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ABSTRACT

It is known that micelles formed by simple amphiphiles exhibit only a limited range of shapes

in equilibrium. However, practical applications may benefit from increased tunability of mi-

celle shape. In this thesis, we consider an approach to micelle shape control where the many

amphiphiles of a conventional micelle are replaced by a single, linear, multiblock copolymer.

Guided by an intuitive shape-design rationale, we propose to alter the block lengths of this

multiblock to control the curvature of the micelle surface. Using two-dimensional bead-

spring simulations, we demonstrate that a long-lived micelle with a nonstandard, dimpled

shape can be produced by this strategy. To assess the ease with which shape features may

be precisely controlled by the block lengths, we study the effect of changing select aspects

of the multiblock composition. We find that the response of the shape is somewhat smooth,

but sufficiently irregular that a simple linear model is insufficient to describe the response,

so a more sophisticated approach is needed for precise shape design.
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PREFACE

This thesis is an examination of a rational shape design scheme for polymeric micelles. The

thesis reproduces two papers [1, 2] prepared for Physical Review E. These papers have been

reformatted for inclusion in the thesis, but are otherwise unchanged. Chapter 1, based

on [1], introduces and motivates the question of micelle shapability, presents the proposed

mechanism to control micelle shape, defines the scope of the work presented in this thesis,

describes the simulation method used to study micelle shapability, develops a mathematical

formalism for analyzing micelle shape, validates these statistical analyses, presents proof-of-

concept results showing that micelle shape control is possible, and discusses limitations of

the work. The source paper, authored by myself and Thomas Witten, has been published in

Physical Review E. My contribution to this paper was to choose a polymer model and tune

the parameters of this model to accurately represent physical polymers, perform simulations

of suitable micelles, develop and validate the shape-analysis formalism, and create the figures

and most of the text of the paper. Thomas Witten’s contribution was the original idea of

controlling micelle shape using non-uniform spontaneous surface curvature, the suggestion

of several ideas for validating the polymer model and statistical analysis of micelle shape,

and to revise and suggest some text for the body of the paper.

Chapter 2, based on [2], provides a more in-depth study of the micelle shape response

to changes in its composition. The motivation for this study is to determine how much

the proposed rational design scheme facilitates the engineering of shape-designed micelles.

The source paper [2] was authored solely by me and has been submitted to Physical Review

E. Thomas Witten commented on a manuscript of the paper, suggesting ways to improve

clarity. Since the source material for Chap. 2 was meant to be a self-contained paper, much

of the introductory material from this chapter is redundant with Chap. 1.

x



CHAPTER 1

DEMONSTRATION OF MICELLE SHAPE CONTROL USING

NON-UNIFORM SPONTANEOUS SURFACE CURVATURE

1.1 Introduction

Amphiphilic molecules have self-organizing behavior, which makes them useful for a variety

of applications. One application that has received much attention is drug delivery using

micelle carriers [3–5]. Among other things, it is found that the shape of the micelles affects

their drug delivery performance, for example by altering how much drug can be loaded into

the micelle, where in the body the drug accumulates, or how long the drug remains in the

body [6, 7]. More generally, shape can be used to facilitate or inhibit interactions, as in

the well-known “lock and key” mechanism [8], shown in Fig. 1.1. In fact, the lock and

key mechanism has already been used with dimpled sphere-shaped colloids to create self-

assembled structures [10], and it would seem straightforward to apply this same concept to

micelles. This paper presents a strategy for influencing the natural shape of a micelle by

controlling the way it is constructed. Specifically, we demonstrate, through simulation, the

ability to design the shape of a micelle constructed from a linear multiblock copolymer by

choosing the lengths of its constituent blocks. Our strategy is motivated by recent advances in

polymer synthesis allowing for realization of linear multiblock copolymers with individually

controlled block lengths1.

Much work has been done to study the factors influencing micelle shape. One line of

investigation is to assume a continuum energy model for the micelle surface, and study the

resulting ground states and fluctuations [15–18]. To make contact between the continuum

parameters of these models and the physics of the micelle on the scale of a single am-

1. While synthesizing such a multiblock copolymer is by no means trivial, recent experiments [11–14]
have demonstrated synthesis of block copolymers of up to twenty blocks having dispersities of 1.2 or less,
indicating that the state of the art is rapidly advancing toward, if it has not already achieved, the precision
necessary to reliably create these multiblock copolymers.
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Figure 1.1: Illustration of lock and key mechanism, adapted from [9]. The enzyme, in
yellow, is meant to interact specifically with a substrate, shown in green. To avoid unwanted
interactions, the enzyme has a specific shape to which only a substrate of complementary
shape may bind. More generally, the term “lock and key mechanism” may refer to any
interaction controlled by shape.

phiphile, simulations of suitable structures (bilayers, tethers, etc.) made out of the micelle’s

constituent amphiphiles may be conducted to determine the continuum parameters inherent

to the amphiphiles (such as the amphiphile surface density, bending modulus, etc) [19–28].

Instead of investigating the continuum properties of the micelle shape to infer geometrical fea-

tures, micelles of interest may be directly simulated with a particle-based model (with either

atomic or coarse-grained resolution) [29–34]. Additionally, micelle shape can be studied ex-

perimentally [35–38]. In the context of the approaches described in the previous paragraph,

our work falls into the category of directly simulating the micelle using a particle-based

model. We choose this approach over a continuum representation for two reasons. First, we

are interested in micelles whose size is on the order of the amphiphile length, where the scale

of surface fluctuations can be roughly ten percent of the micelle size [39]. Second, we attempt

to resolve average positions of individual amphiphile junction points. However, unlike the

micelle simulations of [29–34], which study only the topology or rough shape features such

as size or aspect ratio, this work seeks to obtain precise control of the micelle shape. Fine

shape control is desirable both because it is a requirement of the lock and key interactions

referenced in [10], and because it can be used to alter a micelle’s drug delivery properties.

We revisit these applications in Sec. 1.5.5, discussing how the results of this work may be

2



homopolymer blocks

diblock diblock diblock

Figure 1.2: Two views of a model multiblock copolymer. The multiblock contains two
species of monomer beads, shown in red (light gray) and blue (dark gray), connected by
bonds shown in black. One view of the multiblock is as a collection of homopolymer blocks.
The other view represents the multiblock as a collection of diblocks joined end to end.

relevant.

1.1.1 Shape-design rationale

To obtain this fine shape control we construct the micelle from one linear multiblock copoly-

mer containing two species of monomer, a solvophobic species that is immiscible with the

solvent and a solvophilic species that dissolves well in the solvent, arranged into segments

of judiciously chosen length made purely of one species or the other. To better explain how

the choice of segment length affects the micelle shape, we view the multiblock copolymer

not as a sequence of chemically pure homopolymer segments joined together, but rather as

a sequence of diblocks joined end to end so that the chemically similar ends of sequential

diblocks are joined. In this view, the ends of each homopolymer segment correspond to

diblock junction points, and a bond joining sequential diblocks occurs in the middle of a

homopolymer segment. Figure 1.2 illustrates the two ways of viewing the polymer chain.

There are two reasons it is advantageous to view the micelle as a collection of diblocks.

The first is that the applicability to drug delivery applications cited above, in which the drug

carriers are micelles formed from (disconnected) diblock copolymers, becomes more apparent.

The second reason is that viewing the micelle as a collection of diblocks having adjustable

block lengths provides a straightforward, theoretically informed strategy for choosing the

multiblock’s segment lengths. The relationship between the diblocks’ block lengths and

the micelle’s shape is determined by the requirement that diblocks pack efficiently on the

micelle surface. There are two factors that affect surface packing: the first is the energetic

3



Figure 1.3: Illustration of micelle shape dependence on diblock composition. Diblocks with
a very small solvophobic block tend to form highly curved spherical micelles. Diblocks
with a more symmetric composition form flat bilayers. The case of cylindrical micelles is
intermediate to these two. Figure adapted from [42].

interactions between the monomers, and the second is the diblock chain stretching entropy.

Intuition may be gained by considering the limit of long blocks, where scaling arguments

yield analytic results, as reported in [40]. For example, one particularly relevant result of

[40] is an analytical expression for the dependence of the preferred mean curvature of an

interface containing a monolayer of diblocks on the block lengths. Even though a continuous

range of preferred mean curvature can be achieved by adjusting the relative block lengths

of a diblock, it is known that only three shapes can be achieved by micelles composed of a

single species of diblock: spherical, cylindrical, and bilayer [41] (see Fig. 1.3).

By contrast, we expect micelles containing several species of diblock (or, in the alternate

view, multiblocks containing homopolymer segments of varying lengths) to exhibit a much

larger variety of shapes. The design method for achieving a desired shape presented in

this paper is to choose the block lengths of the constituent diblocks so that their associated

preferred curvatures match the curvature of the desired shape. In practice, it is not sufficient

to simply choose a set of block lengths; additionally, the diblock positions must be controlled

4



so that the desired curvature is imprinted at the desired location on the surface. It is exactly

for this reason that the diblocks are joined together into one linear multiblock copolymer—

the added bonds between the diblocks hinder unwanted movement across the micelle surface.

An illustration of this shape-design mechanism is given in Fig. 1.4.

1.1.2 Motivation

The micelle shape-design method described above is one means of creating self-assembled

globular objects of controlled, macromolecular size. It is useful to contrast this method

with other means of making globules of regulated form. The first of these is perhaps the

most familiar: crystal growth. Like the micelles we propose in the this paper, crystals

have well-defined geometrical characteristics (e.g., lattice planes) that emerge from the local

interactions between their constituents. Another similarity with micelles is that crystals

result from nonspecific interactions resulting from only a few chemical species. Due to the

nonspecificity of the interactions, a crystal may deform (e.g., by dislocation glide), without

losing its natural geometric characteristics, as each atom or molecule is left in an identical

environment after the deformation. However, there are many differences between micelles

and crystals. The most important difference for our purposes is that crystals do not naturally

form well-defined finite shapes; instead, the size of the self-assembled structure is determined

only by the amount of constituents present. Additionally, the shapes formed by crystals can

be categorized into only a few classes, further limiting the shape control that can be achieved

through selecting the constituents. Another important difference is that crystals are solid,

and therefore do not have fluctuations.

The second naturally occurring system, perhaps more similar to our micelles, is a globular

protein. It could be said that globular proteins are more similar to our micelles because they

both have a well-defined shape and size determined by their composition. However, unlike

the micelles we propose, the shape of a globular protein is determined by specific, high-

energy, localized interactions between its constituent amino acids. This leads to the “protein

5



folding problem”: the folded shape of the protein is difficult to predict from the sequence

of amino acids. If the amino acid sequence is even slightly altered, the shape is often

completely destroyed. Also owing to the specific nature of the interactions, if a protein’s

shape is significantly deformed, many atoms’ environments become completely different, so

that the shape is irreversibly lost. By contrast, the nonspecific interactions responsible for

amphiphile aggregation allow for a smooth dependence of energy on the micelle configuration,

so a perturbed micelle returns to its equilibrium shape. Also, the simplicity of the nonspecific

interaction allows for the straightforward design strategy described in Sec. 1.1.1; there should

be no analogy to the “protein folding problem” for the micelles we consider. Additionally,

the tight nature of the bonds in proteins gives a solid-like character leading to low shape

fluctuations, while micelles may have large fluctuations, which may be used, e.g., to regulate

drug delivery or reduce the shape specificity of lock-and-key interactions.

1.1.3 Scope of this paper

In Sec. 1.1.1, we described our shape-design strategy as judiciously selecting block lengths

for diblock copolymers to achieve a desired preferred curvature profile, and then joining

these diblocks into one multiblock copolymer to constrain their positions on the micelle

surface. To organize the following discussion, we distinguish two challenges associated with

this shape-design mechanism. The first challenge is to determine which block lengths should

be selected for each diblock on the micelle surface in order for the micelle to spontaneously

adopt the desired shape in thermal equilibrium. We call this the shapability challenge. The

second challenge is to constrain the diblocks so they keep their intended positioning on the

micelle surface, which we attempt to do by joining the diblocks together. We call this the

stability challenge.

Were the diblocks not joined together, there would be a number of ways the stability

challenge could fail to be met. For example, the diblocks might diffuse on the surface of the

micelle, washing out the intended curvature profile and leaving only a uniform spontaneous

6



curvature profile in its place. A more extreme example is for the micelle to divide into two

disconnected pieces. Alternatively, two micelles could merge into an aggregate containing

both constituent multiblock copolymers. Since we wish to avoid these situations, we call

a micelle “malformed” if it contains more than one copolymer chain or a single chain’s

constituent diblocks do not have their intended relative positioning. Conversely, we call a

micelle “well formed” if it is composed of a single copolymer chain with the diblocks in their

intended positions.

This work is a first study of the proposed shape-design mechanism and we would like to

assess its promise, and so we choose to focus on the shapability challenge. Accordingly, we

avoid the stability challenge for the time being. Still, to perform the study of micelle shape

needed to address the first challenge, we must somehow produce an ensemble of well-formed

micelles. Some progress can be made by joining the diblocks end to end, as described in

Sec. 1.1.1, to form a linear multiblock copolymer. Indeed, we find that this scheme causes

most simulated micelles to be well formed. Unfortunately, we find that well-formed micelles

are only metastable, so that over time the micelle becomes malformed. Nevertheless, well-

formed micelles do constitute a statistical ensemble (to be explicitly defined in Sec. 1.3.3), and

we can analyze the statistics of the thermodynamic ensemble of well-formed micelle shapes.

To determine the appropriate statistical weight of the well-formed micelles in the presence of

malformed micelles, we take a rejection-sampling approach: we simply discard any simulation

runs containing malformed micelles. However, without a clear path to ensuring the micelles

are well formed, one may question the usefulness of this analysis on the grounds that well-

formed micelles are unstable, ultimately becoming malformed, so that the well-formed shapes

are ultimately irrelevant. To address this concern, we comment on what measures may be

taken to stabilize well-formed micelles in Sec. 1.5.3.

The purpose of the paper, then, is to address the shapability challenge: to show that the

equilibrium micelle shape features can be controlled by selecting the species of constituent

diblocks at each point on the micelle surface. For simplicity, we consider a two-dimensional

7



Figure 1.4: Schematic of proposed mechanism for making micelles of designed shape. A
shape-designed micelle, shown in two dimensions for simplicity, has a solvophobic interior
(shown in red). At the surface, there are diblocks containing both solvophobic and solvophilic
(shown in blue) blocks. The interface between the solvophobic and solvophilic regions is
shown in black, and it has a concave dimple. The inset shows how our shape-design mecha-
nism gives rise to the designed shape: regions of the micelle surface where a convex curvature
is desired are populated with diblocks having a larger solvophilic block and consequently pre-
ferring a convex curvature, while regions to be made concave are populated with diblocks
containing larger solvophobic blocks, thereby preferring more concave curvature. Bonds,
indicated in black, connect the diblocks end to end forming a multiblock copolymer in order
to fix diblocks in their intended positions.
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system, and we restrict our attention to a case study of a shape with a single concave

dimple similar to the one in Fig. 1.4. We choose this shape because it is a minimal example

requiring our shape-design mechanism: while it is simple, it does not arise as an equilibrium

shape of a micelle composed of diblocks of a single species. While a two-dimensional model

is not directly applicable to any realizable polymer system, such a model can nevertheless

accurately represent many aspects of the polymer’s behavior. Benefits and limitations of

using a two-dimensional model in the context of this work are discussed in Sec. 1.5.4.

In order to show that the shapability challenge can be met, it is necessary to develop a

formalism for determining a micelle’s equilibrium shape features. One must make a quanti-

tative measure of the micelle shape, and determine a method of averaging in the presence of

large thermal fluctuations. One must also determine the uncertainty in the average in order

to assess the significance of the observed dependence of the micelle shape on the species

of diblocks on the micelle surface. Additionally, statistical tests must be performed to de-

termine if the results accurately represent thermal equilibrium. The work described in this

paragraph requires considerable effort and accordingly a significant fraction of this paper is

devoted to addressing these issues.

The remainder of this paper is organized as follows: In Sec. 1.2, we describe our polymer

model and how this model is simulated, including the system of units used and how the

polymeric micelles are represented and initialized in the simulation. In Sec. 1.3, we describe

how micelle shape properties are extracted from the simulation results, how the uncertain-

ties in these properties are estimated, how we test that the results truly represent thermal

equilibrium, and which specific shape features we study. In Sec. 1.4, we apply the analysis

methods of Sec. 1.3 to micelle simulations, showing that these methods give self-consistent

results and demonstrating the extent to which our shape-design mechanism affects features

of the micelle shape. In Sec. 1.5, we discuss future work suggested by this research and the

implications our results have for the applications mentioned above.
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1.2 Method

In this section, we describe how our micelles are simulated. A simulation requires an un-

derlying physical model specifying, for example, the degrees of freedom used to represent

the system and the interactions governing the system. To describe these interactions, and

to describe the behavior of the micelle model more generally, we choose a system of units

for the purposes of nondimensionalization. With the system of units and model specified,

it is necessary to choose a method to simulate the model system. Because the applica-

tions we consider in Sec. 1.1 concern micelles in thermodynamic equilibrium at some finite

temperature, the goal of the simulation is to produce a Boltzmann-distributed ensemble of

micelle configurations. Lastly, we describe how shape-designed micelles are represented in

the simulation and what initial configuration we give them.

1.2.1 Model and simulation method

Since we expect our shape-design mechanism ought to apply very generally without regard

to the specific features of a particular chemical structure, we choose a simple model having

the minimum content necessary to exhibit our shape-designed mechanism. Specifically, we

use a coarse-grained two-dimensional bead-spring model with implicit solvent, similar to the

models used in [43–46]. In our model, a polymer is represented as a sequence of beads,

each described by only a position and a common diameter. By “coarse-grained”, we mean a

simulation bead does not represent just a single atom or even a single monomer, but rather

several chemical repeat units. Any sequential pair of beads in the polymer is connected

by a bond represented by a harmonic pair potential. In addition to these bond potentials,

the beads also interact through a short-range pair potential. Since the solvent is treated

implicitly, the nature of the short-range interaction between two beads depends not only

on the material composing the two beads, but also on the solvent. For example, beads

representing the same nonpolar hydrocarbon would have a more attractive pair potential
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when immersed in a polar solvent than they would when immersed in a nonpolar solvent. To

represent diblocks, our model has two species of bead: one solvophobic and one solvophilic.

The solvophilic-solvophilic and solvophilic-solvophobic pair potentials are purely repulsive,

while the solvophobic-solvophobic pair potential has an additional attractive term. The

interaction potentials were chosen with an eye to ease of computation and minimal steric

constraint, while giving a concentrated, strongly immiscible solvophobic phase. No special

effort was made to optimize this potential once a suitable one was found. Details are given

in Appendix A.

To meaningfully talk about dimensioned quantities of our model system, we must estab-

lish a system of units. Due to the abstract, two-dimensional nature of our model, we do not

find it useful to describe our system in terms of real units (e.g., angstroms, nanoseconds,

etc.). Instead, we pick a set of constants fundamental to the model itself against which all

other quantities will be nondimensionalized. Since we are ultimately interested in finding

the thermal equilibrium properties of the micelles, a natural unit of energy is the thermal

energy kBT , where kB is Boltzmann’s constant and T is the temperature of the system being

simulated, which, as shown in Appendix C, is like room temperature for our model polymer.

As we are simulating polymers, we choose the unit of length to be the root-mean-square

thermal length Ltherm of the harmonic spring connecting two adjacent beads (ignoring the

close-range pair potential). In two dimensions, the system has two internal degrees of free-

dom, so we find by the equipartition theorem that the unit of length Ltherm is given by

kBT =
1

2
kL2

therm, (1.1)

where k is the spring constant of the harmonic potential. To complete our system of units,

we may take our unit of mass to be the bead mass. For the remainder of this paper, we

nondimensionalize all physical quantities using this system of units.

To determine the average micelle shape resulting from this model, we perform a constant

temperature molecular dynamics simulation using LAMMPS [47]. Details of the simulation

11



parameters are discussed in Appendix B. Having described the model and the simulation

method, it is necessary to show that our choices of parameters for both the model (e.g.,

parameters governing the bead pair potentials) and simulation method result in the simulated

polymer behaving similar to typical real, physical polymers at room temperature; this is the

purpose of Appendix C.

1.2.2 Micelle design

We now describe how our model is applied to demonstrate our shape-design mechanism.

Specifically, we discuss how the shape-designed micelle is represented in the simulation.

Recall that the goal of this paper is to create a micelle with a concave dimple by constructing

it from multiple diblock species. In Sec. 1.1.3, we identified two challenges in achieving this

goal: the shapability challenge of selecting diblock species to produce the desired shape,

and the stability challenge of ensuring the diblocks have their intended positioning over the

micelle surface.

First, we describe how the shapability challenge is addressed in our model. For simplicity,

we construct the micelle using just two diblock compositions. A diblock composition is

characterized by the number of its solvophilic and solvophobic beads, denoted next and nint,

respectively. As explained earlier, we expect a diblock containing relatively more solvophilic

beads to prefer a more convex curvature, and a diblock containing relatively more solvophobic

beads to prefer a more concave curvature. For a pragmatic measure of the relative prevalence

of either species of bead in a diblock, we introduce the “asymmetry ratio” r of a diblock,

given by

r =
next − nint

next + nint
. (1.2)

The asymmetry ratio is zero for diblocks having an equal number of solvophobic and solvo-

philic beads, and it is 1 or −1 for polymers made purely out of solvophilic or solvophobic

beads respectively. We expect a positive correlation between the asymmetry ratio of a
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diblock and its preferred curvature. Therefore to implement our shape-design mechanism,

we should position higher asymmetry ratio diblocks (we call these diblocks “solvophilic rich”)

along most of the surface of the micelle, and lower asymmetry ratio diblocks (we call these

diblocks “solvophobic rich”) where the dimple is intended to be.

In addition to the diblocks, we add one more ingredient to the micelle: a solvophobic

homopolymer chain, which we call a “core segment”. The number of beads in the core

segment gives an additional degree of control over the size of the micelle, which, as will be

shown in Sec. 1.4.2, affects other properties of interest. In our simulations, we chose specific

block lengths for the core segment and the diblocks; these are given in Sec. 1.4.

Next, we describe how the stability challenge is addressed. We constrain the diblock

positions by introducing additional bonds joining all the diblocks and the core segment

together into a single linear multiblock copolymer, with the diblocks joined end to end. It

remains to specify the order of the core segment and the two species of diblocks within the

multiblock copolymer. The core segment appears on one end of the multiblock, followed first

by all the solvophobic-rich diblocks and then by the solvophilic-rich diblocks as illustrated

schematically in Fig. 1.5. An example of a micelle formed by a multiblock copolymer so

constructed is shown in Fig. 1.6.

1.2.3 Simulation initialization

To begin a molecular dynamics simulation of a micelle, an initial configuration is required. If

the simulation is to address the central question of this paper as outlined in Sec. 1.1.3, there

are two requirements the initial configuration must satisfy. First, because we are interested

in studying only well-formed micelles, which are only metastable, the initial configuration

must be well formed. Indeed, if our multiblock copolymer is initialized in a less favorable

configuration (say, a random walk or linear configuration), we find that it does not self-

assemble into a well-formed configuration during the course of a simulation, consistent with

the results of [48]. Second, because we are interested in showing that a dimpled shape occurs
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core segment

solvophobic-rich diblocks

solvophilic-rich diblocks

Figure 1.5: Schematic of multiblock bond architecture. The disks in the top row and the
red (light gray) disks from the bottom rows represent solvophobic beads, while blue (dark
gray) disks represent solvophilic beads. Black segments represent bonds between beads. The
multiblock begins with a core segment composed of solvophobic beads shown in tan (top of
schematic). To this segment solvophobic-rich diblocks, outlined in black as in Fig. 1.6, are
successively attached end to end. Lastly solvophilic-rich diblocks are attached end to end.
The “• • •” symbols represent further diblocks not shown.

spontaneously in thermal equilibrium, the initial configuration should not be biased toward

creating a dimple.

To satisfy these two requirements, we initialize the micelle in a well-formed circular con-

figuration, shown in Fig. 1.7. We now describe the process of generating this configuration

in more detail. We begin by initializing the core segment as a random walk starting at the

origin with step length similar to the average bond length. Next, each diblock is initialized

in a straight line pointing away from the origin. The solvophobic ends of each diblock are

evenly spaced on a circle centered at the origin, whose area is equal to the area occupied by

the core segment as calculated from the equilibrium homopolymer density. After this config-

uration is constructed, a conjugate gradient minimization of the micelle energy is performed

to relax any extreme forces that may arise due to unnaturally large bond stretching or bead

overlaps. The relaxed configuration produced by the energy minimization determines the

initial bead positions for the molecular dynamics simulation. Since we perform molecular

dynamics, the initial velocities must be specified in addition to the initial positions. These

initial velocities are drawn from a Boltzmann distribution having the same temperature as

the simulation thermostat. In this initialization scheme, there are two sources of random-
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Figure 1.6: Illustration of how a micelle designed to have a dimple is constructed in our
model. The micelle contains both species of beads present in our model: solvophobic, shown
in red (light gray) or tan (darker gray beads in the micelle interior), and solvophilic, shown
in blue (dark gray beads along the micelle surface). The micelle consists of a long “core
segment” of solvophobic beads shown in tan (darker gray beads in the micelle interior),
and a collection of diblocks. There are two species of diblocks: a “solvophobic-rich” species
with two solvophilic beads and thirteen solvophobic beads (outlined with black), and a
“solvophilic-rich” species with four solvophilic beads and twelve solvophobic beads. These
diblocks are joined end to end. The dimple is intended to appear in the region occupied by
the solvophobic-rich diblocks, as shown (indeed, the above configuration was taken from a
simulation).
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Figure 1.7: Initial relaxed configuration of simulated model shape-designed micelle, as de-
scribed in the text. Color coding is as in Fig. 1.6. The resulting micelle configuration has
the intended topology and surface diblock ordering, but is not biased toward its intended
dimpled shape.
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ness which ultimately lead to variable results from the otherwise deterministic simulation

procedure: the first is the random initial velocities just discussed; the second is the random

initial configuration of the core segment.

1.3 Analysis

In this section we discuss how the information from a molecular dynamics simulation is

analyzed. Since the goal of this work is to create single-polymer micelles of a designed

shape, one goal of the analysis is to determine the average micelle shape from the simulation

output. In Sec. 1.3.1, we devote significant effort toward just defining what we mean by shape

and how to determine the average of an ensemble of strongly fluctuating shapes. Besides

the average shape, another quantity of interest is the shape fluctuations. In Sec. 1.3.2, we

describe how we estimate these fluctuations, and how we use this estimate to determine the

uncertainty in the mean shape.

The material in Secs. 1.3.1 and 1.3.2 deals with the analysis of a single simulation’s output,

but in practice the output of many simulations are combined. Since well-formed micelles

are only metastable, simulation results are often discarded as mentioned in Sec. 1.1.3. In

Sec. 1.3.3, we specify the exact criteria used to discard a simulation’s results. Section 1.3.4

describes how the remaining results are combined to obtain a best estimate of the quantities

of interest. In Sec. 1.3.5, we describe how the results of these independent simulations can be

cross-checked against each other to validate the statistical analysis mentioned above. Finally,

in Sec. 1.3.6, we define two scalar properties—one characterizing the average shape and one,

the shape fluctuation—in order to distill the geometric features we are most interested in.

1.3.1 Average shape from simulation run

In this section, we introduce a quantitative representation of micelle shape, and we define,

after giving some motivation, a formula for finding the average of a set of micelle shapes. As
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a simulation runs, it records information about the micelle configuration at regular intervals

of simulation time. Since we are only interested in the shape of the micelle, we do not record

the position of every bead. Instead, we record only the location of the junction points: the

midpoint of two beads that are adjacent along the polymer backbone but have opposite

solvophobicity. A micelle has only as many junction points as diblocks it was constructed

from. For the remainder of this paper, we define the term “micelle shape” to mean the

ordered sequence of junction points. As such, a micelle shape r has the mathematical form

r =
(
r1, r2, . . . , rn, . . . , rNj

)
, (1.3)

where Nj is the number of junction points in the micelle, and each rn is itself a two-

dimensional spatial vector representing the nth junction point’s position:

rn = (rn1, rn2) . (1.4)

Since we are interested only in the relative positions of the junction points, and not

overall translations of the shape, we assume without loss of generality that each shape r is

geometrically centered at the origin so that

Nj∑
n=1

rn = 0. (1.5)

A micelle simulation outputs a time series of micelle shapes; however, the statistical

information of interest can be summarized by just the average micelle shape and the fluc-

tuations about this average. The process of obtaining this average contains some subtlety.

For example, a simple arithmetic average will not suffice because the arithmetic average of

a micelle shape and the same shape rotated by 180◦ is a micelle shape with every junction

point at the origin. Instead, since the shapes are merely different by rotations, these two

shapes should be considered the same, so that the average would somehow give the same
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shape back again.

We define an appropriate average in two steps: first we introduce a metric giving the true

difference between two shapes, then we define the average of a set of shapes to be the shape

that minimizes the sum of these differences. To define the metric, we first define an

“extrinsic” difference metric ∆ext(a,b) between two shapes a and b as the sum of square

differences of corresponding position components. Introducing some notation, this difference

may be written as

∆ext(a,b) = (a− b)2 , (1.6)

where the square r
2 of a shape r is given by the dot product r · r of the shape with itself,

and the dot product of two shapes is defined as the sum of dot products of corresponding

junction points:

a · b =

Nj∑
n=1

an · bn. (1.7)

An illustration of this distance metric is given in Fig. 1.8(a).

The difference metric ∆ext has a shortcoming: it has a nonzero value when evaluated on

two shapes differing only by a rotation. Since there is no natural frame in which the shapes

are defined, we desire a metric which is insensitive to rotation of either of its arguments.

To this end, we define an “intrinsic” difference metric ∆int defined as the minimum of ∆ext

with respect to rotations of one of its arguments. The action of a spatial rotation

Rθ =

cos θ − sin θ

sin θ cos θ

 (1.8)

on a shape r is defined junction point by junction point:

(Rθr)n = Rθ (rn) . (1.9)
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Figure 1.8: Illustration of the difference metrics ∆ext, defined in Eq. (1.6), and ∆int, defined
in Eq. (1.10). In (a), two shapes, a and b, are shown, together with the displacement vectors
∆r1, ∆r2, and ∆r3 connecting corresponding vertices of the two shapes. As specified by
Eq. (1.5), both shapes are geometrically centered on the origin. The difference ∆ext is given

by the sum of square lengths of these vectors: ∆ext(a,b) =
∑3
i=1 ∆r2

i . In (b) the same

two shapes are shown, except a is rotated about the origin by the angle θ̌ that minimizes
∆ext. Consequently, the displacement vectors ∆ri are clearly smaller here than in (a). The
intrinsic difference ∆int is defined as this minimum value of ∆ext.

Then the intrinsic difference ∆int has been defined by

∆int(a,b) = min
θ

∆ext (Rθa,b) . (1.10)

An illustration of the intrinsic difference ∆int is given in Fig. 1.8(b).

It can be shown2 that the angle θ̌ minimizing Eq. (1.10) is the signed angle that the

two-dimensional vector

(a · b,a ∧ b) (1.11)

makes with the vector (1, 0), where the wedge product of two shapes is defined by

a ∧ b = (∧a) · b, (1.12)

2. The proof is simple. ∆ext in Eq. (1.10) is minimized when (Rθa) · b is maximized. Now, Rθa may
be written as a cos θ + ∧a sin θ. Using this representation, the product (Rθa) · b can be transformed into a
two-dimensional dot product (cos θ, sin θ) · (a · b,a ∧ b). This product is maximized when the unit vector
(cos θ, sin θ) points in the direction of (a · b,a ∧ b), hence Eq. (1.11). With no more effort, we see that the
maximum value of the dot product is the length of the same vector, leading to Eq. (1.14).
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and where the wedge ∧a of a shape a is simply the result of rotating it by π/2:

∧a = Rπ/2a. (1.13)

Thus e.g., if b = a, then a ·b is positive and a∧b = 0, so that θ̌ = 0. Indeed if a and b are

any two aligned shapes, so that θ̌ = 0, then a · b must be positive and a ∧ b must be zero.

If instead b = ∧a, then a · b = 0 and a ∧ b is positive, so that θ̌ = +π/2. It can be shown

that the intrinsic difference between two shapes can be calculated explicitly as

∆int(a,b) = a
2 + b

2 − 2

√
(a · b)2 + (a ∧ b)2. (1.14)

If the shape a is then rotated by the minimizing angle θ̌, then we say a has been aligned

with b. (In general we will use a “ˇ” to indicate that a quantity has been somehow aligned.)

We note that, somewhat counterintuitively, the relationship of being aligned is not transitive:

if a is aligned with b, and b is aligned with some third shape c, a is typically not aligned

with c.

Having defined the appropriate notion of shape difference, we now define the average.

Owing to the nontransitivity of alignment, the definition is more involved than might be

expected: it is not possible to simply align all the shapes with each other and then do a

simple average, because, as stated above, it is typically impossible for even three shapes

to be pairwise aligned with each other. Instead, given a time series of Ns simulated shape

samples rα, α = 1, 2, . . . , Ns, we define their average r̄ as the shape that minimizes the sum

of ∆int with the samples:3

r̄ = arg min
a

Ns∑
α=1

∆int (a, rα) . (1.15)

3. We use arg min to represent the operation of finding the argument which minimizes a function. That
is, if x∗ = arg min

x
f(x), then f(x∗) is the minimum value of f .
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Figure 1.9: Illustration of the average r̄ of three shapes r1, r2, and r3. The original ri are
not shown; instead, the result ři of aligning ri with r̄ is shown. For definiteness, we have
fixed the otherwise arbitrary orientation of r̄ by positioning its first junction point on the x
axis.

Because ∆int is defined only up to rotations, this definition of r̄ is defined only up to rotation.

The rotational degree of freedom can be fixed, e.g., by making the first junction point r̄1

lie on the positive x axis. Once a choice of orientation of r̄ has been made, the orientation

of each sample rα can be fixed by aligning it with r̄; we denote this aligned shape sample

řα. This method of averaging is illustrated in Fig. 1.9. To justify our choice of this method

of averaging, we show in Appendix D that it is equivalent to another natural method of

averaging.

1.3.2 Shape variance from simulation run

In addition to the average micelle shape, we have stated that the shape fluctuations can be

used to control the micelle’s interactions. The fluctuations are characterized by a 2Nj×2Nj
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variance matrix �, defined by

� =
1

Ns − 1

Ns∑
α=1

(řα − r̄)⊗ (řα − r̄) , (1.16)

where the tensor product a⊗b gives the 2Nj×2Nj second rank tensor that acts on a shape

c according to the rule (a⊗ b) · c = a (b · c).

These shape fluctuations limit the precision to which the mean shape r̄ is determined.

Naturally, one wants to be able to quantify this precision. Indeed, to convincingly show

that the micelle’s shape depends on its composition, as we indeed set out to do, we must

show that the variability in the mean shapes cannot be explained only by the uncertainty

caused by the limited precision of the simulation technique. Consequently, it is necessary

to estimate this uncertainty in the mean shape. A naive estimate for the variance matrix �̄

representing the degree of uncertainty in r̄ is �/Ns. However, this would underestimate the

uncertainty since the shape samples are correlated. If the system was described by a single

correlation time of τ sampling intervals, then the correlations could be accounted for by

using the estimate �τ/Ns. However, to make matters more complicated, there is no single

correlation time describing the correlations in the sample. Typically we find large scale

cooperative fluctuations have longer correlation times than high wavenumber fluctuations.

To address this complication, we find the autocorrelation time of each fluctuation mode

independently, as we now describe in more detail. A mode m` is an eigenvector of the variance

matrix �. This eigenvector has a corresponding eigenvalue Σ`, so that

� =

2Nj∑
`=1

Σ`m` ⊗ m`. (1.17)

(To fix the ordering of the m` with respect to `, we arrange them in decreasing order of Σ`.)
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Figure 1.10: Graphical representation of an average micelle shape and its fluctuations and
uncertainty. The central green curve linearly interpolates the average position of each diblock
junction point. The region of the surface occupied by solvophobic-rich diblocks is outlined
in black. For each junction point, a large blue ellipse and a smaller red ellipse is drawn. A
blue ellipse represents the 40% confidence region, corresponding to one standard deviation
from the mean, for a junction point assuming a Gaussian distribution with variance given
by the shape variance � of Eq. (1.16). In the same way, a red ellipse represents the variance
in the mean shape �̄ of Eq. (1.19).

For each `, we define time series of mode amplitudes A`α given by

A`α = (řα − r̄) · m`. (1.18)

Under sufficient simplifying assumptions, the mode amplitudes A`α may be used to es-

timate the uncertainty in r̄, following canonical methods [49]. Specifically, this estimate of

uncertainty assumes that the mode amplitudes A`α are sufficiently small that shape fluc-

tuates as a harmonic system in thermal equilibrium and consequently the normal mode

amplitudes fluctuate independently. In such a harmonic system each mode m` has a char-
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acteristic autocorrelation time τ` (in units of the sampling interval), which we estimate

using the initial convex sequence estimator of [50]. Samples of the amplitude separated by

times longer than τ` sampling intervals may be viewed as statistically independent, so that

the number of independent samples of the `th mode amplitude is Ns/τ`. Accordingly, the

squared uncertainty in the mean along the m` direction is estimated to be the variance Σ`

of the shape distribution along this direction divided by the number of independent samples

Ns/τ`. We therefore estimate the variance matrix �̄ given the uncertainty in the mean by

�̄ =

2Nj∑
`=1

Σ`
Ns/τ`

m` ⊗ m`. (1.19)

A graphical representation of an average micelle shape together with its variance and variance

in mean is shown in Fig. 1.10.

Since this uncertainty estimation ignores uncertainties in the mode eigenvectors m`, and

moreover our system’s fluctuations may be too large to permit a harmonic approximation,

the estimate of Eq. (1.19) may be inaccurate. However in Sec. 1.3.5, we will describe a way of

validating Eq. (1.19) by checking whether the expected uncertainty in r̄ within a simulation

run is consistent with the repeatability of r̄ over several simulation runs. Then in Sec. 1.4.1,

we will use this validation to show that our results are largely consistent with this harmonic

scheme.

1.3.3 Rejecting malformed micelles

In the case shown in Fig. 1.10, the diblock junction points make a smooth curve along the

surface of the micelle, indicating that the bonds joining the diblocks were sufficient to make

the micelle well formed. However, this is not the case with every simulation. Fig. 1.11(a)

shows a case where multiple diblock junction points crossed from one side of the micelle to

the other. In addition to this example, we have observed cases where the solvophobic region

of the micelle splits into two or more disconnected pieces, as shown in Fig. 1.11(b). Since
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this work is concerned only with the behavior of well-formed micelles, we simply discard any

such results where the average micelle shape is malformed.

If data are to be discarded in a consistent manner, a precise definition of “well formed”

is needed. We considered a shape to be well formed if it satisfies two criteria: an ordering

criterion and a smoothness criterion. The ordering criterion is satisfied if the shortest closed

path visiting each junction exactly once visits the junction points in the intended order.

This criterion detects whether diblocks cross from one side of the micelle surface to another,

and it also detects smaller defects such as a transposition of two diblocks. The smoothness

criterion is satisfied if the maximum distance between any two sequential junction points

exceeds the median distance by less than forty percent. The smoothness criterion detects

whether diblocks have broken off from the main surface either to form a small aggregate

of diblocks outside the micelle, or to form a cluster of solvophilic beads in the interior of

the micelle. We found that about half of the average micelle shapes resulting from our

simulations satisfied both criteria for being well formed.

1.3.4 Combining simulation runs

So far, we have discussed how to determine an average micelle shape and its fluctuation from

a single simulation run. However, we performed multiple simulation runs of each micelle with

different random initial velocities (see Sec. 1.2.3) to both generate more statistical data, and

more crucially to confirm that the uncertainties in each simulation run’s mean shape are well

estimated. Therefore, for each micelle composition there is not one, but Na average shapes,

denoted r̄ξ, ξ = 1, 2, . . . , Na, and each of these has a corresponding variance �ξ and variance

in mean �̄ξ. In this section, we describe how these quantities are combined to produce a best

estimate of the shape, its fluctuations, and its error. To represent these best estimates, we

will use the corresponding symbols, but without the ξ subscript. More explicitly, r̄ denotes

the combined average; �, the combined variance; and �̄, the error in the combined mean.

It would be possible to combine the means r̄ξ via the simple minimization given in
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Figure 1.11: Two different types of malformed micelles. The curves and ellipses have
the same meaning as in Fig. 1.10. In (a), the average micelle shape contains two junction
points in the concave region which approach the opposite surface of the micelle. This occurs
because the junction points crossed to the other side during the simulations. In (b), the
micelle is broken up into multiple disconnected regions outlined by the junction points. Such
malformed micelles are not expected to take the designed shape, and so they are excluded
from our analysis.
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Eq. (1.15). However, this formula would ignore the uncertainties �̄ξ in the means. These

uncertainties ought to be taken into account, because mean shapes with lower uncertainty

should be given more weight in determining the combined mean. Indeed, as might be pre-

dicted from the outliers of Fig. C.3(b), we do find that there is a significant variability in

simulation runs’ uncertainties in the mean. To account for the uncertainties, we may define

the combined mean using a maximum likelihood estimate [49]. Under the canonical assump-

tions of a harmonic system in thermal equilibrium, we expect the probability distribution

of r̄ξ to be Gaussian, so the log-likelihood L(r̄, r̄ξ, �̄ξ) of a true average shape r̄ given an

estimated average r̄ξ and its error �̄ξ is (up to an unimportant constant offset) proportional

to the following quadratic form:

L
(
r̄, r̄ξ, �̄ξ

)
= −

(
ˇ̄r− r̄ξ

)
· �̄−1

ξ ·
(
ˇ̄r− r̄ξ

)
, (1.20)

where ˇ̄r is the result of aligning r̄ with r̄ξ. Since this log-likelihood depends only on ˇ̄r, it

is independent of rotations of r̄, as desired. The product in Eq. (1.20) involving a matrix

inversion is indeed well defined since �̄ξ does have full rank when viewed as an operator on

the space of shapes aligned with r̄ξ, and the shapes ˇ̄r− r̄ξ indeed lie in this space.

Having defined the log-likelihood of a mean given a single simulation, we may now define

the same for multiple simulation runs. This is facilitated by the fact that the runs are

statistically independent from one another, so that the joint probability of measuring each

r̄ξ with the uncertainty �̄ξ given the true mean shape r̄ is the product of the individual

probabilities, and therefore the log-likelihood of the true mean shape r̄ given the r̄ξ and

�̄ξ is simply the sum of the individual log-likelihoods. Therefore the maximum likelihood

estimate for the true mean shape r̄ is given by maximizing the sum of log-likelihoods:

r̄ = arg max
a

Na∑
ξ=1

L
(
a, r̄ξ, �̄ξ

)
. (1.21)
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As with Eq. (1.15), this arg max is defined only up to a rotation, so, as with Eq. (1.15), a

convention is needed to fix the rotational degree of freedom so that r̄ is uniquely defined.

Once the average r̄ is found, one can ask what is the best estimate for the fluctuations

that can be made from each run’s mean r̄ξ and variance �ξ. We make this best estimate

by finding the variance matrix which best represents the fluctuations aggregated over all

simulation runs. The variance �ξ represents a set of samples rξα aligned with r̄ξ. The

first step in estimating the variance from the shape samples via Eq. (1.16) is to align the

samples with the mean (in the present case, r̄). Then an estimate of the variance of the

aligned samples can be made using this alignment transformation and the variance �ξ of the

unaligned samples.

The alignment transformation can be decomposed into two steps. First we apply to each

sample the rotation Rξ which aligns r̄ξ with r̄, producing the aligned mean shape ˇ̄rξ given

by Rξ r̄ξ and the rotated samples řξα, given by Rξrξα. However, the alignment of the sample

rξα with the combined mean r̄ is not yet complete: although řξα is aligned with ˇ̄rξ, and ˇ̄rξ

is aligned with r̄, nontransitivity implies that řξα is typically not aligned with r̄. Therefore,

a second rotation Rξα specific to each sample is necessary to complete the alignment. Thus

the transformation that rotates the sample rξα into alignment with r̄ is RξαRξ.

We must now make an estimate of the variance in the aligned shape samples from the

transformation RξαRξ. Since the rotation matrix Rξα depends on rξα, the aligned shapes

RξαRξrξα depend nonlinearly on rξα. Because of this nonlinearity, the variance of the

aligned shape distribution may depend on higher order moments of the distribution of shapes

rξα. Since we do not record these higher moments, and we wish to avoid reprocessing all

the shape samples, an approximation is needed to obtain the aligned shape distribution’s

variance. We make the approximation that the distribution of rξα is tightly centered on r̄ξ,

from which it follows both that rξα ≈ r̄ξ (and therefore the same is true when rotated by

Rξ: řξα ≈ ˇ̄rξ) and that the angle θξα of the rotation Rξα is small (after all, if řξα = ˇ̄rξ,

then the řξα are already aligned with r̄ so that θξα = 0). This approximation allows for
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linearization of the alignment transformation. The rotated Rξαřξα can be approximated as

Rξαřξα = cos θξαřξα + sin θξα
(
∧řξα

)
≈ řξα + θξα

(
∧řξα

)
≈ řξα + θξα

(
∧ˇ̄rξ

)
,

(1.22)

where ∧řξα is defined in Eq. (1.13) as a 90◦ counter-clockwise rotation of řξα. In Eq. (1.22),

the second line follows because θξα is small, and the third line follows because řξα ≈ ˇ̄rξ. It

remains to determine the linear dependence of θξα on řξα.

The angle θξα of the rotation Rξα is determined by the condition that Rξαřξα be aligned

with r̄. By the reasoning found below Eq. (1.13), this alignment requires that ∧r̄·Rξαřξα = 0.

Inserting the approximation of Eq. (1.22) into this condition for alignment, we obtain

∧r̄ ·
(
řξα + θξα

(
∧ˇ̄rξ

))
= 0, (1.23)

so that θξα = − (∧r̄)·řξα
r̄·ˇ̄rξ . Inserting this θξα back into Eq. (1.22), we find the action of the

second rotation on a sample to be

Rξαřξα ≈
(
1−
∧ˇ̄rξ ⊗ ∧r̄

ˇ̄rξ · r̄

)
řξα ≡ �ξ řξα, (1.24)

where we have defined the projection operator �ξ to be the tensor in parentheses above. We

see that the combined effect of the two rotations on a shape sample is approximately given

by the linear operator �ξRξ. Consequently, the variance matrix for the aligned samples is

approximated by �ξRξ�ξR
T
ξ �

T
ξ , which we denote by �̌ξ.

If the aligned fluctuations from each simulation run were aggregated, the resulting vari-

ance matrix would be the weighted average of the individual �̌ξ of each run, weighted by

the number of samples. However, since each run had approximately the same length, they

generate approximately the same number of samples, and so we make the approximation
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that the best estimate for the combined variance is a simple average of the �̌ξ:

� =
1

Na

Na∑
ξ=1

�̌ξ. (1.25)

To estimate the variance in the mean �̄ giving the uncertainty in r̄, we also perform an

average. Just as in Eq. (1.25), we must revise the original �̄ξ to account for the fact that

the best estimate of the mean is now r̄, and to align �̄ξ with this r̄. Accordingly we perform

the same alignment transformation on each �̄ξ that was done for the sample variances �ξ

above. The result is denoted ˇ̄�ξ. We then average these ˇ̄�ξ values as in Eq. (1.25). This

average doesn’t change systematically as Na increases. However the overall variance in the

mean of Na independent samples is 1/Na times this average. Thus

�̄ =
1

N2
a

Na∑
ξ=1

ˇ̄�ξ. (1.26)

1.3.5 Testing consistency between simulation runs

In Sec. 1.1.3, we explained that we wish to determine the thermal equilibrium statistics

of the well-formed micelles. Thus far, we have described a procedure for analyzing the

statistics of micelle shapes from a single simulation and for combining the results of multiple

simulations, but we have not discussed a way of testing whether the results of an individual

simulation accurately reflects thermal equilibrium. In this section, we describe how we verify

that individual simulation runs are thermally equilibrated. We do this by comparing, on the

one hand, the difference of individual run means r̄ξ from the combined mean r̄ to, on the

other hand, �̄ξ, which represents the error in the estimate of r̄ξ. If a simulation had not

fully equilibrated, the micelle would explore only a small subset of the thermodynamically

allowed configurations within a single simulation run, leading to an underestimate of the

shape variance, and therefore the variance in the mean shape r̄ξ. In this case, the observed

differences between the r̄ξ and r̄ would be significantly larger than �̄ξ would suggest.
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We use L
(
r̄, r̄ξ, �̄ξ

)
defined in Eq. (1.20) to quantitatively measure the differences be-

tween the individual run averages r̄ξ and the combined mean r̄ relative to the variance �̄ξ

in the individual run averages. Since L
(
r̄, r̄ξ, �̄ξ

)
is the negative of the chi-squared statistic

and each mean has 2Nj degrees of freedom, we expect that this L should be of order −2Nj .

We may therefore define the reduced chi-squared χ2
ν of a combined average r̄ by

χ2
ν =

−1

2NjNa

Na∑
ξ=1

L
(
r̄, r̄ξ, �̄ξ

)
. (1.27)

We expect this χ2
ν to be near unity; however, if the simulation runs were too short so that

the full range of thermal shapes is not explored in a single simulation, then the difference in

the means r̄ξ would be larger than the errors in the means �̄ξ would suggest, and χ2
ν would

be much larger than unity. Thus χ2
ν is a statistic that tests not just whether the system

is equilibrated, but more generally how well estimated are the uncertainties �̄ξ of each

mean shape r̄ξ, so that χ2
ν tests also for the issues arising from unvalidated assumptions

underpinning Eq. (1.19). Since the �̄ξ are defined using �ξ (see Eq. (1.19)), the χ2
ν also

provide an indirect test of the �ξ as well.

In fact, it is possible to validate the uncertainties �̄ξ in more detail. From Eq. (1.19), we

expect that the uncertainty of the mean �̄ξ in the direction of its `th mode mξ` is given by

Σξ`τξ`
Ns,ξ

. To verify this expectation, we can define the chi-squared of the `th mode by

χ2
ξ` =

(
mξ` ·

(
r̄ξ − r̄

))2
Σξ`τξ`/Ns,ξ

. (1.28)

For each `, we expect that χ2
ξ` should be near unity. Testing this expectation gives a more

thorough validation of Eq. (1.19), and in particular that finding the correlation time τξ` of

each mode is sufficient to characterize the full correlations of the shape fluctuations. The

reduced chi-squared χ2
ν for each micelle composition and a representative set of chi-squareds

χ2
ξ` for the modes of one simulation run are presented in Sec. 1.4.1.
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In addition to testing the formulas for the simulation run averages r̄ξ and their uncer-

tainties �̄ξ defined in Secs. 1.3.1 and 1.3.2, we would like to validate the combined average r̄

and its uncertainty �̄. One method of validation is to verify that the result of combining the

r̄ξ and the �̄ξ is consistent with the result of first concatenating the list of samples rξα, and

then finding a mean from these samples, using Eq. (1.15) as if the samples were generated

from a single simulation. We chose to compare with the average of the combined samples,

denoted by ˜̄r, since the procedure for averaging a time series of shapes can itself be validated

using χ2
ν and χ2

ξ`. Once the average of the combined samples has been found, a χ2
` statistic

similar to the one in Eq. (1.28) can be computed. More precisely, we define χ2
` by

χ2
` =

(m` · (˜̄r− r̄))2

�̄`
(1.29)

where m` is the `th eigenmode of �̄ and �̄` is the associated eigenvalue. An example calcu-

lation of this statistic will be presented in Sec. 1.4.1.

1.3.6 Shape features

We have now given a complete description about how to extract micelle shape information

from the simulation. However, in this paper we will pay special attention to two features of

the micelle shape: the “curvature ratio” and the “normalized fluctuation”. The curvature

ratio c−/c+ is defined as the ratio of the average signed curvature of the micelle surface

region occupied by the solvophobic-rich diblocks to that of the solvophilic-rich diblocks as

illustrated in Fig. 1.12. We are interested in this quantity because our intent is to use

our shape-design mechanism to produce a micelle of unusual shape, specifically one with a

dimple. The curvature ratio quantifies the strength of this dimple, and therefore can help

detect the conditions under which our shape-design mechanism works best.

In addition to the average shape, we are interested in the shape fluctuations, as noted

previously. We have introduced the variance matrix � to characterize the shape fluctuations.
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Figure 1.12: Illustration of the curvature ratio definition. The curvature ratio is defined as
the ratio of the average curvature c− in the region occupied by the solvophobic-rich diblocks
to the average curvature c+ in the region occupied by the solvophilic blocks. The curvature
ratio is one for a circle, and is negative for a shape with a dimple such as the one shown in
the figure, becoming more negative as the dimple grows more pronounced.

We summarize the size of the fluctuations represented by this 2Nj×2Nj matrix with a single

scalar, the normalized fluctuation δ, to measure the amount of fluctuation in the micelle

shape, normalized so as not to scale with the number of junction points or the size of the

micelle. The normalized fluctuation is defined by

δ =

√
Tr�

r̄2
. (1.30)

It is enlightening to notice a connection between the normalized fluctuation δ and the distance

metric ∆int: if r̄ and � are the mean and variance of a single simulation run, then by

Eq. (1.16) and Eq. (1.10), the δ for this simulation run is given by

√
1

Ns−1

∑Ns
α=1 ∆int(r̄, rα)

r̄2
. (1.31)

Still another, more pictorial interpretation of the normalized fluctuation can be framed in
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terms of the error ellipses representing � (the larger blue ellipses of, e.g., Fig. 1.9): the

normalized fluctuation is roughly the typical linear size of these ellipses relative to the linear

size of the micelle.

Since we will be analyzing these two features of micelle shape, we must make an estimate

of their uncertainty. The uncertainty of the curvature ratio can be straightforwardly derived

from the full variance matrix �̄ giving the variance in the mean.

Estimating the uncertainty in the fluctuation δ is more subtle because δ is defined in

terms of the variance �, and so the error in delta represents the error in the fluctuations of a

quantity rather than the error in the quantity itself. Consequently, we attempt only a rough

estimate of the error in δ. The dominant source of uncertainty in δ comes from Tr�. We

find the uncertainty in Tr� by recognizing that the trace is the sum of eigenvalues:

Tr� =
∑
`

Σ`. (1.32)

Evidently, it is sufficient to estimate the uncertainty in each variance. To perform this esti-

mate, we resort to assuming that each Σ` represents the variance of a Gaussian distribution.

Given n samples of a univariate Gaussian random variable with variance Σ, a formula for

the uncertainty σΣ of the estimate of the distribution’s variance is given by (see [51])

σΣ = Σ

√
2

n− 1
. (1.33)

To use this formula to estimate the uncertainty in Σ`, we must choose a value for the

number of independent samples n` contributing to the estimation of Σ`. We estimate this

number of samples for each mode m` of � by taking the ratio of the fluctuation in the mode

amplitude Σ` with the uncertainty in the mean along the m` direction:

n` =
mT` �m`
mT` �̄m`

. (1.34)
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As this estimate of the normalized fluctuation uncertainty requires approximation in

the form of Eqs. (1.33) and (1.34), some degree of validation is in order. To this end, we

calculate the normalized fluctuation from each simulation run (i.e., substitute r̄ξ and �ξ in

Eq. (1.30)), and compute the standard error in the resulting normalized fluctuations. While

this second method may seem reasonable, we prefer the uncertainty estimate described in

the preceding paragraphs for two reasons: first, the second estimate cannot be used if there

is only one simulation run producing a well-formed micelle; and second, the first estimate is

less likely to underestimate the uncertainty, because it takes into account all modes while the

second estimate can result in an underestimate if the normalized fluctuations from individual

simulation runs happen to be similar. The results of using these two methods is compared

in Fig. 1.15.

1.4 Results

In this section, we present micelle simulation results. The ultimate goal of running the

simulations was to determine if the micelle shape features may be controlled by appropriately

changing the micelle composition. In Sec. 1.3, we developed a set of tools to determine the

equilibrium shape properties of a simulated micelle, but these tools depended on a number

of untested assumptions, and so before presenting the results of applying these tools, we first

perform in Sec. 1.4.1 the validations discussed in Secs. 1.3.5 and 1.3.6.

With this done, we present the results of simulating micelles of several compositions. The

range of micelle compositions was not chosen to be exhaustive but only to demonstrate a

significant degree of control over the micelle shape. To this end, we varied two aspects of the

micelle composition: the length of the core segment and the composition of the solvophobic-

rich diblocks. The length of the core segment ranged from 600 beads to 1000 beads. Two

solvophobic-rich diblock compositions were studied, the first being 30 solvophobic beads and

2 solvophilic beads and the second being 27 solvophobic beads and 4 solvophilic beads. Since

the first composition has a larger asymmetry, and therefore the micelles containing these
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600 Core 700 Core 848 Core 1000 Core

high
contrast

low
contrast

Table 1.1: Average shapes of micelles of various compositions, plotted in the manner of
Fig. 1.10. The micelle compositions are described in the first paragraph of Sec. 1.4. The
relative magnitudes of the normalized fluctuation δ (blue) and curvature ratio c−/c+ (orange)
of each shape are indicated by bars next to the shape.

diblocks have a larger asymmetry contrast between their solvophobic-rich and solvophilic-

rich diblocks, we refer to these micelles as “high contrast”. Conversely, we refer to the other

micelles, whose solvophobic-rich diblocks contain 27 solvophobic beads and 4 solvophilic

beads, as “low contrast”. Other aspects of the micelle composition were held constant: each

micelle had 12 solvophobic-rich diblocks and 55 solvophilic-rich diblocks, and the solvophilic-

rich diblocks each had 24 solvophobic beads and 7 solvophilic beads. To obtain sufficient

statistics, each simulation was run in parallel on nine cores for 70 hours, during which

time LAMMPS completed about one billion timesteps. The mean shapes, fluctuations, and

uncertainties resulting from these simulations are plotted in Table 1.1. In Sec. 1.4.2, we

plot the shape features introduced in Sec. 1.3.6 as a function of the size of the core and the

asymmetry ratio of the solvophobic-rich diblocks.

1.4.1 Validation of analysis

In Sec. 1.3.5, we introduced two statistics χ2
ν and χ2

ξ`, defined in Eqs. (1.27) and (1.28),

for validating that the variation in the means r̄ξ was consistent with the error �̄ξ in these
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600 Core 700 Core 848 Core 1000 Core
high

contrast
5.5 0.69 1.8 —

low
contrast

59 1.2 2.3 3.2

Table 1.2: Reduced chi-squared χ2
ν (defined in Eq. (1.27)) for each of the averages shown

in Table 1.1. One of the entries is blank since there was only one well-formed result for that
micelle composition, in which case the reduced chi-squared statistic is meaningless. Only
one of the simulations runs of the high-contrast micelle having 1000 core beads gave a well-
formed average shape, so that all of the other runs were rejected. The reduced chi-squared
statistic is meaningless in this case, so it is omitted.

means. We stated that a correctly estimated error leads to the statistics being nearly one,

while underestimated error lead to large values and overestimated errors lead to small values.

One cause of concern motivating this test is that the simulations may not have been run

long enough for the full range of thermal shapes to explore, leading to the estimated mean

of a simulation run being strongly biased by the initialization. This would lead to the

means being more different than mere thermal fluctuations would predict, and therefore

lead to large χ2
ν and χ2

ξ`. Another cause for concern is that the assumption underpinning

Eq. (1.19), namely that the fluctuation mode amplitudes fluctuate independently and are

each described by a separate correlation time may be strongly violated to the point that

Eq. (1.19) gives an unsatisfactory estimate of the uncertainty in the mean. A shortcoming

of the estimate Eq. (1.19) would likely cause a systematic dependence of χ2
ξ` on the mode

number `, since we expect the applicability our assumptions to depend on the amplitude or

correlation of the mode, both of which vary systematically with `.

Results for χ2
ν are given in Table 1.2. The simulations of low-contrast micelles having 600

core beads had a large χ2
ν . This happened because two of the four simulations fluctuated

only modestly about significantly different but well-defined mean shapes. The other two

of the four simulation runs showed large fluctuations. This suggests that, for this micelle

composition, there are multiple metastable shapes between which the micelle can fluctuate.
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This example demonstrates the benefit of doing multiple independent simulation runs and

shows the limitations of representing a shape with a single mean and a variance about the

mean.

On the other hand, besides the two aforementioned cases, all the χ2
ν are near unity,

indicating that the simulations are well equilibrated and the uncertainty in the mean shape

from each run is well-estimated.

Next we consider the χ2
ξ` of Sec. 1.3.5. A more detailed diagnostic than the χ2

ν , the χ2
ξ`

indicate how well the shape error of the ξth simulation run in the direction of the `th mode is

estimated. To illustrate that the low-` modes are markedly different from the high-` modes,

and thereby motivate the mode-by-mode validation offered by the χ2
ξ` statistic, we first show

representative plots of the mode amplitude variances Σξ` vs `, the correlation times τξ` vs `,

and a few modes mξ` in Fig. 1.13. We find that the mode amplitude variance Σξ` varies by

three orders of magnitude. With this in mind, we plot in Fig. 1.14 χ2
ξ` for a representative

simulation run of a low-contrast micelle with 848 core beads. Although the mode variances

Σξ` and correlation times τξ` vary by several orders of magnitude, the χ2
ξ` remain mostly

1 50 100 131

(a)

1 50 100 131

1

5

10

50

100

(b)

Figure 1.13: (a) Plot of the mode amplitude variance Σξ` vs mode number ` and (b) the
correlation time τξ` (in units of the sampling interval) from a single simulation run (i.e.,
single value of ξ) for a low-contrast micelle containing 848 core beads. The three modes
corresponding to rigid motions are omitted because their amplitude variance is zero. The
variances range over three orders of magnitude.
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-90 0 90
-80

0

80

First mode

(c)

-90 0 90
-80

0

80

Tenth mode

(d)

-90 0 90
-80

0

80

Fiftieth mode

(e)

Figure 1.13: (c), (d), and (e) Plots of the ` = 1, ` = 10, and ` = 50 modes. The
average shapes are plotted as well as a deformation of the shape in the direction of the mode
mξ`. In (c), the size of this deformation is

√
Σξ1, which represents one standard deviation of

sampled shape distribution in the direction of mξ`. In (d) and (e), the size of the deformation
is increased to five standard deviations for clarity.
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Figure 1.14: Plot of χ2
ξ` (defined in Eq. (1.28), black circles) vs ` for the representative

simulation run of Fig. 1.13 of a low-contrast micelle with 848 core beads. As in Fig. 1.13,
the modes are ordered by their amplitude, so that the first mode (` = 1) is the mode with
highest amplitude. The horizontal lines bracket the 90% confidence interval for the χ2

ξ`

statistic, assuming the mean shape distribution is Gaussian. Most of the χ2
ξ` fall in this

range, with no apparent systematic dependence on `. For contrast, we present χ2
ξ` with

correlations ignored (by substituting τξ` → 1 in Eq. (1.19), red diamonds). In this case, the

χ2
ξ` show a clear dependence on `, in that χ2

ξ` is much larger than unity for small `.

within their 90% confidence interval with no apparent systematic dependence on `, giving

a positive validation of the assumptions used to calculate �̄ξ. In particular, this validation

gives credence to the form of Eq. (1.19) used to calculate the error in the mean of a single

run, where each mode is assumed to have an independent correlation time estimated by the

time series of that mode’s amplitude.

If the correlation times were estimated incorrectly, then the χ2
ξ` for small ` would be

significantly different than the χ2
ξ` for large `. As an extreme example of an incorrect

correlation time estimation, consider the effect of ignoring correlation times completely (i.e.,

inserting τξ` = 1 into Eq. (1.19) as done in Fig. 1.14): the error in the mean along the high-

amplitude modes is underestimated and so the corresponding χ2
ξ` are much larger than unity.

This analysis was done for a single run using one of our more stable compositions. Naturally,

less well-behaved micelle compositions and runs, such as the low-contrast composition with

600-bead core, are not expected to fare as well under the same analysis.
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Figure 1.15: Plot of two estimates of the uncertainty in the normalized fluctuation δ for the
different micelle compositions of Table 1.1. Black (red) symbols represent high (low) contrast
micelles. Closed symbols represent the first estimate defined using Eqs. (1.32) to (1.34); open
symbols represent the second estimate described below Eq. (1.34). Since simulations of the
high-contrast micelle with 1000 core beads only resulted in one well-formed shape, the second
estimate of its normalized fluctuation uncertainty cannot be made. Besides this case, and
the case of the high-contrast micelle with 700 core beads, where the two simulation runs
giving well-formed micelles had very similar normalized fluctuations, the estimates agree to
within a factor of two.
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Next, in Sec. 1.3.6, we described a way to estimate the uncertainty in the normalized

fluctuation δ by individually estimating the uncertainty in each mode variance Σ`. The

estimate of this uncertainty is crucial to understanding the significance of our quoted values

for the shapes’ normalized fluctuations, but this estimate relied on two as yet unvalidated

approximations represented by Eqs. (1.33) and (1.34). Therefore it is necessary to validate

this estimate, which we proposed to do by performing a comparison to the standard error

of the normalized fluctuations individually calculated from each simulation run. The com-

parison is shown Fig. 1.15. We expect only rough agreement because the estimate being

validated assumed the shape data are drawn from a Gaussian distribution. In fact the size

of the errors are only consistent to about a factor of two. Therefore, when evaluating the

significance of the results in Sec. 1.4.2, it should be remembered that the uncertainties in

the normalized fluctuations are determined only to this limited precision.

Finally, we validate the formula Eq. (1.21) for the combined mean r̄ and its uncertainty

estimate �̄ defined by Eq. (1.26). This validation is important because the quantities r̄ and

�̄ are used to determine the value and uncertainty of the average micelle shapes’ curvature

ratios, which will be examined in Sec. 1.4.2. The validation is done by comparing the

combined mean r̄ with the combined set of all shape samples, as described in Sec. 1.3.5.

In Fig. 1.16, we show a plot of the statistic χ2
` , defined in Eq. (1.29), for the low-contrast

micelle with 848 core beads. The χ2
` fall within the expected range, and the `-average of χ2

`

is 1.5. The difference between this value and the ideal value of 1 suggests that the error in

the combined mean may be slightly underestimated. From Fig. 1.16, this underestimation

seems to be worst for low ` modes.

1.4.2 Shape features

Finally we discuss our findings concerning the shape features discussed in Sec. 1.3.6. To study

quantitatively the dependence of micelle shape on composition already apparent in Table 1.1,

we plot in Fig. 1.17 the curvature ratios and normalized fluctuations of these shapes, as well
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Figure 1.16: Plot of χ2
` defined in Eq. (1.29) vs mode number `. The two horizontal gray

lines demarcate the 90% confidence interval.

as a fit to a simple linear model. Several trends are revealed by these plots. The curvature

ratio becomes more negative (meaning that the dimple becomes more pronounced) as the

asymmetry ratio becomes more negative (meaning the solvophobic-rich diblocks become even

more solvophobic). This confirms our intuition explained in Sec. 1.2.2 that the curvature

should be positively correlated with the asymmetry ratio.

Another trend is that as the size of the core is increased, the curvature ratio becomes

more positive (meaning that the dimple becomes less pronounced). We propose the following

explanation for this behavior. We note that an increase in the core size increases the volume

of the micelle. This increased volume could be accommodated either by an increase in the

perimeter, reducing the density of diblock “surfactant” on the surface and thereby presum-

ably increasing the micelle surface tension, or by making the micelle more circular, thereby

making the curvature ratio more positive. In practice, we expect both of these happen to

some extent, and so increasing the core size would both increase the surface tension and

make the curvature ratio more positive.

The normalized fluctuations are less precisely determined, but trends are still apparent.

The data show that the normalized fluctuations decrease as the solvophobic-rich diblocks

become more solvophobic. This effect could also be explained in terms of a competition
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Figure 1.17: Plots of normalized fluctuation δ and curvature ratio c−/c+ vs micelle com-
position. The micelle compositions are those of Table 1.1. In (a), δ is plotted against the
size of the micelle core. Black (red) points represent high (low) contrast micelles. The data
are fit to a model containing only constant and gradient terms: δ = δ0 + mcc + mrr, with
c being the number of core beads and r being the solvophobic-rich diblock asymmetry ra-
tio (defined in Eq. (1.2)). Best fit parameters are found to be mc = (−1.0 ± 0.3) × 10−4

and mr = 0.37 ± 0.08. The reduced chi-squared for this fit is 1.9. The curvature ratio is
treated analogously in (b). The best fit parameters for the curvature ratio are given by
mc = (1.7±0.1)×10−3 and mr = 4.5±0.3. The reduced chi-squared for this fit is 14. After
omitting the outlier at a core size of 600 and nint : next = 27 : 4, the reduced chi-squared
drops to 4.4.
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between the preferred perimeter and preferred curvature. As the solvophobic-rich diblocks

become more solvophobic, the dimple becomes more pronounced, which we propose leads to

an increase in perimeter and consequently surface tension. This increased surface tension

would then decrease the amplitude of shape fluctuations. Also, the data suggest that micelles

with more core have lower normalized fluctuations, although the size of this effect is on the

same order of the uncertainty. We have argued in the previous paragraph that increasing

the core should increase surface tension. In addition to reducing the dimple, this increased

tension should also reduce fluctuations, explaining the trend.

We note one more feature in the data: the low-contrast micelle with 600 has a significantly

more positive curvature ratio than the trend line of Fig. 1.17(b) predicts. Although we

are not sure how to explain this, we suspect this behavior is related to the onset of a

transition reported in [52] involving the buckling of a two-dimensional vesicle wall upon

decreasing the vesicle’s interior volume. If the energy barrier associated with buckling was

high enough to preclude a buckling event from occurring within a simulation, then our

observation, previously noted in Sec. 1.4.1, of two well-defined, but inconsistent micelle

shape averages could be explained. In any event, this data point is an interesting starting

point for further investigation.

Having described our results, we now note that they afford some degree of predictive

power. We have observed a range of curvature ratios extending approximately from −0.5 to

−1.8 exhibiting a mostly regular dependence on micelle composition. Therefore if a micelle

with curvature ratio in the observed range is to be constructed, the data provide a way to

determine which micelle composition gives the desired curvature ratio. In this way, we have

demonstrated that micelle shape design is possible using our design mechanism.

1.5 Discussion

The work presented in this paper is only a first demonstration that our micelle design mech-

anism can provide for fine control of a micelle shape. Only two aspects of the micelle
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composition were changed, and only two aspects of the micelle shape were studied. Further,

the system we studied was only two-dimensional and the problem of malformed micelles was

deferred completely. In this section, we address these issues in order to clarify the significance

of our results: we describe other aspects of micelle composition to vary; we suggest additional

features of the thermal shape distribution to control; we suggest a few alternate schemes for

bonding the micelle’s constituent diblocks with the idea that they may be more effective at

preventing malformed shapes; and we discuss how the results presented in this work may be

extended to three dimensions and what challenges may arise. Finally, we discuss how our

results are relevant to the applications mentioned in the introduction.

1.5.1 Further variation of micelle composition

In this work, the effect of only two aspects of micelle composition was studied, and some

speculative explanations of the observed behavior were given. In future work, other aspects

of micelle composition may be varied, extending the range of observed micelle shapes and

giving further insight into the factors affecting micelle shape. For example, only the asym-

metry of the solvophobic-rich diblocks were studied; the effect of varying the solvophilic-rich

diblocks could also be studied. Another aspect of the micelle composition to address is the

length of the diblocks. In this work, we filled the micelle surface with diblocks of a specific

chosen length, and chose the asymmetry of these diblocks to produce the desired curvature.

However, there is freedom in choosing the length of the diblocks: the micelle surface could

be filled using a larger number of shorter diblocks, holding fixed the imprinted preferred

curvature profile. A third way of altering the micelle composition is to introduce another

species of diblock. In the micelle shapes presented in Sec. 1.4, there were three regions of

significantly different curvature: the concave dimple, the weakly convex surface opposite the

dimple, and the strongly convex surface adjacent the dimple. Since these micelles only con-

tain two species of diblock, the observed micelle shapes seem to be at odds with our stated

design strategy, wherein the diblock’s preferred curvature dictates the surface curvature. We
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expect that the mismatch between the imprinted curvature and the realized curvature repre-

sents a frustration which may affect the dynamics (e.g., fluctuations) of the micelle. To test

this expectation, one could introduce a third species of diblock to better match the realized

micelle curvature, and study the resulting micelle shapes.

1.5.2 Additional shape features to control

Just as there are many ways to alter the micelle composition, there are many aspects of the

micelle shape to control. Here we list three extensions to the shape control demonstrated in

this work. First, instead of the curvature ratio of the average shape illustrated in Fig. 1.12,

one could study other quantities characterizing the average shape. In fact, the difference

metric ∆int, defined in Eq. (1.10), provides a way of quantifying the similarity to any chosen

target shape. Second, we chose a static set of interaction parameters in our model; however,

applications may require exposing the micelle to varying environments (having variations of

e.g., temperature, pH, or salt concentration). On the one hand, such a varying environment

would presumably make it difficult to ensure a fixed micelle shape. On the other hand, there

emerges a challenge of designing a micelle that assumes different designed shapes depending

on its changing environment. Lastly, we have found evidence of a micelle exhibiting two

metastable shapes in a single environment. In this case, there is a breakdown in the repre-

sentation of the micelle shape as a Gaussian distribution fluctuating about a single mean.

Instead, one could categorize the observed micelle shapes into clusters (each representing

a metastable micelle shape), and find the mean shape in each cluster and the transition

rates between the clusters. Further, each metastable shape presumably may be designed by

changing the micelle composition.

1.5.3 Ensuring micelles are well-formed

In Sec. 1.1.3, we identified one challenge associated with our shape-design strategy as the

stability challenge of ensuring that the micelles are well formed: that the diblocks keep their
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intended relative positioning on the micelle surface. We chose to sidestep discussion of this

challenge, and instead focus only on the shape control of well-formed micelles. However,

without some way of ensuring micelles remain well formed, the shapes of the well-formed

micelles seem to be of limited importance. In this section, we give examples of what can be

done to ensure micelles remain well formed.

If there are a number of micelles dispersed in a solvent, one way a micelle can fail to be

well formed is to coalesce with another micelle. In our work, we avoid this failure mode by

including only one multiblock copolymer in a simulation, but the applications we imagine

involve many coexisting micelles, in which case coalescence must be prevented. Coales-

cence and transfer of material between micelles is a phenomenon that already occurs for

conventional micelles made of diblock copolymers, and it has been found both through sim-

ulations [53–55] and experiments [42, 56, 57] that the composition of a micelle’s constituent

diblocks can be used to control the micelle’s equilibrium size. Therefore, we expect that it

is possible to choose diblock compositions so that large aggregates composed of coalesced

single-polymer micelles are thermodynamically unstable.

Alternatively, even a single micelle may become malformed, either by diblocks rearranging

on the surface as was the case for Fig. 1.11(a) or by solvophobic blocks exiting the micelle

interior to a second solvophobic region disconnected from the micelle interior as was the

case for Fig. 1.11(b). It is possible that altering the polymer interactions (e.g., changing the

immiscibility of the solvophobic monomers) is sufficient to suppress these failure modes.

If altering the polymer interactions is not sufficient or practical, other bond topologies be-

sides the linear one used in this work, while perhaps harder to synthesize, might be effective.

One could imagine a solvophobic backbone chain with solvophilic (and perhaps solvophobic)

side chains; in fact, these bond schemes have been considered theoretically in [16]. Alter-

natively, the backbone chain could be solvophilic. Even more intricate possibilities are a

solvophobic backbone chain with diblock side chains or even branched side chains where

the degree of branching can be used to control the curvature. Examples of alternate bond
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(a) (b)

(c)

Figure 1.18: Schematics of alternate bond topologies for single-polymer micelles. The color
scheme is the same as that of Fig. 1.2. In (a), diblocks have been attached as side chains to
a solvophobic homopolymer. In (b), the diblocks are instead attached on their solvophilic
ends to a solvophilic homopolymer. Lastly, in (b), the diblocks are represented as a pair of
side chains attached to a solvophilic homopolymer chain.

topologies are shown in Fig. 1.18. In any case, we imagine that the effect of a diblock’s spon-

taneous curvature on the shape of a well-formed micelle is mostly independent of the bond

scheme used to make the micelle well formed, so that these two problems may be studied

independently.

1.5.4 Implications for three-dimensional micelles

In this work, a polymer model having only two dimensions was chosen, as has often been done

[58–62]. Two-dimensional simulations have the advantage of being both computationally less

demanding and easier to visualize. Despite the simplicity gained by moving to two dimen-

sions, the polymer behavior nonetheless is closely analogous to the three-dimensional case.
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(a)

(b)

(c)

Figure 1.19: Plots of three unduloids interpolating between a cylinder and a string of spheres.
Each surface shown in (a), (b), and (c) has a uniform mean curvature, and furthermore the
three curvatures are the same. In fact, these shapes can be continuously deformed into one
another with the mean curvature held fixed.

For example, we observed that our two-dimensional polymers exhibit a well-defined density,

surface tension, and a preferred mean square displacement per monomer, as is the case in a

three-dimensional system. Since these are the primary ingredients that set the micelle sur-

face’s preferred curvature [40], it is expected that a three-dimensional micelle surface ought

to be influenced by the constituent polymer compositions similar to the two-dimensional

micelles considered here. For example, we expect that making a patch of solvophobic-rich

diblocks on the surface of a micelle with spherical topology would cause the micelle to form

a concave dimple.

Although we expect the degree of shape control demonstrated in this work to be indicative

of what is possible in three dimensions, we must admit that the extra dimension reduces the
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potential for additional control offered by our shape-design strategy, as we now explain. In

two dimensions, a curve is completely specified by its curvature at every point, and therefore

a unique shape may be determined by imposing a preferred curvature at each point. In three

dimensions, to lowest order in the curvature, the local bending energy Ubend per unit of the

micelle surface area is [63] given by

Ubend = 2k (H − c0)2 +
k̄

2
K, (1.35)

whereH andK are the mean and Gaussian curvatures, c0 is the spontaneous mean curvature,

and k and k̄ are moduli governing the mean and Gaussian curvature, respectively. While we

expect that the local spontaneous mean curvature parameter c0 can be set by the local diblock

composition at the surface, a surface is described by not one, but two principal curvatures at

each point. Thus a micelle shape is underspecified by the mean curvature profile induced by

diblocks on the micelle surface. For example unduloids [64] are a family of distinct shapes

all having the same mean curvature profile (examples shown in Fig. 1.19). The diblocks

having mean curvature compatible with the unduloid in Fig. 1.19(b) will likewise have a

mean curvature compatible with Fig. 1.19(c), so neither one of these shapes can be designed

if diblocks affect only the preferred mean curvature. Even if full control of the shape is not

possible in three dimensions, some degree of control is undoubtedly possible. For example,

we expect it is possible to design a micelle having a dimpled shape analogous to the one

considered here. Characterizing this control represents an interesting direction for future

research.

Another difficulty with extending the shape-design mechanism is that a more sophisti-

cated bond scheme is necessary to enforce the relative positioning of the diblocks on the

surface of the micelle. Indeed, three-dimensional amphiphilic linear multiblock copolymers

and polymers with side chains have been simulated [65], and while rough shape control has

been demonstrated, the junction points do not arrange themselves on the micelle surface
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in an organized manner, so the fine control we seek does not seem possible. Instead, the

polymer may need to be realized in the form of a branched polymer. One possibility is to

first form a cross-linked polymer network of a roughly spherical shape, and then graft onto

the network surface diblocks of the desired compositions. There remains a question of how to

create the cross-linked polymer network with chemically distinct surface regions necessary to

graft specific species of polymer to specific regions on the surface. We hypothesize that such

a network could be created either by growing outward from a multifunctional core such as

a silsesquioxane [66] or by growing inward from an external, rigid scaffold such as a protein

cage [67]. In either case, after the network is formed, the original core or scaffold could be

disassembled, leaving only the flexible polymer network.

1.5.5 Relevance to applications

We now discuss how our results could be used to address the applications discussed in the

introduction. One application was to use shape-designed micelles as drug carriers. It has

been found that the carrier shape can affect how much drug can be loaded into the micelle

[6]. Also, it has been found that nanoparticle shape can affect where in the body (e.g., in

which organ) the particles accumulate [68–72]. Our shape-design mechanism therefore may

potentially be used to optimize the loading capacity or biodistribution of a micelle drug

carrier. Additionally, it was found that carrier shape flexibility affects how quickly the drug

is cleared from the body [72–75]. Thus control not only of micelle shape, but also flexibility

may be relevant to drug delivery applications.

Another application was the lock and key mechanism. In [10], the assembly of concave

objects, similar to the ones designed in this work, was studied. It was found that in the

presence of depletants, ensembles of these objects could be made to aggregate. It was further

found that the size of the concave feature affects the aggregation: the concave curvature of

the dimple must match the convex curvature of the object to which it will bind. Since the

micelles studied in this work are dimpled in a similar way, it is natural to ask if they can
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participate in the same selective aggregation behavior.

1.6 Conclusion

Molecular dynamics simulations were used to study the fluctuating shape of a polymeric

micelle at finite temperature in two dimensions. The micelle was constructed from a sin-

gle, linear, multiblock copolymer. A globular state with the multiblock’s junction points

sequentially ordered around the micelle perimeter is often maintained during the course of

the simulation when such a state is used as the initial configuration. We introduced and

validated statistical methods for quantitatively characterizing such a globular micelle shape

in the presence of strong thermal fluctuations. Using these methods, we demonstrated the

effectiveness of a strategy where the multiblock is viewed as a collection of diblock copoly-

mers joined end to end, and the asymmetry of these diblocks is selected to dictate the micelle

surface curvature. Specifically, we found that positioning solvophobic-rich diblocks prefer-

ring concave curvature on the micelle surface caused the formation of a concave dimple in

the surface region occupied by these diblocks. Further, the strength of the dimple is con-

trolled by both the asymmetry of these diblocks and the size of a homopolymer core segment

located in the micelle interior. In addition to the strength of the dimple, the asymmetry

of the solvophobic-rich diblocks and the size of the core segment affected the amount of

fluctuations in the micelle shape.

This work is a modest step in the direction of making shape-controlled micelles based on

modulated preferred surface curvature. Many caveats and shortcomings were noted, such as

the metastability of our simulated micelles and the two-dimensional nature of the simulation.

Nevertheless, we have found that micelle shape can be controlled by the constituent diblock

composition. In future work, the micelle shape-design strategy could be studied in three

dimensions where it is as yet unclear how precisely polymeric micelles’ shapes could be

controlled. Additionally, research must be done to determine what is necessary and sufficient

to ensure the thermal stability of the designed micelle.
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CHAPTER 2

FEASIBILITY OF RATIONAL SHAPE DESIGN

2.1 Introduction

Micelles are self-organized aggregates occurring in a solvent, and consisting of two chemically

incompatible regions: the exterior of the micelle, occupied by solvophilic material which is

miscible with the solvent, and the interior of the micelle, containing solvophobic, immiscible

material. The chemical dissimilarity between the micelle interior and exterior allow the

micelle to transport material which would normally be immiscible in the solvent. This is

what makes micelles effective in their perhaps best-known role as detergents. A related

application is to use micelles as a drug carrier, with the drug payload residing in the interior

of the micelle. It has been found that a drug carrier’s shape affects aspects of the drug

carrier’s performance such as where in the body (e.g., into which organ) the drug payload

is deposited [68–72]. A second application where micelle shape may be important concerns

micelles aggregating together to form higher-order structures of various shapes such as cubes,

pyramids, or long chains [76–79]. The shape of these aggregates might be controlled through

the shape of the constituent micelles.

Because of the importance of micelle shape, it would be useful to have a rational design

scheme to create micelles of a precisely tailored shape. A good rational design scheme would

identify a few key control parameters governing how the micelle is synthesized, and these

control parameters would have a well-behaved effect on the micelle shape. Ideally, the effect

of the control parameters would be so regular that, given the observed shapes from a small

number of control parameter values, the relationship between shape and control parameters

could be accurately determined by a naive linear model.

In this work, we characterize the performance of such a scheme wherein the micelle

consists of a single, linear, multiblock copolymer (i.e., a polymer containing solvophilic and

solvophobic monomers segregated into multiple homogeneous blocks), and the number of

55



homopolymer blocks

diblock diblock diblock

Figure 2.1: Two different views of a linear multiblock copolymer composed of two species of
monomer, shown in red (light gray) and blue (dark gray). In the first view, the multiblock
is considered a collection of homopolymer segments. In the second view, it is considered a
sequence of diblocks joined end to end. Figure reproduced from [1].

these blocks and their lengths, which we collectively refer to as the “micelle composition”,

are used as control parameters to set the micelle shape. We study the design scheme by

simulation, which, for simplicity, is performed in two dimensions, a choice we will justify in

Sec. 2.4. In a previous paper [1], we demonstrated that this scheme can indeed be used to

produce a micelle of a nonstandard dimpled shape, and we showed, by varying two aspects

of the micelle composition, that the micelle shape could be controlled. In this paper, we go

beyond merely demonstrating that it is possible to control the micelle shape: we select several

control parameters governing the micelle composition, and we assess the regularity of the

micelle’s shape dependence on these parameters. We seek to determine if the micelle’s shape

dependence can be explained by a straightforward rationale and whether this dependence is

simple enough that it may be represented by a naive linear model.

To better motivate which aspects of the micelle composition we vary in this work, we now

give a more detailed description of the rationale underlying our shape-design scheme. The

key idea is to view the multiblock copolymer not as a sequence of homopolymer blocks joined

together, but rather as a sequence of diblocks. Thus two homopolymer blocks are joined at

a diblock junction point, and adjacent diblocks are joined to each other in the middle of a

homopolymer segment, as illustrated in Fig. 2.1. With this view in mind, we now give an

explanation, illustrated in Fig. 2.2, of how the diblocks’ block lengths may affect the micelle

shape. In solution, the solvophilic blocks are located at the exterior of the micelle, while the

solvophobic blocks compose the micelle interior. Thus, the diblock junction points occupy

the boundary separating the two regions. It is well-known that such an interface containing
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Figure 2.2: Illustration of shape-design rationale. The multiblock, viewed as a collection of
diblocks, exhibits a configuration where the junction points of the diblock lie on the micelle
surface. Diblocks of different composition, and therefore different spontaneous curvatures,
cause a nonuniform surface curvature, giving the micelle its desired shape. The relative
positioning of the diblocks is enforced by joining them end to end. Figure reproduced from
[1].
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diblocks has a spontaneous curvature depending on the diblocks’ compositions and chemical

properties [40]. By this reasoning, we may judiciously choose the diblock lengths at each

point on the micelle surface to imprint a spontaneous curvature profile giving rise to the

desired shape.

We have now explained why the multiblock is viewed as a collection of diblocks, but we

have not explained why these diblocks must be joined together as opposed to simply being

allowed to aggregate as in a typical self-assembled micelle composed of diblock amphiphiles.

The diblocks are joined in order to prevent them from diffusing across the micelle surface,

since such diffusion would erase the intended spontaneous curvature profile. Nevertheless,

as will be indicated in Sec. 2.2, the multiblock structure of the polymer often fails to ensure

the intended diblock arrangement on the surface. To eliminate these failures something

further must be done, but an in-depth study of this issue is beyond the scope of the present

work. Instead, we simply discard the problematic micelles. A justification for discarding

the problematic micelles and proposals for how they may be completely eliminated in future

work are given in Sec. 2.4.

In the rest of this paper, we describe an assessment of the performance of this design

scheme. In Sec. 2.2, we describe how we simulate single-polymer micelles: we identify a

micelle composition that assumes a nonstandard shape; we select five aspects of the micelle

composition as suitable control parameters; and we choose two features of the micelle shape

whose dependences on the control parameters are to be assessed. In Sec. 2.3, the results

of varying our chosen aspects of micelle composition are presented, and the effect on the

shape features is examined. In Sec. 2.4, we discuss the implications of our results for the

practicality of the shape-design scheme presented in this paper, and we revisit unresolved

issues mentioned in Sec. 2.1 and Sec. 2.2. In Sec. 2.5, we conclude.
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Figure 2.3: Schematic of a short diblock copolymer as represented in our model. This
copolymer consists of seven beads: four solvophobic beads, shown in red (light gray), and
three solvophilic beads, shown in blue (dark gray). Harmonic springs connect beads adjacent
along the polymer. The light blue background represents the implicit solvent.

2.2 Methods

To assess our shape-design scheme, we simulate micelles of various compositions and compare

the resulting shapes. However, before simulations can be performed, a physical model for

the micelles must be selected. A detailed description of our model and simulation method

is given in [1]. We now present the most relevant features starting with the model.

We choose a simple coarse-grained bead-spring model with implicit solvent (similar to

those of [43–46]) because our shape-design mechanism should not depend on details of the

interactions of the polymer constituents. A polymer molecule is represented as a linear se-

quence of beads with consecutive beads joined by harmonic springs, as illustrated in Fig. 2.3.

There are two species of beads: solvophilic beads, which interact with other beads through

only a short-range repulsion, and solvophobic beads, which experience an additional longer-

range attraction with other solvophobic beads because of their immiscibility with the sol-

vent. The particular values of the interaction parameters and the simulation’s temperature

are chosen to replicate macroscopic behavior of real polymer.

This model is simulated at constant temperature using the LAMMPS molecular dynamics
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package [47]. At regular intervals of the simulated time, the simulation records the junc-

tion points’ positions, defined as the midpoint between adjacent beads of opposite species.

Because we are interested only in the overall shape of the micelle and not the individual

positioning of each bead, these junction points provide sufficient data for our purposes.

We refer to each list of junction point positions as a “shape”, denoting it by a blackboard

bold symbol (e.g., r). Therefore, each shape r has the form

(
r1, r2, . . . , ri, . . . , rNj

)
, (2.1)

where Nj is the number of junction points in the micelle and each ri is a two dimensional

junction point position. The output of the simulation is a time sequence of such shapes: rα,

α = 1, 2, . . . , Ns, where Ns is the number of sampled shapes.

After the simulation runs are complete, the shape sequences are further analyzed. We

summarize the resulting sequence rα of shapes by its average r̄, the shape variance matrix

� of dimension 2Nj × 2Nj characterizing the variance shape’s thermal fluctuations, and

another 2Nj × 2Nj variance matrix �̄ representing the uncertainty in the mean shape r̄.

For a given micelle composition, we run several simulations. Despite the bonds joining

adjacent diblocks, roughly half of the simulations result in poorly formed micelles where

the diblocks do not keep their intended positioning on the surface. Since we are interested

in the behavior of our shape-design scheme, which depends on the diblocks maintaining

their intended positioning, we exclude any poorly formed micelles from further analysis.

Concretely, we reject any simulation run whose average micelle either has two neighboring

junction points separated by more than forty percent of the median distance between adjacent

junction points, or whose the shortest closed path connecting all the junction points does

not have the intended ordering. In Sec. 2.4, we explain why the exclusion of these poorly

formed micelles is justified. We combine the results of the remaining simulations to make a

best estimate of r̄, �, and �̄.
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•••

•••

core segment

solvophobic-rich diblocks

solvophilic-rich diblocks

Figure 2.4: Schematic of multiblock bond architecture. Tan (top row) and red (light gray,
bottom rows) disks represent solvophobic beads, while blue disks (dark gray, bottom rows)
represent solvophilic beads. Black segments represent bonds between beads. The multiblock
begins with a core segment composed of solvophobic beads shown in tan and occupying the
top row. To this segment solvophobic-rich diblocks, outlined in black as in Fig. 2.5, are
successively attached end to end. Lastly solvophilic-rich diblocks are attached end to end.
The “• • •” symbols represent further diblocks not shown. Figure adapted from [1].

Having described how the micelles are simulated, we now describe which micelle composi-

tions to simulate in order to examine their effect on micelle shape. We start with a reference

micelle composition previously shown in [1] to produce a micelle of nonstandard dimpled

shape. Then we select several parameters of this micelle composition to be changed.

The basic design of the copolymers simulated in this work is shown in Fig. 2.4. The

key feature of the design is that the micelle contains two species of diblock having a com-

mon length but distinguished by their composition: a “solvophobic-rich” species of diblock,

having relatively more solvophobic beads and therefore favoring a more negative, concave

curvature, and a “solvophilic-rich” species of diblock, having relatively more solvophilic beads

and therefore favoring a more positive, convex curvature. This contrast in preferred curva-

ture is designed to cause the formation of a dimple. The linear copolymer begins with a

long sequence of solvophobic beads, which forms a “core” to be situated in the micelle’s

interior. To one end of this core segment are joined end-to-end a sequence of solvophobic-

rich diblocks. To the free end of this sequence of solvophobic-rich diblocks, we attached a

sequence of solvophilic-rich diblocks. The micelle has 700 core beads, 12 solvophobic-rich di-

blocks each containing 27 solvophobic beads and 4 solvophilic beads, and 55 solvophilic-rich
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Figure 2.5: A typical configuration of the reference micelle during the course of a simulation.
The red (light gray) beads are solvophobic; the blue (dark gray beads on micelle exterior),
solvophilic. The tan beads (dark gray beads in micelle interior), which constitute the micelle
core, are also solvophobic. The micelle is constructed from two types of diblocks, termed
solvophobic-rich and solvophilic-rich. The solvophobic-rich diblocks, outlined in black, are
located near the dimple.
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diblocks each containing 24 solvophobic beads and 7 solvophilic beads. A chemical formula

representing this monomer sequence is R700(R27B4B4R27)6(R24B7B7R24)27R24B7, where

R represents a solvophobic monomer and B represents a solvophilic monomer. A typical

thermal configuration of a micelle having the reference composition is illustrated in Fig. 2.5.

Next, we describe our chosen control parameters—parameters of the micelle composition

that we alter to control the micelle’s shape. A good control parameter must have a well-

behaved effect on the micelle shape, and, further, its effect on micelle shape ought to be

predictable using a simple rationale. Accordingly, we will describe each parameter’s antici-

pated effect as it is introduced. The first parameter we define is the number of core beads,

Ncore, having a value of 700 for the reference micelle composition; it can be used to set the

enclosed volume of the micelle without affecting the surface properties. Two additional pa-

rameters concerning the number of beads in the micelle are the numbers of solvophobic-rich

(N−, the “−” reflecting that these diblocks prefer a relatively negative, concave curvature)

and solvophilic-rich (N+, the “+” reflecting that these diblocks prefer a relatively positive,

convex curvature) diblocks in the micelle, which we expect to set the preferred perimeter

of their respective regions of the micelle surface without directly affecting either region’s

preferred curvature. These parameters have the values of N− = 12 and N+ = 55 for the

reference micelle composition. The two final parameters concern the compositions of the

solvophobic-rich and solvophilic-rich diblocks. We keep the length of either species of di-

block fixed at 31, changing only the relative amount of the two species of beads (that is,

the asymmetry of the diblock). The asymmetry of a diblock containing nphobic solvophobic

beads and nphilic solvophilic beads is quantified by the “asymmetry ratio” r defined by

r =
nphilic − nphobic

nphilic + nphobic
. (2.2)

The asymmetry ratio of several model diblocks is illustrated in Fig. 2.6. We denote the

asymmetry ratio of the solvophobic-rich diblocks and solvophilic-rich diblocks by r− and r+,
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r = 1

(a)

r = 1/2

(b)

r = 0

(c)

r =−1

(d)

Figure 2.6: Several diblocks (or, in the extreme cases where only one species of bead is
present, homopolymers) and their asymmetry ratios r defined in Eq. (2.2). Solvophobic
beads are shown in red (light gray), and solvophilic beads, in blue (dark gray).

respectively. By definition, solvophilic-rich diblocks have a larger asymmetry ratio, so that

r− and r+ satisfy r− < r+. These two parameters provide a way to control the spontaneous

curvature of their respective regions of the micelle surface while only weakly changing the

preferred perimeter. Specifically, we expect that the more positive a diblock’s asymmetry

ratio, the more positive its associated preferred curvature.

Having described how the micelle compositions are changed, we now describe what fea-

tures of the resulting thermal micelle shape distribution we study. A graphical representation

of the average shape r̄, shape sample variance �, and variance in the mean shape �̄ char-

acterizing the micelle shape distribution is shown in Fig. 2.7. In previous work [1], we have

validated that the mean shapes are reproducible and the errors in the mean shape are in-

deed consistent with the variability in the mean shape between simulation runs. However,

since the average shape r̄, shape sample variance �, and variance in the mean shape �̄ are

high-dimensional objects, we choose, for the sake of concreteness, to look at only two scalar

shape features summarizing these quantities, which we soon define: the curvature ratio,

characterizing the strength of the average shape’s dimple, and the normalized fluctuation,

characterizing the size of thermal shape fluctuations.

The curvature ratio
c−
c+

, illustrated in Fig. 2.8, is defined as the shape’s average signed

curvature c− in the region occupied by the solvophobic-rich diblocks divided by the average
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Figure 2.7: A graphical representation of the average shape r̄, the shape fluctuations �,
and the uncertainty in the average shape �̄ of the reference micelle. The average shape r̄

is represented as a green curve (passing through the midline of shaded region) connecting
the average position of the junction points. The curve segments connecting solvophobic-rich
diblocks are outlined in black. The shape fluctuations � are represented by a large blue el-
lipses surrounding each junction point indicating the 40% confidence region (corresponding
to one standard deviation) for the junction point’s position during the course of the simu-
lation. The uncertainty in the mean shape is represented similarly with smaller red ellipses
indicating the confidence region for the mean junction point position.
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Figure 2.8: Illustration of curvature ratio definition. The region occupied by solvophobic-
rich diblocks is shown in red, and its average signed curvature (having a negative value in
this case) is denoted by c−. By contrast, the region occupied by solvophilic-rich diblocks is
shown in green, and its average curvature is denoted c+. The curvature ratio is defined as
the ratio c−/c+. Figure reproduced from [1].

signed curvature c+ in the region occupied by the solvophilic-rich diblocks. Thus a circle

has a curvature ratio of one, and negative curvature ratios indicate the presence of a concave

dimple, with increasingly negative curvature ratios indicating stronger dimples.

The normalized fluctuation δ is defined by the formula

δ =

√
Tr�

2NjR2
g
, (2.3)

where Rg is the radius of gyration of the average shape r̄. Intuitively, the factor
√

Tr �
2Nj

may

be interpreted as the root-mean-square length of the semi-axes of the blue ellipses shown, for

example, in Fig. 2.7 (the blue ellipses being the one standard deviation confidence regions

for the sampled position of the junction points). The normalized fluctuation is a scalar

measure of the size of the shape fluctuations, normalized so as not to scale with the number

of junction points or overall spatial extent of the micelle shape.

The uncertainties in these two shape features can, like the values themselves, be estimated
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from the micelle shape distribution statistics r̄, �, and �̄. Since the curvature ratio depends

only on the mean shape r̄, its uncertainty can easily be inferred from the error in the mean

�̄. However, our estimate for the uncertainty in the normalized fluctuation is more subtle;

we refer the reader to [1] for a description and validation of this uncertainty estimate.

2.3 Results

In this section, we show the dependence of the two shape features
c−
c+

and δ on the five

micelle composition parameters Ncore, N−, N+, r−, and r+ introduced in Sec. 2.2. To speak

to the question we raised in Sec. 2.1 of whether this observed dependence is explained by

a straightforward rationale, we give simple arguments accounting for the observed behavior

in terms of the micelle surface’s tension and bending energy. The adequacy of our proposed

explanations, as well as what these results imply about the feasibility of a naive design

strategy will be discussed in Sec. 2.4.

We are not so much concerned with the exact numerical values of the composition pa-

rameters as we are with how the micelle shape qualitatively depends on them. Therefore, to

simplify discourse, we normalize the composition parameters by their values for the reference

micelle, and we denote the normalized values with a hat (̂ ). For example, the normalized

amount of core N̂core is given by Ncore/700, since the reference micelle composition has

700 core beads. Similarly, the normalized number of solvophilic-rich chains is given by

N̂+ = N+/55, since the reference micelle composition has N+ = 55, etc.

To frame the explanation of our observed results, we first explain what one might naively

expect. The shape dependence can be thought of as a function from the five-dimensional

space of micelle composition parameters to the two-dimensional shape feature space. In this

work, we start from a base micelle composition and change different aspects of the micelle

composition (in other words, moving in different directions in micelle composition space)

and observe the resulting change in the shape features (in other words, how the resulting

shape changes in shape feature space). A naive expectation, which must be borne out for
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N̂core 14% 29% 43% 57% 71% 86%

N̂core 100% 114% 129% 143% 157% 171%

N̂core 186% 200% 214% 286% 357%

Table 2.1: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes
(illustrated in the manner of Fig. 2.7) as a function of the number of core beads Ncore. As
the number of core beads increases, the shapes become more circular, and, as illustrated by
the size decrease of the blue ellipses and the fluctuations decrease.

small changes in the micelle composition, is that the micelle shape change depends linearly

on the change in micelle composition. In the typical case, we expect the map to have full

rank so that it is possible to change the curvature ratio without changing the normalized

fluctuation and vice-versa through appropriate changes to the micelle composition. Then

by the rank-nullity theorem [80], there must be three directions in the micelle composition

space (typically not corresponding to a change in any single composition parameter) that

lead to no change in the shape features. Since we expect the three null directions to have

no relationship to the axes defined by the five composition parameters, we expect the five

composition parameters to each change the shape features in a unique direction in the two-

dimensional shape feature space. We will compare our results to these expectations after

presenting the results.

We begin by examining the shape features’ dependence on the number of core beads

Ncore while holding the other four composition parameters fixed. Table 2.1 shows the

average shapes, fluctuations, and uncertainties in the average shapes resulting from varying
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the number of core beads Ncore. It is apparent from these results that the effect of increasing

Ncore is to make the shapes more circular and decrease their fluctuations. The character of

these trends can be studied more precisely by plotting the shape features
c−
c+

and δ against

Ncore, which we do in Fig. 2.9. In this figure, it is clear that the shape features generally

follow the trend apparent from Table 2.1, and, excluding the largest values of Ncore, the

dependence of the shape features on Ncore is roughly linear. The largest two values of Ncore

indicate smaller slopes than the other data, consistent with the expectation that for large

Ncore, the curvature ratio should approach unity and the normalized fluctuations should go

to zero. Thus the data resulting from varying Ncore show a moderately sized domain of

linearity.

Next we present in Fig. 2.10 the dependences of the shape features on each of the five

micelle composition parameters. There are two types of trends that result from varying a

micelle composition parameter: the first type of trend, shown in Fig. 2.10(a), is where the

fluctuation increases as the dimple becomes more pronounced (i.e., curvature ratio becomes

more negative); the second type of trend, shown in Fig. 2.10(b), involves the opposite rela-

tionship between the shape features, with the fluctuation instead decreasing as the dimple

becomes more pronounced. The first type of trend results from varying Ncore and N+, while

the second type of trend results from varying r−, r+, and N−.

We now propose an explanation for why varying Ncore and N+ (the shapes resulting from

varying N+ are shown in Table 2.2) both cause the normalized fluctuation and the strength

of the dimple to respond in the same direction. Since increasing Ncore tends to increase the

size and therefore the perimeter of the micelle, and decreasing N+ decreases the number

of diblocks on the micelle perimeter, either of these changes tends to decrease the density

of diblocks on the micelle surface. As the surface density of the diblocks is decreased, we

expect their surfactant-like effect to be reduced so that the surface tension of the micelle

would increase. This surface tension increase should have two effects. The first effect is to

reduce fluctuations in the micelle shape, and the second effect is to make the micelle shape
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Figure 2.9: Plots of (a) the curvature ratio
c−
c+

and (b) the normalized fluctuation δ, with

standard errors indicated, as a function of N̂core, the number of core beads Ncore divided by
the number of core beads in the reference micelle. Also plotted is a line of best fit to the
data. The lightness of the points and the fit line is set by the value of N̂core. (While the
color is redundant in this plot, it is included to introduce the pattern used in Fig. 2.10.) The
curvature ratio shows a fairly regular increasing trend (meaning the micelle shape becomes
more circular) with the number of core beads, while the normalized fluctuation shows a
decreasing trend. To asses the linearity of these trends, linear fits are performed to both sets
of data.
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Figure 2.10: Scatter plots showing curvature ratios and normalized fluctuations exhibited
by micelles of several compositions. Each micelle composition has been obtained by chang-
ing one of the following parameters from the reference micelle value (the black downward-
pointing triangle near

c−
c+

= −1.2, δ = 0.26): (a) Ncore (yellow circles) or N+ (blue squares);

or (b) N− (orange upward-pointing triangles), r− (purple stars), or r+ (green diamonds).
The lightness of the data point represents the value of the parameter, with lighter points
indicating larger values of the parameter in the manner of Fig. 2.9. To guide the eye and to
assess linearity, we plot linear fits of the shape feature dependence on each of the five mi-
celle composition parameters. To reduce crowding of the data, the five micelle compositions
are partitioned into two plots according to the slope of the data resulting from varying the
parameter.
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N̂+ 45% 55% 64% 73% 82% 91%

N̂+ 100% 109% 118% 127% 136%

Table 2.2: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes
(illustrated in the manner of Fig. 2.7) as a function of N̂+, the number of solvophilic-rich di-
blocks expressed as a percentage of the reference micelle value. As the number of solvophilic-
rich diblocks increases, the shapes become less circular and the fluctuations increase.

more circular, reducing the strength of the dimple. Thus we expect that increasing Ncore or

decreasing N+ both decreases the fluctuations (i.e., decreases δ) and decreases the strength

of the dimple (i.e., makes
c−
c+

more positive). By this reasoning, changing either Ncore or N+

would cause
c−
c+

and δ to change in opposite directions, consistent with the negative slope in

Fig. 2.9.

Having discussed the two micelle composition parameters which affect the normalized

fluctuation and the dimple strength in the same way, we now discuss the remaining three

composition parameters, where the responses of the shape features are opposite to each other

as shown in Fig. 2.10(b). First we propose explanations for the results of varying asymmetry

ratio r− of the solvophobic-rich diblocks, those designed to sit at the micelle’s dimple. The

resulting shapes are shown in Table 2.3. For values of r− closer to zero (i.e., more symmetric

diblocks), the solvophobic-rich diblocks are very similar in composition to the solvophilic-

rich diblocks, and so their preferred curvatures are similar, which we expect to result in a

weak dimple (i.e.,
c−
c+

should become less negative). If the dimple is weak, then the shape

should be nearly circular, so that less perimeter is required to enclose the same amount of

volume, and indeed we expect that the volume enclosed by the micelle depends only weakly

on the diblock composition so that micelle perimeter does decrease. A decrease in perimeter
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r̂− 74% 83% 91% 100% 109% 117%

Table 2.3: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes
(illustrated in the manner of Fig. 2.7) as a function of r̂−, the asymmetry ratio of the
solvophobic-rich diblocks expressed as a percentage of the reference micelle value. As the
solvophobic-rich diblocks become more asymmetric, making a sharper contrast with the
solvophilic-rich diblocks, the shapes become less circular, the fluctuations decrease.

r̂+ 135% 124% 112% 100% 88%

r̂+ 76% 65% 53% 41% 29%

Table 2.4: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes (il-
lustrated in the manner of Fig. 2.7) as a function of r̂+, the asymmetry ratio of the solvophilic-
rich diblocks expressed as a percentage of the reference micelle value. As the solvophilic-rich
diblocks become less asymmetric, making a sharper contrast with the solvophobic-rich di-
blocks, the shapes become less circular and the fluctuations decrease.

causes a higher density of diblocks and since we expect the diblock composition only weakly

affects the preferred density of diblocks, we therefore expect a lower surface tension, leading

to greater shape fluctuations (i.e., an increase in δ). We conclude that r− should change
c−
c+

and δ in the same direction, as observed.

The key point to the above argument was that the difference between the asymmetries of

the micelle’s two species of diblock determines how circular the micelle shape is. In the case

we discussed, this asymmetry contrast was controlled by changing r−, but it could just as well

been controlled by changing r+ (results shown in Table 2.4). Therefore, as the solvophilic-

rich diblocks are made more asymmetric, they become more similar to the solvophobic-rich
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N̂− 33% 42% 50% 58% 67%

N̂− 75% 83% 92% 100% 117%

N̂− 133% 150% 167% 183% 200%

Table 2.5: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes
(illustrated in the manner of Fig. 2.7) as a function of N̂−, the number of solvophobic-
rich diblocks expressed as a percentage of the reference micelle value. As the number of
solvophobic-rich diblocks beads increases, the shapes become less circular and the fluctua-
tions increase.

diblocks, and so we expect the shapes to become more circular and to fluctuate more. Thus,

like r−, r+ should affect
c−
c+

and δ in the same direction.

The results of varying the number of solvophobic-rich diblocks N− (see Table 2.5) mostly

follow the same trend as the results of varying the diblock asymmetries r+ and r−, but a

different explanation is required. In this case we expect decreasing N− to decrease the density

of diblocks on the micelle surface, thereby increasing the surface tension and decreasing the

fluctuations as measured by δ. However, decreasing N− also decreases the length of micelle

perimeter that has to deform in order to achieve its preferred curvature. Therefore, we

expect micelles with small N− may have a more strongly curved dimple, so that
c−
c+

becomes

more negative. By this reasoning N−, like r+ and r−, would affect
c−
c+

and δ in the same

direction.

While the results of varying the number of solvophobic-rich diblocks N− do mostly follow

a smooth trend, we note one nonmonotonic feature of this data. The simulated micelle with
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the smallest N− (four solvophobic-rich diblocks), which according to the trend of the data

should have the most extreme dimple, actually has a less pronounced dimple than even the

base micelle. One might hypothesize that there is a minimum number of solvophobic-rich

diblocks needed to nucleate a dimple. Whatever the case, this nonmonotonicity that a naive

linear model explaining the micelle shape may not be sufficient for shape design.

In the preceding results, we have varied a single parameter of the micelle composition

to observe the effect on two micelle shape features and have seen that the data lie on only

two trend lines. This contradicts our expectation that each composition parameter change

the shape features in a unique direction in shape feature space. Instead, we find that three

shape composition parameters change the micelle shape in the same direction, meaning that

at the level of a linear approximation, there are two independent combinations of these three

parameters which have no effect on the micelle shape. The other two composition parameters

also change the micelle shape features in a common direction, so that there would be one

combination of the parameters which have no effect on the micelle shape features.

To produce a micelle shape not falling on either of the two trends, it is necessary to

change multiple micelle composition parameters at once. For ease of shape design, we would

hope that the effect of simultaneously changing two composition parameters could be naively

inferred by linearly extrapolating from the individual effects of the parameters. While the

effects of varying individual micelle composition parameters were not independent as we

expected, they were indeed often roughly linear. If linearity of the shape dependence is

assumed, then the effect of varying any combination of micelle composition parameters can

be inferred from the data presented above. One can then determine precisely how to change

the composition parameters to produce a desired shape change (e.g., to reduce normalized

fluctuations while holding the curvature ratio fixed). Additionally, by determining which

composition parameters have no effect on the shape, one has freedom in picking the com-

position parameters. This freedom may be used to choose the most convenient parameters

resulting in a desired shape. To test if things are this simple in practice, we have performed
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N̂core 100% 114% 129% 143% 157%

N̂− 33% 42% 50% 58% 67%

N̂core 171% 186% 200% 214%

N̂− 75% 83% 92% 100%

Table 2.6: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes
(illustrated in the manner of Fig. 2.7) for micelles interpolating between the N̂core = 214%
composition of Table 2.1 and the N̂− = 33% composition of Table 2.5. The shape features
associated with these data are plotted in Fig. 2.11.

simulations where two micelle composition parameters are varied simultaneously.

In the first set of simulations, Ncore and N− are varied to interpolate between the N̂core =

214% and N̂− = 33% data points of Table 2.1 and Table 2.5. The simulated shapes are shown

in Table 2.6.

To get a closer look on the effect on the shape features, we plot in Fig. 2.11 the curvature

ratios and normalized fluctuations for the shapes in Table 2.6 as well as the results of indi-

vidually varying Ncore and N−. We see that the interpolating micelle compositions produce

shape features that mainly lie along the trend of the data set where just Ncore is varied,

contrary to the naive expectation that these shape features should be a linear combination

both of the shapes feature resulting from varying Ncore as well as those resulting from vary-

ing N−. To explain this, we hypothesize that the micelles with a large value of Ncore have a

surface tension so large that the change in spontaneous curvature profile caused by changing

N− does not have a noticeable effect on the micelle.

In the second set of simulations, N+ and r+ are varied to interpolate between the N̂+ =

136% and r̂+ = 53% data points of Table 2.2 and Table 2.4. The simulated shapes are shown
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Figure 2.11: Scatter plot showing the curvature ratios and normalized fluctuations of the
data shown in Table 2.6 (magenta stars). The scatter plot and the fit lines are made in the
style of Fig. 2.10, and the data sets from varying only Ncore (yellow circles) and only N−
(orange upward-pointing triangles) are reproduced in this figure. Notice that the for the data
set where only N− is changed, the micelle with the smallest value of N̂−, namely 33%, has a
weaker dimple than, and therefore appears to the right of, the reference micelle (downward
pointing black triangle). By contrast, most other shapes from micelles with N̂− < 100%
have stronger dimples than the reference micelle and therefore appear to its left. Despite
this variation in micelle shape caused by changing N−, the magenta points, representing a
simultaneous variation in both Ncore and N−, follow the same trend as the yellow points
representing a variation only in Ncore.

77



N̂+ 100% 109% 118% 127% 136%
r̂+ 53% 65% 76% 88% 100%

Table 2.7: Mean micelle shapes, thermal fluctuations, and errors in mean micelle shapes
(illustrated in the manner of Fig. 2.7) for micelles interpolating between the N̂+ = 136%
composition of Table 2.2 and the r̂+ = 53% composition of Table 2.4. The shape features
associated with these data are plotted in Fig. 2.12.

in Table 2.7. For a more quantitative view of the effect on the shape features, we plot in

Fig. 2.12 the curvature ratios and normalized fluctuations of both the shapes in Table 2.6 and

the previously discussed shapes of Table 2.2 and Table 2.4 which resulted from individually

varying N+ and r+.

Ideally, the shape features would linearly, or at least monotonically, interpolate between

the two extreme cases. Taking error bars into account, the data are nearly consistent with

a monotonic increase in fluctuations from the r̂+ = 53% data point to the N̂+ = 136% data

point. However, the curvature ratio dependence is unambiguously nonmonotonic.

To see how the dependence might not be monotonic, consider first the r̂+ = 53% micelle

composition, which has the largest asymmetry contrast of the simulated data shown in

Table 2.7 and the fewest diblocks on the micelle perimeter. On the one hand, the strong

asymmetry contrast should lead to a strong dimple, but on the other hand, the decrease in

the number of diblocks should lead to a higher surface tension and consequently a smaller

dimple. Next consider the micelle composition at the other extreme, having the largest

number of diblocks with N̂+ = 136%. In this case, there should be a low surface tension, as

evidenced by this micelle’s large normalized fluctuation, which allows for a larger dimple, but

also a low asymmetry contrast which would lead to a smaller dimple. The nonmonotonicity

we observe is that there are intermediate micelles showing a stronger dimple than both of

the extreme cases.
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Figure 2.12: (a) Scatter plot showing the curvature ratios and normalized fluctuations of
the data shown in Table 2.7 (red stars). The scatter plot and the fit lines are made in
the style of Fig. 2.10, and the data sets from varying only N+ (blue squares) and only
r+ (green diamonds) are reproduced in this figure. The data from Table 2.7 exhibit a
nonmonotonic variation in the curvature ratio, leading to the linear fit of the shape feature
dependence on our chosen combination of N̂+ and r̂+ to have almost no variation in

c−
c+

(resulting in a vertical fit line), despite the significant variation shown by the data. (b) and
(c) individual dependences of

c−
c+

and δ, respectively, on the simultaneous variation in N̂+

and r̂+ of Table 2.7 (i.e., red stars of (a)), plotted in the style of Fig. 2.9. (b) provides a clear
visualization of the nonmonotonicity in

c−
c+

and the resulting near constancy of the best fit.
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We hypothesize that as we move from the first extreme with a large asymmetry con-

trast and fewer diblocks to the opposite extreme, there comes a critical micelle composition

where the increasing preferred perimeter set by the number of diblocks becomes large enough

to completely accommodate the preferred curvature of the dimple. Micelles with more di-

blocks and less asymmetry contrast than this critical composition do not benefit from the

increased perimeter from the diblocks, and instead have a decreasing dimple strength set by

the decreasing asymmetry contrast. On the other hand, micelles with less diblocks and more

asymmetry contrast than the critical composition experience both and increased surface ten-

sion and an increased preferred curvature. As evidenced in Fig. 2.11, the surface tension

has a larger effect on the dimple strength, and so we expect dimple strength diminishes. By

this logic, there should be a maximum dimple strength near the critical composition, and so

the curvature ratio dependence should be nonmonotonic. In any event, this example shows

that a linear interpolation is insufficient to approximate the behavior of the shape features

between two micelle compositions, since nonmonotonic behavior is possible.

2.4 Discussion

In Sec. 2.3, we showed how the micelle shape features depended on the composition parame-

ters. In this section, we discuss what implications these results have for the central questions

of our work, namely whether a micelle may feasibly be designed using the rationale presented

in Sec. 2.1. We begin by discussing if the micelle shape dependence is sufficiently regular

to allow for arbitrary shape features to be designed using only a naive strategy. Next, we

address a shortcoming of this work mentioned in Sec. 2.1, which is that the micelles shapes

are only metastable. We explain why the statistics of the metastable shapes examined here

are meaningful and discuss what might be done to stabilize the micelles in practice. Lastly,

we justify why the two-dimensional simulations considered here are relevant to practical

applications which necessarily have three-dimensions.

In the introduction, we set a goal of identifying good control parameters to design the
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shape of the micelle. Such control parameters ought to have a simple, easily understandable

effect. Indeed, in Sec. 2.3, we found a smooth variation in the micelle shape features, and

we were able to give plausible physical explanations of the observed behavior involving the

volume enclosed by the micelle, the surface tension resulting from extension of the micelle

perimeter, and the bending energy associated with the curvature of the micelle perimeter.

The explanations were not explicitly verified because it is difficult to define and independently

measure the bending energies and surface tensions of the fluctuating, asymmetric micelles

considered in this work. However, we found that the shape dependence was significantly non-

linear and produced nonmonotonicities in some cases, and therefore the dependence cannot

be quantitatively explained for the purposes of shape design by simple physical arguments or

a naive linear model. Therefore, if an accurate model of the relationship between the control

parameters and the micelle shape is desired for facilitation of shape design, something more

must be done.

One approach is to create Hamiltonian whose degrees of freedom are the junction points

and which contains terms for the bulk compression of the micelle interior and the stretching

and bending of the micelle surface. It would be necessary to perform a series of simulations to

determine a mapping between the micelle composition and the parameters of the simplified

Hamiltonian. Once this mapping is determined, the simplified model, having far fewer

degrees of freedom, would give a much simpler and less computationally intensive way of

understanding how the micelle shape depends on the micelle composition.

Alternatively, if one desires to design a single specified micelle shape, the required micelle

composition could be found by some nonlinear optimization strategy, such as a genetic

algorithm. Such machine learning algorithms have been applied to the design of material

properties in a number of contexts [81–84].

So far, we have considered only micelles which exhibited the intended positioning of

diblocks on the surface, which we call well formed, even though as noted in Sec. 2.2, micelles

resulting from our simulation often did not have this property. We now give a justification
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for considering this seemingly biased sample. Our justification is based on the fact that the

well-formed micelles are metastable, meaning that the micelles have a significant chance of

surviving the length of a simulation without forming a defect in the diblock arrangement,

but there is a finite probability to form a defect from which the micelle would never recover.

With this in mind, it is natural to investigate the thermodynamic statistical properties of

the well-formed micelles, and the appropriate statistical weight to each micelle configuration

in this subensemble is found simply giving equal weight to each well-formed micelle while

discarding the others.

However, if this statistical analysis is to be meaningful for practical applications, some-

thing must be done to enforce that the micelles be well formed. We view this problem as

separate from the question of how the micelle composition affects the shape of the well-formed

micelles, but we believe there are a few promising approaches to solving this problem. One

approach is to change the interaction parameters of the system. The choice of parameters

used in this work was motivated by the desire to have a lower energetic barrier for bead

rearrangements allowing shorter simulation times, but this has the drawback of facilitating

diblock rearrangements on the micelle surface. Stronger interactions may increase the ener-

getic penalty for micelle defects, greatly reducing their occurrence. Another approach is to

make the two species of monomers composing the solvophobic-rich diblocks different from

the two species composing the solvophilic-rich diblocks. Such a difference between the two

types of diblocks could promote their segregation on the micelle surface, thereby enforcing

their intended positioning.

Beyond changing the interaction parameters of the system, a further approach is to alter

the polymer architecture with the idea that a different bond topology would better stabilize

the well-formed micelles. Whatever approach is taken to solve this problem, we don’t expect

it to significantly alter the shape dependences observed in this work, as these are a basic

result of the polymer nature of the micelle.

In practical applications, the design problem considered in this work must be solved
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in three dimensions. However, we have chosen to conduct two-dimensional simulations, as

has often been done [58–62]. We argue that since the physics affecting micelle shape (com-

pressibility, surface tension, spontaneous surface curvature) are qualitatively unchanged, the

dependence on the micelle composition of a similar three-dimensional shape, such as a dim-

pled sphere, should be similar. In general, one can imagine many more target micelle shapes

beyond a dimpled sphere. In contrast to two-dimensional shapes, the three-dimensional

target shapes are described by two principal curvatures at each point on the surface. The

diblock composition on the surface, however, specifies only a mean curvature at each point

to lowest order [63]. Therefore we expect that the profile of diblock compositions over the

micelle surface is not in general sufficient to completely control the micelle shape in three

dimensions, so that full shape control would be harder or perhaps impossible in three di-

mensions. However, some shape control must be possible, and studying the extent of this

shape control is an interesting direction for future research.

2.5 Conclusion

We have described a micelle shape-design scheme, and shown its capacity to control the

average shape and fluctuations of a micelle in thermal equilibrium. We began with a refer-

ence micelle composition producing a moderately dimpled micelle, and varied, one by one,

several aspects of the reference micelle composition to examine the effect on the thermal mi-

celle shape. We studied two features of the micelle shape in particular, and found that the

dependences were somewhat smooth, but significantly nonlinear and sometimes nonmono-

tonic. Additionally, simulations were conducted where two aspects of the micelle composition

were changed simultaneously, with the result that the combined effect of changing two pa-

rameters could not easily be deduced by looking at the individual effects on the micelle.

Plausible rationales were given to explain these results. Even though the relationship be-

tween the micelle composition and shape may not satisfactorily be characterized by a naive

linear relationship, we believe more sophisticated methods to characterize the relationship
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are nonetheless possible, and we proposed examples. We expect the principles that govern

our simple two-dimensional model to extend to three dimensions, and therefore that our re-

sults provide evidence that a similar design scheme should work to produce three dimensional

shape-designed micelles.
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APPENDIX A

MODEL

This section is devoted to providing a precise description of the pair potentials governing

the two species of beads. In our system of units described in Sec. 1.2.1, the bond interaction

Ubond(d) felt by two adjacent beads displaced by a distance d is given by

Ubond(d) = d2. (A.1)

The form of the nonbonded interaction Unb is more complicated. This interaction is the

sum of two terms. One term is a stiff repulsion Ur enforcing that no two beads have the

same position. Following [43], we take an interaction whose strength is proportional to the

size of the overlap region of the beads. Therefore the stiff repulsion is given by

Ur(d)

PrD2
r/2

= cos−1
(
d

Dr

)
− d

Dr

√
1− d2

D2
r
, (A.2)

where Dr is the maximum range of the repulsive interaction, Pr is a constant setting the

strength of the interaction, and again d is the distance between the bead centers. For

simplicity, we simply take the same value of Pr and Dr to govern all pairs of beads. In

addition to this stiff repulsion, there is an attraction Ua(d) between solvophobic beads of

the same form as Eq. (A.2), but with a longer interaction range Da, and a negative strength

parameter Pa. For the sake of reproducibility, we present the values we chose for these

parameters; the values are Dr = 2.015873, Pr = 8.870637, Da = 4, and Pa = −0.378.

Ua = 4.75. The form of the pair potential and the specific parameter values were chosen to

produce a homopolymer with favorable kinetics and physically reasonable thermodynamic

properties (density, compressibility, surface tension, etc.), as will be seen in Appendix C.

Plots of the pair potentials are shown in Fig. A.1. We did not perform an extensive search

of functional forms for the pair potential, and the precision of the quoted parameter values
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was not necessary to produce a physically reasonable polymer; instead, the large number of

digits resulted from reparameterizing the interaction potential. Therefore we expect that a

pair potential having either an alternate functional form or parameter values different by

a few percent would still lead to physically reasonable behavior. Still, sufficiently poorly

chosen parameters may cause undesirable behavior such as all beads collapsing to a single

position or glassy dynamics.
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Figure A.1: Plots of nonbonded interaction potential. Energies and lengths have been nondi-
mensionalized using kBT and Ltherm respectively, as described in the second paragraph of
Sec. 1.2.1. In (a), the purely repulsive interaction potential Ur of Eq. (A.2) for a bead pair
containing a solvophilic bead is plotted. In (b), the interaction potential for two solvophobic
beads is plotted. This interaction potential contains an attractive term in addition to the
repulsive potential Ur plotted in (a).
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APPENDIX B

SIMULATION METHOD

To determine the average micelle shape resulting from this model, we perform a constant

temperature molecular dynamics simulation using LAMMPS [47]. Although LAMMPS is a

molecular dynamics simulator, meaning it essentially works by calculating forces from the

potentials and then using Newton’s second law to get the accelerations from these forces,

it provides for running simulations of a fixed number of particles “n” at constant tempera-

ture “t” and either constant volume “v” or pressure “p”, through its fix nvt and fix npt

commands, respectively. Since we are interested in obtaining a thermal ensemble of con-

figurations, these are exactly the commands we used to time-evolve the system. There are

two parameters for the fix nvt command: a timestep and a time constant Tdamp setting

how quickly the simulation thermalizes the system. Additionally, for constant pressure sim-

ulations, there is an additional time constant Pdamp determining how quickly the volume

in a constant pressure simulation responds to an unbalanced pressure. To specify these

time constants, we must express them in terms of our time unit, which, referring to our

the system of units described in Sec. 1.2.1, is

√
mL2

therm
kBT

, where m is the mass of a bead,

Ltherm is the root-mean-square extension of the harmonic spring in thermal equilibrium,

kB is Boltzmann’s constant, and T is the temperature of the simulation thermostat. From

this expression, it can be shown that the time unit is equal to Tdimer/π, where Tdimer is

the oscillation period of two beads connected by a spring and isolated from the thermal

bath. In terms of this unit of time, we found after some experimentation that setting the

timestep to 0.003 and setting Tdamp and Pdamp to 0.5 allows for efficient and numerically

stable simulation.

Another detail of the simulation is the initialization. In all cases, the initial bead velocities

were chosen from a thermal distribution at the temperature of the simulation thermostat.
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APPENDIX C

VALIDATION

In this section, we verify that our model and simulation method, described in detail in Ap-

pendices A and B, produce physically reasonable results in cases where the expected behavior

is known. One such case is a homopolymer melt: a system consisting of a dense phase of

polymers all made from the same single species of bead (in our case, solvophobic). The melt

ought to have a well-defined density, compressibility, and surface tension. Additionally, the

density and mean square end to end distance of the polymer ought to have an expected

dependence on the number of monomers in the polymer. In addition to verifying that the

simulation is consistent with these expectations, we also test for quantitative agreement

between the melt properties and those of real polymer; specifically, we compare with poly-

(dimethylsiloxane) (PDMS). A comparison of our system with PDMS is apt because both

systems are only weakly insoluble.

First we consider the melt density. We simulate a periodic homopolymer system, shown

in Fig. C.1, at zero pressure. In this case, the equilibrium density is the number of beads

divided by the average volume of the system. Multiple independent simulations for different

chain lengths n were run in order to find the dependence of the simulated density d on chain

length and compare this dependence to theoretical expectations. Theoretically, the density

is expected to reach a finite value d∞ as the chain length goes to infinity. For large values of

the chain length, the dependence of the density on the chain length d(n) can be expanded

in the small parameter 1/n:

d(n) = d∞ +
a

n
, (C.1)

where a is a parameter representing how strongly the density depends on the chain length.

We find that our data are indeed well fitted by this functional form, as seen in Fig. C.2.

Having found the equilibrium density at zero pressure, we may also find the equilibrium

density at finite pressure. The response of the density to an applied pressure is characterized
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Figure C.1: Visualization of simulated homopolymer melt. The simulated system contains
30 solvophobic homopolymer chains, each having 35 beads, shown as red disks. The springs
connecting adjacent beads are shown as red segments. The system is periodic, its boundary
indicated by the black square.
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Figure C.2: Solid curve: expected functional form Eq. (C.1), fitted to the simulation values
shown as points. The resulting reduced chi-squared is 0.5, indicating that this functional
form is consistent with the data. The best-fit value of d∞ is 0.30146± 0.00001.

by the compressibility, denoted β. Alternatively, β may be determined by analyzing the

density fluctuations at constant pressure. If the simulation produces a proper Boltzmann

ensemble, these two ways of determining the compressibility ought to agree. Indeed, the

compressibilities determined from these two methods do in fact agree, as can be seen in

Fig. C.3.

In Fig. C.3(b), there are two outliers exhibiting anomalously large fluctuations, and there-

fore excluded from the compressibility analysis. Since these outliers could not be reproduced,

they were replaced by data from repeated simulations. In any case, the outliers represent

only small fluctuations in density (less than one percent). Additionally, the average den-

sity observed from these two simulations is consistent with the trend exhibited by the rest

of the simulations, as shown in Fig. C.2. This suggests that the samples are incompletely

equilibrated for purposes of determining these small fluctuations, even though they are well

equilibrated for determining the density. Consequently, we conclude that care is needed

when estimating the magnitude of, and uncertainty in, a physical quantity’s thermal fluctu-

ations. Accordingly, we provide validation of our estimates of micelle shape fluctuations in

Sec. 1.4.1.
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Figure C.3: Two independent fits to determine the compressibility β. In (a), the density
d of the homopolymer system of Fig. C.1 with 30 polymer chains and 15 beads per chain is
plotted against the applied pressure (data points). The solid line shows a fit of the functional
form d(p) = d0 (1 + βp) to the data, which yields a compressibility β of 0.242 ± 0.002, and
reduced chi-squared of 0.65. In (b), data from the same simulations of Fig. C.2 are plotted.
The variance of the sampled densities, normalized by the square density d(n)2 found from
the fit of Fig. C.2, are plotted against the reciprocal of the chain length. Two systems having
45 and 50 beads per chain produced anomalous results, which could not be reproduced after
several attempts. These anomalous results are shown as partially transparent data points,
and the solid data points at the same chain lengths are results from representative repeats
of the simulation. A fit of the expected functional form βd(n)/(Ncn) to the data excluding
the outliers was performed, where Nc is the number of chains (namely, 30) in the simulation.
The fit gives a best-fit compressibility of 0.2372 ± 0.0007, and the chi-squared of the fit is
1.4.
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Figure C.4: Plot of the mean-square end-to-end chain distance 〈r2〉 as a function of chain
length for the same systems of Fig. C.2 and Fig. C.3(b). The data are fit to a the theoretical
expectation given in Eq. (C.2), resulting in a best-fit value of b2 equal to 6.41± 0.05 and a
reduced chi-squared of 1.1.

In addition to the density, the mean-square end-to-end chain distance 〈r2〉 also has an

expected dependence on chain length [85]

〈r2〉(n) = b2n+ 〈r2〉0, (C.2)

where b2 is a parameter giving the size of each bead’s contribution to the mean-square end-

to-end distance, and 〈r2〉0 is a subleading correction. As can be seen in Fig. C.4, our data

does match this expectation well.

The final property of our system considered here is its interfacial tension with the solvent,

which we determine using a simulation cell of fixed volume and two free surfaces, as shown

in Fig. C.5. Since the simulation has two surfaces, the surface tension is half of the force

transmitted across the simulation cell. Because we know the inter-bead forces as a function

of bead position, calculating the transmitted force in the simulation is a simple matter. We

expect a well-defined surface tension independent of the number of chains in the simulation,

and indeed this is what we find, as can be seen in Fig. C.6.

Having verified that the homopolymer melt behavior matches theoretical expectations,
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Figure C.5: Typical configuration of a strip of homopolymer in (implicit) solvent. The sim-
ulated system contains 143 solvophobic homopolymer chains, each having 15 beads, shown
as red disks. The springs connecting adjacent beads are shown as red segments. The system
is periodic in one direction, and the fixed periodic boundaries are shown as black lines.
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Figure C.6: Plot of inferred surface tensions vs number of chains for system simulated in
the geometry of Fig. C.5. A best fit to a constant yields a surface tension of 0.717± 0.003.
The reduced chi-squared of the fit is 1.1, indicating that the data are consistent with the
surface tension being independent of the number of chains in the system, as theoretically
expected.

we may ask if the actual values of the density, compressibility, and mean-square end-to-

end distance per monomer are similar to those of a real polymer. We compare to poly-

(dimethylsiloxane) at room temperature. To form a basis for comparison, we must make

contact between simulation units and the physical units in which PDMS is measured. One

correspondence of units may be set by identifying the temperature of the simulation with the

room temperature. Another correspondence can be made by identifying the Kuhn length

[86], which we denote by `K , of the model system with that of PDMS. To compare the

number density of the simulated system with PDMS, it is necessary to specify the number of

dimethylsiloxane monomers corresponding to one simulated bead. We make the choice that

one Kuhn segment in the simulation ought to correspond to one Kuhn segment of PDMS.

The mean square bond length l2 of our simulation is 3.2, so the number of beads per Kuhn

segment b2/l2 is equal to 2.0, and the Kuhn length b2/l is 3.6. Using the correspondences we

have just described, physical properties of our simulation and those of PDMS are tabulated

in Table C.1.

From Table C.1, we see that the density, compressibilities, and surface tensions of our

95



Quantity Unit
PDMS
value

Value in
simulation

Kuhn segment
density

`−dK 2.5 1.9

Compressibility
`dK × 10−3

kBT
4.0 19

Surface tension
kBT

`d−1
K

5.6 2.6

Table C.1: Properties of our simulated homopolymer system compared with those of poly-
(dimethylsiloxane). Since only comparison of nondimensional ratios are meaningful, we
express its properties in a system where the unit of length is the Kuhn length `K , the unit
of energy is thermal energy kBT , and the amount of polymer is measured by the number
of Kuhn segments. Nondimensionalized this way, the values of the density are similar, but
our simulated system has a lower surface tension and higher compressibility The physical
properties of PDMS needed to calculate the values in this table may be found in [87–89].

simulated system are all on the same order of magnitude of those of PDMS, validating

that our simulated system has properties similar to a real polymer. Further, the nature

of the difference of the two systems’ properties can be partially explained: our simulated

system’s compressibility is higher than that of PDMS, and its surface tension is lower. This is

explained by our tuning of the interaction parameters of our model to create a “soft” system

with a low energy barrier for bead rearrangements, leading to shorter simulation times. With

this in mind, we conclude that our model polymer is reasonably similar to PDMS, if a little

softer.
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APPENDIX D

EQUIVALENCE OF TWO DEFINITIONS OF MEAN SHAPE

To justify our definition Eq. (1.15) of r̄, we show that it is equivalent to an alternative notion

of average. The alternative definition involves first rotating the shapes so that the summed

pairwise square differences are minimized, and then simply taking an arithmetic average. In

symbols, we define the minimizing rotation angles θ̌α by

(θ̌1, . . . , θ̌Ns) = arg min
(θ1,...,θNs)

Ns∑
α,β=1

∆ext(Rθαrα,Rθβrβ), (D.1)

and then we define the arithmetic average ˜̄r of the shapes by

˜̄r =
1

Ns

Ns∑
α=1

Rθ̌α
rα. (D.2)

To transform Eq. (D.2) into a form more similar to Eq. (1.15), we use a standard identity

relating the expected square differences between two independent samples to the expected

square difference of a single sample to the mean1:

1

N2
s

Ns∑
α,β=1

∆ext(Rθαrα,Rθβrβ) = 2
1

Ns

Ns∑
α=1

∆ext(Rθαrα,
1

Ns

Ns∑
β=1

Rθβrβ). (D.3)

In fact we can proceed further by recognizing that the arithmetic mean minimizes the sum

of square differences. Using this fact to transform the right hand side of Eq. (D.3), we obtain

1

N2
s

Ns∑
α,β=1

∆ext(Rθαrα,Rθβrβ) = 2
1

Ns
min
a

Ns∑
α=1

∆ext(Rθαrα,a). (D.4)

Using this identity (and ignoring an unimportant multiplicative factor of 2Ns), we may

1. Recall if X and Y are two independent, identically distributed random variables, then (using 〈. . . 〉 to

denote expected value) 〈(X − Y )2〉 = 〈X2 − 2XY + Y 2〉 = 2
(
〈X2〉 − 〈X〉2

)
= 2〈(X − 〈X〉)2〉. This identity

applies in our case because ∆ext(X,Y ) is of the form (X − Y )2.
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transform Eq. (D.1) into

(θ̌1, . . . , θ̌Ns) = arg min
(θ1,...,θNs)

min
a

Ns∑
α=1

∆ext(Rθαrα,a). (D.5)

From this equation, we see that the θ̌α result from performing a double minimization of∑Ns
α=1 ∆ext(Rθαrα,a) with respect to both the θα and a. Now we have already stated

above Eq. (D.4) that the minimizing a must be the arithmetic average given by Eq. (D.2),

so that we may simply write

˜̄r = arg min
a

min
(θ1,...,θNs)

Ns∑
α=1

∆ext(Rθαrα,a)

= arg min
a

Ns∑
α=1

min
θα

∆ext(Rθαrα,a)

= arg min
a

Ns∑
α=1

∆int(rα,a)

= r̄,

(D.6)

where the second line is obtained by noting that each term in this sum of square differences

depends on only one Rθα , and the third and fourth lines are obtained by applying the

definitions Eq. (1.10) and Eq. (1.15) respectively. We conclude that the two notions of

average r̄ and ˜̄r are indeed the same.
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