THE UNIVERSITY OF CHICAGO

STATISTICAL LEARNING MODELS OF T CELL RECEPTOR DYNAMICS

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
AND
THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES
AND THE PRITZKER SCHOOL OF MEDICINE
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN BIOPHYSICAL SCIENCES

BY
JAMES CROOKS

CHICAGO, ILLINOIS
DECEMBER 2015



Copyright (©2015 James Crooks
All Rights Reserved



To Ashley Lane and my family, for all your love and support.



“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where-" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“-s0 long as I get SOMEWHERE,” Alice added as an explanation.
“Oh, you're sure to do that,” said the Cat, “if you only walk long enough.”
— Lewis Carrol, Alice in Wonderland

“The future is a lens,
where things appear,
clear”

— Iris, Wayseer



ABSTRACT

In this thesis we study the dynamics of the CDR3 loops of the T cell receptor (TCR).
The TCR is the protein responsible for mediating the recognition of signs of infection in
the T cell, a cornerstone of the adaptive immune system. The CDR loops are responsible
for this recognition process, and years of crystallographic work have shed immense light on
their interactions with antigens. However, the dynamics remain difficult to study, and the
relationship between the flexibility of the loops, their motions, and their interaction with
antigen is still poorly understood. Here, we have simulated the dynamics of two different
TCR systems with molecular dynamics, and applied machine learning and signal processing
technologies to pull apart the dynamics. This thesis gives a detailed background the analytic
methods, and then applies them to the dynamics of the 2C and NKT15 TCR clones.

A central question of the thesis asks if the CDR3 loops are flexible in solution and whether
they demonstrate stable conformations in the absence of the environment of an antigen
the TCR recognizes. Our main results are that the loops demonstrate restricted, coherent
motion in solution, and that there exist distinct, stable clusters of conformations, states, of
the CDR3 loops. The system undergoes transitions between these distinct conformational
clusters, and this transition can be described as Markov system, providing a high level view
of the dynamics. Furthermore, the simulation captures known crystallographic bound states.
Finally, we show evidence for more restricted and simplified CDR3 motions in the NKT15
TCR clone, which is a TCR with more ‘innate-like’ behavior, in contrast to the more complex

motion of the 2C clone’s CDR3 loops, despite their similar architecture.
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PREFACE

The adaptive immune system faces a fundamentally difficult problem: correctly identifying
signs of infection in a noisy environment, and where the antigen being presented has never
been seen by the immune system before.

The T cell receptor (TCR) recognizes antigens presented to it on the surface of cells by
MHC and MHC-like proteins. It must do so in an environment where most of the would-
be antigens presented to the TCR are presentations of self-molecules, all of the antigens
are presented in the context of a self-protein presenter, and where triggering a self-immune
response could be deadly for the organism, but failure to respond to a non-self antigen could
be equally deadly. Furthermore, if only for logistical reasons, T cells and therefore T cell
receptors must be able to both identify different MHCs, which are polymorphic, and different
peptides presented by these MHCs, referred to as cross-reactivity, unlike the specific, potent
interactions of antibodies.

The difficulty of understanding the fine dynamics of the T cell receptor is not unique.
It is an understatement to say that protein dynamics are complicated. Despite the simple
assumptions of Newtonian mechanics, molecular dynamics simulations produce immense
amounts of data that, at least naively, live a high dimensional phase space. Physical intution,
such as the use of dihedral angle descriptions, and willful ignorance, ignoring the fine motions
of solvent, let us reduce the phase space when we analyze the data. Nevertheless, we are still
left with mere hundreds of dimensions for our phase space, down from thousands. Thus, we
turn to the tools of statistical learning and model-building, creating simplified models of the
data our model produces so we can extract meaning from the mess of raw numbers.

I have two major goals in this work. The first is to apply these tools to simulations of

example T cell receptors with the goal of understanding the flexibility of the CDR loops. In



particular, I wish to thoroughly understand one particular aspect of this flexibility: are the
loops well structured? By this, I mean to ask whether the loops are flexible in the way that
a rope is flexible, capable of bending and flexing essentially anywhere along it’s length, or
are the loops flexibile in a way more akin to a human dancer, demonstrating flexibility at
key joints that together choreograph an elegant dance. The nature of the protein backbone
leads us to imagine the latter, but then how is the system choreographed? Can we identify
states of the system, poses that it adopts during it’s dance and then holds before moving
to the next position? Do such poses even exist? Or are there just hinges that swing a lever
arm back forth until contact with a target is made?

I will argue for the existence of stable collections of poses, clusters of conformations that
are sufficiently similar to one another and which the protein adopts for extended periods of
time. These clusters constitute states that we can interpret and understand in a manner
analogous to crystal structures, though rather than investigate specific interactions, I will
consider the statistics over these states, getting an idea of the general behavior tendency of
individual states. Modeling the system as small sets of clusters, we can also extract probable
pathways between these states, finally addressing the question of flexibility in a visualizable,
intuitive manner.

The second major goal of this work is put forward the T cell receptor as a challenge.
In machine learning and many fields of methods development, it is common to demonstrate
that a novel method works incredibly well on one or a handful of test systems, and then
announce victory. Then, when it comes time for the practitioner to apply this method to his
or her system, it fails, often in unexpected ways. The states of the T cell receptor loops that
I will pick apart are small, subtle re-roganizations of the backbone of two small, peptide-
like segments of the protein. The system is therefore ultimately small, but it’s motions are
subtle compared to, for example, a folding event. This makes the TCR an excellent system
to explore as a test of statistical learning techniques applied to protein dynamics, and a

tractable system that exhibits complex but structured, low-dimensional dynamics embedded



in a high-dimensional system (as this report will demonstrate). I hope to convince the
methodologically-oriented reader that the TCR would make an excellent choice of target

once the usual toy and test systems are finished.



CHAPTER 1

INTRODUCTION

Broadly speaking, the vertebrate immune system consists of two primary sub-systems, the
innate and adaptive immune systems. The adaptive immune system’s role is to generate
specific immune responses against pathogens in response to exposure to a novel pathogen,
and to retain memory of the pathogen for future responses to that pathogen. The primary
mediators of the adaptive immune response are B and T cells, responsible for antibody
production and cell-mediated immune responses, respectively. We focus on the role of the T
cell, and in particular on the T cell receptor (TCR), a membrane bound protein expressed
on the surface of T cells that mediate T cell recognition of pathogens and stimulate the T

cell immune response. Figure 1.1 shows the structure of the 2C TCR clone!.

1.1 T Cells and the T cell receptor

T cells are lymphocytes derived from haematopoietic stem cells in the bone marrow that
mature in the thymus (hence T cell) before release into the peripheral blood stream. T cells
are distinguished from other lymphocytes by expression of the T cell receptor, a membrane
bound heterodimeric protein. T cells fall into several classes each of which serve different
roles in the immune system depending on the expression of either o and 3 or v and § chains
of the T cell receptor and expression of CD4, CD8, or NK1.1 that differentiate a5 T cell
receptor roles, with a3 CD4" or CD8+ forming the most common group of T cells in human

peripheral blood.

'K.C. Garcia et al.: An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC
complex. In: Science 274 (1996), pp. 209-219.



Figure 1.1: Structural view of the 2C TCR (PDB: 1TCR). The recombined CDR3« and
CDR3/ loops are highlighted in purple.

Similar to B cells, T cells achieve adaptive behavior through somatic recombination of
the T cell receptor, analogous to recombination in the generation of antibodies. However,
unlike antibodies that are specific to a particular molecular surface, TCRs must recognize
the combined surface of an antigen presented in the context of a self-protein, canonically this
is the presentation of a viral-genome derived peptide presented by Major Histocompatibility
Complex (MHC) class I or class II, polymorphic proteins responsible for presenting peptide
antigens, though non-virally derived peptides may be presented through other routes. Figure
1.2 shows a structural view of the 2C clone bound to a peptide-MHC ligandf?. In addition
to peptide presentation by MHC, T cells recognize lipids and glycolipids presented by CD1la

and CD1d, MHC-like molecules; more exotic recognition processes include specific protein

2M. Degano et al.: A functional hot spot for antigen recognition in a superagonist TCR/MHC complex,
in: Immunity 12 (2000).



surfaces by 76 T cells® and recognition of small molecules presented by MR1%, though these
more exotic recognition behaviors occur in T cells that are more similar to innate immune
system than the adaptive. Here, we are only concerned with a8 T cells, primarily with the
classical class that expressed CD4 or CDS8, though we will touch on the behavior of the NK
T cell which expresses NK 1.1 and recognizes lipids presented by CD1d®. TCR recognition
of pMHC or another Ag-Presenter complex occurs through binding at the Complementarity
Determining Region (CDR) of the TCR, a set of six loops, three contributed by each of the «
and (3 (or v and ¢) domains. The loops are referred to by number and domain, e.g. CDR1e,
CDR14, etc. CDR1 and CDR2 loops are directly encoded by the variable domain gene
sequence, while the CDR3 loops undergo somatic recombination during T cell maturation

in the thymus.

1.1.1 T cell maturation and MHC recognition

The process of T cell maturation in the thymus is intimately tied to the primary function of
peptide-MHC recognition. TCRs need to recognize the peptide-MHC presentation of foreign
antigen and ignore peptide-MHC presenting self-peptides; the release of self-peptide recog-
nizing TCRs into the peripheral blood can cause autoimmune reactions. T cells maturing in
the thymus undergo two selection processes, positive and negative selection, to ensure that
TCRs are not autoreactive, but also sufficiently able to recognize peptide-MHC, including
self-peptide presenting pMHC, that the TCRs do not ignore all potential antigens presented
to them. Additionally, because of the enourmous set of possible antigenic sequences, and

the polymorphism of the MHC proteins that must bind and present the antigen peptides,

3A. Sandstrom et al.: The B30.2 domain of Butyrophilin 3A1 binds phosphoantigens to mediate activation
of human Vy9V§2 T cells, in: Immunity 2014.

4J. Lopez-Sagaseta et al.: The molecular basis for MAIT cell recognition of MR1, in: Proceedings of the
National Academy of Sciences of the United States of America 2013.

5J. Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells, in: Nature Reviews
Immunology 12 (2012), pp. 845-857.



Figure 1.2: Structural view of the 2C TCR (cyan) bound to the 2-K® MHC (grey) presenting
the SIYR peptide (green) (PDB: 1G6R). CDR3 loops shown in purple.

TCRs are cross-reactive with different pMHC complexes®. This a major difference from
the very specific interactions that define antibody target recognition. Cross-reactivity is a
major reason to expect loop flexibility and alternative conformational states, as different
conformations enhance interactions with different pMHC complexes.

The conventional class of a8 T cells expressing either CD4 or CD8 begin in the thymus as
CD4~/CD8~ ('double negative’) T cells. These cells express a germline encoded variable do-
main « and 8 chain, and the domains selected establish the amino acid sequence of the CDR1
and CDR2 loops of both chains. Recombination leads to diversity in the CDR3 segments of
both « and (3 chains. At the double-negative state, the process of V-D-J recombination by

RAG1 and RAG2 proteins generates a repertoire of 5 chain sequences. Mutational studies

6Don Mason: A very high level of crossreactivity is an essential feature of the T-cell receptor, in: Im-
munology Today 19.9 (1998), pp. 395-404, URL: http://dx.doi.org/10.1016/S0167-5699(98)01299-7;
A K. Sewell: Why must T cells be cross-reactive?, in: Nature Reviews Immunology 12 (2012), pp. 669-677,
URL: http://www.nature.com/nri/journal/v12/n9/abs/nri3279.html.



in mice have demonstrated that this is a necessary step, without 3 chain rearrangement”,
T cells do not proceed to the double-positive CD4"/CD8 stage and the thymus shrinks
60-fold®. Successful rearrangement that results in ligand (pMHC) engagement allows pro-
gression to the next stage, ensuring that the T cells that progress are capable of engaging
pMHC. This triggers differentiation into the double-positive stage, and proliferation of the
cells that pass the checkpoint?.

Double-positive T cells in the thymus then undergo negative selection, which serves to
protect against autoimmunity. V-J recombination occurs in the « locus, leading to a reper-
toire of CDR3a sequences. The double-positive T cells with recombined o and 3 segments
are exposed to 'ubiquitous’ self-peptide antigens by professional antigen presenting cells'®,
which seem to be a mixture of thymus cortical dendritic cells and cortical thymic epithelial
cells'!. Those double-positive T cells that demonstrate high-affinity for self-peptides are

killed, deleting the self-recognition sequences from the T cell clonal repertoire.

Structural and Dynamic implications of Thymic Selection

The CDR3S sequence undergoes V-D-J recombination and is selected for pro-binding be-
havior, it reasonably follows that the CDR3/ would be biased toward recognition and more
promiscuous binding of peptide targets. Furthemore, recombination with diversity (D) seg-

ments is biased towards in the inclusion of glycine residues'? which generally increase the

7Y. Shinkai et al.: RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J re-
arrangement, in: Cell 1992; P. Mombaerts et al.: RAG1-deficient mice have no mature B and T lymphocytes,
in: Cell 1992.

8E. Robey/B.J. Fowlkes: Selective events in T cell development, in: Annu. Rev. Immunol. 1994.
9Ibid.
10Tbid.

HT,. Klein et al.: Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t
see), in: Nature Reviews Immunology 2014.

12E.Q. Roldan et al.: Different TCRBV genes generate biased patterns of V-D-J diversity in human T
cells, in: Immunogenetics 1995.



flexibility of protein regions as they become more common due to the lack of steric clashes
from sidechain interactions — glycine motions are effectively only due to long-range stressors
on the backbone orientation and very close hydrogen bonding interactions. On the other
hand, CDR3«a only undergoes V-J recombination, and so lacks the bias toward more flexible
motion and faster dynamics implicated by glycine-rich regions. The negative selection pro-
cess would presumably bias the CDR3a toward dynamics that reduce binding affinity, fitting
with the slower dynamics and possible ’on’-’off” switch behavior observed in simulations of

2C (this work) and A6'2.

1.2 Crystallography of a8 T cell receptor recognition

Over two decades of crystallograpic work have generated a large database of TCR structures,
both free and bound to various foreign and self-reactive peptide-MHC complexes demon-
strating significant variation in bound structure that show CDR loop flexibility as vital to
TCR cross-reactivity. Reviews of the structural data over the years have concluded, with
increasing conviction, that the CDR loops are flexible but in a structured manner distinctly
different from the intrinsically disordered regions seen some other proteins'*. Furthermore,
general flexibility is restricted to the CDR3 loops, even under extreme changes to CDR3
loop length!®.

A large range of re-arrangements are seen in the CDR3a and CDR3/ loops between the

bound and unbound states of different TCRs, with the re-arrangements varying with the

13D.R. Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-
reactivity, specificity, and binding mechanism, in: Journal of Molecular Biology 414 (2011).

MK.C. Garcia/E.J. Adams: How the T cell receptor see antigen - a structural view, in: Cell 122 (2005);
M.G. Rudolph/R.L. Stanfield/I.A. Wilson: How TCRs bind MHCs, peptides, and coreceptors, in: Annual
Review of Immunology 24 (2006); K.M. Armstrong/F.K. Insaidoo/B.M. Baker: Thermodynamics of T-cell
receptor-peptide/MHC interactions: progress and opportunities, in: Journal of Molecular Recognition 104
(2008); Brian M. Baker et al.: Structural and dynamic control of T-cell receptor specificity, cross-reactivity,
and binding mechanism, in: Immunological Reviews 250 (2012), URL: http://onlinelibrary.wiley.com/
doi/10.1111/3j.1600-065X.2012.01165.x/full.

15].B. Resier et al.: CDR3 loop flexibility contributes to the degeneracy of TCR recognition, in: Nature
Immunology 4 (2003).



Figure 1.3: Variable domains (grey) of 2C shown from the perspective of the pMHC surface.
CDR3 loops shown in color, with unbound loops (cyan, PDB: 1TCR) overlaid with CDR3«
and CDR38 loops of 2C bound to MHC/peptide ligands H-2K’/SIYR (red, PDB: 1G6R),
H-2L¢ (blue, PDB: 2019), and H-2K®/dEVS (green, PDB: 2CKB).

10



particular peptide-MHC ligand. CDR3/ generally shows the largest variation in position,
with up to 8 angstrom changes in Ca position of tip residue observed; on the other hand
CDR1pS and CDR2S generally show the least movement, suggesting the germline encoded
[ chain residues primarily function to bind the MHC platform itself, fitting with the posi-
tive selection process and crystallographic footprints!®. Small changes in sequence can also
induce significant changes in bound state, as several point mutants in CDR3« of 2C have
demonstrated significant re-arrangement of the a loop'”.

Focusing on 2C specifically, which is the focus on the present work, Figure 1.3 shows
alignment of 2C variable domains to several bound crystal structures!®. Both CDR3 loops
show variation between the bound and unbound states, as well as variation within the bound
states. Note however that CDR3a makes crystal contacts due to packing in the unbound
structure, making the unbound orientation of CDR3« indeterminate, though the local energy
well of the apparent unbound state is broad and well-separated from the bound states in our

data, and a similar difference is observed in simulations of A6Y.

1.3 TCR signaling and kinetic proofreading

The exact mechanics of TCR signaling remain an open problem, but the kinetic proofreading
model provides a good phenomenological model of the signaling process, and fits with the

understood biology. Kinetic proofreading (KPR) is a model originally proposed for enzymatic

16 Armstrong/Insaidoo/Baker: Thermodynamics of T-cell receptor-peptide/MHC interactions: progress
and opportunities (see n. 14).

ITK.C. Garcia et al.: Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC
antigen, in: Science 1998.

BGarcia et al.: An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC
complex. (seen. 1); Degano et al.: A functional hot spot for antigen recognition in a superagonist TCR/MHC
complex (see n. 2); L.A. Colf et al.: How a single T cell receptor recognizes both self and foreign MHC,
in: Cell 129 (2007); Garcia et al.: Structural basis of plasticity in T cell receptor recognition of a self
peptide-MHC antigen (see n. 17).

19GQcott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13).

11



reactions that must differentiate between correct and incorrect reaction pathways. In KPR,
the reaction uses a time-delay in the form of the kinetics of a multistep reaction to improve the
error rate beyond what would be expected from the free energy difference of the outcomes®.
TCR signaling proceeds by multi-step phosphorylation of the T-cell receptor ¢ chain?!, acting
as a signal amplifier circuit described by the KPR model, and effectively describing the basic

22 This view over-simplifies the process of TCR signaling, but to

TCR signaling process
first order it shows the importance of kinetics over direct affinity measurements; biochemical
experiments have shown that for many TCRs, signaling is well-correlated with the binding
dwell time half-life, though this correlation is not universal, leading to debate between k¢
and Kp being of primary importance?®. A major contribution of more recent KPR models
of TCR signaling is explaining pMHCs that act as antagonists of signaling, effectively by
competing for binding but with sufficiently fast off-rates that the signaling process fails to
complete and resets instead, blocking activation by slower off-rate binders®*. The upshot of
KPR as a signaling model for TCR activation is that when considering the physical dynamics

of the TCR, we are interested in how the time scale of binding events and which model of

TCR-pMHC interaction fits with the observed kinetics.

20J.J. Hopfield: Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes
Requiring High Specificity, in: Proceedings of the National Academy of Sciences of the United States of
America 1974.

2IR.N. Germain/I. Stefanové: The Dynamics of T Cell Receptor Signaling: Complex Orchestration and
the Key Roles of Tempo and Cooperation, in: Annu. Rev. Immunol. 1999.

22T.W. McKeithan: Kinetic proofreading in T-cell receptor signal transduction, in: Proceedings of the
National Academy of Sciences of the United States of America 1995.

23].D. Stone/A.S. Chervin/D.M. Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell
activity and specificity, in: Immunology 2009.

24P, Francois et al.: Phenotypic model for early T-cell activation displaying sensitivity, specificity, and
antagonism, in: PNAS 2013.
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1.4 Models: Induced Fit, Conformational Selection, and

Conformational Melding

Ultimately, we are interested in the flexibility of the CDR loops because we are interested in
how TCRs bind to pMHC and physical mechanisms, including loop flexibility and dynamics,
by which TCRs differentiate self from non-self. Several models exist, which we refer to as the
Induced Fit?, Conformational Selection?®, and Conformational Melding models?”. The issue
of flexibility is not whether it occurs at all, but rather how much is intrinsic to the CDR3
loops themselves, and how much is driven by the environment. This question is expressed

in the tension between the induced fit and pre-existing equilibrium models of TCR binding.

Induced Fit Model

The induced fit model argues for initial weak binding between the TCR and MHC which
allows for a conformational change to make stronger contacts resulting in a higher affinity
interaction with recognized peptides. The Induced Fit model is the most well-supported from
biochemical evidence; structural evidence is inconclusive as we can’t know if the observed
differences are due to the binding process inducing the conformational changes or if they are
selected from pre-existing equilibrium states. ITC experiments have shown heat capacity
and entropy changes upon binding, while binding analysis with varying temperature have

shown the both association and dissociation depend on temperature, together indicating

25L.C. Wu et al.: Two-step binding mechanism for T-cell receptor recognition of peptide-MHC, in: Nature
418 (2002).

26p.D. Holler/D.M. Kranz: T cell receptors: affinities, cross-reactivities, and a conformer model, in:
Molecular Immunology 40 (2004).

278.J. Gagnon et al.: T cell receptor recognition via cooperative conformational plasticity, in: Journal of
Molecular Biology 363 (2006); W.F. Hawse et al.: TCR scanning of peptide/MHC through complementary
matching of receptor and ligand molecular flexibility, in: J Immunol 192 (2014), pp. 2885-2891, URL: http:
//www. jimmunolo.org/content/192/6/2885.
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conformational changes upon binding and unbinding?®.

Of particular interest, structural studies have suggested a strong role for the CDR1/5 and
CDR2p germline-encoded loops, which have shown the least rearrangement upon binding,
in MHC recognition. This would provide the necessary initial bias toward MHCs required
for the induced-fit model. Furthermore, experiments with ‘leaky’ negative selection mouse
models where T cells were able to occasionally escape deletion despite failure at the negative
selection stage have shown affinity for MHC, suggesting a germline bias toward MHC beyond

that generated by the negative selection process®.

Conformational Selection

An alternative ‘conformer’ model suggests that cross-reactivity could instead be driven by
the existence of multiple CDR loop conformational states of the free TCR, which could
recognize different peptide-MHC ligands so that specificity is controlled by a combination of
specific contacts and the relative equilibrium populations of different conformational states®C.
These two models are difficult to distinguish biophysically as loop dynamics are difficult to
capture even with techniques capable of resolving time-dependent dynamics®!, though the
measurements did substantiate the use of computational methods. Computational analysis
of the free A6 TCR provides strong support for the existence of distinct states in solution,

where clustering of the CDR3a and CDR3/S loops using RMSD as a dissimilarity metric

28].J. Boniface et al.: Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general
mechanism of molecular scanning, in: Proceedings of the National Academy of Sciences of the United States
of America 96 (1999).

29G. Dai et al.: Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions
with MHC molecules, in: Immunity 2008; E.S. Huseby et al.: How the T cell repertoire becomes peptide
and MHC specific, in: Cell 2005.

30Holler /Kranz: T cell receptors: affinities, cross-reactivities, and a conformer model (see n. 26).

31D.R. Scott et al.: Limitations of time-resolved fluorescense suggested by molecular simulations: assessing
the dynamics of T cell receptor binding loops, in: Biophysical Journal 103 (2012).
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showed multiple distinct conformations of the loops®2. Notably, CDR3« showed two distinct
clusters of conformations with implied slow motions between the two conformational clusters.
One cluster resembled the bound conformation of the CDR3«a loop of A6, while the other
cluster was distinct from the bound conformation. On the other hand, CDR33 showed
multiple, smaller clusters, with much faster apparent transitions between the conformational

clusters.

Conformational Melding

Conformational melding is a more recently proposed model that combines aspects of induced
fit and conformational selection, and includes the role of pMHC conformation and dynam-
ics®3. Small changes in flexibility in both TCR and pMHC have shown effective changes in
recognition®, and small changes in MHC sequence can cause changes in peptide dynamics
while bound in the MHC groove3>. Similarly, NMR experiments have demonstrated flexi-
bility and mobility of the CDR33 loop of 2C while bound to L¢/QL93®, demonstrating that
dynamical motion occurs even in the bound state. Conformational melding suggests that
the dynamics of the pMHC and TCR may essentially match one another, so that the energy

diagrams ‘agree’; but if such a match isn’t found, the system unbinds due to an inability

32Gcott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13).

330.L. Borbulevych/K.H. Piepenbrink/B.M. Baker: Conformational melding permits a conserved binding
geometry in TCR recognition of foreign and self molecular mimics, in: J. Immunol. 2011.

340. Y. Borbulevych et al.: T cell receptor cross-reactivity directed by antigen-dependent tuning of
peptide-MHC molecular flexibility, in: Immunity 31 (6 2009), URL: http://www.sciencedirect.com/
science/article/pii/S1074761309004981.

35J K. Archbold et al.: Natural micropolymorphism in human leukocyte antigens provides a basis for
genetic control of antigen recognition, in: J. of Exp. Med. 2009; H. Fabian et al.: HLA-B27 subtypes
differentially associated with disease exhibit conformational differences in solution. In: J. Mol. Biol. 2008.

36Hawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).
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to find a strong energy minima in the combined dynamics®”. Flexibility of motion and hav-
ing different sets of local dynamics available then contributes to cross-reactivity while still
maintaining specificity. At the TCR-pMHC encounter, the TCR has an initial conformation
selected from a set of possible states, from which a ‘local search’ for matching dynamics can
proceed, resulting in the observed slower kinetics.

A key requirement of the conformer models and conformational melding hypotheses is
the existence of distinct crystal-like states in the unbound TCR’s dynamics. We have run
extensive simulations of the free 2C TCR, as well as simulations of the free Natural Killer
T cell receptor NKT15 to driectly address flexibility. 2C is a well studied TCR known to
display significant cross-reactivity and with extensive crystallographic data available. We
have generated a total of 3us of data across 10 trajectories of 2C, providing a significantly
larger data than has previously been available to study the solution state dynamics of a
single TCR. Further, we have used the Markov State Model formalism, described in Chapter
3, to cluster the loop conformations in a kinetic fashion, providing crystal-like states that
distinguish stable conformations from transitions and directly identifying transitions between
conformational states. In accordance with previous work on A6, we observe significant
flexibility in both CDR3a and CDR3j3, with CDR33 showing a broad energetic well that
is kinetically separated from bound-like conformations, and CDR3 showing multiple meta-

stable states with local equilibria.

Bulk binding kinetics do not distinguish the models

SPR measurements have provided binding kinetics and affinity data for a large variety of a8
TCRs. The kinetic proofreading model argues that the half-life of the interaction dominates

the signaling process, though it is still debated whether the key quantity is the binding

3THawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).

16



affinity of the dwell-time®®. TCRs show a large diversity of kinetic parameters, with one
review showing k,, values ranging from a low of 633 per mole second to a high of 400000 per
mole second® for various TCRs binding different ligands. Similarly, k,;; varies from .009
per second to .975 per second. The on and off rates tend to move together, and generally
show smaller ranges for a fixed TCR; the 2C clone under study in this work shows on rates
in the 2200-22000 per mole second range and off rates in the .025-.464 per second range. The
highest values for 2C both occur when binding to SIYR/K?, and are unusually fast for 2C.

Considering the models presented above, it would seem that the models could be distin-
guished by using the kinetic data. This is partially made difficult by the very large range of
observed rates, with on rates varying by three orders of magnitude. If we consider only 2C,
this shrinks to a single order of magnitude. The question is whether we estimate a bound
on the rates that would differentiate the models.

Let pMHC be in a fixed position, approximating the set-up of an SPR experiment, and
assume the collision rate is diffusion limited with the TCRs diffusing via translation, so
we begin with an encounter rate of 10°M ~'s~!. The binding footprint of the TCR on the
pMHC interface is highly conserved across conventional oo TCRs and whether by selection
processes or germline bias, the CDR1 and CDR2 loops can make a stable encounter complex
with pMHC. If we consider the fastest on rate of binding as an order of magnitude slower
than forming the encounter complex, then forming the complex reduces the rate by a factor
of approximately 102, leaving an initial upper bound of 10" M ~1s—1.

From the perspective of the binding energy of the TCR over time, the induced fit and
conformational melding models look similar, so we treat them together here when discussing
ranges of on rates. In these search-based models, the TCR forms an initial complex with the
MHC via the CDR1 and CDR2 loops, shown as the initial stable encounter complex in figure

1.4. As both models presume that the solution conformation of the TCR is not the preferred

38Stone/Chervin/Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell activity and
specificity (see n. 23).

39Tbid.
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Figure 1.4: Proposed energy diagram of the TCR energy over time during the binding
interaction with pMHC for the search models (induced fit and conformational melding).

binding conformation, there is an energetic barrier to re-arranging one or both of the CDR3
loops to find the final bound conformation, along with an entropic cost of freezing out the
alternative conformations. This is the higher right-hand peak of the energy diagram in figure
1.4. We can estimate the bulk kinetic rate as the rate of complex formation decreased by
a factor depending on the success rate of the encounter complex proceeding to the final
bound state. The encounter complex proceeds to the bound state if the system finds the
correct conformation before a disassociation event occurs. As a simple estimation, model
both the search process and the disassociation process as independent Poisson processes. The
probability that disassociation does not occur in a time segment of length t is the Poisson

distribution for zero events,

Po(t, )\) = €7>\t

The expected waiting time for the search to succeed is distributed according to the expo-

nential distribution, with probability density function

f(tA) = Ael™,
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where ) is a parameter of the model, the rate constant, for both the Poisson and Exponential
distributions. Let A\poung and Ags denote the rate constants for the search finding the correct
bound state and the disassociation event, respectively. We want to calculate the probabilty

tha the search succeeds at time ¢ and no disassociation events occur. This is given by

o) o
/t*O f(ta /\bound)]PO (t; /\dis) = /t*O /\bounde_)\boundt : e_AdiStdt -

o0 A
) b d
/ Abound€ (Avouna )\dw)tdt = e
t=0 )\dis Abound

If Mpouna < Agis, then we can approximate /\d')‘io;:d - ’\g\‘;’%”d. Next, note that the A

parameter of the exponential distribution is the inverse of the mean of the distribution. So
we can estimate Ags and Apoung directly from the timescales of the processes. Assume the
disassociation process of the encounter complex has timescale faster than the formation of
the encounter complex, i.e. 107%s, which gives \g;; = 10%s7!. We expect that the encounter
complex is relatively unstable, so disassociation in absence of finding the correct bound state
should be faster than the initial association. If the search process is successful on the 10
microsecond timescale, then we have A\pung = 10°s~!, which yields a success probability on
the order of 1073, so we would expect on rates on the order of 107M ~!'s71.1073 = 10*M 151
Faster search on the order of 1 microsecond yields a rate on the order of 103M 1571

The CDR3a loop may or may not be able to re-arrange in this context, but if we assume
it does in a pure induced fit type model, CDR3a has slower kinetics than CDR3/5 between
states®, and rates have not been established but both the cited study and the present work
will argue that CDR3a rearrangement between bound-like and unbound-like states occurs
on at least the microsecond timescale, and possibly much longer. Similarly, the present

work will show the timescales of the CDR3f loop re-arrangements to occur in the range of

hundreds of nanoseconds to microsecond for individual state changes. If the motions of the

40Gcott et al.: Limitations of time-resolved fluorescense suggested by molecular simulations: assessing the
dynamics of T cell receptor binding loops (see n. 31).
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Figure 1.5: Proposed energy digrams of the TCR energy over time during the binding
interaction with pMHC for the conformational selection model. (A) Proposed energy diagram
when the encounter complex is in the binding-capable conformation. (B) Proposed energy
diagram when the encounter complex is in a binding-incapable conformation; the energy of
the second hill is expected to be sufficiently high that the reaction only reverses from the
metastable state and never completes. Bulk kinetic rates of the conformational selection
model are determined by the ratio of occurences of each type of diagram, rather than the
behavior of a single diagram.

CDR3 loops are heavily restricted (i.e. have few degrees of freedom) and the topology of
state changes is complex, in particular if it is not a fully connected graph, then the time to
find the correct state can reasonably occur on the 10-100 microsecond timescale, yielding
on rates of 10> — 10*M~1s~!, which fits within the lower bound of experimentally observed
values.

Under the conformational selection model, there are two types of energy diagrams we
might expect, depending on whether the TCR is in the binding-capable conformation on
collision. If the TCR is in the correct conformation, then the energetic barrier of contin-
uing to the bound state is minimal, and possibly simply a downward slope, as shown in
figure 1.5A. Assume that the energetic barrier of a collision where the TCR is in a binding-
incapable conformation is sufficiently high that the probability of proceeding to the bound

state is essentially 0 (figure 1.5B), so that only interactions with binding-capable conforma-

tions proceed to the bound state, and for simplicity assume that this always happens when
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the correct conformation is encountered. Then the bulk binding kinetics depends on the
probability of the TCR being in the binding capable state. Since previous work and the
data we present here show that the CDR3« loop has very slow transitions between stable
bound-like and unbound-like conformations, suggesting that the CDR3a loop has a binding
capable and a binding incapable conformation, we consider selection as requiring both loops
to be in the proper states. Consider the system where the CDR3« loop occupies each of these
states with equal probability. Furthermore, previous work shows there are a larger number
of states for the CDR3/ loop. If there are only five states, equally populated, and one state
is binding capable for a given ligand, then there is a %o chance the encounter complex binds,
for a net rate of 10°M ~'s~!, which is the order of magnitude of the fastest rate observed.
On the other hand if the binding capable state of CDR3« is occupied with a frequency of

1—10, which is not unreasonable, and the binding capable state of CDR3S is 1% of the equilib-

1

Toos Of the time, with a net rate around

rium population, then the encounter complex binds
10*M 1571, near the rate of 2C’s binding kinetics and in the middle of the observed rates. If
there are more difficulties in forming the encounter complex due to mis-alignment during the
encounter, the rates would be slower, as commonly described in models of soluble protein
collisions*!. Despite the common belief that induced fit is the better model because of the
slow on rates observed, a reasonable conformational selection model can still accomodate
slow bulk kinetics.

From this, we conclude that the bulk binding kinetics alone cannot distinguish between
the conformational selection model on one hand, and the induced fit or conformational
melding models on the other. In particular, if there exist distinct states, which is suggested by
the rigid transformations observed in crystal structures, then in addition to bulk kinetics, we

need to at least know what states are binding capable and what their equilibrium populations

are in order to determine how much conformational selection could affect the observed bulk

417, Janin: The Kinetics of Protein-Protein Recognition, in: Proteins: Structure, Function, and Genetics
1997.
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rate.

Fast kinetics, Slow kinetics

An important partition exists in o TCR recognition between fast-on/fast-off TCR binding
and slower kinetics where the off-rate essentially controls the stimulation response. Following
the kinetic proofreading model, we expect that recognition is effectively controlled by the off-
rate; at the spatial resolution of an individual TCR-pMHC interaction, if we model unbinding
as a Poisson process then a faster off-rate translates to a higher probability of unbinding over
a given segment of time, and ultimately to a higher probability of unbinding before all of
the KPR checks complete. This leads to a recognition failure. However, unaccounted for in
standard KPR models is the time required for dephosphorylation — KPR models generally
assume it occurs instantaneously if the TCR leaves, since the timescale of diffusion is faster
than the on-rate, and hence the TCR diffuses away, effectively resetting the system. However,
there exists a class of TCRs where the on-rate is faster than diffusion, and re-binding events
occur. With simple mathematical models of the probability of rebinding rather than diffusing
away, it has been shown that stimulation is well correlated by taking into account both affinity
measurements and rebinding probability*?. This mechanism elegantly explains a number of
TCRs whose stimulation is poorly correlated with direct affinity measurements and heat
capacity measurements that suggest a conformation-dependent mechanism. The 2C TCR,
which we study here, is an exemplar of the slow kinetics category, but the conformational
dynamics at play in 2C likely do not generalize to the category of TCRs that exploit rapid

re-binding events to pass phosphorylation checks during signaling.

22



Figure 1.6: Variable domains (grey) of NKT15 shown from the perspective of the pMHC
surface. CDR3 loops shown in color, with unbound loops (cyan, PDB: 2EYS) overlaid with
CDR3a and CDR3g loops of NKT15 bound to CD1d with aGalCer (orange, PDB: 3HUJ)
or C20:2 (pink, PDB: 3VWJ).

1.5 The Type I Natural Killer T cell receptor

In contrast to CD4™ and CD8% «aff T cells, type I Natural Killer T cells (NKT) recognize
lipids presented by the monomorphic MHC-like molecule CD1d*3. Type I NKT TCRs are
considered to be ‘semi-invariant’, as they are generated through VDJ recombination as per
standard a5 TCRs, but use a heavily restricted Va and V3 chain repertoire. This restriction,
along with orders of magnitude faster binding kinetics, higher affinities, and rigid binding

conformations* in crystal structures have led them to being considered ’innate-like™’. Figure

42C. C. Govern et al.: Fast on-rates allow short dwell time ligands to activate T cells, in: Proceedings of
the National Academy of Sciences of the United State of America 107 (19 2010), URL: www.pnas.org/cgi/
doi/10.1073/pnas.1000966107.

43Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells (see n. 5).

4Y . Li et al.: The Val4 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a
conserved binding mode, in: J. Exp. Med. 2010.

45Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells (see n. 5).
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1.6 shows the similarity of bound and unbound NKT15 structures*®. CDR3a shows minimal
rearrangement upon binding, while the CDR3/ shows some re-arrangement, but the bound
orientation is identical for both ligands. Importantly, mutational studies have CDR shown
CDR2p3 and CDR3a to drive the NKT interaction with CD1d and the canonical antigen,
aGalCer. The conserved binding footprint, innate-like kinetics, and stronger reliance on
germline encoded interactions implies that type I NKT TCRs should demonstrate reduced
flexibility and simpler dynamics behvaior, particularly in the CDR3« loop, compared to
clagsical CD4" and CD8" «af TCRs. The restricted binding footprint in the NKT-Ag-
CD1d system suggests that the NKT TCRs should serve as ‘innate-like’ counterpoints to
CD4"/CD8" a8 TCRs, despite sharing the same fundamental protein architecture.

To test this model, we have simulated 1us of free NKT'15 dynamics across ten trajectories.
Surprisingly, we observe flexibility and meta-stable states in both the CDR3a and CDR35
loops of NKT15. However, in contrast to 2C, the dynamic behavior of NKT15’s loops is
simpler in that for each loop, the major motions can be well-captured by a single degree of

freedom.

1.6 Aims

We study the solution state dynamics of the class 2C af T cell receptor. In doing so, we
argue for the existence of crystal-like states of pre-existing equilibria in CD41/CD8* «af
T cell receptors with slow kinetics. However, we do not find that the bound states are
well represented by the local minima of the these states, rather the bound states appear
on the periphery, suggesting that there is a local search for the final bound state that is

seeded by a pre-existing equilibrium. States that are well-separated from the states similar

461,. Kjer-Nielsen et al.: A structural basis for selection and cross-species reactivity of the semi-invariant
NKT cell receptor in CD1d/glycolipid recognition, in: J. Exp. Med. 2006; D.G. Pellicci et al.: Differential
recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell
receptors, in: Immunity 2009; K.S. Wun et al.: Ternary crystal structure of the human NKT TCR-CD1d-
C20:2 complex, in: J. Biol. Chem. 2012.
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to the bound structures are potentially alternative seeds for other binding targets, or binding
incompetent states that reduce affinity, likely as a recombination-induced affinity regulation
mechanism. Further, we take a look at NKT15 on the hypothesis that it should show simpler,
and potentially less, motions than 2C due to the innate-like binding kinetics and lack of
significant flexibility observed in crystal structures. Surprisingly, NKT15 shows significant
loop flexibility, but the kinetics of NKT15’s dynamics are simplier in our simulations than
those observed in 2C.

In order to show this, we have generated a significant quantity of molecular dynamics
simulation data and applied recent developments in dimensionality reduction and statistical
learning specific to molecular dynamics simulations. Our data set is significant in the context
of previous work, the largest collective simulation is 460ns of a single TCR in solution, with
the longest trajectory at 260ns*"; large collections of TCRs and TCR-pMHC interactions
have been simulated before, but the data for any single system was limited to 100ns*®,
making the data presented here among, if not the, largest available for a single TCR in
solution.

Our analysis of TCR dynamics rests entirely on the application of MD-specialized sig-
nal processing and machine learning methods and interpretation of the results. Chapters 2
and 3 therefore explore these techniques. Chapter 2 explores linear dimensionality reduc-
tion and clustering techniques, specifically Principle Components Analysis, time-structured
Independent Component Analysis, and the k-means and k-medoids clustering algorithms.
PCA is a classical technique and needs little introduction, but we develop it here so the
intimiate connection to tICA becomes apparent, and to set the stage for later connections

to non-linear techniques. The clustering algorithms are again classics by this point, but

47Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13); Scott et al.: Limitations of time-resolved fluorescense sug-
gested by molecular simulations: assessing the dynamics of T cell receptor binding loops (see n. 31).

48B. Knapp/J. Dunbar/Deane C.M.: Large Scale Characterization of the LC13 TCR and HLA-BS Struc-
tural Landscape in Reaction to 172 Altered Peptide Ligands: A Molecular Dynamics Simulation Study, in:
PLoS Computational Biology 10 (8 2014), URL: http://journals.plos.org/ploscompbiol/article?id=
10.1371/journal.pcbi.1003748.
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are described because they both underpin the Markov state models described in Chapter 3,
and their failure modes with respect to molecular dynamics are a major motivation for the
Markov state model approach.

Chapter 3 develops the Markov state model methods to a level appropriate for following
the biological results presented in Chapter 4, and should prepare the thorough reader with
sufficient background to extend the results presented here. These two chapters thus serve as
an introductory survey to applying machine learning methods to molecular dynamics and
literature review of specific techniques. This project has drawn on a fairly diverse range of
fields and knowledge, and each chapter thus mixes a light textbook background with more
modern literature review.

The results are presented in Chapter 4, using the developed techniques to finally extract
metastable states of the CDR loops. In doing so, we find that the CDR loops are tightly
constrained, low-dimensional systems.

Finally, Chapter 5 presents a discussion of these results and the implications for the
three models discussed earlier. Additionally, future experimental and in silico paths are
suggested for extending these results. The appendicies cover additional background material:
appendix A discusses stochastic simulations, appendix B covers alternative machine learning
methods that showed poor results on the analyzed data set earlier in the analysis process, and
appendix C covers methodological detail of the simulations and analysis for the investigator

looking to reproduce or extend this work.
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CHAPTER 2

DIMENSIONALITY REDUCTION AND CLUSTERING

There are two major motivating questions for this work. Do there exist discrete conforma-
tional states of the CDR loops of the T cell receptor, and how free or restrained are the
motions of the CDR loops? The main tool to explore these questions is simulation of the
molecular dynamics of two chosen TCR systems, the 2C TCR and the NKT15 TCR.

The fundamental idea of molecular dynamics is simple; we begin with an initial descrip-
tion of the positions of the protein and solvent atoms, and integrate Newton’s equations
of motion forward in time. In practice, MD is a complicated discipline beyond the scope
of this work. The interested reader is referred to Allen and Tildesley’s classic Computer
Simulation of Liquids! for a general reference and the Amber simulation toolkit’s manual for
the specifics of the Amber14? software used to generate the data for this thesis.

For our purposes, the important facet of MD is that while the result is conceptually
simple, a time-series of the atomic positions of each atom in the simulated system, inter-
preting and analyzing these results are far from simple. For much of the history of MD,
anecdotal approaches have been common: running a few or even a single, short trajectory
and inspecting it through visual analysis and measurement of a few chosen thermodynamic
or reaction coordinate parameters. Increasing computer power has led to better and better
sampling, and an increasing movement towards more statistical, arguably more scientific,
approaches to analyzing the simulations. This is the view that we will take here, treating
the simulation data as samples taken from a high-dimensional stochastic system, and thus

amenable to modeling and analysis with tools from signal analysis and statistical learning.

IM. P. Allen/D. J. Tildesley: Computer Simulation of Liquids, 1989.

’D.A. Case et al.: Amberl4, 2014, URL: ambermd.org.
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Our goal is to build a simpler model of the dynamics of the CDR loops of the TCR
than the simulation itself. Essentially, we aim to coarse-grain the dynamics of the system,
but rather than coarse-graining the simulated model, we will coarse-grain the on the data
to generate a new model that reproduces the major features of the underlying system, the
original simulation, while being more amenable to human understanding. This strikes a
balance between more classical statistical thermodynamic approaches, which make it possible
to discuss the system broadly, but does not describe the local details we are interested in,
and using ad-hoc metrics to answer specific questions about local phenomena or over-reliance
on visual inspection which rely heavily on investigator intuition and interpretation.

We will use the Markov State Model formalism for building this reduced model, which
will be a simple Markov model of the system that, ideally, reproduces the broad behaviors of
the system. In practice, the amount of data required to build a good, quantitative Markov
model of the CDR loops is beyond what we have available, and we thus use the Markov
model to make qualitative, rather than quantitative, observations about the CDR, loops of
the 2C and NKT15 systems.

The first of our motivating questions - do there exist distinct, stable conformational
states of the CDR loops - is a clustering question. We want to identify sets of conformations
in the simulation data that are similar, for a certain meaning of similar, to one another
and are distinct from conformations that belong to a different set. The meaning of similar
is important here, and it motivates the use of the Markov state model formalism even in
the absence of direct interest in the model itself. By similar, we mean kinetically similar,
in the sense that two conformations are more kinetically similar the smaller the expected
time for the molecule to transform between the two conformations. By building a Markov
model of the system’s dynamics, we will be able to cluster together states of the Markov
model based on the probability of transformation between the states, yielding a clustering
of conformations based on kinetic information.

Before we can cluster the data obtained from the simulation into states, we have to
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decide on a metric of closeness. Ultimately, we want to cluster using kinetic information, but
the simulation data is made up of atomic positions, which leaves us only able to compute
geometric values when comparing individual frames of data, which is the actual unit of
information we have to work with.

There are two parts to dealing with this problem. First, we will use dimensionality reduc-
tion, in the form of time-structured independent component analysis (tICA), to transform
the initial data into a better input space. In this transformed input space, we will use the
euclidean metric as a measure of similarity and cluster the data frames into multiple clusters
which we can build a Markov model on. This ‘microstate’ model will then provide the metric
for clustering the data into the final ‘macrostate’ model, which yields clusters of microstates
(and hence of initial data) based on the kinetics of the microstate model.

For the remainder of this chapter, we will inspect in detail each of these analytical tools

and provide justification for their use and interpretation.

2.1 Toy System

It is instructive to analyze a toy system to understand the results of our analytic tools. Since
the full molecular dynamics simulation we will analyze undergoes Langevin dynamics via the
thermostat, we will use a single particle undergoing Brownian dynamics as an instructive
toy system.

For a single particle, the equation of motion for Langevin dynamics is

d*z d
mos = —VU(z) - TZETV 2vkpTmn(t),

where m is the mass of the particle, V is the gradient operator, U(x) is the potential field and
thus —VU () is the force acting on the particle, v is a damping constant, kp is Boltzmann’s
constant, T is the temperature, and 7(t) is a Gaussian process with zero mean and a delta

kernel. In particular, n(t) obeys
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Figure 2.1: Potential energy surface of the V'(z,y) potential function.

e (n(t)) =0
o (n(®)n(t)) = o(t =)

For our toy system, let z € R? and m — 0. Let 02 = kBTT and re-arranging, we have
dr —VU(x
E = % + \/50'77(15)

Choosing v = 1 for simplicity, our toy model reduces to

X — VU) + Vao()

For the purposes of our toy model, o is a free parameter of the model corresponding to the
variance of the noise process. In a physical system, the variance corresponds to thermal
noise that depends on temperature.

We will use two different potential systems to illustrate the coming projection techniques.

Both will be anisoptropic double-well potentials, with only slight differences due to different

30



Wi(z,y) Potential

1.8

Figure 2.2: Potential energy surface of the W (x,y) potential function.
parameterizations. Let U denote the general potential well, with form

1 1

Ulx,y) = 5 &XP (—5(m(a: — o) + y2)) -5 exXp (—B(m(x —x1)? + y2)) + a(z® + ),

«, [, and k are parameters that control the shape of the potential, and xy and x; control
the separation of the two wells on the x-axis. The last term is a harmonic potential for the
purpose of constraining simulations to the region of interest.

We consider two potential fields of this form. Let V' (z,y) denote the U potential with
parameterization a = %, b= %, k =16, zg = —1, and 1 = 1. The V potential is shown in
Figure 2.1, as two elliptical potential wells with major axis along the y-axis and separated
by a barrier along the x-axis.

The second potential is only slightly different. Denote the second potential by W, and
parameterized by a = %, 8= %, k =48, xg = —0.25, and z; = 0.25. This potential is very
nearly identical to V| with the potential wells elongated along the y-axis and brought closer
together, yet still separated by a barrier along the x-axis.

Both of these potentials look like two-state systems, where the state of the system is

just a matter of which potential well the particle is currently in at a given time. What we
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actually want to do is determine the degrees of freedom that separate these different states,
so that we can use those degrees of freedom as simpler representations of the system both for

direct analysis and as a reduced dimensional space to feed into further analysis techniques.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a classic technique commonly used as a first tool
of choice when exploring new data and as a dimensionality reduction technique for complex
or high-dimensional data. First, we briefly review this technique, and then demonstrate the
short-comings in the context of our toy models.

PCA is an orthogonal linear transformation that transforms the data to a new basis
such that the first basis element captures the maximal amount of variation in the data, and
each subsequent basis element captures the maximal amount of remaining variation. PCA
can be used as a dimensionality reduction method by using the first few basis elements as a
projection matrix, so that a lower-dimensional view of the data can be obtained that captures

the maximum variation of the data in the lower-dimensional view.

2.2.1 Derivation of PCA

There are many derivations of PCA available in the literature and there is little novelty we
can add®. However, because the derivation is instructive to compare with the later derivation
of tICA, we sketch a quick derivation here.

Consider an n-by-m data matrix X consisting of random data comprising n samples of
m variables. In our toy model, we have an n-by-2 data matrix consisting of n samples of the
position of the system as it evolves through the two-dimensional phase space.

Without loss of generality, we assume that the data matrix has column-mean 0. Otherwise

we replace the matrix with the mean centered data matrix. We wish to find an orthogonal

31.T. Jolliffe: Principal Component Analysis, 2002.
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basis for the data matrix such that successive basis elements maximally capture the variance

of data. Let w; € R™ be the first such basis element. Then we want

wy = argmax Var(w' X)
|[wa][=1

Since w, is a vector, we have that w? X is a linear combination of elements of X, that is, a

linear combination of random variables. It follows that
Var(w} X) = w] X* Xw,

Combined with the fact that we require ||w;|| = 1, we have

wl XT Xw,
wy = argmar ———=——
[lwi]|=1 wy Wy
The right hand side has the form of a Rayleigh Quotient, and X7 X is symmetric, so it
follows that the maximizer of the right hand side is the maximal eigenvalue*, \;, of X7 X.
Thus we conclude that first principal component is exactly the first eigenvector of X7 X and
accounts for variance in the data proportional to the first eigenvalue.

The second principal component can be found by repeating the procedure on the new

data matrix

X=X- Xwywi,

which is the original data set after removing the data corresponding to the first principal
component. Repeating the previous procedure extracts the maximal eigenvalue of XTX and
the corresponding eigenvector as the second principal component. However, this eigenvector
is just the second largest eigenvector of the original X7 X matrix.

In general, to find the kth principal component, we need to find the maximal eigenvalue

4Philippe Blanchard/Erwin Briining: Mathematical Methods in Physics, vol. 69 (Progress in Mathemat-
ical Physics), 2015.
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Figure 2.3: Simulated trajectory of a zero-mass particule undergoing 2D Langevin dynamics
on the V(z,y) potential energy surface.

of

j(vk =X — kz_:leiwiT,
i=1
for which the maximal eigenvalue is the kth largest eigenvalue of X, and it follows that the
principal components are the eigenvectors of X7 X, the correlation matrix of the data.
Note that the left singular vectors of X are the left eigenvectors of X7 X, so it is more

efficient in practice to simply compute the Singular Value Decomposition of the data matrix

X, which is the standard method employed in most software packages that perform PCA.

2.2.2  Applying Principal Component Analysis

To apply PCA to our toy system, we start by running a simulation of the toy model system.
For this exercise, we initialize the system at the origin, and simulate for 100,000 steps. For
details of simulating the toy system, see Appendix A.

We first simulate the V' (z,y) potential system. Figure 3 shows the trajectory of a sim-

ulation plotted against the potential energy surface. The simulation behaves as expected.
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Starting from the origin, the trajectory falls into one of the wells and randomly moves around
in that well, eventually the random fluctuations drive the trajectory out over the transition
region into the other well. From a large scale view, this is what proteins do, too; they explore
a local energy well, occasionally thermal fluctuations drive them into a significantly different
conformation with a different local energy well. In our toy system, the two energy wells
are separated by the line z = 0, and the degree of freedom along the separation is the e,,
i.e. the x-axis. If our major concern is with transitions between the two wells, then we are
primarily interested in the motion in the x dimension, and the motion in the y dimension
is noise. This means we can project our data onto the e, vector and analyze the system in

1-D rather than 2-D. Applying PCA yields the eigenvalue-eigenvector pairs

—0.99997
)\0 = 0.582,@0 =
—0.00741
0.0074
A\ = 0.198,v, =
—0.99997

where the eigenvalues describe the variance captured along the corresponding eigenvector.
The eigenvectors are, up to sign, almost exactly the axes of the coordinate system, with
most of the variance along the x-axis. In this case, PCA accurately captures the degree of
freedom - the x-axis - that separates the energy wells.

Next, consider the W (x,y) potential system. Figure 2.4 shows the trajectory of a sim-
ulation plotted against the potential energy surface, where we see similar behavior to the

V(z,y) potential system. However, when applying PCA, we get different results.

0.048
)\0 = 0.086,1}0 =
0.998
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Figure 2.4: Simulated trajectory of a zero-mass particule undergoing 2D Langevin dynamics
on the W (x,y) potential energy surface.

—0.998
A1 = 0.0619,v; =

—0.048

The variance of the system is actually along the y-axis due to the elongation of the
potential wells, but the degree of freedom we are interested in, if we want to classify the
system into two states, is the location along the x-axis. Though artificial, this demonstrates

the motivation behind looking to different techniques for dimensionality reduction.

2.3 Time-structured Independent Components Analysis

The major flaw of PCA for our purposes is that it optimally captures the wrong descriptive
statistic. We are not interested in the maximal variance degrees of freedom; we are interested
in degrees of freedom that separate locally stable conformations, that is, local energy wells.
PCA accurate captures the separating degree of freedom for the V(x,y) potential because
the maximal variance degree of freedom happens to coincide with the degree of freedom that
separates the two energy wells in the system. On the other hand, PCA fails on the W(z, y)

potential because the direction of maximal variance and the separating degree of freedom

36



are distinct. The essential flaw of using PCA to study protein dynamics is that we are
studying a proxy value - the variance in the data - in the hopes that it will find the degrees
of freedom that separate energy wells. Intuitively, we can improve on this analysis if we can
find a better proxy. Time-structures Independent Component Analysis (tICA) does precisely
this, by looking for degrees of freedom that display maximal auto-correlation, rather than
variance. This has the additional advantage of integrating the time component of the data,

which PCA ignores in treating the data as independent draws from a distribution.

2.8.1 Independent Component Analysis

We present tICA here, which is derived from Independent Component Analysis, but shares
some key differences from its originating method. Independent Component Analysis (ICA) is
originally a method from the field of signal processing that attempts to linearly decompose
a multivariate signal into independent non-Gaussian signals. Similar to k-means and k-
medoids, ICA is properly thought of as a method with a specific outcome goal, rather than
an algorithm, as there are multiple algorithms to accomplish the ICA decomposition.
Typically an ICA decomposition attempts to simultaneously minimize the mutual infor-
mation of the components while maximizing the non-Gaussianity of the components. Despite
the similar goal as PCA to decompose data and provide a new basis set, the problems the
methods seek to solve are very different. PCA seeks an orthogonal basis set, and attempts
to sequentially maximize the variance captured by each of the degrees of freedom it finds. If
we fix the mean of a distribution at 0, which we can do for distributions on R™ by an affine
transformation, then the distribution that is fully determined by its variance is the Gaussian
distribution. Furthermore, when the variance is fixed, the maximal entropy distribution on
R" is the Gaussian. Thus, cast in a informational theoretic light, PCA finds a basis set of
one-dimensional Gaussian distributions that describe the empirical data set under study. As
the Gaussian is the maximal entropy distribution for fixed variance, we can argue that PCA

is essentially only accounting for the variance in the data, and ignoring the information in
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higher-moments. On the other hand, ICA methods generally use either the kurtosis of the
empirical data, or rely on mutual information (information entropy) based measurements.
As stated however, ICA does not necessarily generate orthogonal components, though tICA

does restrict to this condition.

2.3.2  Autocorrelation

Autocorrelation is a measure of how similar a signal or time-series is to itself shifted in time.
Let x; € R",t € N be a time-series. Under some weak assumptions on the time-series, the
autocorrelation A, (x;) exists and is defined as

E[(x = 1) (Xpar — 1))

A (x4) =

o

where 7 is the time-lag of the autocorrelation we are measuring, j is the mean and o2 is the
variance of the time-series. Note that o0 = E {(xt — )T (% — u)}, so Ao(x) = 1.

Intuitively, autocorrelation is a better proxy statistic for finding stable sets of molecular
conformations. If a Langevin system is in a local energy well, it will tend to stay near
the minima of that well until thermal fluctuations force it out. Thus, the autocorrelation
with a time-lag less than the average transition waiting time will be high when the system
is in a local well. If we choose a linear degree of freedom of the system that maximizes
the autocorrelation over the time-lag of interest, then the degree of freedom will separate
regions where the system experiences high auto-correlation, that is, local energy minima.
The argument that the tICA decomposition is superior to PCA for the purposes of finding

conformational states of proteins rests on this concept.

2.8.8 Deriving tICA

In this section, we loosely follow the derivation of tICA presented in Schwantes and Pande,

though written in the standard notation of linear algebra rather than Dirac bra-kets, but
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otherwise using the approach of Lagrange multipliers to transform the constrained optimiza-
tion problem into a generalized eigenvalue problem. An older presentation of tICA as an
eigenvalue problem can be found in Molgedey and Schuster, which most interestingly also
presents tICA in the context of a recurrent neural network to compare with a neural net
approach taken by Jutten and Herault to solve the blind source separation problem. This
connection between neural networks and tICA is interesting in light of another line of re-
search showing effective dimensionality reduction applied to molecular dynamics data using
Autoencoder neural nets. This is explored more in Chapter 5, as a possible path to include
non-linearity in the decomposition of MD data.

The goal of tICA is to find degrees of freedom with maximal autocorrelation that are
orthogonal to one another. We can express this problem as a constrained optimization
problem. Let x; € R”i\;l be an n-dimensional time-series, consisting of N data points. In
the case of the protein system, each of these vectors in the time-series would correspond
to frames of the protein simulation, or features derived from said frames. Without loss of
generality, we assume the time-series has mean 0, and otherwise we can subtract the mean.
As an aside, we note that this assumption implies that the time-series is generated by a
stationary distribution, which is not necessarily the case, and leaves an opening for further
investigation.

Our objective function is given by the autocorrelation function

E[(vTx) (vI %07
E[(v7x:) (vIxy)]

fv) =

where v € R". The inner product term v’x, is the projection of the data vector onto
the vector v, which plays the role of a test basis element, hence we are calculating the
autocorrelation of the one dimensional time-series of the data projected onto a potential
basis function. The inner product is symmetric over the field of real numbers, so we have

that vTa; = 27'v, and can re-write the objective function as
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T T
E [V XX, _H_V}

)= 5

vIx,xIv]
The expectation of the outer product x;x! is recognizable as the covariance matrix of

the data, and similarly x,x7, . is the time-lag correlation matrix, so we can define

YX=E [thﬂ

C"=E [xtxtTjLT}

Assume X > 0, which is true with probability one for random data vectors. The quadratic

form vI'x;x!v commutes with the expectation operator, which we can see as

1 N—-1 1 N-1

E [vTthtT V] =¥ S ovixx{v=v" (N Y oxix{ | v=v'E {xtxﬂ v=v'Zv
=0 =0

An identical argument applies to yield E [VTXtX%FJrTV} = vI'Cv. With this, we can

rewrite the objective function in a more expressive form as

Finally, in order to find solutions to our optimization problem, we need to constrain the
solution space in some fashion so that a solution exists. In the setting of PCA, the constraint
is that vI'v = 1, that is, the solutions live on the the sphere S™. This provides an orthonormal
basis for the principal component vectors, but is a poor constraint for our purposes since it
means that although our choice of objective function means we optimize for autocorrelation,
our solution is weighted by the variance of that degree of freedom. This is fine for PCA,
which is explicitly attempting to capture variance, but worse for our purposes, as we want to
measure distance between points in our space where, ideally, the distance is strongly related

to kinetic similarity, locally defined by our autocorrelation objective function.
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The choice of constraint is actually a free parameter of the algorithm and of interest in
that we can derive a family of related algorithms by choosing different constraints. Follow-
ing Schwantes and Pande, as the analysis presented in Chapter 4 assumes, we choose the
constraint that our solution vector yields has unit variance, thus the problem of finding the

first component is expressed as
max f(v) = max vicy

with the constraint:

vi¥v=1

At this point, we diverge slightly from the derivation presented in Schwantes and Pande,
and note that similar to the PCA case presented earlier, we can recognize the objective
function as a Rayleigh quotient, or rather, as a generalized Rayleight quotient,

vy
viYv

R(CT % v) =

We can rewrite this generalized Rayleigh quotient as a standard Rayleigh quotient if
the Cholesky decomposition of the operator in the denomenator exists, which in this case
over the field of Real numbers, requires that ¥ be symmetric and positive-definite, which
the correlation matrix is by construction. Let 37 = X be the Cholesky decomposition of
3, and let CM = Z1COXE-T and v = ETv. Then we can rewrite the expression as a

standard Rayleight quotient as

~ vICMy
R(CM %)= ——
In the limit of infinite data, and using the assumption that the data matrix is sampled

from a time-reversible system, we have that C(”) is symmetric. Note that if A,B € R",

T _
with B a symmetric matrix, then (ABAT> = ABTAT = ABAT, so it follows that C(™) is
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symmetric. We invoke the result that the Rayleight quotient is maximized by the maximal
eigenvector of the operator®, and find that our first IC is the left eigenvector of C(™). At
this point, we can follow the same reasoning as presented in the sketch of the proof of PCA
above, and we have that the independent components are the solutions to the eigenvalue

problem

Cv = \v

Expanding this expression, we have that

S ICR Ty = \v

Rearranging and using the fact that v = 37v, we have that

Cly = \2Xv = \Zv

Thus we conclude that the independent components are the solution to the generalized
eigenvalue problem relating the time-lag covariance matrix to the correlation matrix. To
the author’s knowledge, this particular proof that the generalized eigenvalue problem is the
solution to the tICA problem is novel, though it should be noted that the Rayleight quotient
result cited here relies on the method of Lagrangian multipliers, which is the method used

by Schwantes and Pande.

2.4 Clustering

Clustering, or cluster analysis, is a fundamental task in data mining, machine learning,
and, arguably, science itself. Given m items, clustering is the act of grouping the items
into n different groups. We are interested in the simplest case of “hard” clustering, where

each data point belongs to exactly one cluster and the clusters all live in the same space.

®Blanchard /Briining: Mathematical Methods in Physics (see n. 4).
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Clustering often goes hand-in-hand with dimensionality reduction, using the dimensionality
reduction both as a way to combat the curse of dimensionality and as a feature extraction
pre-processing step.

From the point of view of protein physics, we want to cluster together structural con-
formations that are ‘similar’, breaking the simulation data into multiple clusters of similar
conformations that are distinct from other clusters. A key problem here is deciding what
we mean by similar. From a thermodynamic point of view, similar conformations are those
which are energetically close, in particular, those that can interconvert rapidly. Alterna-
tively, if we think of the clusters directly, we may consider two conformations to be in the
same cluster if they are part of the same local energy well. Both views accurately capture
what we think of as crystallographic-like ‘states’ of a protein, though they deal less well with
transition states. In our real problem, we are primarily interested in long-lived crystal-like
states, so we’ll take this to be an acceptable view for the problem at hand.

Ultimately, we will cluster the TCR simulation data into a few, large clusters using the
Markov model. However, we need an initial clustering algorithm that can operate directly
on the simulation data, which will be the focus of the remainder of this chapter: using the
toy systems to explore two of the basic geometric clustering algorithms that will be used to

find the microstate model clusters.

2.4.1 k-means

K-means is one of the oldest clustering methods, originally described in papers at Bell Labs
in the 1950s. Given a data set (zo,x1,...,%,), where z; € R", and a parameter k € N - the
number of clusters - k-means finds sets {5, Ss, ..., Si.} such that every data point belongs to
exactly one set and the sets minimize the /5 distance to the cluster mean. We can give this

as the problem of finding S = {5}, Sa, ..., S} such that

k
arg;ninz > e — w3,

i:leSi
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where

This problem turns out to be quite hard. K-means is known to be NP-hard® for arbitrary
dimension n when k is fixed to be 2, as well as NP-hard when n > 2 is fixed, but k is not. In
general, K-means is solved approximately by heuristic algorithms, most commonly Lloyd’s
algorithm, which is detailed below. After clustering, we can classify a new data point by
assigning the new point to the cluster that minimizes the distance from the cluster center
to the data point. In effect, this means that K-means shatters the space into a Voronoi

partition.

Lloyd’s Algorithm

Lloyd’s algorithm is a form of the expectation-maximization heuristic’. The algorithm takes
an initial set of k means, {m;}*_,; the initial set can be chosen in several ways, but a common
choice in standard k-means is to pick & random data points to be the initial means. After
initialization, the algorithm alternates between an assignment and update step.

The Assignment step consists of assigning each point to exactly one set that mini-
mizes the within cluster sum-of-squares as defined above. Since the distance is the standard
Euclidean metric, the minimizing assignment is to assign each point to the nearest mean.

The Update step simply consists of calculating a new mean for each set, with the mean
defined by p above. For each .S;, the sum of squared distance over the data points in S; from
the new mean must be less than this sum relative to the previous mean, as the arithmetic
mean is the least-squares estimator.

The algorithm halts when the assignment step doesn’t change the assignment of any

data point, at which point the update steps become idempotent. Since in both steps the

6D. Aloise et al.: NP-hardness of Euclidean sum-of-squares clustering, in: Machine Learning 2009.

7S.P. Lloyd: Least squares quantization in PCM, in: IEEE Transactions on Information Theory 1982.
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Figure 2.5: k-means clustering of well separated data drawn from three gaussian clusters
with £ = 3.
new within cluster sum-of-squares is bounded above by the current within cluster sum-of-
squares, this procedure is monotonic in the cost function. Along with the fact that there are
only finitely many partitions of the data points into k sets, the algorithm always halts at a
local minima.

However, there is no guarentee that the global optimum is found by this procedure. In
practice, Lloyd’s algorithm is quite fast, so satisfactory solutions are found by re-running
the algorithm with different random initial assignments for the means and keeping the best

solution found.

k-means in practice

K-means is an effective algorithm for automatically clustering data when the clusters are
well-separated. This is observable in figure 2.5, where the Gaussian distributions that gen-
erate the data are well separated, and so the data points are effectively associated to the

right generating distribution region. Additionally, by coloring the space according to cluster
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Figure 2.6: k-means clustering of poorly separated data drawn from three gaussian clusters
with £ = 3. Dark blue points are misclassified.

assignment, we can see the Voronoi partitioning of the space. However, poor separation of
the data leading to poor clustering is an inherent problem of clustering when the algorithm
shatters the space in a Voronoi partition. This is observable in figure 2.6, where the classi-
fication of the points begins to fail when the data sets from disparate distributions overlap.
There are two common solutions to this problem, one is to find a transformation of the space
that better separates disparate data points, and the other is to use a ‘soft’ clustering algo-
rithm, which assigns probabilities of cluster assigments rather than strict binary assignment.
K-medoids, presented next, also suffers from this problem. For this analysis, we attempt to
find a projection of the data that well-separates the clusters - this is the essential role of
tICA - and generally linear transformations that improve separation of data take the form
of projections. However, some data cannot be linearly separated at all, and in these cases
k-means and k-medoids will fail completely. For these cases, non-linear transformations are
necessary. We describe some attempts to apply this approach to analyzing the TCR data in
Chapter 5.
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2.4.2 k-medoids

The k-medoids algorithm is related to the k-means algorithm, and is the initial clustering
method we use for analyzing the protein simulation data in practice, after applying the tICA
decomposition to project the data onto a lower dimensional space. Like k-means, k-medoids
partitions the dataset into k sets {S;}¥_, such that each data point belongs to exactly one S;.
By inserting new data points using the same method as k-means, that is, assigning new data
points to the set that minimizes the distance to the set center, k-medoids also partitions the
space into a Voronoi partition. The primary difference between k-means and k-medoids is
that in k-medoids, the set centers are restricted to be elements of the data set rather than
arbitrary points in the data space. Unlike k-means, the restriction of k-medoids that the set
center must be a data point allows for a broader range of distance functions, rather than
just the standard Euclidean distance®. This is because with the restriction of the set centers
to data points, for any given k, there are only finitely many possible choices of set centers
and partitions.

In particular, a k-medoids algorithm attempts to find the sets Si such that for all x; € X,

x; € Sy, for exactly one Sy, and the following cost function is minimized

K

Z Z (s, my)

k=1 z;€Sy
where d is a distance metric. Note that if we choose d to be the Euclidean metric, then
k-medoids solves the k-means problem with the restriction of the cluster centroids to be

data points from the data set, rather than allowing the centroids to be arbitrary points of

the ambient metric space.

8L. Kaufman/P.J. Rousseeuw: Clustering by means of Medoids, in: Statistical Data Analysis Based on
the L;-Norm and Related Methods (Statistics for Industry and Technology), 1987.
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Partition around Medoids algorithm

Partitioning Around Medoids (PAM) is the most common algorithm for a k-medoids cluster-
ing, so we describe it here as with Lloyd’s algorithm to get a feel for the specific operations
that create a k-medoid clustering”. As with the k-means algorithm, we have a data set X and
an investigator determined parameter k, the number of clusters the algorithm should output.
As with k-means, we optimize the cost function defined by summing over the distances of
each data point to their assigned medoid.

The algorithm begins with the initialization step wherein £ data points are drawn at
random from X without replacement. The k data points will be the initial set of medoids.
Each data point is then assigned to same cluster as the nearest medoid.

Next the algorithm iterates the update step, and halts when an update does not decrease
the cost function. The update step consists of: For each medoid m and data point o such

that o is not a medoid:

1. Make o0 a medoid in place of m.
2. Compute the cost function.

3. If the cost decreases, keep the new configuration, otherwise leave o as a data point and

m as the medoid.

Compared to the k-means algorithm, it is clear that the PAM algorithm is significantly
more computationally expensive, as it has a quadratic complexity as presented. The major
advantage of k-medoids over k-means is the ability to use a distance metric other than the
standard FEuclidean metric, where k-means is not guarenteed to update monotonically, and
the restriction to using only data points. This restriction to only data points is useful in
the case of clustering molecular dynamics data as it allows us to use a specific, realizable
structural conformation as the center of the cluster, while a centroid of a k-means cluster

may not even be physically realizable.

9Kaufman/Rousseeuw: Clustering by means of Medoids (see n. 8).
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2.5 Conclusions: On the Curse of Dimensionality

The curse of dimensionality is a term that has been mentioned several times before. As a
major challenge in data analysis, and one that shows up strongly in understanding protein
dynamics, it deserves a brief comment before we complete this chapter.

The curse of dimensionality is a common phrase that refers to several different but related
phenomena that occur in various computational disciplines, numerical analysis, statistical
sampling and inference, combinatorics, machine learning, and others. The occurence in
Numerical Analysis and Statistical Inference are probably the most familiar, and have to do
with the super-linear scaling in the number of samples needed to produce an accurate result
as the dimensionality of the problem increases. In the finite element method in numerical
analysis, this takes the form of an exponential increase in the number of grid points that
need to be evaluated on a mesh as the dimension increases. If, for example, we needed
to evaluate a function only on the vertices of the unit hypercube, then we require four
evaluations in two dimensions, but eight in three dimensions, and generally we require 2"
evaluations in n dimensions. This exponential scaling results in even simple problems quickly
becoming intractable at high-dimension if the algorithm cannot scale with the dimension
better than exponentially. A similar phenomena occurs in statistical inference and machine
learning where the amount of data required for training quickly becomes incredibly large
when the dimensionality of the problem becomes large. In protein dynamics, the curse of
dimensionality takes the form of the sampling problem, and indeed, we will see the limits of
sampling in analyzing the TCR simulation data in chapter 4.

The curse of dimensionality also has form in the simple problem of evaluating distance
functions. The problem, essentially, is that in general the difference between ‘near’ and ‘far’
points in high dimensions becomes vanishingly small, described in more detail below.

For our purposes, this makes clustering a difficult task in high dimensional settings, such
as in protein dynamics where the dimensionality of the problem is, naively, 3" for n atoms

in the simulation. Even ignoring solvent and considering only the protein, this yields a naive
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data dimensionality that quickly runs into the hundreds when considering small parts of
proteins, and into the thousands or tens of thousands when considering even relatively small
proteins.

There is a third, related, issue that is highly present in molecular dynamics data, which is
irrelevant data obscuring relevant data. In MD), this has the form of thermal noise. Thermal
fluctuations are necessary for protein activity, indeed we are essentially studying the effects
of thermal noise on a potential energy system. In the absense of thermal noise, MD reduces
to little more than gradient descent on a potential energy surface, and the dynamics of the
system quite literally freeze out. However, thermal noise is also a distraction when studying
the data, as not every dimension is relevant, but every dimension is continuously perturbed
by thermal effects during the simulation. We are interested in studying only a subset of
the degrees of freedom of the system, those that separate long-lived local energy minima -
metastable states. However, most of the degrees of freedom are simply the thermal motion
of atoms bouncing back and forth, with little or no long term consequences for the system
as a whole. These extra, irrelevant dimensions add significant difficulty to the problem of
clustering the data, above and beyond the noise in the dimensions we care about, because
the distance-measurement problem means that as more noise dimensions are added to the
system, the clusters become close and closer together under our distance metric, merely due
to noise dimensions. Formally!?, this has the form that given a fixed distribution p on R,
there is an induced product distribution p™ on R. Let X, denote a data vector drawn from
p(”), and D,,., and D,,;, be the maximum and minimum distances between data points in

a set drawn from the distribution. Then we have that

Dmax - Dmm

—0
Dmin

0Kevin Beyer et al.: When Is "Nearest Neighbor” Meaningful?, in: vol. 1540 (Lecture Notes in Computer
Science), 1999, pp. 217-235.
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under the assumption that

: || X0 )
lim var | =—=———= | =0
=00 (E[IanH]

This assumptions holds for a broad range of distributions and distance measures, includ-
ing L,-norms with p > 1.

Much of the analysis machinery presented and used here is about dealing with the twin
distance-measuring and noise dimensions problems.

The dimensionality reduction technology, tICA for this analysis, is explictly about deal-
ing with these problems by stripping away the excess dimensions, but the Markov models
presented in the next chapter are also approaches to dimensionality reduction and ‘empirical
coarse-graining’ that attempt to reduce the dimension of the simulation data down to where
we can extract understanding. Ultimately, we use them in tandem, as the Markov models
require clustering, which benefits from first passing the data through tICA to reduce the

dimensionality for clustering.
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CHAPTER 3

MARKOV STATE MODELS

Markov state models (MSMs) are discrete, kinetic models of protein dynamics, based on
the theory of Markov models. MSMs act as a sort of coarse-graining of the system dynam-
ics, however, unlike techniques usually referred to as coarse-graining in MD, MSMs work
by building discrete models from simulated data, essentially coarse-graining the empirically
observed data, rather than analytical models of the system. MSMs thus serve several pur-
poses. The primary function of MSMs is to allow simulations to reach greater timescales
than are directly accessible to molecular simulation. This is done by constructing the MSM
from simulated data, and analyzing the long time-scale properties of the MSM. While this
method is incapable of revealing new behavior that is not observed in the simulations, it
yields a statistical understanding of what is observed, and makes it possible to understand
long timescale behavior of what is observed, often this is sufficient.

In concert with this, by building a statistical model from many events, MSMs are able to
integrate data from many simulations into a unified statistical model'. Since we analyze the
statistical model for longer timescale behavior, the statistical model can describe long-term
behavior in a rigorous manner that is not fully captured by any one simulation. The practical
advantage is that we can run multiple simulations in parallel. As the parallel simulations are
completely independent, non-communicating processes, we neatly side-step Amdahl’s law?

and obtain a linear speedup, at least in the simple case.

Vijay S. Pande/Kyle Beauchamp/Gregory R. Bowman: Everything you wanted to know about Markov
State Models but were afraid to ask, in: Methods 52 (1 2010), pp. 99-105.

2Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabil-
ities, in: AFIPS spring joint computer conference, 1967.
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Additionally, a simultaneous advantage and drawback of MD simulation is the immense
amount of data produced. The ultimate goal of the scientific process is human understanding,
and no matter how much information there may be in a simulation, it is worthless unless we
can extract that information into a form that can be understood and manipulated by the
intuition and reason of the researcher. Two approachs to this problem was presented in the
last chapter. The first, dimensionality reduction, ideally, finds the most ‘information-rich’
dimensions of the data, and projects onto those for interpretation. The other approach,
clustering, groups similar items together, making it possible to understand the system in
terms of those groups rather than taking each item, here a single frame of the simulation, as
an individual. This second approach is powerful for intuition. Intuitively, a good clustering
of the protein’s conformations would be a ‘state’ of the system, where each state behaves
similarly and experiences thermal fluctuations around a local energy minima. This yields an
understanding of the state as very much like a collection of x-ray crystal structures. While
not entirely correct, and we will ultimately want to consider the statistics of states, rather
than making direct observations as in crystallography, this view is intuitive and familiar for
discussion.

So if clustering is effective, why Markov state models? The problem with clustering, as
presented in the previous chapter, is that it clusters on the wrong metric. In comparing
data frames for clustering using k-means or k-medoids, we cluster using a similarity metric
that is inevitably geometric in nature. A better approach would be to cluster using kinetic
information rather than geometric, after all, what we are interested in when we describe states
is collections of conformations that are nearby in the sense that they rapidly interconvert,
or alternatively, that they belong to the same or nearby energy wells up to some resolution
of the energy surface.

MSMs are comprised of two aspects, a discrete state space to which individual confor-
mations of the protein are assigned, and a transition matrix that describes the kinetics of

transformations between those states. We are interested in both of these aspects, however
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for the purposes of studying the T cell receptor, we shall primarily be interested in the
process of building the discrete state space of conformational states. In doing so, we will
cluster the conformations into states, not by geometric criteria, but by kinetic, and thus we
can cluster the conformations without inadvertently lumping kinetically disparate confor-
mations together and thus accidentially eliminating kinetic barriers of the energy diagram
from our model. We will thus show the existence of metastable states in the T cell receptor
invisible to classical x-ray crystallography.

In order to fully describe the MSM formalism, we first review the basic theory of Markov
chains and Markov models. As in the previous chapter, the goal of this chapter is to introduce
the reader to the analytical tools at hand, however here we rely on much more theoretical
underpinnings than the previous set of algorithms. As such, we shall take a short detour
through the mathematics of Markov chains before we introduce the algorithmic methods. As
before, ideas are demonstrated with concrete code and figures, in addition to the theoretical
results. For the non-technical reader who only needs an intuitive grasp of MSMs for reading

chapter 4, the review article by Pande et al. is an excellent resource.?

3.1 Markov Chains

A Markov process is a stochastic process which obeys the Markov property. When the state
space of the process is discrete and Markovian, it is often referred to as a Markov chain, a
simple, but powerful model for many phenomena and a useful computational tool in many
settings.

The Markov property, named for Andrei Markov, is simply the property that the stochas-
tic system has no dependence on its past, but only on its current state. This is an intuitive
concept, and in the deterministic setting of Newtonian mechanics it is implicitly assumed:

the future behavior of a mechanical system from a point in time depends only on its current

3Pande/Beauchamp/Bowman: Everything you wanted to know about Markov State Models but were
afraid to ask (see n. 1).
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momentum and position. This is not to say that the past is irrelevant in a complete sense,
the past behavior of the system is what brought it to the current moment, however, a sys-
tem that is Markovian can be fully described by its current state, and thus its future can
be described, either deterministically or probabilistically, without knowing how it got to its
current state, only that it did, indeed, get there.

In physical systems, non-Markovian behavior is often surprising, as we have come to
expect physical systems to behave in a Newtonian fashion. The classic example of history-
dependence, hysteresis, is the magnetization of ferromagnetic metals, where a prior alignment
of the domains causes a permant magnetic field to arise, independent of the external field
applied to it. In this case, the system is history dependent in that the response to an
external field is dependent on prior exposure to the field through the hysteresis mechanism.
However, if we consider the system’s state to include information about the alignment of the
domains in the absence of a field, then it again becomes Markovian, in that we have all the
information required in the current state to describe the future behavior without reference
to the past. Indeed, any non-Markovian system with a dependence on only a finite length
of it’s history can be described as a Markovian system in a higher dimensional space where
that finite window of the system’s history is included in the current’ state. Thus, Markovian
systems are in fact incredibly common, and serve as excellent models for a wide variety of
phenomena.

To formalize this idea?, let Q be a finite or countably infinite set, which we will call the
state space of the system. A Markov chain is a sequence of random variables X, X1, Xo, ...

such that Vi € N, X; € Q which has the property that

P(Xi1 =i Xy, X1, o0y Xo) = P(Xpp1 = 1] X)

That is, the Markov property is that the probability of the next random variable, drawn

4Daniel W. Strook: An Introduction to Markov Processes, vol. 230 (Graduate Texts in Mathematics),
2005.
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from the state space, is conditionally independent of the history of previous random variables
given the most recent random variable. As a trivial example, the Bernoulli process, which
models repeated flips of a (fair or non-fair) coin, is Markovian. For a fair coin, the probability
that the next coin flip results in a heads is 50%, independent of the results of previous flips,
and also independent of the whether the last flip resulted in a heads or tails. More generally,
any stochastic process that is a sequence of independent draws from a probability distribution
is Markovian in a trivial sense, but these are not usually the processes of interest, rather,
we want processes where the future depends on the present in a fundamental way, without

depending on the entire history of the process.

3.2 Markov Models

Markov models refer to a number of stochastic processes that obey the Markov property
and are used to model phenomena. Probably the two most common are the Markov chain
and the Hidden Markov model, both of which describe autonomous Markov processes, with
the major difference being whether we can directly see the state of the Markov process,
as in a Markov chain where the data describe the state at each time step, or if the data
describe a phenomena controlled by the state of the Markov chain, but the state is not
directly observable. In the latter case we have a hidden Markov model, where we posit
the existence of a Markov chain that describes our system of interest, but where our data
consists of random variables that are draws from some probability distibution that depends
on the unobserved state of the hidden Markov chain. Hidden Markov models have shown
promising results for the problem we are interested in®, identifying and modeling the state
of a protein, however, we will focus on the simpler Markov chain model in which the state
is visible and we can inspect the sequence of states directly, though we wish to note that

we are aware of the advances made in applying HMMs to protein dynamics and believe

5R.T. McGibbon et al.: Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov
Models, in: Proc. 31st Intl. Conf. on Machine Learning, 2014.
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they will be an excellent tool once the methodology has matured more. In the case of
protein dynamics, the difference between these two approaches essentially boils down to
the issue of determining the assignment of frames to states as an independent step that
precedes and possibly alternates with determining the Markov model. Building the model
is greatly simplified by separating these concerns, however in doing so we are making an
independence assumption about the dynamics between the states and the definition of the
states themselves, introduced algorithmically by the use of k-means, k-medoids, or other
clustering processes. As is often the case with machine learning techniques, the investigator
must make the decision about the trade-offs inherit to any choice of one technique over
another.

In all of the following, we will consider Markov models with only a finite number of
states. This simplifies and makes more concrete the mathematics, essentially reducing the
mechanics of the theory to a subset of finite dimensional Linear Algebra and is the only
case we are interested in from a practical perspective of modeling protein dynamics in the
Markov State model framework. Let us consider a simple example system.

Let Q = {A, B} be the state space. Define a stochastic process {X;},7 € Z" by condi-

tional draws from a distribution given by

P(Xip1 = A|Xi = A) = paa
P (Xiy1 = B|X; = A) = pap
P (Xit1 = A|Xi = B) = ppa

P(Xitn = B|X; = B) = pps

where PAA,PAB,PBA, PBB € [Oa 1] and

paa+pap =1

ppa+ppB =1
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The probability pxy can be understood as the probability of transitioning to state Y at
the next time step, given that the system is currently in state X. Self transitions, that is
probabilities of the form pxx are the probability that the system stays in the current state.

We can arrange the probabilities into a transition matrix as

PaA PaB
PpA PBB
Noting that the rows sum to one, the transition is a right stochastic matrix, which
has the effect of taking probability vectors, non-negative vectors with L; norm 1, back to
probability vectors under right multiplication. Specifically, let 7y be a probability vector.
Then

P = my,

where v, is a probability vector. Further, by induction we have that

n
T, =, 1P = 7TOI_) )

where 7, is a probability vector. In general, the product of right stochastic matrices is again
a right stochastic matrix, and as we would expect from the above, the n-th power of a right
stochastic matrix is a right stochastic matrix. These same results hold for both left and
doubly stochastic matrices, where left stochastic matrices are those whose columns sum to
1, and doubly stochastic matrices are both left and right stochastic.

In going from describing the stochastic process in terms of draws from a conditional
distribution to the matrix notation, we have transferred from the point of view a partic-
ular trajectory or realization of the stochastic process to considering the ensemble, and in
particular by studying the properties of the transition matrix, we can describe average and
long-term behavior of an ensemble, much as we might in statistical mechanics. In particular,

when we calculate 7, = 7,P, we take the probability distribution of the emsemble that
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currently has the distribution 7, to the new distribution 7r,,.;. Thus the transition matrix
is the operator that moves a probability distribution of the Markov process forward in time.
The immediate question is then, does a limit exist and is it unique? That is, does there exist
7* such that

" = lim wyP"
n—oo

If so, how does it depend on 7y? For the moment, posit that such a 7* does exist and is
unique. Then we have that

7" = lim m,P" P = n*P
n—oo

And thus, if it exists, w* is an eigenvector of P with eigenvalue 1. Such a probability
vector is a stationary distribution of P. If the system described by P is a physical ther-
modynamic system, then 7* corresponds to the equilibrium distribution of thermodynamic
states in the system.

Under the right conditions, the stationary distribution exists and is unique, and thus
independent of the initial probability distribution of the system. In the next section, we
discuss the Perron-Frobenius theorem from spectral theory, which when applied in the con-
text of a stochastic transition matrix yields the appropriate stationary distribution. Before
moving on, however, let us consider some failure modes where this may not hold. Given the

above two-state system, let the conditional probability distribution be given by

paa =ppp =1

The transition matrix is then the identity matrix, and we have that every probability
vector is an eigenvector with eigenvalue 1, and more specifically, is stationary. While a
trivial example, it is clear that non-negative entries and row sums of 1 are not sufficient
to ensure the uniqueness of stationary distributions. More generally, we have that given a
transition matrix P, if there exists a permutation matrix A such that AP is a block diagonal

matrix, then there is not a unique stationary distribution. An intutive way to see this is to
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consider the graph of the Markov model that a block diagonal transition matrix describes.
Such a graph would be disconnected, and though each connected subgraph may describe a
Markov model that has a proper stationary distribution, there can be no such distribution
for the total Markov model because the system is disconnected. In particular, any convex
combination of stationary distributions of the subgraphs is a stationary distribution of the
overall system. Thus, we are interested in Markov models described by strongly connected
graphs, or alternatively irreducible matrices, those which are not similar via a permutation
to a block upper triangular matrice.

In practice, we can deal with disconnected systems quite easily, as the disconnectedness
implies that the connected subgraphs of the system are independent of each other, and can be
analyzed individually. More problematic in the case of studying a protein dynamics system is
that disconnected graphs can result from insufficient sampling rather than actual theoretical
independance. This is usually addressed either by dropping disconnected subgraphs, or,
when possible, running more and/or longer simulations to increase the available data.

More troubling than disconnected systems are weakly connected systems, which can and
do arise in empirical studies, where the graph is connected, but there exist pairs of states
i,j such that Vn € N, Pl = 0. In other words, state j is unreachable from ¢ regardless of the
number of steps into the future the system progresses. This cannot happen in an irreducible
matrix, and as a stochastic matrix is non-negative, an irreducible stochastic matrix can be
characterized by the existence of an n € N such that P™ has all strictly positive values.

For another failure mode, consider the transition matrix defined by pap = ppa = 1, that

is

P:
10

The process defined by this transition matrix is again Markovian, the matrix is stochastic

and a stationary distribution exists and is unique. It is clear that the only stationary

60



distribution is the vector w* = [0.50.5], as the transition matrix simply swaps the two entries
of the probability vector at each time step. However, while the stationary distribution exists

and is unique, we see that Vo # 7* such that 7 is a probability vector, and Vn € N,

|[7P™ ! — 7 P"|| > 0

Hence the sequence 7, 7wP, 7P, ... is not Cauchy convergent. Thus although the sta-
tionary distribution exists, it is not the limit point of any orbit of probability vectors other
than itself, and in fact, any distribution other than the stationary distribution is part of
a two-element closed orbit set. Thus, non-stationary distributions do not relax toward the
stationary distribution, which in thermodynamic terms means that the ensemble does not
equilibrate. Intuitively, such a transition matrix cannot model a thermodynamic ensemble
as it would not relax toward the maximum entropy distribution. More generally, this is the
requirement that the Markov chain be aperiodic. Aperiodicity of a matrix can be directly
characterized number theoretically, but for the case of irreducible stochastic matrices, it suf-
fices that the trace be non-zero, and so in practice, we will not encounter aperiodic Markov

systems calculated from empirical molecular dynamics data.

3.2.1 Perron-Frobenius

The Perron-Frobenius theorem is the basis of, essentially, a branch of spectral theory. In
the simplest form, the theorem dates back to work by Oskar Perron in 1907 on square
matrices with positive values, later extended by Georg Frobenius in 1912 to a subset of
non-negative matrices. This section will state the theorem and some consequences of it for
stochastic matrices, but a proof is omitted; for a modern proof using spectral theory, see
the article by Smyth®. The theorem is spectral in the sense that it describes properties

of eigenvalues and eigenvectors of real positive/non-negative matrices, and in this concrete

SM.R.F. Smyth: A Spectral Theoretic Proof of Perron-Frobenius, in: Mathematical Proceedings of the
Royal Irish Academy 2002.
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form finds many applications in probability theory (of interest to the present work), as well
as dynamical systems theory and numerous applications, perhaps most notably as an aspect
of the PageRank algorithm, which is based on Markov chain theory.

The Krein-Rutman theorem generalizes the Perron-Frobenius theorem to infinite dimen-
sional Banach spaces. Although not the subject of the present work, the value here is that
this extends the Perron-Frobenius theorem to the general theory of transfer operators. The
thermodynamics of a protein system can be described in full generality by the transfer oper-
ator that moves an initial ensemble of conformations towards equilibrium, and an excellent
analysis of this approach is described by Prinz et al”. Though we will not delve further
into this subject at present, it is worth noting that the Markov state model formalism is
essentially a numerical approximation to calculating the spectrum of the transfer operator
of the protein dynamical system that moves probability mass toward the equilibrium dis-
tribution. The transfer operator formalism can thus be used to describe how effective an
approximation is, and by similarly casting the tICA decomposition into the same setting, it
turns out that both tICA and MSMs are numerical approximations to the transfer operator
spectrum, yielding a theoretical reason for the effectiveness of tICA in preprocessing data
for analysis with the MSM approach.

Returning to the subject at hand, the Perron-Frobenius theorem asserts several proper-
ties about the eigenvectors and eigenvalues of a square, positive matrix. Without loss of
generality, assume that the transfer matrix of our Markov model has all positive values.
Since we will work, theoretically, only with aperiodic, irreducible transfer matrices we have
that if the transfer matrix T is not positive, then there exists an n € N such that T" has all
positive values.

Let T be a square matrix with positive real entries over C. Then there exists a positive

real number r such that r is a simple eigenvalue of T, and for all A\ # r that are eigenvalues

7J.-H. Prinz et al.: Markov models of molecular kinetics: Generation and validation, in: J. Chem. Phys.
134 (2011).
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of T, || < r. Furthermore, the eigenvector v corresponding to r has all positive real values,
and for any other eigenvalue w of T such that w is not a positive multiple of v, then the
entries of w include at least one negative or complex value.

Unpacking this a bit, theorem tells us that there exists a unique maximal eigenvalue and
that the corresponding eigenvector is strictly positive, and furthermore, no other eigenvec-
tor has all positive real entries. We will ultimately be concerned with symmetric transition
matrices, for which the eigenvector basis can always consist of only real valued vectors. The
interpretation of this, then, is that the eigenvector v corresponding to the eigenvalue r is,
under normalization to length 1, the stationary distribution of the Markov process, and the
other eigenvectors describe the degrees of freedom along which the system relaxes toward
equilibrium, with the corresponding eigenvectors describing the timescale of the relaxation
modes. Eigenvectors other than the stationary distribution have both negative and positive
values because they describe flows of probability mass through the system, while a strictly
positive or strictly negative valued eigenvalue would correspond to a source or sink of prob-
ability mass over time, which should not happen. The stationary distribution is all positive
as it describes the distribution at equilibrium, and furthermore, if it is in fact the stationary
distribution, then r = 1, and as we will see later, the corresponding timescale is infinitely
long, as we would expect of a thermodynamic system.

It remains to show that » = 1. However, since T is a stochastic matrix, it maps probability

vectors to probability vectors. Let w* = H\Y\h' Then

|7 Tl = [[rm™{[s = [[7*[

It follows that r = 1.
Frobenius generalized these results to the case case of irreducible non-negative matrices,
and in the general study of Markov models this is a highly useful tool. However, we are

currently only interested in the stationary distribution, for which we have that some finite
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power of T has all positive values, and furthermore we have that the stationary distribution

7 obeys

and so also obeys

m=nxT"

So 7 is an eigenvector with eigenvalue 1 for both T and T™. The utility of this is that
the general case of the Perron-Frobenius theorem only guarentees that |A| < r, and there
exist up to h eigenvalues, with h — 1 taking negative or complex values, of maximal absolute
value, where h is the period of the matrix. From this, it follows that if we require that
our transition matrix be aperiodic, then A = 1, and there is a single eigenvalue of maximal
absolute value among the spectrum of the transition matrix. This justifies the restriction

that a Markov model of a thermodynamic system be aperiodic.

3.2.2  Detailed Balance

The principle of detailed balance is a fundamental principle of chemical kinetics and ther-
modynamics that states the at equilibrium, each elementary process of a chemical system is
at equilibrium with its reverse process. In the case of a Markov chain, this requires that the
Markov process be reversible, which can be expressed as

* ok

J I

Note that this does not imply that given two states A, B € ) that pap = pra, which
would say that the forward and reverse probabilities of a particular state change are the
same, rather, the ensemble does not experience a net probability flow one state to another

at equilibrium. In kinetic terms, this is the idea that at equilibrium, the net rates of reaction
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are balanced, where the net rate is the rate of a reaction times the concentration. We can

write this as a first order rate reaction,

kA*)B [A] = k‘B%A [B]

which is the standard statement of equilibrium for a reversible first order chemical reaction.
Kolmogorov’s criterion is necessary and sufficient for a transition matrix to obey detailed
balance®. Kolmogorov’s criterion states that every finite closed cycle of states has the same

product probability as the reverse cycle. Formally, for any finite sequence of states {s;} ;,

Ps1soPsas3Psn_15n = Psnsn_1Psp_15p_2++-Psasy

Clearly, if a transition matrix models a chemical process, it must obey detailed balance.

3.2.8 Maximum Likelihood Estimation

So far we have studied the properties of a Markov model in relationship to the transition
matrix that defines the model. This is vital to understanding the nature of the Markov model
and to analyzing and intepreting a model once written down. This is a fine state of affairs
to stop at if we are only analyzing models written down ab initio, but we are interested in
empirical models built from data.

Let © be the discrete, finite state space of the system of interest. Our data set is a finite
sequence of draws from this state space, {X; : X; € Q}¥ . The problem is to determine the
transition matrix T that maximizes the probability of observing the {X;} sequence.

This is an instance of the general problem of statistical inference, given some data set
{z: € Q} that is drawn from p(x|6), the probability density function p parameterized by 6.

Then the maximum-likelihood approach to estimating # is to solve the optimization problem

8F.P. Kelly: Reversibility and Stochastic Networks, 1979.

65



given by

max L(O;21,29,...,2,) = max p(x1, To, ..., T,|0)

where f(x1, 29, ...,2,]0) is the joint probability distribution of the data set given the pa-
rameter set #. In the simple case where the data are drawn independent and identically

distributed, the joint probability distribution factors as

n

p(xlvaa 7In|9) = Hp(x1|9)7

=1

and in this case the maximum likelihood estimation of 0 is

max pl_[lp(xz\H)

This is a straightforward optimization problem, and for some families of distributions p,
there exists a closed-form solution. Much more discussion of the method of MLE can be
found in numerous textbooks on statistical inference, and much ink has been spilled on the
topic since it was popularized in 1912 by Fisher. It is worthwhile to note that MLE is not the
only method of statistical inference, however a deeper consideration of the topic is outside
the current scope, as we will assume that MLE is sufficient and appropriate to the task at
hand.

Our particular problem is not quite so simple, as the draws are not independent and
identically distributed since at each step the next draw from the Markov process, if it is
of any interest as a Markov process, depends on the previous result. So the probability

distribution does not immediately factor as a product.
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3.3 Markov State Models

The Markov state model formalism is an approach to modeling the dynamics of a protein
using Markov models and Markov chain theory?. MSMs are constructed from molecular
dynamics data, making them a form of ad-hoc coarse grained models built empirically from
directly sampling the system of interest, rather than attempting to fit parameters of an
analytic coarse-grained model.

The advantage is that the Markov model is more likely to capture the actual dynamics
of the system, and can be tuned to be coarser or finer in a systematic manner so that finer
models can be used to predict experimental results while coarser models lend themselves to
better human intuition and understanding of the major aspects of dynamics, while main-
taining a link to the finer models for potential verification. The models themselves can be
simulated exceedingly efficiently, however, as the models are, by construction, irreducible
aperiodic transition matrices, we may employ the full theory of Markov chains to study
them analytically. The Perron-Frobenius theorem immediately yields the equilibrium distri-
bution of the model, and further eigenvalues and eigenvectors show the relaxation degrees of
freedom, and the timescales of these computed quantities can be several orders of magnitude
longer than the simulated data used to generate the model, effectively stretching the data.

The downside of the MSM approach is that a large amount of data is nonetheless required
to estimate transition matrices, and this can be quite costly compared to simulating a coarse-

grained system derived analytically with fitted parameters.

3.3.1 Microstate Model Construction

Markov state models are built in two stages: first a ‘microstate’ model is built, and then a
‘macrostate’ model is constructed from an analysis of the microstate model. The microstate

model is build by directly clustering the data frames into small clusters, which does not

9F. No¢/S. Fischer: Transition networks for modeling the kinetics of conformational change in macro-
molecules, in: Current Opinion in Structural Biology 2008.
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achieve the goal of kinetically clustering the data, but rather allows the kinetically-clustered
macrostate model to be bootstrapped from the microstate model.

A major motivation in the construction of Markov state models is clustering data frames
of a simulation. In Chapter 2, we studied two common clustering algorithms, k-means and
k-medoids, which cluster together data points on the basis of a similarity metric, often (only,
in the case of k-means) the Euclidean distance between points. Of non-hierarchical cluster-
ing methods, the more sophisticated methods generally take the form of a transformation
of the space followed by k-means of k-medoids, for example spectral clustering which uses
the spectrum of the similar matrix of the data to perform dimensionality reduction before
clustering, similar to the process described here where tICA is used to perform dimension-
ality reduction before clustering with k-medoids. The clustering problem with respect to
molecular dynamics simulations is that the similarity metric must respect the kinetics of the
system, otherwise if we cluster two data points point (simulation frames) together that are
kinetically separated, we have accidentally removed an energy barrier from the output model.
The fundamental flaw of clustering using standard geometric criteria, the RMSD between
conformations, is that RMSD can easily hide kinetic barriers, such as sterically hindered
¢ /1 angle movements that separate two local energy wells. Small ¢/1) angle changes may
separate two local energy wells of the conformational space, but clustering on the RMSD of
the frames that live near the transition may show small RMSD changes as the angles may
not strongly alter the o carbon positions, but still represent a large kinetic barrier. If the
clustering accidentally links these frames together, the kinetic barrier is lost and the model
underestimates transitions between states, or else combines disparate states together.

We avoid this problem in two ways. The more recent approach takes a page from the more
sophisticated clustering methods and pre-processes the data with a transform and projection

of the data space!'?; here that method is tICA, which is itself a linear approximation to the

C.R. Schwantes/V.S. Pande: Improvements in Markov State Model Construction Reveal Many Non-
Native Interactions in the Folding of NTL9, in: J. Chem. Theory Comput. 9 (2013), pp. 2000-2009; R.T.
McGibbon/V.S. Pande: Learning Kinetic Distance Metrics for Markov State Models of Protein Conforma-
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spectrum of the transfer operator'!, making even the microstate model a clustering using
kinetic rather than geometric data. The second method, used in concert with tICA or other
data pre-processing, is to build a model of many small clusters, with the goal that each
cluster is sufficiently small that the kinetic similarity of the frames inside the cluster is very
high. Using a large number of clusters is often quite important when clustering on solely
geometric criteria, i.e. RMSD distance between frames, but less so when using an effective
pre-processing method. The value here is that with fewer clusters, we have more samples
per cluster, which will improve the statistics of model estimation. Make no mistake, though
the Markov state model method can extract significantly information from the data, it is
still an immensely data hungry analysis.

With all of the tools built up in Chapter 2 and the last few sections, constructing a
microstate model turns out to be quite simple. For clarity, we describe the process only for
the case of a single long trajectory, but construction of a model from multiple trajectories is
not much more involved than the single trajectory case and is well described in the literature.

Let the intial data set be a sequence of N frames {f;}, generated by a molecular dy-
namics simulation. Each frame is taken to be a vector describing the molecular structure of
interest; this may be the direct Cartesian positions of the atoms in XYZ space, a vector of
¢ /1 angles (suitably transformed by sin and cos to account for periodicty) or another rep-
resentation. Cartesian coordinate and other representations that have an external frame of
reference must be aligned to remove irrelevant center of mass drift and molecular tumbling.
This is the stage at which data pre-processing is used, so that we run the data representation
through tICA or another pre-processing method as desired by the investigator. The data,
transformed or in its original form, is clustered using k-means or k-medoids. The clustering
metric is a free parameter of the analysis, though is usually dependent on the data repre-

sentation. Using the XYZ coordinates would naturally lead to using the pairwise RMSD or

tional Dynamics, in: J. Chem. Theory Comput. 2013.

HM. Sarich/J-H Prinz/C. Schiitte: Markov Model Theory, in: (An Introduction to Markov State Models
and Their Applications to Long Timescale Molecular Simulation), 2014.
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mass-weighted RMSD as similarity metrics, while the standard Euclidean metric generally
fits the sin/cos representation of the dihedral angles. More exotic choices are possible, the
Hamming distance is fitting for a binary contact map representation of the protein, which
can be effective in the context of protein folding. In the case of pre-processed data, the
Euclidean metric is standard when the output space is R", as we are effectively clustering
using the induced metric of the pre-processing technique.

The clusters generated by the clustering algorithm become the state space of the mi-
crostate model, and the data is transformed to a sequence of states; each data frame in the
trajectory is mapped to one of the clusters, and our transformed data is the sequence of
cluster indices. At this point, the data is a sequence of draws from a finite state space, so

we can estimate the transition matrix using MLE as described in the previous section.

3.3.2 Time Lag

There is a major flaw in the MSM construction process laid out in the previous section— the
transition matrix estimated from the procedure as written assumes that the data sequence is
drawn from an ergodic system, and that assignment of a frame to a particular cluster-state
implies that the system is in a local equilibrium for that cluster-state. Essentially, there is
some error introduced by discretizing the system into clusters, and the discretized system
may not be Markovian on the discretized time-scale, that is, looking at the system one frame
at a time may violate the Markov property. The solution is to build the model at a longer
timescale.

The process of building the models at longer time lags is straightforward. To build an
MSM with timelag 7 instead of counting transitions of the sequence sy, s9, s3, ..., we instead
count transitions from the sequence sy, S;11, Sor41,.... S0 we run the same MLE analysis on
the sequence generated by subsampling the original data sequence at a rate 7. When dealing
with MD data, 7 is usually expressed in terms of simulation time rather than frame number.

This results in an important trade-off — the longer the time-lag, the less descriptive the
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model becomes, but the more accurately it models a process. Practically, longer time lags
also require more data, build a model at timelag 7, expressed in frames, from N frames of
data, we only have {gJ entries in the trajectory sequence, reducing the data by a factor of
7. This can be ameliorated by using a sliding window rather than subsampling, reducing the
data by an additive factor of 7 rather than multiplicative, but then transition counts are no
longer independent, introducing an error into the estimated transition matrix.

This implies a need for a test to determine the appropriate timelag to build a model at.
Several tests have been explored in the literature!?. The most common and the one used in

Chapter 4 is to look for convergence of implied timescales.

3.3.3 Implied Timescales

The implied timescales of an MSM correspond to the relaxation rates of the degrees of
freedom of the MSM. It is important to note that the degrees of freedom of the MSM do
not correspond to the physical system’s degrees of freedom, such as those found by tICA.
The degrees of freedom of the MSM are probability fluxes between collections of states
that system undergoes as it relaxes toward equilibrium, that is, the eigenvectors of the
transition matrix. It is unsurprising then, that the implied timescales are proportional to
the eigenvalues. However, rather than directly studying the eigenvalues of the transition
matrix, we calculate the implied timescales to link the relaxation modes of the system to

real time in terms of either simulated lab time or frames. The i-th implied timescale is given
by
-

t; = —
log ()\z)

where 7 is the timelag of the MSM and J; is the i-th eigenvalue of the transition matrix.

Note that Ay = 1 by the Perron-Frobenius theorem, so g = = 00, corresponding to

~log(1)

equilibrium occuring ‘at infinity’.

128, Park/V.S. Pande: Validation of Markov state models using Shannon’s entropy, in: J. Chem. Phys.
2006; Prinz et al.: Markov models of molecular kinetics: Generation and validation (see n. 7).
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The simplest method for determining an MSM time-lag is building MSMs of the same
system at a sequence of time-lag values and checking for convergence of the slowest time
scales, corresponding to the first few non-trivial eigenvalues. We only need the first few
timescales to converge because from a theoretical standpoint, we are largely interested in
the slowest motions of the system, and from a practical consideration, when we build the
macrostate system with n states, it will only maintain the information from the slowest n —1

degrees of freedom.

3.3.4  Macrostate Model Construction

The final macrostate MSM is useful for intuitive understanding of the system dynamics and
more coarse-grained analysis, such as we are interested in when analyzing the TCR dynamics
for alternative conformational states. Microstate models, or macrostate models with more
states are effective for predictive calculations, i.e. NMR or EPR parameters.

The passage from microstate model to macrostate model is essentially another clustering
process; this time the data frames are not clustered directly but rather the microstate clusters
are clustered together to generate clusters-of-clusters that show maximal meta-stability, that
is, we want the probability of leaving the macrostate clusters to be low. Ultimately, this
corresponds to maximizing the trace of the transition matrix of the clustered graph, carried
out using the PCCA+ algorithm, which groups nodes of the microstate graph together into
larger stable nodes, using the eigenstructure of the transition matrix'®. Once new clusters
are assigned, the final macrostate transition matrix is estimated directly from the data,
using the same lag-time analysis and maximum likelihood estimation of parameters used to
estimate the microstate model from data.

The major analysis choices fall to the choice of lag-time, which follows the same con-

vergence procedure as microstate model building, and determining the number of clusters

13P. Deuflhard /M. Weber: Robust Perron cluster analysis in conformational dynamics, in: Linear Algebra
and its Applications 2005.

72



to build the macrostate model with. There is no obvious choice for the number of clusters,
and it is partially a trade-off between interpretability and detail. However, a reasonable
approach and one taken in the analysis of the TCR data is to choose one more cluster than
there are slow timescales in the microstate model that separate out from the other implied
timescales at convergence. A markov model with n states has n — 1 degrees of freedom, and
implied timescales correspond to the slow degrees of freedom. Hence, if we are interested in
the slowest three degrees of freedom, it is sensible to model the macrostate model with four

states to incorporate these degrees of freedom.
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CHAPTER 4

RESULTS ON THE T CELL RECEPTOR

Having completed our tour of the mathematical constructs underpinning the analysis, we
come to the results on the T cell receptor. We aim to shed light on the nature of the CDR
loop flexibility and movements. We have two specific aims in this regard. First, we want
to determine how structured the motions of the loops are, can they be well described by
a low-dimensional system? And are these motions structured in some fashion, displaying
clustering and pathways? Second, do there exist metastable states of the system? This
second question ties into the binding hypotheses spectrum described in Chapter 1; are there
metastable states in solution that could be states for an equilibrium selection mechanism,
or seeds of states that support the conformational melding hypothesis?

With these aims in mind, we have simulated 10 independent MD trajectories of the 2C
TCR for 300 ns each, for a total of 3 us of data. For a comparison system, we have also
simulated 10 independent 100 ns trajectories of the NKT15 system, a Class I NK T cell that
recognizes a-GalCer, for a total of 1 us of data. Technical details of the simulations and

analysis can be found in Appendix C.

4.1 tICA Analysis shows distinct conformations and low
dimensional motion
We studied the conformational changes of the CDR3a and CDR3f loops individually by
analyzing their backbone dihedral angles under the tICA decomposition. As described in

Chapter 2, the tICA algorithm can be intuitively understood as taking a dataset and a

timescale parameter chosen by the investigator as inputs, and returning a set of combinations
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of the input degrees of freedom, here sets of dihedral angles, that are independent of one
another and display long-lived behavior.

We applied the tICA decomposition to the phi and psi angles of CDR3a and CDR3/ in-
dependently, each with an autocorrelation time of 5ns. Considering only the first two degrees
of freedom resulting from this analysis, we see a local maxima of the probability distribution
for the CDR3a loop (figure 4.1A), while there are four regions with local maxima for the
CDR3g loop (figure 4.1B). These islands of locally high probability are long-lived regions
of conformaitonal space that are frequently visited by the simulation, suggesting that these
conformations are relatively stable, and indicating the existence of stable conformational
states.

An outstanding question drawn from crystallographic studies asks how free are the mo-
tions of the CDR3 loops? Are they weakly structured with a large number of degrees of
freedom to move in, or are they tightly choreographed, moving in distinct conformational
states? To address these questions, and confirm the value of our two dimensional distribu-
tions, we consider the probability distributions of the first eight tICA degrees of freedom.
CDR3a shows an assymetric distribution in the first and third tICA degrees of freedom, and
a highly peaked distribution in the second tICA degree of freedom centered away from zero
(figure 4.1C). The remaining tICA degrees of freedom are more Gaussian with means near
zero, suggesting that CDR3a has some mild internal structure to its motions, with at most
only the first three tICA degrees of freedom capturing interesting behavior. The system
appears to be well described by two degrees of freedom. CDR3S shows significantly more
interesting behavior in it’s first two tICA degrees of freedom, both of which show multiple
peaks, while the remaining degrees of freedom show much more Gaussian-like appearences
(figure 4.1D). This strongly suggests CDR3/’s motions are primarily captured by the first
few, and in particular the first two, tICA degrees of freedom, indicating highly structured

motions and a largely two dimensional phase space of non-thermal noise motions.
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Figure 4.1: Kernel density estimates of tICA projections. (A,B) 2-D Kernel density estimate
of the simulation data projected onto the first two degrees of freedom discovered by tICA
for the CDR3a and CDR3/ loops, respectively, using a 2-D Gaussian kernel. The KDEs
estimate the probability density function for finding a randomly selected frame in a region
of conformational space described by the tICA degrees of freedom. (C,D) 1-D probability
density graphs of the first eight tICA degrees of freedom for CDR3« and CDR34, respectively,
using a Gaussian kernel.
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4.2 Markov state model of CDR3/ shows discrete metastable

states

Next, we clustered the frames in the tICA projection via k-medoids into a microstate model
and estimate MSMs as described in chapter three. The microstate models of CDR3« do
not converge over the timescales analyzed, and the trajectory data is insufficient to go to
longer timescales for MSM construction. This implies that CDR3« has a very slow degree
of freedom that is not sufficiently explored in the simulation. We address this further in
a later section with a reverse simulation, and note that very slow timescales of CDR3«
compared to CDR3f has been described in simulations of A6, where a single trajectory of
several simulated trajectories showed a major conformational change of the CDR3« loop. As
discussed later, this is indicative of a large kinetic barrier between a bound-like conformation
and the current unbound-like conformation of CDR3a.

On the other hand, the three slowest timescales of the CDR33 models separate out
from the faster timescales when the implied timescales converge (figure 4.2B). The CDR3f
data samples the phase space of CDR3p sufficently to build a qualitative MSM of CDR3j3
dynamics.

The separation of three slow timescales of the CDR35 loop implies a four state macro
model of CDR3ES dynamics, and agrees with the four high-probability islands observed in
the 2D projection of the data under the tICA analysis (figure 4.1B). We construct a four
state model of CDR3/ and extract the centroids of the macrostate clusters; these are the
orientations that are in centers of the clusters drawn from data frames, so the centroids
are conformations observed in the simulations, not mathematical averages. The centroids
are shown in figure 4.3A. All four states are well populated at equilibrium (figure 4.3B), as
predicted from the macrostate MSM, with the fourth state showing the highest equilibrium
population. Interestingly, state four is poorly populated in the empirically observed data.

The discrepency is due to the equilibrium distribution being calculated from eigenvalue anal-
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Figure 4.2: Implied timescales/relaxation timescales derived from eigenvalue analysis of
microstate MSMs for CDR3a (A) and CDR3S (B) loops.

ysis of the MSM, rather than from the directly observed data, meaning that the equilibrium
is determined by analysis of the kinetic model, not direct sampling. Importantly, despite
a low empirically observed frequency of state four, state four appears to involve hydrogen
bonding interactions with the CDR3«a loop, and demontrates immense stability due to a
mixture of hydrogen bonds and hydrophobicity. This phenomena is described in more detail
in a later section, and demonstrates the MSM picking up and emphasizing kinetic details
over the directly sampled data in an undersampled data regime.

The backbone ¢/1) angles of the eight central residues of the CDR3f loop are shown in
figure 4.3D. G205 and L210 show minimal variation between the centroids, suggesting that
flexibility at these positions is not required to generate the observed collection of metastable
states. Diversity is seen in both of the angles of G207, while S204 separates out the state
1 and 2 orientations along the others along the ¢ and v angles respectively. G206, G208,
and Y211 primarily separate a single centroid orientation from the other three along a single
¢ or 1) angle, while showing minimal varation in the non-separating angle. T209 appears

to separate centroids along the ¢ angle, however variation is seen under re-clustering of the
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original microstate clusters, while the behavior of the other angles is stable, implying that
T209 is flexible but does not meaningfully describe the different states.

The macrostate Markov model of CDR3/3 shows distinct pathways between the different
metastable clusters and differing levels of metastability in the states, with states 3 and 4
showing strong metastable behavior, while states 1 and 2 are only weakly stable (figure
4.4). Despite the relative instability of state 2, it acts in a hub-like fashion, with the largest
rates into states 1, 3, and 4 all coming from state 2. Rates into state 2 are also highly
relative to all other state transitions, with the exception of the state 1 to state 3 transition
which shows similar magnitude to the state 1 to state 2 transition. The other transitions
show much lower flux rates, so that state 3, although only weakly metastable, acts as a
central metastable intermediate. This high flux into state 2 accounts for the high population
observed in the equilibrium distribution of the state despite the weak stability. State 1 is
also weakly metastable, but does not have a counter-balancing inward flux, leaving it as a
simpler weakly metastable state, which accounts for its low equilibrium population. State 1
has a large outward flux to both state 2 and state 3, with the most significant in-flow coming
from the hub-like state 2, positioning state 1 as an alternate pathway to access the much
more stable state 3. State 4 only shows significant exchange with the hub-like state 2, and

shows strong stability and high equilibrium population similar to state 3.

4.3 CDR3a and CDR3/ loops of Type I NKT TCRs have

metastable states

Unlike CD4% and CD8" a8 TCRs, type I NKT «af TCRs recognize lipids presented by
CD1d, a monomorphic MHC-like protein. NKT TCRs do not show significant variation in
their bound state footprint, and crystal structures show comparatively little movement be-

tween free and bound conformaitons, despite variation in the chemical structures of the pre-

sented lipids. Type I NKT TCRs show significantly higher binding affinities than CD4* /8"
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Figure 4.3: (A) Ball and stick model of the CDR3S loop showing the centroids of the
four macrostate clusters determined by the MSM. Centroids were determined by finding
the orientation that minimizes the distance to all other members of the cluster under the
tICA projection distance. (B) Equilibrium populations of the four clusters, determined by
eigenvalue analysis of the macrostate MSM. (C) Projection of the centroids onto the first
two tICA dimensions overlaid on the kernel density estimate of the projected data. (D) ¢/
backbone angles of eight residues along the CDR3/ loop. Colors are consistent throughout
for states 1 (green), 2 (light blue), 3 (purple), and 4 (dark blue).
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Figure 4.4: Macrostate Markov State Model of 2C CDR3/ built with a time-lag of 115
nanoseconds. State clusters are represented by their centroids as initially described in figure
4.3A, and jump probabilities are described by arrows labeled by the probability of that
state transition occuring in a 115 nanosecond time step. Arrow size is proportional to jump
probability.
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TCRs, and have binding kinetics that suggest an innate-like response. As they use the same
immunoglobulin architecture as standard CD4*" /8" TCRs, we investigated the unbound dy-
namics of the NKT TCR as a comparison to the dynamics of the 2C system. We ran 10
independent trajectories of the NKT'15 TCR for 100ns, collectively totaling 1us of data.
We applied the tICA decomposition to the backbone dihedral angles of the CDR3« and
CDR3p loops of NKT15 with a timelag of 5Hns, just as with the 2C system. Similar to
the 2C TCR, the tICA decomposition is indicative of low-dimensional, structured motions.
Most of the tICA degrees of freedom consist of Gaussian motions around a mean of zero,
thus consisting of thermal motion, with only one degree of freedom for each loop showing
multiple peaks that suggest metastable conformational regions (figure 4.5A). Plotting the
density estimates of the first two degrees of freedom for each loop, we find that both loops
show two distinct high probability regions separated by lower probability transition regions
(figure 4.5B, C). In both CDR3«a and CDR34, the two local probability maxima are separated
along a single axis, so only a single degree of freedom is responsible for the transition ebtween
these high-probability regions. Furthermore, in both systems, one of the high-probability
regions shows a much higher probability relative to the other, suggesting the existence of
a single major local energy minima, and a kinetically nearby metastable state with higher
energy. In contrast to 2C, we observe distinct metastable regions in both systems, although
CDR3p is much simpler in NKT15 than in 2C, with only two metastable states separated
along a single degree of freedom, implying that NKT15’s motions are more restrained than

2C.

4.4 CDR3a and CDR3/ loops interact in 2C through hydrogen

bonds

Previous work has shown that there is weak, if any, coupling between the overall loop dynam-

ics of CDR3a and CDR3/ loops in the A6 TCR. However, we do observe direct hydrogen
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Figure 4.5: (A) Probability distributions of the NKT15 CDR3a and CDR3f conformations
projected onto each of the first eight tICA degrees of freedom, computed by a 1-D kernel
density estimate with a Gaussian kernel. (B) 2-D probability distribution of NKT15 CDR3«
projected onto the first two tICA degrees of freedom; selected conformations from the simu-
lation are shown in orange and gold and overlaid on the probability distribution plot. (C) As
in panel (B) for the CDR3p loop with selected conformations shown in light green and ochre.
Probability distributions were computed by a 2-D kernel density estimate with a Gaussian

kernel over all collected trajectory data. %3



bond interactions between the CDR3a and CDR3S loops of 2C when CDR3f adopts the
metastable state 4. In two of the ten trajectories of 2C, the CDR3/ loop adopts a conforma-
tion that permits a hydrogen bond between the sidechain of Ser93 on CDR3« and backbone
of Gly207 on CDR34 (figure 4.6A). The CDR3a loop’s conformation that permits this bond
is near the high-probability region observed in the tICA projection, and may account for
some of the long-tail spread observed in the first tICA degree of freedom for CDR3« (figure
4.6B). The CDR3/ loop of 2C appears to be able form this bond only in state 4 where the
CDR3g loop is oriented to make the Gly207 backbone contact with the CDR3« Ser97. The
hydrogen bond demonstrates significant stability, appearing in 25% of frames assigned to
state 4. The persistence of this interaction and the specificity of the orientation required to
allow it accounts for the high equilibrium population of state 4 in the Markov state model.
As the model relies on kinetic information to determine equilibrium populations, rather than
directly observed conformations, the model indicates that this hydrogen will tend be a high-
population, dominant state over a long time scale relative to the observed sample from the
simulation.

This conformation is further stabilized by multiple intra-loop polar contacts and a hy-
drophobic ’shell’ that protects the hydrogen bonds from solvent interactions. In addition to
the inter-loop contact between Ser93 and Gly207, in the sample frame we observe a CDR3a-
CDR3a hydrogen bond between Ser93 and the backbone of Gly206, as well as interactions
between Thr209 and Gly206 (figure 4.6A). Surrounding these hydrogen bonds are numerous
hydrophobic residues that can shield the hydrogen bonds from solvent, as depicted by the
pink residues in figure 4.6A. There are nine hydrophobic residues within 6 angstroms of
either Ser 93 or Gly207, creating a hydrophobic shell around the inter-loop hydrogen bond
and shielding some of the intra-loop interactions as well. Surrounding hydrogen bonds with

hydrophobic residues has been shown to enhance stability!, suggesting this hydrophobic shell

LChristopher M. Fraser/Ariel Fernandez/L. Ridgway Scott: Wrappa: A screening tool for candidate
dehydron identification, tech. rep. TR-2011-5, University of Chicago, 2011; idem: Dehydron analysis: quan-
tifying the effect of hydrophobic groups on the strength and stability of hydrogen bonds, in: (Advances in
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is responsible for the significant stability of the hydrogen bond and the conformation. The
stability is notable in the simulations, as there are no transitions out of this state observed in
the simulation trajectories where it occurs. This "hydrophobic collapse’ conformational state
is both structurally and kinetically separated from the other conformations, notably looking
unlike known bound states of 2C, and potentially acting as a hydrophobically driven ’off’
state that reduces the overall affinity of the TCR by stabilizing a binding-incabable state.
At the same time, the hydrophobic sidechains that contribute to the stability of state 4
may explain the instability of states 1 and 2 in which the CDR3/ loop is more extended and
thus more solvent accessible. The increased solvent exposure of the hydrophobic sidechains
will create unstable conformations, leading the CDR30 loop to ‘search’ for a conformation
that once again buries the hydrophobic residues, leading to the transition-state behavior
of states 1 and 2 where the CDR3/ loop is frequently sampling, possibly unsuccessfully,

transitions out of the conformational state.

4.5 Simulations reproduce CDR3/3 bound crystal structure

orientations

We are able to compare our results with experimentally determined crystal structures in
two ways. First, as the tICA projection matrix can project previously unobserved data, we
projected the CDR3( loop conformations of three bound structures of 2C in complex with
H-2k?/SIYR (PDB 1G6R), H-2K®/dEVS8 (PDB 2CKB), and H-2L.4/QL9 (PDB 2019) onto
the two dimensional space of the first two tICA degrees of freedom (figure 4.7A). We omit
CDR3a projections because no bound states of the CDR3a loop are found in the simulation
trajectories, implying either a much slower transition time as observed for A62, or that the

conformation of the CDR3a’s bound state is unfavorable without the environment of the

Computational Biology), 2010, pp. 473-479.

2Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13).
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peptide-MHC.

Projecting the bound conformations onto the first two tICA degrees of freedom, we find
that H-2K®/SIYR and H-2K®/dEV8 both appear near the most frequently observed region of
the tICA conformational space, but are themselves in low probability regions that appear to
be transition regions between two metastable states. This indicates that although the bound
conformation for these antigens are closely sampled in solution, they are unlikely to directly
be the result of selection from a pre-existing equilibrium. However, they are kinetically
close to two well-populated metastable states, making it plausible that if a binding event is
initiated from either of these two metastable regions, then CDR3/ will be able to rapidly find
the correct orientation observed in the bound state. In contrast, the bound conformation
for the alloreactive H-2L¢/QL9 falls into the region corresponding to state 2 of the MSM,
which is the lowest equilibrium population state of the model. Intriguingly, both antigens
that use the H-2K® MHC fall into the transition-like region, but nearer to the hub-like state
2, while H-2L4/QL9 falls into a distinct region in the projection, and biologically presents in

a different context than H-2K?.

4.6 Reverse simulations indicate slow CDR3a dynamics

In our main dataset, CDR3« did not transition to a bound-like conformation in any of the
ten trajectories. This strongly suggests that the bound conformation lives in a stable, local
energy minima with slow kinetics between the bound and unbound-like regions of phase
space. To test the stability of the bound state, we ran an additional ten trajectories of 2C,
initialized with the coordinates of the bound state for 2C bound to H-2K®/STYR. Trajectories
were run for 100 ns each, collecting an aggregate of 1us. CDR3a remained near the bound
conformation for the entirety of all ten trajectories (figure 4.8), in line with the hypothesis
that the bound state is a stable local well. Because no transitions are observed in any
trajectory, we are unable to construct a Markov state model of the CDR3a, however the

data indicate that CDR3« is stable in bound conformation independent of the environment
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Figure 4.7: (A) tICA projections of the bound 2C CDR3/ loop conformations for 2C bound
to H-2L/SIYR (red), H-2K®/dEVS (green), and H-2L%/QL9 (blue) overlaid on the 2-D
probability density. (B) Ball and stick render of the CDR3/ bound crystal structures overlaid
with the nearest simulation frame by RMSD of the Cas after aligning the § variable domains.
Simulation data is shown in cyan.

of the peptide-MHC, and the kinetics of transitions between these states are very slow.
This is in line with observations of A6, where simulations yielded only a single transition of

CDR3a in an aggregate data set of 460 ns, suggesting that slow CDR3a dynamics may be
a general feature of CD41/CD8* TCRs.

4.7 Analysis of 2C and NKT15 loop fluctuations

One major difficulty of tICA and similar projection techniques is detailed comparison be-
tween data sets of different molecules. The projection is parameterized to the data set that
generated it, and in general, scaling between different data sets analyzed with tICA is un-
related. To address the issue of loop flexibility in both 2C and NKT'15 directly, we look at
the fluctuations of the Ca of the tip region of the loop over the course of each trajectory.
This was determined by taking the Ca of the loop residues that show the largest average dis-

placement in each trajectory and plotting the frame-by-frame displacement from the initial
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position of the trajectory.

The CDRa loop of 2C shows significant flexibility and variance in most trajectories (Fig-
ure 4.8 A). The hydrophobic collapse state that promotes the hydrogen bonding interaction
between CDR3a and CDR3g is visible in the CDR3« traces as large displacements from the
original orientation but sharp drop-offs in variance as the loop is constrained to that con-
formation. This aligns well with the idea that 2C’s CDR3« has a broad energy well in the
unbound-like state with relatively little structure, with the exception of the tightly controlled
collapse state. The CDR3a loop of NKT15 (Figure 4.8B) showed lower overall displacement
from the original position and lower variance, though some regions show higher local vari-
ability, usually coupled with larger displacement from the starting conformation; these two
regions may separate the two regions observed in the tICA 2D projection. The CDR3a loop
of NKT15 does appear less flexible than the CDR3« loop of 2C over the timescales observed.

The CDRS loops of 2C and NKT15 show similar levels of displacement and variance,
demonstrating similar levels of flexibility, and the maximum displace of NKT15’s CDR3/ was
larger than that observed for 2C. Given this data, CDR3(’s flexibility does not appear to be
related to germline selected V[f3] segments. However, CDR3 is significantly less important
to NKT recognition than CDR2/ and CDR3a.

The overall flexibility of NKT15 compared to 2C is unexpectedly high given the minimal
variation in conformation observed in crystallographic data of bound NKT structures, and
the rapid binding kinetics. It is possible that the flexibility is necessary to ensure the lipid
adopts the proper conformation observed in the bound state, but that the system essentially
falls down an energy well toward the bound state upon interacting in a binding-capable state,
leading to the fast binding kinetics. However, it is notable that the CDR3« loop, which is
more important to recognition than CDR33 in NKT15, shows lesser flexibility than in 2C,
and restricting this flexibility should be more important to the system than restricting the
CDR3S loop. The restricted Va segment repertoire may be in part to restrict the flexibility

of the CDR3« loop, and simulating a larger variety of af TCRs with different Va segments
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Figure 4.8: Trajectories of CDR3« loop tip motions. Traces for each trajectory of the Ca
displacement magnitude of the Ca with the largest average displacement over the trajec-
tory for 2C (A) and NKT15 (B). Red box highlights regions of 2C trajectories where the
‘hydrophobic collapse’ and accompanying hydrogen bonds occur.
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Figure 4.9: Trajectories of CDR3/ loop tip motions. Traces for each trajectory of the Ca
displacement magnitude of the Ca with the largest average displacement over the trajectory
for 2C (A) and NKT15 (B).
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would shed more light on the issue.
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CHAPTER 5

CONCLUSIONS

5.1 On the T cell receptor

The flexibility and dynamics of the CDR loops of T cell receptors have long been a topic of
speculation and interest. Crystallographic work has demonstrated the existence of multiple
loop conformations in the bound state of the CDR loops and indicated that loop flexibility
must necessarily play a role in cross-reactivity. Here, we have used the Markov state model
framework to show that in 2C’s CDR3S loop, there exist clusters of conformations that are
distinct and exist independent of the environment of the final binding state, and that these
conformations are much broader even than those variations observed in the known crystal
structures of 2C, our model system. We have shown that these individual states, made of
many kinetically related conformations, are inherently stable in a fashion that makes them
fitting of the term ‘state’, and there exists a distinctive structure in the movements of these
loops between these states. Previous pioneering work by Scott et al. demonstrated the
existence of distinct clusters of conformations in the unbound A6 TCR!, and provided ev-
idence for a slow mode of motion in the CDR3« loop, and faster, more diverse motion in
the CDR3p loop. Our results find good agreement with this work, suggesting a common
behavior, that of slower, simpler dynamics in the CDR3« loop and faster, more complex dy-
namics in the CDR3/ loop, for o CD4"/CD8" TCRs. We have furthermore demonstrated
the stability of these clusters, showing them to be true local minima, providing distinct con-

formational groups that can potentially act as a source of initial conformations from which

1Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13); Scott et al.: Limitations of time-resolved fluorescense sug-
gested by molecular simulations: assessing the dynamics of T cell receptor binding loops (see n. 31).
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selections can be made, in either a conformational selection or conformational melding model
of TCR-pMHC recognition.

The tICA decomposition is a powerful too for understanding the complexity of the mo-
tions we observe. Previous work, both computational and crystallographic, has firmly es-
tablished the flexibility of CDR3 loops in CD4"/CD8" a8 TCRs, but it has been difficult
to understand how well structured those flexible motions are, that is, are the motions pre-
cise and organized through specific degrees of freedom, or are the loops more like a rope,
able to flex anywhere along its length? With the tICA decomposition into linear, orthog-
onal degrees of freedom, we can characterize these motions by the number of orthogonal
degrees of freedom that meaningfully contribute to the state transformations, in the case
of 2C CDR3j, we observe two orthogonal degrees of freedom that captured by the tICA
decomposition that reveal evidence of substates and probability densities that are distinctly
non-Gaussian. Thus, 2C’s CDR3/ loop moves, with respect to its internal motions, through
a two-dimensional space and has a restricted flexibility. Even more strikingly, we see that
with a tICA decomposition of the available data for NKT15, both CDR3« and CDR3j are
described by a single tICA degree of freedom. The Ca at the top of the CDR35 loop NKT15
shows a larger variation in its location in real space than the corresponding measurement of
2C’s CDR3p loop, however NKT15 is less flexible in that is has fewer degrees of freedom,
forcing it to adopt simpler motions than those available to 2C.

This difference in the dimensionality of flexible motion of the TCRs is a qualitative
demarcation between 2C and A6 on one hand, and NKT15 on the other. While we have not
examined A6 using the tICA decomposition, the similarity in conformational state diversity
observed in previous work to the diversity we observe in 2C makes the extrapolation a
reasonable hypothesis, and the simplicity observed in NKT15’s dynamics yields a possible
explanation for the different kinetics observed. In the present work, only one of 2C’s bound
states falls into the locally most probable region (QL9-Ld antigen), while the other two bound

states appear in a lower probability transition region between two wells. This supports the
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conformational melding hypothesis; there are clear clusters of conformations that would be
capable of more quickly finding the bound state, but the actual bound states are not so
likely that the binding mechanism is well described as conformational selection. On the
other hand, we achieve an incredibly close match between the CDR3/ loop’s bound states
and simulation frames, and find the bound states project well onto the observed data under
the tICA decomposition’s projection, demonstrating that the environment of the peptide-
MHC is not required for CDR3S to find a bound-like conformation, as would be expected
from a pure fold-upon-binding mechanism.

We can roughly partition agonist a8 TCR kinetics into two classes, those which have slow
off rates, and those with on rates fast enough to rebind before diffusing away where analysis of
re-binding events have been shown to effectively predict signaling?. In the more classical, slow
off rate case, ’local search’ could explain the slow observed binding kinetics, as put forward in
the conformation search and conformational melding hypotheses®. Conformational melding
effectively argues that the search is local, and thus must be seeded by a conformation that
is initially selected from a set of equilibrium conformations; the observed state clusters in
our Markov model provide distinct initial states for such a seeding in accordance with the
melding hypothesis.

On the other hand, the innate-like kinetics of type I NKTs would suggest simpler mo-
tions*, which are apparent in the tICA decomposition of the NKT15 simulation data. The
crystallography of NKTs demonstrates little variation in binding orientation, unlike 2C, the
footprints of type I NKT TCRs are nearly identical across different antigens, which is fit-
ting with the faster kinetics. The need for faster kinetics and thus simpler loop dynamics
can potentially explain the reduced selection of variable domains: the reduced selection has

been evolutionarily selected specifically for the tendency to create simpler loop dynamics,

2Govern et al.: Fast on-rates allow short dwell time ligands to activate T cells (see n. 42).
3Gagnon et al.: T cell receptor recognition via cooperative conformational plasticity (see n. 27).

4Rossjohn et al.: Recognition of CD1d-restricted antigens by natural killer T cells (see n. 5).
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while still using recombination to make minor adjustments to the enthalpic contacts and
potentially alter the equilibrium distribution of states. As we observe two states for each
of the CDR3a and CDR3/ loops in 2C, it is reasonable to postulate that these alternative
states may act as simple ‘off” states that do not permit binding, thus acting modulate overall
affinity.

A major outcome of 2C’s flexibility is the creation of the hydrogen bond interaction
between CDR3a and CDR3pS and the hydrophobic region that stabilizes the interaction.
It is likely this state is binding-incapable, as the cluster conformations differ sharply from
the bound conformations present in crystal structures, which suggest a dual-role for the
CDR3g in both MHC recognition and overall affinity adjustment. The hydrogen bonded
state 4, and the less well characterized, but similarly stable state 3 in our MSM of CDR3/
appear to be ‘off” states, whose equilibrium populations would control affinity by altering
the probability that the TCR is binding competent or binding incompetent. A similar role
has been suggested for CDR3« in the context of A6 due to its slow motions. If these states
are also reachable in the bound system, they may also adjust the off-rates depending on
how accessible they are. On the other hand, states 1 and 2 divide the bound conformations
by MHC, suggesting that CDR3/ conformations contribute to MHC recognition as well as
peptide specificity. Despite the length of our simulations, transitions out of the hydrogen
bonded state are not observed, which limites our understanding of the state dynamics and
limits the quantitative value of the CDR35 MSM. Nonetheless, the qualitative results, the
existence of four distinct conformational clusters, is clear.

Finally, we note that the existence of these slow dynamics and long-lived metastable states
indicates a need for significantly longer trajectories and larger data sets. We have contributed
a large data set for a single TCR, which we believe to be the largest set of trajectories for
a free TCR that deals with only a single system and thus is comparable across trajectories,

as well as allowing for independent trajectories to evolve. Much work has largely used 100
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ns or shorter trajectories® , often with fewer trajectories, with trade-offs between deeper
sampling of a particular phenomna or broadly sampling many comparable systems forced by
technological and resource constraints. Using MSMs to knit together multiple trajectories
into a larger picture and taking advantage of GPU-enhanced calculations to greatly extend

the size and scope of simulations offers a much more comprehensive picture for single systems.

5.2 Conformational Dynamics and Models of TCR Binding

The data presented most strongly support the conformational melding model, rejecting

strong forms of both the induced fit and conformational selections models.

Induced Fit

The data does not support the strongest form of the induced fit model on the simple basis
that distinct states exist in solution, as demonstrated by the kinetic clustering of the MSM,
and the CDR3 loop motions are constrained to few degrees of freedom. Comparing to the
tICA projection and the known bound states, we might expect the bound states to occur far
from solution-state conformations if induced fit is accurate, shown as the orange region in
figure 5.1. We do not observe the bound states here, instead finding them in the transition
region between states 1 and 2. This does fit with weaker forms of the induced fit model, where
the induced conformations are more the result of freezing out alternative conformations, but
this arguably the conformational melding model aside from focusing solely on the TCR’s

behavior.

5Scott et al.: Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity,
specificity, and binding mechanism (see n. 13); Knapp/Dunbar/C.M.: Large Scale Characterization of the
LC13 TCR and HLA-B8 Structural Landscape in Reaction to 172 Altered Peptide Ligands: A Molecular
Dynamics Simulation Study (see n. 48).
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Figure 5.1: The tICA projection of the primary simulation dataset with the bound states’
projections shown in red, blue, and green. The orange region shows the expected location
of bound states under the induced fit model.

Conformational Selection

The conformational selection model appears at first to be well supported by the data; the
CDR3 loops have restricted degrees of freedom and CDR3/ displays distinct conformational
states that the loop transitions between and holds. However, if the selection model were
true, we would expect that the bound structures would be located in the regions of high
local probability, as shown in orange in figure 5.2. State 4 is excluded as an expected bound
state in the figure, as the hydrophobic collapse is likely to be binding incapable and is furthest
from the known bound structures. Only one bound state is near such a region, and it is a
particularly unstable region, while the other bound states are located between two states in
a less well-populated region.

However, we find that the bound states are located between states 1 and 2, with only

one bound structure, curiously a antagonist ligand®, near a high probability region. This

6Stone/Chervin/Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell activity and
specificity (see n. 23).
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Figure 5.2: The tICA projection of the primary simulation dataset with the bound states’
projections shown in red, blue, and green. The orange regions show expected locations of
bound states under the conformational selection model. The region corresponding to state
4 is omitted because of the likelihood it would be binding incapable.

strongly suggests that stable states are not selected as bound conformations, rejecting the

central idea of the conformational selection model.

Conformational Melding

Conformational melding fits the data best. From the perspective of only the TCR’s dynamics,
the conformational melding model is largely a golden mean; the loops are not unstructured
and may have distinct states, but those states are not directly the bound conformations.
Rather, the states may seed the search process. In particular, conformational melding implies
the need for weakly stable states, as the system needs to be able to perform a local search in
order to find the correct bound conformation. This is reflected in the orange region of figure
5.3, where we might expect that the bound states would be in marginally populated regions
near the less stable states, particularly near the hub-like state 2. This is precisely where we

find the bound conformations.
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Figure 5.3: The tICA projection of the primary simulation dataset with the bound states’
projections shown in red, blue, and green. The orange region shows the expected location
of bound states under the conformational melding model.

5.3 Future Directions

This work presents one of, if not the, largest simulation datasets of a single T cell receptor
to date, and provides a novel analysis of the system using kinetic clustering methods and
machine learning techniques to discover previously unobserved conformational states and
behaviors. However, we have found more questions than answers in doing so. This section
describes several ways to extend the present work, and some experimental apporoaches that

could yield more insight.

5.3.1 Ezxperimental Probes

A major motivation for exploring the CDR3 loop dynamics via simulation is that there are
not currently many effective experimental techniques for getting at the level of detail. Major
methods with the potential for sufficient spatial and temporal resolution are single-molecule

approaches using florescent probes and NMR. The single-molecule approach has been tried
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and shown to be unable to resolve the loop dynamics, though they did broadly validate
simulation results”. NMR has sufficient resolution to determine larger conformational shifts,
and has been shown to resolve multiple peaks in an NMR experiment examining the 2C TCR
clone bound to a peptide-MHC ligand; this experiment was capable of resolving muliple
conformations of the CDR3S loop, and implies that the CDR3/ loop of 2C has multiple
conformations in the bound state®. So NMR is possible and effective for T cell receptors,
however the experiment is quite difficult; the form of 2C crystallized in the 1TCR pdb
structure has 439 amino acids, making it roughly a 48 kDa protein, much larger than NMR
can easily handle without significant resource investment. Cutting down to just the variable
domain, there are still roughly 220 amino acids, which is around a 24 kDa protein before
including the linker used in variable-domain only experimental set ups for, e.g. SPR. This is
a managable size for NMR, demonstrated by NMR analysis of 2C?, but still quite large, and
thus exceptionally expensive to work with, particularly for systems that have to be expressed
in more exotic cell cultures.

All of this is to say that NMR is likely to be highly impractical. Nonetheless, if it is
feasible, then the Markov State Model can be used to directly calculate NMR parameters, and
then compared to experimental values, which has shown excellent results in other contexts'C.
This is the cleanest way to directly assess the MSM results.

Another approach, though painful, is to make key mutations to the 2C sequence. The
goal here is not to assess the MSM directly, but rather to use it to explore the consequences

of the conformational dynamics. In particular, the serine at position 93 in the CDR3«

"Scott et al.: Limitations of time-resolved fluorescense suggested by molecular simulations: assessing the
dynamics of T cell receptor binding loops (see n. 31).

8Hawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).

Tbid.

10D. Sezer/B. Roux: Markov State and Diffusive Stochastic Models in Electron Spin Resonance, in: (An
Introduction to Markov State Models and Their Applications to Long Timescale Molecular Simulation),
2014.
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loop makes the hydrogen bond that appears central to the "hydrophobic collapse’ state that
appears as state 4 in the MSM of CDR3f in the present work. Mutating this position to
eliminate the sidechain-mainchain hydrogen bond should destabilize this state. If it is indeed
an 'off’ state, this should cause a general increase in the overall affinity of any ligand, on
the order of a factor of 1.5 increase in affinity if the state is completely eliminated, given
that it has an occupancy of approximately 30% according to the MSM. However, this effect
is tempered and possibly reversed if the binding ligand makes enthalpic contacts with the
serine in the bound state, making this a tricky proposition. In the crystal structure 2CKB,
of 2C bound to QLI/K®, Ser93 makes a backbone hydrogen bond with a lysine on the
peptide, as well as a backbone hydrogen bond to another loop via the backbone nitrogen,
and a sidechain hydrogen bond to alanine at position 103 in the CDR3« loop. This suggests
that inserting a hydrophobic residue like alanine, which would be the standard approach,
at the Ser93 position could lose some stability due to the loss the sidechain hydrogen bond
and introduction of a methyl group. A glycine should eliminate the sidechain-mainchain
hydrogen bond observed in state 4 of the MSM without causing significant disruption of the
TCR-~-pMHC interface in this particular system; extrapolating from the crystal structure we
would expect only the loss of the intra-chain CDR3a hydrogen bond, and no disruption of
the binding interface with the antigen. Other systems with bound crystal structures of 2C
show that Ser93 forms hydrogen bonds to water molecules that in turn interact with the
antigen, e.g. in the PDB file 2019.

Having identified a possible mutation that should have primarily conformational impli-
cations and not effect the interface contacts, the next step is perform the mutation in silico
and perform the simulation of the mutated 2C TCR, repeating the MSM procedure. This
will yield predicted states, which should align well with the states found in the current work
due to the very small difference, though state 4 should be suppressed or eliminated. An
increase in affinity, measured by SPR, should correlate with the decrease in occupancy of

state 4. This would directly demonstrate both that state 4 is indeed an ’off” state and that
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the conformational dynamics play a direct role in binding behavior.

5.3.2  Further in silico Methods

There are several in silico extensions to the present work. The simplest but of clear value
is to run longer and additional simulations. The presented data set does not show transi-
tions between bound-like and unbound-like states of the CDR3«a loop. This indicates long
timescales involved in the transition, but does not reveal any informational about the tran-
sition pathway itself, and provides only a lower bound on the kinetics of the transition. As
the CDR3a loop interactions are critical to binding, understanding the relationship between
on-rates and conformational dynamics is quantitatively impossible without more accurate

assessment of the CDR3a state transitions.

Path Sampling CDR3/

Similarly, we have described the CDR3[ state transitions phenomenologically, and a deeper
analysis of the transitions is warrented, as this would allow direct, specific inspection of the
transitions modes between states that is only globally described by the tICA projection.
CDR3p transitions can be assessed by either longer simulations or additional trajectories,
ideally starting from the states extracted by the MSM ’kinetic clustering’ analysis presented
here. This would yield an unbiased assessment of the transitions between states, and in
particular would allow exploration of transitions paths that are less likely. Furthermore,
using the MSM states to seed standard MD simulations would make it possible to find further
unexplored states, or provide evidence that such states do not exist. On the other hand,
for studying the major transitions directly, biased path sampling methods such as the string
method could be used to assess specific state transitions of interest. One major caveat of using
biased methods is that the most interesting state presented here, state 4, relies on expulsion
of solvent from the inter-loop region by stochastic fluctuations; in general, current biased

methods do not reliable handle these contexts, so this transition is difficult to study via biased
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path-sampling approaches. One acceleration method that might work in metadynamics.
The tICA decomposition has demonstrated that most of the behavior of the CDR3/ loop is
contained in the first two degrees of freedom spanned by the tICA projection. Since tICA
is a linear projection operator, these degrees of freedom can be algebraically described in
terms of the dihedral angles of the system, making them amenable reaction coordinates for
use with metadynamics. This would allow for significantly more rapid sampling of the states
accessible by variation in these two degrees of freedom, and demonstrate convergence in

population frequency much more quickly than can be accomplished by direct simulation.

Simulating the Bound State

The single biggest target of value is simulating the bound state. Recent NMR work has shown
that the CDR32 loop of 2C is mobile in the bound state with the SIYR peptide system?!®.
The peptide is also mobile. This has led to speculation that the motions of the peptide and
CDR3g loops are correlated. Simulation of the system would yield direct information about
the motions of the bound state, and correlations can be examined in two methods. First,
correlations can be directly inspected by calculating the mutual information between the
two systems, either directly, which is likely to be difficult, or after reduction via a method
such as tICA. Furthemore, if the CDR3[ loop and peptide exhibit state-like behavior, which
is suggested by the distinct NMR peaks observed, then a Markov State Model can be built
to describe the system, and trajectories can be assigned to state for each of the peptide and
the CDR3p loop, and correlations between state occupancy can be directly calculated. If
the motions occur on a similar timescale, then both the peptide and the CDR3/ loop can
be described by a single Markov State Model, which would directly describe how well the
system moves together. This can potentially be pushed further, using in silico mutation of

the peptide to less favorable ligands, where if conformational selection is correct, we should

HHawse et al.: TCR scanning of peptide/MHC through complementary matching of receptor and ligand
molecular flexibility (see n. 27).
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expect to see decreasing correlation in the movements of the CDR3/ loop and the peptide.
These experiments are straight-forward in light of the present work, but require a large
investment of computational resources.

The bound state simulations and increasing the accuracy and depth of the current models
will likely yield the best results at present. However, as described earlier, there are more
classes of T cell receptors, both in terms of conventional a5 TCRs with different binding
kinetics and non-conventional TCRs such as the invariant TCRs associated with Natural
Killer T cells or v0 T cells, that we expect to show significantly different dynamics. Extending
this analysis to more systems would make possible comparison between different systems
that serve different immunological purposes but share, to various degrees, a fundamental

architecture.
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APPENDIX A
SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS
AND THE TOY SYSTEM

If people do not believe that mathematics is simple, it is only because they do not realize
how complicated life is.

— John von Neumann

This appendix covers the simulation of stochastic differential equations, and in particular
the toy system in greater detail, including the code used to simulate the system. We begin
with a 1-D Langevin system and then move to the toy system presented in Chapter 2.

All code has been tested with Python 3.4.

A.1 Langevin in One Dimension

The simplest SDEs are Brownian motion and Langevin dynamics in one dimension. In one

dimension, Brownian motion is described by

(1) = on(t)

Where 7(t) is a Gaussian process with zero mean, variance o, and independent incre-

ments, i.e.
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Figure A.1: Ten Brownian motion/Wiener process simulations over 100 time units.

With § the Dirac delta function. Integrating yields the standard Wiener process, but our

immediate interest is in simulating paths. We can do so using the Euler-Maruyama method,

which yields

Yoi1 =Y, + Voto AW,

Where the AW,, are independent and identically distributed normal random variables

with expected value zero and unit variance. We can simulate several paths with

Langevin dynamics in the diffusive limit are only slightly more complicated, we simply
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add a deterministic term representing the potential energy field to the equation of motion for
Brownian dynamics. Let U(x) represent the one-dimensional potential. Then the equation

of motion is

d d

%x(t) = —%U(x) +on(t)

We can use Euler-Maruyama again to get the discretized form

d

Yoo =Y, — -
+1 dY

U(Y,) + Vito AW,

This is the same as the discretized form of the equation of motion for Brownian motion,

with the addition of the deterministic spatial dependance on Y, due to the potential energy

field. We can simulate paths using

Now, consider a potential of the form
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Figure A.2: Graph of the potential energy function V(z) = —31 —B@=20)* and the negative
derivative of V(x). While the system is within the energy well, movement should tend
toward 0. The potential rapidly tends toward 0 outside of [—4, 4]. If the system escapes this
interval, dynamics will return to standard Brownian motion until the system falls back into
the potential well.

Where $ € R is an arbitrarily chosen constant. The potential is a Gaussian potential

well, corresponding to the physical idea of a local energy well. The potential has negative

derivative (and thus exerts a force proportional to)

_a
dz

Viz)=—p(x — xo)e_ﬁ(”_”m)2

A simulated path is shown in Figure 3, where the trajectory acts like a random walk
as observed with Brownian motion, but has a much stronger tendency to fall toward the
zero position due to the influence of the deterministic potential energy function. However,
when the random fluctuations drive the system away from zero toward positions where the
potential is weak, we observe that Brownian motion dominates. This is notably true around
the 600 time point where the system has drifted very far away, eventually returning to the

potential well by random walk. Additionally, as we expect from statistical mechanics, the

histogram of observed positions shown in Figure 3 approximates the shape of the inverse of

109



20

1D SDE Simulation - Single Well Potential

15

10

Position
[,

200 400 600 800 1000
Time

Frequency
o
=
o

0.05

O'0910 -5 0 5 10 15 20

Position

Figure A.3: Simulation of the Langevin system with potential V' (z) = —%e’ﬁ(m’xO)Q showing
the trajectory over units of time on the top and the histogram of observed positions on the
bottom. The histogram reproduces the negative of the potential energy function near the
center of the well at * = 0 but the system performs a random walk in areas with little
influence from the potential.
the potential energy function.

Next let’s consider a more interesting potential function - two wells. Although simple, a
two-well system has two identifiable states and is capable of undergoing transitions between
the two states. This is the essential behavior we are interested in at the level of protein

dynamics.

Let our new potential take the form

1 1
Viz) = —56_5(“3)2 — 56_B($_3)2 + 42

This is a simple two well potential with an additional harmonic restraint around zero
to prevent the system from wandering away from the basic two-state set-up. The harmonic
restraint will essentially act as a ’differentiable box’, but is otherwise uninteresting for our

purposes. The potential has negative derivative

110



. — W)
[ I d
—EV(.’,U)

O,
_l_
_2,
_3,
48 s -2 -2 0 2 4 6 8

Figure A.4: Graph of the potential energy function V(z) and —-LV (z) for the double well
potential in a harmonic box. Shown with parameters a =8, § =1/8 and v = 1/32.

_a
dx

V(z) = —B(z + 3)e P+ _ gz — 3)e =3 _ gy

and the graphs of both potential and negative derivative are shown in Figure 4.

Figure 5 shows a realization of the system over the course of 1000 units of time. In
general, the system moves randomly in a narrow region about the potential local minima
at xg = —3 and x; = 3 with a tendancy to move toward the minima, as we would expect.
Occasionally the system jumps between the two wells driven by large random fluctuations.
As we observed for the single well system, the histogram of positions shown in Figure 5 is

proportional to the inverse of the potential energy function. Unlike the single-well system,

we don’t observe a random walk region, as the harmonic energy term prevents escape.

A.2 Toy System

In Chapter 2 we described a toy system: a massless particle undergoing 2-D Brownian motion

in a potential field. The toy system is Langevin dynamics in 2D, described by

CCZ; = —VU(x) + V20n(t)
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Figure A.5: Single trajectory of double-well SDE with harmonic constraint (top) and his-
togram of positions visited (bottom). The trajectory moves randomly within the narrow
region of each harmonic well, with occasional large random fluctuations causing the system
to jump between the wells.

Where x € R?, V is the gradient operator, U(z) is the potential energy field, and n(t) is

a Gaussian process with the conditions that
e (n(t)) =0

o (n(t)n(t')) = o(t =)

Where ¢ is the Dirac delta function.

The toy system is a first-order stochastic differential equation. The constraints on the
Gaussian process imply that the stochastic part of the SDE is pure diffusion with no drift
(first constraint) and has independent increments (second constraint). Furthermore, the
noise is isotropic, so spatial dependence is constrained to the potential energy term. We can

solve the SDE by integrating, and get
t t
z(t) — 2(0) = / VU (2)ds + V20 / aw,,
0 0
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where dWy = n(t)ds is a standard Wiener measure. Using the Euler-Maruyama approxima-

tion, we have the discretized form

Xyt — X = —VU(X,) At + V20 AW,

where W,, is a standard random normal variable with mean 0 and variance At. Since the
noise is isotropic, we can draw random 2-vectors by simply drawing two random normal

variables. We simulate trajectories in Python with

Chapter two described two potential functions, given by different parameterizations of

the potential given by U(z,y), defined

1

Ulx,y) = 5 &XP (—ﬂ(n(w —x0)% + y2)> - %exp (—B(n(w —x1)*+ y2)> + a(2? + y?),

where «, 3, and k are parameters that control the shape of the potential, and xy and x;

control the separation of the two wells on the x-axis. The last term is a harmonic potential for
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Figure A.6: Graph of the V(z,y) potential.

the purpose of constraining simulations to the region of interest. To perform the simulations,
we will also need the gradient of the potential, given by
Br(z — xg)e P20 +9%) 4 By — z))e P2 +9%) 4 9y

VU (z,y) =
/Bye_ﬁ(n(m_mo)Q'i'yQ) _|_ /Bye_ﬁ(n(m_zl)2+y2) _|_ 2ay

We refer to the V(z,y) potential as the U potential with the parameterization o = é,
ﬁ =

potential wells with major axis along the y-axis and separated by a barrier along the x-axis.

N[

, k=16, xg = —1, and x; = 1. The V potential is shown in Figure 2.1, as two elliptical

Figure 6 shows a colormap of the potential energy surface with the wells centered on the
x axis at x = —1 and x = 1. The wells are anisotropic, with elongations along the y axis
and a transition boundary along x = 0.

We can inject the gradient into the solver and simulate via
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Figure 7 shows a trajectory of the 2D Langevin system subject to the V(x,y). The

trajectory primarily moves within the two wells, as expected, with movement between the
wells provided by random fluctuations just as with the 1D system. Figure 8 shows the
probability density of the system’s positions as estimated by a Gaussian kernel density
estimator. Unlike the close mirroring of the energy wells seen in the 1D systems, the kernel

density estimation allocates a lot more probability to the left energy well. This is due to
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Figure A.7: Trajectory of a single 200 time unit simulation of the toy system with the V' (z, y)
potential with o = 1/4. Trajectory is overlaid on contours of the potential energy surface.

insufficient sampling of the system, as the wells are perfectly symmetric and should have
equal occupancy in the limit of infinite data. As discussed in Chapter 2, this is one form of
the Curse of Dimensionality, occuring here in the increased sampling needed to explore both
wells in a 2D setting, as well as the increased computational cost of simulation. Nevertheless,
the kernel density estimator accurately captures the topology of the wells and their transition
region, which is ultimately the main information we want to extract in the full setting of
protein dynamics.

We refer to the second toy system potential as the W (x,y) potential energy function.
The W (x,y) potential is defined as the U potential field with parameterization o = %, g = %,
k =48, xg = —0.25, and x; = 0.25. This potential is very nearly identical to V', with the
potential wells elongated along the y-axis and brought closer together, yet still separated by
a barrier along the x-axis.

Simulation of the W (x,y) system is handled identically to the V'(z,y) system, swapping
out the gradient function for the gradient of W (x,y), which is just a change of the constant
parameters in the python code. A trajectory of the W (x,y) system is shown in Figure A.10

which shows similar behavior as the V(x,y) system.
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Figure A.8: 2D probability density of the positions occupied by the trajectory of the simu-
lation with the V' (z,y) potential and o = 1/4. The density was generated by kernel density
estimation using a Gaussian kernel and Scott’s rule. The density resembles the potential en-
ergy surface, but finite sampling error has caused the right well at = 1 to be undersampled
compared to the left well at x = —1.
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Figure A.9: Graph of the W (z,y) potential energy function.

117



2D Langevin Dynamics with W(z,y) potential
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Figure A.10: Trajectory of a single 200 time unit simulation of the toy system with the
V(z,y) potential with o = 1/4. The trajectory is overlaid on a contour plot of the potential
energy surface.
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APPENDIX B
NONLINEAR DIMENSIONALITY REDUCTION AND
MOLECULAR DYNAMICS

Chapter 2 presented two dimensionality reduction techniques, Principal Component Analysis
and time-structured Independent Component Analysis. Both of these methods fall into the
class of linear dimensionality reduction techniques, methods that transform a data set to
a lower dimension, typically taking data with values in R" to values in R™ with m < n.
The fundamental goal of dimensionality reduction techniques is reduce the dimension of the
space while losing as little information as possible, ideally the dimensions that are discarded
are only noise. This is useful in both the context of exploratory data analysis, where an
investigator is working with the data to determine patterns or using automated data mining
tools, but is also useful when applying other machine learning techniques. Many machine
learning methods are brittle to noise and overfitting, and similarity and distance metrics
tend to behave poorly in high dimensions, as described at the end of Chapter 2 and in
Appendix B. Reducing the dimensionality to 2 or 3 can be particularly valuable in exploratory
analysis, where visualization is possible — though subject to bias, the human visual system is
extraordinarily powerful and direct visualization of the data can be cruicial to investigator
understanding of the data and interpretation. Of purely practical value, dimensionality
reduction also reduces the workload of future processing by reducing the size of that data
that needs to be processed. Dimensionality reduction is thus vital to working with high
dimensional data.

Linear techniques reduce the dimension by projecting into a linear subspace of the original
data space. The reduced space has a direct and clear connection to the original space, often

improving the intuitive meaning of results, and making it simple to project new data points
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Swiss roll data set

Figure B.1: The Swiss Roll, a canonical example of a 2D data set non-linearly embedded in
3D Euclidean space. Data generated using scikit-learn datasets generator.

onto the reduced space by simply applying the linear projection. When appropriate, linear
techniques are preferred; they are robust and generally very fast.

Unfortunately, data is often not so accomodating. Often it is the case that data is
generated by a process that lives on a manifold, or something even more complex, and
does not neatly decompose into linear combinations of the variables studied. As a simple
example, consider the classic Swiss Roll data set, which is the 2D plane rolled up, and which
is presented in standard Euclidean space; an example is shown in Figure 5.1. This is clearly
a 2D data set, however because it embedded in 3D space in a manner that cannot be linearly

projected, linear dimensionality reduction techniques fail to capture the shape of the data.
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Figure B.2: Data drawn from two clearly distinguishable circular distributions that are not
linearly separable in the plane, and hence cannot be clustered by a linear clustering method
such as k-means. Data generated using scikit-learn datasets generator.

The mathematical details of manifolds are deep and outside the scope of this text, but for
understanding the algorithms laid out here, it suffices to understand a manifold to be a space
where for any given point, we can find a small region around that point where everything
behaves like Euclidean space.

A similar problem occurs in clustering, as mentioned in Chapter 2, where clusters are
grouped in a manner that is not linearly seperable, such as the data set consisting of two
rings shown in Figure 5.2. Non-linear dimensionality reduction techniques are applicable
here as well, as the methods search for non-linear transforms of the data — simply setting
the target output dimension equal to the input dimension can find a non-linear transform of
the data the matches the ’shape’ of the data, so that the output becomes linearly separable.

Given the complexity of molecular dynamics data, it comes as no surprise that non-

linear dimensionality reduction appears a useful tool, though the literature on the topic is
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somewhat sparse, perhaps indicative of the somewhat esoteric combination of disciplines
involved. In practice, we find that the promises of non-linear dimensionality reduction do
not hold particularly well. This chapter details thus details some non-linear dimensionality
reduction methods, and the misadventures experienced applying them to MD data on the
2C T cell receptor, culminating in a theoretical proposal for future work that might do
better. Previous work has been done before using Isomap, Locally Linear Embeddings, and
Autoencoders to study the reconstruction error of an 8-member ring, finding Autoencoders

to be the most effective overalll.

B.1 Isomap

[somap is an extension of Multidimensional scaling (MDS), the simplest form of which is PCA
as described in chapter 2. Isomap augments MDS by changing the distance metric of MDS,
rather than compute a direct pair-wise distance matrix, [somap computes an approximation
to the geodesic distance between points as determined by the underlying manifold that
generates the data. Since the data is presumed to lie on a manifold structure, the geodesic
distance between nearby points is approximately the standard Euclidean metric. A graph is
constructed taking the data points as vertices, and edges are drawn between each vertex and
it’s k nearest neighbors, where k is an input parameter of the algorithm. The edge weights
are the Euclidean distance between the data points. From this graph, the geodesic distance
between two points is approximated by the shortest path distance between the two vertices
representing those data points on the graph. This construction empirically approximates
the geodesic distance as the path passes through the different local maps making up the
manifold atlas.

The main weakness of Isomap is ’short-circuiting’, in which two points are joined by the

nearest neighbor search that should be separated due to noise or too large of a selection of

'M.W. Brown et al.: Algorithmic dimensionality reduction for molecular structure analysis, in: J. Chem.
Phys. 2008.

122



k relative to the data density. This creates an incorrectly short path between two distinct
regions of the manifold, and warps the geodesic distance measurements, potentially of much
of the data. This has two major downsides, one is straightforward susceptibility to noise in
the data, the other is more subtle: if the data is not evenly sampled at each region, then
the choice of k£ has to follow the most poorly sampled region. Furthermore, short-circuiting
can result from a single noisy datapoint, making it particularly weak to the presence of
outliers. Somewhat unsurprisingly, Isomap performs rather poorly for MD data; much of
the machinery of the MSM approach is specifically dedicated to avoiding linking kinetically

unrelated regions, while small perturbations can cause Isomap to ignore kinetic barriers.

B.2 Locally Linear Embedding

Locally linear embedding is conceptually like applying PCA to small patches of the data,
finding a linear projection of each path and then gluing these locally linear patches together to
transform the whole data set. The idea arises from the fact that PCA has historically proven
to be an effective tool for linear dimensionality reduction, and manifolds behave locally like
Euclidean space, so for a small enough region around any given data point, PCA finds a linear
projection that well approximates the manifold structure. LLE is surprisingly effective for
MD data; the major problem encountered in applications to TCR data was brittleness with
respect to input parameter perturbation. The output results can change, sometimes wildly,
with only small changes in input parameters; future use demands validation and parameter
selection methods to make analysis practical and assure the investigator against spurrious
results.

An intriguing idea is to consider LLE as a kernel method, in which it may be possible to
design a variant of LLE that performs a local tICA calculation rather than PCA. Doing so
may keep the valuable aspects of tICA for molecular dynamics analysis, while allowing for

non-linear transformations.
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B.3 Diffusion Maps

Diffusion maps bears similarity to a combination of Isomap and a simplified version of the
MSM machinery; diffusion maps approximates a geodesic distance between data points by
constructing a graph, as Isomap does, but computes distances as the result of a random walk
on the data. This renders diffusion maps more robust to noise and immune to the outlier ef-
fect that plagues Isomap — a short-circuiting outlier only creates a single low-probability path-
way, and so doesn’t contribute much weight to distance measurement, which is a weighted
average over the paths between two points.

Diffusion maps struggles with MD data because MD data has locally varying spatial
structure, which diffusion maps doesn’t capture as it uses a fixed size kernel across all data.
The Markov State Model method finds multi-scale models by using the microstate clusters
as a fine discretization of the phase space, followed by adjustable coarse-graining of that
data, as well as allowing for varying time-lags. This flaw of diffusion maps for molecular
dynamics was addressed by adaptively varying the kernel size based on the data, however,
the resulting method is computationally expensive, indeed early implementations by the
thesis author showed several orders of magnitude more computation time on small test sets
than other methods. Combined with super-linear scaling, the method, although promising,
is too expensive for practical use, particularly as the computation resources required are of
a magnitude that they would be more likely to be better spent on producing more data and
using a simpler method. In the limit of sufficient data, nearly any method will eventually
suffice, and certainly the combination of tICA and MSMs are highly effective in the data-rich

regime, while consisting of an efficient processing pipeline.

B.4 Autoencoders

Autoencoders are a form of Artificial Neural Network, where the network attempts to learn

the identity function to transform the data — the network is trained to output its input.
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The network learns important features of the data through one or both of two techniques,
reduced hidden layer size or regularization, both of which have the effect of forcing the
network to learn an encoding and decoding of the data. After training, the decoding layers
are stripped from the network, and the encoding layer can be used as a feature extraction
or dimensionality reduction tool, and have shown effective results in other fields such as
document analysis?>. When applied to MD data, autoencoders showed the best reconstruction

results compared to Isomap, LLE, and PCA3.

B.4.1 Connections to tICA

Second-order independent component analysis, that is, tICA, in k& dimensions can be rep-
resented by a recurrent neural network with & neurons*. Recurrent neural networks are
of course significantly more powerful than the feed-forward network model of an Autoen-
coder, however, denoising autoencoders are known to be capable of manifold learning®, and
feed-forward architectures have been used to model time-delay learning using input layers
divided into 'present’ and 'future’ inputs with excellent results in video using convolutional

networks®.

2G.E. Hinton/R.R. Salakhutdinov: Reducing the Dimensionality of Data with Neural Networks, in: Sci-
ence 313 (2006).

3Brown et al.: Algorithmic dimensionality reduction for molecular structure analysis (see n. 1).

4L. Molgedey/H.G. Schuster: Separation of a Mixture of Independent Signals Using Time Delayed Cor-
relations, in: Physical Review Letters 72.23 (1994).

5P. Vincent et al.: Extracting and Composing Robust Features with Denoising Autoencoders, tech. rep.
1316, Université de Montreal.

6A. Karpathy et al.: Large-Scale Video Classification with Convolutional Neural Networks, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2014.
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APPENDIX C
SIMULATION AND ANALYSIS DETAILS

This appendix briefly covers the specifics of the MD simulations used to produce the data

set in this work, and the analysis parameters.

C.1 Molecular dynamics simulations

All simulations were carried out using the Amberl4 package. Input coordinates were pre-
pared from PDB files 1TCR (2C) and 2EYS (NKT15), truncated to the variable domains and
prepared using pdb4amber processing scripts. These structures were solvated with TIP3P
waters in an octohedral unit cell at 12 angstroms, neutralized with NaCl at 150mM con-
centrations, and parameterized using the AMBER99SB forcefield and Joung/Cheatham ion
parameters using xleap. Two rounds of 2000 steps of minimization were carried out, first
with restraints on the protein, and then secondoly without restraints. These minimized states
were the initial seeds for each of the ten trajectories run our for each of 2C and NKT15.
Each trajectory was set to 300K through initial velocity randomization, and allowed to equi-
librate in NPT for 10ns using a Langevin thermostat (7 = 1) and the Amber Monte Carlo
barostat at 1 atm, allowing the trajectories to diverge independently. All data presented in
the analysis was collected following the 10ns equilibration stage, with each trajectory run for
an additional 300ns (2C) or 100ns (NKT15) using SHAKE to allow 2fs timesteps. Calcula-
tions were performed using the CUDA-enhanced pmemd Amber module on the University

of Chicago’s Midway cluster, utilizing either K20 or K40 Tesla GPUs.

126



C.2 Data processing and dimensionality reduction

Raw simulation data was processed using cpptraj to re-image the system and extract protein
data. Structure alignments and RMSD calculations were carried out using VMD. Hydrogen
bonds were determined with a 3.2 angstrom distance cutoff and 20 degree angle cutoff in
VMD. Further data processing used custom Python scripts with trajectory featurization
and data handling provided by the MDTraj library. We used the MSMBuilder3 library to
perform tICA analysis, clustering, and Markov state model generation as described in their
sections. Kernel density estimates were calculated using the gaussian_kde module from the

Scipy library; kernel bandwidth was selected automatically using Scott’s Rule.

C.3 Markov state model construction

Our analysis follows the procedure outlined in Chapter 3 for building MSMs from MD data.
Our initial data was taken from the MD simulation by extracting the CDR3a and CDR3(
loops as independent datasets. The datasets were featurized as dihedral angles, so that the
actual analyzed data is the set time-series of ¢ and i angles for each of CDR3a and CDR3S.
Taking the dihedral angles eliminates variation due to whole protein motion and minimizes
the effect of individual domain drift. The tICA decomposition and projection were applied
to these ¢/1 angle time-series. The first 16 degrees of freedom determined by the tICA
decomposition were used for clustering; we applied the k-medoids algorithm as described
in Chapter 2 using the Euclidean distance metric after the tICA projection. The first 16
degrees of freedom were chosen as they account for > 90% of the energy of the eigenvalues
(eigenvalues are shown in Figure C.1).

After clustering, a microstate Markov models are generated by estimation of a state tran-
sition matrix using Maximum Likelihood Estimation (MLE). The estimator used a sliding
window to maximize the data available for estimation; the algorithms used in MSMBuilder3

correct for the non-independence of the sliding window. Fictional transition counts were
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added to smooth numerical issues, on the order of 0.1, yielding minimal perturbation of the
model but preventing extensive noise as the timelag varies. Models were constructed over a
series of timelags as shown in the implied timescale analysis in Chapter 4 (figure 4.2). The
final choice of timelag was determined by finding the smallest timelag where the slowest
degrees of freedom showed convergence to a local stable value, graphically where the curves
appear to flatten out.

The final macrostate Markov model, which is described in Chapter 4, was extracted
from the microstate model by Perron Cluster Clustering Analysis, as detailed in Chapter 3.
PCCA serves to construct the macrostate clusters themselves, acting a clustering algorithm
for the data that relies on the kinetics of the microstate model. The transition matrix for
the macrostate model was estimated directly from the time-series of the macrostate cluster
assigned data frames, and the microstate model is discarded after the macrostate cluster
assignments are generated.

In the models presented, CDR3« data was clustered into 16 clusters and CDR3/ data was
clustered into 32 clusters for building the microstate models. The numbers of clusters chosen
were those that showed good coverage of the state space spanned by the two-dimensional
projection of the data under tICA, and therefore could be inspected visually, and were low
enough to provide reasonable statistics and convergence in building the microstate MSMs.
Despite this, CDR3« did not show convergence under any selection of clustering parameters;
the simplest interpretation is insufficient data to capture the very slow motions of the CDR3«
dynamics. Macrostate assignment was via the PCCA+ algorithm, which is a more robust
variant of the standard PCCA algorithm. The CDR3/ microstate model was built with an
8 nanosecond timelag, and clustered into four macrostates as indicated by inspection of the
implied timescales graph (figure 4.2B) and the four local maxima that appear in the kernel
density estimate of the data projected under the first two degrees of freedom of tICA (figure
4.1).
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