0.38767 80.3 91.6 99.3 100.0 100.0
N2 -0.38372 87.1 97.4 100.0 100.0 100.0

Number of auxiliary functions (f)
Molecule Full correlation energy (a.u.) 5 10 20 30 40
H2O -0.27404 77.8 92.5 97.8 98.7 99.0
CO+ -0.38767 76.0 90.3 97.3 98.4 99.2
N2 -0.38372 86.2 95.0 98.2 99.4 99.8
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Figure 6.1: Part (a) shows the convergence of the spectral expansion methods to the full-rank
result for water in the cc-pVTZ basis set. Part (b) shows the same results for the tensor
hypercontraction method.
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Table 6.2: The numbers of L-BFGS iterations required to obtain the results in Table 6.1 are
presented in the table below. The values were converged to a tolerance of 10−6 a.u. The
values marked with a * only converged after the tolerance was lowered to 10−5 a.u. For
comparison the numbers of L-BFGS iterations required by the full-rank p2-RDM method
are 26, 56, and 46 for H2O, CO+, and N2, respectively.

rD/rQ/rG
Molecule 1/0/1 1/1/1 2/2/2 3/3/3 4/4/4
H2O 188 472 684 200 183
CO+ 166 456 894 341 233
N2 193 555 529 310 278

Number of auxiliary functions (f)
Molecule 5 10 20 30 40
H2O 2585 2367 2136 1960 1911
CO+ 1909 2254 2565 1875 2664
N2 1513 1241* 1202* 2243 1563

hypercontraction calculations at low numbers of auxiliary functions, but it generally was

resolved when a sufficient number of functions was used. The spectral expansion did not

exhibit this behavior, and hence, it could be converged to the same tolerance as the full-rank

calculation for all values of rD/rQ/rG.

Table 6.3 contains the lowest eigenvalues for the 2D, 2Q, and 2G matrices of OH+

calculated by the p2-RDM method with tensor hypercontraction. In order to satisfy the 2-

positivity conditions for N -representability, the eigenvalues of the 2D, 2Q, and 2G matrices

must be nonnegative. [15–18] The magnitude of the largest negative eigenvalues, therefore,

provides a measure of the deviation of a 2-RDM from N -representability. The difference

between the full-rank and tensor hypercontraction results is very small with both displaying

a deviation from zero on the order of 10−4 near the equilibrium geometry and 10−3 at

stretched geometries. Similar results for OH+ from the p2-RDM method with low-rank

spectral expansion were reported in Ref. [10].

Calculated potential energy curves for the OH+ molecule are presented in Fig. 6.2. As

shown in Ref. [10], the 1/1/1 spectral expansion is sufficient to reproduce the shape of the

potential from the full-rank spectral expansion with a maximum error of only 3.7 mH. The
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Table 6.3: The lowest eigenvalues for the two-particle (2 D), two-hole (2 Q), and particle-
hole (2G) matrices for the triplet state of OH+ as calculated by the tensor hypercontraction
method are displayed in the table below.

Lowest eigenvalues
Bond length (Å) Matrix 3 5 10 Full[10]

1.3 2 D -2.1e-4 -2.6e-4 -3.6e-4 -3.7e-4
2 Q -1.4e-4 -1.0e-4 -1.1e-4 -9.8e-5
2 G -2.8e-4 -3.3e-4 -3.9e-4 -3.9e-4

2.3 2 D -3.3e-3 -6.0e-3 -4.4e-3 -4.4e-3
2 Q -1.7e-3 -2.8e-3 -5.7e-4 -5.3e-4
2 G -5.9e-3 -8.5e-3 -6.5e-3 -6.5e-3

difference between the minimum and maximum errors or the non-parallelity error (NPE) is

only 3.6 mH. Tensor hypercontraction predicts similar results when 10 auxiliary functions

(f = 10) are used with a maximum error of 2.5 mH and an NPE of 1.7 mH. At 3 functions,

considerable variance in the potential curve is noticeable leading to a maximum error of 58

mH and an NPE of 34 mH. These errors decline to 12 and 8.2 mH respectively when one

uses the 5 auxiliary functions for the calculation. The unevenness in the potential energy

curve, however, does not disappear completely until 10 auxiliary functions are used. The

spectral expansion does not exhibit this behavior even for ranks less than 1/1/1 [10].

Figure 6.3 displays the calculated potential energy curves for the HF molecule. We find

that the p2-RDM method with the 2/2/2 rank gives a maximum error of 2.3 mH and an

NPE of 0.21 mH relative to the full-rank method. The calculated results for the 1/1/1 rank

unexpectedly drop in energy when the bond length exceeds 2.3 Å; similar behavior is also

observed with tensor hypercontraction when either 3 and 5 auxiliary functions is employed.

With 5 functions, the largest energy error and NPE were 27 and 23 mH, respectively. Because

tensor hypercontraction did not converge beyond 2.2 Å with f = 10, it is not known whether

the drop in energy disappears as f increases.

The percentage of correlation energy recovered for a series of alkane chains in both Cs

and C2v symmetries from both the low-rank spectral expansion and tensor hypercontraction
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Figure 6.2: OH+ dissociation curve in the cc-pVDZ basis set from the p2-RDM method with
the (a) spectral expansion and (b) tensor hypercontraction methods. Results are compared
to those from the full-rank p2-RDM method.
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Figure 6.3: HF dissociation curve in the cc-pVDZ basis set from the p2-RDM method with
the (a) spectral expansion and (b) tensor hypercontraction methods. Results are compared
to those from the full-rank p2-RDM method.
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Table 6.4: We report the correlation energy recovered from both tensor methods as compared
to the energy recovered from the full-rank p2-RDM for a series of alkanes using both Cs and
C2v symmetry.

% of full correlation energy
Cs C2v

rD/rQ/rG CH4 C2H6 C3H8 C4H10 CH4 C3H8

1/1/1 80.1 62.4 49.4 39.3 96.0 70.4
2/2/2 83.7 72.6 63.4 89.6
3/3/3 84.0 76.4 95.5
4/4/4 83.9

# of functions (f) CH4 C2H6 C3H8 C4H10 CH4 C3H8
10 86.2 62.8 44.3 34.6 94.23 70.0
20 86.8 71.5 53.9 91.5
30 87.1 77.5 97.4
40 87.8

is reported in Table 6.4. When 2 T is factorized using either the low-rank spectral expansion

or tensor hypercontraction methods, the number of factor matrices must be increased with

system size to recover a similar percentage of the correlation energy. Using higher point-

group symmetry, we find, increases the amount of correlation energy recovered at a given

rank. For example, the correlation energy recovered increases by 10-20% and 10-30% for the

low-rank spectral expansion and tensor hypercontraction, respectively, when the point-group

symmetry is increased from Cs to C2v. The improvement occurs because at higher symmetry

each symmetry block of 2 T is given its own tensor expansion while at lower symmetry the

tensor expansion must generate the symmetry block structure of 2 T , which requires a larger

expansion.

Table 6.5 contains the reaction energies from the two factorizations required to break an

ethane molecule into two methyl radicals. As was shown by Schwerdtfeger and Mazziotti

previously [10] the factorizations must be scaled with system size to obtain size consistent

results. If both the ethane molecule and smaller methyl radical are treated using the same low

rank, the dissociation energy is lower than dissociation energy calculated from the full-rank

method by 20-60 kcal/mol. By using twice the rank for the ethane calculation compared
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Table 6.5: The calculated reaction energies for the dissociation of ethane to two methyl
radicals using the cc-pVDZ basis set are presented. The upper set of calculations in the table
use the same tensor rank (auxiliary functions) for both the ethane and methyl molecules while
the lower set of calculations use twice the tensor rank (auxiliary functions) for the ethane
calculation compared to the methyl calculation.

SE THC
CH4 C2H6 RE (kcal/mol) CH4 C2H6 RE (kcal/mol)
1/1/1 1/1/1 44.5 5 5 43.3
2/2/2 2/2/2 69.0 10 10 42.4
3/3/3 3/3/3 84.7 15 15 63.6
1/1/1 2/2/2 91.2 5 10 94.1
2/2/2 4/4/4 96.0 10 20 94.4
3/3/3 6/6/6 100.1 15 30 100.0
Full 102.1 Full 102.1

to the methyl calculation, however, the dissociation energies can be brought between 2-8

kcal/mol of the full-rank value.

A comparison of the energy of two helium atoms separated by 200 Å with the energy of

two individual helium atoms is displayed in Table 6.6. If a method is size consistent, the

two values will be the same. The full-rank p2-RDM method has been shown previously to

be size consistent for its helium dissociation [36]. For low values of rD/rQ/rG and auxiliary

functions, the two factorizations predict a 1-3 mH difference between the separated helium

dimer and individual helium atoms. As with the alkane series and ethane reaction-energy

calculations, this difference diminishes as the rank increases, dropping to 10−7 by 1/1/1 for

the spectral expansion method and by f = 20 for the tensor hypercontraction method.

6.4 Discussion and Conclusions

Two promising new methods, low-rank spectral expansion and tensor hypercontraction, for

factorizing the 2-electron excitation amplitudes were examined to evaluate their potential

for use in future low-rank ab initio quantum chemistry methods. The ideal factorization

would lower the scaling of an energy calculation without imposing additional costs or sacri-
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Table 6.6: The total energy of a helium dimer with a bond length of 200 Å is compared to the
energy of two individual helium atoms. Calculations are presented from the p2-RDM method
with the spectral expansion (top) and tensor hypercontraction (bottom) factorizations. Both
factorizations become size consistent as the ranks of the expansions increase.

rD/rQ/rG
1/0/0 1/0/1 1/1/1 2/2/2 Full

He x 2 -5.763890 -5.763890 -5.775190 -5.775190 -5.775190
He2(200 Å) -5.742755 -5.769520 -5.775190 -5.775189 -5.775190
He2 - He x 2 3.24345e-2 5.66983e-3 1.18025e-7 4.33509e-7 1.32217e-9

Number of auxiliary functions (f)
3 5 10 20 Full

He x 2 -5.775189 -5.775189 -5.775189 -5.775189 -5.775190
He2(200 Å) -5.763844 -5.775187 -5.775177 -5.775178 -5.775190
He2 - He x 2 1.13452e-2 2.17419e-6 3.12588e-6 6.73077e-7 1.32217e-9

ficing the computational advantages of the original method. To test the energy recovery of

each factorization compared to the full-rank p2-RDM method, we studied several inorganic

molecules as well as the potential energy curves of HF and OH+.

For the inorganic molecules we found that the energy recovery of both methods exceeds

90% at 1/1/1 for the low-rank spectral expansion method and 10 auxiliary functions for

the tensor hypercontraction method. Both tensor methods showed a very minor increase in

N -representability error compared to the full-rank method. In comparison to tensor hyper-

contraction, the spectral expansion method required fewer iterations in the unconstrained

optimization to converge the ground-state energy.

An important property of the p2-RDM method, employed in many of its chemical appli-

cations [23–26, 26, 28] is its ability to capture significant multi-reference correlation effects

at transition states and stretched geometries that are typically difficult to treat by single-

reference methods. As seen for the spectral expansion method in an earlier paper [10], the

p2-RDM method continues to capture multi-reference correlation with both spectral expan-

sion and tensor hypercontraction. In this paper the potential energy curves of both singlet

HF and triplet OH+ were computed. For both molecules the full-rank p2-RDM method
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yielded more accurate curves than CCSD, especially in the dissociation region. The combi-

nation of the p2-RDM method with the tensor methods to achieve rank reduction did not

impede its accuracy. For small ranks (or auxiliary functions), less than or equal to ten, the

low-rank 2-RDM methods converged to the energy curves from the full-rank method. Some

convergence problems for tensor hypercontraction appeared in the form of non-smooth po-

tential energy surfaces in the dissociation region of HF. Although the spectral expansion did

not exhibit these problems, it did display a drop in energy for the HF dissociation around

2.3 Å which was also noted for tensor hypercontraction at f = 3 and f = 5.

Both size extensivity and size consistency of the low-rank p2-RDMmethods were explored

through calculations on a series of alkanes, the dissociation of ethane to methyl radicals, and

infinitely separated helium atoms. A method is size extensive if and only if its energy scales

linearly with system size; a method is size consistent if and only if the energy of two infinitely

separated monomers is equal to the sum of the monomer energies. Unlike CISD, the p2-RDM

method is derived to yield size extensive and size consistent energies. In this paper we found

that the p2-RDM method in combination with spectral expansion or tensor hypercontraction

maintains the size extensivity and size consistency of the full-rank p2-RDM if the rank of the

tensor expansion increases with system size. For the alkanes, for example, the percentage

of the full-rank correlation energy recovered by low-rank methods remained constant if and

only if the rank (or the number of auxiliary functions) increased linearly with the length of

the chain. Similarly, the dissociation of ethane into two methyl radicals required that the

rank of the tensor decomposition of ethane be twice the decomposition of a single methyl

radical. Finally, the size consistency of two helium atoms at nearly infinite separation was

restored in either the tensor methods when the rank of the tensor expansion was sufficiently

large.

The tensor decomposition of the two-electron excitation amplitudes in the p2-RDM gen-

erates a formally O(r4) method if and only if the rank (or the number of auxiliary functions)

of the tensor expansion remains constant with respect to system size as measured by r.
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Hence, to achieve a size extensive O(r4) method with either the spectral expansion or tensor

hypercontraction methods, further cost reduction is required. One approach is to employ a

tensor decomposition for the electron repulsion integrals within the molecular Hamiltonian.

The decomposition can be achieved in a variety of ways including density fitting [29, 30],

Cholesky factorization [31–34], and tensor hypercontraction [6–9]. Recently, a size extensive

O(r4) p2-RDM method has been developed by using tensor hypercontraction for both the

two-electron excitations and the two-electron molecular integrals (see Ref. [12] for further

details).

The reduction of the size of the 2-electron excitation tensor is important to reducing the

computational scaling of ab initio quantum chemical methods and allowing them to treat

large chemical systems which can be studied currently only by methods such as density

functional theory [37]. We found that both low-rank spectral expansion and tensor hyper-

contraction are effective methods to factorize the 2-excitation amplitudes into lower-rank

tensors while recovering the majority of the correlation energy of a full-rank method. Both

factorizations lower the theoretical cost of the p2-RDM method while preserving its com-

putational and energetic properties, and its ability to capture multi-reference correlation

effects [10]. While the two factorizations produced similar correlation energy recoveries, the

spectral expansion factorization proved to be the more computationally efficient and stable

method, in practice requiring less time and fewer iterations to converge to a predicted result.

In the limit of infinite system size, however, the tensor hypercontraction of O(r5) should be

more efficient than the spectral expansion of O(r6). In light of the present results, both ten-

sor methods provide valuable starting points for the development of fast, low-cost p2-RDM

methods with O(r4) scaling and more generally improved low-rank ab initio methods.
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CHAPTER 7

POSITIVE SEMIDEFINITE TENSOR FACTORIZATIONS OF

THE TWO-ELECTRON INTEGRAL MATRIX FOR

LOW-SCALING AB INITIO ELECTRONIC STRUCTURE

This chapter contains parts of an article that was originally published in the Journal of

Chemical Physics. Reprinted with permission from [E. P. Hoy and D. A. Mazziotti, J.

Chem. Phys , 143, 064103 (2015)]. Copyright 2015, American Institute of Physics.

7.1 Introduction

When seeking to describe the electronic properties of large organic and biological molecular

systems, chemists often employ computationally inexpensive electronic structure methods

such as the Hartree-Fock and density functional theories. These two methods have compu-

tational scalings of r3, where r is the total number of basis functions. The key limitation of

these methods is their incomplete description of electron correlation with Hartree-Fock not

treating any electron correlation and density functional theory not being able to describe

multi-reference (static) correlation. Higher accuracy, correlated electronic structure meth-

ods such as ab initio wavefunction or reduced density matrix (2-RDM) methods generally

require at least r6 floating-point operations for an energy calculation. In order to treat

electron correlation in larger systems properly, decreasing the scaling of correlated ab initio

methods toward the r3 scaling of Hartree-Fock and density functional theories is desirable,

particularly if the resulting method is able to capture static correlation.

One technique to reduce the scaling of wavefunction and density matrix methods toward

r3 is tensor factorization [1–4]. Typically, the fourth-order tensors such as the two-electron

repulsion integral matrix and the two-electron excitation tensor are divided into lower-order

tensors. This allows for the use of fast partial summation of the lower order tensors in lieu

of more expensive calculations using the original tensors. The effectiveness of this approach,
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however, depends heavily on the choice of the electronic structure methods and the factor-

izations. Ideally, we want to start with an ab initio method that is computationally efficient

(scaling of r6) and capable of recovering a significant portion of the correlation energy includ-

ing static correlation. One technique that fulfils both criterion is the parametric 2-electron

reduced density matrix (p2-RDM) method [5–15]. Reducing the scaling of this method

toward r3 can be accomplished by factorizing the 2-electron integral matrix and/or the 2-

electron excitation tensor. In 2012 Schwerdtfeger and Mazziotti factorized the p2-RDM

2-electron excitation tensor using a spectral expansion method based on the 2-positivity

conditions found in RDM theory [16]. This approach generates an O(r4) non-size-extensive

p2-RDM method or an O(r5) size-extensive method. A method is size extensive if the error

in the computed energy scales linearly with system size. In 2013 Shenvi et al. developed

a fourth-order size-extensive p2-RDM method using the tensor hypercontraction factoriza-

tion [4, 17–22]. We have previously compared these two approaches in terms of their ability

to factorize the 2-electron excitation tensors of the p2-RDM method in Ref. [23]. When ap-

plied to the electron repulsion integral matrix, however, tensor hypercontraction and similar

decompositions [1–3, 24] do not rigorously preserve the positive semidefiniteness of the inte-

gral matrix. In this paper we consider a general family of positive semidefinite factorizations

of the electron repulsion integral matrix.

The Cholesky factorization is the simplest factorization whose factors maintain the pos-

itive semidefinite character of the original matrix. This factorization eliminates eigenvalues

that are zero or nearly zero from the integral matrix to reduce the size of the tensor that

must be stored, which is especially useful for large basis sets [25]. The method has recently

received renewed interest both as a generator of auxiliary basis sets for the density-fitting

method and as a low-rank method in its own right [26–39]. While the Cholesky factoriza-

tion is both numerically stable and readily computed, it alone is not sufficient to reduce the

overall computational scaling of correlated electronic structure theories, such as the p2-RDM

method, toward that of the Hartree-Fock method and density functional theory. This lim-
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itation is due to an insufficient decoupling of orbital indices in the performance of partial

summations with the Cholesky factors. In order to achieve scaling reduction toward r3, it

is necessary that all of the original tensor indices are situated on separate tensor factors as

in tensor hypercontraction. All currently available factorizations with such flexibility, how-

ever, do not maintain the positive semidefinite character of the original integral matrix. It

is desirable to have a positive semidefinite factorization like the Cholesky factorization that

also allows for efficient partial summation like tensor hypercontraction.

In this paper we consider a family of positive semidefinite (PSD) factorizations that

generalize the Cholesky factorization. Specifically, we focus on a factorization that places

each of the original tensor indices on separate tensor factors. The resulting factorization

has nearly the same partial summation flexibility as methods like tensor hypercontraction

while preserving the positive semidefiniteness of the Cholesky factorization. To illustrate the

factorization, we examine several small molecules including H2O, CO, N2, HF, and OH and

a series of 8 linear alkane chains using a modified p2-RDM method capable of decomposing

the 2-electron integrals by both the Cholesky and the more general positive semidefinite

factorizations.

7.2 Theory

In section 7.2.1 we discuss the Cholesky factorization of the electron repulsion integral matrix.

In section 7.2.2 we theoretically develop the generalized family of positive semidefinite (PSD)

factorizations of the electron repulsion integral matrix.

7.2.1 Cholesky Factorizations

Any n× n positive semidefinite matrix A can be written as

A = C C†, (7.1)
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where C is a general n × n matrix. For the symmetric, positive-semidefinite two-electron

integral matrix

2 V
ij
kl =

∫
dr1

∫
dr2σi( r1)σk( r1′) r

−1
12 σj( r2)σl( r2′), (7.2)

we can perform the above factorization. Importantly, because the elements of 2V ik
jl decay

exponentially with the separation between r1 and r′1 (or r2 and r′2), the number of non-

negligible eigenvalues scales linearly with r. Therefore,

2 V
jl
ik ≈

κr∑
M=1

Cik
M CM

jl , (7.3)

where κ is a small nonnegative integer. If we choose the C matrices to be lower triangular

matrices L, we have the Cholesky factorization

2 V kl
ij ≈

κr∑
M=1

Lik
M LM

jl . (7.4)

The Cholesky factorization corresponds to density fitting [36, 40–48] of the integrals in an

atomic basis, the Cholesky basis, with both one- and two-atom centered basis functions [28,

36]. The full Cholesky factorization with κ = r is formally exact for positive semidefinite

matrices but is usually calculated using a pivoting algorithm where κ is determined by an

accuracy threshold [49], which reduces computational storage particularly for larger basis

sets [25, 30]. Given an accuracy threshold of 10−4, we can expect to generate a basis set of

Cholesky tensors roughly 3-5 times the size of the molecular one, reducing the number of

integrals that must be stored from r4 to 3-5 r3 [36].

The Cholesky tensors in this paper were computed using a modified version of the pivoted

Cholesky factorization from Ref. [50]. The primary modification to the algorithm is the

replacement of the accuracy threshold with a fixed stopping point based on the dimension of

the Cholesky tensor basis set. This approach was chosen in order to standardize the size of
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the Cholesky basis at κ times the size r of the molecular basis set (κr) where κ is typically

in the range 3 − 5 to ensure accurate reproduction of molecular energies and properties at

both equilibrium and non-equilibrium geometries.

7.2.2 Positive Semidefinite Factorizations

While performing the Cholesky factorization on the 2-electron integrals can decrease the

integral matrix storage requirements for an electronic structure method, it alone is not

necessarily sufficient to reduce the overall computational scaling of the method. To reduce

the computational scaling, we may need to further decompose the 2-electron integral matrix

to separate the molecular indices. Hence, we consider a family of positive semidefinite (PSD)

factorizations that factor the 2-electron integral matrix to keep the approximation to the two-

electron integral matrix positive semidefinite. The family can be formally characterized as

the set of factorizations that parameterize the factor Cik
M in Eq. (7.3). By construction, each

factorization in the set is expressible in the form CC† and hence, is positive semidefinite.

In this paper we focus specifically on the factorization from the following parametrization of

Cik
M in Eq. (7.3):

Cik
M ≈

K∑
p=1

p+w∑
q=p−w

Ri
p R

k
q B

pq
M . (7.5)

where B is a banded kernel matrix. The factorization indices p and q are connected to each

other by a half-bandwidth w, which means that for each index p, the range of the index q

is defined to be p ± w. The bandwidth is related to the half-bandwidth by 2w + 1. The

maximum value K for the index p should scale linearly with the number of orbitals; it can be

set to the number M of Cholesky vectors. If w = r, where r is the rank of the orbital basis

set, the PSD factorization is a generalization of the Cholesky factorization in which B is not

restricted to be a lower triangular matrix. If w = 0, then p = q and the PSD factorization

is a single-index factorization similar to factorizations like CANDECOMP/PARAFAC and

tensor hypercontraction (THC) [4]. Important features of the PSD factorization in Eq. 7.5
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are: (1) its rigorous preservation of the positive semidefiniteness of the two-electron integral

matrix due to the preservation of the overall form and symmetry of the Cholesky factorization

e.g. 2V = CC†, (2) its ability through its half-bandwidth w to interpolate between Cholesky

and THC-like factorizations, and (3) its applicability to other 3-index decompositions such

as the density-fitting and spectral expansion factorizations.

7.3 Applications

7.3.1 Computational Methods

The p2-RDM calculations in this study were preformed using a modified version of the

implementation in Ref. [8]. First, the two-electron integrals were first decomposed using

the modified low-rank pivoted Cholesky algorithm by Harbrecht, Peters, and Schneider [50].

Second, the Cholesky tensors were decomposed by minimizing the sum of the squares of

the residuals in Eq. (7.5) with a limited-memory quasi-Newton’s method (L-BFGS) with an

optimality tolerance of 0.001 a.u.. Third, for testing purposes in this paper the full two-

electron integral matrix was rebuilt from the PSD tensors and employed in calculations with

the p2-RDM method. In all calculations the number of Cholesky basis functions is fixed

at 5r, that is κ = 5, to ensure accurate reproduction of the potential energy surface. All

calculations were performed without using symmetry or freezing core orbitals.

7.3.2 Results

Table 7.1 shows the percentage of the correlation energy recovered by the Cholesky and PSD

factorizations for H2O, CO, and N2 in the cc-pVTZ basis set. The Cholesky factorization

gives a consistent recovery of approximately 99.98% for each molecule. The PSD correlation

energy recoveries are also approximately 100% for all half-bandwidths studied. Increasing

the half-bandwidth w brings the correlation recoveries of the PSD factorizations closer to

those of the Cholesky factorizations. The PSD factorization performed particularly well for
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Table 7.1: The percentage of the p2-RDM correlation energy recovered is reported for three
PSD factorizations and the Cholesky factorization for three molecules in the cc-pVTZ basis
set. The numbers M and K of Cholesky and PSD factors, respectively, are fixed at 5r for
all factorizations, but the half-bandwidth w of the PSD factorizations varies from 0 to 4.

Percent Correlation Recovery
PSD Factorization Cholesky

Molecule Full corr. energy (a.u.) w = 0 w = 1 w = 2 w = 4 Factorization
H2O -0.28737 99.91 99.98 99.98 99.97 99.97
CO -0.41525 100.02 99.94 99.97 100.00 99.98
N2 -0.41007 100.11 100.23 100.08 99.99 99.98

H2O where it reproduced the Cholesky’s correlation recovery with a bandwidth of only ±1.

A similar pattern can be seen in Table 7.2 which contains the percentage of the correlation

energy recovered for a series of linear alkane chains. As in Table 7.1, the PSD recoveries

move toward the Cholesky result as the bandwidth increases. For w = 0 and w = 1,

the percentage of correlation energy recovered by the PSD factorizations slowly increases

with system size, but for w = 4 this increase disappears with the percentage of correlation

energy recovered being fairly constant at approximately 100.2% for all cases but methane.

This result suggests that a small, fixed half-bandwidth w of approximately 4 is needed to

maintain the size extensivity of the Cholesky factorization.

The errors in total energy per carbon atom from the p2-RDM method are compared

for the Cholesky and PSD factorizations of the two-electron integrals for several alkane

chains in Table 7.3. The errors are reported relative to the total energy from the p2-RDM

method without approximation to the two-electron integrals. If the two-electron integral

factorizations are size extensive, then these errors should be relatively constant as the number

of carbon atoms increases. This is true for the Cholesky factorization which gives a total

energy error of approximately 0.0014 a.u. for 6 of the 8 calculations. As observed in the

correlation energy recoveries, the PSD for w = 4 yields energies per carbon atom that are

very similar to those of the Cholesky factorization. If no width is used, the errors are

noticeably larger than those of the Cholesky factorization, particularly for the larger chains.
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Table 7.2: The percentage of the correlation energy recovered is reported for several PSD
factorizations and the Cholesky factorization for a series of eight linear alkane chains in the
cc-pVDZ basis set. The numbers M and K of Cholesky and PSD factors, respectively, are
fixed at 5r for all factorizations, but the half-bandwidth w of the PSD factorizations varies
from 0 to 4.

Percentage of Correlation Energy
PSD Factorization Cholesky

Molecule w = 0 w = 1 w = 4 Factorization
CH4 100.0 99.8 99.9 99.8
C2H6 100.3 100.0 100.2 99.9
C3H8 100.5 100.1 100.1 99.8
C4H10 100.8 100.4 100.3 99.8
C5H12 101.3 100.6 100.2 99.8
C6H14 101.7 100.8 100.2 99.8
C7H16 101.6 101.8 100.3 99.8
C8H18 101.8 100.8 100.2 99.7

However, the results suggest that for all PSD factorizations, even when w = 0, the error per

carbon becomes fairly constant after butane, indicating size extensivity.

For the alkane chains table 7.4 reports the mean and max unsigned errors of the elements

of the two-electron integral matrices from each factorization approximation. The mean

unsigned error is the sum of the absolute values of the differences of the approximate and

exact two-electron integrals normalized by the number of integrals. The max unsigned error

is the largest absolute difference between the integrals. Both the mean and max error,

which are largest when w = 0, decrease toward their Cholesky values as w increases. For all

factorizations the max error is relatively constant as the system size increases while the mean

error decreases with system size. These results as well as the reported errors per carbon atom

indicate that the factorizations are size extensive.

Table 7.5 reports the total integral storage costs of each factorization for each alkane

chain. The storage requirements for the 2-electron integrals using a traditional storage

with 8-fold symmetry grows from ∼1 megabyte (MB) for methane to ∼1.6 gigabytes (GB)

for octane. The Cholesky factorizations reduces the storage costs by an order of magnitude,
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Table 7.3: The errors in total energy per carbon atom from the p2-RDM method are com-
pared for the Cholesky and PSD factorizations of the two-electron integrals for several alkane
chains. The numbers M and K of Cholesky and PSD factors, respectively, are fixed at 5r
for all factorizations, but the half-bandwidth w of the PSD factorizations varies from 0 to 4.
For all PSD factorizations, even when w = 0, the error per carbon becomes fairly constant
after butane, indicating size extensivity.

Error (a.u.)
PSD Factorization Cholesky

Molecule w = 0 w = 1 w = 4 Factorization
CH4 +5.7e-4 −3.5e-3 −1.3e-3 −2.3e-3
C2H6 +2.5e-2 −1.5e-2 −2.9e-3 +1.5e-3
C3H8 +5.5e-2 +2.4e-3 +2.0e-3 +1.5e-3
C4H10 +8.2e-2 +6.1e-3 +1.5e-3 +1.4e-3
C5H12 +1.0e-1 −7.8e-3 −1.9e-3 +1.2e-3
C6H14 +1.2e-1 −5.1e-4 −1.6e-3 +6.9e-4
C7H16 +1.3e-1 −6.3e-3 +6.8e-4 +1.5e-3
C8H18 +1.3e-1 −9.6e-3 −1.8e-3 +1.4e-3

Table 7.4: The mean unsigned and max unsigned errors of the two-electron integrals from
the Cholesky and PSD factorizations are reported for the alkane chains. The numbers M
and K of Cholesky and PSD factors, respectively, are fixed at 5r for all factorizations, and
the half-bandwidth w of the PSD factorizations varies from 0 to 4.

Mean Error Max Error
PSD Factorization Cholesky PSD Factorization Cholesky

Molec. w = 0 w = 1 w = 4 Factorization w = 0 w = 1 w = 4 Factorization
CH4 4.8e-4 4.2e-4 4.0e-5 3.1e-5 2.4e-3 1.6e-3 4.2e-4 4.0e-4
C2H6 2.1e-4 2.0e-4 1.3e-4 3.3e-5 1.8e-3 9.2e-4 6.9e-4 3.3e-4
C3H8 1.4e-4 1.3e-4 9.2e-5 2.0e-5 1.5e-3 9.9e-3 4.9e-4 2.5e-4
C4H10 9.6e-5 8.5e-5 6.2e-5 2.8e-5 1.7e-4 1.3e-4 4.8e-4 2.1e-4
C5H12 7.3e-5 6.8e-5 4.6e-5 2.2e-5 1.9e-3 1.2e-4 3.5e-4 1.8e-4
C6H14 5.3e-5 4.7e-5 3.3e-5 1.1e-5 1.5e-3 6.2e-4 3.1e-4 1.6e-4
C7H16 4.5e-5 4.5e-5 3.0e-5 1.5e-5 1.7e-3 7.3e-4 3.4e-4 1.3e-4
C8H18 3.8e-5 3.1e-5 2.5e-5 1.3e-5 1.7e-3 6.3e-4 3.5e-4 1.3e-4
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Table 7.5: The total integral storage costs of the full integrals with 8-fold symmetry, the
Cholesky factorization, and two PSD factorizations are presented for all eight alkanes from
Table 7.2. Memory usage is reported in megabytes (MB).

Memory Usage (MB)
Molecule Orbitals 8-fold Integrals Cholesky PSD(w = 1) PSD(w = 4)
CH4 34 1.34 0.79 0.18 0.46
C2H6 58 11.32 3.90 0.54 1.35
C3H8 82 45.21 11.03 1.08 2.69
C4H10 106 126.25 23.82 1.80 4.49
C5H12 130 285.61 43.94 2.70 6.76
C6H14 154 562.45 73.05 3.79 9.49
C7H16 178 1003.88 112.80 5.07 12.67
C8H18 202 1664.97 164.85 6.53 16.32

requiring ∼0.16 GB for the octane calculation. The PSD factorization with a half-bandwidth

of 4 reduces the storage costs by another order of magnitude, requiring only ∼0.016 GB of

storage space for the octane calculation. Using a half-bandwidth of one further reduces the

cost by about 50%. Since the PSD storage costs have roughly an r2 scaling for a fixed half-

bandwidth compared to the r3 and r4 storage costs scaling of Cholesky and unfactorized

integrals, their advantage in memory storage will only grow with system size particularly if

we can generate the PSD factors directly without forming the 2-electron integrals.

The eigenvalues of a positive semidefinite matrix should be by definition non-negative.

To demonstrate that the PSD factorizations are positive semidefinite, we report in Figure 7.1

the eigenvalues of methane’s two-electron integral matrix computed with (a) no factorization,

(b) the Cholesky factorization, and (c) the PSD(w=4) factorizations. Zero eigenvalues are

not reported. The plots show that the errors in the eigenvalues for the two factorizations

are small. Furthermore, the errors are almost entirely a result of the original Cholesky

factorization with the PSD factorization very closely reproducing the Cholesky eigenvalues

especially for the larger bandwidths. The PSD(w=0) and (w=1) eigenvalues, albeit not

shown, are very similar to those of the PSD(w=4) factorization. None of the factorizations

has negative eigenvalues and therefore, each factorization is positive semidefinite as expected.
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Figure 7.1: The non-zero eigenvalues of the two-electron integral matrix of methane are
shown with the integrals generated with (a) no factorization (b) the Cholesky factorization,
and (c) the PSD factorization at the half-bandwidth w = 4. The first 4 eigenvalues, which
have a magnitude larger than 1, as well as the zero eigenvalues are not shown to make
the non-zero eigenvalues more visible. The first four eigenvalues also show good agreement
between the three methods.
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Table 7.6: The number of iterations required to compute the PSD factorization from the
Cholesky factorization is shown for the alkane chain calculations. While fluctuations in
the number of iterations are present, particularly for butane and pentane, the number of
iterations does not grow appreciably with system size beyond butane.

Number of Iterations
PSD Factorization

Molecule w = 0 w = 1 w = 4
CH4 1261 2274 202
C2H6 1650 3055 2329
C3H8 2168 3399 4014
C4H10 5034 7469 12267
C5H12 6140 28366 19950
C6H14 5587 10492 3130
C7H16 6071 5213 13672
C8H18 8087 11935 10462

For the PSD factorization to be O(r4) the number of iterations to compute the PSD

factorization from the Cholesky factorization must not increase with r. Table 7.6 shows the

number of iterations required by the quasi-Newton’s method for the alkane chain calcula-

tions. While fluctuations in the number of iterations are present, particularly for butane

and pentane, the number of iterations does not grow appreciably with system size beyond

butane.

Figure 7.2 compare the potential energy curves of hydrogen fluoride and the hydroxyl

radical ion from the p2-RDM method with and without PSD two-electron integral factor-

izations. For both cases, the curves from the PSD factorizations with either w = 1 or w = 4

show good agreement with the curve from the p2-RDM method without integral factoriza-

tion. As long as a sufficiently large Cholesky factorization (i.e. κ = 5r) is employed to

seed the PSD factorization, the PSD factorization is capable of reproducing the dissociation

curve without integral approximation at very small bandwidths. Practically, the selection of

a nonzero half-bandwidth, which generalizes factorizations like THC, is important to ensure

good convergence of the optimization.
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Figure 7.2: The potential energy curves of (a) hydrogen fluoride HF and (b) hydroxyl radical
OH+ from the p2-RDM method with and without PSD two-electron integral factorizations
are compared. The curve from the PSD factorization with either w = 1 or w = 4 shows
good agreement with the curve from the p2-RDM method without integral factorization.
The basis set is cc-pVDZ.
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7.4 Discussion and Conclusions

The positive semidefinite factorization (PSD) of the Cholesky factors provides a size ex-

tensive, efficient, and positive semidefinite alternative to traditional factorizations such as

CANDECOMP/PARAFAC and tensor hypercontraction. The PSD factorization generates

a new family of factorizations with similar partial summation characteristics to tensor hy-

percontraction for low bandwidths while maintaining the positive semidefinite character and

size consistency of the Cholesky factorization. In this study, we investigated the efficacy of

this family of decompositions for the two-electron repulsion integral matrices of inorganic

molecules and alkane chains.

With a small, fixed half-bandwidth w = 4 the PSD factorization maintains the accuracy

of the energies from the parent Cholesky factorization with κ = 5r. While the storage of the

Cholesky factorization scales as O(r3) where r is the rank of the one-electron basis set, the

storage of the PSD factorization with small integer w scales as O(r2). Furthermore, the PSD

factorization improves the computational scaling of floating-point operations within ab initio

electronic structure relative to the Cholesky factorization. For example, while the molecular

two-electron integral transformation with the Cholesky factorization scales like O(r5), the

molecular two-electron integral transformation with the PSD factorization scales as O(r4).

The alkane chain results demonstrate that neither the energy errors nor the computational

effort required to derive the PSD factors scale with the system size. Importantly, as shown

in the dissociation curves of HF and OH+, the PSD factorization retains the ability of

the p2-RDM method to capture electronic correlation including multi-reference correlation.

For future applications to geometry optimization and molecular dynamics, analytic nuclear

gradients of the PSD factorization can be obtained from modest extensions of the gradients

developed for the Cholesky factorization [25, 27].

The present results with the PSD family of factorizations suggest that a new electronic

structure method could be developed based on a current r6 method such as p2-RDM us-

ing the positive semidefinite factorization to reduce computational scaling toward the r3
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computational scaling of Hartree-Fock and density functional theory. If both the integral

matrix and the 2-electron excitation tensors are factorized and efficient partial summation

is employed, this approach has to potential to create a p2-RDM method with O(r4) scaling,

an ideal combination of traits for addressing highly correlated systems that are too large for

current ab initio methods, particularly those with multi-reference character.
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