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“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where–” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

“-so long as I get SOMEWHERE,” Alice added as an explanation.
“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

– Lewis Carrol, Alice in Wonderland

“The future is a lens,
where things appear,

clear”
– Iris, Wayseer



ABSTRACT

In this thesis we study the dynamics of the CDR3 loops of the T cell receptor (TCR).

The TCR is the protein responsible for mediating the recognition of signs of infection in

the T cell, a cornerstone of the adaptive immune system. The CDR loops are responsible

for this recognition process, and years of crystallographic work have shed immense light on

their interactions with antigens. However, the dynamics remain difficult to study, and the

relationship between the flexibility of the loops, their motions, and their interaction with

antigen is still poorly understood. Here, we have simulated the dynamics of two different

TCR systems with molecular dynamics, and applied machine learning and signal processing

technologies to pull apart the dynamics. This thesis gives a detailed background the analytic

methods, and then applies them to the dynamics of the 2C and NKT15 TCR clones.

A central question of the thesis asks if the CDR3 loops are flexible in solution and whether

they demonstrate stable conformations in the absence of the environment of an antigen

the TCR recognizes. Our main results are that the loops demonstrate restricted, coherent

motion in solution, and that there exist distinct, stable clusters of conformations, states, of

the CDR3 loops. The system undergoes transitions between these distinct conformational

clusters, and this transition can be described as Markov system, providing a high level view

of the dynamics. Furthermore, the simulation captures known crystallographic bound states.

Finally, we show evidence for more restricted and simplified CDR3 motions in the NKT15

TCR clone, which is a TCR with more ‘innate-like’ behavior, in contrast to the more complex

motion of the 2C clone’s CDR3 loops, despite their similar architecture.
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PREFACE

The adaptive immune system faces a fundamentally difficult problem: correctly identifying

signs of infection in a noisy environment, and where the antigen being presented has never

been seen by the immune system before.

The T cell receptor (TCR) recognizes antigens presented to it on the surface of cells by

MHC and MHC-like proteins. It must do so in an environment where most of the would-

be antigens presented to the TCR are presentations of self-molecules, all of the antigens

are presented in the context of a self-protein presenter, and where triggering a self-immune

response could be deadly for the organism, but failure to respond to a non-self antigen could

be equally deadly. Furthermore, if only for logistical reasons, T cells and therefore T cell

receptors must be able to both identify different MHCs, which are polymorphic, and different

peptides presented by these MHCs, referred to as cross-reactivity, unlike the specific, potent

interactions of antibodies.

The difficulty of understanding the fine dynamics of the T cell receptor is not unique.

It is an understatement to say that protein dynamics are complicated. Despite the simple

assumptions of Newtonian mechanics, molecular dynamics simulations produce immense

amounts of data that, at least naively, live a high dimensional phase space. Physical intution,

such as the use of dihedral angle descriptions, and willful ignorance, ignoring the fine motions

of solvent, let us reduce the phase space when we analyze the data. Nevertheless, we are still

left with mere hundreds of dimensions for our phase space, down from thousands. Thus, we

turn to the tools of statistical learning and model-building, creating simplified models of the

data our model produces so we can extract meaning from the mess of raw numbers.

I have two major goals in this work. The first is to apply these tools to simulations of

example T cell receptors with the goal of understanding the flexibility of the CDR loops. In
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particular, I wish to thoroughly understand one particular aspect of this flexibility: are the

loops well structured? By this, I mean to ask whether the loops are flexible in the way that

a rope is flexible, capable of bending and flexing essentially anywhere along it’s length, or

are the loops flexibile in a way more akin to a human dancer, demonstrating flexibility at

key joints that together choreograph an elegant dance. The nature of the protein backbone

leads us to imagine the latter, but then how is the system choreographed? Can we identify

states of the system, poses that it adopts during it’s dance and then holds before moving

to the next position? Do such poses even exist? Or are there just hinges that swing a lever

arm back forth until contact with a target is made?

I will argue for the existence of stable collections of poses, clusters of conformations that

are sufficiently similar to one another and which the protein adopts for extended periods of

time. These clusters constitute states that we can interpret and understand in a manner

analogous to crystal structures, though rather than investigate specific interactions, I will

consider the statistics over these states, getting an idea of the general behavior tendency of

individual states. Modeling the system as small sets of clusters, we can also extract probable

pathways between these states, finally addressing the question of flexibility in a visualizable,

intuitive manner.

The second major goal of this work is put forward the T cell receptor as a challenge.

In machine learning and many fields of methods development, it is common to demonstrate

that a novel method works incredibly well on one or a handful of test systems, and then

announce victory. Then, when it comes time for the practitioner to apply this method to his

or her system, it fails, often in unexpected ways. The states of the T cell receptor loops that

I will pick apart are small, subtle re-roganizations of the backbone of two small, peptide-

like segments of the protein. The system is therefore ultimately small, but it’s motions are

subtle compared to, for example, a folding event. This makes the TCR an excellent system

to explore as a test of statistical learning techniques applied to protein dynamics, and a

tractable system that exhibits complex but structured, low-dimensional dynamics embedded

2



in a high-dimensional system (as this report will demonstrate). I hope to convince the

methodologically-oriented reader that the TCR would make an excellent choice of target

once the usual toy and test systems are finished.
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CHAPTER 1

INTRODUCTION

Broadly speaking, the vertebrate immune system consists of two primary sub-systems, the

innate and adaptive immune systems. The adaptive immune system’s role is to generate

specific immune responses against pathogens in response to exposure to a novel pathogen,

and to retain memory of the pathogen for future responses to that pathogen. The primary

mediators of the adaptive immune response are B and T cells, responsible for antibody

production and cell-mediated immune responses, respectively. We focus on the role of the T

cell, and in particular on the T cell receptor (TCR), a membrane bound protein expressed

on the surface of T cells that mediate T cell recognition of pathogens and stimulate the T

cell immune response. Figure 1.1 shows the structure of the 2C TCR clone1.

1.1 T Cells and the T cell receptor

T cells are lymphocytes derived from haematopoietic stem cells in the bone marrow that

mature in the thymus (hence T cell) before release into the peripheral blood stream. T cells

are distinguished from other lymphocytes by expression of the T cell receptor, a membrane

bound heterodimeric protein. T cells fall into several classes each of which serve different

roles in the immune system depending on the expression of either α and β or γ and δ chains

of the T cell receptor and expression of CD4, CD8, or NK1.1 that differentiate αβ T cell

receptor roles, with αβ CD4+ or CD8+ forming the most common group of T cells in human

peripheral blood.

1K.C. Garcia et al.: An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC
complex. In: Science 274 (1996), pp. 209–219.
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Figure 1.1: Structural view of the 2C TCR (PDB: 1TCR). The recombined CDR3α and
CDR3β loops are highlighted in purple.

Similar to B cells, T cells achieve adaptive behavior through somatic recombination of

the T cell receptor, analogous to recombination in the generation of antibodies. However,

unlike antibodies that are specific to a particular molecular surface, TCRs must recognize

the combined surface of an antigen presented in the context of a self-protein, canonically this

is the presentation of a viral-genome derived peptide presented by Major Histocompatibility

Complex (MHC) class I or class II, polymorphic proteins responsible for presenting peptide

antigens, though non-virally derived peptides may be presented through other routes. Figure

1.2 shows a structural view of the 2C clone bound to a peptide-MHC ligandf2. In addition

to peptide presentation by MHC, T cells recognize lipids and glycolipids presented by CD1a

and CD1d, MHC-like molecules; more exotic recognition processes include specific protein

2M. Degano et al.: A functional hot spot for antigen recognition in a superagonist TCR/MHC complex,
in: Immunity 12 (2000).
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surfaces by γδ T cells3 and recognition of small molecules presented by MR14, though these

more exotic recognition behaviors occur in T cells that are more similar to innate immune

system than the adaptive. Here, we are only concerned with αβ T cells, primarily with the

classical class that expressed CD4 or CD8, though we will touch on the behavior of the NK

T cell which expresses NK 1.1 and recognizes lipids presented by CD1d5. TCR recognition

of pMHC or another Ag-Presenter complex occurs through binding at the Complementarity

Determining Region (CDR) of the TCR, a set of six loops, three contributed by each of the α

and β (or γ and δ) domains. The loops are referred to by number and domain, e.g. CDR1α,

CDR1β, etc. CDR1 and CDR2 loops are directly encoded by the variable domain gene

sequence, while the CDR3 loops undergo somatic recombination during T cell maturation

in the thymus.

1.1.1 T cell maturation and MHC recognition

The process of T cell maturation in the thymus is intimately tied to the primary function of

peptide-MHC recognition. TCRs need to recognize the peptide-MHC presentation of foreign

antigen and ignore peptide-MHC presenting self-peptides; the release of self-peptide recog-

nizing TCRs into the peripheral blood can cause autoimmune reactions. T cells maturing in

the thymus undergo two selection processes, positive and negative selection, to ensure that

TCRs are not autoreactive, but also sufficiently able to recognize peptide-MHC, including

self-peptide presenting pMHC, that the TCRs do not ignore all potential antigens presented

to them. Additionally, because of the enourmous set of possible antigenic sequences, and

the polymorphism of the MHC proteins that must bind and present the antigen peptides,

3A. Sandstrom et al.: The B30.2 domain of Butyrophilin 3A1 binds phosphoantigens to mediate activation
of human Vγ9Vδ2 T cells, in: Immunity 2014.

4J. Lopez-Sagaseta et al.: The molecular basis for MAIT cell recognition of MR1, in: Proceedings of the
National Academy of Sciences of the United States of America 2013.

5J. Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells, in: Nature Reviews
Immunology 12 (2012), pp. 845–857.
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Figure 1.2: Structural view of the 2C TCR (cyan) bound to the 2-Kb MHC (grey) presenting
the SIYR peptide (green) (PDB: 1G6R). CDR3 loops shown in purple.

TCRs are cross-reactive with different pMHC complexes6. This a major difference from

the very specific interactions that define antibody target recognition. Cross-reactivity is a

major reason to expect loop flexibility and alternative conformational states, as different

conformations enhance interactions with different pMHC complexes.

The conventional class of αβ T cells expressing either CD4 or CD8 begin in the thymus as

CD4−/CD8− (’double negative’) T cells. These cells express a germline encoded variable do-

main α and β chain, and the domains selected establish the amino acid sequence of the CDR1

and CDR2 loops of both chains. Recombination leads to diversity in the CDR3 segments of

both α and β chains. At the double-negative state, the process of V-D-J recombination by

RAG1 and RAG2 proteins generates a repertoire of β chain sequences. Mutational studies

6Don Mason: A very high level of crossreactivity is an essential feature of the T-cell receptor, in: Im-
munology Today 19.9 (1998), pp. 395–404, url: http://dx.doi.org/10.1016/S0167-5699(98)01299-7;
A.K. Sewell: Why must T cells be cross-reactive?, in: Nature Reviews Immunology 12 (2012), pp. 669–677,
url: http://www.nature.com/nri/journal/v12/n9/abs/nri3279.html.
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in mice have demonstrated that this is a necessary step, without β chain rearrangement7,

T cells do not proceed to the double-positive CD4+/CD8+ stage and the thymus shrinks

60-fold8. Successful rearrangement that results in ligand (pMHC) engagement allows pro-

gression to the next stage, ensuring that the T cells that progress are capable of engaging

pMHC. This triggers differentiation into the double-positive stage, and proliferation of the

cells that pass the checkpoint9.

Double-positive T cells in the thymus then undergo negative selection, which serves to

protect against autoimmunity. V-J recombination occurs in the α locus, leading to a reper-

toire of CDR3α sequences. The double-positive T cells with recombined α and β segments

are exposed to ’ubiquitous’ self-peptide antigens by professional antigen presenting cells10,

which seem to be a mixture of thymus cortical dendritic cells and cortical thymic epithelial

cells11. Those double-positive T cells that demonstrate high-affinity for self-peptides are

killed, deleting the self-recognition sequences from the T cell clonal repertoire.

Structural and Dynamic implications of Thymic Selection

The CDR3β sequence undergoes V-D-J recombination and is selected for pro-binding be-

havior, it reasonably follows that the CDR3β would be biased toward recognition and more

promiscuous binding of peptide targets. Furthemore, recombination with diversity (D) seg-

ments is biased towards in the inclusion of glycine residues12 which generally increase the

7Y. Shinkai et al.: RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J re-
arrangement, in: Cell 1992; P. Mombaerts et al.: RAG1-deficient mice have no mature B and T lymphocytes,
in: Cell 1992.

8E. Robey/B.J. Fowlkes: Selective events in T cell development, in: Annu. Rev. Immunol. 1994.
9Ibid.

10Ibid.
11L. Klein et al.: Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t

see), in: Nature Reviews Immunology 2014.
12E.Q. Roldan et al.: Different TCRBV genes generate biased patterns of V-D-J diversity in human T

cells, in: Immunogenetics 1995.
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flexibility of protein regions as they become more common due to the lack of steric clashes

from sidechain interactions – glycine motions are effectively only due to long-range stressors

on the backbone orientation and very close hydrogen bonding interactions. On the other

hand, CDR3α only undergoes V-J recombination, and so lacks the bias toward more flexible

motion and faster dynamics implicated by glycine-rich regions. The negative selection pro-

cess would presumably bias the CDR3α toward dynamics that reduce binding affinity, fitting

with the slower dynamics and possible ’on’-’off’ switch behavior observed in simulations of

2C (this work) and A613.

1.2 Crystallography of αβ T cell receptor recognition

Over two decades of crystallograpic work have generated a large database of TCR structures,

both free and bound to various foreign and self-reactive peptide-MHC complexes demon-

strating significant variation in bound structure that show CDR loop flexibility as vital to

TCR cross-reactivity. Reviews of the structural data over the years have concluded, with

increasing conviction, that the CDR loops are flexible but in a structured manner distinctly

different from the intrinsically disordered regions seen some other proteins14. Furthermore,

general flexibility is restricted to the CDR3 loops, even under extreme changes to CDR3

loop length15.

A large range of re-arrangements are seen in the CDR3α and CDR3β loops between the

bound and unbound states of different TCRs, with the re-arrangements varying with the

13D.R. Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-
reactivity, specificity, and binding mechanism, in: Journal of Molecular Biology 414 (2011).

14K.C. Garcia/E.J. Adams: How the T cell receptor see antigen - a structural view, in: Cell 122 (2005);
M.G. Rudolph/R.L. Stanfield/I.A. Wilson: How TCRs bind MHCs, peptides, and coreceptors, in: Annual
Review of Immunology 24 (2006); K.M. Armstrong/F.K. Insaidoo/B.M. Baker: Thermodynamics of T-cell
receptor-peptide/MHC interactions: progress and opportunities, in: Journal of Molecular Recognition 104
(2008); Brian M. Baker et al.: Structural and dynamic control of T-cell receptor specificity, cross-reactivity,
and binding mechanism, in: Immunological Reviews 250 (2012), url: http://onlinelibrary.wiley.com/
doi/10.1111/j.1600-065X.2012.01165.x/full.

15J.B. Resier et al.: CDR3 loop flexibility contributes to the degeneracy of TCR recognition, in: Nature
Immunology 4 (2003).

9



Figure 1.3: Variable domains (grey) of 2C shown from the perspective of the pMHC surface.
CDR3 loops shown in color, with unbound loops (cyan, PDB: 1TCR) overlaid with CDR3α
and CDR3β loops of 2C bound to MHC/peptide ligands H-2Kb/SIYR (red, PDB: 1G6R),
H-2Ld (blue, PDB: 2OI9), and H-2Kb/dEV8 (green, PDB: 2CKB).
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particular peptide-MHC ligand. CDR3β generally shows the largest variation in position,

with up to 8 angstrom changes in Cα position of tip residue observed; on the other hand

CDR1β and CDR2β generally show the least movement, suggesting the germline encoded

β chain residues primarily function to bind the MHC platform itself, fitting with the posi-

tive selection process and crystallographic footprints16. Small changes in sequence can also

induce significant changes in bound state, as several point mutants in CDR3α of 2C have

demonstrated significant re-arrangement of the α loop17.

Focusing on 2C specifically, which is the focus on the present work, Figure 1.3 shows

alignment of 2C variable domains to several bound crystal structures18. Both CDR3 loops

show variation between the bound and unbound states, as well as variation within the bound

states. Note however that CDR3α makes crystal contacts due to packing in the unbound

structure, making the unbound orientation of CDR3α indeterminate, though the local energy

well of the apparent unbound state is broad and well-separated from the bound states in our

data, and a similar difference is observed in simulations of A619.

1.3 TCR signaling and kinetic proofreading

The exact mechanics of TCR signaling remain an open problem, but the kinetic proofreading

model provides a good phenomenological model of the signaling process, and fits with the

understood biology. Kinetic proofreading (KPR) is a model originally proposed for enzymatic

16Armstrong/Insaidoo/Baker: Thermodynamics of T-cell receptor-peptide/MHC interactions: progress
and opportunities (see n. 14).

17K.C. Garcia et al.: Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC
antigen, in: Science 1998.

18Garcia et al.: An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC
complex. (see n. 1); Degano et al.: A functional hot spot for antigen recognition in a superagonist TCR/MHC
complex (see n. 2); L.A. Colf et al.: How a single T cell receptor recognizes both self and foreign MHC,
in: Cell 129 (2007); Garcia et al.: Structural basis of plasticity in T cell receptor recognition of a self
peptide-MHC antigen (see n. 17).

19Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13).

11



reactions that must differentiate between correct and incorrect reaction pathways. In KPR,

the reaction uses a time-delay in the form of the kinetics of a multistep reaction to improve the

error rate beyond what would be expected from the free energy difference of the outcomes20.

TCR signaling proceeds by multi-step phosphorylation of the T-cell receptor ζ chain21, acting

as a signal amplifier circuit described by the KPR model, and effectively describing the basic

TCR signaling process22. This view over-simplifies the process of TCR signaling, but to

first order it shows the importance of kinetics over direct affinity measurements; biochemical

experiments have shown that for many TCRs, signaling is well-correlated with the binding

dwell time half-life, though this correlation is not universal, leading to debate between koff

and KD being of primary importance23. A major contribution of more recent KPR models

of TCR signaling is explaining pMHCs that act as antagonists of signaling, effectively by

competing for binding but with sufficiently fast off-rates that the signaling process fails to

complete and resets instead, blocking activation by slower off-rate binders24. The upshot of

KPR as a signaling model for TCR activation is that when considering the physical dynamics

of the TCR, we are interested in how the time scale of binding events and which model of

TCR-pMHC interaction fits with the observed kinetics.

20J.J. Hopfield: Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes
Requiring High Specificity, in: Proceedings of the National Academy of Sciences of the United States of
America 1974.

21R.N. Germain/I. Stefanová: The Dynamics of T Cell Receptor Signaling: Complex Orchestration and
the Key Roles of Tempo and Cooperation, in: Annu. Rev. Immunol. 1999.

22T.W. McKeithan: Kinetic proofreading in T-cell receptor signal transduction, in: Proceedings of the
National Academy of Sciences of the United States of America 1995.

23J.D. Stone/A.S. Chervin/D.M. Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell
activity and specificity, in: Immunology 2009.

24P. Francois et al.: Phenotypic model for early T-cell activation displaying sensitivity, specificity, and
antagonism, in: PNAS 2013.

12



1.4 Models: Induced Fit, Conformational Selection, and

Conformational Melding

Ultimately, we are interested in the flexibility of the CDR loops because we are interested in

how TCRs bind to pMHC and physical mechanisms, including loop flexibility and dynamics,

by which TCRs differentiate self from non-self. Several models exist, which we refer to as the

Induced Fit25, Conformational Selection26, and Conformational Melding models27. The issue

of flexibility is not whether it occurs at all, but rather how much is intrinsic to the CDR3

loops themselves, and how much is driven by the environment. This question is expressed

in the tension between the induced fit and pre-existing equilibrium models of TCR binding.

Induced Fit Model

The induced fit model argues for initial weak binding between the TCR and MHC which

allows for a conformational change to make stronger contacts resulting in a higher affinity

interaction with recognized peptides. The Induced Fit model is the most well-supported from

biochemical evidence; structural evidence is inconclusive as we can’t know if the observed

differences are due to the binding process inducing the conformational changes or if they are

selected from pre-existing equilibrium states. ITC experiments have shown heat capacity

and entropy changes upon binding, while binding analysis with varying temperature have

shown the both association and dissociation depend on temperature, together indicating

25L.C. Wu et al.: Two-step binding mechanism for T-cell receptor recognition of peptide-MHC, in: Nature
418 (2002).

26P.D. Holler/D.M. Kranz: T cell receptors: affinities, cross-reactivities, and a conformer model, in:
Molecular Immunology 40 (2004).

27S.J. Gagnon et al.: T cell receptor recognition via cooperative conformational plasticity, in: Journal of
Molecular Biology 363 (2006); W.F. Hawse et al.: TCR scanning of peptide/MHC through complementary
matching of receptor and ligand molecular flexibility, in: J Immunol 192 (2014), pp. 2885–2891, url: http:
//www.jimmunolo.org/content/192/6/2885.
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conformational changes upon binding and unbinding28.

Of particular interest, structural studies have suggested a strong role for the CDR1β and

CDR2β germline-encoded loops, which have shown the least rearrangement upon binding,

in MHC recognition. This would provide the necessary initial bias toward MHCs required

for the induced-fit model. Furthermore, experiments with ‘leaky’ negative selection mouse

models where T cells were able to occasionally escape deletion despite failure at the negative

selection stage have shown affinity for MHC, suggesting a germline bias toward MHC beyond

that generated by the negative selection process29.

Conformational Selection

An alternative ‘conformer’ model suggests that cross-reactivity could instead be driven by

the existence of multiple CDR loop conformational states of the free TCR, which could

recognize different peptide-MHC ligands so that specificity is controlled by a combination of

specific contacts and the relative equilibrium populations of different conformational states30.

These two models are difficult to distinguish biophysically as loop dynamics are difficult to

capture even with techniques capable of resolving time-dependent dynamics31, though the

measurements did substantiate the use of computational methods. Computational analysis

of the free A6 TCR provides strong support for the existence of distinct states in solution,

where clustering of the CDR3α and CDR3β loops using RMSD as a dissimilarity metric

28J.J. Boniface et al.: Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general
mechanism of molecular scanning, in: Proceedings of the National Academy of Sciences of the United States
of America 96 (1999).

29S. Dai et al.: Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions
with MHC molecules, in: Immunity 2008; E.S. Huseby et al.: How the T cell repertoire becomes peptide
and MHC specific, in: Cell 2005.

30Holler/Kranz: T cell receptors: affinities, cross-reactivities, and a conformer model (see n. 26).
31D.R. Scott et al.: Limitations of time-resolved fluorescense suggested by molecular simulations: assessing

the dynamics of T cell receptor binding loops, in: Biophysical Journal 103 (2012).
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showed multiple distinct conformations of the loops32. Notably, CDR3α showed two distinct

clusters of conformations with implied slow motions between the two conformational clusters.

One cluster resembled the bound conformation of the CDR3α loop of A6, while the other

cluster was distinct from the bound conformation. On the other hand, CDR3β showed

multiple, smaller clusters, with much faster apparent transitions between the conformational

clusters.

Conformational Melding

Conformational melding is a more recently proposed model that combines aspects of induced

fit and conformational selection, and includes the role of pMHC conformation and dynam-

ics33. Small changes in flexibility in both TCR and pMHC have shown effective changes in

recognition34, and small changes in MHC sequence can cause changes in peptide dynamics

while bound in the MHC groove35. Similarly, NMR experiments have demonstrated flexi-

bility and mobility of the CDR3β loop of 2C while bound to Ld/QL936, demonstrating that

dynamical motion occurs even in the bound state. Conformational melding suggests that

the dynamics of the pMHC and TCR may essentially match one another, so that the energy

diagrams ‘agree’, but if such a match isn’t found, the system unbinds due to an inability

32Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13).

33O.L. Borbulevych/K.H. Piepenbrink/B.M. Baker: Conformational melding permits a conserved binding
geometry in TCR recognition of foreign and self molecular mimics, in: J. Immunol. 2011.

34O. Y. Borbulevych et al.: T cell receptor cross-reactivity directed by antigen-dependent tuning of
peptide-MHC molecular flexibility, in: Immunity 31 (6 2009), url: http://www.sciencedirect.com/
science/article/pii/S1074761309004981.

35J.K. Archbold et al.: Natural micropolymorphism in human leukocyte antigens provides a basis for
genetic control of antigen recognition, in: J. of Exp. Med. 2009; H. Fabian et al.: HLA-B27 subtypes
differentially associated with disease exhibit conformational differences in solution. In: J. Mol. Biol. 2008.

36Hawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).
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to find a strong energy minima in the combined dynamics37. Flexibility of motion and hav-

ing different sets of local dynamics available then contributes to cross-reactivity while still

maintaining specificity. At the TCR-pMHC encounter, the TCR has an initial conformation

selected from a set of possible states, from which a ‘local search’ for matching dynamics can

proceed, resulting in the observed slower kinetics.

A key requirement of the conformer models and conformational melding hypotheses is

the existence of distinct crystal-like states in the unbound TCR’s dynamics. We have run

extensive simulations of the free 2C TCR, as well as simulations of the free Natural Killer

T cell receptor NKT15 to driectly address flexibility. 2C is a well studied TCR known to

display significant cross-reactivity and with extensive crystallographic data available. We

have generated a total of 3µs of data across 10 trajectories of 2C, providing a significantly

larger data than has previously been available to study the solution state dynamics of a

single TCR. Further, we have used the Markov State Model formalism, described in Chapter

3, to cluster the loop conformations in a kinetic fashion, providing crystal-like states that

distinguish stable conformations from transitions and directly identifying transitions between

conformational states. In accordance with previous work on A6, we observe significant

flexibility in both CDR3α and CDR3β, with CDR3β showing a broad energetic well that

is kinetically separated from bound-like conformations, and CDR3β showing multiple meta-

stable states with local equilibria.

Bulk binding kinetics do not distinguish the models

SPR measurements have provided binding kinetics and affinity data for a large variety of αβ

TCRs. The kinetic proofreading model argues that the half-life of the interaction dominates

the signaling process, though it is still debated whether the key quantity is the binding

37Hawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).
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affinity of the dwell-time38. TCRs show a large diversity of kinetic parameters, with one

review showing kon values ranging from a low of 633 per mole second to a high of 400000 per

mole second39 for various TCRs binding different ligands. Similarly, koff varies from .009

per second to .975 per second. The on and off rates tend to move together, and generally

show smaller ranges for a fixed TCR; the 2C clone under study in this work shows on rates

in the 2200-22000 per mole second range and off rates in the .025-.464 per second range. The

highest values for 2C both occur when binding to SIYR/Kb, and are unusually fast for 2C.

Considering the models presented above, it would seem that the models could be distin-

guished by using the kinetic data. This is partially made difficult by the very large range of

observed rates, with on rates varying by three orders of magnitude. If we consider only 2C,

this shrinks to a single order of magnitude. The question is whether we estimate a bound

on the rates that would differentiate the models.

Let pMHC be in a fixed position, approximating the set-up of an SPR experiment, and

assume the collision rate is diffusion limited with the TCRs diffusing via translation, so

we begin with an encounter rate of 109M−1s−1. The binding footprint of the TCR on the

pMHC interface is highly conserved across conventional αβ TCRs and whether by selection

processes or germline bias, the CDR1 and CDR2 loops can make a stable encounter complex

with pMHC. If we consider the fastest on rate of binding as an order of magnitude slower

than forming the encounter complex, then forming the complex reduces the rate by a factor

of approximately 102, leaving an initial upper bound of 107M−1s−1.

From the perspective of the binding energy of the TCR over time, the induced fit and

conformational melding models look similar, so we treat them together here when discussing

ranges of on rates. In these search-based models, the TCR forms an initial complex with the

MHC via the CDR1 and CDR2 loops, shown as the initial stable encounter complex in figure

1.4. As both models presume that the solution conformation of the TCR is not the preferred

38Stone/Chervin/Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell activity and
specificity (see n. 23).

39Ibid.
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Figure 1.4: Proposed energy diagram of the TCR energy over time during the binding
interaction with pMHC for the search models (induced fit and conformational melding).

binding conformation, there is an energetic barrier to re-arranging one or both of the CDR3

loops to find the final bound conformation, along with an entropic cost of freezing out the

alternative conformations. This is the higher right-hand peak of the energy diagram in figure

1.4. We can estimate the bulk kinetic rate as the rate of complex formation decreased by

a factor depending on the success rate of the encounter complex proceeding to the final

bound state. The encounter complex proceeds to the bound state if the system finds the

correct conformation before a disassociation event occurs. As a simple estimation, model

both the search process and the disassociation process as independent Poisson processes. The

probability that disassociation does not occur in a time segment of length t is the Poisson

distribution for zero events,

P0(t;λ) = e−λt

The expected waiting time for the search to succeed is distributed according to the expo-

nential distribution, with probability density function

f (t;λ) = λe(−λt),
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where λ is a parameter of the model, the rate constant, for both the Poisson and Exponential

distributions. Let λbound and λdis denote the rate constants for the search finding the correct

bound state and the disassociation event, respectively. We want to calculate the probabilty

tha the search succeeds at time t and no disassociation events occur. This is given by

∫ ∞
t=0

f(t;λbound)P0(t;λdis) =
∫ ∞
t=0

λbounde
−λboundt · e−λdistdt =∫ ∞

t=0
λbounde

−(λbound+λdis)tdt = λbound
λdis + λbound

If λbound � λdis, then we can approximate λbound

λdis+λbound
≈ λbound

λdis
. Next, note that the λ

parameter of the exponential distribution is the inverse of the mean of the distribution. So

we can estimate λdis and λbound directly from the timescales of the processes. Assume the

disassociation process of the encounter complex has timescale faster than the formation of

the encounter complex, i.e. 10−8s, which gives λdis = 108s−1. We expect that the encounter

complex is relatively unstable, so disassociation in absence of finding the correct bound state

should be faster than the initial association. If the search process is successful on the 10

microsecond timescale, then we have λbound = 105s−1, which yields a success probability on

the order of 10−3, so we would expect on rates on the order of 107M−1s−1·10−3 = 104M−1s−1.

Faster search on the order of 1 microsecond yields a rate on the order of 103M−1s−1.

The CDR3α loop may or may not be able to re-arrange in this context, but if we assume

it does in a pure induced fit type model, CDR3α has slower kinetics than CDR3β between

states40, and rates have not been established but both the cited study and the present work

will argue that CDR3α rearrangement between bound-like and unbound-like states occurs

on at least the microsecond timescale, and possibly much longer. Similarly, the present

work will show the timescales of the CDR3β loop re-arrangements to occur in the range of

hundreds of nanoseconds to microsecond for individual state changes. If the motions of the

40Scott et al.: Limitations of time-resolved fluorescense suggested by molecular simulations: assessing the
dynamics of T cell receptor binding loops (see n. 31).
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Figure 1.5: Proposed energy digrams of the TCR energy over time during the binding
interaction with pMHC for the conformational selection model. (A) Proposed energy diagram
when the encounter complex is in the binding-capable conformation. (B) Proposed energy
diagram when the encounter complex is in a binding-incapable conformation; the energy of
the second hill is expected to be sufficiently high that the reaction only reverses from the
metastable state and never completes. Bulk kinetic rates of the conformational selection
model are determined by the ratio of occurences of each type of diagram, rather than the
behavior of a single diagram.

CDR3 loops are heavily restricted (i.e. have few degrees of freedom) and the topology of

state changes is complex, in particular if it is not a fully connected graph, then the time to

find the correct state can reasonably occur on the 10-100 microsecond timescale, yielding

on rates of 103 − 104M−1s−1, which fits within the lower bound of experimentally observed

values.

Under the conformational selection model, there are two types of energy diagrams we

might expect, depending on whether the TCR is in the binding-capable conformation on

collision. If the TCR is in the correct conformation, then the energetic barrier of contin-

uing to the bound state is minimal, and possibly simply a downward slope, as shown in

figure 1.5A. Assume that the energetic barrier of a collision where the TCR is in a binding-

incapable conformation is sufficiently high that the probability of proceeding to the bound

state is essentially 0 (figure 1.5B), so that only interactions with binding-capable conforma-

tions proceed to the bound state, and for simplicity assume that this always happens when
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the correct conformation is encountered. Then the bulk binding kinetics depends on the

probability of the TCR being in the binding capable state. Since previous work and the

data we present here show that the CDR3α loop has very slow transitions between stable

bound-like and unbound-like conformations, suggesting that the CDR3α loop has a binding

capable and a binding incapable conformation, we consider selection as requiring both loops

to be in the proper states. Consider the system where the CDR3α loop occupies each of these

states with equal probability. Furthermore, previous work shows there are a larger number

of states for the CDR3β loop. If there are only five states, equally populated, and one state

is binding capable for a given ligand, then there is a 1
10 chance the encounter complex binds,

for a net rate of 106M−1s−1, which is the order of magnitude of the fastest rate observed.

On the other hand if the binding capable state of CDR3α is occupied with a frequency of
1
10 , which is not unreasonable, and the binding capable state of CDR3β is 1% of the equilib-

rium population, then the encounter complex binds 1
1000 of the time, with a net rate around

104M−1s−1, near the rate of 2C’s binding kinetics and in the middle of the observed rates. If

there are more difficulties in forming the encounter complex due to mis-alignment during the

encounter, the rates would be slower, as commonly described in models of soluble protein

collisions41. Despite the common belief that induced fit is the better model because of the

slow on rates observed, a reasonable conformational selection model can still accomodate

slow bulk kinetics.

From this, we conclude that the bulk binding kinetics alone cannot distinguish between

the conformational selection model on one hand, and the induced fit or conformational

melding models on the other. In particular, if there exist distinct states, which is suggested by

the rigid transformations observed in crystal structures, then in addition to bulk kinetics, we

need to at least know what states are binding capable and what their equilibrium populations

are in order to determine how much conformational selection could affect the observed bulk

41J. Janin: The Kinetics of Protein-Protein Recognition, in: Proteins: Structure, Function, and Genetics
1997.
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rate.

Fast kinetics, Slow kinetics

An important partition exists in αβ TCR recognition between fast-on/fast-off TCR binding

and slower kinetics where the off-rate essentially controls the stimulation response. Following

the kinetic proofreading model, we expect that recognition is effectively controlled by the off-

rate; at the spatial resolution of an individual TCR-pMHC interaction, if we model unbinding

as a Poisson process then a faster off-rate translates to a higher probability of unbinding over

a given segment of time, and ultimately to a higher probability of unbinding before all of

the KPR checks complete. This leads to a recognition failure. However, unaccounted for in

standard KPR models is the time required for dephosphorylation – KPR models generally

assume it occurs instantaneously if the TCR leaves, since the timescale of diffusion is faster

than the on-rate, and hence the TCR diffuses away, effectively resetting the system. However,

there exists a class of TCRs where the on-rate is faster than diffusion, and re-binding events

occur. With simple mathematical models of the probability of rebinding rather than diffusing

away, it has been shown that stimulation is well correlated by taking into account both affinity

measurements and rebinding probability42. This mechanism elegantly explains a number of

TCRs whose stimulation is poorly correlated with direct affinity measurements and heat

capacity measurements that suggest a conformation-dependent mechanism. The 2C TCR,

which we study here, is an exemplar of the slow kinetics category, but the conformational

dynamics at play in 2C likely do not generalize to the category of TCRs that exploit rapid

re-binding events to pass phosphorylation checks during signaling.
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Figure 1.6: Variable domains (grey) of NKT15 shown from the perspective of the pMHC
surface. CDR3 loops shown in color, with unbound loops (cyan, PDB: 2EYS) overlaid with
CDR3α and CDR3β loops of NKT15 bound to CD1d with αGalCer (orange, PDB: 3HUJ)
or C20:2 (pink, PDB: 3VWJ).

1.5 The Type I Natural Killer T cell receptor

In contrast to CD4+ and CD8+ αβ T cells, type I Natural Killer T cells (NKT) recognize

lipids presented by the monomorphic MHC-like molecule CD1d43. Type I NKT TCRs are

considered to be ‘semi-invariant’, as they are generated through VDJ recombination as per

standard αβ TCRs, but use a heavily restricted Vα and Vβ chain repertoire. This restriction,

along with orders of magnitude faster binding kinetics, higher affinities, and rigid binding

conformations44 in crystal structures have led them to being considered ’innate-like’45. Figure

42C. C. Govern et al.: Fast on-rates allow short dwell time ligands to activate T cells, in: Proceedings of
the National Academy of Sciences of the United State of America 107 (19 2010), url: www.pnas.org/cgi/
doi/10.1073/pnas.1000966107.

43Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells (see n. 5).
44Y. Li et al.: The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a

conserved binding mode, in: J. Exp. Med. 2010.
45Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells (see n. 5).
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1.6 shows the similarity of bound and unbound NKT15 structures46. CDR3α shows minimal

rearrangement upon binding, while the CDR3β shows some re-arrangement, but the bound

orientation is identical for both ligands. Importantly, mutational studies have CDR shown

CDR2β and CDR3α to drive the NKT interaction with CD1d and the canonical antigen,

αGalCer. The conserved binding footprint, innate-like kinetics, and stronger reliance on

germline encoded interactions implies that type I NKT TCRs should demonstrate reduced

flexibility and simpler dynamics behvaior, particularly in the CDR3α loop, compared to

classical CD4+ and CD8+ αβ TCRs. The restricted binding footprint in the NKT-Ag-

CD1d system suggests that the NKT TCRs should serve as ‘innate-like’ counterpoints to

CD4+/CD8+ αβ TCRs, despite sharing the same fundamental protein architecture.

To test this model, we have simulated 1µs of free NKT15 dynamics across ten trajectories.

Surprisingly, we observe flexibility and meta-stable states in both the CDR3α and CDR3β

loops of NKT15. However, in contrast to 2C, the dynamic behavior of NKT15’s loops is

simpler in that for each loop, the major motions can be well-captured by a single degree of

freedom.

1.6 Aims

We study the solution state dynamics of the class 2C αβ T cell receptor. In doing so, we

argue for the existence of crystal-like states of pre-existing equilibria in CD4+/CD8+ αβ

T cell receptors with slow kinetics. However, we do not find that the bound states are

well represented by the local minima of the these states, rather the bound states appear

on the periphery, suggesting that there is a local search for the final bound state that is

seeded by a pre-existing equilibrium. States that are well-separated from the states similar

46L. Kjer-Nielsen et al.: A structural basis for selection and cross-species reactivity of the semi-invariant
NKT cell receptor in CD1d/glycolipid recognition, in: J. Exp. Med. 2006; D.G. Pellicci et al.: Differential
recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell
receptors, in: Immunity 2009; K.S. Wun et al.: Ternary crystal structure of the human NKT TCR-CD1d-
C20:2 complex, in: J. Biol. Chem. 2012.
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to the bound structures are potentially alternative seeds for other binding targets, or binding

incompetent states that reduce affinity, likely as a recombination-induced affinity regulation

mechanism. Further, we take a look at NKT15 on the hypothesis that it should show simpler,

and potentially less, motions than 2C due to the innate-like binding kinetics and lack of

significant flexibility observed in crystal structures. Surprisingly, NKT15 shows significant

loop flexibility, but the kinetics of NKT15’s dynamics are simplier in our simulations than

those observed in 2C.

In order to show this, we have generated a significant quantity of molecular dynamics

simulation data and applied recent developments in dimensionality reduction and statistical

learning specific to molecular dynamics simulations. Our data set is significant in the context

of previous work, the largest collective simulation is 460ns of a single TCR in solution, with

the longest trajectory at 260ns47; large collections of TCRs and TCR-pMHC interactions

have been simulated before, but the data for any single system was limited to 100ns48,

making the data presented here among, if not the, largest available for a single TCR in

solution.

Our analysis of TCR dynamics rests entirely on the application of MD-specialized sig-

nal processing and machine learning methods and interpretation of the results. Chapters 2

and 3 therefore explore these techniques. Chapter 2 explores linear dimensionality reduc-

tion and clustering techniques, specifically Principle Components Analysis, time-structured

Independent Component Analysis, and the k-means and k-medoids clustering algorithms.

PCA is a classical technique and needs little introduction, but we develop it here so the

intimiate connection to tICA becomes apparent, and to set the stage for later connections

to non-linear techniques. The clustering algorithms are again classics by this point, but

47Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13); Scott et al.: Limitations of time-resolved fluorescense sug-
gested by molecular simulations: assessing the dynamics of T cell receptor binding loops (see n. 31).

48B. Knapp/J. Dunbar/Deane C.M.: Large Scale Characterization of the LC13 TCR and HLA-B8 Struc-
tural Landscape in Reaction to 172 Altered Peptide Ligands: A Molecular Dynamics Simulation Study, in:
PLoS Computational Biology 10 (8 2014), url: http://journals.plos.org/ploscompbiol/article?id=
10.1371/journal.pcbi.1003748.
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are described because they both underpin the Markov state models described in Chapter 3,

and their failure modes with respect to molecular dynamics are a major motivation for the

Markov state model approach.

Chapter 3 develops the Markov state model methods to a level appropriate for following

the biological results presented in Chapter 4, and should prepare the thorough reader with

sufficient background to extend the results presented here. These two chapters thus serve as

an introductory survey to applying machine learning methods to molecular dynamics and

literature review of specific techniques. This project has drawn on a fairly diverse range of

fields and knowledge, and each chapter thus mixes a light textbook background with more

modern literature review.

The results are presented in Chapter 4, using the developed techniques to finally extract

metastable states of the CDR loops. In doing so, we find that the CDR loops are tightly

constrained, low-dimensional systems.

Finally, Chapter 5 presents a discussion of these results and the implications for the

three models discussed earlier. Additionally, future experimental and in silico paths are

suggested for extending these results. The appendicies cover additional background material:

appendix A discusses stochastic simulations, appendix B covers alternative machine learning

methods that showed poor results on the analyzed data set earlier in the analysis process, and

appendix C covers methodological detail of the simulations and analysis for the investigator

looking to reproduce or extend this work.
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CHAPTER 2

DIMENSIONALITY REDUCTION AND CLUSTERING

There are two major motivating questions for this work. Do there exist discrete conforma-

tional states of the CDR loops of the T cell receptor, and how free or restrained are the

motions of the CDR loops? The main tool to explore these questions is simulation of the

molecular dynamics of two chosen TCR systems, the 2C TCR and the NKT15 TCR.

The fundamental idea of molecular dynamics is simple; we begin with an initial descrip-

tion of the positions of the protein and solvent atoms, and integrate Newton’s equations

of motion forward in time. In practice, MD is a complicated discipline beyond the scope

of this work. The interested reader is referred to Allen and Tildesley’s classic Computer

Simulation of Liquids1 for a general reference and the Amber simulation toolkit’s manual for

the specifics of the Amber142 software used to generate the data for this thesis.

For our purposes, the important facet of MD is that while the result is conceptually

simple, a time-series of the atomic positions of each atom in the simulated system, inter-

preting and analyzing these results are far from simple. For much of the history of MD,

anecdotal approaches have been common: running a few or even a single, short trajectory

and inspecting it through visual analysis and measurement of a few chosen thermodynamic

or reaction coordinate parameters. Increasing computer power has led to better and better

sampling, and an increasing movement towards more statistical, arguably more scientific,

approaches to analyzing the simulations. This is the view that we will take here, treating

the simulation data as samples taken from a high-dimensional stochastic system, and thus

amenable to modeling and analysis with tools from signal analysis and statistical learning.

1M. P. Allen/D. J. Tildesley: Computer Simulation of Liquids, 1989.
2D.A. Case et al.: Amber14, 2014, url: ambermd.org.
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Our goal is to build a simpler model of the dynamics of the CDR loops of the TCR

than the simulation itself. Essentially, we aim to coarse-grain the dynamics of the system,

but rather than coarse-graining the simulated model, we will coarse-grain the on the data

to generate a new model that reproduces the major features of the underlying system, the

original simulation, while being more amenable to human understanding. This strikes a

balance between more classical statistical thermodynamic approaches, which make it possible

to discuss the system broadly, but does not describe the local details we are interested in,

and using ad-hoc metrics to answer specific questions about local phenomena or over-reliance

on visual inspection which rely heavily on investigator intuition and interpretation.

We will use the Markov State Model formalism for building this reduced model, which

will be a simple Markov model of the system that, ideally, reproduces the broad behaviors of

the system. In practice, the amount of data required to build a good, quantitative Markov

model of the CDR loops is beyond what we have available, and we thus use the Markov

model to make qualitative, rather than quantitative, observations about the CDR loops of

the 2C and NKT15 systems.

The first of our motivating questions - do there exist distinct, stable conformational

states of the CDR loops - is a clustering question. We want to identify sets of conformations

in the simulation data that are similar, for a certain meaning of similar, to one another

and are distinct from conformations that belong to a different set. The meaning of similar

is important here, and it motivates the use of the Markov state model formalism even in

the absence of direct interest in the model itself. By similar, we mean kinetically similar,

in the sense that two conformations are more kinetically similar the smaller the expected

time for the molecule to transform between the two conformations. By building a Markov

model of the system’s dynamics, we will be able to cluster together states of the Markov

model based on the probability of transformation between the states, yielding a clustering

of conformations based on kinetic information.

Before we can cluster the data obtained from the simulation into states, we have to
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decide on a metric of closeness. Ultimately, we want to cluster using kinetic information, but

the simulation data is made up of atomic positions, which leaves us only able to compute

geometric values when comparing individual frames of data, which is the actual unit of

information we have to work with.

There are two parts to dealing with this problem. First, we will use dimensionality reduc-

tion, in the form of time-structured independent component analysis (tICA), to transform

the initial data into a better input space. In this transformed input space, we will use the

euclidean metric as a measure of similarity and cluster the data frames into multiple clusters

which we can build a Markov model on. This ‘microstate’ model will then provide the metric

for clustering the data into the final ‘macrostate’ model, which yields clusters of microstates

(and hence of initial data) based on the kinetics of the microstate model.

For the remainder of this chapter, we will inspect in detail each of these analytical tools

and provide justification for their use and interpretation.

2.1 Toy System

It is instructive to analyze a toy system to understand the results of our analytic tools. Since

the full molecular dynamics simulation we will analyze undergoes Langevin dynamics via the

thermostat, we will use a single particle undergoing Brownian dynamics as an instructive

toy system.

For a single particle, the equation of motion for Langevin dynamics is

m
d2x

dt2
= −∇U(x)− γ d

dt
x+

√
2γkBTmη(t),

where m is the mass of the particle, ∇ is the gradient operator, U(x) is the potential field and

thus −∇U(x) is the force acting on the particle, γ is a damping constant, kB is Boltzmann’s

constant, T is the temperature, and η(t) is a Gaussian process with zero mean and a delta

kernel. In particular, η(t) obeys

29



Figure 2.1: Potential energy surface of the V (x, y) potential function.

• 〈η(t)〉 = 0

• 〈η(t)η(t′)〉 = δ(t− t′)

For our toy system, let x ∈ R2 and m→ 0. Let σ2 = kBT
γ

and re-arranging, we have

dx

dt
= −∇U(x)

γ
+
√

2ση(t)

Choosing γ = 1 for simplicity, our toy model reduces to

dx

dt
= −∇U(x) +

√
2ση(t)

For the purposes of our toy model, σ is a free parameter of the model corresponding to the

variance of the noise process. In a physical system, the variance corresponds to thermal

noise that depends on temperature.

We will use two different potential systems to illustrate the coming projection techniques.

Both will be anisoptropic double-well potentials, with only slight differences due to different
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Figure 2.2: Potential energy surface of the W (x, y) potential function.

parameterizations. Let U denote the general potential well, with form

U(x, y) = 1
2 exp

(
−β(κ(x− x0)2 + y2)

)
− 1

2 exp
(
−β(κ(x− x1)2 + y2)

)
+ α(x2 + y2),

α, β, and κ are parameters that control the shape of the potential, and x0 and x1 control

the separation of the two wells on the x-axis. The last term is a harmonic potential for the

purpose of constraining simulations to the region of interest.

We consider two potential fields of this form. Let V (x, y) denote the U potential with

parameterization α = 1
8 , β = 1

2 , κ = 16, x0 = −1, and x1 = 1. The V potential is shown in

Figure 2.1, as two elliptical potential wells with major axis along the y-axis and separated

by a barrier along the x-axis.

The second potential is only slightly different. Denote the second potential by W , and

parameterized by α = 1
8 , β = 1

2 , κ = 48, x0 = −0.25, and x1 = 0.25. This potential is very

nearly identical to V , with the potential wells elongated along the y-axis and brought closer

together, yet still separated by a barrier along the x-axis.

Both of these potentials look like two-state systems, where the state of the system is

just a matter of which potential well the particle is currently in at a given time. What we
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actually want to do is determine the degrees of freedom that separate these different states,

so that we can use those degrees of freedom as simpler representations of the system both for

direct analysis and as a reduced dimensional space to feed into further analysis techniques.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a classic technique commonly used as a first tool

of choice when exploring new data and as a dimensionality reduction technique for complex

or high-dimensional data. First, we briefly review this technique, and then demonstrate the

short-comings in the context of our toy models.

PCA is an orthogonal linear transformation that transforms the data to a new basis

such that the first basis element captures the maximal amount of variation in the data, and

each subsequent basis element captures the maximal amount of remaining variation. PCA

can be used as a dimensionality reduction method by using the first few basis elements as a

projection matrix, so that a lower-dimensional view of the data can be obtained that captures

the maximum variation of the data in the lower-dimensional view.

2.2.1 Derivation of PCA

There are many derivations of PCA available in the literature and there is little novelty we

can add3. However, because the derivation is instructive to compare with the later derivation

of tICA, we sketch a quick derivation here.

Consider an n-by-m data matrix X consisting of random data comprising n samples of

m variables. In our toy model, we have an n-by-2 data matrix consisting of n samples of the

position of the system as it evolves through the two-dimensional phase space.

Without loss of generality, we assume that the data matrix has column-mean 0. Otherwise

we replace the matrix with the mean centered data matrix. We wish to find an orthogonal

3I.T. Jolliffe: Principal Component Analysis, 2002.
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basis for the data matrix such that successive basis elements maximally capture the variance

of data. Let w1 ∈ Rn be the first such basis element. Then we want

w1 = argmax
||w1||=1

V ar(wTX)

Since w1 is a vector, we have that wT1 X is a linear combination of elements of X, that is, a

linear combination of random variables. It follows that

V ar(wT1 X) = wT1 X
TXw1

Combined with the fact that we require ||w1|| = 1, we have

w1 = argmax
||w1||=1

wT1 X
TXw1

wT1 w1

The right hand side has the form of a Rayleigh Quotient, and XTX is symmetric, so it

follows that the maximizer of the right hand side is the maximal eigenvalue4, λ1, of XTX.

Thus we conclude that first principal component is exactly the first eigenvector of XTX and

accounts for variance in the data proportional to the first eigenvalue.

The second principal component can be found by repeating the procedure on the new

data matrix

X̃ = X −Xw1w
T
1 ,

which is the original data set after removing the data corresponding to the first principal

component. Repeating the previous procedure extracts the maximal eigenvalue of X̃T X̃ and

the corresponding eigenvector as the second principal component. However, this eigenvector

is just the second largest eigenvector of the original XTX matrix.

In general, to find the kth principal component, we need to find the maximal eigenvalue

4Philippe Blanchard/Erwin Brüning: Mathematical Methods in Physics, vol. 69 (Progress in Mathemat-
ical Physics), 2015.
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Figure 2.3: Simulated trajectory of a zero-mass particule undergoing 2D Langevin dynamics
on the V (x, y) potential energy surface.

of

X̃k = X −
k−1∑
i=1

Xwiw
T
i ,

for which the maximal eigenvalue is the kth largest eigenvalue of X, and it follows that the

principal components are the eigenvectors of XTX, the correlation matrix of the data.

Note that the left singular vectors of X are the left eigenvectors of XTX, so it is more

efficient in practice to simply compute the Singular Value Decomposition of the data matrix

X, which is the standard method employed in most software packages that perform PCA.

2.2.2 Applying Principal Component Analysis

To apply PCA to our toy system, we start by running a simulation of the toy model system.

For this exercise, we initialize the system at the origin, and simulate for 100,000 steps. For

details of simulating the toy system, see Appendix A.

We first simulate the V (x, y) potential system. Figure 3 shows the trajectory of a sim-

ulation plotted against the potential energy surface. The simulation behaves as expected.
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Starting from the origin, the trajectory falls into one of the wells and randomly moves around

in that well, eventually the random fluctuations drive the trajectory out over the transition

region into the other well. From a large scale view, this is what proteins do, too; they explore

a local energy well, occasionally thermal fluctuations drive them into a significantly different

conformation with a different local energy well. In our toy system, the two energy wells

are separated by the line x = 0, and the degree of freedom along the separation is the ex,

i.e. the x-axis. If our major concern is with transitions between the two wells, then we are

primarily interested in the motion in the x dimension, and the motion in the y dimension

is noise. This means we can project our data onto the ex vector and analyze the system in

1-D rather than 2-D. Applying PCA yields the eigenvalue-eigenvector pairs

λ0 = 0.582, v0 =

−0.99997

−0.00741



λ1 = 0.198, v1 =

 0.0074

−0.99997


where the eigenvalues describe the variance captured along the corresponding eigenvector.

The eigenvectors are, up to sign, almost exactly the axes of the coordinate system, with

most of the variance along the x-axis. In this case, PCA accurately captures the degree of

freedom - the x-axis - that separates the energy wells.

Next, consider the W (x, y) potential system. Figure 2.4 shows the trajectory of a sim-

ulation plotted against the potential energy surface, where we see similar behavior to the

V (x, y) potential system. However, when applying PCA, we get different results.

λ0 = 0.086, v0 =

0.048

0.998


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Figure 2.4: Simulated trajectory of a zero-mass particule undergoing 2D Langevin dynamics
on the W (x, y) potential energy surface.

λ1 = 0.0619, v1 =

−0.998

−0.048


The variance of the system is actually along the y-axis due to the elongation of the

potential wells, but the degree of freedom we are interested in, if we want to classify the

system into two states, is the location along the x-axis. Though artificial, this demonstrates

the motivation behind looking to different techniques for dimensionality reduction.

2.3 Time-structured Independent Components Analysis

The major flaw of PCA for our purposes is that it optimally captures the wrong descriptive

statistic. We are not interested in the maximal variance degrees of freedom; we are interested

in degrees of freedom that separate locally stable conformations, that is, local energy wells.

PCA accurate captures the separating degree of freedom for the V (x, y) potential because

the maximal variance degree of freedom happens to coincide with the degree of freedom that

separates the two energy wells in the system. On the other hand, PCA fails on the W (x, y)

potential because the direction of maximal variance and the separating degree of freedom
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are distinct. The essential flaw of using PCA to study protein dynamics is that we are

studying a proxy value - the variance in the data - in the hopes that it will find the degrees

of freedom that separate energy wells. Intuitively, we can improve on this analysis if we can

find a better proxy. Time-structures Independent Component Analysis (tICA) does precisely

this, by looking for degrees of freedom that display maximal auto-correlation, rather than

variance. This has the additional advantage of integrating the time component of the data,

which PCA ignores in treating the data as independent draws from a distribution.

2.3.1 Independent Component Analysis

We present tICA here, which is derived from Independent Component Analysis, but shares

some key differences from its originating method. Independent Component Analysis (ICA) is

originally a method from the field of signal processing that attempts to linearly decompose

a multivariate signal into independent non-Gaussian signals. Similar to k-means and k-

medoids, ICA is properly thought of as a method with a specific outcome goal, rather than

an algorithm, as there are multiple algorithms to accomplish the ICA decomposition.

Typically an ICA decomposition attempts to simultaneously minimize the mutual infor-

mation of the components while maximizing the non-Gaussianity of the components. Despite

the similar goal as PCA to decompose data and provide a new basis set, the problems the

methods seek to solve are very different. PCA seeks an orthogonal basis set, and attempts

to sequentially maximize the variance captured by each of the degrees of freedom it finds. If

we fix the mean of a distribution at 0, which we can do for distributions on Rn by an affine

transformation, then the distribution that is fully determined by its variance is the Gaussian

distribution. Furthermore, when the variance is fixed, the maximal entropy distribution on

Rn is the Gaussian. Thus, cast in a informational theoretic light, PCA finds a basis set of

one-dimensional Gaussian distributions that describe the empirical data set under study. As

the Gaussian is the maximal entropy distribution for fixed variance, we can argue that PCA

is essentially only accounting for the variance in the data, and ignoring the information in
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higher-moments. On the other hand, ICA methods generally use either the kurtosis of the

empirical data, or rely on mutual information (information entropy) based measurements.

As stated however, ICA does not necessarily generate orthogonal components, though tICA

does restrict to this condition.

2.3.2 Autocorrelation

Autocorrelation is a measure of how similar a signal or time-series is to itself shifted in time.

Let xt ∈ Rn, t ∈ N be a time-series. Under some weak assumptions on the time-series, the

autocorrelation Aτ (xt) exists and is defined as

Aτ (xt) =
E
[
(xt − µ)T (xt+τ − µ)

]
σ2

where τ is the time-lag of the autocorrelation we are measuring, µ is the mean and σ2 is the

variance of the time-series. Note that σ = E
[
(xt − µ)T (xt − µ)

]
, so A0(xt) = 1.

Intuitively, autocorrelation is a better proxy statistic for finding stable sets of molecular

conformations. If a Langevin system is in a local energy well, it will tend to stay near

the minima of that well until thermal fluctuations force it out. Thus, the autocorrelation

with a time-lag less than the average transition waiting time will be high when the system

is in a local well. If we choose a linear degree of freedom of the system that maximizes

the autocorrelation over the time-lag of interest, then the degree of freedom will separate

regions where the system experiences high auto-correlation, that is, local energy minima.

The argument that the tICA decomposition is superior to PCA for the purposes of finding

conformational states of proteins rests on this concept.

2.3.3 Deriving tICA

In this section, we loosely follow the derivation of tICA presented in Schwantes and Pande,

though written in the standard notation of linear algebra rather than Dirac bra-kets, but
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otherwise using the approach of Lagrange multipliers to transform the constrained optimiza-

tion problem into a generalized eigenvalue problem. An older presentation of tICA as an

eigenvalue problem can be found in Molgedey and Schuster, which most interestingly also

presents tICA in the context of a recurrent neural network to compare with a neural net

approach taken by Jutten and Herault to solve the blind source separation problem. This

connection between neural networks and tICA is interesting in light of another line of re-

search showing effective dimensionality reduction applied to molecular dynamics data using

Autoencoder neural nets. This is explored more in Chapter 5, as a possible path to include

non-linearity in the decomposition of MD data.

The goal of tICA is to find degrees of freedom with maximal autocorrelation that are

orthogonal to one another. We can express this problem as a constrained optimization

problem. Let xt ∈ RnN−1
t=0 be an n-dimensional time-series, consisting of N data points. In

the case of the protein system, each of these vectors in the time-series would correspond

to frames of the protein simulation, or features derived from said frames. Without loss of

generality, we assume the time-series has mean 0, and otherwise we can subtract the mean.

As an aside, we note that this assumption implies that the time-series is generated by a

stationary distribution, which is not necessarily the case, and leaves an opening for further

investigation.

Our objective function is given by the autocorrelation function

f(v) =
E
[
(vTxt)(vTxt+τ )

]
E [(vTxt)(vTxt)]

where v ∈ Rn. The inner product term vTxt is the projection of the data vector onto

the vector v, which plays the role of a test basis element, hence we are calculating the

autocorrelation of the one dimensional time-series of the data projected onto a potential

basis function. The inner product is symmetric over the field of real numbers, so we have

that vTxt = xTt v, and can re-write the objective function as
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f(v) =
E
[
vTxtxTt+τv

]
E [vTxtxTt v]

The expectation of the outer product xtxTt is recognizable as the covariance matrix of

the data, and similarly xtxTt+τ is the time-lag correlation matrix, so we can define

Σ = E
[
xtxTt

]

C(τ) = E
[
xtxTt+τ

]
Assume Σ > 0, which is true with probability one for random data vectors. The quadratic

form vTxtxTt v commutes with the expectation operator, which we can see as

E
[
vTxtxTt v

]
= 1
N

N−1∑
t=0

vTxtxTt v = vT
(

1
N

N−1∑
t=0

xtxTt

)
v = vTE

[
xtxTt

]
v = vTΣv

An identical argument applies to yield E
[
vTxtxTt+τv

]
= vTC(τ)v. With this, we can

rewrite the objective function in a more expressive form as

f(v) = vTC(τ)v
vTΣv

Finally, in order to find solutions to our optimization problem, we need to constrain the

solution space in some fashion so that a solution exists. In the setting of PCA, the constraint

is that vTv = 1, that is, the solutions live on the the sphere Sn. This provides an orthonormal

basis for the principal component vectors, but is a poor constraint for our purposes since it

means that although our choice of objective function means we optimize for autocorrelation,

our solution is weighted by the variance of that degree of freedom. This is fine for PCA,

which is explicitly attempting to capture variance, but worse for our purposes, as we want to

measure distance between points in our space where, ideally, the distance is strongly related

to kinetic similarity, locally defined by our autocorrelation objective function.
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The choice of constraint is actually a free parameter of the algorithm and of interest in

that we can derive a family of related algorithms by choosing different constraints. Follow-

ing Schwantes and Pande, as the analysis presented in Chapter 4 assumes, we choose the

constraint that our solution vector yields has unit variance, thus the problem of finding the

first component is expressed as

max
v

f(v) = max
v

vTC(τ)v

with the constraint:

vTΣv = 1

At this point, we diverge slightly from the derivation presented in Schwantes and Pande,

and note that similar to the PCA case presented earlier, we can recognize the objective

function as a Rayleigh quotient, or rather, as a generalized Rayleight quotient,

R(C(τ),Σ,v) = vTC(τ)v
vTΣv

We can rewrite this generalized Rayleigh quotient as a standard Rayleigh quotient if

the Cholesky decomposition of the operator in the denomenator exists, which in this case

over the field of Real numbers, requires that Σ be symmetric and positive-definite, which

the correlation matrix is by construction. Let Σ̃Σ̃T = Σ be the Cholesky decomposition of

Σ, and let C̃(τ) = Σ̃−1C(τ)Σ̃−1T , and ṽ = Σ̃Tv. Then we can rewrite the expression as a

standard Rayleight quotient as

R(C̃(τ), ṽ) = ṽT C̃(τ)ṽ
ṽT ṽ

In the limit of infinite data, and using the assumption that the data matrix is sampled

from a time-reversible system, we have that C(τ) is symmetric. Note that if A,B ∈ Rn,

with B a symmetric matrix, then
(
ABAT

)T
= ABTAT = ABAT , so it follows that C̃(τ) is

41



symmetric. We invoke the result that the Rayleight quotient is maximized by the maximal

eigenvector of the operator5, and find that our first IC is the left eigenvector of C̃(τ). At

this point, we can follow the same reasoning as presented in the sketch of the proof of PCA

above, and we have that the independent components are the solutions to the eigenvalue

problem

C̃(τ)ṽ = λṽ

Expanding this expression, we have that

Σ̃−1C(τ)Σ̃−1T ṽ = λṽ

Rearranging and using the fact that ṽ = Σ̃Tv, we have that

C(τ)v = λΣ̃Σ̃Tv = λΣv

Thus we conclude that the independent components are the solution to the generalized

eigenvalue problem relating the time-lag covariance matrix to the correlation matrix. To

the author’s knowledge, this particular proof that the generalized eigenvalue problem is the

solution to the tICA problem is novel, though it should be noted that the Rayleight quotient

result cited here relies on the method of Lagrangian multipliers, which is the method used

by Schwantes and Pande.

2.4 Clustering

Clustering, or cluster analysis, is a fundamental task in data mining, machine learning,

and, arguably, science itself. Given m items, clustering is the act of grouping the items

into n different groups. We are interested in the simplest case of “hard” clustering, where

each data point belongs to exactly one cluster and the clusters all live in the same space.

5Blanchard/Brüning: Mathematical Methods in Physics (see n. 4).
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Clustering often goes hand-in-hand with dimensionality reduction, using the dimensionality

reduction both as a way to combat the curse of dimensionality and as a feature extraction

pre-processing step.

From the point of view of protein physics, we want to cluster together structural con-

formations that are ‘similar’, breaking the simulation data into multiple clusters of similar

conformations that are distinct from other clusters. A key problem here is deciding what

we mean by similar. From a thermodynamic point of view, similar conformations are those

which are energetically close, in particular, those that can interconvert rapidly. Alterna-

tively, if we think of the clusters directly, we may consider two conformations to be in the

same cluster if they are part of the same local energy well. Both views accurately capture

what we think of as crystallographic-like ‘states’ of a protein, though they deal less well with

transition states. In our real problem, we are primarily interested in long-lived crystal-like

states, so we’ll take this to be an acceptable view for the problem at hand.

Ultimately, we will cluster the TCR simulation data into a few, large clusters using the

Markov model. However, we need an initial clustering algorithm that can operate directly

on the simulation data, which will be the focus of the remainder of this chapter: using the

toy systems to explore two of the basic geometric clustering algorithms that will be used to

find the microstate model clusters.

2.4.1 k-means

K-means is one of the oldest clustering methods, originally described in papers at Bell Labs

in the 1950s. Given a data set (x0, x1, ..., xn), where xi ∈ Rn, and a parameter k ∈ N - the

number of clusters - k-means finds sets {S1, S2, ..., Sk} such that every data point belongs to

exactly one set and the sets minimize the `2 distance to the cluster mean. We can give this

as the problem of finding S = {S1, S2, ..., Sk} such that

argmin
S

k∑
i=1

∑
x∈Si

||x− µi||22,
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where

µi = 1
|Si|

∑
xj∈Si

xj

This problem turns out to be quite hard. K-means is known to be NP-hard6 for arbitrary

dimension n when k is fixed to be 2, as well as NP-hard when n ≥ 2 is fixed, but k is not. In

general, K-means is solved approximately by heuristic algorithms, most commonly Lloyd’s

algorithm, which is detailed below. After clustering, we can classify a new data point by

assigning the new point to the cluster that minimizes the distance from the cluster center

to the data point. In effect, this means that K-means shatters the space into a Voronoi

partition.

Lloyd’s Algorithm

Lloyd’s algorithm is a form of the expectation-maximization heuristic7. The algorithm takes

an initial set of k means, {mi}ki=1; the initial set can be chosen in several ways, but a common

choice in standard k-means is to pick k random data points to be the initial means. After

initialization, the algorithm alternates between an assignment and update step.

The Assignment step consists of assigning each point to exactly one set that mini-

mizes the within cluster sum-of-squares as defined above. Since the distance is the standard

Euclidean metric, the minimizing assignment is to assign each point to the nearest mean.

The Update step simply consists of calculating a new mean for each set, with the mean

defined by µ above. For each Si, the sum of squared distance over the data points in Si from

the new mean must be less than this sum relative to the previous mean, as the arithmetic

mean is the least-squares estimator.

The algorithm halts when the assignment step doesn’t change the assignment of any

data point, at which point the update steps become idempotent. Since in both steps the

6D. Aloise et al.: NP-hardness of Euclidean sum-of-squares clustering, in: Machine Learning 2009.
7S.P. Lloyd: Least squares quantization in PCM, in: IEEE Transactions on Information Theory 1982.
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Figure 2.5: k-means clustering of well separated data drawn from three gaussian clusters
with k = 3.

new within cluster sum-of-squares is bounded above by the current within cluster sum-of-

squares, this procedure is monotonic in the cost function. Along with the fact that there are

only finitely many partitions of the data points into k sets, the algorithm always halts at a

local minima.

However, there is no guarentee that the global optimum is found by this procedure. In

practice, Lloyd’s algorithm is quite fast, so satisfactory solutions are found by re-running

the algorithm with different random initial assignments for the means and keeping the best

solution found.

k-means in practice

K-means is an effective algorithm for automatically clustering data when the clusters are

well-separated. This is observable in figure 2.5, where the Gaussian distributions that gen-

erate the data are well separated, and so the data points are effectively associated to the

right generating distribution region. Additionally, by coloring the space according to cluster
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Figure 2.6: k-means clustering of poorly separated data drawn from three gaussian clusters
with k = 3. Dark blue points are misclassified.

assignment, we can see the Voronoi partitioning of the space. However, poor separation of

the data leading to poor clustering is an inherent problem of clustering when the algorithm

shatters the space in a Voronoi partition. This is observable in figure 2.6, where the classi-

fication of the points begins to fail when the data sets from disparate distributions overlap.

There are two common solutions to this problem, one is to find a transformation of the space

that better separates disparate data points, and the other is to use a ‘soft’ clustering algo-

rithm, which assigns probabilities of cluster assigments rather than strict binary assignment.

K-medoids, presented next, also suffers from this problem. For this analysis, we attempt to

find a projection of the data that well-separates the clusters - this is the essential role of

tICA - and generally linear transformations that improve separation of data take the form

of projections. However, some data cannot be linearly separated at all, and in these cases

k-means and k-medoids will fail completely. For these cases, non-linear transformations are

necessary. We describe some attempts to apply this approach to analyzing the TCR data in

Chapter 5.
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2.4.2 k-medoids

The k-medoids algorithm is related to the k-means algorithm, and is the initial clustering

method we use for analyzing the protein simulation data in practice, after applying the tICA

decomposition to project the data onto a lower dimensional space. Like k-means, k-medoids

partitions the dataset into k sets {Si}ki=1 such that each data point belongs to exactly one Si.

By inserting new data points using the same method as k-means, that is, assigning new data

points to the set that minimizes the distance to the set center, k-medoids also partitions the

space into a Voronoi partition. The primary difference between k-means and k-medoids is

that in k-medoids, the set centers are restricted to be elements of the data set rather than

arbitrary points in the data space. Unlike k-means, the restriction of k-medoids that the set

center must be a data point allows for a broader range of distance functions, rather than

just the standard Euclidean distance8. This is because with the restriction of the set centers

to data points, for any given k, there are only finitely many possible choices of set centers

and partitions.

In particular, a k-medoids algorithm attempts to find the sets Sk such that for all xi ∈ X,

xi ∈ Sk for exactly one Sk, and the following cost function is minimized

K∑
k=1

∑
xi∈Sk

d(xi,mk)

where d is a distance metric. Note that if we choose d to be the Euclidean metric, then

k-medoids solves the k-means problem with the restriction of the cluster centroids to be

data points from the data set, rather than allowing the centroids to be arbitrary points of

the ambient metric space.

8L. Kaufman/P.J. Rousseeuw: Clustering by means of Medoids, in: Statistical Data Analysis Based on
the L1-Norm and Related Methods (Statistics for Industry and Technology), 1987.
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Partition around Medoids algorithm

Partitioning Around Medoids (PAM) is the most common algorithm for a k-medoids cluster-

ing, so we describe it here as with Lloyd’s algorithm to get a feel for the specific operations

that create a k-medoid clustering9. As with the k-means algorithm, we have a data set X and

an investigator determined parameter k, the number of clusters the algorithm should output.

As with k-means, we optimize the cost function defined by summing over the distances of

each data point to their assigned medoid.

The algorithm begins with the initialization step wherein k data points are drawn at

random from X without replacement. The k data points will be the initial set of medoids.

Each data point is then assigned to same cluster as the nearest medoid.

Next the algorithm iterates the update step, and halts when an update does not decrease

the cost function. The update step consists of: For each medoid m and data point o such

that o is not a medoid:

1. Make o a medoid in place of m.

2. Compute the cost function.

3. If the cost decreases, keep the new configuration, otherwise leave o as a data point and

m as the medoid.

Compared to the k-means algorithm, it is clear that the PAM algorithm is significantly

more computationally expensive, as it has a quadratic complexity as presented. The major

advantage of k-medoids over k-means is the ability to use a distance metric other than the

standard Euclidean metric, where k-means is not guarenteed to update monotonically, and

the restriction to using only data points. This restriction to only data points is useful in

the case of clustering molecular dynamics data as it allows us to use a specific, realizable

structural conformation as the center of the cluster, while a centroid of a k-means cluster

may not even be physically realizable.

9Kaufman/Rousseeuw: Clustering by means of Medoids (see n. 8).
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2.5 Conclusions: On the Curse of Dimensionality

The curse of dimensionality is a term that has been mentioned several times before. As a

major challenge in data analysis, and one that shows up strongly in understanding protein

dynamics, it deserves a brief comment before we complete this chapter.

The curse of dimensionality is a common phrase that refers to several different but related

phenomena that occur in various computational disciplines, numerical analysis, statistical

sampling and inference, combinatorics, machine learning, and others. The occurence in

Numerical Analysis and Statistical Inference are probably the most familiar, and have to do

with the super-linear scaling in the number of samples needed to produce an accurate result

as the dimensionality of the problem increases. In the finite element method in numerical

analysis, this takes the form of an exponential increase in the number of grid points that

need to be evaluated on a mesh as the dimension increases. If, for example, we needed

to evaluate a function only on the vertices of the unit hypercube, then we require four

evaluations in two dimensions, but eight in three dimensions, and generally we require 2n

evaluations in n dimensions. This exponential scaling results in even simple problems quickly

becoming intractable at high-dimension if the algorithm cannot scale with the dimension

better than exponentially. A similar phenomena occurs in statistical inference and machine

learning where the amount of data required for training quickly becomes incredibly large

when the dimensionality of the problem becomes large. In protein dynamics, the curse of

dimensionality takes the form of the sampling problem, and indeed, we will see the limits of

sampling in analyzing the TCR simulation data in chapter 4.

The curse of dimensionality also has form in the simple problem of evaluating distance

functions. The problem, essentially, is that in general the difference between ‘near’ and ‘far’

points in high dimensions becomes vanishingly small, described in more detail below.

For our purposes, this makes clustering a difficult task in high dimensional settings, such

as in protein dynamics where the dimensionality of the problem is, naively, 3n for n atoms

in the simulation. Even ignoring solvent and considering only the protein, this yields a naive
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data dimensionality that quickly runs into the hundreds when considering small parts of

proteins, and into the thousands or tens of thousands when considering even relatively small

proteins.

There is a third, related, issue that is highly present in molecular dynamics data, which is

irrelevant data obscuring relevant data. In MD, this has the form of thermal noise. Thermal

fluctuations are necessary for protein activity, indeed we are essentially studying the effects

of thermal noise on a potential energy system. In the absense of thermal noise, MD reduces

to little more than gradient descent on a potential energy surface, and the dynamics of the

system quite literally freeze out. However, thermal noise is also a distraction when studying

the data, as not every dimension is relevant, but every dimension is continuously perturbed

by thermal effects during the simulation. We are interested in studying only a subset of

the degrees of freedom of the system, those that separate long-lived local energy minima -

metastable states. However, most of the degrees of freedom are simply the thermal motion

of atoms bouncing back and forth, with little or no long term consequences for the system

as a whole. These extra, irrelevant dimensions add significant difficulty to the problem of

clustering the data, above and beyond the noise in the dimensions we care about, because

the distance-measurement problem means that as more noise dimensions are added to the

system, the clusters become close and closer together under our distance metric, merely due

to noise dimensions. Formally10, this has the form that given a fixed distribution ρ on R,

there is an induced product distribution ρ(n) on R. Let Xn denote a data vector drawn from

ρ(n), and Dmax and Dmin be the maximum and minimum distances between data points in

a set drawn from the distribution. Then we have that

Dmax −Dmin

Dmin

→ 0

10Kevin Beyer et al.: When Is ”Nearest Neighbor” Meaningful?, in: vol. 1540 (Lecture Notes in Computer
Science), 1999, pp. 217–235.
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under the assumption that

lim
n→∞

var
(
||Xn||

E[||Xn||]

)
= 0

This assumptions holds for a broad range of distributions and distance measures, includ-

ing Lp-norms with p ≥ 1.

Much of the analysis machinery presented and used here is about dealing with the twin

distance-measuring and noise dimensions problems.

The dimensionality reduction technology, tICA for this analysis, is explictly about deal-

ing with these problems by stripping away the excess dimensions, but the Markov models

presented in the next chapter are also approaches to dimensionality reduction and ‘empirical

coarse-graining’ that attempt to reduce the dimension of the simulation data down to where

we can extract understanding. Ultimately, we use them in tandem, as the Markov models

require clustering, which benefits from first passing the data through tICA to reduce the

dimensionality for clustering.
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CHAPTER 3

MARKOV STATE MODELS

Markov state models (MSMs) are discrete, kinetic models of protein dynamics, based on

the theory of Markov models. MSMs act as a sort of coarse-graining of the system dynam-

ics, however, unlike techniques usually referred to as coarse-graining in MD, MSMs work

by building discrete models from simulated data, essentially coarse-graining the empirically

observed data, rather than analytical models of the system. MSMs thus serve several pur-

poses. The primary function of MSMs is to allow simulations to reach greater timescales

than are directly accessible to molecular simulation. This is done by constructing the MSM

from simulated data, and analyzing the long time-scale properties of the MSM. While this

method is incapable of revealing new behavior that is not observed in the simulations, it

yields a statistical understanding of what is observed, and makes it possible to understand

long timescale behavior of what is observed, often this is sufficient.

In concert with this, by building a statistical model from many events, MSMs are able to

integrate data from many simulations into a unified statistical model1. Since we analyze the

statistical model for longer timescale behavior, the statistical model can describe long-term

behavior in a rigorous manner that is not fully captured by any one simulation. The practical

advantage is that we can run multiple simulations in parallel. As the parallel simulations are

completely independent, non-communicating processes, we neatly side-step Amdahl’s law2

and obtain a linear speedup, at least in the simple case.

1Vijay S. Pande/Kyle Beauchamp/Gregory R. Bowman: Everything you wanted to know about Markov
State Models but were afraid to ask, in: Methods 52 (1 2010), pp. 99–105.

2Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabil-
ities, in: AFIPS spring joint computer conference, 1967.
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Additionally, a simultaneous advantage and drawback of MD simulation is the immense

amount of data produced. The ultimate goal of the scientific process is human understanding,

and no matter how much information there may be in a simulation, it is worthless unless we

can extract that information into a form that can be understood and manipulated by the

intuition and reason of the researcher. Two approachs to this problem was presented in the

last chapter. The first, dimensionality reduction, ideally, finds the most ‘information-rich’

dimensions of the data, and projects onto those for interpretation. The other approach,

clustering, groups similar items together, making it possible to understand the system in

terms of those groups rather than taking each item, here a single frame of the simulation, as

an individual. This second approach is powerful for intuition. Intuitively, a good clustering

of the protein’s conformations would be a ‘state’ of the system, where each state behaves

similarly and experiences thermal fluctuations around a local energy minima. This yields an

understanding of the state as very much like a collection of x-ray crystal structures. While

not entirely correct, and we will ultimately want to consider the statistics of states, rather

than making direct observations as in crystallography, this view is intuitive and familiar for

discussion.

So if clustering is effective, why Markov state models? The problem with clustering, as

presented in the previous chapter, is that it clusters on the wrong metric. In comparing

data frames for clustering using k-means or k-medoids, we cluster using a similarity metric

that is inevitably geometric in nature. A better approach would be to cluster using kinetic

information rather than geometric, after all, what we are interested in when we describe states

is collections of conformations that are nearby in the sense that they rapidly interconvert,

or alternatively, that they belong to the same or nearby energy wells up to some resolution

of the energy surface.

MSMs are comprised of two aspects, a discrete state space to which individual confor-

mations of the protein are assigned, and a transition matrix that describes the kinetics of

transformations between those states. We are interested in both of these aspects, however
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for the purposes of studying the T cell receptor, we shall primarily be interested in the

process of building the discrete state space of conformational states. In doing so, we will

cluster the conformations into states, not by geometric criteria, but by kinetic, and thus we

can cluster the conformations without inadvertently lumping kinetically disparate confor-

mations together and thus accidentially eliminating kinetic barriers of the energy diagram

from our model. We will thus show the existence of metastable states in the T cell receptor

invisible to classical x-ray crystallography.

In order to fully describe the MSM formalism, we first review the basic theory of Markov

chains and Markov models. As in the previous chapter, the goal of this chapter is to introduce

the reader to the analytical tools at hand, however here we rely on much more theoretical

underpinnings than the previous set of algorithms. As such, we shall take a short detour

through the mathematics of Markov chains before we introduce the algorithmic methods. As

before, ideas are demonstrated with concrete code and figures, in addition to the theoretical

results. For the non-technical reader who only needs an intuitive grasp of MSMs for reading

chapter 4, the review article by Pande et al. is an excellent resource.3

3.1 Markov Chains

A Markov process is a stochastic process which obeys the Markov property. When the state

space of the process is discrete and Markovian, it is often referred to as a Markov chain, a

simple, but powerful model for many phenomena and a useful computational tool in many

settings.

The Markov property, named for Andrei Markov, is simply the property that the stochas-

tic system has no dependence on its past, but only on its current state. This is an intuitive

concept, and in the deterministic setting of Newtonian mechanics it is implicitly assumed:

the future behavior of a mechanical system from a point in time depends only on its current

3Pande/Beauchamp/Bowman: Everything you wanted to know about Markov State Models but were
afraid to ask (see n. 1).
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momentum and position. This is not to say that the past is irrelevant in a complete sense,

the past behavior of the system is what brought it to the current moment, however, a sys-

tem that is Markovian can be fully described by its current state, and thus its future can

be described, either deterministically or probabilistically, without knowing how it got to its

current state, only that it did, indeed, get there.

In physical systems, non-Markovian behavior is often surprising, as we have come to

expect physical systems to behave in a Newtonian fashion. The classic example of history-

dependence, hysteresis, is the magnetization of ferromagnetic metals, where a prior alignment

of the domains causes a permant magnetic field to arise, independent of the external field

applied to it. In this case, the system is history dependent in that the response to an

external field is dependent on prior exposure to the field through the hysteresis mechanism.

However, if we consider the system’s state to include information about the alignment of the

domains in the absence of a field, then it again becomes Markovian, in that we have all the

information required in the current state to describe the future behavior without reference

to the past. Indeed, any non-Markovian system with a dependence on only a finite length

of it’s history can be described as a Markovian system in a higher dimensional space where

that finite window of the system’s history is included in the ’current’ state. Thus, Markovian

systems are in fact incredibly common, and serve as excellent models for a wide variety of

phenomena.

To formalize this idea4, let Ω be a finite or countably infinite set, which we will call the

state space of the system. A Markov chain is a sequence of random variablesX0, X1, X2, ...

such that ∀i ∈ N, Xi ∈ Ω which has the property that

P(Xt+1 = i|Xt, Xt−1, ..., X0) = P(Xt+1 = i|Xt)

That is, the Markov property is that the probability of the next random variable, drawn

4Daniel W. Strook: An Introduction to Markov Processes, vol. 230 (Graduate Texts in Mathematics),
2005.
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from the state space, is conditionally independent of the history of previous random variables

given the most recent random variable. As a trivial example, the Bernoulli process, which

models repeated flips of a (fair or non-fair) coin, is Markovian. For a fair coin, the probability

that the next coin flip results in a heads is 50%, independent of the results of previous flips,

and also independent of the whether the last flip resulted in a heads or tails. More generally,

any stochastic process that is a sequence of independent draws from a probability distribution

is Markovian in a trivial sense, but these are not usually the processes of interest, rather,

we want processes where the future depends on the present in a fundamental way, without

depending on the entire history of the process.

3.2 Markov Models

Markov models refer to a number of stochastic processes that obey the Markov property

and are used to model phenomena. Probably the two most common are the Markov chain

and the Hidden Markov model, both of which describe autonomous Markov processes, with

the major difference being whether we can directly see the state of the Markov process,

as in a Markov chain where the data describe the state at each time step, or if the data

describe a phenomena controlled by the state of the Markov chain, but the state is not

directly observable. In the latter case we have a hidden Markov model, where we posit

the existence of a Markov chain that describes our system of interest, but where our data

consists of random variables that are draws from some probability distibution that depends

on the unobserved state of the hidden Markov chain. Hidden Markov models have shown

promising results for the problem we are interested in5, identifying and modeling the state

of a protein, however, we will focus on the simpler Markov chain model in which the state

is visible and we can inspect the sequence of states directly, though we wish to note that

we are aware of the advances made in applying HMMs to protein dynamics and believe

5R.T. McGibbon et al.: Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov
Models, in: Proc. 31st Intl. Conf. on Machine Learning, 2014.
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they will be an excellent tool once the methodology has matured more. In the case of

protein dynamics, the difference between these two approaches essentially boils down to

the issue of determining the assignment of frames to states as an independent step that

precedes and possibly alternates with determining the Markov model. Building the model

is greatly simplified by separating these concerns, however in doing so we are making an

independence assumption about the dynamics between the states and the definition of the

states themselves, introduced algorithmically by the use of k-means, k-medoids, or other

clustering processes. As is often the case with machine learning techniques, the investigator

must make the decision about the trade-offs inherit to any choice of one technique over

another.

In all of the following, we will consider Markov models with only a finite number of

states. This simplifies and makes more concrete the mathematics, essentially reducing the

mechanics of the theory to a subset of finite dimensional Linear Algebra and is the only

case we are interested in from a practical perspective of modeling protein dynamics in the

Markov State model framework. Let us consider a simple example system.

Let Ω = {A,B} be the state space. Define a stochastic process {Xi}, i ∈ Z+ by condi-

tional draws from a distribution given by

P (Xi+1 = A|Xi = A) = pAA

P (Xi+1 = B|Xi = A) = pAB

P (Xi+1 = A|Xi = B) = pBA

P (Xi+1 = B|Xi = B) = pBB

where pAA, pAB, pBA, pBB ∈ [0, 1] and

pAA + pAB = 1

pBA + pBB = 1
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The probability pXY can be understood as the probability of transitioning to state Y at

the next time step, given that the system is currently in state X. Self transitions, that is

probabilities of the form pXX are the probability that the system stays in the current state.

We can arrange the probabilities into a transition matrix as

pAA pAB

pBA pBB


Noting that the rows sum to one, the transition is a right stochastic matrix, which

has the effect of taking probability vectors, non-negative vectors with L1 norm 1, back to

probability vectors under right multiplication. Specifically, let π0 be a probability vector.

Then

π0P = π1,

where π1 is a probability vector. Further, by induction we have that

πn = πn−1P = π0Pn,

where πn is a probability vector. In general, the product of right stochastic matrices is again

a right stochastic matrix, and as we would expect from the above, the n-th power of a right

stochastic matrix is a right stochastic matrix. These same results hold for both left and

doubly stochastic matrices, where left stochastic matrices are those whose columns sum to

1, and doubly stochastic matrices are both left and right stochastic.

In going from describing the stochastic process in terms of draws from a conditional

distribution to the matrix notation, we have transferred from the point of view a partic-

ular trajectory or realization of the stochastic process to considering the ensemble, and in

particular by studying the properties of the transition matrix, we can describe average and

long-term behavior of an ensemble, much as we might in statistical mechanics. In particular,

when we calculate πn+1 = πnP, we take the probability distribution of the emsemble that
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currently has the distribution πn to the new distribution πn+1. Thus the transition matrix

is the operator that moves a probability distribution of the Markov process forward in time.

The immediate question is then, does a limit exist and is it unique? That is, does there exist

π∗ such that

π∗ = lim
n→∞

π0Pn

If so, how does it depend on π0? For the moment, posit that such a π∗ does exist and is

unique. Then we have that

π∗ = lim
n→∞

π0Pn−1P = π∗P

And thus, if it exists, π∗ is an eigenvector of P with eigenvalue 1. Such a probability

vector is a stationary distribution of P. If the system described by P is a physical ther-

modynamic system, then π∗ corresponds to the equilibrium distribution of thermodynamic

states in the system.

Under the right conditions, the stationary distribution exists and is unique, and thus

independent of the initial probability distribution of the system. In the next section, we

discuss the Perron-Frobenius theorem from spectral theory, which when applied in the con-

text of a stochastic transition matrix yields the appropriate stationary distribution. Before

moving on, however, let us consider some failure modes where this may not hold. Given the

above two-state system, let the conditional probability distribution be given by

pAA = pBB = 1

The transition matrix is then the identity matrix, and we have that every probability

vector is an eigenvector with eigenvalue 1, and more specifically, is stationary. While a

trivial example, it is clear that non-negative entries and row sums of 1 are not sufficient

to ensure the uniqueness of stationary distributions. More generally, we have that given a

transition matrix P, if there exists a permutation matrix A such that AP is a block diagonal

matrix, then there is not a unique stationary distribution. An intutive way to see this is to
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consider the graph of the Markov model that a block diagonal transition matrix describes.

Such a graph would be disconnected, and though each connected subgraph may describe a

Markov model that has a proper stationary distribution, there can be no such distribution

for the total Markov model because the system is disconnected. In particular, any convex

combination of stationary distributions of the subgraphs is a stationary distribution of the

overall system. Thus, we are interested in Markov models described by strongly connected

graphs, or alternatively irreducible matrices, those which are not similar via a permutation

to a block upper triangular matrice.

In practice, we can deal with disconnected systems quite easily, as the disconnectedness

implies that the connected subgraphs of the system are independent of each other, and can be

analyzed individually. More problematic in the case of studying a protein dynamics system is

that disconnected graphs can result from insufficient sampling rather than actual theoretical

independance. This is usually addressed either by dropping disconnected subgraphs, or,

when possible, running more and/or longer simulations to increase the available data.

More troubling than disconnected systems are weakly connected systems, which can and

do arise in empirical studies, where the graph is connected, but there exist pairs of states

i, j such that ∀n ∈ N,Pn
ij = 0. In other words, state j is unreachable from i regardless of the

number of steps into the future the system progresses. This cannot happen in an irreducible

matrix, and as a stochastic matrix is non-negative, an irreducible stochastic matrix can be

characterized by the existence of an n ∈ N such that Pn has all strictly positive values.

For another failure mode, consider the transition matrix defined by pAB = pBA = 1, that

is

P =

0 1

1 0


The process defined by this transition matrix is again Markovian, the matrix is stochastic

and a stationary distribution exists and is unique. It is clear that the only stationary
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distribution is the vector π∗ = [0.50.5], as the transition matrix simply swaps the two entries

of the probability vector at each time step. However, while the stationary distribution exists

and is unique, we see that ∀π 6= π∗ such that π is a probability vector, and ∀n ∈ N,

||πPn+1 − πPn|| > 0

Hence the sequence π,πP,πP, ... is not Cauchy convergent. Thus although the sta-

tionary distribution exists, it is not the limit point of any orbit of probability vectors other

than itself, and in fact, any distribution other than the stationary distribution is part of

a two-element closed orbit set. Thus, non-stationary distributions do not relax toward the

stationary distribution, which in thermodynamic terms means that the ensemble does not

equilibrate. Intuitively, such a transition matrix cannot model a thermodynamic ensemble

as it would not relax toward the maximum entropy distribution. More generally, this is the

requirement that the Markov chain be aperiodic. Aperiodicity of a matrix can be directly

characterized number theoretically, but for the case of irreducible stochastic matrices, it suf-

fices that the trace be non-zero, and so in practice, we will not encounter aperiodic Markov

systems calculated from empirical molecular dynamics data.

3.2.1 Perron-Frobenius

The Perron-Frobenius theorem is the basis of, essentially, a branch of spectral theory. In

the simplest form, the theorem dates back to work by Oskar Perron in 1907 on square

matrices with positive values, later extended by Georg Frobenius in 1912 to a subset of

non-negative matrices. This section will state the theorem and some consequences of it for

stochastic matrices, but a proof is omitted; for a modern proof using spectral theory, see

the article by Smyth6. The theorem is spectral in the sense that it describes properties

of eigenvalues and eigenvectors of real positive/non-negative matrices, and in this concrete

6M.R.F. Smyth: A Spectral Theoretic Proof of Perron-Frobenius, in: Mathematical Proceedings of the
Royal Irish Academy 2002.
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form finds many applications in probability theory (of interest to the present work), as well

as dynamical systems theory and numerous applications, perhaps most notably as an aspect

of the PageRank algorithm, which is based on Markov chain theory.

The Krein-Rutman theorem generalizes the Perron-Frobenius theorem to infinite dimen-

sional Banach spaces. Although not the subject of the present work, the value here is that

this extends the Perron-Frobenius theorem to the general theory of transfer operators. The

thermodynamics of a protein system can be described in full generality by the transfer oper-

ator that moves an initial ensemble of conformations towards equilibrium, and an excellent

analysis of this approach is described by Prinz et al7. Though we will not delve further

into this subject at present, it is worth noting that the Markov state model formalism is

essentially a numerical approximation to calculating the spectrum of the transfer operator

of the protein dynamical system that moves probability mass toward the equilibrium dis-

tribution. The transfer operator formalism can thus be used to describe how effective an

approximation is, and by similarly casting the tICA decomposition into the same setting, it

turns out that both tICA and MSMs are numerical approximations to the transfer operator

spectrum, yielding a theoretical reason for the effectiveness of tICA in preprocessing data

for analysis with the MSM approach.

Returning to the subject at hand, the Perron-Frobenius theorem asserts several proper-

ties about the eigenvectors and eigenvalues of a square, positive matrix. Without loss of

generality, assume that the transfer matrix of our Markov model has all positive values.

Since we will work, theoretically, only with aperiodic, irreducible transfer matrices we have

that if the transfer matrix T is not positive, then there exists an n ∈ N such that Tn has all

positive values.

Let T be a square matrix with positive real entries over C. Then there exists a positive

real number r such that r is a simple eigenvalue of T, and for all λ 6= r that are eigenvalues

7J.-H. Prinz et al.: Markov models of molecular kinetics: Generation and validation, in: J. Chem. Phys.
134 (2011).
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of T, |λ| < r. Furthermore, the eigenvector v corresponding to r has all positive real values,

and for any other eigenvalue w of T such that w is not a positive multiple of v, then the

entries of w include at least one negative or complex value.

Unpacking this a bit, theorem tells us that there exists a unique maximal eigenvalue and

that the corresponding eigenvector is strictly positive, and furthermore, no other eigenvec-

tor has all positive real entries. We will ultimately be concerned with symmetric transition

matrices, for which the eigenvector basis can always consist of only real valued vectors. The

interpretation of this, then, is that the eigenvector v corresponding to the eigenvalue r is,

under normalization to length 1, the stationary distribution of the Markov process, and the

other eigenvectors describe the degrees of freedom along which the system relaxes toward

equilibrium, with the corresponding eigenvectors describing the timescale of the relaxation

modes. Eigenvectors other than the stationary distribution have both negative and positive

values because they describe flows of probability mass through the system, while a strictly

positive or strictly negative valued eigenvalue would correspond to a source or sink of prob-

ability mass over time, which should not happen. The stationary distribution is all positive

as it describes the distribution at equilibrium, and furthermore, if it is in fact the stationary

distribution, then r = 1, and as we will see later, the corresponding timescale is infinitely

long, as we would expect of a thermodynamic system.

It remains to show that r = 1. However, since T is a stochastic matrix, it maps probability

vectors to probability vectors. Let π∗ = v
||v||1 . Then

||π∗T||1 = ||rπ∗||1 = ||π∗||1

It follows that r = 1.

Frobenius generalized these results to the case case of irreducible non-negative matrices,

and in the general study of Markov models this is a highly useful tool. However, we are

currently only interested in the stationary distribution, for which we have that some finite
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power of T has all positive values, and furthermore we have that the stationary distribution

π obeys

π = πT

and so also obeys

π = πTn

So π is an eigenvector with eigenvalue 1 for both T and Tn. The utility of this is that

the general case of the Perron-Frobenius theorem only guarentees that |λ| ≤ r, and there

exist up to h eigenvalues, with h− 1 taking negative or complex values, of maximal absolute

value, where h is the period of the matrix. From this, it follows that if we require that

our transition matrix be aperiodic, then h = 1, and there is a single eigenvalue of maximal

absolute value among the spectrum of the transition matrix. This justifies the restriction

that a Markov model of a thermodynamic system be aperiodic.

3.2.2 Detailed Balance

The principle of detailed balance is a fundamental principle of chemical kinetics and ther-

modynamics that states the at equilibrium, each elementary process of a chemical system is

at equilibrium with its reverse process. In the case of a Markov chain, this requires that the

Markov process be reversible, which can be expressed as

π∗iTij = π∗jTji

Note that this does not imply that given two states A,B ∈ Ω that pAB = pBA, which

would say that the forward and reverse probabilities of a particular state change are the

same, rather, the ensemble does not experience a net probability flow one state to another

at equilibrium. In kinetic terms, this is the idea that at equilibrium, the net rates of reaction
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are balanced, where the net rate is the rate of a reaction times the concentration. We can

write this as a first order rate reaction,

kA→B [A] = kB→A [B]

which is the standard statement of equilibrium for a reversible first order chemical reaction.

Kolmogorov’s criterion is necessary and sufficient for a transition matrix to obey detailed

balance8. Kolmogorov’s criterion states that every finite closed cycle of states has the same

product probability as the reverse cycle. Formally, for any finite sequence of states {si}ni=1,

ps1s2ps2s3 ...psn−1sn = psnsn−1psn−1sn−2 ...ps2s1

Clearly, if a transition matrix models a chemical process, it must obey detailed balance.

3.2.3 Maximum Likelihood Estimation

So far we have studied the properties of a Markov model in relationship to the transition

matrix that defines the model. This is vital to understanding the nature of the Markov model

and to analyzing and intepreting a model once written down. This is a fine state of affairs

to stop at if we are only analyzing models written down ab initio, but we are interested in

empirical models built from data.

Let Ω be the discrete, finite state space of the system of interest. Our data set is a finite

sequence of draws from this state space, {Xt : Xt ∈ Ω}Nt=1. The problem is to determine the

transition matrix T that maximizes the probability of observing the {Xt} sequence.

This is an instance of the general problem of statistical inference, given some data set

{xt ∈ Ω} that is drawn from p(x|θ), the probability density function p parameterized by θ.

Then the maximum-likelihood approach to estimating θ is to solve the optimization problem

8F.P. Kelly: Reversibility and Stochastic Networks, 1979.
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given by

max
θ
L(θ;x1, x2, ..., xn) = max

θ
p(x1, x2, ..., xn|θ)

where f(x1, x2, ..., xn|θ) is the joint probability distribution of the data set given the pa-

rameter set θ. In the simple case where the data are drawn independent and identically

distributed, the joint probability distribution factors as

p(x1, x2, ..., xn|θ) =
n∏
i=1
p(xi|θ),

and in this case the maximum likelihood estimation of θ is

max
θ

n∏
i=1
p(xi|θ)

This is a straightforward optimization problem, and for some families of distributions p,

there exists a closed-form solution. Much more discussion of the method of MLE can be

found in numerous textbooks on statistical inference, and much ink has been spilled on the

topic since it was popularized in 1912 by Fisher. It is worthwhile to note that MLE is not the

only method of statistical inference, however a deeper consideration of the topic is outside

the current scope, as we will assume that MLE is sufficient and appropriate to the task at

hand.

Our particular problem is not quite so simple, as the draws are not independent and

identically distributed since at each step the next draw from the Markov process, if it is

of any interest as a Markov process, depends on the previous result. So the probability

distribution does not immediately factor as a product.
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3.3 Markov State Models

The Markov state model formalism is an approach to modeling the dynamics of a protein

using Markov models and Markov chain theory9. MSMs are constructed from molecular

dynamics data, making them a form of ad-hoc coarse grained models built empirically from

directly sampling the system of interest, rather than attempting to fit parameters of an

analytic coarse-grained model.

The advantage is that the Markov model is more likely to capture the actual dynamics

of the system, and can be tuned to be coarser or finer in a systematic manner so that finer

models can be used to predict experimental results while coarser models lend themselves to

better human intuition and understanding of the major aspects of dynamics, while main-

taining a link to the finer models for potential verification. The models themselves can be

simulated exceedingly efficiently, however, as the models are, by construction, irreducible

aperiodic transition matrices, we may employ the full theory of Markov chains to study

them analytically. The Perron-Frobenius theorem immediately yields the equilibrium distri-

bution of the model, and further eigenvalues and eigenvectors show the relaxation degrees of

freedom, and the timescales of these computed quantities can be several orders of magnitude

longer than the simulated data used to generate the model, effectively stretching the data.

The downside of the MSM approach is that a large amount of data is nonetheless required

to estimate transition matrices, and this can be quite costly compared to simulating a coarse-

grained system derived analytically with fitted parameters.

3.3.1 Microstate Model Construction

Markov state models are built in two stages: first a ‘microstate’ model is built, and then a

’macrostate’ model is constructed from an analysis of the microstate model. The microstate

model is build by directly clustering the data frames into small clusters, which does not

9F. Noé/S. Fischer: Transition networks for modeling the kinetics of conformational change in macro-
molecules, in: Current Opinion in Structural Biology 2008.
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achieve the goal of kinetically clustering the data, but rather allows the kinetically-clustered

macrostate model to be bootstrapped from the microstate model.

A major motivation in the construction of Markov state models is clustering data frames

of a simulation. In Chapter 2, we studied two common clustering algorithms, k-means and

k-medoids, which cluster together data points on the basis of a similarity metric, often (only,

in the case of k-means) the Euclidean distance between points. Of non-hierarchical cluster-

ing methods, the more sophisticated methods generally take the form of a transformation

of the space followed by k-means of k-medoids, for example spectral clustering which uses

the spectrum of the similar matrix of the data to perform dimensionality reduction before

clustering, similar to the process described here where tICA is used to perform dimension-

ality reduction before clustering with k-medoids. The clustering problem with respect to

molecular dynamics simulations is that the similarity metric must respect the kinetics of the

system, otherwise if we cluster two data points point (simulation frames) together that are

kinetically separated, we have accidentally removed an energy barrier from the output model.

The fundamental flaw of clustering using standard geometric criteria, the RMSD between

conformations, is that RMSD can easily hide kinetic barriers, such as sterically hindered

φ/ψ angle movements that separate two local energy wells. Small φ/ψ angle changes may

separate two local energy wells of the conformational space, but clustering on the RMSD of

the frames that live near the transition may show small RMSD changes as the angles may

not strongly alter the α carbon positions, but still represent a large kinetic barrier. If the

clustering accidentally links these frames together, the kinetic barrier is lost and the model

underestimates transitions between states, or else combines disparate states together.

We avoid this problem in two ways. The more recent approach takes a page from the more

sophisticated clustering methods and pre-processes the data with a transform and projection

of the data space10; here that method is tICA, which is itself a linear approximation to the

10C.R. Schwantes/V.S. Pande: Improvements in Markov State Model Construction Reveal Many Non-
Native Interactions in the Folding of NTL9, in: J. Chem. Theory Comput. 9 (2013), pp. 2000–2009; R.T.
McGibbon/V.S. Pande: Learning Kinetic Distance Metrics for Markov State Models of Protein Conforma-
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spectrum of the transfer operator11, making even the microstate model a clustering using

kinetic rather than geometric data. The second method, used in concert with tICA or other

data pre-processing, is to build a model of many small clusters, with the goal that each

cluster is sufficiently small that the kinetic similarity of the frames inside the cluster is very

high. Using a large number of clusters is often quite important when clustering on solely

geometric criteria, i.e. RMSD distance between frames, but less so when using an effective

pre-processing method. The value here is that with fewer clusters, we have more samples

per cluster, which will improve the statistics of model estimation. Make no mistake, though

the Markov state model method can extract significantly information from the data, it is

still an immensely data hungry analysis.

With all of the tools built up in Chapter 2 and the last few sections, constructing a

microstate model turns out to be quite simple. For clarity, we describe the process only for

the case of a single long trajectory, but construction of a model from multiple trajectories is

not much more involved than the single trajectory case and is well described in the literature.

Let the intial data set be a sequence of N frames {ft}Nt=1 generated by a molecular dy-

namics simulation. Each frame is taken to be a vector describing the molecular structure of

interest; this may be the direct Cartesian positions of the atoms in XYZ space, a vector of

φ/ψ angles (suitably transformed by sin and cos to account for periodicty) or another rep-

resentation. Cartesian coordinate and other representations that have an external frame of

reference must be aligned to remove irrelevant center of mass drift and molecular tumbling.

This is the stage at which data pre-processing is used, so that we run the data representation

through tICA or another pre-processing method as desired by the investigator. The data,

transformed or in its original form, is clustered using k-means or k-medoids. The clustering

metric is a free parameter of the analysis, though is usually dependent on the data repre-

sentation. Using the XYZ coordinates would naturally lead to using the pairwise RMSD or

tional Dynamics, in: J. Chem. Theory Comput. 2013.
11M. Sarich/J-H Prinz/C. Schütte: Markov Model Theory, in: (An Introduction to Markov State Models

and Their Applications to Long Timescale Molecular Simulation), 2014.
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mass-weighted RMSD as similarity metrics, while the standard Euclidean metric generally

fits the sin/cos representation of the dihedral angles. More exotic choices are possible, the

Hamming distance is fitting for a binary contact map representation of the protein, which

can be effective in the context of protein folding. In the case of pre-processed data, the

Euclidean metric is standard when the output space is Rn, as we are effectively clustering

using the induced metric of the pre-processing technique.

The clusters generated by the clustering algorithm become the state space of the mi-

crostate model, and the data is transformed to a sequence of states; each data frame in the

trajectory is mapped to one of the clusters, and our transformed data is the sequence of

cluster indices. At this point, the data is a sequence of draws from a finite state space, so

we can estimate the transition matrix using MLE as described in the previous section.

3.3.2 Time Lag

There is a major flaw in the MSM construction process laid out in the previous section– the

transition matrix estimated from the procedure as written assumes that the data sequence is

drawn from an ergodic system, and that assignment of a frame to a particular cluster-state

implies that the system is in a local equilibrium for that cluster-state. Essentially, there is

some error introduced by discretizing the system into clusters, and the discretized system

may not be Markovian on the discretized time-scale, that is, looking at the system one frame

at a time may violate the Markov property. The solution is to build the model at a longer

timescale.

The process of building the models at longer time lags is straightforward. To build an

MSM with timelag τ instead of counting transitions of the sequence s1, s2, s3, ..., we instead

count transitions from the sequence s1, sτ+1, s2τ+1, .... So we run the same MLE analysis on

the sequence generated by subsampling the original data sequence at a rate τ . When dealing

with MD data, τ is usually expressed in terms of simulation time rather than frame number.

This results in an important trade-off – the longer the time-lag, the less descriptive the
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model becomes, but the more accurately it models a process. Practically, longer time lags

also require more data, build a model at timelag τ , expressed in frames, from N frames of

data, we only have
⌊
N
τ

⌋
entries in the trajectory sequence, reducing the data by a factor of

τ . This can be ameliorated by using a sliding window rather than subsampling, reducing the

data by an additive factor of τ rather than multiplicative, but then transition counts are no

longer independent, introducing an error into the estimated transition matrix.

This implies a need for a test to determine the appropriate timelag to build a model at.

Several tests have been explored in the literature12. The most common and the one used in

Chapter 4 is to look for convergence of implied timescales.

3.3.3 Implied Timescales

The implied timescales of an MSM correspond to the relaxation rates of the degrees of

freedom of the MSM. It is important to note that the degrees of freedom of the MSM do

not correspond to the physical system’s degrees of freedom, such as those found by tICA.

The degrees of freedom of the MSM are probability fluxes between collections of states

that system undergoes as it relaxes toward equilibrium, that is, the eigenvectors of the

transition matrix. It is unsurprising then, that the implied timescales are proportional to

the eigenvalues. However, rather than directly studying the eigenvalues of the transition

matrix, we calculate the implied timescales to link the relaxation modes of the system to

real time in terms of either simulated lab time or frames. The i-th implied timescale is given

by

ti = − τ

log(λi)

where τ is the timelag of the MSM and λi is the i-th eigenvalue of the transition matrix.

Note that λ0 = 1 by the Perron-Frobenius theorem, so t0 = − τ
log(1) = ∞, corresponding to

equilibrium occuring ‘at infinity’.

12S. Park/V.S. Pande: Validation of Markov state models using Shannon’s entropy, in: J. Chem. Phys.
2006; Prinz et al.: Markov models of molecular kinetics: Generation and validation (see n. 7).
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The simplest method for determining an MSM time-lag is building MSMs of the same

system at a sequence of time-lag values and checking for convergence of the slowest time

scales, corresponding to the first few non-trivial eigenvalues. We only need the first few

timescales to converge because from a theoretical standpoint, we are largely interested in

the slowest motions of the system, and from a practical consideration, when we build the

macrostate system with n states, it will only maintain the information from the slowest n−1

degrees of freedom.

3.3.4 Macrostate Model Construction

The final macrostate MSM is useful for intuitive understanding of the system dynamics and

more coarse-grained analysis, such as we are interested in when analyzing the TCR dynamics

for alternative conformational states. Microstate models, or macrostate models with more

states are effective for predictive calculations, i.e. NMR or EPR parameters.

The passage from microstate model to macrostate model is essentially another clustering

process; this time the data frames are not clustered directly but rather the microstate clusters

are clustered together to generate clusters-of-clusters that show maximal meta-stability, that

is, we want the probability of leaving the macrostate clusters to be low. Ultimately, this

corresponds to maximizing the trace of the transition matrix of the clustered graph, carried

out using the PCCA+ algorithm, which groups nodes of the microstate graph together into

larger stable nodes, using the eigenstructure of the transition matrix13. Once new clusters

are assigned, the final macrostate transition matrix is estimated directly from the data,

using the same lag-time analysis and maximum likelihood estimation of parameters used to

estimate the microstate model from data.

The major analysis choices fall to the choice of lag-time, which follows the same con-

vergence procedure as microstate model building, and determining the number of clusters

13P. Deuflhard/M. Weber: Robust Perron cluster analysis in conformational dynamics, in: Linear Algebra
and its Applications 2005.
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to build the macrostate model with. There is no obvious choice for the number of clusters,

and it is partially a trade-off between interpretability and detail. However, a reasonable

approach and one taken in the analysis of the TCR data is to choose one more cluster than

there are slow timescales in the microstate model that separate out from the other implied

timescales at convergence. A markov model with n states has n− 1 degrees of freedom, and

implied timescales correspond to the slow degrees of freedom. Hence, if we are interested in

the slowest three degrees of freedom, it is sensible to model the macrostate model with four

states to incorporate these degrees of freedom.
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CHAPTER 4

RESULTS ON THE T CELL RECEPTOR

Having completed our tour of the mathematical constructs underpinning the analysis, we

come to the results on the T cell receptor. We aim to shed light on the nature of the CDR

loop flexibility and movements. We have two specific aims in this regard. First, we want

to determine how structured the motions of the loops are, can they be well described by

a low-dimensional system? And are these motions structured in some fashion, displaying

clustering and pathways? Second, do there exist metastable states of the system? This

second question ties into the binding hypotheses spectrum described in Chapter 1; are there

metastable states in solution that could be states for an equilibrium selection mechanism,

or seeds of states that support the conformational melding hypothesis?

With these aims in mind, we have simulated 10 independent MD trajectories of the 2C

TCR for 300 ns each, for a total of 3 µs of data. For a comparison system, we have also

simulated 10 independent 100 ns trajectories of the NKT15 system, a Class I NK T cell that

recognizes α-GalCer, for a total of 1 µs of data. Technical details of the simulations and

analysis can be found in Appendix C.

4.1 tICA Analysis shows distinct conformations and low

dimensional motion

We studied the conformational changes of the CDR3α and CDR3β loops individually by

analyzing their backbone dihedral angles under the tICA decomposition. As described in

Chapter 2, the tICA algorithm can be intuitively understood as taking a dataset and a

timescale parameter chosen by the investigator as inputs, and returning a set of combinations
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of the input degrees of freedom, here sets of dihedral angles, that are independent of one

another and display long-lived behavior.

We applied the tICA decomposition to the phi and psi angles of CDR3α and CDR3β in-

dependently, each with an autocorrelation time of 5ns. Considering only the first two degrees

of freedom resulting from this analysis, we see a local maxima of the probability distribution

for the CDR3α loop (figure 4.1A), while there are four regions with local maxima for the

CDR3β loop (figure 4.1B). These islands of locally high probability are long-lived regions

of conformaitonal space that are frequently visited by the simulation, suggesting that these

conformations are relatively stable, and indicating the existence of stable conformational

states.

An outstanding question drawn from crystallographic studies asks how free are the mo-

tions of the CDR3 loops? Are they weakly structured with a large number of degrees of

freedom to move in, or are they tightly choreographed, moving in distinct conformational

states? To address these questions, and confirm the value of our two dimensional distribu-

tions, we consider the probability distributions of the first eight tICA degrees of freedom.

CDR3α shows an assymetric distribution in the first and third tICA degrees of freedom, and

a highly peaked distribution in the second tICA degree of freedom centered away from zero

(figure 4.1C). The remaining tICA degrees of freedom are more Gaussian with means near

zero, suggesting that CDR3α has some mild internal structure to its motions, with at most

only the first three tICA degrees of freedom capturing interesting behavior. The system

appears to be well described by two degrees of freedom. CDR3β shows significantly more

interesting behavior in it’s first two tICA degrees of freedom, both of which show multiple

peaks, while the remaining degrees of freedom show much more Gaussian-like appearences

(figure 4.1D). This strongly suggests CDR3β’s motions are primarily captured by the first

few, and in particular the first two, tICA degrees of freedom, indicating highly structured

motions and a largely two dimensional phase space of non-thermal noise motions.
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Figure 4.1: Kernel density estimates of tICA projections. (A,B) 2-D Kernel density estimate
of the simulation data projected onto the first two degrees of freedom discovered by tICA
for the CDR3α and CDR3β loops, respectively, using a 2-D Gaussian kernel. The KDEs
estimate the probability density function for finding a randomly selected frame in a region
of conformational space described by the tICA degrees of freedom. (C,D) 1-D probability
density graphs of the first eight tICA degrees of freedom for CDR3α and CDR3β, respectively,
using a Gaussian kernel.
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4.2 Markov state model of CDR3β shows discrete metastable

states

Next, we clustered the frames in the tICA projection via k-medoids into a microstate model

and estimate MSMs as described in chapter three. The microstate models of CDR3α do

not converge over the timescales analyzed, and the trajectory data is insufficient to go to

longer timescales for MSM construction. This implies that CDR3α has a very slow degree

of freedom that is not sufficiently explored in the simulation. We address this further in

a later section with a reverse simulation, and note that very slow timescales of CDR3α

compared to CDR3β has been described in simulations of A6, where a single trajectory of

several simulated trajectories showed a major conformational change of the CDR3α loop. As

discussed later, this is indicative of a large kinetic barrier between a bound-like conformation

and the current unbound-like conformation of CDR3α.

On the other hand, the three slowest timescales of the CDR3β models separate out

from the faster timescales when the implied timescales converge (figure 4.2B). The CDR3β

data samples the phase space of CDR3β sufficently to build a qualitative MSM of CDR3β

dynamics.

The separation of three slow timescales of the CDR3β loop implies a four state macro

model of CDR3Eβ dynamics, and agrees with the four high-probability islands observed in

the 2D projection of the data under the tICA analysis (figure 4.1B). We construct a four

state model of CDR3β and extract the centroids of the macrostate clusters; these are the

orientations that are in centers of the clusters drawn from data frames, so the centroids

are conformations observed in the simulations, not mathematical averages. The centroids

are shown in figure 4.3A. All four states are well populated at equilibrium (figure 4.3B), as

predicted from the macrostate MSM, with the fourth state showing the highest equilibrium

population. Interestingly, state four is poorly populated in the empirically observed data.

The discrepency is due to the equilibrium distribution being calculated from eigenvalue anal-
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Figure 4.2: Implied timescales/relaxation timescales derived from eigenvalue analysis of
microstate MSMs for CDR3α (A) and CDR3β (B) loops.

ysis of the MSM, rather than from the directly observed data, meaning that the equilibrium

is determined by analysis of the kinetic model, not direct sampling. Importantly, despite

a low empirically observed frequency of state four, state four appears to involve hydrogen

bonding interactions with the CDR3α loop, and demontrates immense stability due to a

mixture of hydrogen bonds and hydrophobicity. This phenomena is described in more detail

in a later section, and demonstrates the MSM picking up and emphasizing kinetic details

over the directly sampled data in an undersampled data regime.

The backbone φ/ψ angles of the eight central residues of the CDR3β loop are shown in

figure 4.3D. G205 and L210 show minimal variation between the centroids, suggesting that

flexibility at these positions is not required to generate the observed collection of metastable

states. Diversity is seen in both of the angles of G207, while S204 separates out the state

1 and 2 orientations along the others along the φ and ψ angles respectively. G206, G208,

and Y211 primarily separate a single centroid orientation from the other three along a single

φ or ψ angle, while showing minimal varation in the non-separating angle. T209 appears

to separate centroids along the φ angle, however variation is seen under re-clustering of the
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original microstate clusters, while the behavior of the other angles is stable, implying that

T209 is flexible but does not meaningfully describe the different states.

The macrostate Markov model of CDR3β shows distinct pathways between the different

metastable clusters and differing levels of metastability in the states, with states 3 and 4

showing strong metastable behavior, while states 1 and 2 are only weakly stable (figure

4.4). Despite the relative instability of state 2, it acts in a hub-like fashion, with the largest

rates into states 1, 3, and 4 all coming from state 2. Rates into state 2 are also highly

relative to all other state transitions, with the exception of the state 1 to state 3 transition

which shows similar magnitude to the state 1 to state 2 transition. The other transitions

show much lower flux rates, so that state 3, although only weakly metastable, acts as a

central metastable intermediate. This high flux into state 2 accounts for the high population

observed in the equilibrium distribution of the state despite the weak stability. State 1 is

also weakly metastable, but does not have a counter-balancing inward flux, leaving it as a

simpler weakly metastable state, which accounts for its low equilibrium population. State 1

has a large outward flux to both state 2 and state 3, with the most significant in-flow coming

from the hub-like state 2, positioning state 1 as an alternate pathway to access the much

more stable state 3. State 4 only shows significant exchange with the hub-like state 2, and

shows strong stability and high equilibrium population similar to state 3.

4.3 CDR3α and CDR3β loops of Type I NKT TCRs have

metastable states

Unlike CD4+ and CD8+ αβ TCRs, type I NKT αβ TCRs recognize lipids presented by

CD1d, a monomorphic MHC-like protein. NKT TCRs do not show significant variation in

their bound state footprint, and crystal structures show comparatively little movement be-

tween free and bound conformaitons, despite variation in the chemical structures of the pre-

sented lipids. Type I NKT TCRs show significantly higher binding affinities than CD4+/8+
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Figure 4.3: (A) Ball and stick model of the CDR3β loop showing the centroids of the
four macrostate clusters determined by the MSM. Centroids were determined by finding
the orientation that minimizes the distance to all other members of the cluster under the
tICA projection distance. (B) Equilibrium populations of the four clusters, determined by
eigenvalue analysis of the macrostate MSM. (C) Projection of the centroids onto the first
two tICA dimensions overlaid on the kernel density estimate of the projected data. (D) φ/ψ
backbone angles of eight residues along the CDR3β loop. Colors are consistent throughout
for states 1 (green), 2 (light blue), 3 (purple), and 4 (dark blue).
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Figure 4.4: Macrostate Markov State Model of 2C CDR3β built with a time-lag of 115
nanoseconds. State clusters are represented by their centroids as initially described in figure
4.3A, and jump probabilities are described by arrows labeled by the probability of that
state transition occuring in a 115 nanosecond time step. Arrow size is proportional to jump
probability.
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TCRs, and have binding kinetics that suggest an innate-like response. As they use the same

immunoglobulin architecture as standard CD4+/8+ TCRs, we investigated the unbound dy-

namics of the NKT TCR as a comparison to the dynamics of the 2C system. We ran 10

independent trajectories of the NKT15 TCR for 100ns, collectively totaling 1µs of data.

We applied the tICA decomposition to the backbone dihedral angles of the CDR3α and

CDR3β loops of NKT15 with a timelag of 5ns, just as with the 2C system. Similar to

the 2C TCR, the tICA decomposition is indicative of low-dimensional, structured motions.

Most of the tICA degrees of freedom consist of Gaussian motions around a mean of zero,

thus consisting of thermal motion, with only one degree of freedom for each loop showing

multiple peaks that suggest metastable conformational regions (figure 4.5A). Plotting the

density estimates of the first two degrees of freedom for each loop, we find that both loops

show two distinct high probability regions separated by lower probability transition regions

(figure 4.5B, C). In both CDR3α and CDR3β, the two local probability maxima are separated

along a single axis, so only a single degree of freedom is responsible for the transition ebtween

these high-probability regions. Furthermore, in both systems, one of the high-probability

regions shows a much higher probability relative to the other, suggesting the existence of

a single major local energy minima, and a kinetically nearby metastable state with higher

energy. In contrast to 2C, we observe distinct metastable regions in both systems, although

CDR3β is much simpler in NKT15 than in 2C, with only two metastable states separated

along a single degree of freedom, implying that NKT15’s motions are more restrained than

2C.

4.4 CDR3α and CDR3β loops interact in 2C through hydrogen

bonds

Previous work has shown that there is weak, if any, coupling between the overall loop dynam-

ics of CDR3α and CDR3β loops in the A6 TCR. However, we do observe direct hydrogen
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Figure 4.5: (A) Probability distributions of the NKT15 CDR3α and CDR3β conformations
projected onto each of the first eight tICA degrees of freedom, computed by a 1-D kernel
density estimate with a Gaussian kernel. (B) 2-D probability distribution of NKT15 CDR3α
projected onto the first two tICA degrees of freedom; selected conformations from the simu-
lation are shown in orange and gold and overlaid on the probability distribution plot. (C) As
in panel (B) for the CDR3β loop with selected conformations shown in light green and ochre.
Probability distributions were computed by a 2-D kernel density estimate with a Gaussian
kernel over all collected trajectory data.
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bond interactions between the CDR3α and CDR3β loops of 2C when CDR3β adopts the

metastable state 4. In two of the ten trajectories of 2C, the CDR3β loop adopts a conforma-

tion that permits a hydrogen bond between the sidechain of Ser93 on CDR3α and backbone

of Gly207 on CDR3β (figure 4.6A). The CDR3α loop’s conformation that permits this bond

is near the high-probability region observed in the tICA projection, and may account for

some of the long-tail spread observed in the first tICA degree of freedom for CDR3α (figure

4.6B). The CDR3β loop of 2C appears to be able form this bond only in state 4 where the

CDR3β loop is oriented to make the Gly207 backbone contact with the CDR3α Ser97. The

hydrogen bond demonstrates significant stability, appearing in 25% of frames assigned to

state 4. The persistence of this interaction and the specificity of the orientation required to

allow it accounts for the high equilibrium population of state 4 in the Markov state model.

As the model relies on kinetic information to determine equilibrium populations, rather than

directly observed conformations, the model indicates that this hydrogen will tend be a high-

population, dominant state over a long time scale relative to the observed sample from the

simulation.

This conformation is further stabilized by multiple intra-loop polar contacts and a hy-

drophobic ’shell’ that protects the hydrogen bonds from solvent interactions. In addition to

the inter-loop contact between Ser93 and Gly207, in the sample frame we observe a CDR3α-

CDR3α hydrogen bond between Ser93 and the backbone of Gly206, as well as interactions

between Thr209 and Gly206 (figure 4.6A). Surrounding these hydrogen bonds are numerous

hydrophobic residues that can shield the hydrogen bonds from solvent, as depicted by the

pink residues in figure 4.6A. There are nine hydrophobic residues within 6 angstroms of

either Ser 93 or Gly207, creating a hydrophobic shell around the inter-loop hydrogen bond

and shielding some of the intra-loop interactions as well. Surrounding hydrogen bonds with

hydrophobic residues has been shown to enhance stability1, suggesting this hydrophobic shell

1Christopher M. Fraser/Ariel Fernandez/L. Ridgway Scott: Wrappa: A screening tool for candidate
dehydron identification, tech. rep. TR-2011-5, University of Chicago, 2011; idem: Dehydron analysis: quan-
tifying the effect of hydrophobic groups on the strength and stability of hydrogen bonds, in: (Advances in
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Figure 4.6: (A) Structural rendering of the 2C hydrogen bond interaction between Ser93
and Gly207 with the Vα domain shown on the left and the Vβ domain shown on the right;
hydrophobic residues surrounding the hydrogen bonds are shown in pink. (B) Projection
of the data frame onto the tICA projections of the CDR3α (left) and CDR3β (right) loops
overlaid in cyan.
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is responsible for the significant stability of the hydrogen bond and the conformation. The

stability is notable in the simulations, as there are no transitions out of this state observed in

the simulation trajectories where it occurs. This ’hydrophobic collapse’ conformational state

is both structurally and kinetically separated from the other conformations, notably looking

unlike known bound states of 2C, and potentially acting as a hydrophobically driven ’off’

state that reduces the overall affinity of the TCR by stabilizing a binding-incabable state.

At the same time, the hydrophobic sidechains that contribute to the stability of state 4

may explain the instability of states 1 and 2 in which the CDR3β loop is more extended and

thus more solvent accessible. The increased solvent exposure of the hydrophobic sidechains

will create unstable conformations, leading the CDR3β loop to ‘search’ for a conformation

that once again buries the hydrophobic residues, leading to the transition-state behavior

of states 1 and 2 where the CDR3β loop is frequently sampling, possibly unsuccessfully,

transitions out of the conformational state.

4.5 Simulations reproduce CDR3β bound crystal structure

orientations

We are able to compare our results with experimentally determined crystal structures in

two ways. First, as the tICA projection matrix can project previously unobserved data, we

projected the CDR3β loop conformations of three bound structures of 2C in complex with

H-2kb/SIYR (PDB 1G6R), H-2Kb/dEV8 (PDB 2CKB), and H-2Ld/QL9 (PDB 2OI9) onto

the two dimensional space of the first two tICA degrees of freedom (figure 4.7A). We omit

CDR3α projections because no bound states of the CDR3α loop are found in the simulation

trajectories, implying either a much slower transition time as observed for A62, or that the

conformation of the CDR3α’s bound state is unfavorable without the environment of the

Computational Biology), 2010, pp. 473–479.
2Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,

specificity, and binding mechanism (see n. 13).
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peptide-MHC.

Projecting the bound conformations onto the first two tICA degrees of freedom, we find

that H-2Kb/SIYR and H-2Kb/dEV8 both appear near the most frequently observed region of

the tICA conformational space, but are themselves in low probability regions that appear to

be transition regions between two metastable states. This indicates that although the bound

conformation for these antigens are closely sampled in solution, they are unlikely to directly

be the result of selection from a pre-existing equilibrium. However, they are kinetically

close to two well-populated metastable states, making it plausible that if a binding event is

initiated from either of these two metastable regions, then CDR3β will be able to rapidly find

the correct orientation observed in the bound state. In contrast, the bound conformation

for the alloreactive H-2Ld/QL9 falls into the region corresponding to state 2 of the MSM,

which is the lowest equilibrium population state of the model. Intriguingly, both antigens

that use the H-2Kb MHC fall into the transition-like region, but nearer to the hub-like state

2, while H-2Ld/QL9 falls into a distinct region in the projection, and biologically presents in

a different context than H-2Kb.

4.6 Reverse simulations indicate slow CDR3α dynamics

In our main dataset, CDR3α did not transition to a bound-like conformation in any of the

ten trajectories. This strongly suggests that the bound conformation lives in a stable, local

energy minima with slow kinetics between the bound and unbound-like regions of phase

space. To test the stability of the bound state, we ran an additional ten trajectories of 2C,

initialized with the coordinates of the bound state for 2C bound to H-2Kb/SIYR. Trajectories

were run for 100 ns each, collecting an aggregate of 1µs. CDR3α remained near the bound

conformation for the entirety of all ten trajectories (figure 4.8), in line with the hypothesis

that the bound state is a stable local well. Because no transitions are observed in any

trajectory, we are unable to construct a Markov state model of the CDR3α, however the

data indicate that CDR3α is stable in bound conformation independent of the environment
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Figure 4.7: (A) tICA projections of the bound 2C CDR3β loop conformations for 2C bound
to H-2Lb/SIYR (red), H-2Kb/dEV8 (green), and H-2Ld/QL9 (blue) overlaid on the 2-D
probability density. (B) Ball and stick render of the CDR3β bound crystal structures overlaid
with the nearest simulation frame by RMSD of the Cαs after aligning the β variable domains.
Simulation data is shown in cyan.

of the peptide-MHC, and the kinetics of transitions between these states are very slow.

This is in line with observations of A6, where simulations yielded only a single transition of

CDR3α in an aggregate data set of 460 ns, suggesting that slow CDR3α dynamics may be

a general feature of CD4+/CD8+ TCRs.

4.7 Analysis of 2C and NKT15 loop fluctuations

One major difficulty of tICA and similar projection techniques is detailed comparison be-

tween data sets of different molecules. The projection is parameterized to the data set that

generated it, and in general, scaling between different data sets analyzed with tICA is un-

related. To address the issue of loop flexibility in both 2C and NKT15 directly, we look at

the fluctuations of the Cα of the tip region of the loop over the course of each trajectory.

This was determined by taking the Cα of the loop residues that show the largest average dis-

placement in each trajectory and plotting the frame-by-frame displacement from the initial
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position of the trajectory.

The CDRα loop of 2C shows significant flexibility and variance in most trajectories (Fig-

ure 4.8 A). The hydrophobic collapse state that promotes the hydrogen bonding interaction

between CDR3α and CDR3β is visible in the CDR3α traces as large displacements from the

original orientation but sharp drop-offs in variance as the loop is constrained to that con-

formation. This aligns well with the idea that 2C’s CDR3α has a broad energy well in the

unbound-like state with relatively little structure, with the exception of the tightly controlled

collapse state. The CDR3α loop of NKT15 (Figure 4.8B) showed lower overall displacement

from the original position and lower variance, though some regions show higher local vari-

ability, usually coupled with larger displacement from the starting conformation; these two

regions may separate the two regions observed in the tICA 2D projection. The CDR3α loop

of NKT15 does appear less flexible than the CDR3α loop of 2C over the timescales observed.

The CDRβ loops of 2C and NKT15 show similar levels of displacement and variance,

demonstrating similar levels of flexibility, and the maximum displace of NKT15’s CDR3β was

larger than that observed for 2C. Given this data, CDR3β’s flexibility does not appear to be

related to germline selected V[β] segments. However, CDR3β is significantly less important

to NKT recognition than CDR2β and CDR3α.

The overall flexibility of NKT15 compared to 2C is unexpectedly high given the minimal

variation in conformation observed in crystallographic data of bound NKT structures, and

the rapid binding kinetics. It is possible that the flexibility is necessary to ensure the lipid

adopts the proper conformation observed in the bound state, but that the system essentially

falls down an energy well toward the bound state upon interacting in a binding-capable state,

leading to the fast binding kinetics. However, it is notable that the CDR3α loop, which is

more important to recognition than CDR3β in NKT15, shows lesser flexibility than in 2C,

and restricting this flexibility should be more important to the system than restricting the

CDR3β loop. The restricted Vα segment repertoire may be in part to restrict the flexibility

of the CDR3α loop, and simulating a larger variety of αβ TCRs with different Vα segments
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Figure 4.8: Trajectories of CDR3α loop tip motions. Traces for each trajectory of the Cα
displacement magnitude of the Cα with the largest average displacement over the trajec-
tory for 2C (A) and NKT15 (B). Red box highlights regions of 2C trajectories where the
‘hydrophobic collapse’ and accompanying hydrogen bonds occur.
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Figure 4.9: Trajectories of CDR3β loop tip motions. Traces for each trajectory of the Cα
displacement magnitude of the Cα with the largest average displacement over the trajectory
for 2C (A) and NKT15 (B).
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would shed more light on the issue.
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CHAPTER 5

CONCLUSIONS

5.1 On the T cell receptor

The flexibility and dynamics of the CDR loops of T cell receptors have long been a topic of

speculation and interest. Crystallographic work has demonstrated the existence of multiple

loop conformations in the bound state of the CDR loops and indicated that loop flexibility

must necessarily play a role in cross-reactivity. Here, we have used the Markov state model

framework to show that in 2C’s CDR3β loop, there exist clusters of conformations that are

distinct and exist independent of the environment of the final binding state, and that these

conformations are much broader even than those variations observed in the known crystal

structures of 2C, our model system. We have shown that these individual states, made of

many kinetically related conformations, are inherently stable in a fashion that makes them

fitting of the term ‘state’, and there exists a distinctive structure in the movements of these

loops between these states. Previous pioneering work by Scott et al. demonstrated the

existence of distinct clusters of conformations in the unbound A6 TCR1, and provided ev-

idence for a slow mode of motion in the CDR3α loop, and faster, more diverse motion in

the CDR3β loop. Our results find good agreement with this work, suggesting a common

behavior, that of slower, simpler dynamics in the CDR3α loop and faster, more complex dy-

namics in the CDR3β loop, for αβ CD4+/CD8+ TCRs. We have furthermore demonstrated

the stability of these clusters, showing them to be true local minima, providing distinct con-

formational groups that can potentially act as a source of initial conformations from which

1Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13); Scott et al.: Limitations of time-resolved fluorescense sug-
gested by molecular simulations: assessing the dynamics of T cell receptor binding loops (see n. 31).

93



selections can be made, in either a conformational selection or conformational melding model

of TCR-pMHC recognition.

The tICA decomposition is a powerful too for understanding the complexity of the mo-

tions we observe. Previous work, both computational and crystallographic, has firmly es-

tablished the flexibility of CDR3 loops in CD4+/CD8+ αβ TCRs, but it has been difficult

to understand how well structured those flexible motions are, that is, are the motions pre-

cise and organized through specific degrees of freedom, or are the loops more like a rope,

able to flex anywhere along its length? With the tICA decomposition into linear, orthog-

onal degrees of freedom, we can characterize these motions by the number of orthogonal

degrees of freedom that meaningfully contribute to the state transformations, in the case

of 2C CDR3β, we observe two orthogonal degrees of freedom that captured by the tICA

decomposition that reveal evidence of substates and probability densities that are distinctly

non-Gaussian. Thus, 2C’s CDR3β loop moves, with respect to its internal motions, through

a two-dimensional space and has a restricted flexibility. Even more strikingly, we see that

with a tICA decomposition of the available data for NKT15, both CDR3α and CDR3β are

described by a single tICA degree of freedom. The Cα at the top of the CDR3β loop NKT15

shows a larger variation in its location in real space than the corresponding measurement of

2C’s CDR3β loop, however NKT15 is less flexible in that is has fewer degrees of freedom,

forcing it to adopt simpler motions than those available to 2C.

This difference in the dimensionality of flexible motion of the TCRs is a qualitative

demarcation between 2C and A6 on one hand, and NKT15 on the other. While we have not

examined A6 using the tICA decomposition, the similarity in conformational state diversity

observed in previous work to the diversity we observe in 2C makes the extrapolation a

reasonable hypothesis, and the simplicity observed in NKT15’s dynamics yields a possible

explanation for the different kinetics observed. In the present work, only one of 2C’s bound

states falls into the locally most probable region (QL9-Ld antigen), while the other two bound

states appear in a lower probability transition region between two wells. This supports the
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conformational melding hypothesis; there are clear clusters of conformations that would be

capable of more quickly finding the bound state, but the actual bound states are not so

likely that the binding mechanism is well described as conformational selection. On the

other hand, we achieve an incredibly close match between the CDR3β loop’s bound states

and simulation frames, and find the bound states project well onto the observed data under

the tICA decomposition’s projection, demonstrating that the environment of the peptide-

MHC is not required for CDR3β to find a bound-like conformation, as would be expected

from a pure fold-upon-binding mechanism.

We can roughly partition agonist αβ TCR kinetics into two classes, those which have slow

off rates, and those with on rates fast enough to rebind before diffusing away where analysis of

re-binding events have been shown to effectively predict signaling2. In the more classical, slow

off rate case, ’local search’ could explain the slow observed binding kinetics, as put forward in

the conformation search and conformational melding hypotheses3. Conformational melding

effectively argues that the search is local, and thus must be seeded by a conformation that

is initially selected from a set of equilibrium conformations; the observed state clusters in

our Markov model provide distinct initial states for such a seeding in accordance with the

melding hypothesis.

On the other hand, the innate-like kinetics of type I NKTs would suggest simpler mo-

tions4, which are apparent in the tICA decomposition of the NKT15 simulation data. The

crystallography of NKTs demonstrates little variation in binding orientation, unlike 2C, the

footprints of type I NKT TCRs are nearly identical across different antigens, which is fit-

ting with the faster kinetics. The need for faster kinetics and thus simpler loop dynamics

can potentially explain the reduced selection of variable domains: the reduced selection has

been evolutionarily selected specifically for the tendency to create simpler loop dynamics,

2Govern et al.: Fast on-rates allow short dwell time ligands to activate T cells (see n. 42).
3Gagnon et al.: T cell receptor recognition via cooperative conformational plasticity (see n. 27).
4Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells (see n. 5).
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while still using recombination to make minor adjustments to the enthalpic contacts and

potentially alter the equilibrium distribution of states. As we observe two states for each

of the CDR3α and CDR3β loops in 2C, it is reasonable to postulate that these alternative

states may act as simple ‘off’ states that do not permit binding, thus acting modulate overall

affinity.

A major outcome of 2C’s flexibility is the creation of the hydrogen bond interaction

between CDR3α and CDR3β and the hydrophobic region that stabilizes the interaction.

It is likely this state is binding-incapable, as the cluster conformations differ sharply from

the bound conformations present in crystal structures, which suggest a dual-role for the

CDR3β in both MHC recognition and overall affinity adjustment. The hydrogen bonded

state 4, and the less well characterized, but similarly stable state 3 in our MSM of CDR3β

appear to be ‘off’ states, whose equilibrium populations would control affinity by altering

the probability that the TCR is binding competent or binding incompetent. A similar role

has been suggested for CDR3α in the context of A6 due to its slow motions. If these states

are also reachable in the bound system, they may also adjust the off-rates depending on

how accessible they are. On the other hand, states 1 and 2 divide the bound conformations

by MHC, suggesting that CDR3β conformations contribute to MHC recognition as well as

peptide specificity. Despite the length of our simulations, transitions out of the hydrogen

bonded state are not observed, which limites our understanding of the state dynamics and

limits the quantitative value of the CDR3β MSM. Nonetheless, the qualitative results, the

existence of four distinct conformational clusters, is clear.

Finally, we note that the existence of these slow dynamics and long-lived metastable states

indicates a need for significantly longer trajectories and larger data sets. We have contributed

a large data set for a single TCR, which we believe to be the largest set of trajectories for

a free TCR that deals with only a single system and thus is comparable across trajectories,

as well as allowing for independent trajectories to evolve. Much work has largely used 100
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ns or shorter trajectories5 , often with fewer trajectories, with trade-offs between deeper

sampling of a particular phenomna or broadly sampling many comparable systems forced by

technological and resource constraints. Using MSMs to knit together multiple trajectories

into a larger picture and taking advantage of GPU-enhanced calculations to greatly extend

the size and scope of simulations offers a much more comprehensive picture for single systems.

5.2 Conformational Dynamics and Models of TCR Binding

The data presented most strongly support the conformational melding model, rejecting

strong forms of both the induced fit and conformational selections models.

Induced Fit

The data does not support the strongest form of the induced fit model on the simple basis

that distinct states exist in solution, as demonstrated by the kinetic clustering of the MSM,

and the CDR3 loop motions are constrained to few degrees of freedom. Comparing to the

tICA projection and the known bound states, we might expect the bound states to occur far

from solution-state conformations if induced fit is accurate, shown as the orange region in

figure 5.1. We do not observe the bound states here, instead finding them in the transition

region between states 1 and 2. This does fit with weaker forms of the induced fit model, where

the induced conformations are more the result of freezing out alternative conformations, but

this arguably the conformational melding model aside from focusing solely on the TCR’s

behavior.

5Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13); Knapp/Dunbar/C.M.: Large Scale Characterization of the
LC13 TCR and HLA-B8 Structural Landscape in Reaction to 172 Altered Peptide Ligands: A Molecular
Dynamics Simulation Study (see n. 48).
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Figure 5.1: The tICA projection of the primary simulation dataset with the bound states’
projections shown in red, blue, and green. The orange region shows the expected location
of bound states under the induced fit model.

Conformational Selection

The conformational selection model appears at first to be well supported by the data; the

CDR3 loops have restricted degrees of freedom and CDR3β displays distinct conformational

states that the loop transitions between and holds. However, if the selection model were

true, we would expect that the bound structures would be located in the regions of high

local probability, as shown in orange in figure 5.2. State 4 is excluded as an expected bound

state in the figure, as the hydrophobic collapse is likely to be binding incapable and is furthest

from the known bound structures. Only one bound state is near such a region, and it is a

particularly unstable region, while the other bound states are located between two states in

a less well-populated region.

However, we find that the bound states are located between states 1 and 2, with only

one bound structure, curiously a antagonist ligand6, near a high probability region. This

6Stone/Chervin/Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell activity and
specificity (see n. 23).
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Figure 5.2: The tICA projection of the primary simulation dataset with the bound states’
projections shown in red, blue, and green. The orange regions show expected locations of
bound states under the conformational selection model. The region corresponding to state
4 is omitted because of the likelihood it would be binding incapable.

strongly suggests that stable states are not selected as bound conformations, rejecting the

central idea of the conformational selection model.

Conformational Melding

Conformational melding fits the data best. From the perspective of only the TCR’s dynamics,

the conformational melding model is largely a golden mean; the loops are not unstructured

and may have distinct states, but those states are not directly the bound conformations.

Rather, the states may seed the search process. In particular, conformational melding implies

the need for weakly stable states, as the system needs to be able to perform a local search in

order to find the correct bound conformation. This is reflected in the orange region of figure

5.3, where we might expect that the bound states would be in marginally populated regions

near the less stable states, particularly near the hub-like state 2. This is precisely where we

find the bound conformations.
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Figure 5.3: The tICA projection of the primary simulation dataset with the bound states’
projections shown in red, blue, and green. The orange region shows the expected location
of bound states under the conformational melding model.

5.3 Future Directions

This work presents one of, if not the, largest simulation datasets of a single T cell receptor

to date, and provides a novel analysis of the system using kinetic clustering methods and

machine learning techniques to discover previously unobserved conformational states and

behaviors. However, we have found more questions than answers in doing so. This section

describes several ways to extend the present work, and some experimental apporoaches that

could yield more insight.

5.3.1 Experimental Probes

A major motivation for exploring the CDR3 loop dynamics via simulation is that there are

not currently many effective experimental techniques for getting at the level of detail. Major

methods with the potential for sufficient spatial and temporal resolution are single-molecule

approaches using florescent probes and NMR. The single-molecule approach has been tried
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and shown to be unable to resolve the loop dynamics, though they did broadly validate

simulation results7. NMR has sufficient resolution to determine larger conformational shifts,

and has been shown to resolve multiple peaks in an NMR experiment examining the 2C TCR

clone bound to a peptide-MHC ligand; this experiment was capable of resolving muliple

conformations of the CDR3β loop, and implies that the CDR3β loop of 2C has multiple

conformations in the bound state8. So NMR is possible and effective for T cell receptors,

however the experiment is quite difficult; the form of 2C crystallized in the 1TCR pdb

structure has 439 amino acids, making it roughly a 48 kDa protein, much larger than NMR

can easily handle without significant resource investment. Cutting down to just the variable

domain, there are still roughly 220 amino acids, which is around a 24 kDa protein before

including the linker used in variable-domain only experimental set ups for, e.g. SPR. This is

a managable size for NMR, demonstrated by NMR analysis of 2C9, but still quite large, and

thus exceptionally expensive to work with, particularly for systems that have to be expressed

in more exotic cell cultures.

All of this is to say that NMR is likely to be highly impractical. Nonetheless, if it is

feasible, then the Markov State Model can be used to directly calculate NMR parameters, and

then compared to experimental values, which has shown excellent results in other contexts10.

This is the cleanest way to directly assess the MSM results.

Another approach, though painful, is to make key mutations to the 2C sequence. The

goal here is not to assess the MSM directly, but rather to use it to explore the consequences

of the conformational dynamics. In particular, the serine at position 93 in the CDR3α

7Scott et al.: Limitations of time-resolved fluorescense suggested by molecular simulations: assessing the
dynamics of T cell receptor binding loops (see n. 31).

8Hawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).

9Ibid.
10D. Sezer/B. Roux: Markov State and Diffusive Stochastic Models in Electron Spin Resonance, in: (An

Introduction to Markov State Models and Their Applications to Long Timescale Molecular Simulation),
2014.

101



loop makes the hydrogen bond that appears central to the ’hydrophobic collapse’ state that

appears as state 4 in the MSM of CDR3β in the present work. Mutating this position to

eliminate the sidechain-mainchain hydrogen bond should destabilize this state. If it is indeed

an ’off’ state, this should cause a general increase in the overall affinity of any ligand, on

the order of a factor of 1.5 increase in affinity if the state is completely eliminated, given

that it has an occupancy of approximately 30% according to the MSM. However, this effect

is tempered and possibly reversed if the binding ligand makes enthalpic contacts with the

serine in the bound state, making this a tricky proposition. In the crystal structure 2CKB,

of 2C bound to QL9/Kb, Ser93 makes a backbone hydrogen bond with a lysine on the

peptide, as well as a backbone hydrogen bond to another loop via the backbone nitrogen,

and a sidechain hydrogen bond to alanine at position 103 in the CDR3α loop. This suggests

that inserting a hydrophobic residue like alanine, which would be the standard approach,

at the Ser93 position could lose some stability due to the loss the sidechain hydrogen bond

and introduction of a methyl group. A glycine should eliminate the sidechain-mainchain

hydrogen bond observed in state 4 of the MSM without causing significant disruption of the

TCR-pMHC interface in this particular system; extrapolating from the crystal structure we

would expect only the loss of the intra-chain CDR3α hydrogen bond, and no disruption of

the binding interface with the antigen. Other systems with bound crystal structures of 2C

show that Ser93 forms hydrogen bonds to water molecules that in turn interact with the

antigen, e.g. in the PDB file 2OI9.

Having identified a possible mutation that should have primarily conformational impli-

cations and not effect the interface contacts, the next step is perform the mutation in silico

and perform the simulation of the mutated 2C TCR, repeating the MSM procedure. This

will yield predicted states, which should align well with the states found in the current work

due to the very small difference, though state 4 should be suppressed or eliminated. An

increase in affinity, measured by SPR, should correlate with the decrease in occupancy of

state 4. This would directly demonstrate both that state 4 is indeed an ’off’ state and that
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the conformational dynamics play a direct role in binding behavior.

5.3.2 Further in silico Methods

There are several in silico extensions to the present work. The simplest but of clear value

is to run longer and additional simulations. The presented data set does not show transi-

tions between bound-like and unbound-like states of the CDR3α loop. This indicates long

timescales involved in the transition, but does not reveal any informational about the tran-

sition pathway itself, and provides only a lower bound on the kinetics of the transition. As

the CDR3α loop interactions are critical to binding, understanding the relationship between

on-rates and conformational dynamics is quantitatively impossible without more accurate

assessment of the CDR3α state transitions.

Path Sampling CDR3β

Similarly, we have described the CDR3β state transitions phenomenologically, and a deeper

analysis of the transitions is warrented, as this would allow direct, specific inspection of the

transitions modes between states that is only globally described by the tICA projection.

CDR3β transitions can be assessed by either longer simulations or additional trajectories,

ideally starting from the states extracted by the MSM ’kinetic clustering’ analysis presented

here. This would yield an unbiased assessment of the transitions between states, and in

particular would allow exploration of transitions paths that are less likely. Furthermore,

using the MSM states to seed standard MD simulations would make it possible to find further

unexplored states, or provide evidence that such states do not exist. On the other hand,

for studying the major transitions directly, biased path sampling methods such as the string

method could be used to assess specific state transitions of interest. One major caveat of using

biased methods is that the most interesting state presented here, state 4, relies on expulsion

of solvent from the inter-loop region by stochastic fluctuations; in general, current biased

methods do not reliable handle these contexts, so this transition is difficult to study via biased
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path-sampling approaches. One acceleration method that might work in metadynamics.

The tICA decomposition has demonstrated that most of the behavior of the CDR3β loop is

contained in the first two degrees of freedom spanned by the tICA projection. Since tICA

is a linear projection operator, these degrees of freedom can be algebraically described in

terms of the dihedral angles of the system, making them amenable reaction coordinates for

use with metadynamics. This would allow for significantly more rapid sampling of the states

accessible by variation in these two degrees of freedom, and demonstrate convergence in

population frequency much more quickly than can be accomplished by direct simulation.

Simulating the Bound State

The single biggest target of value is simulating the bound state. Recent NMR work has shown

that the CDR3β loop of 2C is mobile in the bound state with the SIYR peptide system11.

The peptide is also mobile. This has led to speculation that the motions of the peptide and

CDR3β loops are correlated. Simulation of the system would yield direct information about

the motions of the bound state, and correlations can be examined in two methods. First,

correlations can be directly inspected by calculating the mutual information between the

two systems, either directly, which is likely to be difficult, or after reduction via a method

such as tICA. Furthemore, if the CDR3β loop and peptide exhibit state-like behavior, which

is suggested by the distinct NMR peaks observed, then a Markov State Model can be built

to describe the system, and trajectories can be assigned to state for each of the peptide and

the CDR3β loop, and correlations between state occupancy can be directly calculated. If

the motions occur on a similar timescale, then both the peptide and the CDR3β loop can

be described by a single Markov State Model, which would directly describe how well the

system moves together. This can potentially be pushed further, using in silico mutation of

the peptide to less favorable ligands, where if conformational selection is correct, we should

11Hawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).
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expect to see decreasing correlation in the movements of the CDR3β loop and the peptide.

These experiments are straight-forward in light of the present work, but require a large

investment of computational resources.

The bound state simulations and increasing the accuracy and depth of the current models

will likely yield the best results at present. However, as described earlier, there are more

classes of T cell receptors, both in terms of conventional αβ TCRs with different binding

kinetics and non-conventional TCRs such as the invariant TCRs associated with Natural

Killer T cells or γδ T cells, that we expect to show significantly different dynamics. Extending

this analysis to more systems would make possible comparison between different systems

that serve different immunological purposes but share, to various degrees, a fundamental

architecture.
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APPENDIX A

SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS

AND THE TOY SYSTEM

If people do not believe that mathematics is simple, it is only because they do not realize

how complicated life is.

– John von Neumann

This appendix covers the simulation of stochastic differential equations, and in particular

the toy system in greater detail, including the code used to simulate the system. We begin

with a 1-D Langevin system and then move to the toy system presented in Chapter 2.

All code has been tested with Python 3.4.

A.1 Langevin in One Dimension

The simplest SDEs are Brownian motion and Langevin dynamics in one dimension. In one

dimension, Brownian motion is described by

d

dt
x(t) = ση(t)

Where η(t) is a Gaussian process with zero mean, variance σ2, and independent incre-

ments, i.e.

• 〈η(t)〉 = 0

• 〈η(t)η(t′)〉 = δ(t− t′)
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Figure A.1: Ten Brownian motion/Wiener process simulations over 100 time units.

With δ the Dirac delta function. Integrating yields the standard Wiener process, but our

immediate interest is in simulating paths. We can do so using the Euler-Maruyama method,

which yields

Yn+1 = Yn +
√
δtσ∆Wn

Where the ∆Wn are independent and identically distributed normal random variables

with expected value zero and unit variance. We can simulate several paths with
## Brownian Motion Simulation
## y is the simulated trajectory
import numpy as np

num_sims = 10
t0, t1, dt = 0, 100, 0.001
t = np.arange(t0, t1, dt)
sqrtdt = np.sqrt(dt)
y = np.zeros((t.size, num_sims))

for i in range(1, t.size):
y[i] = y[i-1] + sqrtdt * np.random.normal(loc=0.0, scale=1.0, size=num_sims)

Langevin dynamics in the diffusive limit are only slightly more complicated, we simply
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add a deterministic term representing the potential energy field to the equation of motion for

Brownian dynamics. Let U(x) represent the one-dimensional potential. Then the equation

of motion is
d

dt
x(t) = − d

dx
U(x) + ση(t)

We can use Euler-Maruyama again to get the discretized form

Yn+1 = Yn −
d

dY
U(Yn) +

√
δtσ∆Wn

This is the same as the discretized form of the equation of motion for Brownian motion,

with the addition of the deterministic spatial dependance on Yn due to the potential energy

field. We can simulate paths using
## Builds a 1D SDE system
import numpy as np

def build_SDE(dV, sigma):
# Builds a 1D Langevin IVP
# Assumes a Wiener measure (isotropic white noise)
# for the random component
# dV: derivative of the potential field,
# should take and return a float/double
# sigma: variance of the process (a free parameter)
def sde_model(t0, t1, dt, IC = None):

t = np.arange(t0, t1, dt)
rdt = np.sqrt(dt)
y = np.zeros(t.size)
if IC:

y[0] = IC
else:

y[0] = 0

for i in range(1, t.size):
y[i] = y[i-1] - dt * dV(y[i-1]) + \

sigma * rdt * np.random.normal(loc=0.0, scale=1.0)
return (t, y)

return sde_model

Now, consider a potential of the form

V (x) = −1
2e
−β(x−x0)2

108



Figure A.2: Graph of the potential energy function V (x) = −1
2e
−β(x−x0)2 and the negative

derivative of V (x). While the system is within the energy well, movement should tend
toward 0. The potential rapidly tends toward 0 outside of [−4, 4]. If the system escapes this
interval, dynamics will return to standard Brownian motion until the system falls back into
the potential well.

Where β ∈ R is an arbitrarily chosen constant. The potential is a Gaussian potential

well, corresponding to the physical idea of a local energy well. The potential has negative

derivative (and thus exerts a force proportional to)

− d

dx
V (x) = −β(x− x0)e−β(x−x0)2

A simulated path is shown in Figure 3, where the trajectory acts like a random walk

as observed with Brownian motion, but has a much stronger tendency to fall toward the

zero position due to the influence of the deterministic potential energy function. However,

when the random fluctuations drive the system away from zero toward positions where the

potential is weak, we observe that Brownian motion dominates. This is notably true around

the 600 time point where the system has drifted very far away, eventually returning to the

potential well by random walk. Additionally, as we expect from statistical mechanics, the

histogram of observed positions shown in Figure 3 approximates the shape of the inverse of
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Figure A.3: Simulation of the Langevin system with potential V (x) = −1
2e
−β(x−x0)2 showing

the trajectory over units of time on the top and the histogram of observed positions on the
bottom. The histogram reproduces the negative of the potential energy function near the
center of the well at x = 0 but the system performs a random walk in areas with little
influence from the potential.

the potential energy function.

Next let’s consider a more interesting potential function - two wells. Although simple, a

two-well system has two identifiable states and is capable of undergoing transitions between

the two states. This is the essential behavior we are interested in at the level of protein

dynamics.

Let our new potential take the form

V (x) = −1
2e
−β(x+3)2 − 1

2e
−β(x−3)2 + 4x2

This is a simple two well potential with an additional harmonic restraint around zero

to prevent the system from wandering away from the basic two-state set-up. The harmonic

restraint will essentially act as a ’differentiable box’, but is otherwise uninteresting for our

purposes. The potential has negative derivative
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Figure A.4: Graph of the potential energy function V (x) and − d
dx
V (x) for the double well

potential in a harmonic box. Shown with parameters α = 8, β = 1/8 and γ = 1/32.

− d

dx
V (x) = −β(x+ 3)e−β(x+3)2 − β(x− 3)e−β(x−3)2 − 8x

and the graphs of both potential and negative derivative are shown in Figure 4.

Figure 5 shows a realization of the system over the course of 1000 units of time. In

general, the system moves randomly in a narrow region about the potential local minima

at x0 = −3 and x1 = 3 with a tendancy to move toward the minima, as we would expect.

Occasionally the system jumps between the two wells driven by large random fluctuations.

As we observed for the single well system, the histogram of positions shown in Figure 5 is

proportional to the inverse of the potential energy function. Unlike the single-well system,

we don’t observe a random walk region, as the harmonic energy term prevents escape.

A.2 Toy System

In Chapter 2 we described a toy system: a massless particle undergoing 2-D Brownian motion

in a potential field. The toy system is Langevin dynamics in 2D, described by

dx

dt
= −∇U(x) +

√
2ση(t)
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Figure A.5: Single trajectory of double-well SDE with harmonic constraint (top) and his-
togram of positions visited (bottom). The trajectory moves randomly within the narrow
region of each harmonic well, with occasional large random fluctuations causing the system
to jump between the wells.

Where x ∈ R2, ∇ is the gradient operator, U(x) is the potential energy field, and η(t) is

a Gaussian process with the conditions that

• 〈η(t)〉 = 0

• 〈η(t)η(t′)〉 = δ(t− t′)

Where δ is the Dirac delta function.

The toy system is a first-order stochastic differential equation. The constraints on the

Gaussian process imply that the stochastic part of the SDE is pure diffusion with no drift

(first constraint) and has independent increments (second constraint). Furthermore, the

noise is isotropic, so spatial dependence is constrained to the potential energy term. We can

solve the SDE by integrating, and get

x(t)− x(0) =
∫ t

0
−∇U(x)ds+

√
2σ
∫ t

0
dWs,

112



where dWs = η(t)ds is a standard Wiener measure. Using the Euler-Maruyama approxima-

tion, we have the discretized form

Xn+1 −Xn = −∇U(Xn)∆t+
√

2σ∆Wn,

where Wn is a standard random normal variable with mean 0 and variance ∆t. Since the

noise is isotropic, we can draw random 2-vectors by simply drawing two random normal

variables. We simulate trajectories in Python with
## Builds an SDE system that steps through a trajectory
import numpy as np

def build_SDE(dims, gradV, sigma):
# Builds a simple Langevin IVP
# Assumes a Wiener measure (isotropic white noise)
# for the random component
# dims: number of dimensions in the system
# gradV: function that takes and returns an array of size dims
# sigma: variance of the noise in the model (a free parameter)
def sde_model(t0, t1, dt, IC = None):

t = np.arange(t0, t1, dt)
rdt = np.sqrt(dt)
y = np.zeros((t.size, dims))
if IC:

y[0] = IC
else:

y[0] = np.zeros(dims)

for i in range(1, t.size): # use xrange in Python 2.7
y[i] = y[i-1] - dt * gradV(y[i-1] + \

sigma * rdt * np.random.normal(loc=0.0, scale=1.0, size=dims)

return (t, y)
return sde_model

Chapter two described two potential functions, given by different parameterizations of

the potential given by U(x, y), defined

U(x, y) = 1
2 exp

(
−β(κ(x− x0)2 + y2)

)
− 1

2 exp
(
−β(κ(x− x1)2 + y2)

)
+ α(x2 + y2),

where α, β, and κ are parameters that control the shape of the potential, and x0 and x1

control the separation of the two wells on the x-axis. The last term is a harmonic potential for
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Figure A.6: Graph of the V (x, y) potential.

the purpose of constraining simulations to the region of interest. To perform the simulations,

we will also need the gradient of the potential, given by

∇U(x, y) =

βκ(x− x0)e−β(κ(x−x0)2+y2) + βκ(x− x1)e−β(κ(x−x1)2+y2) + 2αx

βye−β(κ(x−x0)2+y2) + βye−β(κ(x−x1)2+y2) + 2αy



We refer to the V (x, y) potential as the U potential with the parameterization α = 1
8 ,

β = 1
2 , κ = 16, x0 = −1, and x1 = 1. The V potential is shown in Figure 2.1, as two elliptical

potential wells with major axis along the y-axis and separated by a barrier along the x-axis.

Figure 6 shows a colormap of the potential energy surface with the wells centered on the

x axis at x = −1 and x = 1. The wells are anisotropic, with elongations along the y axis

and a transition boundary along x = 0.

We can inject the gradient into the solver and simulate via
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## 2-D SDE Simulation - Anisotropic Double Well and Harmonic Box (V Potential)
x0 = -1
y0 = 0
x1 = 1
y1 = 0

alpha = 1./8
beta = 1./2
kappa = 16

def V(x,y):
return (-1./2) * np.exp(-1 * beta * (kappa*(x-x0)**2 + (y-y0)**2)) + \

(-1./2) * np.exp(-1 * beta * (kappa*(x-x1)**2 + (y-y0)**2)) + \
alpha * ((x)**2 + (y)**2)

def gradV(v):
x = v[0]
y = v[1]
return np.array([

beta * kappa * (x-x0) * \
np.exp(-1 * beta * (kappa*(x-x0)**2 + y**2)) + \
beta * kappa * (x-x1) * \
np.exp(-1 * beta * (kappa*(x-x1)**2 + y**2)) + \
2 * alpha * x,

beta * y * np.exp(-1 * beta * \
(kappa*(x-x0)**2 + y**2)) + \

beta * y * np.exp(-1 * beta * \
(kappa*(x-x1)**2 + y**2)) +\

2 * alpha * y
])

sigma = np.sqrt(2)/4
sde = build_SDE(2, gradV, sigma)
t0 = 0
t1 = 200
dt = 0.001

t, results = sde(t0, t1, dt)

Figure 7 shows a trajectory of the 2D Langevin system subject to the V (x, y). The

trajectory primarily moves within the two wells, as expected, with movement between the

wells provided by random fluctuations just as with the 1D system. Figure 8 shows the

probability density of the system’s positions as estimated by a Gaussian kernel density

estimator. Unlike the close mirroring of the energy wells seen in the 1D systems, the kernel

density estimation allocates a lot more probability to the left energy well. This is due to
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Figure A.7: Trajectory of a single 200 time unit simulation of the toy system with the V (x, y)
potential with σ = 1/4. Trajectory is overlaid on contours of the potential energy surface.

insufficient sampling of the system, as the wells are perfectly symmetric and should have

equal occupancy in the limit of infinite data. As discussed in Chapter 2, this is one form of

the Curse of Dimensionality, occuring here in the increased sampling needed to explore both

wells in a 2D setting, as well as the increased computational cost of simulation. Nevertheless,

the kernel density estimator accurately captures the topology of the wells and their transition

region, which is ultimately the main information we want to extract in the full setting of

protein dynamics.

We refer to the second toy system potential as the W (x, y) potential energy function.

The W (x, y) potential is defined as the U potential field with parameterization α = 1
8 , β = 1

2 ,

κ = 48, x0 = −0.25, and x1 = 0.25. This potential is very nearly identical to V , with the

potential wells elongated along the y-axis and brought closer together, yet still separated by

a barrier along the x-axis.

Simulation of the W (x, y) system is handled identically to the V (x, y) system, swapping

out the gradient function for the gradient of W (x, y), which is just a change of the constant

parameters in the python code. A trajectory of the W (x, y) system is shown in Figure A.10

which shows similar behavior as the V (x, y) system.
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Figure A.8: 2D probability density of the positions occupied by the trajectory of the simu-
lation with the V (x, y) potential and σ = 1/4. The density was generated by kernel density
estimation using a Gaussian kernel and Scott’s rule. The density resembles the potential en-
ergy surface, but finite sampling error has caused the right well at x = 1 to be undersampled
compared to the left well at x = −1.

Figure A.9: Graph of the W (x, y) potential energy function.

117



Figure A.10: Trajectory of a single 200 time unit simulation of the toy system with the
V (x, y) potential with σ = 1/4. The trajectory is overlaid on a contour plot of the potential
energy surface.
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APPENDIX B

NONLINEAR DIMENSIONALITY REDUCTION AND

MOLECULAR DYNAMICS

Chapter 2 presented two dimensionality reduction techniques, Principal Component Analysis

and time-structured Independent Component Analysis. Both of these methods fall into the

class of linear dimensionality reduction techniques, methods that transform a data set to

a lower dimension, typically taking data with values in Rn to values in Rm with m < n.

The fundamental goal of dimensionality reduction techniques is reduce the dimension of the

space while losing as little information as possible, ideally the dimensions that are discarded

are only noise. This is useful in both the context of exploratory data analysis, where an

investigator is working with the data to determine patterns or using automated data mining

tools, but is also useful when applying other machine learning techniques. Many machine

learning methods are brittle to noise and overfitting, and similarity and distance metrics

tend to behave poorly in high dimensions, as described at the end of Chapter 2 and in

Appendix B. Reducing the dimensionality to 2 or 3 can be particularly valuable in exploratory

analysis, where visualization is possible – though subject to bias, the human visual system is

extraordinarily powerful and direct visualization of the data can be cruicial to investigator

understanding of the data and interpretation. Of purely practical value, dimensionality

reduction also reduces the workload of future processing by reducing the size of that data

that needs to be processed. Dimensionality reduction is thus vital to working with high

dimensional data.

Linear techniques reduce the dimension by projecting into a linear subspace of the original

data space. The reduced space has a direct and clear connection to the original space, often

improving the intuitive meaning of results, and making it simple to project new data points
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Figure B.1: The Swiss Roll, a canonical example of a 2D data set non-linearly embedded in
3D Euclidean space. Data generated using scikit-learn datasets generator.

onto the reduced space by simply applying the linear projection. When appropriate, linear

techniques are preferred; they are robust and generally very fast.

Unfortunately, data is often not so accomodating. Often it is the case that data is

generated by a process that lives on a manifold, or something even more complex, and

does not neatly decompose into linear combinations of the variables studied. As a simple

example, consider the classic Swiss Roll data set, which is the 2D plane rolled up, and which

is presented in standard Euclidean space; an example is shown in Figure 5.1. This is clearly

a 2D data set, however because it embedded in 3D space in a manner that cannot be linearly

projected, linear dimensionality reduction techniques fail to capture the shape of the data.
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Figure B.2: Data drawn from two clearly distinguishable circular distributions that are not
linearly separable in the plane, and hence cannot be clustered by a linear clustering method
such as k-means. Data generated using scikit-learn datasets generator.

The mathematical details of manifolds are deep and outside the scope of this text, but for

understanding the algorithms laid out here, it suffices to understand a manifold to be a space

where for any given point, we can find a small region around that point where everything

behaves like Euclidean space.

A similar problem occurs in clustering, as mentioned in Chapter 2, where clusters are

grouped in a manner that is not linearly seperable, such as the data set consisting of two

rings shown in Figure 5.2. Non-linear dimensionality reduction techniques are applicable

here as well, as the methods search for non-linear transforms of the data – simply setting

the target output dimension equal to the input dimension can find a non-linear transform of

the data the matches the ’shape’ of the data, so that the output becomes linearly separable.

Given the complexity of molecular dynamics data, it comes as no surprise that non-

linear dimensionality reduction appears a useful tool, though the literature on the topic is
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somewhat sparse, perhaps indicative of the somewhat esoteric combination of disciplines

involved. In practice, we find that the promises of non-linear dimensionality reduction do

not hold particularly well. This chapter details thus details some non-linear dimensionality

reduction methods, and the misadventures experienced applying them to MD data on the

2C T cell receptor, culminating in a theoretical proposal for future work that might do

better. Previous work has been done before using Isomap, Locally Linear Embeddings, and

Autoencoders to study the reconstruction error of an 8-member ring, finding Autoencoders

to be the most effective overall1.

B.1 Isomap

Isomap is an extension of Multidimensional scaling (MDS), the simplest form of which is PCA

as described in chapter 2. Isomap augments MDS by changing the distance metric of MDS,

rather than compute a direct pair-wise distance matrix, Isomap computes an approximation

to the geodesic distance between points as determined by the underlying manifold that

generates the data. Since the data is presumed to lie on a manifold structure, the geodesic

distance between nearby points is approximately the standard Euclidean metric. A graph is

constructed taking the data points as vertices, and edges are drawn between each vertex and

it’s k nearest neighbors, where k is an input parameter of the algorithm. The edge weights

are the Euclidean distance between the data points. From this graph, the geodesic distance

between two points is approximated by the shortest path distance between the two vertices

representing those data points on the graph. This construction empirically approximates

the geodesic distance as the path passes through the different local maps making up the

manifold atlas.

The main weakness of Isomap is ’short-circuiting’, in which two points are joined by the

nearest neighbor search that should be separated due to noise or too large of a selection of

1M.W. Brown et al.: Algorithmic dimensionality reduction for molecular structure analysis, in: J. Chem.
Phys. 2008.
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k relative to the data density. This creates an incorrectly short path between two distinct

regions of the manifold, and warps the geodesic distance measurements, potentially of much

of the data. This has two major downsides, one is straightforward susceptibility to noise in

the data, the other is more subtle: if the data is not evenly sampled at each region, then

the choice of k has to follow the most poorly sampled region. Furthermore, short-circuiting

can result from a single noisy datapoint, making it particularly weak to the presence of

outliers. Somewhat unsurprisingly, Isomap performs rather poorly for MD data; much of

the machinery of the MSM approach is specifically dedicated to avoiding linking kinetically

unrelated regions, while small perturbations can cause Isomap to ignore kinetic barriers.

B.2 Locally Linear Embedding

Locally linear embedding is conceptually like applying PCA to small patches of the data,

finding a linear projection of each path and then gluing these locally linear patches together to

transform the whole data set. The idea arises from the fact that PCA has historically proven

to be an effective tool for linear dimensionality reduction, and manifolds behave locally like

Euclidean space, so for a small enough region around any given data point, PCA finds a linear

projection that well approximates the manifold structure. LLE is surprisingly effective for

MD data; the major problem encountered in applications to TCR data was brittleness with

respect to input parameter perturbation. The output results can change, sometimes wildly,

with only small changes in input parameters; future use demands validation and parameter

selection methods to make analysis practical and assure the investigator against spurrious

results.

An intriguing idea is to consider LLE as a kernel method, in which it may be possible to

design a variant of LLE that performs a local tICA calculation rather than PCA. Doing so

may keep the valuable aspects of tICA for molecular dynamics analysis, while allowing for

non-linear transformations.
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B.3 Diffusion Maps

Diffusion maps bears similarity to a combination of Isomap and a simplified version of the

MSM machinery; diffusion maps approximates a geodesic distance between data points by

constructing a graph, as Isomap does, but computes distances as the result of a random walk

on the data. This renders diffusion maps more robust to noise and immune to the outlier ef-

fect that plagues Isomap – a short-circuiting outlier only creates a single low-probability path-

way, and so doesn’t contribute much weight to distance measurement, which is a weighted

average over the paths between two points.

Diffusion maps struggles with MD data because MD data has locally varying spatial

structure, which diffusion maps doesn’t capture as it uses a fixed size kernel across all data.

The Markov State Model method finds multi-scale models by using the microstate clusters

as a fine discretization of the phase space, followed by adjustable coarse-graining of that

data, as well as allowing for varying time-lags. This flaw of diffusion maps for molecular

dynamics was addressed by adaptively varying the kernel size based on the data, however,

the resulting method is computationally expensive, indeed early implementations by the

thesis author showed several orders of magnitude more computation time on small test sets

than other methods. Combined with super-linear scaling, the method, although promising,

is too expensive for practical use, particularly as the computation resources required are of

a magnitude that they would be more likely to be better spent on producing more data and

using a simpler method. In the limit of sufficient data, nearly any method will eventually

suffice, and certainly the combination of tICA and MSMs are highly effective in the data-rich

regime, while consisting of an efficient processing pipeline.

B.4 Autoencoders

Autoencoders are a form of Artificial Neural Network, where the network attempts to learn

the identity function to transform the data – the network is trained to output its input.
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The network learns important features of the data through one or both of two techniques,

reduced hidden layer size or regularization, both of which have the effect of forcing the

network to learn an encoding and decoding of the data. After training, the decoding layers

are stripped from the network, and the encoding layer can be used as a feature extraction

or dimensionality reduction tool, and have shown effective results in other fields such as

document analysis2. When applied to MD data, autoencoders showed the best reconstruction

results compared to Isomap, LLE, and PCA3.

B.4.1 Connections to tICA

Second-order independent component analysis, that is, tICA, in k dimensions can be rep-

resented by a recurrent neural network with k neurons4. Recurrent neural networks are

of course significantly more powerful than the feed-forward network model of an Autoen-

coder, however, denoising autoencoders are known to be capable of manifold learning5, and

feed-forward architectures have been used to model time-delay learning using input layers

divided into ’present’ and ’future’ inputs with excellent results in video using convolutional

networks6.

2G.E. Hinton/R.R. Salakhutdinov: Reducing the Dimensionality of Data with Neural Networks, in: Sci-
ence 313 (2006).

3Brown et al.: Algorithmic dimensionality reduction for molecular structure analysis (see n. 1).
4L. Molgedey/H.G. Schuster: Separation of a Mixture of Independent Signals Using Time Delayed Cor-

relations, in: Physical Review Letters 72.23 (1994).
5P. Vincent et al.: Extracting and Composing Robust Features with Denoising Autoencoders, tech. rep.

1316, Université de Montrèal.
6A. Karpathy et al.: Large-Scale Video Classification with Convolutional Neural Networks, in: IEEE

Conference on Computer Vision and Pattern Recognition, 2014.
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APPENDIX C

SIMULATION AND ANALYSIS DETAILS

This appendix briefly covers the specifics of the MD simulations used to produce the data

set in this work, and the analysis parameters.

C.1 Molecular dynamics simulations

All simulations were carried out using the Amber14 package. Input coordinates were pre-

pared from PDB files 1TCR (2C) and 2EYS (NKT15), truncated to the variable domains and

prepared using pdb4amber processing scripts. These structures were solvated with TIP3P

waters in an octohedral unit cell at 12 angstroms, neutralized with NaCl at 150mM con-

centrations, and parameterized using the AMBER99SB forcefield and Joung/Cheatham ion

parameters using xleap. Two rounds of 2000 steps of minimization were carried out, first

with restraints on the protein, and then secondoly without restraints. These minimized states

were the initial seeds for each of the ten trajectories run our for each of 2C and NKT15.

Each trajectory was set to 300K through initial velocity randomization, and allowed to equi-

librate in NPT for 10ns using a Langevin thermostat (γ = 1) and the Amber Monte Carlo

barostat at 1 atm, allowing the trajectories to diverge independently. All data presented in

the analysis was collected following the 10ns equilibration stage, with each trajectory run for

an additional 300ns (2C) or 100ns (NKT15) using SHAKE to allow 2fs timesteps. Calcula-

tions were performed using the CUDA-enhanced pmemd Amber module on the University

of Chicago’s Midway cluster, utilizing either K20 or K40 Tesla GPUs.
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C.2 Data processing and dimensionality reduction

Raw simulation data was processed using cpptraj to re-image the system and extract protein

data. Structure alignments and RMSD calculations were carried out using VMD. Hydrogen

bonds were determined with a 3.2 angstrom distance cutoff and 20 degree angle cutoff in

VMD. Further data processing used custom Python scripts with trajectory featurization

and data handling provided by the MDTraj library. We used the MSMBuilder3 library to

perform tICA analysis, clustering, and Markov state model generation as described in their

sections. Kernel density estimates were calculated using the gaussian kde module from the

Scipy library; kernel bandwidth was selected automatically using Scott’s Rule.

C.3 Markov state model construction

Our analysis follows the procedure outlined in Chapter 3 for building MSMs from MD data.

Our initial data was taken from the MD simulation by extracting the CDR3α and CDR3β

loops as independent datasets. The datasets were featurized as dihedral angles, so that the

actual analyzed data is the set time-series of φ and ψ angles for each of CDR3α and CDR3β.

Taking the dihedral angles eliminates variation due to whole protein motion and minimizes

the effect of individual domain drift. The tICA decomposition and projection were applied

to these φ/ψ angle time-series. The first 16 degrees of freedom determined by the tICA

decomposition were used for clustering; we applied the k-medoids algorithm as described

in Chapter 2 using the Euclidean distance metric after the tICA projection. The first 16

degrees of freedom were chosen as they account for > 90% of the energy of the eigenvalues

(eigenvalues are shown in Figure C.1).

After clustering, a microstate Markov models are generated by estimation of a state tran-

sition matrix using Maximum Likelihood Estimation (MLE). The estimator used a sliding

window to maximize the data available for estimation; the algorithms used in MSMBuilder3

correct for the non-independence of the sliding window. Fictional transition counts were
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added to smooth numerical issues, on the order of 0.1, yielding minimal perturbation of the

model but preventing extensive noise as the timelag varies. Models were constructed over a

series of timelags as shown in the implied timescale analysis in Chapter 4 (figure 4.2). The

final choice of timelag was determined by finding the smallest timelag where the slowest

degrees of freedom showed convergence to a local stable value, graphically where the curves

appear to flatten out.

The final macrostate Markov model, which is described in Chapter 4, was extracted

from the microstate model by Perron Cluster Clustering Analysis, as detailed in Chapter 3.

PCCA serves to construct the macrostate clusters themselves, acting a clustering algorithm

for the data that relies on the kinetics of the microstate model. The transition matrix for

the macrostate model was estimated directly from the time-series of the macrostate cluster

assigned data frames, and the microstate model is discarded after the macrostate cluster

assignments are generated.

In the models presented, CDR3α data was clustered into 16 clusters and CDR3β data was

clustered into 32 clusters for building the microstate models. The numbers of clusters chosen

were those that showed good coverage of the state space spanned by the two-dimensional

projection of the data under tICA, and therefore could be inspected visually, and were low

enough to provide reasonable statistics and convergence in building the microstate MSMs.

Despite this, CDR3α did not show convergence under any selection of clustering parameters;

the simplest interpretation is insufficient data to capture the very slow motions of the CDR3α

dynamics. Macrostate assignment was via the PCCA+ algorithm, which is a more robust

variant of the standard PCCA algorithm. The CDR3β microstate model was built with an

8 nanosecond timelag, and clustered into four macrostates as indicated by inspection of the

implied timescales graph (figure 4.2B) and the four local maxima that appear in the kernel

density estimate of the data projected under the first two degrees of freedom of tICA (figure

4.1).
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