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ABSTRACT

Inferring population structure is important for several applications in medical and population
genetic studies. However, the output of population structure inference methods can often
be challenging to interpret. The goal of this dissertation is to apply population structure
inference tools to learn and visualize demographic history and develop statistical methods
for interpretable population structure inference. In Chapter 2, I apply population structure
inference tools to learn about the genetic history of the Mediterranean island of Sardinia using
a new ancient DNA dataset. In Chapter 3, I develop a fast and flexible statistical method and
optimization algorithm for inferring and visualizing non-homogeneous patterns of migration
using spatially indexed population genetic data. Finally, in Chapter 4, I develop a new
Bayesian matrix factorization method and variational inference algorithm for emphasizing
shared evolutionary histories when representing population structure. Overall, the work
presented in this dissertation aims to provide interpretable representations of population
structure which, in turn, give understanding into the underlying demographic factors that

shape patterns of genetic variation.
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CHAPTER 1
INTRODUCTION

The focus of this dissertation is on the inference of representations of population structure
from genetic variation data. In this dissertation I apply population genetic inference tools as
well as develop new statistical models and optimization algorithms for population genetics
researchers to use in their own empirical applications. Today, population genetics researchers
are often faced with a high-dimensional genotype matrix with rows representing samples
and columns representing genetic variants typed along the genome. The elements of this
matrix encode genotypes which count the number of copies a sample carries, often at a
Single Nucleotide Polymorphism (SNP), of some arbitrarily pre-defined allele, like the minor
allele. Sometimes side information is present, like grand-parental birth locations, geographic
coordinates or temporal periods (in the case of ancient DNA) which can be helpful for
interpreting the output of population genetics tools or can even be incorporated directly
into statistical models (Pickrell and Reich, [2014; Novembre et al.. |2008; Bradburd et al.|
2018). In many, if not all, datasets it is rare that the samples are independent of one-
another because they share common ancestry which induces genetic relatedness, resulting
in correlations in the genotypes even for distant relatives (Speed and Balding, [2015). To
put it simply, the goal of inferring population structure is to infer these genetic relationships
among the samples (Novembre and Peter} 2016).

Some of the earliest work in understanding population structure focused on develop-
ing simple mathematical frameworks for modeling evolution in a spatial context (Wright],
1940, 1943)). In one such framework allele frequencies are imagined to evolve in a contin-
uous spatial habitat with local individual level dispersal (Wright| 1940} 1943, 1946). One
fundamental prediction under this model is that the correlation in allele frequencies be-
tween sub-populations will decay exponentially as they become more geographically distant

(Malécot), [1948). This phenomenon is often referred to as “isolation-by-distance” (IBD) and
1



has been shown to be a pervasive feature in spatial population genetic data across many
different species (Dobzhansky and Wright), 1943 [Meirmans, 2012)). Indeed, it is no surprise
that the exponential decay of the correlation of a measurement across space is also an useful
prediction in many types of data beyond genetics (Cressie, 1992; Rasmussen, 2003). Since
the initial proposal of models of IBD, population geneticists have developed a rich body of
theory to understand the underlying mechanisms of spatial genetic processes and make more
accurate predictions of patterns of genetic differentiation in structured populations.

One fundamental outcome of this subsequent work is known as the “Stepping Stone
Model” (SSM) (Kimural, 1953)). As contrasted to the early conceptions of IBD, the SSM
describes the evolution of allele frequencies in a discrete spatial habitat, which can be con-
veniently modeled as a graph, specifically an infinite lattice. The SSM defines an allele
frequency in every sub-population, represented at each node (colloquially referred to as
demes), and models the exchange of alleles between connected sub-populations. In the sim-
plest form of the model, the amount of exchange is parameterized through a single migration
rate between neighboring sub-populations. As the level of migration is increased the meta-
population becomes more panmictic while as it is decreased the meta-population becomes
more structured i.e. the sub-populations are more independent. Interestingly, as the density
of sub-populations approaches an infinite limit, the SSM is equivalent to the continuous
spatial models of IBD (Kimura and Weiss, 1964). The SSM provided a simple conceptual
framework for deriving expectations of genetic distances, such as Fg, in a tractable spa-
tial model (Slatkin| [1993)). Extensions of the SSM used a finite habitat with more flexible
assumptions about migration rates between sub-populations. These so called, “Migration
Matrix Models”, allowed the use of estimated migration matrices from pedigree data to make
predictions about genetic differentiation in, for example, human populations (Bodmer and
Cavalli-Sforzaj, [1968). Later, with the ability to directly measure sequence variation in mul-

tiple populations and species (Kreitman, [1983)), there became an expanded need for tools to



fit stepping stone inspired models to real data.

The development of the coalescent provided a natural means to perform demographic
inference from population genetic samples (Kingman) [1982; Hudson et al., 1990; [Wake-
ley, 2009)). Under coalescent-based approaches to modeling structured populations, a de-
mographic model, typically specifying migration rates and population sizes, determine the
probabilities of particular gene genealogies (Hudson et al., |1990). In turn, these genealogies
structure patterns of genetic variation in a population genetic sample, conditionally indepen-
dent of the demographic history. The challenge of performing inference is thus to marginalize
over the set of possible gene-genealogies, directly linking the demographic history to observed
genetic variation. Even for a small number of population genetic samples integrating over
latent genealogies is difficult (Rasmussen et al., 2014; |Li and Durbin, 2011; [Schiffels and
Durbin, 2014; Palacios et al., [2015). A number of methods used approximate approaches to
marginalize out gene-genealogies, such as Markov Chain Monte Carlo (MCMC), and esti-
mate migration parameters under structured coalescent models. Most notably, MIGRATE
is one such example that has been widely used to estimate effective population sizes, N,
and migration rates, m (Beerli and Felsenstein, 2001)). While these approaches provide an
elegant means of inferring the parameters of population genetic models from data, they are
not scalable for large numbers of samples (Novembre and Peter|, 2016).

With the advent of large-scale genotyping array datasets with genotypes of thousands of
individuals measured at hundreds of thousands SNPs (e.g. Nelson et al., 2008; Cavalli-Sforzal,
2005)), more generic and scalable approaches to estimating population structure became
necessary. Principal Components Analysis (PCA) and the Pritchard, Stephens, and Donnelly
(PSD) model, also known as the STRUCTURE model, have been particularly impactful in
these large-scale datasets (Price et al., 2006; Novembre et al., 2008} [Patterson et al., 2006}
Pritchard et all [2000; |Alexander et al., 2009). The goal of both approaches is to find

a compact representation of a high-dimensional genotype matrix that allows researchers to



compactly summarize similarities amongst individuals in a sample (Engelhardt and Stephens|,

2010)). Both of these approaches can be conceptualized as fitting a linear combination of a

reduced set of latent variables to model an individual’s expected genotype (Engelhardt and|

Stephens, 2010). The PSD model assumes the expected value of an individual’s genotype

is a convex combination of latent allele frequencies (Pritchard et al., [2000; |Gopalan et al.

2016} |Cabreros and Storey, 2019; [Alexander et al., 2009; Tang et al., 2005)). The PSD model

can be interpreted in a simple admixture model where the global ancestry of an individual’s
genome is made up as a mixture of ancestries from K different unobserved source populations.
PCA makes no assumptions about the sign or convexity of the latent variables but assumes
they are orthogonal to each other, conveniently allowing for the use of the singular value

decomposition (SVD) to find the optimal solution (Bishop, 2006)).
The behaviors of PCA and the PSD model have been studied with regards to how they

behave with data generated from more elaborate population genetic models (Novembre and|

Stephens, 2008; McVean, [2009; Lawson et al., 2018)). In a purely spatial model, PCA will pro-

duce sinusoidal patterns in the individual PC scores which had previously been interpreted
as specific signatures of directional migration events, without recognition they are a regular

outcome when an underlying homogeneous spatial process generates the data (Novembre

and Stephens, 2008). Interpretation of the PSD model is also difficult in a spatial context

(Francois et al., 2006; Bradburd et al., [2018; Francois et al., [2019). When the data is drawn

from a homogenous spatial process the PSD model will find a continuous gradient of an-

cestries going from each corner of the habitat, with individuals occupying the middle of

the habitat showing a signature of admixture (Bradburd et al. 2018). Numerous methods

have been proposed to account for spatial and temporal “confounding” in PCA and the

PSD model, leading to, sometimes, more interpretable solutions but typically with higher

computational cost (Bradburd et al., 2018 Frichot et al., 2012; Francois et al. |2019).

The introduction of the Estimating Effective Migration Surfaces (EEMS) method bridged



a gap between computational tractability and interpretability with respect to spatial pop-
ulation genetic models (Petkova et all [2016]). Like in “Migration Matrix Models”, EEMS
assumes individuals occupy a discrete spatial habitat, specifically a triangular lattice em-
bedded in geographic space (Bodmer and Cavalli-Sforzal (1968)). The input data is a set of
spatial coordinates for each individual as well as a genetic distance matrix computed across
all individuals in the dataset. EEMS uses a resistance distance approximation to compute
the expected genetic distance between sub-populations under a coalescent-based stepping
stone model (CSSM) (McRae| 2006; Slatkin), |1993). The edge weights of the graph param-
eterize this resistance distance and thus provide a likelihood for observed genetic distances.
EEMS uses a hierarchical Bayesian model and a Voronoi tessellation based prior to encourage
spatial smoothness in the fitted edge weights, specifically piece-wise constant smoothness.
EEMS uses MCMC to find the posterior distribution of the latent variables and outputs
a visualization of the posterior mean for effective migration and genetic diversity for every
spatial position of the focal habitat. Regions with relatively low effective migration can
be interpreted to have restricted gene-flow over time whereas regions with relatively high
migration can be interpreted as having elevated gene-flow. The EEMS framework has been
recently extended to use genetic distances computed from identity-by-descent blocks, using
a random walk approximation to the CSSM for computation of expected distances. This
framework allows for the ability to estimate migration rates and population sizes in different
temporal periods, by binning identity-by-descent blocks by length (Al-Asadi et al., 2019).
To help ground the work in this dissertation, I look back to a enduring review written
in 1982 by Joseph Felsenstein (Felsenstein, 1982)). In this review titled “How can we infer
geography and history from gene frequencies?” , Felsenstein posed a number of open statistical

problems in the field of population genetics, some of which I restate here,

e Problem 1: For any given covariance matrix, is there a corresponding migration matrix

which would be expected to lead to it? If so, how can we find it?

5



e Problem 2: How can we characterize the set of possible migration matrices which are

compatible with a given set of observed covariances?

e Problem 3: How can we confine our attention to migration patterns which are consistent

with the known geometric co-ordinates of the populations

e Problem 4: How can we make valid statistical estimates of parameters of stepping

stone models?

e Problem 5: How can we parameterize the space of historical patterns of migration so

that we know which sets of patterns are consistent with our data?

These problems remain largely unsolved in the field nearly 40 years later. Addressing some
of these problem in both real-word applications of population structure inference methods as

well as the development of new statistical methods is the primary focus of this dissertation.



CHAPTER 2
GENETIC HISTORY FROM THE MIDDLE NEOLITHIC TO
PRESENT ON THE MEDITERRANEAN ISLAND OF
SARDINIA

This chapter has been published as part of a large collaborative project of which I am a
co-first author. In this chapter I include the components I led or substantially contributed
to. For the complete manuscript and full author list see Marcus et al. (2020¢), and for a
listing of author contributions see section 2.9 below. All co-authored material included is

used with permission.

2.1 Abstract

The island of Sardinia has been of particular interest to geneticists for decades. The current
model for Sardinia’s genetic history describes the island as harboring a founder population
that was established largely from the Neolithic peoples of southern Europe which remained
isolated from later Bronze Age expansions on the mainland. To evaluate this model, we
generated genome-wide ancient DNA data for 70 individuals from more than 20 Sardinian
archaeological sites spanning the Middle Neolithic through the Medieval period. The earliest
individuals show a strong affinity to western Mediterranean Neolithic populations, followed
by an extended period of genetic continuity on the island through the Nuragic period (second
millennium BCE). Beginning with individuals from Phoenician/Punic sites (first millennium
BCE), we observe spatially-varying signals of admixture with sources principally from the
eastern and northern Mediterranean. Overall, our analysis sheds light on the genetic history

of Sardinia, revealing how relationships to mainland populations shifted over time.



2.2 Introduction

The whole-genome sequencing in 2012 of “Otzi”, an individual who was preserved in ice for
over 5,000 years near the Italo-Austrian border, revealed a surprisingly high level of shared
ancestry with present-day Sardinian individuals (Keller et al., 2012 Sikora et al., 2014)). Sub-
sequent work on genome-wide variation in ancient Europeans found that most “early Euro-
pean farmer” individuals, even when from geographically distant locales (e.g. from Sweden,
Hungary and Spain) have their highest genetic affinity with present-day Sardinian individ-
uals (Skoglund et al., 2012} 2014a; Gamba et al., |2014; Olalde et al., 2015). Accumulating
ancient DNA (aDNA) results have provided a framework for understanding how early Eu-
ropean farmers show such genetic affinity to modern Sardinians.

In this framework, Europe was first inhabited by Paleolithic and later Mesolithic hunter-
gatherer groups. Then, starting about 7,000 BCE, farming peoples arrived from the Middle
East as part of a Neolithic transition (Lazaridis et al., [2014])), spreading through Anatolia
and the Balkans (Hofmanova et al., 2016; Mathieson et al.; 2018)) while progressively admix-
ing with local hunter-gatherers (Lipson et al., [2017). Major movements from the Eurasian
Steppe, beginning about 3,000 BCE, resulted in further admixture throughout Europe (Al-
lentoft et al.| 2015; Haak et al., [2015} |Olalde et al., 2018, 2019). These events are typically
modeled in terms of three ancestry components: western hunter gatherers (“WHG”), early
European farmers (“EEF”), and Steppe pastoralists (“Steppe”). Within this broad frame-
work, the island of Sardinia is thought to have received a high level of EEF ancestry early
on and then remained mostly isolated from the admixture occurring on mainland Europe
(Keller et al., 2012; Sikora et al., [2014)). However, this specific model for Sardinian population
history has not been tested with genome-wide aDNA data from the island.

The oldest known human remains on Sardinia date to ~20,000 years ago (Melis, [2002)).
Archaeological evidence suggests Sardinia was not densely populated in the Mesolithic, and

experienced a population expansion coinciding with the Neolithic transition in the sixth mil-
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lennium BCE (Luglie, |2018). Around this time, early Neolithic pottery assemblages were
spreading throughout the western Mediterranean, including Sardinia, in particular vessels
decorated with Cardium shell impressions (variably described as Impressed Ware, Cardial
Ware, Cardial Impressed Ware)(Barnett, 2000)), with radio-carbon dates indicating a rapid
westward maritime expansion around 5,500 BCE (/Zilhao| [2001)). In the later Neolithic,
obsidian originating from Sardinia is found throughout many western Mediterranean ar-
chaeological sites (Tykot) |1996)), indicating that the island was integrated into a maritime
trade network. In the middle Bronze Age, about 1,600 BCE, the “Nuragic” culture emerged,
named for the thousands of distinctive stone towers, nuraghi (Webster} |2016). During the
late Nuragic period, the archaeological and historical record shows the direct influence of
several major Mediterranean groups, in particular the presence of Mycenaean, Levantine and
Cypriot traders. The Nuragic settlements declined throughout much of the island as, in the
late 9th and early 8th century BCE, Phoenicians originating from present-day Lebanon and
northern Palestine established settlements concentrated along the southern shores of Sar-
dinia (Moscati, [1966). In the second half of the 6th century BCE, the island was occupied
by Carthaginians (also known as Punics), expanding from the city of Carthage on the North
African coast of present-day Tunisia, which was founded in the late 9th century by Phoeni-
cians (Van Dommelen, [2006; Guirguis et al., [2017). Sardinia was occupied by Roman forces
in 237 BCE, and turned into a Roman province a decade later (Dyson and Rowland) 2007).
Throughout the Roman Imperial period, the island remained closely aligned with both Italy
and central North Africa. After the fall of the Roman empire, Sardinia became increasingly
autonomous (Dyson and Rowland, 2007, but interaction with the Byzantine Empire, the
maritime republics of Genova and Pisa, the Catalan and Aragonese Kingdom, and the Duchy
of Savoy and Piemonte continued to influence the island (Ortu, 2011} Mastino, |2005)).

The population genetics of Sardinia has long been studied, in part because of its im-

portance for medical genetics (Calo et al., |2008; |Lettre and Hirschhorn) 2015). Pioneering



studies found evidence that Sardinia is a genetic isolate with appreciable population sub-
structure (Siniscalco et al.| (1966} Contu et al. |1992; Lampis et al., 2000). Recently, Chiang
et al. (Chiang et al., 2018) analyzed whole genome sequences (Sidore et al., [2015) together
with continental European aDNA. Consistent with previous studies, they found the moun-
tainous Ogliastra region of central/eastern Sardinia carries a signature of relative isolation
and subtly elevated levels of WHG and EEF ancestry.

Four previous studies have analyzed aDNA from Sardinia using mitochondrial DNA. Ghi-
rotto et al. (Ghirotto et all [2009) found evidence for more genetic turnover in Gallura (a
region in northern Sardinia with cultural/linguistic connections to Corsica) than Ogliastra.
Modi et al. (Modi et al., 2017)) sequenced mitogenomes of two Mesolithic individuals and
found support for a model of population replacement in the Neolithic. Olivieri et al. (Olivieri
et al., 2017) analyzed 21 ancient mitogenomes from Sardinia and estimated the coalescent
times of Sardinian-specific mtDNA haplogroups, finding support for most of them originat-
ing in the Neolithic or later, but with a few coalescing earlier. Finally, Matisoo-Smith et al.
(Matisoo-Smith et al.| |2018)) analyzed mitogenomes in a Phoenician settlement on Sardinia
and inferred continuity and exchange between the Phoenician population and broader Sar-
dinia. One additional study recovered [-thalessemia variants in three aDNA samples and
found one carrier of the cod39 mutation in a necropolis used in the Punic and Roman periods
(Vigano et al., [2017). Despite the initial insights these studies reveal, none of them analyze
genome-wide autosomal data, which has proven to be useful for inferring population history
(Pickrell and Reich) 2014)).

Here, we generated genome-wide data from the skeletal remains of 70 Sardinian individ-
uals radiocarbon dated to between 4,100 BCE - 1,500 CE. We investigated three aspects of
Sardinian population history: First, the ancestry of individuals from the Sardinian Neolithic
(ca. 5,700-3,400 BCE) — who were the early peoples expanding onto the island at this time?

Second, the genetic structure through the Sardinian Chalcolithic (i.e. Copper Age, ca. 3,400-
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2,300 BCE) to the Sardinian Bronze Age (ca. 2,300-1,000 BCE) — were there genetic turnover
events through the different cultural transitions observed in the archaeological record? And
third, the post-Bronze Age contacts with major Mediterranean civilizations and more recent
Italian populations — have they resulted in detectable gene flow?

Our results reveal insights about each of these three periods of Sardinian history. Specif-
ically, our earliest samples show affinity to the early European farmer populations of the
mainland, then we observe a period of relative isolation with no significant evidence of ad-
mixture through the Nuragic period, after which we observe evidence for admixture with

sources from the Northern and Eastern Mediterranean.

2.3 Results

2.3.1 Ancient DNA from Sardinia

We organized a collection of skeletal remains (Supp. Fig. 1) from: 1) a broad set of previously
excavated samples initially used for isotopic analysis (Lai et al.; 2013)), 2) the Late Neolithic
to Bronze Age Seulo cave sites of central Sardinia (Skeates et al.;2013)), 3) the Neolithic Sites
Noedalle and S’isterridolzu (Germana, [1980), 4) the Phoenician-Punic sites of Monte Sirai
(Guirguis et al 2017) and Villamar (Pompianu and Murgial, 2017)), 5) the Imperial Roman
period site at Monte Carru (Alghero) (La Fragola and Rovina, |2018), 6) medieval remains
from the site of Corona Moltana (Meloni, |2004)), 7) medieval remains from the necropolis of
the Duomo of San Nicola (Rovina and Fiori M. Olia, 2013). We sequenced DNA libraries
enriched for the complete mitochondrial genome as well as a targeted set of 1.2 million single
nucleotide polymorphisms (SNPs) (Fu et al., 2015)). After quality control, we arrived at a
final set of 70 individuals with an average coverage of 1.02x (ranging from 0.04x to 5.39x
per individual) and a median number of 466,049 sites covered at least once per individual.

We obtained age estimates by either direct radiocarbon dating (n = 53), previously reported
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radiocarbon dates (n = 13), or archaeological context and radiocarbon dates from the same
burial site (n = 4). The estimated ages range from 4,100 years BCE to 1,500 years CE
(Fig. 2.1 Supp. Data 1A). We pragmatically grouped the data into broad periods: Middle
/ Late Neolithic (‘Sar-MN’, 4,100-3,500 BCE, n = 6), Early Copper Age (‘Sar-ECA’, 3,500-
2,500 BCE, n = 3), Early Middle Bronze Age (‘Sar-EMBA’, 2,500-1,500 BCE, n = 27) and
Nuragic (‘Sar-Nur’, 1,500-900 BCE, n = 16). For the post-Nuragic sites, there is substantial
genetic heterogeneity within and among sites, and so we perform analysis per site when
grouping is necessary (‘Sar-MSR’ and ‘Sar-VIL’ for the Phoenician and Punic sites of Monte
Sirai, n = 2; and Villamar, n = 6; ‘Sar-ORCO002" for a Punic period individual from the
interior site of S’Orcu ’e Tueri, n = 1; ‘Sar-AMC’ for the Roman period site of Monte Carru
near Alghero, n = 3; ‘Sar-COR’ for the early medieval individuals from the site of Corona
Moltana, n = 2; and ‘Sar-SNN’ for the medieval San Nicola necropoli, n = 4). Figure
provides an overview of the sample.

To assess the relationship of the ancient Sardinian individuals to other ancient and
present-day west Eurasian and north African populations we analyzed our individuals along-
side published autosomal DNA data (ancient: 972 individuals (Mathieson et al., 2015}
Lazaridis et al., 2016} 2017; Mathieson et al., 2018; |Lipson et al.| 2017; |Olalde et al., 2018]);
modern: 1,963 individuals from outside Sardinia (Lazaridis et al., 2014)) and 1,577 individu-
als from Sardinia (Sidore et al., 2015; |Chiang et al| 2018))). For some analyses, we grouped
the modern Sardinian individuals into eight geographic regions (see inset in panel C of Fig-
ure 2 for listing and abbreviations, also see Supp. Data 1E) and for others we subset the
more isolated Sardinian region of Ogliastra (‘Sar-Ogl’, n =419) and the remainder (‘Sar-non
Ogl’, n =1,158). As with other human genetic variation studies, population annotations are

important to consider in the interpretation of results.
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Figure 2.1: Number of SNPs covered, sampling locations and ages of ancient
individuals. A: The number of SNPs covered at least once and age (mean of 20 radio-
carbon age estimates) for the 70 ancient Sardinian individuals. B: The sampling locations of
ancient Sardinian individuals and a reference dataset of 961 ancient individuals from across
western Eurasia and North Africa.
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2.8.2  Stmilarity to western mainland Neolithic populations

We found low differentiation between Middle/Late Neolithic Sardinian individuals and Ne-
olithic western mainland European populations, in particular groups from Spain (Iberia-
EN) and southern France (France-N). When projecting ancient individuals onto the top two
principal components (PCs) defined by modern variation, the Neolithic ancient Sardinian
individuals sit between early Neolithic Iberian and later Copper Age Iberian populations,
roughly on an axis that differentiates WHG and EEF populations, and embedded in a clus-
ter that additionally includes Neolithic British individuals (Fig. [2.2). This result is also
evident in terms of genetic differentiation, with low pairwise Fgp ~ 0.005-0.008, between
Middle/Late Neolithic and Neolithic western mainland European populations (Fig. [2.3)).
Pairwise outgroup- f3 analysis shows a similar pattern, with the highest values of f3 (i.e. most
shared drift) being with Western European Neolithic and Copper Age populations (Fig. ,
gradually dropping off for populations more distant in time or space (Supp. Fig. 10).

Ancient Sardinian individuals are shifted towards WHG individuals in the top two PCs
relative to early Neolithic Anatolians (Fig.[2.2)). Analysis using qpAdm shows that a two-way
admixture model between WHG and Neolithic Anatolian populations is consistent with our
data (e.g. p = 0.376 for Sar-MN, Tab. , similar to other western European populations
of the early Neolithic (Supp. Tab. 1). The method estimates ancient Sardinian individuals
harbor HG ancestry (&~ 17 + 2%) that is higher than early Neolithic mainland populations
(including Iberia, 8.74+1.1%), but lower than Copper Age Iberians (25.1+0.9%) and about the
same as Southern French Middle-Neolithic individuals (21.3+1.5%) (Tab. 2.1 Supp. Fig. 13)
(£ denotes plus and minus one standard error).

In explicit models of continuity (using qpAdm, see Methods) the southern French Ne-
olithic individuals (France-N) are consistent with being a single source for Middle / Late
Neolithic Sardinia (p = 0.38 to reject the model of one population being the direct source of

the other); followed by other western populations high in EEF ancestry, though with poor
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Figure 2.2: Principal Components Analysis based on the Human Origins dataset.
A: Projection of ancient individuals’ genotypes onto principal component axes defined by
modern Western Eurasians and North Africans (gray labels; see panel C for legend for all
abbreviations but 'Can’, for Canary Islands.). B: Zoom into the region most relevant for
Sardinia. Each projected ancient individual is displayed as a transparent colored point in
panel A and B, with the color determined by the age of each sample (see panel D for legend).
In panel B, median PC1 and PC2 values for each population are represented by three-letter
abbreviations, with black or gray font for moderns and a color-coded font based on the mean
age for ancient populations. Ancient Sardinian individuals are plotted as circles with edges,
color-coded by age, and with the first three letters of their sample ID (which typically indi-
cates the archaeological site). Modern individuals from the Sidore et al sample of Sardinia
are represented with gray circles and modern individuals from the reference panel with grey
squares. See Figure 5 for a zoomed in representation with detailed province labels for Sar-
dinian individuals. The full set of labels and abbreviations are described in Supp. Data 1E
and 1F. C: Geographic legend of present-day individuals from the Human Origins and our
Sardinian reference dataset. D: Timeline of selected ancient groups. Note: The same ge-
ographic abbreviation can appear multiple times with different colors to represent groups
with different median ages. 15



fit (qpAdm p-values < 1075, Supp. Tab. 2). France-N may result in improved fits as it is a
better match for the WHG and EEF proportions seen in Middle / Late Neolithic Sardinia
(Supp. Tab. 1). As we discuss below, caution is necessary as there is a lack of aDNA from
other relevant populations of the same period (such as mainland Italian Neolithic cultures
and neighboring islands).

For our sample from the Middle Neolithic through the Nuragic (n = 52 individuals), we
were able to infer mtDNA haplotypes for each individual and Y haplotypes for 30 out of 34
males. The mtDNA haplotypes belong to macro-haplogroups HV (n = 20), JT (n =19), U
(n =12) and X (n =1), a composition broadly similar to other European Neolithic popula-
tions. For Y haplotypes, we found at least one carrier for each of three major Sardinia-specific
Y founder clades (within the haplogroups 12-M26, G2-1.91 and R1b-V88) that were identi-
fied previously based on modern Sardinian data (Francalacci et al., 2013). More than half
of the 31 identified Y haplogroups were R1b-V88 or 12-M223 (n =11 and n =8, respec-
tively, Supp. Fig. 6, Supp. Data 1B), both of which are also prevalent in Neolithic Iberians
(Olalde et al., [2019)). Compared to most other ancient populations in our reference dataset,
the frequency of R1b-V88 (Supp. Note 3, Supp. Fig. 6) is relatively high, but as we ob-
served clustering of Y haplogroups by sample location (Supp. Data 1B) caution should be
exercised with interpreting our results as estimates for island-wide Y haplogroup frequen-
cies. The oldest individuals in our reference data carrying R1b-V88 or 12-M223 were Balkan
hunter-gatherer and Neolithic individuals, and both haplogroups later appear also in western

Neolithic populations (Supp. Fig. 7-9).

2.3.83  Continuity from the Middle Neolithic through the Nuragic

We found several lines of evidence supporting genetic continuity from the Sardinian Mid-
dle Neolithic into Bronze Age and Nuragic times. Importantly, we observed low genetic

differentiation between ancient Sardinian individuals from various time periods (Fgp =
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0.0055 £ 0.0014 between Middle / Late Neolithic and late Bronze Age, Fig. [2.3)). Further-
more, we did not observe temporal substructure within the ancient Sardinian individuals
in the top two PCs — they form a coherent cluster (Fig. [2.2]). In stark contrast, ancient
individuals from mainland regions such as central Europe show large movements over the
first two PCs from the Neolithic to the Bronze Age, and also have higher pairwise differ-
entiation (e.g. Fgp =0.0200+ 0.0004 between Neolithic and Bronze Age individuals from
central Europe, Supp. Fig. 11). A qpAdm analysis cannot reject a model of Middle / Late
Neolithic Sardinian individuals being a direct predecessor of Nuragic Sardinian individuals
(p = 0.15, Supp. Tab. 2, also see results for fy statistics, Supp. Data 2). Our gpAdm analysis
further shows that the WHG ancestry proportion, in a model of admixture with Neolithic
Anatolia, remains stable at 17 + 2% through the Nuragic period (Tab. [2.1]A). When using
a three-way admixture model, we do not detect significant Steppe ancestry in any ancient
Sardinian group from the Middle / Late Neolithic to the Nuragic, as is inferred, for example,
in later Bronze Age Iberians (Tab. , Supp. Fig. 13). Finally, in a 5-way model with Iran
Neolithic and Moroccan Neolithic samples added as sources, neither source is inferred to
contribute ancestry during the Middle Neolithic to Nuragic (point estimates are statistically

indistinguishable from zero, Supp. Fig 14).

2.8.4  From the Nuragic period to present-day Sardinia: Signatures of

admizture

We found multiple lines of evidence for gene flow into Sardinia after the Nuragic period. The
present-day Sardinian individuals from the Sidore et al sample are shifted from the Nuragic
period ancients on the western Eurasian / north African PCA (Fig. 2.2)). Using a “shrink-
age” correction for the projection is key for detecting this shift (see Supp. Fig. 23 for an
evaluation of different PCA projection techniques). In the ADMIXTURE results (Fig. [2.4)),

present-day Sardinian individuals carry a modest “Steppe-like” ancestry component (but
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Figure 2.3: Genetic similarity matrices. We calculated Fgp (upper panel) and outgroup-
f3 (lower panel) of ancient Sardinian (Middle / Late Neolithic to Nuragic periods) and
modern Sardinian individuals (grouped into within and outside the Ogliastra region) with
each other (left), various ancient (middle), and modern populations (right) of interest. The
full sharing matrices can be found in Supp. Fig. 10/11, where we also include post-Nuragic
sites.
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generally less than continental present-day European populations), and an appreciable “east-
ern Mediterranean” ancestry component (also inferred at a high fraction in other present-day
Mediterranean populations, such as Sicily and Greece) relative to Nuragic period and earlier
Sardinian individuals.

To further refine this recent admixture signal, we considered two-way, three-way, and
four-way models of admixture with qpAdm (Tab. 2, Supp. Fig. 15-18, Supp. Tab. 3-5). We
find three-way models fit well (p > 0.01) that contain admixture between Nuragic Sardinia,
one northern Mediterranean source (e.g. individuals with group labels Lombardy, Tuscan,
French, Basque, Spanish) and one eastern Mediterranean source (e.g. individuals with group
labels Turkish-Jew, Libyan-Jew, Maltese, Tunisian-Jew, Moroccan-Jew, Lebanese, Druze,
Cypriot, Jordanian, Palestinian) (Table 2C,D). Maltese and Sicilian individuals can provide
two-way model fits (Tab. 2B), but appear to reflect a mixture of N. Mediterranean and
E. Mediterranean ancestries, and as such they can serve as single-source proxies in two-way
admixture models with Nuragic Sardinia. For four-way models including N. African ancestry,
the inferences of N. African ancestry are negligible (though as we show below, forms of
N. African ancestry were already likely present in the eastern Mediterranean components).

Because of limited sample sizes and ancestral source mis-specification, caution is war-
ranted when interpreting inferred admixture fractions; however, the results indicate that
complex post-Nuragic gene flow has likely played a role in the population genetic history of

Sardinia.

2.3.5 Refined signatures of post-Nuragic admizture and heterogeneity

To more directly evaluate the models of post-Nuragic admixture, we obtained aDNA from 17
individuals sampled from post-Nuragic sites. The post-Nuragic individuals spread across a
wide range of the PCA, and many shift towards the “eastern” and “northern” Mediterranean

sources posited above (Fig. [2.2). We confidently reject qpAdm models of continuity from
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Proxy Source Populations Admixture Fractions Standard Error

Target a b c p-value a b c a b c

A Sar-MN WHG  Anatolia-N - 0.376 0.177 0.823 - 0.014 0.014
Sar-ECA WHG  Anatolia-N - 0.268 0.161 0.839 - 0.020  0.020
Sar-EMBA ~ WHG  Anatolia-N - 0.049 0.161 0.839 - 0.007  0.007
Sar-Nur WHG  Anatolia-N - 0.134 0.163  0.837 - 0.009  0.009

B Sar-MN WHG  Anatolia-N  Steppe  0.265 0.177 0.823  0.000 0.016 0.023 0.026
Sar-ECA WHG  Anatolia-N  Steppe  0.18 0.164 0.836  0.000 0.023 0.032 0.036
Sar-EMBA ~ WHG  Anatolia-N  Steppe  0.032 0.162 0.838 0.000 0.009 0.012 0.013
Sar-Nur WHG  Anatolia-N  Steppe  0.089 0.163 0.837  0.000 0.010 0.014 0.016

C  France-N WHG  Anatolia-N  Steppe  0.093 0.213  0.787  0.000 0.018 0.023 0.027
Iberia-EN WHG  Anatolia-N  Steppe  0.243 0.087 0.913 0.000 0.012 0.017 0.019
Iberia-LCA ~ WHG  Anatolia-N  Steppe  0.045 0.251  0.749  0.000 0.012 0.015 0.018
Iberia-BA WHG  Anatolia-N  Steppe 6.0-1073  0.239 0.689 0.072 0.010 0.014 0.016
CE-EN WHG  Anatolia-N  Steppe  0.656 0.046 0.954 0.000 0.007 0.010 0.012
CE-LBA WHG  Anatolia-N  Steppe 0.105 0.128 0.403 0.468 0.008 0.011 0.013

Table 2.1: Results from fitting models of admixture with gqpAdm for Middle Ne-
olithic to Nuragic period. A) Two-way models of admixture for ancient Sardinia using
Western Hunter-Gatherer (WHG) and Neolithic Anatolia (Anatolia-N) individuals as proxy
sources. B) Three-way models of admixture for ancient Sardinia using Western Hunter-
Gatherer (WHG), Neolithic Anatolia (Anatolia-N), and Early Middle Bronze Age Steppe
(Steppe-EMBA, abbreviated Steppe in table), individuals as proxy sources. C) Three-way
models for select comparison populations on the European mainland. Full results are re-
ported in Supp. Info. 4.

the Nuragic period for all of these post-Nuragic samples, apart from a sample from S’Orcu
‘e Tueri (ORC002, Tab. 2.2E, Supp. Tab. 6). The ADMIXTURE results concur, most post-
Nuragic individuals show the presence of novel ancestry components not inferred in any of
the more ancient individuals (Fig. [2.4]).

Consistent with an influx of novel ancestry, we observed that haplogroup diversity in-
creases after the Nuragic period. In particular, we identified one carrier of the mtDNA
haplogroup L2a at both the Punic Villamar site and the Roman Monte Carru site. At
present, this mtDNA haplogroup is common across Africa, but so far undetected in samples
from Sardinia (Olivieri et al., [2017). We also found several Y haplogroups absent in our Ne-
olithic trough the Nuragic period sample (Supp. Fig. 6). R1b-M269, at about 15 % within
modern Sardinian males (Francalacci et al., [2013)), appears in one Punic (VIL011) and two

Medieval individuals (SNN002 and SNN004). We also observed J1-L862 in one individual

from a Punic site (VIL007) and E1b-L618 in one medieval individual (SNN0O1). Notably, J1-
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Proxy Source Populations

Admixture Fractions

Standard Error

Target a b c p-value a b c a b c

A Sar-ECA Sar-MN - - 0.175 - - - - - -
Sar-EMBA Sar-ECA - - 0.769 - - - - - -
Sar-Nur Sar-EMBA - - 0.765 - - - - -
Cagliari Sar-Nur - - <1030 - - - - -

B Cagliari Sar-Nur Sicilian - 0.011 0.545 0.455 - 0.021 0.021 -
Cagliari Sar-Nur Maltese - 0.011 0.573 0.427 - 0.019 0.019 -
Cagliari Sar-Nur Turkish - 2.4-1073 0.699 0.301 - 0.014 0.014 -
Cagliari Sar-Nur Tuscan - 2.3.107% 0.522 0.478 - 0.024 0.024 -

C Cagliari Sar-Nur N Mediterranean Turkish-Jew 0.168 0.512 0.237 0.251 0.021 0.042 0.034
Cagliari Sar-Nur N Mediterranean Libyan-Jew 0.046 0.515 0.299 0.186 0.023 0.038 0.028
Cagliari Sar-Nur N Mediterranean Tunisian-Jew 0.037 0.498 0.312 0.191 0.022 0.035 0.028
Cagliari Sar-Nur N Mediterranean Druze 0.031 0.542 0.287 0.170 0.022 0.037 0.024
Cagliari Sar-Nur N Mediterranean Moroccan-Jew 0.026 0.519 0.275 0.206 0.022 0.042 0.032
Cagliari Sar-Nur N Mediterranean Cypriot 0.026 0.520 0.297 0.184 0.021 0.035 0.026
Cagliari Sar-Nur N Mediterranean Maltese 0.025 0.541 0.132 0.327 0.025 0.069 0.058
Cagliari Sar-Nur N Mediterranean Lebanese 0.023 0.550 0.299 0.151 0.024 0.038 0.023
Cagliari Sar-Nur N Mediterranean Sicilian 0.021 0.526 0.113 0.361 0.022 0.064 0.058
Cagliari Sar-Nur N Mediterranean Jordanian 10.0- 1073 0.542 0.319 0.138 0.023 0.035 0.021
Cagliari Sar-Nur N Mediterranean Greek 8.7-1072 0.551 0.000 0.449 0.037 0.217 0.191
Cagliari Sar-Nur N Mediterranean Palestinian 7.0-1073 0.542 0.331 0.127 0.024 0.035 0.019
Cagliari Sar-Nur N Mediterranean Turkish 6.3-1072 0.637 0.136 0.228 0.033 0.067 0.039
Cagliari Sar-Nur N Mediterranean BedouinA 2.0-1073 0.540 0.351 0.109 0.024 0.033 0.017
Cagliari Sar-Nur N Mediterranean Egyptian 1.4.107% 0.529 0.389 0.082 0.025 0.031 0.014
Cagliari Sar-Nur N Mediterranean Tunisian 3.7-107° 0.524 0.404 0.072 0.025 0.031 0.014

D Cagliari Sar-Nur E Mediterranean Lombardy 0.168 0.512 0.251 0.237 0.021 0.034 0.042
Cagliari Sar-Nur E Mediterranean Tuscan 0.09 0.527 0.198 0.275 0.020 0.047 0.053
Cagliari Sar-Nur E Mediterranean Greek 0.079 0.548 0.151 0.302 0.018 0.054 0.057
Cagliari Sar-Nur E Mediterranean French 0.05 0.560 0.324 0.116 0.019 0.027 0.023
Cagliari Sar-Nur E Mediterranean Basque 0.034 0.533 0.340 0.128 0.021 0.025 0.025
Cagliari Sar-Nur E Mediterranean Spanish 0.023 0.540 0.309 0.151 0.020 0.029 0.030
Cagliari Sar-Nur E Mediterranean Sicilian 0.013 0.544 0.000 0.456 0.029 0.226 0.245
Cagliari Sar-Nur E Mediterranean Maltese 0.012 0.572 0.000 0.428 0.026 0.261 0.266
Cagliari Sar-Nur E Mediterranean Turkish 1.2-1073 0.700 0.000 0.300 0.058 0.190 0.135
Cagliari Sar-Nur E Mediterranean Cypriot 3.8-107° 0.587 0.413 0.000 0.047 0.310 0.275

E  Sar-VIL Sar-Nur - - <1030 - - - - - -
Sar-MSR Sar-VIL - - 1.8-107° - - - - - -
Sar-AMC Sar-MSR - - 0.203 - - - - - -
Sar-SNN Sar-MSR - - 0.037 - - - - - -
Sar-COR Sar-AMC - - 0.014 - - - - - -
Sar-SNN Sar-AMC - - 0.124 - - - - - -

F  Cagliari Sar-VIL - - 9.1-10"12 - - - - -
Cagliari Sar-MSR - - 0.078 - - - - - -
Cagliari Sar-AMC - - 0.012 - - - - - -
Cagliari Sar-COR - - 0.16 - - - - - -
Cagliari Sar-SNN - - 0.037 - - - - - -
Ogliastra Sar-VIL - - 8.6-10 14 - - - R _
Ogliastra Sar-MSR - - 0.044 - - - - - -
Ogliastra Sar-AMC - - 2.2.1073 - - - - - -
Ogliastra Sar-COR - - 0.261 - - - - - -
Ogliastra Sar-SNN - - 0.016 - - - - - -

Table 2.2: Results from fitting

aDNA as sources.

Supp. Info. 4.

models of admixture with

A) Single-source models to assess continuity of each Sardinian period with the previous one (see main text for
guide to abbreviations). B) Results of two-way models of admixture for Cagliari (a representative present-day sample). C) Results of three-way
models showing multiple eastern Mediterranean populations that can produce viable models (Results shown with individuals from Lombardy
[Bergamo in the Human Origins array (HOA) dataset, see Materials and Methods] as one of several possible proxies for north Mediterranean
ancestry, see part C). C) Results of three-way models showing multiple north Mediterranean populations that can produce viable models (Results
shown with Jewish individuals from Turkey [‘Turkish-Jew’ in the dataset] used as one of several possible proxies for east Mediterranean ancestry, see
part B). E) Results of single-source models to assess continuity among post Nuragic sites. F) Results of single-source models to assess continuity
between the Medieval period samples and present-day samples (Cagliari and Ogliastra taken as representatives).
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gpAdm and Sardinian

Full results are reported in



L862 first appears in Levantine Bronze Age individuals within the ancient reference dataset
and is at about 5% frequency in Sardinia today.

We used individual-level gpAdm models to further investigate the presence of these new
ancestries (Supp. Data 3). In addition to the original Neolithic Anatolian (Anatolia-N) and
Hunter Gatherer (WHG) sources that were sufficient to model ancient Sardinians through
the Nuragic period, we fit models with representatives of Steppe (Steppe-EMBA), Neolithic
Iranian (Iran-N), and Neolithic North African (Morocco-EN) ancestry as sources. We observe
the presence of the Steppe-EMBA (point estimates ranging 0 —20%) and Iran-N components
(point estimates ranging 0 — 25%) in many of the post-Nuragic individuals (Supp. Fig. 14).
All six individuals from the Punic Villamar site were inferred to have substantial levels of
ancient North African ancestry (point estimates ranging 20 — 35%, Supp. Fig. 14, also see
ADMIXTURE and PCA results, Fig. and . When fit with the same 5-way admixture
model, present-day Sardinians have a small but detectable level of North African ancestry
(Supp. Fig. 14, also see ADMIXTURE analysis, Fig. [2.4)).

Models with direct continuity from Villamar to the present are rejected (Tab. ,
Supp. Tab. 6). In contrast, nearly all the other post-Nuragic sites produce viable models
as single sources for the modern Sardinians (e.g. Sar-COR qpAdm p-values of 0.16 and
0.261 for Cagliari and Ogliastra respectively; Sar-SNN qpAdm p-values of 0.037 and 0.016,
similarly Tab. ,Supp. Tab. 6). We found some evidence of sub-structure: Sar-ORC002
(from an interior site) is more consistent with being a single source for Ogliastra than Cagliari,
whereas Sar-AMC shows an opposite pattern (Supp. Tab. 6).

We also carried out 3-way admixture models for each post-Nuragic Sardinian individual
using the Nuragic sample as a source or outgroup, and potential sources from various ancient
samples that are representative of different regions of the Mediterranean. We found a range
of models can be fit for each individual (Supp. Tab. 7-8). For the models with Nuragic as a

source, by varying the proxy populations, one can obtain fitted models that vary widely in
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Figure 2.4: Admixture coefficients estimated by ADMIXTURE (K = 6). Each
stacked bar represents one individual and color fractions depict the fraction of the given
individual’s ancestry coming from a given “cluster”. For K = 6 (depicted here), Sardinian
individuals up until the Nuragic share similar admixture proportions as other western Eu-
ropean Neolithic individuals. Present-day as well as most post-Nuragic ancient Sardinian
individuals have elevated Steppe-like ancestry (blue), and an additional ancestry compo-
nent prevalent in Near Eastern / Levant populations (orange). An ancient North - African
component (green) appears at low fraction in many present-day Mediterranean populations,
and somewhat stronger in samples from the Sardinian Punic site Villamar. ADMIXTURE
results for all K=2,...,11 are depicted in the supplement (Supp. Fig. 19)
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the inferred Nuragic component (e.g. individual COR002 has a range from 4.4% to 87.8%
across various fitted models; similarly, individual AMCO001, with North African mtDNA hap-
logroup U6a, had a range form 0.2% to 43.1%, see Supp. Tab. 7-8). The ORC002 sample had
the strongest evidence of Nuragic ancestry (range from 62.8% to 96.3%, see Supp. Tab. 7-
8). Further, the VIL, MSR, and AMC individuals can be modeled with Nuragic Sardinian
individuals included as a source or as an outgroup, while the two COR and ORC002 indi-
viduals can only be modeled with Nuragic individuals included as a source. One individual
from the medieval period San Nicola Necropoli (SNN001) was distinct in that we found their
ancestry can be modeled in a single source model as descendant of a population represented
by present-day Basque individuals (Supp. Tab. 8). When we apply the same approach to
present-day Sardinian individuals, we find models with the Nuragic sample as an out-group
fail in most cases (Supp. Tab. 9). For models that include Nuragic as a possible source, each
present-day individual is consistent with a wide range of Nuragic ancestry. The models with
the largest p-values return fractions of Nuragic ancestry that are close to, or higher than

50% (Supp. Tab. 9), similar to observed in our population-level modeling (Tab. 2).

2.3.6  Fine-scale structure in contemporary Sardinia

Finally, we assessed our results in the context of spatial substructure within modern Sardinia
which suggested elevated levels of WHG and EEF ancestry in Ogliastra (Chiang et al. 2018]).

In the PCA of modern west Eurasian and north African variation, the ancient Sar-
dinian individuals are placed closest to individuals from Ogliastra and Nuoro (see Fig. [2.2]
Fig. ) At the same time, in a PCA of just the modern Sardinian sample, the ancient indi-
viduals project furthest from Ogliastra (Fig. [2.5B). Interestingly, individual ORC002, dating
from the Punic period and from a site in Ogliastra, projects towards Ogliastra individuals
relative to other ancient individuals.

Further, in the broad PCA results, the median of the province of Olbia-Tempio (north-
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Figure 2.5: Present-day genetic structure in Sardinia reanalyzed with aDNA.
A: Scatter plot of the first two principal components from Figure 2A with a zoom-in on
present-day Sardinia diversity in our sample (Sidore et al., 2015). Median PC values for
each Sardinian region are depicted as large circles. B: PCA results based on present-day
Sardinian individuals, subsampling Cagliari and Ogliastra to 100 individuals to avoid effects
of unbalanced sampling. In both panels, each individual is labeled with an abbreviation that
denotes the source location if at least 3 grandparents were born in the same geographical
location (“small” three letter abbreviations) or if grand-parental ancestry is missing with
question mark. We also projected each ancient Sardinian individual on to the top two PCs

(points color-coded by age, see Figure 1 for the color scale).
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east Sardinia) is shifted towards mainland populations of southern Europe, and the me-
dian for Campidano (southwest Sardinia) shows a slight displacement towards the eastern
Mediterranean (Fig. [2.5A). A three-way admixture model fit with qpAdm suggests differen-
tial degrees of admixture, with the highest eastern Mediterranean ancestry in the southwest
(Carbonia, Campidano) and the highest northern Mediterranean ancestry in the northeast
of the island (Olbia, Sassari, Supp. Fig. 17). These observations of sub-structure among
contemporary Sardinian individuals contrast our results from the Nuragic and earlier, which
forms a relatively tight cluster on the broad PCA and for which the top PCs do not
show any significant correlations with latitude, longitude, or regional geographic labels after

correcting for multiple testing (Supp. Fig. 24-33).

2.4 Discussion

Our analysis of genome-wide data from 70 ancient Sardinian individuals has generated in-
sights regarding the population history of Sardinia and the Mediterranean. First, our anal-
ysis provides more refined DNA-based support for the Middle Neolithic of Sardinia being
related to the early Neolithic peoples of the Mediterranean coast of Europe. Middle/Late
Neolithic Sardinian individuals fit well as a two-way admixture between mainland EEF and
WHG sources, similar to other EEF populations of the western Mediterranean. Further,
we detected Y haplogroups R1b-V88 and [2-M223 in the majority of the early Sardinian
males. Both haplogroups appear earliest in the Balkans among Mesolithic hunter-gatherers
and then Neolithic groups (Mathieson et al., 2018) and later in EEF Iberians (Olalde et al.|
2019), in which they make up the majority of Y haplogroups, but have not been detected
in Neolithic Anatolians or more western WHG individuals. These results are plausible out-
comes of substantial gene flow from Neolithic populations that spread westward along the
Mediterranean coast of southern Europe around 5,500 BCE (a “Cardial/ITmpressed” ware

expansion, Introduction). We note that we lack autosomal aDNA from earlier than the Mid-
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dle Neolithic in Sardinia and from key mainland locations such as Italy, which leaves some
uncertainty about timing and the relative influence of gene flow from the Italian mainland
versus from the north or west. The inferred WHG admixture fraction of Middle Neolithic
Sardinians was higher than that of early mainland EEF populations, which could suggest a
time lag of the influx into Sardinia (as HG ancestry increased through time on the mainland)
but also could result from a pulse of initial local admixture or continued gene flow with the
mainland. Genome-wide data from Mesolithic and early Neolithic individuals from Sardinia
and potential source populations will help settle these questions.

From the Middle Neolithic onward until the beginning of the first millennium BC, we do
not find evidence for gene flow from distinct ancestries into Sardinia. That stability contrasts
with many other parts of Europe which had experienced substantial gene flow from central
Eurasian Steppe ancestry starting about 3,000 BCE (Haak et al., 2015; Allentoft et al.
2015) and also with many earlier Neolithic and Copper age populations across mainland
Europe, where local admixture increased WHG ancestry substantially over time (Lipson
et al 2017). We observed remarkable constancy of WHG ancestry (close to 17%) from the
Middle Neolithic to the Nuragic period. While we cannot exclude influx from genetically
similar populations (e.g. early Iberian Bell Beakers), the absence of Steppe ancestry suggests
genetic isolation from many Bronze Age mainland populations - including later Iberian Bell
Beakers (Olalde et al., 2018]). As further support, the Y haplogroup R1b-M269, the most
frequent present-day western European haplogroup and associated with expansions that
brought Steppe ancestry into Britain (Olalde et all 2018) and Iberia (Olalde et al., 2019)
about 2,500-2,000 BCE, remains absent in our Sardinian sample through the Nuragic period
(1,200-1,000 BCE). Larger sample sizes from Sardinia and alternate source populations may
discover more subtle forms of admixture, but the evidence appears strong that Sardinia
was isolated from major mainland Bronze Age gene flow events through to the local Nuragic

period . As the archaeological record shows that Sardinia was part of a broad Mediterranean
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trade network during this period (Tykot, 1996)), such trade was either not coupled with gene
flow or was only among proximal populations of similar genetic ancestry. In particular, we
find that the Nuragic period is not marked by shifts in ancestry, arguing against hypotheses
that the design of the Nuragic stone towers was brought with an influx of people from eastern
sources such as Mycaeaneans.

Following the Nuragic period, we found evidence of gene flow with both northern and
eastern Mediterranean sources. We observed eastern Mediterranean ancestry appearing first
in two Phoenician-Punic sites (Monte Sirai, Villamar). The northern Mediterranean ances-
try became prevalent later, exemplified most clearly by individuals from a north-western
Medieval site (San Nicola Necropoli). Many of the post-Nuragic individuals could be mod-
eled as direct immigrants or offspring from new arrivals to Sardinia, while others had higher
fractions of local Nuragic ancestry (Corona Moltana, ORC002). Substantial uncertainty ex-
ists here as the low differentiation among plausible source populations makes it challenging
to exclude alternate models, especially when using individual-level analysis. Overall though,
we find support for increased variation in ancestry after the Nuragic period, and this echoes
other recent aDNA studies in the Mediterranean that have observed fine-scale local hetero-
geneity in the Iron Age and later (Olalde et al., 2019; |[Fernandes et al., [2019; Feldman et al.|
2019; Antonio et al., 2019).

In addition, we found present-day Sardinian individuals sit within the broad range of
ancestry observed in our ancient samples. A similar pattern is seen in Iberia (Olalde et al.,
2019) and central Italy (Antonio et al.; 2019), where variation in individual ancestry increased
markedly in the Iron Age, and later decreased until present-day. In terms of the fine-
scale structure within Sardinia, we note the median position of modern individuals from
the central regions of Ogliastra and Nuoro on the main PCA (Fig. 2.5A) are less shifted
towards novel sources of post-Nuragic admixture, which reinforces a previous result that

Ogliastra shows higher levels of EEF and HG ancestry than other regions (Chiang et al.,
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2018)). At the same time, in the PCA of within Sardinia variation (Fig. [2.5B), differentiation
of Ogliastra from other regions and other ancient individuals is apparent, likely reflecting
a recent history of isolation and drift. The northern provinces of Olbia-Tempio, and to a
lesser degree Sassari, appear to have received more northern Mediterranean immigration after
the Bronze Age; while the southwestern provinces of Campidano and Carbonia carry more
eastern Mediterranean ancestry. Both of these results align with known history: the major
Phoenician and Punic settlements in the first millennium BCE were situated principally
along the south and west coasts, and Corsican shepherds, speaking an Italian-Corsican dialect
(Gallurese), immigrated to the northeastern part of Sardinia (Le Lannou, |1941)).

Our inference of gene flow after the second millennium BCE seems to contradict previous
models emphasizing Sardinian isolation (Haak et al., 2015)). These models were supported
by admixture tests that failed to detect substantial admixture (Chiang et al., 2018), likely
because of substantial drift and a lack of a suitable proxy for the Nuragic Sardinian ancestry
component. However, compared to other European populations (Sarno et al., 2017; Lazaridis
et al.l 2017), we confirm Sardinia experienced relative genetic isolation through the Bronze
Age/Nuragic period. Additionally, we find that subsequent admixture appears to derive
mainly from Mediterranean sources that have relatively little Steppe ancestry. Consequently,
present-day Sardinian individuals have retained an exceptionally high degree of EEF ancestry
and so they still cluster with several mainland European Copper Age individuals such as Otz
(Sikora et al., 2014)), even as they are shifted from ancient Sardinian individuals of a similar
time period (Fig. [2.2)).

The Basque people, another population high in EEF ancestry, were previously suggested
to share a genetic connection with modern Sardinian individuals (Giinther et al., [2015;
Chiang et al., 2018). We observed a similar signal, with modern Basque having, of all
modern samples, the largest pairwise outgroup-f3 with most ancient and modern Sardinian

groups (Fig. . While both populations have received some immigration, seemingly from
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different sources (e.g., Fig.[2.4] (Olalde et al.,[2019)), our results support that the shared EEF
ancestry component could explain their genetic affinity despite their geographic separation.

Beyond our focal interest in Sardinia, the results from individuals from the Phoenician-
Punic sites Monte Sirai and Villamar shed some light on the ancestry of a historically impact-
ful Mediterranean population. Notably, they show strong genetic relationships to ancient
North African and eastern Mediterranean sources. These results mirror other emerging an-
cient DNA studies (Zalloua et al., [2018; Matisoo-Smith et al.; 2018), and are not unexpected
given that the Punic center of Carthage on the North African coast itself has roots in the
eastern Mediterranean. Interestingly, the Monte Sirai individuals, predating the Villamar
individuals by several centuries, show less North African ancestry. This could be because
they harbor earlier Phoenician ancestry and North African admixture may have been unique
to the later Punic context, or because they were individuals from a different ancestral back-
ground altogether. Estimated North African admixture fractions were much lower in later
ancient individuals and present-day Sardinian individuals, in line with previous studies that
have observed small but significant African admixture in several present-day South Euro-
pean populations, including Sardinia (Hellenthal et al., [2014; Loh et al., 2013; |Chiang et al.|
2018).

As ancient DNA studies grow, a key challenge will be fine-scale sampling to aid the in-
terpretation of shifts in ancestry. Our sample from Sardinia’s post-Nuragic period highlights
the complexity, as we simultaneously observe examples of individuals that appear as novel
immigrant ancestries (e.g. from Villamar and San Nicola) and of individuals that look more
contiguous to the past and to the present (e.g., the two Corona a Moltana siblings, the
ORCO002 individual, several of the Alghero Monte Carru individuals). This variation is likely
driven by differential patterns of contact — as might arise between coastal versus interior
villages, central trading centers versus remote agricultural sites, or even between neighbor-

hoods and social strata in the same village. We also note that modern populations are
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collected with different biases than ancient individuals (e.g. the sub-populations sampled by
medical genetics projects (Sidore et all 2015)) versus the sub-populations that are accessible
at archaeological sites). As such, caution should be exercised when generalizing from the
sparse sampling typical for many aDNA studies, including this one.

With these caveats in mind, we find that genome-wide ancient DNA provides unique
insights into the population history of Sardinia. Our results are consistent with gene flow
being minimal or only with genetically similar populations from the Middle Neolithic until
the late Bronze Age. In particular, the onset of the Nuragic period is not being characterized
by influx of a distinct ancestry. The data also link Sardinia from the Iron Age onwards to
the broader Mediterranean in what seems to have been a period of new dynamic contact
throughout much of the Mediterranean. A parallel study focusing on islands of the western
Mediterranean provides generally consistent results and both studies make clear the need
to add complexity to simple models of sustained isolation that have dominated the genetic
literature on Sardinia (Fernandes et al. 2019)). Finally, our results suggest some of the
current sub-structure seen on the island (e.g. Ogliastra) has emerged due to recent genetic
drift. Overall, the history of isolation, migration, and genetic drift on the island has given
rise to an unique constellation of allele frequencies, and illuminating this history will help
future efforts to understand genetic-disease variants prevalent in Sardinia and throughout

the Mediterranean, such as beta-thalassemia and G6PD deficiency.

2.5 Methods

2.5.1 Archaeological sampling

The archaeological samples used in this project derive from several collection avenues. The
first was a sampling effort led by co-author Luca Lai, leveraging a broad base of samples

from different existing collections in Sardinia, a subset of which were previously used in
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isotopic analyses to understand dietary composition and change in prehistoric Sardinia (Lai
et al., 2013)). The second was from the Seulo Caves project (Skeates et al.,[2013), an on-going
project on a series of caves that span the Middle Neolithic to late Bronze Age near the town of
Seulo. The project focuses on the diverse forms and uses of caves in the prehistoric culture
of Sardinia. The Neolithic individuals from Sassari province as well as the post-Nuragic
individuals were collected from several co-authors as indicated in Supplemental Information
Section 1. The third was a pair of Neolithic sites Noedalle and S’isterridolzu (Germanal,
1980). The fourth are a collection of post-Nuragic sites spanning from the Phoenician to
the Medieval time. All samples were handled in collaboration with local scientists and with
the approval of the local Sardinian authorities for the handling of archaeological samples
(Ministero per i Beni e le Attivita Culturali, Direzione Generale per i beni Archeologici,
request dated 11 August 2009; Soprintendenza per i Beni Archeologici per le province di
Sassari e Nuoro, prot. 12993 dated 20 Dec. 2012; Soprintendenza per i Beni Archeologici
per le province di Sassari e Nuoro, prot. 10831 dated 27 Oct. 2014; Soprintendenza per
i Beni Archeologici per le province di Sassari e Nuoro, prot. 12278 dated 05 Dec. 2014;
Soprintendenza per i Beni Archeologici per le Provincie di Cagliari e Oristano, prot. 62,
dated 08 Jan 2015; Soprintendenza Archeologia, Belle Arti e Paesaggio per le Provincie
di Sassari, Olbia-Tempio e Nuoro, prot. 4247 dated 14 March 2017; Soprintendenza per i
Beni Archeologici per le Provincie di Sassari e Nuoro, prot. 12930 dated 30 Dec. 2014;
Soprintendenza Archeologia, Belle arti e Paesaggio per le Provincie di Sassari e Nuoro,
prot. 7378 dated 9 May, 2017; Soprintendenza per i Beni Archeologici per le Provincie di
Cagliari e Oristano, prot. 20587, dated 05 Oct. 2017; Soprintendenza Archeologia, Belle
Arti e Paesaggio per le Provincie di Sassari e Nuoro, prot. 15796 dated 25 October, 2017;
Soprintendenza Archeologia, Belle Arti e Paesaggio per le Provincie di Sassari e Nuoro,
prot. 16258 dated 26 Nov. 2017; Soprintendenza per i Beni Archeologici per le province di

Sassari e Nuoro, prot. 5833 dated 16 May 2018; Soprintendenza Archeologia, Belle Arti e
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Paesaggio per la citta metropolitana di Cagliari e le province di Oristano e Sud Sardegna,
prot. 30918 dated 10 Dec 2019). For more, detailed description of the sites please see

Supplemental Information Section 1.

2.5.2  Initial sample screening and sequencing

The ancient DNA (aDNA) workflow was implemented in dedicated facilities at the Palaco-
genetic Laboratory of the University of Tiibingen and at the Department of Archaeogenetics
of the Max Planck Institute for the Science of Human History in Jena. The only exception
was for four samples from the Seulo Cave Project which had DNA isolated at the Australian
Centre for Ancient DNA and capture and sequencing carried out in the Reich lab at Harvard
University. Different skeletal elements were sampled using a dentist drill to generate bone
and tooth powder respectively. DNA was extracted following an established aDNA protocol
(Dabney et al., 2013) and then converted into double-stranded libraries retaining (Meyer
and Kircher, [2010) or partially reducing (Rohland et al. 2015) the typical aDNA substi-
tution pattern resulting from deaminated cytosines that accumulate towards the molecule’s
termini. After indexing PCR (Meyer and Kircher, 2010) and differential amplification cycles,
the DNA was shotgun sequenced on Illumina platforms. Samples showing sufficient aDNA
preservation where captured for mtDNA and ~ 1.24 million SNPs across the human genome
chosen to intersect with the Affymetrix Human Origins array and Illumina 610-Quad array
(Fu et al.,|2015]). The resulting enriched libraries were also sequenced on Illumina machines in
single-end or paired-end mode. Sequenced data were pre-processed using the EAGER pipeline
(Peltzer et al.l 2016]). Specifically, DNA adapters were trimmed using AdapterRemoval v2
(Schubert et al., [2016) and paired-end sequenced libraries were merged. Sequence alignment
to the mtDNA (RSRS) and nuclear (hgl9) reference genomes was performed with BWA (Li
and Durbin, 2009) (parameters —n 0.01, seeding disabled), duplicates were removed with

DeDup (Peltzer et al [2016) and a mapping quality filter was applied (MQ> 30). For ge-
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netic sexing, we compared relative X and Y-chromosome coverage to the autosomal coverage
with a custom script. For males, nuclear contamination levels were estimated based on
heterozygosity on the X-chromosome with the software ANGSD (Korneliussen et al., |2014).
After applying several standard ancient DNA quality control metrics, retaining individ-
uals with endogenous DNA content in shotgun sequencing >0.2%, mtDNA contamination
<4% (average 1.6%) and nuclear contamination <6% (average 1.1%) and after inspection of
contamination patterns (Supp. Fig. 2-5), we generated genotype calls for downstream pop-
ulation genetic analyses for a set of 70 individuals. To account for sequencing errors we first
removed any reads that overlapped a SNP on the capture array with a base quality score
less than 20. We also removed the last 3-bp on both sides of every read to reduce the effect
of DNA damage on the resulting genotype calls (Al-Asadi et al.| [2018). We used custom
python scripts (https://github.com/mathii/gdc3) to generate pseudo-haploid genotypes
by sampling a random read for each SNP on the capture array and setting the genotype
to be homozygous for the sampled allele. We then screened for first degree relatives using
a pairwise relatedness statistic, and identified one pair of siblings and one parent-offspring

pair within our sample (Supp. Fig. 12).

2.5.8  Processing of mtDNA data

Data originating from mtDNA capture was processed with schmutzi (Renaud et al., 2015]),
which jointly estimates mtDNA contamination and reconstructs mtDNA consensus sequences
that were assigned to the corresponding mtDNA haplogroups using Haplofind (Vianello
et al., [2013) (Supp. Data 1C). The consensus sequences were also compared with rCRS (An-
drews et al.,[1999) to build a phylogenetic tree of ancient Sardinian mitogenomes (Supp. Data 1D)
using a maximum parsimony approach with the software mtPhyl (http://eltsov.org/
mtphyl.aspx). We assigned haplogroups following the nomenclature proposed by the Phy-

loTree database build 17 (http://www.phylotree.org) (Van Oven and Kayser, 2009) and
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for Sardinian Specific Haplogroups (Olivieri et al., 2017)).

2.5.4 Inference of Y haplogroups

To determine the haplotype branch of the Y chromosome of male ancient individuals, we
analyzed informative SNPs on the Y-haplotype tree. For reference, we used markers from
https://isogg.org/tree (Version: 13.238, 2018). We merged this data with our set of
calls and identified markers available in both to create groups of equivalent markers for sub-
haplogroups. Our targeted sequencing approach yielded read count data for up to 32,681
such Y-linked markers per individual. As the conventions for naming of haplogroups are
subject to change, we annotated them in terms of carrying the derived state at a defining
SNP. We analyzed the number of derived and ancestral calls for each informative marker
for all ancient Sardinian individuals and reanalyzed male ancient West Eurasians in our
reference data set. Refined haplotype calls were based on manual inspection of ancestral and

derived read counts per haplogroup, factoring in coverage and error estimates.

2.5.5 Merging newly generated data with published data

Ancient DNA datasets from Western Eurasia and North Africa: We downloaded and pro-
cessed BAM files from several ancient datasets from continental Europe and the Middle-east
(Mathieson et al 2015} Lazaridis et al., 2016, 2017; Mathieson et al., 2018; [Lipson et al.,
2017; |Olalde et al.; 2018]). To minimize technology-specific batch effects in genotype calls
and thus downstream population genetic inference, we focused on previously published an-
cient samples that had undergone the capture protocol on the same set of SNPs targeted
in our study. We processed these samples through the same pipeline and filters described
above, resulting in a reference dataset of 972 ancient samples. Throughout our analysis, we
used a subset of n =1,088,482 variants that was created by removing SNPs missing in more

than 90% of all ancients individuals (Sardinian and reference dataset) with at least 60% of
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all captured SNPs covered.

This ancient dataset spans a wide geographic distribution and temporal range. Ancient
individuals are associated with a variety of different cultures, which provides rich context
for interpreting downstream results. Our reference ancient dataset is comprised of many
individuals sampled from a particular geographic locale, such as Germany or Hungary, in
a transect of multiple cultural changes through time (Fig. . For the PCA (Fig. ,
we additionally included a single low-coverage ancient individual (label “Pun”) dated to
361-178 BCE from a Punic necropolis on the west Mediterranean island of Ibiza (Zalloua
et al., |2018). We merged individuals into groups (Supp. Data 1E,F). For ancient samples,
these groups were chosen manually, trying to strike a balance between reducing overlap in
the PCA and keeping culturally distinct populations separate. We used geographic location
to first broadly group samples into geographic areas (such as Iberia, Central Europe and
Balkans), and then further annotated each of these groups by different time periods.

Contemporary DNA datasets from Western Eurasia and North Africa.: We downloaded
and processed the Human Origins dataset to characterize a subset of Eurasian and north
African human genetic diversity at 594,924 autosomal SNPs (Lazaridis et al., [2014). We
focused on a subset of 837 individuals from Western Eurasia and north Africa.

Contemporary DNA dataset from Sardinia.: We merged in a whole-genome sequence Sar-
dinian dataset (1,577 individuals (Chiang et al., 2018)) and called genotypes on the Human
Origin autosomal SNPs to create a dataset similar to the other modern reference populations.
For analyses on province level, we used a subset where at least three grandparents originate
from the same geographical location and grouped individuals accordingly (Fig. , n=1,085

in total).

36



2.5.6  Principal Components Analysis

We performed Principal Components Analysis (PCA) on two large-scale datasets of modern
genotypes from Western Eurasia and North Africa (837 individuals from the Human Origins
dataset) and Sardinia (1,577 individuals from the SardiNIA project). For both datasets,
we normalized the genotype matrix by mean-centering and scaling the genotypes at each
SNP using the inverse of the square-root of heterozygosity (Patterson et al. 2006]). We
additionally filtered out rare variants with minor allele frequency (ppi, < 0.05).

To assess population structure in the ancient individuals, we projected them onto the
pre-computed principal axes using only the non-missing SNPs via a least-squares approach,
and corrected for the shrinkage effect observed in high-dimensional PC score prediction (Lee
et al., 2010) (see Supp. Note 7, Supp. Fig. 23).

We also projected a number of out-sample sub-populations from Sardinia onto our PCs.
Reassuringly, these out-of-sample Sardinian individuals project very close to Humans Origins
Sardinian individuals (Fig. [2.2). Moreover, the test-set Sardinia individuals with grand-
parental ancestry from Southern Italy cluster with reference individuals with ancestry from

Sicily (not shown).

2.5.7 ADMIXTURE Analysis

We applied ADMIXTURE to an un-normalized genotype matrix of ancient and modern samples
(Alexander et al., 2009). ADMIXTURE is a maximum-likelihood based method for fitting the
Pritchard, Stephens and Donnelly model (Pritchard et al., [2000)) using sequential quadratic
programming. We first LD pruned the data matrix based off the modern Western Eurasian

and North African genotypes, using plink1.9 with parameters [--indep-pairwise 200 25 0.4].
We then ran 5 replicates of ADMIXTURE for values of K = 2,...,11. We display results for the
replicate that reached the highest log-likelihood after the algorithm converged (Supp. Fig. 19-

22).
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2.5.8 Estimation of f-statistics

We measured similarity between groups of individuals through computing an outgroup- f3
statistic (Patterson et al., 2012)) using the scikit-allel packages’s function average_patterson_f3,
http://doi.org/10.5281/zenodo.3238280). The outgroup- f3 statistic can be interpreted
as a measure of the internal branch length of a three-taxa population phylogeny and thus
does not depend on genetic drift or systematic error in one of the populations that are being
compared (Patterson et al., [2012]).

We used the ancestral allelic states as an outgroup, inferred from a multi-species align-
ment from Ensembl Compara release 59, as annotated in the 1000 Genomes Phase3 sites
vef (1000 Genomes Project Consortium et al., 2015). We fixed the ancestral allele counts
to n = 10 to avoid finite sample size correction when calculating outgroup f3-

The f3- and f4-statistics that test for admixture were computed with scikit-allel using
the functions average_patterson_f3 and average_patterson_d that implement standard
estimators of these statistics (Patterson et all 2012)). We estimated standard errors with a
block jack-knife over 1000 markers (b1en=1000). For all f-statistics calculations, we analyzed
only one allele of ancient individuals that were represented as pseudo-haploid genotypes to
avoid an artificial appearance of genetic drift - that could for instance mask a negative f3

signal of admixture.

2.5.9 Estimation of Fgp-coefficients

To measure pairwise genetic differentiation between two populations [remark=R2.3|(rather
than shared drift from an outgroup as the out-group f3 statistic does), we estimated av-
erage pairwise Fgp and its standard error via block-jackknife over 1000 markers, using
average_patterson_fst from the package scikit-allel. When analyzing ancient indi-
viduals that were represented as pseudo-haploid genotypes, we analyzed only one allele. For
this analysis, we removed first degree relatives within each population. Another estimator,
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average_hudson_fst gave highly correlated results (7“2 = 0.89), differing mostly for popu-

lations with very low sample size (n < 5) and did not change any qualitative conclusions.

2.5.10 FEstimation of admizture proportions and model testing with qpAdm

We estimated admixture fractions of a selected target population as well as model consistency
for models with one to up to five source populations as implemented in gpAdm (version 810),
which relates a set of “left” populations (the population of interest and candidate ancestral
sources) to a set of “right” populations (diverse out-groups) (Haak et al., [2015]). To assess
the robustness of our results to the choice of right populations, we ran one analysis with
a previously used set of modern populations as outgroup (Haak et al., |2015)), and another
analysis with a set of ancient Europeans that have been previously used to disentangle
divergent strains of ancestry present in Europe (Lazaridis et al., 2017). In the same qpAdm
framework, we use a likelihood-ratio test (LRT) to assess whether a specific reduced-rank
model, representing a particular admixture scenario, can be rejected in favor of a maximal
rank (“saturated”) model for the matrix of fy-values (Haak et al.,2015)). We report p-values
under the approximation that the LRT statistic is y2 distributed with degrees of freedom
determined by the number of “left” and “right” populations used in the f; calculation and
by the rank implied by the number of admixture components. The p-values we report are not
corrected for multiple testing. Formal correction is difficult as the tests are highly correlated
due to shared population data used across them; informally, motivated by a Bonferroni
correction of a nominal 0.01 p-value with 10 independent tests, we suggest only taking low
p-values (< 10’3) to represent significant evidence to reject a proposed model. The full

gpAdm results are discussed in Supp. Note 5.
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2.6 Data Availability

The aligned sequences from the data generated in this study are available through the Eu-
ropean Nucleotide Archive (ENA, accession number PRJEB35094). Processed read counts
and pseudo-haploid genotypes are available via the European Variation Archive (EVA, acces-
sion number PRJEB36033) in variant call format (VCF). The contemporary Sardinia data
used to support this study have allele frequency summary data deposited to EGA (accession
number EGAS00001002212). The disaggregated individual-level sequence data (n=1,577)
used in this study is a subset of 2,105 samples (adult volunteers of the SardiNIA cohort
longitudinal study) from Sidore et al (2015) and are available from dbGAP under project
identifier phs000313 (v4.p2). The remaining individual-level sequence data originate from
a case-control study of autoimmunity from across Sardinia, and per the obtained consent
and local IRB, these data are available for collaboration by request from the project leader

(Francesco Cucca, Consiglio Nazionale delle Ricerche, Italy).

2.7 Code Availability

The code used to process the raw-reads and create the figures in this manuscript can be
found at https://github.com/NovembrelLab/ancient-sardinia. The code to perform bias
correction in predicting out of sample PC scores is publicly available https://github.com/

jhmarcus/pcshrink.
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2.10 Supplementary Information

2.10.1 Supplementary Note 2: Validating quality and contamination of
aDNA

Joseph H. Marcus, Kushal Dey, Hussein Al-asadi, Harald Ringbauer, Cosimo Posth

Postmortem Damage Filtering

Individuals with high levels of mtDNA or X chromosome based contamination estimates were
removed in our main analysis. However, population genetic analyses could still be affected
by more subtle modern contamination. To assess this possibility, we filter out reads that do
not show a signature of post-mortem damage (pmd), as reads that carry a damage signature
are less likely to be introduced by modern contamination (Skoglund et al., [2014b)). We
used pmdtools (https://github.com/pontussk/PMDtools) to compute a likelihood-based
damage score for each read and subsequently removed reads which showed little evidence of
being damaged. We then generated pseudo-haploid genotype calls on these “pmd-filtered”
individuals and projected them onto the PCs computed in the modern west Eurasian and
north African individuals from the Human Origins dataset, as described in the Materials
and Methods. We corrected for the regression towards the mean effect in high-dimensional
PCA using a simple jackknife estimator (see Supp. Info. 7).

We found that all the samples we analyzed in the main results and that have enough
covered SNPs after pmd filtering show little difference between the pmd-filtered and cor-
responding unfiltered PC scores (Fig. [2.6). This observation supports our sample filtering
criteria, and as such our population genetic analyses are unlikely to be strongly affected by
contamination. A few individuals had too few covered SNPs after pmd filtering to make
accurate predictions of their ancestry, which possibly explains larger observed differences
between the pmd-filtered and the original projection.
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Figure 2.6: Impact of PMD filtering on PCA projections of ancient individuals.
The figure shows a visualization of PC1 and PC2 computed on modern individuals and
projecting ancient individuals from our study, alongside ancients from previously published
literature. Each arrow represents an ancient Sardinian individual, where the head of the
arrow is the “pmd-filtered” projection and the tail is the “non-pmd-filtered” projection.
We color each arrow given the following criteria: black for male individuals that had low
X-based contamination estimates (<=0.05); orange for male individuals with high X-based
contamination estimates (>0.05) or females; and blue for any remaining individuals with
less than 35 thousand covered SNPs after PMD filtering.

aRchaic

We estimate DNA damage profiles using aRchaic (Al-Asadi et al., 2018). In the aRchaic

model, mismatches are counted across all of an individual’s sequence reads with correspond-
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ing measured features, including mismatch type, mismatch position on the read, flanking
reference nucleotides, and strand orientation. Each mismatch is modeled as originating from
a mixture of K profiles defined by these features and adaptively learned during inference via
an EM algorithm. Maximum-likelihood estimates of mixture proportions for each individual
are then displayed on a stacked bar chart where each row is a different sample and each col-
ored bar represents the proportion of the ¢th individual’s mismatches coming from the kth
mismatch profile We applied aRchaic to the ancient Sardinia data for K = 2, K = 3,
and K = 4. In (Fig. 2.7] Fig. 2.8, Fig. , we observe the typical pattern representative
of ancient DNA, an enrichment of cytosine to thymine mismatches occurring preferentially
at the ends of the read (Ginolhac et al., 2011; [Jonsson et al., 2013). These observations
helps to authenticate our data as being truly ancient. Ancient and modern individuals show
distinctive mismatch profiles and as we increase K = 2 to K = 4 finer resolution sub-
structure is revealed between subgroups of individuals. Specifically, samples treated with a
protocol, UDGhalf treatment, to partially remove some of this damage signature from each
sample, cluster distinctly from both untreated ancient and modern individuals. The mod-
ern individuals we included are a sub-sample of 43 low-coverage whole genome sequences
from the 1000 Genomes Project Phase3 (PUR, FIN, CHS, GBR, CDX, MXL) and 7 deeply
sequenced individuals from the Simons Genome Diversity project. The modern individu-
als show membership in two damage profile clusters. In previous analyses (Al-Asadi et al.|
2018)), such results have been found to arise from differing sample preparation protocols, and
other plausible factors (for example differences in initial DNA quality). Importantly, none
of the ancient samples show membership in the damage profile clusters found in the modern
samples. This result is concordant with the low contamination estimates obtained for these
samples (note: the samples analyzed with aRchaic here all passed our initial contamina-
tion rate filters based on mtDNA and nuclear contamination estimates, see Materials and

Methods).
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Figure 2.7: Results of the package aRchaic for clustering mismatch profiles in
sequence read libraries for (K=4). On the left we plot a stacked bar-chart where
each row represents a bam file and the colored portions of each bar represent the mixture
proportion for a given cluster. As we can see each bam file’s mixture proportions must be
non-negative and sum to one. On the right we display representations of the inferred latent
variables that define each cluster. The left most plot displays the enrichment or depletion of
different mismatch types, the middle plot displays the enrichment probability of observing
a mismatch at a particular position along the read, and finally the right hand plot displays
an enrichment score for the mismatch type observed at a strand break on the 5" end of the
fragment. All together these plots visualize both how the bam files are loaded on to each
cluster as well as what defines each cluster.
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Figure 2.8:
Results of the package aRchaic (K=2) for clustering mismatch profiles in sequence
read libraries. See (Fig. for a detailed description of the panels.
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Figure 2.9:
Results of the package aRchaic (K=3) for clustering mismatch profiles in sequence
read libraries. See (Fig. for a detailed description of the panels.
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2.10.2 Supplementary Note 4: Pairwise similarity statistics

Harald Ringbauer, Joseph H. Marcus

Measures of pairwise genetic differentiation.

Supp. Fig. and Supp. Fig. depict the matrix of genetic similarities calculated using
fs-outgroup statistics and Fgp as described in the main text (Materials and Methods).

Numerical values are reported in Supp. Data 2A and B.

Pairwise Relatedness.

To identify close relatives within our dataset of ancient Sardinians, we directly assessed pair-
wise relatedness. We first filtered to markers that have calls in at least 20 of the ancient
Sardinian individuals, and within those for markers with (pseudo-haploid) minor allele fre-
quency (MAF) > 0.2. For the resulting set of n = 351,967 markers, we calculated pairwise

correlation of allelic state (relatedness) between individuals i and j:

(pi —p) - (pj — D)

eI ="5"G"p

: (2.1)

averaged over all markers with available (pseudo-haploid) calls for both individuals. Mean
allele frequencies (p) were calculated from the full set of ancient Sardinians. Estimation
of the allele frequency from the sample itself as well as population structure can have the
effect that this pairwise correlation deviates from 0 even for unrelated pairs of individuals.
To increase interpretability, we here centered this statistic by subtracting the mean of all
pairwise values.

Using this basic approach enabled us to identify two pairs of first-degree relatives (ex-
pected f(i,7) = 0.25). The remainder of ancient Sardinian samples likely do not contain

any first or second degree relatives (Supp. Fig. [2.12)).
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The first pair consists of a female and male sample, SUC002 and SUC003, both sampled
from the Su Crucifissu Mannu site. The broadly uniform value of estimated f(,j) around
0.25 throughout the genome (Supp. Fig. suggests that these two samples are a parent-
offspring pair, as full siblings would vary between f = 0, 0.25 and 0.5, depending on whether
0, 1 or 2 allele were co-inherited. Both samples had identical mtDNA haplogroup Jlc3,
providing some evidence that these pair of samples represent a mother and son.

The second pair consists of a female and male sample, CORO01 and COR002, both sampled
from the Corona Moltana site. The estimated value of f(i,7) centered around 0.25 with
a broad range ranging from 0 — 0.5 throughout the genome (Supp. Fig. , suggesting
that these two samples are a full-sibling pair. Both samples carry an identical mtDNA
haplogroup, K1blal.

In addition, we detected three genetic duplicates of three of our individuals (ISB00I,
LONO003, MAS82) by identifying pairs which had f(i,j) close to 0.5 (results not shown).
Identical uni-parentally inherited haplotypes and sampling location, close proximity on the
two-dimensional PCA, as well as overlapping radiocarbon ages corroborated this result. We
therefore combined the three identical pairs into three single samples, and merged their reads

for all subsequent analysis and reported data.
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Figure 2.10: Matrix of f3-outgroup “shared genetic drift” metrics of pairwise

similarity. Populations are ordered broadly by period and geography (See Sup. Data 1G
for legend to abbreviations). For post-Nuragic Sardinians, we group individuals by sample
site. The two individuals from Corona-Moltana are not shown, as only two first-degree

relatives are available.
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Figure 2.11: Matrix of Fgpr metrics of pairwise differentiation. Populations are
ordered broadly by period and geography (See Sup. Data 1G for legend to abbreviations).
For post-Nuragic Sardinians, we group individuals by sample site. These sites have typically
low number of individuals and low coverage. This increases estimation variance and explains
the sometimes negative values (which are possible for an unbiased Fgp estimators such as
the one used here). The two individuals from Corona-Moltana are not shown, as only two
first-degree relatives are available.
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Figure 2.12: Pairwise Relatedness estimates in ancient Sardinians. Upper panel:
Histogram of all pairwise relatedness estimates for ancient Sardinians, plotted for all pairs
with more than 10, 000 intersecting called SNPs. Only two pairs of samples have significantly
elevated relatedness (SUC002/SUC003 and COR001/COR002, counts seen at just larger
than 0.25). Lower panel: Estimated f(i,7) for these two putatively related sample pairs,
calculated genome-wide using bins of 1000 consecutive SNPs ordered along the reference
genome.
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2.10.3 Supplementary Note 6: Population Structure Models

Joseph H. Marcus and Tyler A. Joseph

Here we describe extended results applying variants of the Pritchard, Stephens, and
Donnelly model (Pritchard et al., 2000) to the dataset of ancient individuals and modern

individuals from west Eurasia and north Africa.

ADMIXTURE

We applied ADMIXTURE to a joint dataset of ancient and modern samples, as described in

the Materials and Methods (Alexander et al., [2009). In (Fig. [2.13] Fig. [2.14) we display a

gallery plot, i.e. the typical stacked bar plot for K = 2 through 8. For each K, we run 5

replicates of ADMIXTURE and plot the the runs reaching the highest log likelihood.

DyStruct

We compared the results from ADMIXTURE to a time-aware population structure model:
DyStruct (Joseph and Pe’er, 2019a)). DyStruct implements a novel variational inference
algorithm based on the Pritchard, Stephens, Donnelly model (Pritchard et al., 2000) that
incorporates fluctuations in allele frequencies due to differences in sample times. Specifically,
DyStruct defines a normal approximation to genetic drift that serves as a prior for allele
frequency estimates for different time points. At each time point the model is equivalent
to the PSD model, but allele frequency estimates between time points are regularized by
the prior to ensure allele frequencies estimated from samples nearby in time are closer than
allele frequencies from samples further apart. This corrects for genetic drift in populations
between samples, potentially leading to different conclusions than ADMIXTURE.

We applied DyStruct to an un-normalized genotype matrix of ancient and modern sam-

ples. Sample times were converted to generation times assuming a 25 year generation time,
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Figure 2.13: Visualization of admixture coefficients estimated by ADMIXTURE
for a subset of ancient individuals. Each row corresponds to the highest likelihood run
of five replicates of ADMIXTURE on both ancient and modern individuals from K = 2 to
K = 8. Here we display admixture coefficients for just a subset ancient individuals.

95



;n-nurl-lnqm“m-—nn-m-mnw—mw.‘“mmm l.l

1100011 e R D N O e
E!!!!!!!! O I R 14111 0 e e R

Sardinian
Spanish
Basque
French
C
|
Tunisian_Je
Moroccan_Je
&t
Libyan_Je
Greek
Turkish_Jew
Turkish
Cypriot |
Lebanese |
Jordanian |
Palestinian
Druze
BedouinA
Mozabite
Egyptian
Tunisian
Algerian
Saharawi

Figure 2.14: Visualization of admixture coefficients estimated by ADMIXTURE
for a subset of modern individuals. Each row corresponds to the highest likelihood run
of five replicates of ADMIXTURE on both ancient and modern individuals from K = 2 to
K = 8. Here we display admixture coefficients for just a subset modern individuals.
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and provided as input to DyStruct. We used default prior settings and set the effective

population size hyper-parameter to 15000. (Fig. [2.15] Fig. [2.16) displays the fitted admix-

ture coefficients for K = 2 to K = 8 . Qualitatively, DyStruct appears to place emphasis
on explaining modern populations as mixtures of ancient populations by assigning singular
clusters to ancient samples, and describing modern samples as mixtures of these ancient
clusters. Hence, ancient samples in DyStruct appear as more “extreme” versions of their
cluster assignments in ADMIXTURE. Consequently, estimates of the genetic contribution from
ancient samples into modern populations are different between both models. For instance,
modern Sardinian individuals in DyStruct appear to inherit a larger fraction of early Euro-
pean farmer ancestry, Steppe/EHG ancestry instead of WHG ancestry, and a smaller portion

of shared ancestry from Neolithic Iran and Neolithic Levant.
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Figure 2.15: Visualization of admixture coefficients estimated by DyStruct on a
subset of ancient individuals. Each row corresponds to a run of DyStruct on both ancient
and modern individuals from K = 2 to K = 8. Here we display admixture coefficients for a
subset ancient individuals.
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Figure 2.16: Visualization of admixture coefficients estimated by DyStruct on a
subset of modern individuals. Each row corresponds to a run of DyStruct on both ancient
and modern individuals from K = 2 to K = 8. Here we display admixture coefficients for a
subset of modern individuals.
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2.10.4 Supplementary Note 7: Shrinkage correction in PC score prediction

Joseph Marcus

In Fig. 2 of the main text, we perform principal components analysis (PCA) on contem-
porary west Eurasian and north African individuals and project each ancient individual onto
modern PCs, one at a time, by solving a simple least squares problem. It is known that
the estimated principal scores are biased and exhibit a regression towards the mean effect
(shrinkage towards 0 if the data is mean centered) for high dimensional data i.e. when the
number of features (SNPs) is much greater than the number of samples (individuals) (Lee
et al., 2010; |Wang et al., 2015} |Liu et al [2018). To correct for this shrinkage effect when
predicting PC scores for out of sample individuals, we implemented a shrinkage correction
factor through a jackknife re-sampling approach proposed previously (Lee et al., 2010) (for
computational experiments see https://github.com/jhmarcus/pcshrink/blob/master/
notebook/patterson-example.ipynb).

The procedure was performed through the following steps: (1) We compute a rank-
K truncated SVD on the full dataset to obtain a first set of uncorrected PC scores. (2)
We remove each individual from the dataset and compute a rank-K truncated SVD on
the remaining individuals (3) We project the held-out individual on to the PCA computed
from the dataset of step (2). Using the eigenvectors computed for each individual, we
then constructed a jackknife estimator of the bias. We then applied this correction factor
to the ancient individuals’ PC scores to create our final visualization. For comparison we
also applied two correction procedures, “shrinkmode” and “autoshrink”, implemented in
smartpca (Patterson et al., [2006). In Supp. Fig. , we see no major qualitative differences

between the corrected ancient PC scores for the three correction approaches.
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Figure 2.17: Visualization of the effect of different shrinkage correction approaches
on the top two PCs for projected ancient individuals. All panels show the results
an initial PCA on modern Western Eurasian individuals, each of whom are represented as
a black three-letter short hand for their assigned population label. We project each ancient
individual onto these modern PCs and then represent the median projected PC value of each
ancient group as a three-letter short hand colored by the group’s median age. Each panel
shows a different different correction approach (in the top left showing no correction). We
do not observe substantial differences between the three correction approaches especially in
the region around the ancient Sardinian individuals from this study.
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2.10.5 Supplementary Note 8: Assessing Geographic Substructure in

Pre-Nuragic Ancient Sardinia
Joseph Marcus and John Novembre

In our initial analysis we saw no strong signal of sub-population structure in ancient
Sardinian individuals until the post-Nurgaic period when we observed heterogeneous shifts
in ancestry depending on the sampled archaeological site (main Fig. 2). Here we investigate
in more detail if we can detect a signal of geographic substructure before the Nurgaic period.

One approach to investigate signals of fine-scale geographic structure would be to take the
genotypes of pre-Nuragic ancient Sardinian individuals and directly visualize their covariance
structure, in a low dimensional space, such as typically done with Principal Components
Analysis (PCA). Unfortunately, our ancient capture data has high levels of missingness.
For instance, the median proportion of missing sites across pairs individuals is 0.862 with
the 5th and 95th percentiles being 0.422 and 0.989. These high levels of missingness are
problematic for two reasons: 1) There are not many widely used methods that account for
missing data, while estimating population structure. 2) Interpreting the resulting structure
could be difficult as pairs of individuals have unequal levels of overlapping data, creating a
heteroskedastic noise model. As a compromise, we use the projections of ancient Sardinian
individuals onto PCs trained on modern Sardinian individuals and tried to see if these PCs
were associated with any covariates related to geography or sampling location. As mentioned
previously, using the projections onto modern Principal Components is a powerful approach
because there is very little missingness in the moderns genotypes and they are not affected by
sequencing error modes unique to ancient DNA. This means projecting the ancient genotypes
onto modern PCs helps to, in some sense, regularize the estimates of population structure for
the ancients. As a drawback, we note that this approach could potentially miss population
structure present in the ancients but absent in the moderns.

In linear models individually regressing latitude and longitude against the top 9 PC
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projections we observe that only the projection onto PC6 of the within-Sardinia variation
is significantly associated with longitude (Figure , Figure . We also subdivided
each ancient individual into broad geographic regions based on the locations of archaeolog-
ical sites with more than 3 sampled individuals (CentralEastl, CentralEast2, NorthWest1,
NorthWest2, SouthWest, and the remainder were put into a group labelled ‘< 3"). We com-
puted 1 way anovas of each PC projection vs these regional labels and found that only the
projection onto PC6 of the within-Sardinia variation was significantly associated with these
course geographic labels (Figure . Finally, we regressed the PC projections against
the radio-carbon date age estimate of each individual and found again that only PC6 was
significantly associated with age. Because age is confounded with longitude and the course
geographic region it is difficult to determine which covariate is driving the association with
PC6, although we note the association with age is much more significant than the other
covariates. Furthermore, correcting for multiple testing, the associations with PC6 would
likely not survive. Figures and contain plots of each of the PCs for reference.

In summary, at least from the projections on to PCs derived from modern data, we
could not detect any strong and significant signals of geographic structure. Higher coverage
sequencing data and perhaps haplotype based approaches to reveal signals of geographic

structure for individuals with such low levels of differentiation.
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Figure 2.18: Main Text Figure 2B Principal Component Projections vs. Longi-
tude: Here each sub-panel displays a visualization of a given PC vs Longitude, with its
corresponding fitted linear regression. We show a grid of the top 9 PCs. The text in each
sub-panel displays the sample correlation and significance of association between each PC
and longitude. PC6 is the only PC that has a significant association.
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Figure 2.19: Main Text Figure 2B Principal Component Projections vs. Latitude:
Here each sub-panel displays a visualization of a given PC vs Latitude, with its corresponding
fitted linear regression. We show a grid of the top 9 PCs. The text in each sub-panel displays
the sample correlation and significance of association between each PC and Latitude.
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Figure 2.20: Main Text Figure 2B Pr

label. We assigned individuals to the “<3” label if less than three individuals were sampled
at the same geographic position. We show a grid of the top 9 PCs. The text in each sub-panel

displays the F statistic and p-value output by computing a one-way anova.
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Figure 2.21: Main Text Figure 2B Principal Component Projections vs. Age: Here
each sub-panel displays a visualization of a given PC vs Age, with its corresponding fitted
linear regression. We show a grid of the top 9 PCs. The text in each sub-panel displays the
sample correlation and significance of association between each PC and age.
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Figure 2.22: Sardinia Principal Component Projections vs. Longitude: Here each
sub-panel displays a visualization of a given PC vs Longitude, with its corresponding fitted
linear regression. We show a grid of the top 9 PCs. The text in each sub-panel displays the
sample correlation and significance of association between each PC and longitude. PC6 is
the only PC that has a significant association.
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Figure 2.23: Sardinia Principal Component Projections vs. Latitude: Here each
sub-panel displays a visualization of a given PC vs Latitude, with its corresponding fitted
linear regression. We show a grid of the top 9 PCs. The text in each sub-panel displays the
sample correlation and significance of association between each PC and Latitude. There are
no PCs significantly associated with latitude.
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Figure 2.24: Sard

We

sub-panel displays a visualization of a given PC vs a course geographic region label.

assigned individuals to the ”<3” label if less than three individuals were sampled at the

same geographic position. We show a grid of the top 9 PCs.

The text in each sub-panel

displays the F statistic and p-value output by computing a one-way anova. PC6 is the only

PC significantly associated with these course geographic labels.
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Figure 2.25: Sardinia Principal Component Projections vs. Age: Here each sub-panel
displays a visualization of a given PC vs Age, with its corresponding fitted linear regression.
We show a grid of the top 9 PCs. The text in each sub-panel displays the sample correlation
and significance of association between each PC and age. PC6 is the only PC significantly
associated with age.
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Figure 2.26: Principal components 1-10 for the PCA shown in Main Text Fig. 2.
Each subplot has PC1 on its x-Axis. Label and color choices are described in detail in the

caption of Main Fig. 2.
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CHAPTER 3
FAST AND FLEXIBLE ESTIMATION OF EFFECTIVE
MIGRATION SURFACES

Joseph H. Marcus®, Wooseok Ha*, Rina Foygel BarberT, and John Novembre'
* denotes co-first authorship and ¥ denotes co-mentorship

This chapter has been published and can be found here Marcus et al. (2020Db)).

3.1 Abstract

An important feature in spatial population genetic data is often “isolation-by-distance,”
where genetic differentiation tends to increase as individuals become more geographically
distant. Recently, Petkova et al. (2016) developed a statistical method called Estimating
Effective Migration Surfaces (EEMS) for visualizing spatially heterogeneous isolation-by-
distance on a geographic map. While EEMS is a powerful tool for depicting spatial popu-
lation structure, it can suffer from slow runtimes. Here we develop a related method called
Fast Estimation of Effective Migration Surfaces (FEEMS). FEEMS uses a Gaussian Markov
Random Field in a penalized likelihood framework that allows for efficient optimization and
output of effective migration surfaces. Further, the efficient optimization facilitates the in-
ference of migration parameters per edge in the graph, rather than per node (as in EEMS).
When tested with coalescent simulations, FEEMS accurately recovers effective migration
surfaces with complex gene-flow histories, including those with anisotropy. Applications of
FEEMS to population genetic data from North American gray wolves shows it to perform
comparably to EEMS, but with solutions obtained orders of magnitude faster. Overall,
FEEMS expands the ability of users to quickly visualize and interpret spatial structure in

their data.

74



3.2 Introduction

The relationship between geography and genetics has had enduring importance in evolu-

tionary biology (see Felsenstein, 1982). One fundamental consideration is that individuals

who live near one another tend to be more genetically similar than those who live far apart

(Wright|, 1943, [1946; Malécot|, 1948; |Kimural |1953; Kimura and Weiss|, [1964). This phe-

nomenon is often referred to as “isolation-by-distance” (IBD) and has been shown to be

a pervasive feature in spatial population genetic data across many species (Slatkin, [1985;
Dobzhansky and Wright,, 1943} |Meirmans, 2012). Statistical methods that use both mea-

sures of genetic variation and geographic coordinates to understand patterns of IBD have

been widely applied (Bradburd and Ralphl 2019; Battey et al., 2020). One major challenge

in these approaches is that the relationship between geography and genetics can be com-

plex. Particularly, geographic features can influence migration in localized regions leading

to spatially heterogeneous patterns of genetic covariation (Bradburd and Ralph) [2019).

Multiple approaches have been introduced to model non-homogeneous IBD in spatial pop-

ulation genetic data (McRae, 2006; Duforet-Frebourg and Blum| 2014; Hanks and Hooten,

2013; [Petkova et al., 2016} |Bradburd et al., 2018; |Al-Asadi et all [2019; Safner et al.; 2011;

Ringbauer et al.; 2018). Particularly relevant to our proposed approach is the work of

et al (2016)) and Hanks and Hooten| (2013)). Both approaches model genetic distance using

the “resistance distance” on a weighted graph. This distance metric is inspired by concepts
of effective resistance in circuit theory models, or alternatively understood as the commute

time of a random walk on a weighted graph or as a Gaussian graphical model (specifically

a conditional auto-regressive process) (Chandra et al., [1996; [Hanks and Hooten| 2013; Rue|

and Held, 2005)). Additionally, the resistance distance approach is a computationally con-

venient and accurate approximation to spatial coalescent models (McRael 2006), though it

has limitations in asymmetric migration settings (Lundgren and Ralph) 2019).

Hanks and Hooten| (2013)) introduced a Bayesian model that uses measured ecological co-

5



variates, such as elevation, to help predict genetic distances across sub-populations. Specif-
ically, they use a graph-based model for genotypes observed at different spatial locations.
Expected genetic distances across sub-populations in their model are given by resistance dis-
tances computed from the edge weights. They parameterize the edge weights of the graph to
be a function of known biogeographic covariates, linking local geographic features to genetic
variation across the landscape.

Concurrently, the Estimating Effective Migration Surfaces (EEMS) method was de-
veloped to help interpret and visualize non-homogeneous gene-flow on a geographic map
(Petkoval [2013; [Petkova et al., 2016). EEMS uses resistance distances to approximate the
between-sub-population component of pairwise coalescent times in a “stepping-stone” model
of migration and genetic drift (Kimura), [1953; Kimura and Weiss| [1964). EEMS models the
within-sub-population component of pairwise coalescent times, with a node-specific param-
eter. Instead of using known biogeographic covariates to connect geographic features to
genetic variation as in Hanks and Hooten| (2013)), EEMS infers a set of edge weights (and
diversity parameters) that explain the genetic distance data. The inference is based on a
hierarchical Bayesian model and a Voronoi-tessellation-based prior to encourage piece-wise
constant spatial smoothness in the fitted edge weights.

EEMS uses Markov Chain Monte Carlo (MCMC) and outputs a visualization of the
posterior mean for effective migration and a measure of genetic diversity for every spatial
position of the focal habitat. Regions with relatively low effective migration can be inter-
preted to have reduced gene-flow over time whereas regions with relatively high migration
can be interpreted as having elevated gene-flow. EEMS has been applied to multiple sys-
tems to describe spatial genetic structure, but despite EEMS’s advances in computational
tractability with respect to the previous work, the MCMC algorithm it uses can be slow to
converge, in some cases leading to days of computation time for large datasets (Peter et al.,

2018).
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These inference problems from spatial population genetics are related to a growing area of
interest in the graph signal processing literature referred to as “graph learning” (Dong et al.,
2019; Mateos et al.,2019). In graph learning, a noisy signal is measured as a scalar value at a
set of nodes from the graph, and the aim is then to infer non-negative edge weights that reflect
how spatially “smooth” the signal is with respect to the graph topology (Kalofolias, 2016]).
In population genetic settings, this scalar could be an allele frequency measured at locations
in a discrete spatial habitat with effective migration rates between sub-populations. Like
the approach taken by [Hanks and Hooten| (2013), one widely used representation of smooth
graph signals is to associate the smoothness property with a Gaussian graphical model where
the precision matrix has the form of a graph Laplacian (Dong et al., 2016; Egilmez et al.|
2016)). The probabilistic model defined on the graph signal then naturally gives rise to a
likelihood for the observed samples, and thus much of the literature in this area focuses
on developing specialized algorithms to efficiently solve optimization problems that allow
reconstruction of the underlying latent graph. For more information about graph learning
and signal processing in general see the excellent survey papers of |Dong et al. (2019) and
Mateos et al.| (2019).

To position the present work in comparison to the “graph learning” literature, our con-

tributions are twofold:

e In population genetics, it is impossible to collect individual genotypes across all the
geographic locations and, as a result, we often work with many, often the majority, of
nodes having missing data. As far as we are aware, none of the work in graph signal
processing considers this scenario and thus their algorithms are not directly applicable
to our setting. In addition, if the number of the observed nodes is much smaller
than the number of nodes of a graph, one can project the large matrices associated
with the graph to the space of observed nodes, therefore allowing for fast and efficient

computation.
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e On the other hand, highly missing nodes in the observed signals can result in sig-
nificant degradation of the quality of the reconstructed graph unless it is regularized
properly. Motivated by the Voronoi-tessellation-based prior adopted in EEMS (Petkova
et al., [2016), we propose regularization that encourages spatial smoothness in the edge

weights.

Building on advances in graph learning, we introduce a method, Fast Estimation of
Effective Migration Surfaces (FEEMS), that uses optimization rather than MCMC to obtain
penalized-likelihood-based estimates of effective migration parameters. In contrast to EEMS
which uses a node-specific parameterization of effective migration, we optimize over edge-
specific parameters allowing for more flexible migration processes to be fit, such as spatial
anisotropy, in which the migration process is not invariant to rotation of the coordinate
system (e.g., migration is more extensive along a particular axis). We develop a fast quasi-
Newton optimization algorithm (Nocedal and Wright, |2006) and apply it to a dataset of
gray wolves from North America. The output is comparable to the results of EEMS but is
provided in orders of magnitude less time. With this improvement in speed, FEEMS opens
up the ability to perform fast exploratory and iterative data analysis of spatial population

structure.

3.3 Results

3.3.1 Quverview of FEEMS

Figure shows a visual schematic of the FEEMS method. The input data are genotypes
and spatial locations (e.g., latitudes and longitudes) for a set of individuals sampled across
a geographic region. We construct a dense spatial grid embedded in geographic space where
nodes represent sub-populations, and we assign individuals to nodes based on spatial prox-

imity (see Supp. Fig. for a visualization of the grid construction and node assignment
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procedure). The density of the grid is user defined and must be explored to appropriately
balance model-mis-specification and computational burden. As the density of the lattice in-
creases, the model is similar to discrete approximations used for continuous spatial processes,
but the increased density comes at the cost of computational complexity.

We assume exchangeability of individuals within each sub-population and estimate allele
frequencies, f](k), for each sub-population, indexed by k, and single nucleotide polymor-
phism (SNP), indexed by j, under a simple Binomial sampling model. We also use the
recorded sample sizes at each node to model the precision of the estimated allele frequency.
The use of allele frequencies allows a number of advantages in this context: (1) Allele fre-
quencies can be more easily shared between researchers than individual genotypes due to
privacy concerns, which is especially relevant in human population genetic studies; (2) We
usually gain large computational savings in memory and speed because in most population
genetic studies the number of observed locations, in which allele frequencies are estimated,
is smaller than the total number of individuals sampled i.e. many individuals are sampled
from the same spatial location.

With the estimated allele frequencies in hand, we model the data at each SNP using
an approximate Gaussian model whose covariance is shared across all SNPs, in other words
we assume that the observed frequencies at each SNP is an independent realization of the
same spatial process after rescaling by SNP-specific variation factors. The latent frequency
variables, f;(k), are modeled as a Gaussian Markov Random Field (GMRF) with a sparse
precision matrix determined by the graph Laplacian and a set of residual variances. The
graph’s weighted edges, denoted by w;; between nodes 7 and j, represent gene-flow between
the sub-populations (Friedman et al., [2008; [Hanks and Hooten, |2013; [Petkova et al., 2016]).
We analytically marginalize out the latent frequency variables and use penalized restricted
maximum likelihood to estimate the edge weights of the graph after removing the SNP-

specific mean allele frequencies by projecting the data onto contrasts (Felsenstein, 1982;
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Hanks and Hooten, [2013; Petkova et al., 2016)). Our overall goal is to solve the following

optimization problem:

w = argmin {(w) + ¢ o(w),
l<w<u

where w is a vector that stores all the unique elements of the weighted adjacency matrix,
[ and u are element-wise non-negative lower and upper bounds for w, and ¢(w) is the
negative log-likelihood function that comes from the GMRF model described above. The
penalty, ¢ o(w), controls how constant or smooth the output migration surface will be and
is controlled by the hyperparameters A\ and «. Specifically, the hyperparameters determine
a penalty function based on the squared differences between edge weights for pairs of edges

that share a common node,

Sx.alw) = S A(w + o log(w)]3
where A is a signed graph incidence matrix indicating if two edges are connected to the
same node. Note that A controls the overall strength of the penalization placed on the
output of migration surface while « controls the relative strength of the penalization on
the logarithmic scale. Thus, if the model is highly penalized, the fitted surface will favor
a homogeneous spatial process on the graph across orders of magnitude of edge weights
and if the penalty is low, more flexible graphs can be fit, but are potentially prone to over-
fitting. Akin to the choice in admixture models of the number of latent ancestral populations
or clusters (K), inspecting the outputs across a series of A and « values is recommended
and demonstrated (below). We use sparse linear algebra routines to efficiently compute
the objective function and gradient of our parameters, allowing the use of widely applied

quasi-Newton optimization algorithms (Nocedal and Wright| 2006 implemented in standard
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Figure 3.1: Schematic of the FEEMS model: The full panel shows a schematic of going
from the raw data (spatial coordinates and gentoypes) through optimization of the edge
weights, representing effective migration, to convergence of FEEMS to a local optima. (A)
Map of sample coordinates (black points) from a dataset of gray wolves from North America
(Schweizer et al., 2016). The input to FEEMS are latitude and longitude coordinates as
well as genotype data for each sample. (B) The spatial graph edge weights after random
initialization uniformly over the graph to begin the optimization algorithm. (C) The edge
weights after 20 iterations of running FEEMS, when the algorithm has not converged yet.
(D) The final output of FEEMS after the algorithm has fully converged. The output is
annotated with important features of the visualization.

numerical computing libraries like scipy (Virtanen et al., 2020). See the materials and

methods section for a detailed description of the statistical models and algorithms used.
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3.3.2  FEvaluating FEEMS on “out of model” coalescent simulations

While our statistical model is not directly based on a population genetic process, it is useful
to see how it performs on simulated data under the coalescent stepping stone model. In these
simulations we know, by construction, the model we fit (FEEMS) is different from the true
model we simulate data under (the coalescent), allowing us to assess the robustness of the fit
to a controlled form of model mis-specification. In Figure|3.2|we use msprime (Kelleher et al.|
2016) to recapitulate and extend the results of |Petkova et al.| (2016), simulating data under
the coalescent in three simple migration scenarios with two different spatial sampling designs.
Note that in Supp. Fig. 3.6 we display a larger set of simulations with additional sampling
configurations. For brevity, here we only show results for A = .001 and a = 50, based on
values that performed well after experimental tuning. In Supp. Fig. and Supp. Fig. B.8|
we also show results varying A and « for two migration scenarios with one particular sampling
design.

The first migration scenario (Figure —C) is a spatially homogeneous model where all
the migration rates are set to be a constant value on the graph, this is equivalent to simulating
data under an homogeneous isolation-by-distance model. In the second migration scenario
(Figure —E) we simulate a non-homogeneous process by representing a geographic barrier
to migration, lowering the migration rates by a factor of 10 in the center of the habitat
relative to the left and right regions of the graph. Finally, in the third migration scenario
(Figure —I) we simulate a pattern which corresponds to anisotropic migration with edges
that point east/west being assigned to a five-fold higher migration rate than edges pointing
north/south. For each migration scenario we simulate two sampling designs. In the first
“dense-sampling” sampling design (Figure ,E,I) we sample individuals for every node of
the graph. Next, in the “sparse-samplng” sampling design (Figure ,F ,J) we randomly
sample individuals for only 20% of the nodes.

As expected, FEEMS performs best when all the nodes are sampled on the graph,
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Figure 3.2: FEEMS fit to coalescent simulations: We run FEEMS on coalescent sim-
ulations, varying the migration history (columns) and sampling design (rows). The first
column (A-C) shows the ground-truth and fit of FEEMS to coalescent simulations with a
homogeneous migration history i.e. a single migration parameter for all edge weights. Note
that the ground-truth simulation figures (A,D,F) display coalescent migration rates, not fit-
ted effective migration rates output by FEEMS. The second column (D-F) shows the ground
truth and fit of FEEMS to simulations with a heterogeneous migration history i.e. reduced
gene-flow, with 10 fold lower migration, in the center of the habitat. The third column (H-J)
shows the ground truth and fit of FEEMS to an anisotropic migration history with edge
weights facing east-west having five fold higher migration than north-south. The second row
(B,E,H) shows a sampling design with no missing observations on the graph. The final row
(C,F I) shows a sampling design with 80% of nodes missing at random.

sparse sampling
(FEEMS results)

i.e. when there is no missing data (Figure [3.2B,E,H). Interestingly, in the simulated scenarios
with many missing nodes, FEEMS can still partly recover the migration history, including

the presence of anisotropic migration (Figure ) A sampling scheme with a central gap
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leads to a slightly narrower barrier in the heterogeneous migration scenario (Supp. Fig. |3.6[)
and for the anisotropic scenario, a degree of over-smoothness in the northern and southern
regions of the center of the graph (Supp. Fig. [3.6[N). For the missing at random sampling
design, FEEMS is able to recover the relative edge weights surprisingly well for all scenar-
ios, with the inference being the most challenging when there is anisotropic migration. We
emphasize that the potential for FEEMS to recover anisotropic migration is novel relative to
EEMS, which was parameterized for fitting non-stationary isotropic migration histories and
produces banding patterns perpendicular to the axis of migration when applied to data from
anisotropic coalescent simulations (see Petkova et al.| (2016]) supplementary figure 2; see also
Supp. Note “FEdge versus node parameterization” for a related discussion). Overall, even
with sparsely sampled graphs, FEEMS is able to produce visualizations that qualitatively

capture the migration history in “out of model” coalescent simulations.

3.8.8  Application of FEEMS to genotype data from North American gray

wolves

To assess the performance of FEEMS on real data we used a previously published dataset
of 111 gray wolves sampled across North America typed at 17,729 SNPs (Schweizer et al.|
2016)), Supp. Fig. . This dataset has a number of advantageous features that make it a
useful test case for evaluating FEEMS: (1) The broad sampling range across North America
includes a number of relevant geographic features that, a priori, could conceivably lead to
restricted gene-flow averaged throughout the population history. These geographic features
include mountain ranges, lakes and island chains. (2) The scale of the data is consistent
with many studies for non-model systems whose spatial population structure is of interest.
For instance, the relatively sparse sampling leads to a challenging statistical problem where
there is the potential for many unobserved nodes (sub-populations), depending the density

of the grid chosen. Before applying FEEMS, we confirmed a signature of spatial structure in
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Figure 3.3: The fit of FEEMS to the North American gray wolf dataset for different
choices of the smoothing regularization parameter \: (A) A\ = 10, (B) A = 1072, (C)
A =1073, and (D) A = 107°. As expected, when A decreases from large to small (A-D), the
fitted graph becomes less smooth and presumably eventually over-fits to the data, revealing
a patchy surface in (D), whereas, earlier in the regularization path FEEMS fits a completely
homogeneous surface with all edge weights having the same fitted value, like in (A).

the data through regressing genetic distances on geographic distances and top genetic PCs

against geographic coordinates (Supp. Fig.|3.10} 3.11} [3.12] (3.13).

We ran FEEMS with four different values of the smoothness parameter, A (from large
A =10 to small A = 10_5), while setting the tuning parameter « to a value that we found
that worked for multiple data applications and simulations (a = 50, Figure . One inter-
pretation of our regularization penalty is that it encourages fitting models of homogeneous
and isotropic migration. When A is very large (Figure [3.3|A), we see FEEMS fits a model
where all of the edge weights on the graph nearly equal the mean value, hence all the edge

weights are colored white in the relative log-scale. In this case, FEEMS is fitting a com-
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pletely homogeneous migration model where all the estimated edge weights get assigned
the same value on the graph. Next, as we sequentially lower the penalty parameter and
(Figure ,C,D) the fitted graph begins to appear more complex and heterogeneous as
expected (discussed further below).

We also ran multiple replicates of ADMIXTURE for K = 2 to K = 8, selecting for each
K the highest likelihood run among replicates to visualize (Supp. Fig. . As expected
in a spatial genetic dataset, nearby samples have similar admixture proportions and con-
tinuous gradients of changing ancestries are spread throughout the map (Bradburd et al.,
2018)). Whether such gradients in admixture coefficients are due to isolation by distance
or specific geographic features that enhance or diminish the levels of genetic differentiation
is an interpretive challenge. Explicitly modeling the spatial locations and genetic distance
jointly using a method like EEMS or FEEMS is exactly designed to explore and visualize
these types of questions in the data (Petkova, [2013; |Petkova et al., 2016]).

Once we have run FEEMS for a grid of regularization parameters it is helpful to look
more closely at particular solutions that find a balance between spatial homogeneity and
complexity (Figure [4.5]). Spatial features in the FEEMS visualization qualitatively matches
the structure plot output from ADMIXTURE using K = 6 (Supp. Fig. . We add labels
on the figure to highlight a number of pertinent features: (A) St. Lawrence Island, (B)
the coastal islands and mountain ranges in British Columbia, (C) The boundary of Boreal
Forest and Tundra eco-regions in the Shield Taiga, (D) Queen Elizabeth Islands, (E) Hudson
Bay, and (F) Baffin Island. Many of these features were described in [Schweizer et al.| (2016))
by interpretation of ADMIXTURE, PCA, and Fgp statistics. FEEMS is able to succinctly
provide an interpretable view of these data in a single visualization. Indeed many of these
geographic features plausibly impact gray wolf dispersal and population history (Schweizer

et al., 2016).
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FEEMS fit with A = 1073 and « = 50

Figure 3.4: FEEMS applied to a population genetic dataset of North American
gray wolves: We show the fit of FEEMS to a previously published dataset of North Ameri-
can gray wolves. This fit corresponds to a setting of tuning parameters at A = 1073, o = 50.
We show the fitted parameters in log-scale with lower effective migration shown in orange and
higher effective migration shown in blue. The bold text letters highlights a number of known
geographic features that could have plausibly influenced Wolf migration over time: (A) St.
Lawerence Island, (B) Coastal mountain ranges in British Columbia, (C) The boundary of
Boreal Forest and Tundra eco-regions in the Shield Taiga, (D) Queen Elizabeth Islands, (E)
Hudson Bay, and (F) Baffin Island. We also display two insets to help interpret the results
and compare them to EEMS. In the top left inset we show a map of sample coordinates
colored by an ecotype label provided by [Schweizer et al.| (2016]). These labels were devised
using a combination of genetic and ecological information for 94 “un-admixed” gray wolf
samples, and the remaining samples were labeled “Other”. We can see these ecotype labels
align well with the visualization output provided by FEEMS. In the right inset we display a
visualization of the posterior mean effective migration rates from EEMS.
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3.3.4  Comparison to EEMS

We also ran EEMS on the same gray wolf dataset described throughout this manuscript.
We used default parameters provided by EEMS but set the number of burn-in iterations to
20 x 108, MCMC iterations to 50 x 109, and thinning intervals to 2000. We were unable to
run EEMS in a reasonable run time (< 3 days) for the dense spatial grid of 1207 nodes so
we ran EEMS and FEEMS on a sparser graph with 307 nodes.

We find that FEEMS is multiple orders of magnitude faster than EEMS, even when
running multiple runs of FEEMS for different regularization settings on both the sparse
and dense graphs (Table . The total FEEMS run-times in Table also include the
time needed to construct relevant graph data structures and initialization. We note that
constructing the graph and fitting the model with very low regularization parameters are
the most computationally demanding steps in running FEEMS.

We find that many of the same geographic features that have reduced or enhanced gene-
flow are concordant between the two methods. The EEMS visualization, qualitatively, best
matches solutions of FEEMS with lower regularization penalties (Figure Supp. Fig.[3.15));
however, based on the ADMIXTURE results and visual inspection in relation to known
geographical features, we find these solutions to be less satisfying compared to those with
higher penalties and believe the solutions output from lower penalties are likely overfitting
the data. Indeed, we only see a small gain in the RZ when comparing observed and fitted
distances computed from the output graphs of Figure and Figure (Supp. Fig. .
We note that in many of the EEMS runs the MCMC appears to not have converged (based

on visual inspection of trace plots) even after a large number of iterations.

3.4 Discussion

FEEMS is a fast approach that provides an interpretable view of spatial population struc-

ture in real datasets and simulations. We want to emphasize that beyond being a fast
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H Method Sparse Grid (run-time) Dense Grid (run-time) H

EEMS 27.43hrs N/A
FEEMS (total) 13.02s 3.54min
FEEMS (init) 8.25s 2min 11s

FEEMS (A = 10) 604ms 10.7s
FEEMS (A = 1072) 442ms 7.78s
FEEMS (A = 1073) 917ms 9.18s
FEEMS (A = 107°) 2.81s 53.9s

Table 3.1: Runtimes for FEEMS and EEMS on the North American gray wolf
dataset: We show a table of runtimes for FEEMS and EEMS for two different grid densities,
a sparse grid with 307 nodes and a dense grid with 1207 nodes. In the first two rows we
show the total runtimes for both EEMS and FEEMS. In the following rows we show the
total runtime for FEEMS, broken down into multiple components i.e. initialization time and
the time to fit four solutions with different smoothing parameters.
optimization approach for inferring population structure, our parameterization of the likeli-
hood opens up a number of exciting new directions for improving spatial population genetic
inference. Notably, one major difference between EEMS and FEEMS is that in FEEMS each
edge weight is assigned its own parameter to be estimated whereas, in EEMS, each node
is assigned a parameter and each edge is constrained to be the average effective migration
between the nodes it connects (see Materials and Methods and Supp. Note “Edge versus
node parameterization” for details). The node-based parameterization in EEMS makes it
difficult to incorporate anisotropy and asymmeteric migration (Lundgren and Ralph| 2019)).
As we have shown here, FEEMS’s simple and novel parameterization already has potential
to fit anisotropic migration (as shown in coalescent simulations) and may be extendable to
other more complex migration processes (such as long-range migration, see below).
FEEMS estimates one set of graph edge weights for each setting of the tuning parame-
ters A and a which control the smoothness of the fitted edge-weights. One general challenge,
which is not unique to this method, is selecting a particular set of tuning parameters. A nat-

ural approach is to use cross-validation, which estimates the out-of-sample fit of FEEMS for

a particular model (selection of A and «). While cross-validation might be useful for assess-
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ing the choice of tuning parameters, in preliminary experiments applying cross validation
by holding out individuals or observed nodes, and assessing performance via the model-
likelihood, we found too much variation across cross-validation folds to reliably tune A and
« (results not shown). In order to reduce the variation across different folds, we also applied
cross-validation with standardization (Bradburd et al., 2018]), where the model-likelihood
is standardized for each fold, and approximate leave-one-out cross-validation |Wilson et al.
(2020), where the leave-one-out CV likelihood is approximated with a few steps of the quasi-
Newton algorithm warm-started from the full training set migration surfaces. Neither of
these approaches were promising for reliable model selection. We suspect this poor perfor-
mance is due to spatial dependency of allele frequencies and the large fraction of unobserved
nodes. In unsupervised learning settings like this one, it is not obvious that estimates of
out of sample fit will always lead to the most biologically interpretable models and some-
times other metrics can be preferable, such as those based on the stability of the solution
to perturbations like variable initialization (Wu et al., 2016)). Stability-based approaches for
model selection could be a fruitful future direction to develop a formal procedure for tuning.
Currently, we recommend fitting FEEMS with several values of the tuning parameters and
interpreting the results in an integrative fashion with other analyses.

We find it useful to fit FEEMS to a sequential grid of regularization parameters and to
look at what features are consistent and vary across multiple fits. Informally, one can gain
an indication of the strongest features in the data by looking at the order they appear in
the regularization path i.e. what features overcome the strong penalization of smoothness
in the data and that are highly supported by the likelihood. For example, early in the
regularization path, we see regions of reduced gene-flow occurring in the west coast of Canada
that presumably correspond to Coastal mountain ranges and islands in British Columbia
(Figure[3.3B) and this reduced gene-flow appears throughout more flexible fits with lower .

Beyond tuning the unknown parameters, we encountered other challenges when solving
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this difficult optimization problem. Notably, the objective function we optimize is non-convex
so any visualization output by FEEMS should be considered a local optimum and, as a result,
with different initialization we could get different results. Overall, we found the output
visualization was not sensitive to initialization, and thus our default setting is constant
initialization fitted under an homogeneous isolation by distance model (See Materials and
Methods).

When comparing to EEMS, we found FEEMS to be much faster (Table . While this
is encouraging, care must be taken because the goals and outputs of FEEMS and EEMS have
a number of differences. FEEMS fits a sequential grid of solutions for different regularization
parameters whereas EEMS infers a posterior distribution and outputs the posterior mean as
a point estimate. So in order to compare the results, in principal, one must compare many
FEEMS visualizations to a single EEMS visualization. FEEMS is not a Bayesian method
and unlike EEMS, which explores the entire landscape of the posterior distribution, FEEMS
returns a particular point estimate: a local minimum point of the optimization landscape.
Setting the prior hyper-parameters in EEMS act somewhat like a choice of tuning parameters,
except that EEMS uses hierarchical priors that in principle allow for exploration of multiple
scales of spatial structure in a single run; this arguably results in less sensitivity to user-based
settings but requires potentially long computation times for adequate MCMC convergence.

One natural extension to FEEMS, pertinent to a number of biological systems, is incor-
porating long-range migration (Pickrell and Pritchard, 2012; Bradburd et al. 2016]). In this
work we have used a triangular lattice embedded in geographic space and enforced smooth-
ness in nearby edge weights through penalizing their squared differences (see Materials and
Methods). We could imagine changing the structure of the graph by adding edges to allow
for long-range connection; however our current regularization scheme would not be appropri-
ate for this setting. Instead, we could imagine adding an additional penalty to the objective,

which would only allow a few long range connections to be tolerated. This could be con-
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sidered to be a combination of two existing approaches for graph-based inference, graphical
lasso (GLASSO) and graph Laplacian smoothing, combining the smoothness assumption
for nearby connections and the sparsity assumption for long-range connections (Friedman
et al., 2008; Wang et al., |2016). Another potential methodological avenue to incorporate
long-range migration is to use a “greedy” approach. We could imagine adding long-range
edges one a time, guided by re-fitting the spatial model and taking a data driven approach
to select particular long-range edges to include. The proposed greedy approach could be
considered to be a spatial graph analog of TreeMix (Pickrell and Pritchard, |2012).

Another interesting extension would be to incorporate asymmetric migration into the
framework of resistance distance and Gaussian Markov Random Field based models. Re-
cently, [Hanks| (2015)) developed a promising new framework for deriving the stationary dis-
tribution of a continuous time stochastic process with asymmetric migration on a spatial
graph. Interestingly, the expected distance of this process has a similar “flavor” to the re-
sistance distance based models, in that it depends on the pseudo-inverse of a function of
the graph Laplacian. [Hanks (2015)) used MCMC to estimate the effect of known covariates
on the edge weights of the spatial graph. Future work could adapt this framework into the
penalized optimization approach we have considered here, where adjacent edge weights are
encouraged to be smooth.

Finally, when interpreted as mechanistic rather than statistical models, both EEMS and
FEEMS implicitly assume time-stationarity, so the estimated migration parameters should
be considered to be “effective” in the sense of being averaged over time in a reality where
migration rates are dynamic and changing (Pickrell and Reich, 2014). The MAPS method
is one recent advance that utilizes long stretches of shared haplotypes between pairs of
individuals to perform Bayesian inference of time varying migration rates and population
sizes (Al-Asadi et al| [2019). With the growing ability to extract high quality DNA from

ancient samples, another exciting future direction would be to apply FEEMS to ancient
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DNA datasets over different time transects in the same focal geographic region to elucidate
changing migration histories (Mathieson et al., [2018)). There are a number of technical
challenges in ancient DNA data that make this a difficult problem, particularly high levels
of missing and low-coverage data. Our modeling approach could be potentially more robust,
in that it takes allele frequencies as input, which may be estimable from dozens of ancient
samples at the same spatial location, in spite of high degrees of missingness (Korneliussen
et al., 2014).

In closing, we look back to a review titled “How Can We Infer Geography and History
from Gene Frequencies?” published in 1982 (Felsenstein, |1982). In this review, Felsenstein
laid out fundamental open problems in statistical inference in population genetic data, a few

of which we restate as they are particularly motivating for our work:

e “For any given covariance matrix, is there a corresponding migration matrix which

would be expected to lead to it? If so, how can we find it?”

e “How can we characterize the set of possible migration matrices which are compatible

with a given set of observed covariances?”

e “How can we confine our attention to migration patterns which are consistent with the

known geometric co-ordinates of the populations?”

e “How can we make valid statistical estimates of parameters of stepping stone models?”

The methods developed here aim to help address these longstanding problems in statis-
tical population genetics and to provide a foundation for future work to elucidate the role

of geography and dispersal in ecological and evolutionary processes.
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3.5 Methods

3.5.1 Model description

See Supp. Note “Mathematical notation” for a detailed description of the notation used to
describe the model. To visualize and model spatial patterns in a given population genetic
dataset, FEEMS uses an undirected graph, G = (V, £) with |V| = d, where nodes represent
sub-populations and edge weights (wij)(z’,j)eg represent the level of gene-flow between sub-
populations ¢ and j. For computational convenience, we assume G is a highly sparse graph,
specifically a triangular grid that is embedded in geographic space around the sample coor-
dinates. We observe a genotype matrix, Y € R"*P_ with n rows representing individuals and
p columns representing SNPs. We imagine diploid individuals are sampled on the nodes of §
so that y;;(k) € {0,1, 2} records the count of some arbitrarily predefined allele in individual
7, SNP j, on node k € V. We assume a commonly used simple Binomial sampling model for

the genotypes:

ym(k)|fj(k) ~ Binomial(2, f](k’)), (3.1)
where conditional on f;(k) for all j, &k, the y;;(k)’s are independent. We then estimate an
allele frequency at each node and SNP by maximum likelihood:

R ng ii(k
fi(k) = —21—215]: ( ),

where nj, is the number of individuals sampled at node k. We estimate allele frequencies at o
of the observed nodes out of d total nodes on the graph. From (3.1)), the estimated frequency
in a particular sub-population, conditional on the latent allele frequency, will approximately

follow a Gaussian distribution:
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FIF NN(fj(k)’fj(k)(l—fj(k)))

Using vector notation, we represent the joint model of estimated allele frequencies as:

Filfj ~ No (Afj, diag(df,n)>, (3.2)

where f] is a 0 x 1 vector of estimated allele frequencies at observed nodes, f; is a d x 1
vector of latent allele frequencies at all the nodes (both observed and unobserved), and A is
a o x d node assignment matrix where Agy = 1 if the kth estimated allele frequency comes
from sub-population £ and Ay, = 0 otherwise; and diag(dy ) denotes a o x o diagonal
matrix whose diagonal elements corresponds to the appropriate variance term at observed
nodes.

To summarize, we estimate allele frequencies from a subset of nodes on the graph and
define latent allele frequencies for all the nodes of the graph. The assignment matrix A maps
these latent allele frequencies to our observations. Our summary statistics (the data) are
thus (FA’, n) where Fisaox p matrix of estimated allele frequencies and n is a 0 x 1 vector
of sample sizes for every observed node. We assume the latent allele frequencies come from

a Gaussian Markov Random Field:

fi~Ng <Hj17 (1 — Mj)LT), (3.3)

where L is the graph Laplacian and p; represents the average allele frequency across all of the
sub-populations. Note that the multiplication by the SNP-specific factor uj(l — Mj) ensures
that the variance of the latent allele frequencies vanishes as the average allele frequency
approaches to 0 or 1. One interpretation of this model is that the expected squared Euclidean
distance between latent allele frequencies on the graph, after being re-scaled by p;(1 — p;),

is exactly the resistance distance of an electrical circuit (McRael 2006; Hanks and Hooten),
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2013):

E| (f;(0) — f;(k))?
Tk = [ﬂﬂlw) ]=(%—OMTUﬁ%—%J=LL—24k+Lh7

where 0; is a one-hot vector (i.e., storing a 1 in element i and zeros elsewhere). It is known
that the resistance distance is equivalent to the expected commute time between nodes i
and k of a random walker on the weighted graph G (Chandra et al. |1996). Additionally,
the model forms a Markov random field, and thus any latent allele frequency f; (i) is
conditionally independent of all other allele frequencies given its neighbors which are encoded
by nonzero elements of L (Lauritzen, 1996; Koller and Friedman), 2009).E|

Using the law of total variance formula, we can derive from , an analytic form
for the marginal likelihood. Before proceeding, however, we further approximate the model
by assuming %fj(k:)(l —fi(k)) ~ O’Q[Lj(l — ;) for all j and k. This assumption is mainly for
computational purposes and may be a coarse approximation in general. On the other hand,
the assumption is not too strong if we exclude SNPs with extremely rare allele frequencies,
and more importantly, we find it leads to a good empirical performance, both statistically
and computationally. With this approximation the residual variance parameter o2 is still
unknown and needs to be estimated.

With the above considerations, we arrive at the following marginal likelihoodﬂ

fj ~ m Ny (ujl, ALTAT ¢ 02diag(n_1)>, (3.4)

where diag(n™!) is a o x o diagonal matrix computed from the sample sizes at observed

1. Specifically, since we use a triangular grid embedded in geographic space to define the graph G, the
pattern of nonzero elements is prefixed by the structure of the sparse traingular grid.

2. To be more precise, under (3.2)), (3.3), the law of total variance formula leads to specific formulas for
the mean and variance structure as given in (3.4]), whereas the marginal distribution of f; is not necessarily
a Gaussian distribution. We simply chose the Gaussian distribution here to enable easy calculation for the

data likelihood. We believe the specific choice of the likelihood is not that critical as long as the first two
moments of the distribution can be matched closely.
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nodes. To remove the SNP means we transform the estimated frequencies by a contrast

matrix, C € R(O_l)xo, that is orthogonal to the one-vector:

CFi~/uj(1 = pj) - Ny_q (0, CAL'ATCT + asziag(n_l)CT) (3.5)

A /\/\T
Letting 3 = %FSFS be the o x o sample covariance matrix of estimated allele frequencies
after rescaling, i.e. F\S is a matrix formed by rescaling the columns of F by /i (1 — i),
where fi; is an estimate of the average allele frequency (see above). We can then express the

model in terms of the transformed sample covariance matrix:

p-CECT ~W, 4 (CALTATCT +o?Cdiag(n™1)CT, p>, (3.6)

where W), denotes a Wishart distribution with p degrees of freedom.ﬁ Note we can equiv-
alently use the sample squared Euclidean distance (often refereed to as a genetic distance)
as a summary statistic: letting D be the genetic distance matrix with D;; = Z§=1( f; (1) —
Fj(®))2/p - iy (1 = fij), we have

A~

D = 1diag(2) " + diag(Z)1" — 23,

and so

chc' = —2csCT,

using the fact that the contrast matrix C' is orthogonal to the one-vector. Thus we can

use the same spatial covariance model implied by the allele frequencies once we project the

3. Our model says that the p SNPs are independent. This assumption is unlikely to hold when
SNPs are in close chromosomal proximity are analyzed due to linkage disequilibrium. In (Petkova et al.,
2016), they introduce the effective degree of freedom v € [0 — 1,p] to account for such dependency and
instead consider the model v-CECT ~ 1 (CALTATCT + Usziag(n’l)CT, v) with v being estimated
alongside other model parameters. In FEEMS, we note that the degree of freedom parameter does not affect
the point estimate produced by our algorithm.
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distances on to the space of contrastsﬁ

—g .cbc’ ~w, 4 <C’ALTATCT +o2Cdiag(n1)CT, p).

Overall, the negative log-likelihood function implied by our spatial model is (ignoring con-

stant terms):

~ -1 A
l(w,c*CcECT) =p- tr<(CALTATCT + J2Cdiag(n_1)CT> CECT>
-1
— p - log det ((JALTATCT + aQCdiag(n_l)CT> . (3.7)

where w € R™ is a vectorized form of the non-zero lower-triangular entries of the weighted
adjacency matrix W (recall that the graph Laplacian is completely defined by the edge
weights L = diag(W'1) — W so there is an implicit dependency here). Since the graph is a
triangular lattice, we only need to consider the non-zero entries to save computational time,
i.e. not all sub-populations are connected to each other.

One key difference between EEMS (Petkova et al., 2016) and FEEMS is how the edge
weights are parameterized. In EEMS, each node is given an effective migration parameter
m; for node 7 € V and the edge weight is paramertized as the average between the nodes
it connects, i.e. wi; = (m; +my)/2 for (i,j) € £&. FEEMS, on the other hand, assigns a
parameter to every nonzero edge-weight. The former has fewer parameters, with the specific
consequence that it only allows isotropy and imposes an additional degree of similarity

among edge weights; instead, in the latter, the edge weights are free to vary apart from the

4. We remark that besides the effective degree of freedom and the SNP-specific re-scaling by (1 — ),
the EEMS (Petkova et al., |2016|) and FEEMS likelihoods are equivalent up to constant factors, as long as
only one individual is observed per node and the residual variance o2 is allowed to vary across nodes—See
Supp. Note “Jointly estimating the residual variance and edge weights” for details. In addition, constant
factors are effectively absorbed into the unknown model parameters L and o2 and therefore it does not affect
the estimation of effective migration rates, up to constant factors.
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regularization imposed by the penalty. See Supp. Note “FEdge versus node parameterization”

and Supp. Fig. for more details.

3.5.2  Penalty description

As mentioned previously we would like to encourage that nearby edge weights on the graph
have similar values to each other. This can be performed by penalizing the squared differences

between all edges connected to the same node, i.e. spatially adjacent edges:

2
Pxal Z > ((wzk + alog(%k)) - (wz’e + alog(“}w))) ,

zeV kle€ (i
where ¢) , is our penalty function that represents the total amount of smoothness on the
graph and £(i) denotes the set of edges that connected to node i. Here we penalize a weighted
combination of the edge weights on the original scale and logarithmic-scale where «, a tuning
parameter, controls how strong the penalization is placed on the logarithmic scale—in the
special case that a = 0, it reduces to the commonly used Laplacian smoothing-type penalty.
Adding a logarithmic scale leads to smooth graphs for small edge values and thus allow for an
additional degree of flexibility across orders of magnitude of edge weights. The smoothness
parameter, A, controls the overall contribution of the penalty to the objective function. It is

convenient to write the penalty in matrix-vector form which we will use throughout:

Sxa(w) = S A + alog(w)], 39

where A is a signed graph incidence matrix derived from a unweighted graph denoting if
pairs of edges are connected to the same node. This penalty function is also scale
invariant, in the sense that for any ¢ > 0, @) o (W) = ¢.—2) oo (cw).

One might wonder whether it is possible to use the 1 norm in the penalty form in

place of the 9 norm. While it is known that the ¢1 norm might increase local adaptivity and
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better capture the sharp changes of the underlying structure of the latent allele frequencies,
(e.g. [Wang et al| [2016]), in our case, we found an inferior performance when using the ¢
norm over the f9 norm—in particular, our primary application of interest is the regime
of highly missing nodes, i.e. 0 « d, in which case the global smoothing seems somewhat
necessary to encourage stable recovery of the edge weights at regions with sparsely observed
nodes (see Supp. Note “Smooth penalty with ¢; norm”). In addition, adding the penalty
P),o(w) allows us to implement faster algorithms to solve the optimization problem due to
the differentiability of the £o norm, and as a result, it leads to better overall computational

savings and a simpler implementation.

3.5.8  Optimization

Putting (3.7) and (3.8]) together, we infer the migration edge weights w by minimizing the

following penalized negative log-likelihood function:

w = arg min ﬁ(w,aQ; CiCT) + ¢ .q(w)

I<w<u

I<w<u

-1 ~
= arg min [p : tr((CALTATCT + U2Cdiag(n_l)CT> CECT> (3.9)
—p - log det (C’ALTATCT + J2Cdiag(n_1)CT) + §|]A(w + alog(w)|3

where I, u € R" represent respectively the entrywise lower- and upper bounds on w, i.e. we
constrain the lower- and upper bound of the edge weights to I and w throughout the opti-
mization. When no prior information is available on the range of the edge weights, we often
set I =0 and u = +o0.

One advantage of the formulation of is the use of the vector form parameterization

w € R’ of the symmetric weighted adjacency matrix W e Rﬂlfd. In our triangular graph
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G = (V,€), the number of non-zero lower-triangular entries is m = O(d) « d?, so working
directly on the space of vector parameterization saves computational cost. In addition,
this avoids the symmetry constraint imposed on the adjacency matrix W, hence making
optimization easier (Kalofolias, 2016)).

We solve the optimization problem using a constrained quasi-Newton optimization algo-
rithm, specifically L-BFGS implemented in scipy (Byrd et al.,|1995; Virtanen et al.| 2020).|E|
Since our objective (3.9)) is non-convex, the L-BFGS algorithm is guaranteed to converge only
to a local minimum. Even so, we empirically observe that local minima starting from differ-
ent initial points are qualitatively similar to each other across many datasets. The L-BFGS
algorithm requires gradient and objective values as inputs. Note the naive computation of
the objective is computationally prohibitive since inverting the graph Laplacian has
complexity O(d3). We take advantage of the sparsity of the graph and specific structure
of the problem to efficiently compute gradient and objective values. In theory, our imple-
mentation has computational complexity of O(do + 03) per iteration which, in the setting of

0 « d, is substantially smaller than O(dg)ﬁ

3.5.4  Estimating the residual variance and edge weights under the null

model

2 we first estimate it via maximum likeli-

For estimating the residual variance parameter o
hood assuming homogeneous isolation by distance. This corresponds to the scenario where
every edge-weight in the graph is given the exact same unknown parameter value wg. Under

this model we only have two unknown parameters wy and the residual variance o2. We

5. We  solve using linearized @~ADMM  when the penalty function is ¢; norm,
ie. A|A((w) + alog((w))]|1 (Boyd et al.l [2011)).

6. More precisely, it is possible to achieve O(do + 03) per-iteration complexity if one employs a solver that
is specially designed for sparse Laplacian system. In our work we use sparse Cholesky factorization which
may slightly slow down the per-iteration complexity. See Supp. Material for the details of the gradient and
objective computation.
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estimate these two parameters by jointly optimizing the marginal likelihood using a Nelder-
Mead algorithm implemented in scipy (Virtanen et al., 2020). This requires only likelihood
computations which are efficient due to the sparse nature of the graph. This optimization
routine outputs an estimate of the residual variance 52 and the null edge weight g, which
can be used to construct W (wg) and in turn L(@y).

One strategy we found effective is to fit the model of homogeneous isolation by distance
and then fix the estimated residual variance 52 throughout later fits of the more flexible pe-
nalized models—See Supp. Note “Jointly estimating the residual variance and edge weights” .
Additionally we find that initializing the edge weights to wg to be a useful and intuitive strat-

egy to set the initial values for the entries of w to the correct scale.

3.5.5 Data description and quality control

We analyzed a population genetic dataset of North American gray wolves previously pub-
lished in [Schweizer et al.| (2016]). For this, we downloaded plink formatted files and spatial
coordinates from https://doi.org/10.5061/dryad.c9b25. We removed all SNPs with mi-
nor allele frequency less than 5% and with missingness greater then 10% resulting in a final

set of 111 individuals and 17,729 SNPs.

3.5.6 Population structure analyses

We fit the Pritchard, Donnelly, and Stephens model (PSD) and ran principal components
analysis on the genotype matrix of North American gray wolves (Price et al., 2006; Pritchard
et al., [2000). For the PSD model we used the ADMIXTURE software on the un-normalized
genotypes, running 5 replicates per choice of K, from K = 2 to K = 8 (Alexander et al.,
2009). For each K we choose the one that achieved the highest likelihood to visualize. For
PCA, we centered and scaled the genotype matrix and then ran sklearn implementation of

PCA, truncated to compute 50 eigenvectors.
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3.5.7 Grid construction

To create a dense triangular lattice around the sample locations, we first define an outer
boundary polygon. As a default, we construct the lattice by creating a convex hull around
the sample points and manually trimming the polygon to adhere to the geography of the
study organism and balancing the sample point range with the extent of local geography
using the following website https://www.keene.edu/campus/maps/tool/. We often do
not exclude internal "holes” in the habitat (e.g. water features for terrestrial animals), and
let the model instead fit effective migration rates for those features to the extent they lead
to elevated differentiation. We also emphasize the importance of defining the lattice for
FEEMS as well as EEMS and suggest this should be carefully curated with prior biological
knowledge about the system.

To ensure edges cover an equal area over the entire region we downloaded and intersected
a uniform grid defined on the spherical shape of earth (Sahr et al.,; 2003). These defined
grids are pre-computed at a number of different resolutions, allowing a user to test FEEMS

at different grid densities which is an important feature to explore.

3.6 Code Availability

The code to reproduce the results of this paper and more can be found in https://github.
com/jhmarcus/feems-paper. A python package implementing the method can be found in
https://github.com/jhmarcus/feems| with documentation found in http://jhmarcus.

com/feems/.

3.7 Data Availability

We included a processed version of the dataset used in this manuscript in the feems package

found here: https://github.com/jhmarcus/feems. An example tutorial on how to access
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the data the can be found here: http://jhmarcus.com/feems/notebooks/getting-started.

html.
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3.10 Supplementary Information

3.10.1 Mathematical notation

We denote matrices using bold capital letters A. Bold lowercase letters are vectors a,
and non-bold lowercase letters are scalars a. We denote by A~1 and A' the inverse and
(Moore-Penrose) pseudo-inverse of A respectively. We use y ~ Np(u, X) to express that
the random vector y is modeled as a p-dimensional multivariate Gaussian distribution with
fixed parameters u and X and use the conditional notation y|u ~ Ny(p,X) if p is random.
A graph is a pair G = (V, ), where V denotes a set of nodes or vertices and € < V x V

denotes a set of edges. Throughout we assume the graph G is undirected, weighted, and
contains no self loops, i.e. (i,7) € £ <= (j,i) € £ and = (i,7) ¢ £ and each edge (i,j) € £
is given a weight w;; = wj; > 0. We write W to indicate the symmetric weighted adjacency
matrix, i.e.

wi;, if (4,7) € &,

ij

0, otherwise.
w € R is a vectorized form of the non-zero lower-triangular entries of W where m = |£|/2
is the number of non-zero lower triangular elements. We denote by L = diag(W1) — W the

graph Laplacian.

3.10.2 Gradient computation

In practice, we make a change of variable from w € R’ to z = log(w) € R™ and the

algorithm is applied to the transformed objective function:

~

Uexp(2),0% CECT) + ¢y o(exp(2)) = U(z,0% CECT) + 9 o(2).
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After the change of variable, the objective value remains the same whereas it follows from the
chain rule that V(£(z) +5>\,a(z)) = V({l(w)+¢) o(w))Ow where © indicates the Hadamard
product or elementwise product—for notational convenience, we drop the dependency of ¢
on the quantities o2 and csc’. Furthermore, the computation of Vg, ,(w) is relatively
straightforward, so in the rest of this section, we discuss only the computation of the gradient
of the negative log-likelihood function with respect to w, i.e. V{(w).

Recall, by definition, the graph Laplacian L implicitly depends on the variable w through
L = diag(W1)—W. Throughout we assume the first o rows and columns of L correspond to
the observed nodes. With this assumption, our node assignment matrix has block structure
A = [Ioxo | 0y (d—0)]- To simplify some of the equations appearing later, we introduce the
notation: we define

1T

1
Ly =L+~ ¥:= AL 3 A" + odiag(n™!), (3.10)

and
M:=cCT ((CzC)—l(ciC)(CEC)—l - (CEC)_1> C.

Applying the chain rule and matrix derivatives, we can calculate:

_ 0l(w)  Ovec(L)
VW) = S owT

where vec is the vectorization operator and d¢/dvec(L) and dvec(L)/dw ! are 1 x d? vector

and d? x d matrix, respectively, given by

ol(w)
ovec(L)

) | ovec(L)

—1 T _17T
= p-vec <qu11A MAL au)—T

ol - S-T. (3.11)

Here S and T are linear operators that satisfy Sw = diag(W1) and Tw = W. Note S and
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T both have O(d) many nonzero entries, so we can perform sparse matrix multiplication
to efficiently compute the matrix-vector multiplication 0¢/dvec(L) - (S —T'). On the other
hand, the computation of d¢/dvec(L) is more challenging as it requires inverting the full
d x d matrix Lg,;. Next we develop a procedure that efficiently computes 0¢/dvec(L). We

proceed by dividing the task into multiple steps.

1. Computing =1 Recalling the block structure A = [Iyx, | 0, (4—0)] of the node

assignment matrix, we can write X as:
_ -1 271: -1
3= (quu)oxo + o“diag(n™ "),

where (Lf;&l> denotes the o x o upper-left block of Lf_u%l' Following |Petkova et al.| (2016),

the inverse ¥~ ! has the form

oXo

¥ = X + o 2diag(n), (3.12)
for some matrix X € R°*?. Equating ¥X 1 = I, it follows that

[(Lf:lh)oxo + azdiag(nfl)} (X + afzdiag(n)> =1

oXo

— l(Lf_‘&Joxo + 02diag(n_1)] X =—g?2 (Lf_uh> diag(n). (3.13)

Therefore, £~ can be obtained by solving the o x o linear system (3.13) and plugging the
solution into (3.12)). The challenge here is to compute (Lf;h) without matrix inversion
oXo0

of the full-dimensional L.

2. Computing (Lffulll> Let Ly oxo be the o x o block matrix corresponding to the

oXo

observed nodes of Ly, and similarly let Lgy (7o) x (d—o) a0 Ly ox (d—0) = LfTull, (d—0)x0

be the corresponding block matrices of Ly, respectively. The inverse of <Lf_u%1> is then
oXo0
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given by the Schur complement of qull,(d—o)x(d—o) in L:

-1 .
-1
l(qull>0X0] = qull,oxo - qull,ox(d—o) (qull,(d—o)x(d—0)> qull,(d—o)XO' (3.14)

See also |[Hanks and Hooten| (2013)); [Petkova et al.| (2016). Since every term in (3.14) has

sparse + rank-1 structure, the matrix multiplications can be performed fast. In addition,
-1

for the term (qull,(d—o)x(d—o)> , we can use the Sherman-Morrison formula so that the

inverse is given explicitly by

~1
-1 11T
<qull,(d—o) x (d—o)) = (L(d—o) x(d—o) T T)

1
=L} - L} 'L} .
(d—o) x(d—o) Tr—1 (d—o0)x(d—o) (d—o0)x(d—o)
d+1 L(d—o)x(d—o)l

-1
Hence, in order to compute (qull,(d— 0) x (d— O)> L)1, (d—0)x 0» We need to solve two systems

of linear equations:

L o)x(d-o)U = Ly, (d—0)xo a0d L(g_o)x(q—o)® = 1.

Note that the matrix L(d—o)x(d—o) is sparse, so both systems can be solved efficiently by
performing sparse Cholesky factorization on L(d— 0) x (d—o) (Hanks and Hooten, 2013). Alter-
natively, one can implement fast Laplacian solvers (Vishnoi et al., 2013) that solve the Lapla-
cian system in time nearly linear in the dimension O(d). After we obtain l( Lf_uh>o><0] -1

via sparse + rank-1 matrix multiplication and sparse Cholesky factorization, we can invert

the o x o matrix to get (Lf;h)oxo.
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3. Computing <LtT11111>dXO Write

-1
(L)

—1
full) (d—0)x0

Using the inversion of the matrix in a block form, the (d — 0) x o block component is given

by
<Lf_uh> (d—o)xo gqull,(do) x (d70)> B L, (d—o) xo KLEI%I)OXQ : (3.15)
(A) (B)

Since each of the two terms (A) and (B) has been already computed in the previous step,
there is no need to recompute them. In total, it requires a (d — 0) X o matrix and o x o

matrix multiplication.

4. Computing the full gradient Going back to the expression of V/(w) in (3.11]), and

noting the block structure of the assignment matrix A, we have:

ol(w) _ -1 =
5VGC(L) - povee ((quu)dxoM (Lﬁlll)dxo .

-1
LetII; =1 <1TE_11) 1" 1 be projection to the space of constant vectors with respect

to the inner product (x, y) = z XLy, Using the identity I-TI; = ECT(C’ECT)*lc (Me-

Cullagh| 2009), then we can write M in terms of ITy:
M=xl1-m)ssla-m) -2 'a-1m). (3.16)

Since II7 is a rank-1 matrix, this expression of M allows easier computation. Finally we

can put together (3.12)), (3.13), (3.15), and (3.16)), to compute the gradient of the negative

log-likelihood function with respect to the graph Laplacian.
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3.10.3  Objective computation

The graph Laplacian L is orthogonal to the one vector 1, so using the notation introduced

in , we can express our objective function as
lw)+d) o(w) = p-tr ((CECT>1 Cf]CT) —p-log det (CEC)l—I—%HA(w + alog(w) 3.
With the identity I — II; = ZCT(CECT)~1C, the trace term is:

tr ((CECT>_1 020T> —tr (CT (CECT)_l Ci) —tr (2*1(1 - Hl)i) .

The matrix inside the trace has been constructed in the gradient computation, see equa-
tion (3.16)). In terms of the determinant, we use the same approach considered in |[Petkova
et al.| (2016)—in particular, concatenating C'T and 1, the matrix [CT | 1] is orthogonal, so

it can be shown that

det () — det(171) det(CZCT)
~ det(CCT)det(1TE-11)

Rearranging terms and using the fact det(U 1) = det(U)~! for any matrix U, we obtain:

T 1
det(CSCT)) - det(1'1)det(X77) 0

= - det(Z7h).
det(CCT ) der(1T5-11) 17517 “eH& )

We have computed X1 in equation , so each of the terms above can be computed
without any additional matrix multiplications. Finally, the signed graph incidence matrix A
defined on the edges of the graph is, by construction, highly sparse with O(d) many nonzero
entries. Hence we implement sparse matrix multiplication to evaluate the penalty function

¢, (w) while avoiding the full-dimensional matrix-vector product.
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3.10.4 FEstimating the edge weights under the exact likelihood model

Recall that, when describing our data model, we employed the approximation % fi(R)(1 —
fi(k)) ~ 02,uj(1 — p;) for all SNPs j and nodes k (see equation (3.4)) and estimated the
residual variance o2 under the homogeneous isolation by distance model. Here we examine
whether this approximation results in a significant difference with respect to the estimation
quality of the edge weights of the graph.

Without approximation, we can calculate the exact analytical form for the marginal

likelihood of the estimated frequency as follows (after removing the SNP means):

d
. 1- L]
CFi~ ) 1i(1— 1) No—y (0, CAL'ATC"+Cdiag(n™')Adiag {T’f’f} ATCT> :
k=1
(3.17)
where {ak}zzl represents the vector a = (ay,...,a4). We then consider estimating the

edge weights with the likelihood based on and without relying on approximating the
residual variance. In particular, comparing to the model , this formulation does not
introduce the unknown residual variance parameter o2 but rather it is given implicitly by
(1-— L;Lk) /2. This means that the model is well-defined only when Lchk: < 1 for all

nodes k, hence leading to the following constrained optimization problem:

W = arg min {Eexact(w; CEA]CT) + opq(w) : sz < 1forall ke V} , (3.18)

I<w<u

where fexact is the negative log-likelihood function implied by the model and ¢y
is our smooth penalty function. The main difficulty of solving is that enforcing the
constraint Lchk < 1 for all nodes k € V, requires full computation of the pseudo-inverse of a
d x d matrix L whereas in order to evaluate the likelihood, we only need to calculate LT on

the observed nodes. To overcome this computational challenge, we may relax the constraint
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and consider the following form as a proxy for optimization (|3.18]):

w = arg min {Eexact(w; csch) + Praw) : Lchk < 1 for all observed nodes k} . (3.19)

I<w<u

We can solve this problem efficiently using a gradient-based algorithm where the gradient of

lexact With respect to L is given by

agexact('w)

14T T . - .
dvec(L) PV <qu11A MALgy, )‘P‘dlag(M) diag((2n) )N,

where M is a 0 x o matrix defined in (3.16)), while IN is a o x d? matrix whose rows correspond
to the observed subsets of the rows of the d? x d? matrix Lf_uh ® Lf_u%l'

Overall, when we implement the penalized restricted maximum likelihood procedure in
(3.19), we find that it does not make much of a difference and output qualitatively comparable
results to FEEMS—for example, Supp. Fig. MShows one such fit with a setting of A = 1073
and a = 50. Unfortunately, this approach has a drawback that after the algorithm reaches
the solution, the term 1 —L}; ;- 18 not guaranteed to be positive for the unobserved nodes, since,
due to the computational efficiency, the constraints Lchk < 1 are only placed on the observed
nodes. This, in principle, results in an ill-defined model if we would like interpretable results
at unobserved as well as observed nodes, and therefore we replace the calculation (3.17))
with the approximation to avoid this issue. In addition, by decoupling the residual
variance parameter o2 from the graph-related weighted edges w, the model has more

resemblance to spatial coalescent model used in EEMS (Petkova et al., 2016).

3.10.5 Jointly estimating the residual variance and edge weights

One simple strategy we have used throughout the paper was to fit o2 first under a model of
homogeneous isolation by distance and prefix the estimated residual variance to the resulting
52 for later fits of the effective migration rates. Alternatively, one might come up with a
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strategy to estimate the unknown residual variance jointly with the edge weights, instead
of prefixing it from the estimation of the null model-—the hope here is to simultaneously
correct the model misspecification and allow for improving model fit to the data.

As it turns out, given such a small fraction of sampled spatial locations in the data, the
strategy of jointly optimizing the marginal likelihood with respect to both variables has the
tendency to overfit to the data unless it is properly regularized. Specifically, we can consider

the model that generalizes (3.6)), namely
p-CEC' ~W,_; (CALTATC'T + Cdiag(n~ 1) Adiag(e?)ATCT, p),

2

where o“ is a d x 1 vector of node specific residual variances, i.e. each deme has its own

residual parameter o} for all nodes k. If the node specific parameters o}’s are assumed
to be same across all nodes, this reduces to the model . Supp. Fig. shows the
results of different strategies of estimating the residual variances. As expected, when the
model has a single residual variance o2, either prefixing it from the null model (Figure ) or
estimating it jointly with the edge weights (Supp. Fig.|3.17A) lead to similar and comparable
outputs. The major difference is the high migration edge forming long path appearing in
Supp. Fig. to separate the reduced gene-flows in the middle, which tends to disappear
as « increases. Whereas, if the residual variances are allowed to be node specific, the fitted
a]%’s are highly variable and as a result the estimated graph misses some geographic features
present in the data, such as reduced effective migration around St. Lawerence Island (Supp.
Fig.|3.17B). Presumably this is attributed to overfitting, due to the absence of data in many
unobserved demes. In EEMS, in order to estimate the genetic diversity parameters for every
spatial position, which play a similar role as the residual variance in FEEMS, a Voronoi-
tessellation prior is placed to encourage sharing of information across adjacent nodes and

prevent over-fitting. While we can similarly estimate the node specific residual variances on

every node of the graph with our penalty function (cﬁA,a defined on the variable 0'2), we
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do not find it substantially improves the extent to which the model suits the data. Thus,
we take the approach of fitting the single residual variance ¢ under the null model and

prefixing it as a simple but effective strategy with apparent good empirical performance.

3.10.6 FEdge versus node parameterization

One of the novel features of FEEMS is its ability to directly find the edge weights of the graph
that best suit the data. This direct edge parameterization may increase the risk of model’s
overfitting, but also allows for more flexible estimation of migration histories. Furthermore,
as seen in Figure and Supp. Fig. 3.6} it has potential to recover anisotropic migration
processes. This is in contrast to EEMS wherein every spatial node is assigned an effective
migration parameter mj, and a migration rate on each edge joining nodes k and &’ is given
by the average effective migration wy;, = (my + m;s)/2. Not surprisingly, parameterization
via node-specific parameters induces implicit regularization by substantially constraining
the feasible set of graph’s edge weights. In some cases, this has the desirable property of
imposing an additional degree of similarity among edge weights, but it often restricts the
model’s capacity to capture a richer set of structure present in the data, (e.g. Petkova et al.
2016, supplementary figure 2). To be concrete, Supp. Fig. displays two different fits
of FEEMS based on edge parameterization (Supp. Fig.|3.19A) and node parameterization
(Supp. Fig.[3.19B), run on a previously published dataset of human genetic variation from
Africa (see Peter et al.| (2018)) for details on the description of the dataset). Running FEEMS
with a node-based parameterization is straightforward in our framework—all we have to
do is to reparameterize the edge weights by the average effective migration and solve the
corresponding optimization problem (3.9) with respect to m. It is evident from the results
that FEEMS with edge parameterization exhibits subtle correlations that exist between the
annotated demes in the figure whereas node parameterization fails to recover them. We also

compare the model fit of FEEMS to the observed genetic covariance (Supp. Fig. |3.20) and
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find that edge-based parameterization provides a better fit to the African dataset. Supp.
Fig. further demonstrates that in the coalescent simulations with anisotropic migration,
the node parameterization is unable to recover the ground truth of the underlying migration

rates even when the nodes are fully observed.

3.10.7 Smooth penalty with {1 norm

FEEMS’s primary optimization objective (see equation (3.9))) is:

Minimize {(w, 0%; CEC ") + Px.a(w),

l<w<u

where the spatial smoothness penalty is given by ¢, ,(w) = %HA(w + alog(w))“%. It is
widely known that ¢;-based method leads to better local adaptive fitting and structural
recovery than fo-based methods (Wang et al., 2016|), but at the cost of handling non-smooth
objective functions that are often computationally more challenging and demanding. In a
spatial genetic dataset, one major challenge is to deal with the relatively sparse sampling
design where there are many unobserved nodes on the graph. In this challenging statistical
setting, our finding is that an /o-based method enables more accurate and reliable estimation
of the geographic features.

Specifically, writing qzﬁita(’w) = M|A(w + alog(w))||1, we considered the alternate fol-

lowing composite objective function:
l(w, 0% CSCT) + ¢l (w). (3.20)

To solve (3.20)), we apply linearized alternating direction method of multipliers (ADMM) (Boyd
et al., [2011)), a variant of the standard ADMM algorithm, that iteratively optimizes the aug-
mented Lagrangian over the primal and dual variables. The derivation of the algorithm is a
standard calculation so we omit the detailed description of the algorithm. As opposed to the
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common belief about the effectiveness of the ¢; norm for structural recovery, the recovered
graph of FEEMS using ¢1-based smooth penalty shows less accurate reconstruction of the
migration patterns, particularly when the sampling design has many locations with miss-
ing data on the graph (Supp. Fig. B.22A, Supp. Fig. [3.23H). It appears that the ¢1-based
penalty function is not capable of accurately estimating edge weights at regions with little
data, partially due to its local adaptation, in contrast to the ¢o-based method that considers
regularization more globally. This suggests that in order to use the ¢1 penalty gzﬁf\l’a('w) in
the presence of many missing nodes, one needs an additional regularization term that pro-
motes global smoothness of the graph’s edge weights, e.g., a combination of gbi{a(w) and
P),o(w) (same spirit as elastic net (Zou and Hastie, 2005))), or (bi{a(w) on top of node-based

parameterization (Supp. Fig. [3.22B).
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Figure 3.5: Visualization of grid construction and node assignment: (A) Map of
sample coordinates (black points) from a dataset of gray wolves from North America. The
input to FEEMS are latitude and longitude coordinates as well as genotype data for each
sample. (B) Map of sample coordinates with an example dense spatial grid. The nodes of the
grid represent sub-populations and the edges represent local gene-flow between adjacent sub-
populations. (C) Individuals are assigned to nearby nodes (sub-populations) and summary
statistics (e.g., allele frequencies) are computed for each observed location.
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Figure 3.6: Application of FEEMS to an extended set of coalescent simulations:
We display an extended set of coalescent simulations with multiple migration scenarios and
sampling designs. The sample sizes across the grid are represented by the size of the grey dots
at each node. The migration rates are obtained by solving FEEMS objective function (3.9))
where the regularization parameters are specified at A = 1072, 0 = 30 (), A= 1074 a =30
(N), and A\ = 1073, o = 30 for the rest. (A, F, K) display the ground truth of the underlying
migration rates. (B, G, L) Shows simulations where there is no missing data on the graph.
(C, H, M) Shows simulations with sparse observations and nodes missing at random. (D,
[, N) Shows simulations of biased sampling where there are no samples from the center of
the simulated habitat. (E, J, O) Shows simulations of biased sampling where there are only
samples on the right side of the habitat.
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Figure 3.7: Application of FEEMS to a heterogeneous migration scenario with a
“missing at random” sampling design: We run FEEMS on coalescent simulation with
a non-homogeneous process while varying hyperparameters A (rows) and « (columns). We
randomly sample individuals for 20% of nodes. When A\ grows, the fitted graph becomes
overall smoother, whereas « effectively controls the degree of similarity among low migration
rates.
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Figure 3.8: Application of FEEMS to an anisotropic migration scenario with a
“missing at random” sampling design: We run FEEMS on coalescent simulation with an
anisotropic process while varying hyperparameters A (rows) and « (columns). We randomly
sample individuals for 20% of nodes. When A grows, the fitted graph becomes overall
smoother, whereas « effectively controls the degree of similarity among low migration rates.
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Figure 3.9: SNP and individual quality control: (A) Displays a visualization of the
sample site frequency spectrum. Specifically, we display a histogram of minor allele frequen-
cies across all SNPs. We see a relatively uniform histogram which reflects the ascertainment
of common SNPs on the array that was designed to genotype gray wolf samples. (B) Vi-
sualization of allele frequencies plotted against genotype frequencies. Each point represents
a different SNP and the colors represent the 3 possible genotype values. The black dashed
lines display the expectation as predicted from a simple binomial sampling model i.e. Hardy-
Weinberg equilibrium. (C) Displays a histogram of the missingness fraction per SNP. We
observe the missingness tends to be relatively low for each SNP. (D) Displays a histogram
of the missingness fraction per sample. Generally, the missingness tends to be low for each

sample.
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Figure 3.10: Comparing predictions of observed genetic distances: We display differ-
ent predictions of observed genetic distances using geographic distance or the fitted genetic
distance output by FEEMS. (A) The x-axis displays the geographic distance between two
individuals, as measured by the great circle distance (haversine distance). The y-axis dis-
plays the squared Euclidean distance between two individuals averaged over all SNPs. (B-D)
The x-axis displays the fitted genetic distance as predicted by the FEEMS model and y-axis
displays the squared Euclidean distance between two individuals averaged over all SNPs. For
(B-D) we display the fit of A getting subsequently smaller (10,1073,107°) and as expected
the fit becomes better because we tolerate more complex surfaces and we are not evaluating
the fit on out-of-sample data.
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Figure 3.11: Summary of top axes of genotypic variation: We display a visual summary
of Principal Components Analysis (PCA) applied to the normalized genotype matrix from
the North American gray wolf dataset. (A-D) Displays PC bi-plots of the top seven PCs
plotted against each other. The colors represent predefined ecotypes defined in (Schweizer
et al., [2016). We can see that the top PCs delineate these predefined ecotypes. (E) Shows
a “scree” plot with the proportion of variance explained for each of the top 50 PCs. As
expected by genetic data (Patterson et al., 2006)), the eigen-values of the genotype matrix
tend to be spread over many PCs.
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Figure 3.12: Relationship between top axes of genetic variation and latitude: In
each sub-panel we plot the PC value against latitude for each sample in gray the wolf dataset.
We see many of the top PCs are significantly correlated with latitude as tested by linear
regression.
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Figure 3.13: Relationship between top axes of genetic variation and longitude:
In each sub-panel we plot the PC value against longitude for each sample in the gray wolf
dataset. We see many of the top PCs are significantly correlated with longitude as tested

by linear regression.
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Figure 3.14: Summary of ADMIXTURE results: (A-G) Visualization of ADMIXTURE
results for K = 2 to K = 8. We display admixture fractions for each sample as colored slices
of the pie chart on the map. For each K we ran 5 replicate runs of ADMIXTURE and in
this visualization we display the solution that achieves the highest likelihood amongst the
replicates. The ADMIXTURE results qualitatively reveal a spatial signal in the data as
admixture fractions tend to be spatially clustered.
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Figure 3.15: Application of EEMS to the North American gray wolf dataset: We
display a visualization of EEMS applied to the North American gray wolf dataset. The more
orange colors represent lower than average effective migration on the log-scale and the more
blue colors represent higher than average effective migration on the log-scale. The results of
EEMS are qualitatively similar to FEEMS.
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Figure 3.16: Application of FEEMS on the North American gray wolf dataset with
an exact likelihood model: We display the fit of FEEMS based in the formulation to
the North American gray wolf dataset. This fit corresponds to a setting of tuning parameters
at A = 1073, a = 50. Additionally we set the lower bound of the edge weights to I = 0.01,
to ensure that the diagonal elements of L does not become too small—this has an implicit

effect on sz’ preventing it from blowing up at unobserved nodes. The more orange colors
represent lower than average effective migration on the log-scale and the more blue colors
represent higher than average effective migration on the log-scale. Visually the result is
comparable to that of FEEMS fit (Figure based in the formulation .
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Figure 3.17: Application of FEEMS on the North American gray wolf dataset
with joint estimation of the residual variance and graph’s edge weights: We show
visualizations of fits of FEEMS to the North American gray wolf dataset when the residual
variance and edge weights of the graph are jointly estimated. Both fits correspond to a setting
of tuning parameters at A = 1073, a = 50. (A) Displays the estimated effective migration
surfaces where every deme shares a single residual parameter o. The result is similar to the
procedure that prefixes o from the homogeneous isolation by distance model (Figure ,
except the high migration edge forming long path in (A) which disappears with higher values
of a. (B) Displays the estimated effective migration surfaces where each node has its own
residual parameter o, for all nodes k. These node specific residual parameters allow more
flexible graphs, but at the cost of over-fitting to the data. In particular, without adding
smooth regularization term on the residual variances, it fails to recover some geographic
features like St. Lawerence Island.
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Figure 3.18: Relationship between fitted and empirical covariance on the North
American gray wolf dataset: We display scatter plots of empirical genetic covariances ver-
sus fitted covariances from FEEMS fits on the gray wolf dataset. (A) Corresponds to the re-
sult shown in Figure (B) Corresponds to the result shown in Supp. Fig. . The x-axis
represents the transformed fitted covariance matrix, i.e. CALTATCT +52Cdiag (n’l) c’
(see equation ([3.6))). The y-axis represents the transformed sample covariance matrix, i.e.
CEC'. The simple linear regression fit is shown in orange dashed lines and R? is given.
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Figure 3.19: Application of FEEMS to a dataset of human genetic variation from
Africa with different parameterization: We display visualizations of FEEMS to a
dataset of human genetic variation from Africa with different parameterization of the graph’s
edge weights. See (Peter et al.| 2018)) for the description of the dataset. (A) Displays the
recovered graph under the edge parameterization. (B) Displays the recovered graph under
the node parameterization. Both parameterization have their own regularization parameters
X and a, but these parameters are not on the same scale. We set A = 21074, o = 10 for
the node parameterization which is seen to yield similar results to those in (Peter et al.,
2018). For the edge parameterization, we keep the same A value while we set o = 60 so
that the resulting graph reveals similar geographic structure to the node parameterization.
We also set the lower bound I = 0.01. From the plots, it is worth noting two important
distinctions: (1) We see the migration surfaces shown in (B) recover sharper edge features
while the migration surfaces in (A) are overall smoother. This is attributed to the fact that
node parameterization has its own additional regularization effect on the edge weights, and
in order to achieve similar degree of regularization strength for the edge parameterization,
it needs a higher regularization parameters, which results in more blurring edges than the
node parameterization. (2) When measuring correlation of the estimated allele frequencies
among nodes, we find that Deme B is the node with the second highest correlation to Deme
A, whereas Deme C (and nearby demes) is not as much correlated to Deme A compared to
Deme B. Panel (A) reflects this feature by exhibiting a corridor between Deme A and Deme
B and reduced gene-flow beneath that corridor. This reduced gene-flow disappears in (B),
even if the regularization parameters are varied over a range of values. Additionally, Deme
D is most highly correlated to Deme E, F', and G, and this is implicated by a long-range cor-
ridor connecting those demes appearing in Panel (A) while not shown in (B). These results
point a conclusion that the form of the node parameterization is perhaps too strong and in
this case it limits model’s ability to capture desirable geographic features that are subtle to
detect.
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Figure 3.20: Relationship between fitted and empirical covariance on a dataset
of human genetic variation from Africa: We display scatter plots of empirical ge-
netic covariance versus fitted covariance from FEEMS fits on the African dataset. (A)
Corresponds to the result shown in Supp. Fig. B.19A. (B) Corresponds to the result shown
in Supp. Fig. 3.19B. The x-axis represents the transformed fitted covariance matrix, i.e.
CALTATCT + 52Cdiag (nil) c’ (see equation (3.6))). The y-axis represents the trans-
formed sample covariance matrix, i.e. CSCT. The simple linear regression fit is shown in
orange dashed lines and R? is given.
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Figure 3.21: Application of FEEMS based on node parameterization to an ex-
tended set of coalescent simulations: We display an extended set of coalescent simula-
tions with the same migration scenarios and sampling designs as Supp. Fig.[3.6| The sample
sizes across the grid are represented by the size of the grey dots at each node. The migration
rates are obtained by solving the FEEMS objective function (3.9) with node parameteriza-
tion where the regularization parameters are specified at A = 1072, = 50. (A, F, K) display
the ground truth of the underlying migration rates. (B, G, L) Shows simulations where there
is no missing data on the graph. (C, H, M) Shows simulations with sparse observations and
nodes missing at random. (D, I, N) Shows simulations of biased sampling where there are
no samples from the center of the simulated habitat. (E, J, O) Shows simulations of biased
sampling where there are only samples on the right side of the habitat.
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Figure 3.22: Application of /{-norm-based FEEMS to a dataset of human genetic
variation from Africa: We display visualizations of FEEMS to a dataset of human genetic
variation from Africa with the ¢1-based penalty function. See (Peter et al., 2018) for the
description of the dataset. (A) Displays the recovered graph under the edge parameterization
with /1 norm based penalty where the regularization parameters are specified at A\ = 4 -
1072, o0 = 30. (B) Displays the recovered graph under the node parameterization with ¢;
norm based penalty where the regularization parameters are specified at A = 4 - 1072, a =
1. To minimize the objective (3.20), linearized ADMM is applied with 20,000 number of
iterations. The lower bound is set to be I = 0.01 for both parameterizations. Note that due
to the high degrees of missingness, the estimated effective migration surfaces using solely ¢1-
based penalty exhibit many likely artifacts (e.g., high migration edges forming long paths,
seen in A) unless an additional penalty term is added to promote global smoothness of the
edge weights such as a combination of /1 norm penalty function and node parameterization
as shown in (B).
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Figure 3.23: Application of /;-norm-based FEEMS to an extended set of coalescent
simulations: We display an extended set of coalescent simulations with the same migration
scenarios and sampling designs as Supp. Fig. 3.6, The sample sizes across the grid are
represented by the size of the grey dots at each node. The migration rates are obtained
by solving ¢; norm based FEEMS objective where the regularization parameters are
specified at A = 1071, a = 30 (I), A = 1073, &« = 30 (N), and A = 1072, &0 = 30 for the
rest. (A, F, K) display the ground truth of the underlying migration rates. (B, G, L) Shows
simulations where there is no missing data on the graph. (C, H, M) Shows simulations with
sparse observations and nodes missing at random. (D, I, N) Shows simulations of biased
sampling where there are no samples from the center of the simulated habitat. (E, J, O)
Shows simulations of biased sampling where there are only samples on the right side of the
habitat.
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CHAPTER 4
EMPHASIZING SHARED EVOLUTIONARY HISTORIES
WHEN INFERRING REPRESENTATIONS OF POPULATION
STRUCTURE

Joseph H. Marcus®, Jason Willwerscheid®, Peter Carbonetto, John Novembre, and
Matthew Stephens

* denotes co-first authorship

4.1 Abstract

Describing the genetic relatedness in a population genetic sample, often referred to as pop-
ulation structure, is a long-standing and important problem for many applications. One
current challenge in population structure inference is that the input genotype matrix is high
dimensional with datasets often containing thousands of samples and hundreds of thousands
of genetic variants. Matrix factorization has been a unifying tool underlying many meth-
ods to reduce the dimensionality of the genotype matrix and find interpretable biological
structure in the data. Existing matrix factorization methods when applied to population
genetic data tend to emphasize clustered solutions due to constraints assumed in the mod-
els to fit the data. These constraints can be unnatural for population genetic data where
the samples experience shared evolutionary change over time, often referred to as “shared
genetic drift”. Here we propose a new Bayesian matrix factorization method called drift
that emphasizes shared evolutionary histories in the output summaries of population struc-
ture. Particularly, we assume an individual’s expected genotype can be decomposed into a
linear combination of unconstrained variables representing ancestral shared allele frequency
change and where the coefficients of this linear combination are constrained to be between

zero and one. These assumptions result in a new probabilistic semi-non-negative matrix
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factorization model for population structure inference. We develop an efficient variational
inference algorithm that learns approximate posterior distributions using an empirical Bayes
inspired optimization algorithm. We apply drift to simulations and large-scale population
genetic datasets from multiple species and find it has advantages over existing methods but
is fraught with optimization challenges that need to be solved before widespread use and
application. Overall drift is a promising new framework for population structure inference

and lays the groundwork for exciting new methods and applications.
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4.2 Introduction

Using genetic variation to understand the relationship among individuals is important for
several applications. In genome-wide association studies estimates of genetic relatedness,
often the top principal components (PCs) computed from a large genotype matrix, are
used to control for confounding of sub-population membership with a quantitative trait or
case-control status (Price et al.; 2006} Yang et al. 2011). In studies of demographic history,
genetic relatedness within a population genetic sample is used to learn about migration events
or within-population processes that have shaped patterns of current and ancient genetic
diversity (Schraiber and Akeyl 2015 |Pickrell and Reichl [2014). Systematic variation in
genetic relatedness in a population genetic sample is often referred to as population structure,
because within a meta-population, individuals are rarely randomly mating and hence the
population is sub-structured (Hao and Storey|, 2019; |[Lawson et al., 2012)). When estimating
population structure, researchers are commonly faced with a genotype matrix where the
rows represent individuals and the columns represent different genetic variants that have
been typed along the genome (Novembre and Peter, 2016). The elements of this matrix
store the count of some predefined allele, for instance the minor allele, for each individual and
genetic variant. Visualizing the genotype matrix is difficult because of its high dimensionality.
In typical applications a researcher is faced with thousands of samples and hundreds of
thousands of genetic variants. There are many ways to represent population structure using
this large-scale genotype matrix as input, but matrix factorization has been an essential and
unifying tool among many of the common approaches taken (Engelhardt and Stephens, 2010;
Wang and Stephens, [2018; |Cabreros and Storey, 2019).

Principal Component Analysis (PCA) is a widely used method to visualize population
structure by reducing the dimensionality of the genotype matrix and focusing on axes of
variation that are most important in the data (Novembre et al., 2008)). One way to interpret

PCA, among many, is that it is the solution to an optimization problem that finds the best
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rank- K approximation to a data matrix (Agrawal et al., 2020; Murphy, [2012). Because of
the orthogonality constraints of the underlying factors that compose this low-rank approx-
imation the optimization problem is solved efficiently and robustly using the singular value
decomposition (SVD) (Strang, [2019)). This computational tractability and simplicity have
made PCA the “workhorse” of population structure inference, yet it has many limitations.
While the orthogonality constraint of PCA is computationally attractive, it is difficult to
interpret or provide a biological motivation (Engelhardt and Stephens| [2010). PCA has also
been shown to be difficult to interpret in several population genetic models and datasets
including homogeneous spatial processes with biased sampling (McVean, 2009; Novembre
and Stephens| |2008). Importantly, it is difficult to visualize many PCs at once and typically
each PC is plotted against each other in “bi-plots” leading to dozens of visualizations to
interpret.

The Pritchard, Stephens and Donnelly (PSD) model has also been an essential tool
in inferring population structure as it allows for visualization of many underlying latent
factors at once in a stacked bar chart, commonly referred to as a “structure plot” (Pritchard
et al., 2000). Since its initial conception many different algorithms, both Bayesian and
maximum likelihood based, have been proposed to fit the PSD model (Alexander et al.
2009; Raj et al., 2014} Gopalan et al., 2016; Cabreros and Storey, |2019; [Frichot et al., 2014]).
Fundamentally, the PSD model can be seen as a matrix factorization method where the
individual’s loadings (admixture proportions) are constrained to be non-negative and sum
to one (defined on the K-dimensional simplex) and the SNP factors are constrained to be
probabilities (Engelhardt and Stephens, 2010; |Alexander et al. 2009). These constraints
are motivated by an interpretation of each individual’s genome-wide average “ancestry”
as coming from a mixture of K different latent source ancestries (Alexander et al., 2009;
Pritchard et al. 2000). An analogous framework called topic modeling was developed in

the machine learning community to find interpretable low-dimensional representations of
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text in documents (Blei et al., |2003)). While the biological motivation of admixture models
has made them extremely popular and widely used they output results that are difficult to
interpret under a number of important population genetic processes (Lawson et al., 2018]).
Particularly, due to the simplex constraint, admixture models tend to provide “clustered”
results and poorly represent shared evolutionary histories in a single visualization (Lawson
et al., 2018).

Many extensions of PCA and admixture models have been proposed to help alleviate
some of the problems of these approaches. When side information about the spatial loca-
tions or temporal periods of the samples is available, multiple methods have been proposed
to account for spatial or temporal confounding in the results of PCA or PSD like models
(Bradburd et al., 2018; (Caye et al., [2018; [Francois et al., 2019; [Frichot et al., [2012; |Joseph
and Pe’er, 2019b)). Other approaches have emphasized that the matrix factors should be
sparse to help boost interpretability (Frichot et al., 2014} |[Engelhardt and Stephens, 2010)).
Our work heavily depends on and extends the statistical model and algorithms developed
in [Wang and Stephens| (2018]), which takes an empirical Bayes approach to sparse matrix
factorization. In their proposed model called “Factors and Loadings by Adaptive Shrinkage”
(FLASH), flexible non-parametric mixture model priors are used to approximate any uni-
modal distribution with a specified mode, naturally assumed to be zero for a shrinkage effect
(Stephens, 2017)). This unimodal assumption encompasses a broad family of shrinkage priors
and allows the data to decide what type of regularization (strength and shape of shrinkage)
is best. The prior parameters are estimated from the data in an empirical Bayes inspired
variational inference algorithm, allowing each latent factor to come from its own distribution
with a specific regularization strength (Blei et al., [2017).

Here we develop a new model called drift which helps to emphasize shared evolution-
ary histories experienced by individuals, leading to a more natural and easily interpretable

representation of population structure then previously proposed approaches like PCA or ad-
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mixture models. In our work we extend the flexible and computationally efficient approach
taken by Wang and Stephens (2018)) but design a new model and algorithm tailored for
population structure inference. Particularly, we develop a new Bayesian semi-non-negative
matrix factorization algorithm that can be fit using a similar empirical Bayes variational
inference algorithm but with a new bi-modal shrinkage prior family and variational approx-
imation that allows for correlations in the approximate posterior for the factors (Ding et al.|
2008)). We demonstrate through simulations and empirical applications that the drift model
is a promising approach for population structure inference but also has some optimization

challenges.

4.3 Results

4.3.1 Qwverview of the drift model

The input to the drift model, like many other approaches, is a genotype matrix, Y, with
n rows representing individuals and p columns representing SNPs. The elements of this
matrix, y;; € {0,1,2}, store the count of chromosomes that are labeled with some prede-
fined allele. We typically orient to the derived allele when ancestral/derived alleles status
information is available. To motivate our model, Figure shows an idealized evolutionary
scenario with individuals from three sub-populations sampled at the present, A, B, and C.
The sub-populations are related to one another through a simple tree with two splits, where
individuals B and C are sampled from sub-populations that share a more recent common an-
cestor. In this idealized tree, the genotypes of individuals A, B and C arise from independent
allele frequency drift that occurs on branches 3, 4, and 5 as well as shared drift that occurs
on internal branches 1 and 2. We use a Brownian motion approximation to allele frequency
diffusion on the tree which has been commonly applied in the population genetics literature

(Felsenstein, 1973). Here we refer to the branches of the tree as “drift events”, some of which
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are experienced by more than one sub-population, “shared events”, and some of which are
“specific” to particular sub-populations. Note that we use the term “event” to describe some
notion of time averaged allele frequency change and is thus not a discrete characterization
of a evolutionary event that occurred instantaneously. We can then formulate the genotypes
arising from this idealized model as a linear combination of SNP-specific changes in allele

frequencies that occur on each of these K branches or drift events (McCullagh| 2009):

K
vij = Y etk + €ij. (4.1)
=1

Here, £;;, € [0,1] is an individual-specific loading on the kth drift event, f;;, € R is the
change in allele frequency that occurs in the kth drift event for the jth SNP, e;; ~ N(0, a?)
is residual Gaussian noise and 0% is a residual variance parameter that is shared across
all individuals and SNPs. Note that a more realistic error model for the genotype count
data is a Binomial sampling model with y;; ~ Binomial(2, 7Tl'j>, assuming Hardy-Weinberg
equilibrium, but we make a Gaussian approximation for computational tractability (Hao
et al 2016). This Gaussian approximation should hold well for common variants whose
frequencies are not too close to the boundaries of 0 or 1.

This model is similar to admixture models in that the individual loadings are, like the
admixture proportions, non-negative, but one crucial difference is that in the drift model
the loadings are bounded between 0 and 1, whereas in admixture models the admixture
proportions for the ith individual are additionally constrained to sum to 1 (Pritchard et al.,
2000; |Alexander et al., 2009). In drift, each individual’s expected genotype is modeled as a
linear combination of K unconstrained variables that represent genetic drift in an ancestral
component of shared evolutionary change. We relax the simplex constraint on the coefficients
in this linear combination to model how individuals may differ from the mean due to the
effects of multiple "shared drift” events with varying magnitudes.

We assume the loadings for each drift event are independent and identically distributed
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Figure 4.1: Schematic of a motivating evolutionary scenario for the drift model:
This figure displays a schematic of a tree model for three individuals A, B, and C that are
each sampled from sub-populations at the tips of the tree. While, in general, our method
does not constrain a tree structure to the data we find it a useful motivating example on how
“drift events”, which correspond to shared allele frequency drift on each branch of the tree,
can be represented in a matrix factorization frame-work. Here we show both the schematic
tree and the corresponding loadings matrix and factorization model that is associated with
the underlying evolutionary history.

from the following prior,

Uiy Lo o ™ g5 € G, (4.2)
where g;. is to be estimated from among the family Gy of all bi-modal distributions on
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[0,1] with modes at 0 and 1. This bi-modal prior helps to regularize the loadings towards
interpretable “tree-like” solutions where individuals either experience or do not experience
particular drift events. We emphasize, however, that these priors are flexible enough to
adapt to admixed individuals that have intermediate loadings on drift events. Furthermore,

we assume that the SNP-specific drift terms come from a Gaussian distribution,

fik fors -5 Fp YN0, 07), (4.3)

where O']% represents the prior variance in the change in allele frequencies for the kth drift
event. In the machine-learning literature this type of model is a special case of semi-non-
negative matrix factorization because the loadings are non-negative and the factors are un-
constrained (Ding et al., 2008).

The inference challenge is to compute posterior distributions for the loadings and factors
conditional on the observed genotype data. This problem is not analytically tractable. Here
we extend the approach taken by Wang and Stephens (2018) and develop a new inference
algorithm which uses a variational approximation to the posterior distributions, allowing the
problem to be approximately solved without recourse to computationally expensive methods
such as Markov Chain Monte Carlo (MCMC) (Blei et al., [2017). While the Bayesian model
described above could be fit using the approach outlined in Wang and Stephens (2018), we
developed a new algorithm that allows for correlations in the approximate posteriors for
the factors (Wang and Stephens| (2018]) assumes a mean-field approximation that factorizes
over each drift event). This new variational approximation is better suited for the types of
evolutionary scenarios we are interested in inferring because the true posterior under such
scenarios could have strong correlations which, if not properly accounted for, can lead to
fitted representations of the data that are less interpretable.

We particularly emphasize that while we motivated this work using a tree-like evolution-

ary scenario, and while interpretation is often eased by assuming that a tree-like population
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genetic model holds, the model we propose is not constrained to fit a tree or admixture graph
and thus is much more general. See methods for more details on the model and variational

inference algorithm we developed.

4.3.2  Reconstruction of shared evolutionary histories in a simple

simulation

To confirm that the drift model performs well in the idealized evolutionary scenario dis-
played in Figure and to contrast the results with those obtained using other commonly
applied tools such as PCA and the PSD model, we simulated data under a generative matrix
factorization model. We simulated 50 individuals for each sub-population A, B, and C, for a
total of 150 individuals, and 20, 000 independent genetic variants. We set the ancestral mean
allele frequency to be u = .5 for every genetic variant and the prior standard deviations for
the factors to o9 = .1,09 = .1, 03 = .05,04 = .05, 05 = .05. We then simulated genotypes by
truncating the linear combination of drift terms to be between 0 and 1 and then subsequently
performing binomial sampling to generate the diploid genotypes assuming Hardy-Weinberg
equilibrium within each sub-population i.e. y;; ~ Binomial(2,7;;). The loadings for each
individual were fixed at the values corresponding to the simple tree described above (see the
schematic matrix for 3 individuals in Figure . We then applied PCA, the PSD model as
implemented by the ALStructure algorithm (Cabreros and Storey, 2019), and drift to the
simulated data. We display the results for each of these method in Figure [£.2]

In Figure we see the results of applying the PSD model to this idealized simulation
for values K = 2, ..., K = 5. While generally we see individuals from sub-populations B and
C having more similar admixture fractions throughout the visualization it is very difficult to
interpret the results in light of the tree model the data was simulated under.

In Figure we plot the first two principal components against one another. These

PCs capture the majority of the proportion variance explained. The other PCs (not shown)

145



(A) Drift

1.25

1.00

0.25

0.00

(B) PCA
’.
0.10 1 . A o'*
. B .
0.051 L
8 L]
O 0.00- ,‘&
~0.051
-0.10+
-0.10 -0.05 0.00 0.05
2 O
PC1 v

Figure 4.2: Population structure inference methods applied to an idealized sim-
ulation: We display the results of applying multiple population structure inference meth-
ods to an idealized 3-population tree simulation. 50 individuals are simulated from each
sub-population at the tips of the tree. In the simulation the ancestral lineage that form
individuals from sub-population A splits from the ancestral lineages of individuals from sub-
populations B and C first and then the lineages that form B and C subsequently split. In
panel A the results of the drift model are shown that naturally recapitulate the structure of
the tree used to simulate the data. In B the top two PCs are shown. Finally, in C the results
of fitting admixture from K=2 to K=5 are shown which is clearly difficult to interpret given
the underlying structure of the tree. Note that we scale the drift loadings by the estimated
prior variances of the corresponding drift events.

look like Gaussian noise. The sub-populations form three distinct clusters of points and

we can read the tree-like nature of the data in the results by noting that PC1 separates
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individuals from sub-populations A from B and C and PC2 separates sub-populations B and
C. That is, each PC corresponds to a split in the tree.

In Figure we display the results of applying the drift model to the simulated data.
The structure of the tree naturally pops out of the visualization. There is one shared drift
event (orange) that is shared by all individuals. A second shared drift event (dark-green) is
only shared by individuals from sub-populations B and C. Finally, each sub-population has
a specific drift event (blue, purple and light-green, representing the external branches of the
tree). The ability to capture shared drift events (orange and dark-green) is what primarily
distinguishes our model from existing methods. While we acknowledge that real data is
much more complex and, in particular, does not necessarily adhere to the strict assumptions
of tree-like models, we believe that this pedagogical example usefully illustrates the potential
advantages of our approach.

While we showed the advantage of the drift model in the three-population tree simulation,
we also encountered optimization challenges in other simple tree simulation scenarios. We
simulated data from a Gaussian matrix factorization representation of a four-population tree
(Figured.3A). We compared the objective function values (Evidence Lower Bounds [ELBOs])
at convergence between two initialization strategies: (1) initializing with a greedy algorithm
from the FLASH model with bi-modal priors for the loadings and Gaussian factors (2)
initializing at the true loadings as specified by the tree. Both approaches showed evidence
of converging, based on a small non-negative change in the ELBO between consecutive
iterations, but the fit initialized at the truth shows a much higher value of the ELBO at
convergence (a difference of 1875.311 log-likelihood units, Figure [1.3E). In Figure and
Figure we display the fitted loadings for each factor for the greedy fit and the drift
fit initialized at the greedy solution. We can see that there is no qualitative difference in
the interpretation of the loadings between the two figures. While, both of the solutions

do have some attractive features (e.g. they can capture the shared internal branches), the
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Figure 4.3: Illustration of convergence to a local optimum in a simple simulation:
We display a set of visualizations to illustrate the convergence of the drift algorithm to a local
optimum and sensitivity to initialization. In A we show the ground truth four-population
tree we simulated data from and values of the ELBO initialized using the FLASH greedy
algorithm, initialized from the ground truth, and the difference between these ELBOs. In B
we show the fitted loadings from the FLASH greedy algorithm. In C we showed the fitted
loadings from the FLASH backfitting algorithm initialized at the greedy solution. In D we
show the fitted loadings from the drift algorithm initialized at the greedy solution. In E we
show the fitted loadings from the drift algorithm initialized at the truth.

population specific factors, for the most part, are not recovered. Interestingly when we run

the FLASH backfitting algorithm, initialized from the same greedy fit, it recovers a “sparser”

representation of the tree, only using five factors to represent the data (Figure ) The
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recovery of this sparse representation is, presumably, because the FLASH algorithm uses a
mean field variational approximation for the factors, assuming independence over each drift
event, whereas in drift we allow for correlations in the approximate posterior (see methods
section for details). Overall, this example points to some challenges in the non-convexity
of the objective function because even though we simulate data from the underlying model

that we fit, the algorithm can be sensitive to the initialization.

4.8.8  Emprirical applications

Application to the 1000 Genomes Project

Next we applied PCA, ADMIXTURE and drift to the 1000 Genomes Project Phase 3 dataset.
We downloaded and used the same dataset prepared for admixture analysis in the 1000
Genomes Phase 3 flagship paper (1000 Genomes Project Consortium et al.; 2015 |Alexander
et al., 2009). This prepared dataset filtered out rare variants and thinned the genome to
reduce the effect of linkage disequilibrium on the ADMIXTURE results. We then oriented
each site so that the genotype data represents the count of chromosomes with the derived
allele status for each individual and SNP using ancestral allele calls also inferred from the
1000 Genomes Project. We ran the drift model with a greedy initialization scheme for
K =2,...,K =12 (Supp. Fig. [1.6] see Wang and Stephens| (2018) for a description of the
FLASH greedy algorithm). Specifically, in the greedy initialization algorithm we used the bi-
modal priors that are constrained to be between 0 and 1 for the loadings and Gaussian priors
for the factors (drift events). For comparison to the results of ADMIXTURE emphasised
in the 1000 Genomes Phase 3 flagship paper, we re-display admixture results for K = 8
and drift results for K = 9 in Figure 4.4 We add an additional factor because we fixed
the first factor to be equally shared across all sub-populations and not updated in the
algorithm, representing the ancestral mean shared across individuals (1000 Genomes Project

Consortium et al., [2015)).
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Figure 4.4: Application of drift and ADMIXTURE to the 1000 Genomes Project:
We display the application of drift and ADMIXTURE to common variants from the 1000
Genomes Project dataset. In sub-panel A we represent the drift loadings in a stacked bar-char
where each color represents a different drift event. Because the loadings are not constrained
to sum to 1 the height of each bar can be different across individuals. Note that we scale
each loading by the prior variances of their corresponding drift event. In sub-panel B we
display a typical STRUCTURE plot of the application of ADMIXTURE to the same dataset.
Overall we see that drift tends to emphasize more shared factors across individuals whereas
ADMIXTURE leads to a more clustered solution with regional specific ancestries being
emphasized.

We display the top PCs computed by running PCA on the normalized genotype matrix
(Supp. Fig. 4.7). We note that the top PCs mainly capture global relationships among
individuals, while subsequent PCs capture regional effects.

As expected from previous studies of global-scale ancestry, the results of ADMIXTURE

displayed in a structure plot show a relatively “clustered” representation of population struc-

ture (Figure [1.4] [Rosenberg et al|(2002)). For instance, individuals from Europe (TSI, IBS,
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GBR, CEU, FIN) all essentially have 100% of their ancestry proportions assigned to the
light-green ancestry component, while individuals from East Asia (CDX, KHV, CHS, CHB,
JPT) show two ancestry (dark-blue and dark-green) components that are mostly specific to
the region. Individuals from the Americas show a signal of admixture with many ancestry
components found in other continental regions as well as a grey ancestry component found
in CLM, MXL, PUR and PEL. Finally, African individuals are represented by three ances-
try components (red, yellow, and purple). This representation of population structure is
not fully satisfying. This is especially apparent for the geographic regions that draw their
ancestry almost exclusively from a single latent component (Europe) or from multiple latent
components specific to that region (Africa). Only when looking at multiple fits of ADMIX-
TURE with different values of K can we begin to see nested patterns of shared ancestry
(1000 Genomes Project Consortium et al., [2015]).

We display the drift results in a stacked bar-chart, but because the individual loadings
are constrained to be between 0 and 1 and not constrained to lie on a probability simplex like
in ADMIXTURE, each bar can have a different height (Figure [£.4)). For visual convenience
we do not display the first shared factor which is fixed at one for all individuals and we scale
the loadings for each individual by the estimated prior variances for their corresponding drift
events. Like the results of the PSD model admixed individuals show loading on drift events
that are found in many regions over the globe. For instance, African Ancestry in Southwest
US (ASW) individuals and African Caribbean in Barbados Beyond (ACB) show loading on
the red and yellow drift events primarily found in Africa as well as the blue, green and purple
drift events founds outside of Africa. Also, individuals from the Americas (CLM, MXL, PUR
and PEL) show signals of shared drift from 3-4 drift events which is consistent with their
recent and complex admixture history. Particularly, the fact that the green component is at
high levels in the Americans and primarily defines southern European individuals (Toscani

in Italia [TSI], Iberian Population in Spain [IBS]) is consistent with this history.
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In addition to this admixture signal we see many drift events that are shared across dif-
ferent regions of the globe, even in individuals who are not known to have a recent admixture
signal in the results of the PSD model. This sharing of drift events is, indeed, the main point
of developing this new representation of population structure. For instance, the green drift
event is found in sets of individuals across the globe except in East Asia. The blue drift
event is found in most regions of the globe except in Europe (barring Finland), though it is
difficult to exactly understand the historical context of this factor and it might be an artifact
of where our conception of the root is placed. The brown drift event is enhanced in individ-
uals from Finland, relative to the other northern European individuals from Utah Residents
(CEPH) with Northern and Western European Ancestry (CEU) and British in England and
Scotland (GBR), where it’s also found. This feature could make sense because Finland has
gone through a recent bottleneck and is typically considered to be founder population (Mar-
tin et al. [2018). In addition to these shared factors there are also mostly regional specific
factors such as the orange drift event found in Americas which possibly could represent the

ancestral component of drift that occurred during the peopling of the Americas.

Application to inferring spatial population structure in gray wolves

While we use tree-like models as a simple motivator for the drift model and describe its
ability to emphasize shared evolutionary histories, it has also has the potential to help provide
interpretable visualizations of data generated under other types of stochastic processes that
are relevant to population genetics. To help motivate this flexibility we applied drift to
a previously published dataset of gray wolves from North America (Schweizer et al. 2016]).
This dataset is composed of 111 gray wolf samples, genotyped on an array at 17,729 SNPs. It
is well suited for visualization of spatial population structure because it includes the sample
locations (latitude and longitude) for each wolf (note we do not use the spatial locations

in the matrix factorization model itself). In [Schweizer et al.| (2016)), the authors showed a
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Figure 4.5: Inferring spatial population structure in gray wolves: We display the fit
of drift to a spatial population genetic dataset of gray wolves from North America. Each sub-
panel shows points for each sample located at the longitude and latitude they were sampled
at and colored by the loading on the focal factor represented by that sub-panel. The blue
color corresponds to 0 loading on that factor and the more yellow colors correspond to
higher loadings. Overall we see each latent factor represents spatial clusters of individuals
that correspond well to known bio-geographic features that could plausible have affected
wolf migration processes.
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convincing signal of isolation-by-distance in this dataset, in which the genetic distance of
wolf samples increases as they are more geographically separated. It has been previously
shown that non-negative matrix factorization, including admixture models, is particularly
useful for visualizing principal spatial patterns and clusters in the data (Wu et al., 2016}
Miller et al. 2014)).

In Figure we display a representation of the drift fit. Each panel shows a map for the
sampling range of wolves for a given factor, where each point represents a sample colored by
its loading on that factor (brighter colors correspond to higher loadings). In general, we see
that the factors show spatial clusters of samples throughout the habitat. For example, we
observe high loadings for a set of samples east of Hudson Bay in Figure[d.5A, in samples from
the Queen Elizabeth Islands in Figure 4.5, and a quite sparse factor representing a sample
from St. Lawrence Island in Figure [4.5[. Indeed, many of these spatial clusters correspond to
the delineation of known geographical features in the dataset such as mountain ranges, island
chains, other water boundaries, and transition zones between eco-regions. These results are
consistent with many of the insights garnered from Schweizer et al. (2016)), including those
from running ADMIXTURE, but using a semi-non-negative matrix factorization approach

that visualizes principal spatial patterns in the data.

4.4 Discussion

Overall, we found drift provides a promising new approach to visualizing population struc-
ture. The approach proposed here has the potential to emphasize shared evolutionary histo-
ries in a matrix factorization framework that has major advantages over existing methods.
One could ask the question: why not represent population structure with a simple tree?
Trees are a widely studied graphical structures in population genetics, and more flexible ex-
tensions like admixture graphs, which allow for admixture events over time, are well-suited

for some aspects of this broad goal of representing shared evolutionary histories (Patterson
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et al., [2012). While tree-like models are of great use for many problems in evolutionary
genetics they have several limitations: (1) in most tree-based methods individuals are pre-
grouped into sub-populations, which are unknown and reflect human knowledge and bias in
the choice of sub-population annotations, (2) trees and admixture graphs have an extremely
large state space when the number of sub-populations is large and thus fitting them requires
difficult combinatorial optimization problems and heuristics and (3) trees are unrealistic
due to their discrete nature i.e. we don’t believe real sub-populations evolve in a tree-like
fashion and we don’t believe individuals experience the evolutionary process on trees in a
binary fashion (Yan et al. 2019; |[Pickrell and Pritchard), [2012). By formulating a model in
a matrix factorization framework we hope to be able to capture some of the best features
of tree-like models in a continuous representation, describing shared evolutionary histories,
while overcoming some of these limitations described above.

ADMIXTURE models, which can be interpreted as another non-negative matrix fac-
torization framework (Engelhardt and Stephens, 2010)), are a natural comparison to the
proposed method here (Pritchard et al., 2000; |Alexander et al., 2009). Both ADMIXTURE
and drift have the advantage over PCA that the admixture fractions or drift loadings can be
displayed as a stacked bar chart, allowing the comparison of many factors at once to under-
stand the underlying population structure of the sample. The challenge of ADMIXTURE
is that it tends to lead to clustered representations of population structure in which under-
standing shared evolutionary histories is difficult. Lawson et al. (2018) elaborate a number
of other scenarios in which data simulated under tree-like models are difficult to interpret.
Particularly, they showed that three different evolutionary scenarios (“recent admixture”,
“ghost admixture”, “recent bottle-neck”), lead to the same fitted admixture proportions.
Understanding the behavior of the drift model in these types of evolutionary scenarios is an
interesting future direction to explore.

While we have shown the drift model produces promising results, the proposed approach
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is not without a number of difficult problems that need to be solved before being ready
to be applied to datasets by researchers. In many simulation experiments we have found
the drift algorithm is highly sensitive to initialization (Marcus et al., 2020a). Indeed, this
is expected, to some degree, because maximizing the empirical Bayes matrix factorization
ELBO with respect to the variational parameters is a non-convex optimization problem
(Wang and Stephens|, |2018). In this work we initialized the optimization approach using the
greedy algorithm described in (Wang and Stephens, [2018)). While we found this initialization
scheme to work well in some settings it also seemed to initialize close to a local optimum,
allowing the drift algorithm to rapidly converge to a solution that gave the same qualitative
interpretation as the greedy fit (Figure [1.3). Exploring different initialization strategies
that allow the drift algorithm to escape this local optima would an important fruitful next
step for this work. We note that initialization and non-convexity are indeed often overlooked
problems for other non-negative matrix factorization algorithms such as ADMIXTURE. One
unique advantage and fascinating feature of PCA is that the SVD is guaranteed to find the
global optima of it’s non-convex objective function, i.e. the best rank-K approximation to
the data matrix (Murphy, 2012).

Related to the non-convexity of the objective function, a specific challenge in this work
is interpreting the results in regards to evolutionary structures such as trees or admixture
graphs (Patterson et al., 2012 [Pickrell and Pritchard, 2012)). In our applications to real
data we pre-fixed a single drift event so that it was shared across all individuals i.e. fixed all
individuals to have a one loading on this event while still estimating the factors. In tree-like
histories this drift event has a natural interpretation of representing the value of the root
of the tree (see the drift event one in Figure [.1]). Inferring the root value of stochastic
processes on trees is known to be a difficult problem and sometimes this parameter is not
identifiable (Pickrell and Pritchard) 2012; [Felsenstein, |2004)). In our application of the drift

model to real data, the placement of the root can make interpretation difficult. For example
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in the 1000 Genomes application, a-priori, it would be natural to imagine that one of the
drift events would be present in primarily non-African individuals, representing some notion
of the “Out of Africa” bottleneck. Here, we observe that signal being represented as drift
event being shared in only African individuals. This might suggest the root is being placed
more internal in our conceptualized evolutionary tree and not at the node representing the
most ancestral sub-population.

Overall, the drift probabilistic matrix factorization model and new variational inference
algorithm is a promising approach for visualizing shared evolutionary histories and hence
inferring population structure. While we have shown compelling results for multiple popula-
tion genetic scenarios and species, more work is needed to understand the optimization and
properties of the model before it can be used in practice. This work motivates an on-going
more basic direction of research in fitting tree-like models to data using matrix factorization

approaches, particular when not all samples adhere to the strict assumptions of a tree.

4.4.1 Model description

The drift model is a special case of the empirical Bayes matrix factorization (EBMF) model

introduced in Wang and Stephens| (2018). Like EBMF, drift models matrix data as

K
Yij = Z Ui [k + €ij) (4.4)
k=1
with priors
Oy O o ™ g,(f) € Q,g),
Fiks fos oo Frte g,if) € g,(f), (4.5)
e N0, %)

In EBMF, the priors gl(f) and glgf ) are estimated from among the families of priors Ql(f)

and g](j ) by maximizing a variational approximation of the log likelihood. Here we assume a
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2

more restricted error model where there is a single residual variance parameter s; = 0% Vi,].

The residual variance parameter o2 is likewise estimated via maximum likelihood.

Bi-modal prior family

As mentioned in the text we restrict the prior family on the loadings to be in set of all
bi-modal distributions on [0, 1] with modes at 0 and 1. This non-parametric prior constraint

can be approximated in practice by using a discrete mixture of uniform distributions,

Ik (.; 71']5;6)) = Z W,(fi)lUniform(.; am,bm), (4.6)

where a and b are a large prefixed grid of end points of the uniform components that
guarantee the mixture distribution will bi-modal with modes at 0 and 1. Specifically, in half
of the grid the left end points of the uniform component are fixed to 0 and the right end
points get increasingly larger towards 1, whereas in the other half of the grid the right end-
points, are fixed to 1 while the left end point get smaller towards 0. The mixture proportions
are unknown parameters to be estimated by maximum likelihood in the variational infer-
ence algorithm. This family can be easily implemented using the ashr software by simply
changing the prefixed grid of the uniform component end points. For more details see the

ebnm_bimodal analysis in Marcus et al.| (2020a)).

4.4.2  Variational approximation

Our goal is to infer the posterior distribution of the loadings and factors conditional on
the genotype data. Unfortunately, this is analytically intractable so we use a variational
approximation to implement a fast optimization algorithm (Blei et all [2017). We assume
the following variational approximation on the posterior distribution of the loadings and

factors
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qr.r(L, F) = | | ae, (&) ar (F), (4.7)
k

where Qe (2) denotes the approximate posterior distribution kth loadings and ¢g(F)
denotes the approximate posterior distribution for the factors.
Specifically, the optimal form for the approximate posterior for the factors is a multivari-

ate Gaussian which factorizes over the SNPs,

ar,(£;) = N(£,.59), (48)

where f'J is the approximate posterior mean and £ is the approximate posterior co-
variance for the jth SNP. Our objective function, the Evidence Lower Bound (ELBO), can

be written as:

F(qLaQFng7gF7 S7 Y) = EQLaQF |:l09 p(Y|L7F):|

— Y Dkr (26, (81) 92, (€r))
K

- Z Dkr (q]"j(fj)\\gfj(fj)) :

J

(4.9)

+ const

where the first term is the expected log-likelihood which measures how well the vari-
ational approximation reconstructs the observed data, whereas the next two terms are
KL-divergences between the approximate posteriors on the loadings and factors and their
corresponding priors. These KL terms help to provide regularization for the approximate

posteriors to be not too distant from the priors. More specifically,
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2
1
F(qL7qF7gL7gFJS Y __Z IOg (27T8 > - ST]E(]L,(]F (ylj _Zglkifjk‘>
4] k

- Z Drcr, (ae, (8x)ll9e, (1))

(4.10)
- EDKL (N (£ 29)IN(0, D)) .
+ const
where D is a K x K diagonal matrix with diagonal entries a%, e ,0%{, storing the prior
variances on the factors. The KL-divergence from N (0, D) to N < i Y )> is
Fo50) (S0 T 6) _
D1 (N(fj,z >HN(O,D)> -3 2—2 + Y logo? ~logdet V) — K
k Tk k
(4.11)
The expected log-likelihood can be written as:
1 1 2
Eqr.ar [109 p(Y|L, F)] =3 > | log (27?3%) - STEquF (yij - Zfikfjk)
] ij k
] Yij (4.12)
_7log(27r ——Zlogsw 223 +2 2 é%kfjk .
1,J i,] 5ij i,k "1J
2 12 1 Lo 7
-5 Z R, ikf %k =5 > gfikfimfjkfjm
,y,k w i, k,m:k#m 71

where £;;, and K_Qik denotes the approximate posterior first and second moments on the

loaindgs respectively and [ fjm = Eq fi [ fik fjm]. Overall our objective is thus,
j
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max F(qr,qp, 91,97, 5;Y), (4.13)
QLaqFagngFaS

which can be solved using an empirical Bayes inspired variational inference algorithm

which, in essence, uses coordinate ascent to maximize the ELBO.

4.4.3  Optimization
The EBFA algorithm requires four kinds of updates:
e Updates to the prior and posterior for the kth loading (ge, (¢)) and the gg, (£5)s).
e Updates to the priors on the factors (the O'I%S).

e Updates to the posteriors on the factors (the fjs and U )s).

e Updates to the residual variance parameters szzj (which are assumed to be constant
2 2
here, s7; = 07).

Each update is done via coordinate ascents steps on the ELBO.

Update to posteriors on the loadings

The terms in the ELBO that are relevant to the kth loading are:

Yij 5 7 1 1 5 = 1 - -
F(qr.qF. 90, 9F.S:Y) = Y =l fir — 3 D5t = > Slilimfiefim
ij i ij i i.jmmk 5ij

— Dkr, (qe, (€1l 9e, (€1)) + const
(4.14)

Using the fact that fjpfjm = f]kfjm + il(gj) , we can rewrite the ELBO as:

m

161



F(qr.qr, 915,97, S;Y) =

2
! Tk ) 2 L . 7 ! s |z
SEPN DNl A DI b 11 E R SR P B D Doy e B 127
i j ij J 1j mm#k tj m:m#k

— Dk, (qe,, (€1)] 9e, (€1)) + const
(4.15)

Now we can use Lemma 2 from Wang and Stephens) (2018) to conclude that gg, (€;) and
qe, (£3,) can simultaneously be optimized by solving an EBNM problem (z; ~ N(0;,1/7;),0; ~

gr. € gk) with

=5, (4.16)

and

1 o 1 .
Tixi:Z[STfjk <yz’j_ > éimfjm)_ST > fimngj% : (4.17)

j L7 m:m#k ij m:m#k
Notice that these updates are similar to the EBMF updates given in Wang and Stephens
(2018), but that there is an extra term in the expression for 7;x; that comes from no longer

assuming that the posteriors on factors are independent.

Updates to priors on the factors

These updates are easy, since only KL-divergence terms include the a,%s. Ignoring the com-

mon factor of %, the problem is to maximize:

. s 4 2 .
Dk, (N(E,Z(J)>|\N(O,D)> = kk—Qﬂg—leog—Q—i—const (4.18)
, o o
gk k k k
Set the derivative with respect to ﬁ equal to zero and solve to get:
k
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:%Z< Lk +f > (4.19)
J

In other words, 0]% is just the mean value of f_2 jk across all j.

Updates to the posteriors on the factors

For each j, all K factors must be updated at once. Multiplying the ELBO by two and

retaining terms that include fj or £() yields:

Yij ;7 7 L (7
F(qz,4F, 90,97, S;Y) =2 S%gikfjk -, 87521'1@ (ffk + 21?13)

ik “ij ik g
L5 g =(7)
-, 5 liklim (fjkfjmJFEkm) (4.20)
i,kom:k#m “tJ

— Z kk—?Jk + log det $U) + const
o

Further restricting to terms that include »0) yields:

iy /2. s -
F(qr,qr, 90,97, S;Y ) = Z (2;(3,32 55’“ + Z Zé%Z@k@m)%)

J m:m#=k ) (4.21)

—tr <D_lf](j)) + log det $U) + const

Now let L) be the matrix obtained by scaling each column of L by the n-vector s;;

(i.e., €Z(k) = %2 ). Then the above may be rewritten:

S3;

FQr,qr,91,9F7,S;Y) = —tr ((j)(j)Ti(j> + D_l) E_J(j)) + log det =) + const, (4.22)

where i(j)Ti(j> = Eq, [i( NTLG )]. Setting the matrix derivative equal to zero yields
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the solution:

- . -1
$0) _ <1-J(J)Ti(3) +D1> (4.23)

Next, we use similar notation to set g;; = y L and restrict to terms that include fj Using
Sij

vector notation, we write:

Fqr.qF. 91, 9F, S;Y) = 29; TLOF; - ]f fID7Lf; +const  (4.24)

Again we set the derivative equal to zero and solve:

—_—, . -1 _ _
7 (13(9)%(]4 D_1> LTy, - <i(j)§;(j)>ng (4.25)

Note the similarity of these equations to the solutions for the ridge regression problem:
this is of course not coincidental, as the problem is basically the same except that we have

to keep track of where we are taking expectations.

Updates to residual variance parameters

The residual variance parameters only enter into the data log likelihood. Reorganizing the

ELBO thus yields:

F(qr,qr,91,9F.S;Y) =

-5 Z [lOg Sij T (yw 2y 2 gzkf]k + Z 2 zkf kT 2 Zik:gimfjk:fjm) ] + const
J km:k#m
(4.26)

The solution will depend on the variance structure used. For example, if all residual
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variance parameters are assumed to be equal (Szzj = 52), then:
1 o
2
s?=— > | v~ 2u Zémfjk + Zezkf ikt Dy Llimfiefim (4.27)
P 1,9 kym:k#m

Doing some rearranging:

- 2
1 o o
s* = " (yz'j - ikfjk) - Z%fjk) +Z 21— Cig.) >f2 %+ O Liglim fifim
2V k

k

k,m

- 2

1 o

= — Vij = ), ikfjk> + Zvar%ik Cop) 20+ . &kﬁszOqu (fiks f]m)]
4,J L k k k.m

(4.28)

As with EBMF, the estimated residual variance is equal to the mean squared residual

(where the mean is across all entries, or row-wise, or column-wise, depending on the variance

structure), but there is an extra term that again comes from not assuming that posteriors

on factors are independent.

4.4.4  Population structure inference

To compare the application of the drift model to existing population structure inference
methods we ran multiple methods on the genotype data we analyzed here. We ran the
ADMIXTURE software for multiple values of K visualizing among multiple replicates the
one that achieves the high log-likelihood. We use the truncated SVD algorithm implemented
in the LFA R package for all the principal components analysis visualizations displayed (Hao
et al., 2016). Finally we used the ALStructure R package to run an implementation of

admixture models on the simulated datasets (Cabreros and Storey, 2019).
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4.5 Supplementary Information
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Figure 4.6: Gallery plot of drift results from K =2 to K = 12: We display a gallery
plot of drift results applied to the 1000 Genomes Project Phase 3 dataset.
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Figure 4.7: PCA applied to the 1000 Genomes Project Dataset: We display PCA bi-
plots applied to the normalized 1000 Genomes Project Phase 3 genotype matrix of common

variants.
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CHAPTER 5
CONCLUSION

5.1 Genetic history from the Middle Neolithic to present on the

Mediterranean island of Sardinia

In chapter two titled “Genetic history from the Middle Neolithic to present on the Mediter-
ranean island of Sardinia”, I, along with my collaborators, applied existing population struc-
ture inference methods to learn about the genetic history of the Mediterranean population
of Sardinia (Marcus et al., 2020c). In this chapter we generated a new genome-wide ancient
DNA dataset of 70 individuals from a broad temporal range and geographic locale across
the island of Sardinia. The work builds upon the observations of (Chiang et al.| (2018)) but
with a greater resolution into the past because of the temporal component to the data. This
unique dataset offered a new lens into the genetic history of Sardinia and understanding of
migration processes in the broader Mediterranean region as well as Western Furasia. The
application of population structure inference tools allowed us to learn that ancestry in Sar-
dinia was relatively stable for thousands of years, from the Neolithic to the Nuragic period, a
period named after an unique Sardinian culture known for its distinctive stone-towers scat-
tered throughout the island. In post-Nuragic times migration throughout the Mediterranean
was much more dynamic leading to changes in ancestry from sources from the eastern and
northern Mediterranean and northern Africa. Overall the utility of population structure in-
ference methods are highlighted in an applied dataset, shedding light into the genetic history

of Sardinia.
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5.2 Fast and Flexible Estimation of Effective Migration Surfaces

In chapter three titled “Fast and Flexible Estimation of Effective Migration Surfaces”, 1,
along with my collaborators, developed a new statistical model and optimization algorithm
called FEEMS for inferring effective migration and visualizing non-homogeneous spatial pop-
ulation structure (Marcus et al., 2020b)). As the name suggest, we extend and draw inspi-
ration from the EEMS method, using a similar spatial graph based approach but propose
two key differences for greater flexibility and speed; (1) We assign unique parameters to
each edge-weight of the graph rather than each node and constraining each edge to be the
average of node parameters. This parameterization is more flexible and allows the possibil-
ity of inferring anisotropic migration histories which we highlight in coalescent simulations.
(2) Instead of MCMC, we develop a gradient based optimization algorithm. We develop a
new penalty which encourages neighboring edges to be smooth over the graph. Specifically,
we use a fast quasi-Newton algorithm to optimize a challenging non-convex program. We
apply FEEMS to a dataset of gray wolves from North America and find FEEMS provides
similar results to EEMS but orders of magnitude faster. We hope for FEEMS to be a helpful

addition to the toolkit of spatial population structure inference methods.

5.3 Emphasizing shared evolutionary histories when inferring

representations of population structure

Finally, in chapter four titled “Emphasizing shared evolutionary histories when inferring
representations of population structure”, 1, along with my collaborators, developed a new
Bayesian matrix factorization method for visualizing population structure. PCA and admix-
ture models are the most widely used tools for inferring low-rank representations of popula-
tion structure but both of these methods have difficulties when applied to population genetic

data. Particularly, the output of admixture models tends to lead to clustered representations
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of population structure because of the model constraints on the admixture proportions. In
this chapter we developed a new matrix factorization model called drift which emphasises
shared evolutionary histories that individuals have experienced over time. We extend the
work (Wang and Stephens|, 2018)) and developed a fast empirical Bayes inspired variational
inference algorithm which returns approximate posterior distributions on the matrix factors
using optimization. We applied drift to multiple species and find it has advantageous over

existing approaches but also unique challenges in the optimization.

5.4 Future Directions

A fundamental focus of this dissertation can be described as “unsupervised learning”, with a
particular emphasis on inferring interpretable representations that are tailored for population
genetic data. The output of unsupervised learning methods are often used for prediction or
imputation tasks (Mazumder et al., 2010) but directly interpreting the underlying learned
representation is an important and challenging problem in many fields (Friedman et al.
2001).

In chapter 2, we used existing approaches to population structure inference applied to
ancient and modern genetic variation data (Marcus et al., [2020c). One major challenge was
that the ancient data was extremely noisy and had high levels of missingness due to the
inherit sample input and capture technologies used to generate the data (Orlando et al.
2015). In our work, as is the standard in the field, we fixed the genotypes to pseudo-haploid
gentoype calls to make the application of standard population structure inference tools prac-
tically easier (Haak et al., 2015)). We also leveraged the high quality genotypes of modern
samples to help, in some-sense, regularize the estimates of ancestries for the ancient samples.
We approached this by projecting ancient samples on to a sub-space defined by modern sam-
ples, while correcting for an out-of-sample bias induced when performing PC score regression

(Lee et al., [2010). While this approach does not identify the population structure specific to
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the ancient samples it can still help to provide an interpretable representation of ancestry
with respect to the high quality modern genotype data.

Another reasonable approach would be to model the raw data for ancient samples, which
are read-counts, not pre-fixed pseudo-haploid genotype calls. The challenge then becomes
integrating over the uncertainty of the latent genotypes for each ancient sample and SNP
while estimating population structure along with high quality modern genotype data. There
are some promising initial approaches in different population genetic applications, such as in
admixture models (Skotte et al., |2013) or inferring runs of homozygosity (Ringbauer et al.
2020)), but developing scalable and simple population structure inference methods that can
account, for heterogeneous data inputs of reads and genotypes is in general an open and
important problem. A fast and simple approach to this problem would provide exploratory
tools that would allow for inference of population structure within ancient samples which
would be of great use for many applications.

In chapter 3, we developed a new model and efficient optimization algorithm for inferring
a graph embedded in geographic space. The edge-weights of the graph represent effective
migration and the nodes represent allele frequencies. In the chapter we discussed many
future directions for the FEEMS model specifically, but an exciting future direction for the
field would be to combine the smoothness assumptions of graph learning as well as low-rank
assumptions in matrix factorization. Caye et al.| (2018]) took a related approach to this idea
in admixture models by constructing a graph based on a similarity function taking spatial
coordinates as input. They then used a graph laplacian smoothing penalty on the admixture
fractions to encourage them to be smooth over geographic space. This approach allowed for
better interpretation and predictive accuracy of held-out genotypes for admixture models in
a spatial context. One potential limitation of the approach is that the spatial regularization
is assumed to be globally smooth over geographic space and did not allow for sharp-change

points which allows for local-adaptivity. It would be interesting to explore spatially smooth
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matrix factorization with trend filtering penalties that allow for sharp changes in ancestries
over space, representing geographic regions that reduce or enhance gene-flow. It could be also
useful to impute these ancestries over the entire geographic region (in the method itself),
not just inferring ancestries at sampled locations. This type of approach could lead to
interpretable spatial maps of ancestries and result in a simple alternate matrix factorization
based approach to the visualisations output by FEEMS. Smooth matrix factorizaton could
have some other interesting applications to complex biological datasets, like those generated
in spatial transcriptomics (Rodriques et al. 2019).

Finally in chapter 4, we developed a new Bayesian matrix factorization model and varia-
tional inference algorithm inspired by Wang and Stephens| (2018) for visualizing population
structure. Working on this model and algorithm opened open a number of fundamental
questions on fitting trees to data and their relationship to matrix factorization or, relatedly,
estimating tree-structured covariance matrices (McCullagh, 2009). While fitting trees to
data is a common task, often performed with hierarchical clustering (Friedman et al., 2001]),
an interesting question to follow up on is how to fit trees to data that are generated from
“tree-like” models. For example a dataset with admixed individuals is “tree-like” yet it is
challenging to infer an underlying tree including admixed individuals in the model (Patter-
son et al.; 2012)). More importantly, in practice, which individuals are admixed is not known
a-priori. Extracting trees from “tree-like” data is a ubiquitous problem in many fields and
yet to our knowledge it has not been thoroughly explored. These fundamental questions is
fodder for interesting research directions that could have wide applications in genomic data,
including population genetics and inference of tree structures from gene expression data.

Looking forward, many challenges and open questions remain in all these chapters but
in general they contribute to a body of knowledge that can be applied and built upon. I am
excited to seeing how this work is extended and contributes to scientific knowledge on these

challenging inference problems.
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