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ABSTRACT

Chapter 1. Previous literature documents that mutual funds’ flows increase more
than linearly with realized performance. I show this convex flow-performance re-
lationship is consistent with a dynamic contracting model in which investors learn
about the fund manager’s skill. My model predicts that flows become more sensitive
to current performance after a history of good past performance. It also predicts
that the effect of past performance on the current flow-performance relationship is
weaker for managers with longer tenure. I consider an optimal incentive contract for
money managers, and I provide an explanation for common compensation practices
in the industry, such as convex pay-for-performance schemes and deferred compensa-
tion. In the optimal contract, flows become more sensitive to performance when the
manager faces stronger incentives from the compensation contract. With learning,
the manager’s incentives become stronger after good performance, so that a manager
exerts more effort when his assessed skill is higher. However, the relation between
past performance and incentives becomes weaker over the manager’s tenure. Using
mutual fund data, I test the predictions of the model on the dynamic behavior of
the flow-performance relationship, and I find empirical support for the theory.
Chapter 2. We test through which channels quantitative easing affects the prices
and issuance of securities. We exploit the announcement of the corporate bond
purchase program by the European Central Bank, and we study the impact of the
announcement on the cross section of European corporate bonds. We find that as
the Central Bank increased the demand for bonds eligible for the program, eligible

firms responded by substituting the issuance of ineligible bonds with the issuance of

xiil



eligible bonds. As a result, bond prices were unaffected by their eligibility status, and
all firms increased total issuance to the same extent. We show that monetary policy
affected bond prices through a risk channel. Prices increased significantly more for
bonds and firms that were exposed to higher levels of risk and uncertainty. However,
risky firms did not issue more in response.

Chapter 3. 1 develop a continuous-time game between a population of investors
and an intermediary whose type is private information and whose portfolio allocation
is neither observable nor contractible. I define and characterize a sequential equilib-
rium of the game and solve for a Markovian equilibrium where investors’ posterior
beliefs are the key state variable. In my model, demand for riskless assets undergoes
dramatic changes that resemble the episodes of flight to safety observed during finan-
cial crises. I show that a risk-neutral intermediary chooses a portfolio that minimizes

risk when beliefs are near the threshold below which the intermediary is terminated.
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CHAPTER 1
FLOWS AND PERFORMANCE WITH OPTIMAL
MONEY MANAGEMENT CONTRACTS

1.1 Introduction

Mutual funds face a double challenge. On the one hand, they cope with volatile flows
of money as investors react to funds’ performance: Well-performing funds experience
money inflows, whereas poorly-performing funds experience money outflows. On the
other hand, funds may struggle to generate good performance if their portfolio man-
agers face inadequate incentive schemes. These two challenges are tightly connected.
Funds collect fees on their assets under management. They therefore aim to max-
imize performance in order to increase money inflows and fee revenues. However,
funds need to delegate investment decisions to managers whose objective is not to
maximize performance but to pursue their own interests. In this paper, I study the
connection between these two challenges and show how funds can overcome them
using optimal money management contracts.

I develop a dynamic contracting model that explains common patterns in the
money management industry, including a convex relation between fund flows and
performance, as well as convex pay-for-performance schemes for portfolio managers.
Existing literature studies these patterns in isolation, often viewing them as puzzling,
and sometimes viewing them as problematic. Brown et al. (1996) and Chevalier
and Ellison (1997) interpret the convex flow-performance relationship as an implicit

incentive scheme for mutual funds, and investigate its implications for funds’ risk-
1



taking behavior. Basak and Pavlova (2013), Cuoco and Kaniel (2011), and Panageas
and Westerfield (2009) study how common compensation schemes distort managers’
portfolio choices. Using a mechanism-design approach, I show that a convex flow-
performance relationship and a convex compensation scheme are jointly consistent
with an optimal dynamic contract for money managers. To provide empirical support
for my theory, I derive novel statistical predictions on the dynamic behavior of the
flow-performance relationship and test them in mutual fund data.

In the model, I consider the two layers of incentives that characterize the mutual
fund industry. In the first layer, competitive investors supply capital and pay propor-
tional fees to a fund advisor who represents the fund family or the fund management
company. In the second layer, the advisor hires a portfolio manager and sets the
terms of the manager’s compensation contract. Because the advisor captures the
value added of the fund through fee revenues, she faces implicit incentives to maxi-
mize performance and assets under management. To align the manager’s incentives
to her owns, she offers an explicit performance-based compensation contract to the
manager.

To generate an increasing and convex relation between fund flows and perfor-
mance, the model relies on two assumptions. First, the manager possesses an un-
known skill to generate excess returns. The manager, the advisor, and the investors
learn about the manager’s skill by observing realized returns. According to this as-
sumption, investors expect better future performance from a manager who performed
better in the past. Second, the manager is subject to moral hazard in his private

choice of costly effort: He may exert low effort and reduce returns for investors.



The advisor designs an optimal incentive contract to prevent this possibility. In the
optimal contract, the advisor specifies the incentives of the manager as an increas-
ing function of the manager’s expected performance, so that a manager exerts more
effort when his assessed skill is higher. Moreover, flows into and out of the fund
become more sensitive to performance when the manager faces stronger incentives.
Fund flows thus become more sensitive to current performance when future expected
performance increases. Therefore, as good returns accumulate and investors expect
increasingly better future performance, fund flows become increasingly more sensi-
tive to current performance. As a result, over any period of time, cumulative fund
flows respond in a positive and convex way to cumulative performance. The em-
pirical literature has repeatedly documented a positive and convex response of fund
flows to performance (Chevalier and Ellison, 1997; Del Guercio and Tkac, 2002; Sirri
and Tufano, 1998).

The model produces a managerial compensation scheme that reflects three com-
mon practices in the money management industry. First, managers are compensated
for their performance. Second, similar to capital flows, the manager’s compensation
becomes more sensitive to performance after a history of good returns, thus result-
ing in a convex compensation scheme on an annual basis. These first two results
are consistent with the widespread use of convex pay-for-performance contracts in
the industry (BIS, 2003; Ma et al., 2019). According to the model, advisors opt for
these contracts so that managers with higher assessed skill face stronger incentives
to exert effort. Third, the optimal contract includes a deferred compensation fea-

ture. After good performance, the advisor partially postpones the delivery of the



promised compensation in order to provide stronger incentives to the manager. In
the money management industry, several practices effectively postpone the payout
of performance-based compensation to future periods.t

I provide empirical support for my theory by testing a novel prediction of the
model regarding the dynamic behavior of the flow-performance relationship: Fund
flows react more strongly to current performance after a history of good performance.
I measure a mutual fund’s performance by comparing its return with the average
return of funds with the same investment objective. For every month, I compute the
average past performance over the previous months. At a monthly frequency, past
performance has a positive and statistically significant effect on the extent to which
fund flows respond to current performance.

I test an additional novel prediction of the model, which establishes a connection
between the dynamic behavior of the flow-performance relationship and the tenure of
the manager. Under the assumption that the advisor and the manager can fully com-
mit to the terms of the optimal long-term contract, the slope of the flow-performance
relationship depends more weakly on past performance if the manager has a longer
tenure. I verify this prediction holds in mutual fund data. According to the model,
the ex ante optimal contract imposes constraints on the incentives and on the skill
of the manager as the manager’s tenure becomes longer. If the manager’s skill plays
a minor role in generating returns, past performance provides less information about

future performance, thus weakening the link between past performance and the slope

1. Ma et al. (2019) document that 30% of the mutual fund managers in their sample are subject
to explicit deferred compensation contracts. Moreover, they find that managers’ bonuses depend on
their average performance over multiple years in the past. This last practice effectively implements
a deferred compensation scheme.

4



of the flow-performance relationship.?

I derive my results in a continuous-time contracting problem with learning about
the manager’s skill. This problem poses some challenges, which I overcome by using
duality methods. Given an optimal incentive contract with learning, the manager
could acquire an ex post information rent after shirking. Intuitively, a manager
who shirks and appears unskilled has better career prospects than a manager who
is actually unskilled. If a contract induces larger information rents, the manager
has weaker incentives to maximize returns and the advisor obtains lower revenues.
Therefore, one could formulate an optimization problem in which the advisor controls
the manager’s information rent as an independent state variable. Unfortunately, this
problem cannot be feasibly solved. To overcome this challenge, I use duality methods
and offer a tractable and intuitive formulation of the contract-design problem. In
the optimal contract, the advisor commits to ex post inefficient incentives in order
to reduce the ex ante information rent of the manager. In the dual formulation, this
commitment is captured by a multiplier that, over time, distorts the terms of the
contract towards a lower risk exposure for the manager. By considering the dynamics
of the multiplier and of beliefs, I provide intuitive interpretations for my results on

the flow-performance relationship and on the manager’s compensation scheme.

The rest of the paper is organized as follows. In section 1.2, I review the re-

lated literature. In section 1.3, I present the setup of the model. In section 1.4, I

2. Almazan et al. (2004) provide evidence that more experienced managers are subject to more
investment constraints. My model suggests this evidence could simply represent the outcome of an
optimal contract that restricts the use of the manager’s skill over time.



characterize the optimal contract. In section 1.5, I show the implications of the op-
timal contract for flows, performance, and compensation and provide the economic
intuition behind the results. In section 1.6, I empirically test model’s predictions.
Section 1.7 concludes.

In Appendix 1.A, I show the model’s key results hold also when I relax the
assumption that the manager and the advisor fully commit to the terms of the
optimal contract. Appendix 1.B contains a two-period model that illustrates the
trade-off between ex ante and ex post efficiency. All proofs are in Appendix 1.C,
Appendix 1.D, and Appendix 1.E. Appendix 1.F contains robustness checks for the

empirical analysis.

1.2 Related Literature

My paper extends the current asset management literature by studying the connec-
tion between agency frictions, managerial compensation, and the flow-performance
relationship. Existing models of asset management (Basak and Pavlova, 2013; Cuoco
and Kaniel, 2011; Kaniel and Kondor, 2013; Vayanos and Woolley, 2013) focus on
the implications of common fee schedules on portfolio choices and asset prices. Com-
pared to this literature, my model builds on the recent empirical evidence in Ibert
et al. (2018) and Ma et al. (2019), who show that portfolio managers face compensa-
tion contracts that differ substantially from the fee revenues that fund management
companies receive. Although my paper does not study the asset-pricing implications
of managerial incentive schemes, it provides a theoretical foundation for common

compensation practices in the industry. My paper is therefore related to the lit-
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erature that adopts a mechanism-design approach to study investment delegation
(Bhattacharya and Pfleiderer, 1985; Cadenillas et al., 2007; Dybvig et al., 2010; He
and Xiong, 2013; Heinkel and Stoughton, 1994; Ou-Yang, 2003; Palomino and Prat,
2003). I further develop this literature by studying the connection between manage-
rial incentives and the flow-performance relationship.

Compared to previous theoretical studies of the convex flow-performance rela-
tionship, my research highlights the dynamic nature of such a relationship. In par-
ticular, the model produces a relation between flows and performance that depends
on the history of past performance. This dynamic aspect of the flow-performance
relationship is novel to the literature. My model therefore complements Berk and
Green (2004), in which the flow-performance relationship changes as a function of
the fund’s age, but not of past performance. To derive my results, I rely on learning
about the manager’s skill and on the agency frictions inside the fund. I abstract from
other determinants of the flow-performance relationship that previous studies have
considered, for example, decreasing returns to scale (Berk and Green, 2004), changes
in investment strategies (Lynch and Musto, 2003), participation costs (Huang et al.,
2007), or bias in the social transmission of information (Han et al., 2018).

In my empirical analysis, I stress the dependence of the flow-performance relation-
ship on the history of the fund’s past performance and on the manager’s incentives.
My analysis therefore differs from Franzoni and Schmalz (2017), who study how the
flow-performance relationship changes with aggregate risk factors, rather than with
the fund’s idiosyncratic performance. My research complements also the analysis

in Chevalier and Ellison (1997). Whereas they study how the shape of the flow-



performance relationship differs across young and old funds, I study how the history
dependence of the flow-performance relationship varies with the tenure of the man-
ager. Although my empirical analysis is primarily related to the extensive literature
on the flow-performance relationship (Chevalier and Ellison, 1997; Del Guercio and
Tkac, 2002; Ippolito, 1992; Sirri and Tufano, 1998; Zheng, 1999), I design my em-
pirical tests on the basis of a model that connects fund managers’ incentives to the
flow-performance relationship. In this sense, my paper adds a new perspective to
the literature that explores the connection between managers’ incentives and fund
performance (Agarwal et al., 2009; Almazan et al., 2004; Chen et al., 2008; Chevalier
and Ellison, 1999; Khorana et al., 2007).

From a modeling perspective, my paper builds on the literature about dynamic
contracting with learning (Bergemann and Hege, 2005; DeMarzo and Sannikov, 2017;
Halac et al., 2016; He et al., 2017; Horner and Samuelson, 2013; Prat and Jovanovic,
2014). I contribute to this literature along two dimensions. First, I allow for capital
flows and for smooth changes in the rate of learning. By doing so, I obtain testable
predictions on the relation between capital flows, performance, and managers’ tenure.
Second, I show how to use duality methods to overcome technical challenges posed
by this class of contracting models. In particular, I use duality methods to solve
a dynamic programming problem with an endogenous bound on the state space,
which would be otherwise unfeasible. Sannikov (2014) and Miao and Zhang (2015)
also use duality methods to solve contracting problems, although with the purpose

of obtaining linear partial differential equations.



1.3 Model Setup

I consider a setting that involves a portfolio manager, a fund advisor, and a popu-
lation of investors as players. No player knows the true alpha-generating skill of the
manager, and a standard agency friction exists within the fund, because the manager
could shirk and gain a private benefit at the expense of investors. Time is continuous

and starts at 0.

1.3.1 Players

I consider the following players: a population of investors, one fund advisor (the
principal /she), and a portfolio manager (the agent/he). I use the term “fund” to
refer to the organization formed by the portfolio manager and the fund advisor. The
advisor collects capital from investors on the spot market and hires the manager to
actively manage this capital.

Investors are risk neutral, competitive, and cannot commit to long-term contracts.
They interact with the advisor through a series of spot contracts that, at every time
t, specify the assets investors supply to the fund, K, and the proportional fee the
advisor receives, f¢. Investors then collect the returns that the fund produces, Ry.
Through their interaction with the fund, investors obtain a utility
Fo

Y

E [/OO e " (KydRy — (fe + r) Kydt)
0

where r > 0 is the market risk-free rate and represents both the discount rate of



investors, as well as their opportunity cost of capital.? Investors are therefore willing
to provide any amount of capital as long as they expect the net-of-fee return to weakly
exceed the risk-free rate. J( captures the initial information, which is common across
all players.

Through most of the paper, I assume that the fee is variable over time and that
K¢ represents the amount of assets that the fund actively manages. Alternatively,
one could assume, as in Berk and Green (2004), that the fee is fixed at some suf-
ficiently low value, f, and that investors supply additional capital, Ky, which the
fund invests in a passive benchmark. Investments in the passive benchmark can be
easily monitored, so they are not subject to the moral-hazard friction that I describe
shortly. These two assumptions yield equivalent outcomes, as long as the passively
and actively managed parts of the portfolio are contractible and the implied transfers
coincide, that is, f K¢ = f(K; + Ky).

The advisor collects the fees paid by investors, f;Ky, and offers a compensation
Cy to the manager. The advisor is risk neutral and her objective is to minimize the

cost of running the fund,

m ~
E [/ e " (Cy — feKy)dt|Fo
0

Unlike the investors, the advisor has the power to commit to a long-term contract

with the manager.* Investors observe this long-term contract and understand the

3. These preferences reflect the assumption that investors are active in a complete asset market.
The fund offers an idiosyncratic return that they are able to fully diversify. The fund’s returns are
thus uncorrelated with their aggregate consumption and carry no risk premium for investors.

4. T relax the full-commitment assumption in Appendix 1.A.
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consequences of the contract on the manager’s incentives. In particular, investors
adjust their supply of capital and their willingness to pay fees in response to the
terms of the contract. Therefore, in designing the contract, the advisor accounts not
only for the incentives of the manager, but also for the investors’ responses.

The manager controls the fund’s active portfolio. However, he cannot be di-
rectly monitored by the advisor. In particular, the advisor cannot verify whether
the manager exerted full effort in making his investment and trading choices. Be-
cause of the imperfect monitoring, a moral-hazard friction emerges. More formally,
I assume the agent may shirk at rate m; and reduce the fund’s cash flow rate by
m¢ K. The manager obtains a private consumption value of AmyKy from shirking,
where 1 — A € (0, 1) represents the inefficiency of shirking. Full effort coincides with
m¢ = 0, and the consumption value of shirking can be equivalently interpreted as
the cost of effort. If a fund manager consumes (C})¢>( and shirks at a rate (m)¢>o,

his expected utility is given by

00
Vo =E {/ 6_6tu(0t + mt/\Kt) dt
0

3"0] , (1.1)

where (K¢);>0 are the fund’s assets under management. I assume 6 > r and u(x) =

27 with p € (0,1/2).]

5. The assumption that p < 1/2 is needed to obtain a finite solution to the model. If p > 1/2,
the manager’s marginal utility of consumption would decline quickly enough that the advisor would
find it profitable to give infinite capital and infinite consumption to the manager and overcome the
incentive problem. This assumption can be relaxed if I extend the model to allow the manager
to privately save. However, this extension would substantially complicate the model along several
dimensions. Moreover, it would not add any additional insight about the economic mechanism that
determines the flow-performance relationship.

11



The manager possesses a specific skill, which is unobservable to the advisor and
the investors, as well as to the manager himself. However, he can generate infor-
mative signals about his skill through costly experimentation. For example, he can
search for profitable investment opportunities or implement new trading strategies.
If the manager is skilled, he will produce additional excess returns. If he is not, his
experimentation efforts will be worthless. By observing realized returns, all players
will be able to learn over time whether the manager possesses a superior investment
skill. I assume experimentation can be represented by a variable, 7y, that takes
values in a bounded set, n; € [0,7]. Experimentation is fully observable and con-
tractible. To introduce costs for experimentation, I assume experimentation reduces
the consumption value of the manager’s compensation. If the manager receives com-
pensation Cy from the advisor, but he is required to undertake experimentation Nt,

his final consumption is given by

Cr = q(nt)Ct, (1.2)

for a function ¢(+) such that ¢(-) € (0,1), ¢'(-) < 0 and ¢(77) > X\. We can interpret the
quantity (1 — q(n;))Cy as the cost of searching for new investment ideas. If the man-
ager searches more assiduously for new investment ideas, then his experimentation

rate 7 increases, and the consumption value of his compensation decreases.
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1.3.2 Returns

The advisor hires the manager to actively manage the fund’s portfolio and generate
excess returns. However, the manager’s skill is unknown to all players, including the
manager. | assume the manager could be either skilled or unskilled, as indexed by
his hidden type h € {0,1}. If the manager experiments with investment ideas and
trading strategies, his skill will be reflected in the fund’s returns. Players then learn
over time about the manager’s skill by observing the fund’s performance.

I assume returns follow a stochastic process,

dR = (r + p(ne, hymy))dt + ocdWy )
1.3

pw(ne, hy,my) = a4 ongh — my,

where r is the risk-free rate, and @ > 0 and o > 0 are known parameters.

Returns depend on the uncertain skill of the manager, h, and on the manager’s
hidden action, my > 0, which is positive if the agent shirks and does not exert full
effort in managing the assets. If a manager is skilled (h = 1), he obtains superior
returns by experimenting, that is, by setting 7; > 0. If he is unskilled (h = 0),
his experimentation efforts will not be reflected in returns. By shirking at rate my,
the manager reduces cash flow for investors by myK;. However, his private benefit
of shirking is only Am;K; for A < 1. Shirking is therefore inefficient because the
manager destroys more value that what he obtains. The advisor, in order to maximize
her revenues, designs a contract that enforces full effort. When investors observe this
contract, they understand that the manager has incentives to exert full effort and

they account for these incentives when deciding how much capital to provide to the
13



advisor for a given level of fees.
Besides affecting the distribution of returns, experimentation determines the in-
formation content of returns as a signal for the manager’s skill. Experimentation ny

coincides with the signal-to-noise ratio of returns at ¢, which is defined as

(e, 1,mg) — pu(ne, 0,my)
g

This quantity measures how informative returns are regarding the manager’s skill.
Suppose a skilled manager produces, on average, much larger returns than an un-
skilled manager, that is p(ne, 1,my¢) > p(ne, 0,my). In this case, a good (bad) return
realization will be a strong signal that the manager possesses high (low) skill. How-
ever, if the volatility of returns, o, is very large, a skilled manager could generate a
very poor return due to bad luck, whereas an unskilled manager could deliver a su-
perior return due to good luck. Therefore, volatility reduces the information content
of return signals. By increasing experimentation, 7;, the fund increases the signal-
to-noise ratio of returns and hence generates more information about the manager’s
skill. Although experimentation is beneficial in the short run, I show that in the
long run future experimentation worsens the moral-hazard problem. In the optimal
contract, the advisor will therefore trade off the benefits of current experimentation

with the costs of any future experimentation that she promises.
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1.3.3  Contracting Environment and Learning

The two main elements of the model are the incentive contract between the advisor
and the manager, and the learning process. Returns constitute the only source of
information for the players. First, returns allow players to draw inference about
the manager’s skill. Second, because return realizations change depending on the
hidden action of the manager, they can be used as the basis of an incentive contract.
Therefore, the terms of the contract between the manager and the advisor, as well as
the spot contracts between the advisor and the investors, can solely depend on the
history of returns. In this framework, players’ information is generated by the history
of returns and I denote with (F);>( the filtration generated by the history of returns.
Let (Rs)o<s<t denote the history of returns up to time ¢, then F; = {(Rs)o<s<t} is
the smallest o-algebra for which (Rs)p<s<¢ is measurable.

A contract between the advisor and the manager specifies the manager’s con-
sumption, the size of his actively managed portfolio, and the experimentation that
he undertakes. Moreover, for completeness, I assume the contract also specifies the
effort that the advisor expects. Although the agent’s effort cannot be verified, the
advisor will form a conjecture about the manager’s hidden action at any point in
time. I let the contract specify this conjecture. To keep the notation parsimonious,
I omit compensation from the definition of contract. Given consumption C; and
experimentation 7;, the compensation Cy of the manager is determined by equation

(1.2).

Definition 1.1 (CONTRACT). A contract C is a set of F¢-adapted processes

((Ct)i>0, (Kt)t=0, (Mt)t>0, (Mt )1>0)-
15



Although the advisor cannot directly control the manager’s hidden action, she
understands the implications of a contract on the manager’s incentives to exert effort.
If her conjecture about the manager’s hidden action coincides with the action that

the manager has incentives to take, the contract is called incentive compatible.

Definition 1.2 (INCENTIVE COMPATIBLE CONTRACT). A contract

C = ((C)=0, (Kt)t=>0, (t)t>0, (Mt)>0) is incentive compatible if

. 00
(mi)s>0 € arg max E&(M)i=0 { / e u(Cy + g AKy) dt
Mt )1>0 0

5

The notation E&(7)1=0[|F] explicitly expresses the fact that the distribution of
returns depends on the contract € and the hidden action strategy (1)¢>0p. Without
loss of generality, we can consider only contracts that are incentive compatible. Be-
cause equilibrium strategies are common knowledge, the advisor can always change
any given contract to another one in which her conjecture about the manager’s hid-
den action is consistent with the manager’s best response to the contract.

Given an incentive-compatible contract, players will symmetrically learn about
the skill of the manager by observing the fund’s returns. Suppose all players possess
a common prior, E[h|Fy] = p € [0, 1]. Because the advisor and the investors correctly
anticipate the hidden action of the manager, at any time ¢, all payers have common

beliefs about the manager’s skill given by
¢t = E[h|F].

Beliefs are an important state variable of the model. Beliefs determine investors’
16



expectations about the fund’s returns,

E [pu(ne, by me)| Fe] = p(ne, or, me),

and, through expected returns, beliefs determine the investor’s willingness to supply

capital.

Proposition 1.1. If a contract C = ((Ct)i>0, (Kt)i>0, (Nt)t>0, (Mme)i>0) is incentive-

compatible, then beliefs ¢y = E[h|F¢] evolve as

dr = mer(1 — ¢ )dWY, (1.4)

where

AWE = 2 dRy — (r + (o, 60, )i (1.5)

is an increment to a standard Brownian motion under the measure of returns induced

by C.

Equation (1.4) shows the role of experimentation in the production of information.
If the advisor requires higher experimentation 7;, the signal-to-noise ratio increases,
together with the response of beliefs to any given return shock the.

Given their beliefs ¢; and the contract €, competitive and risk-neutral investors
provide capital to the fund through a series of spot-market contracts. These contracts
specify the proportional fees that investors pay to the advisor. Because investors are
competitive, they take the fund’s net expected returns as given and they compare

them to the interest rate r, which represents their outside option. Given their risk
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neutrality, they are not concerned about the idiosyncratic risk of the fund.

Definition 1.3 (SPOT-MARKET CONTRACT). Given a contract C and beliefs ¢¢, a
spot-market contract, GS, is a pair of Fr-measurable variables, (fr, Kt) such that for

all times t investors are willing to supply capital K¢ and pay fees ft,

K; € arg max (u(ne, &, me) — fr) K,

and such that the advisor obtains revenues fiKy.

From this definition, we can see that competitive investors offer a perfectly elastic
supply of capital at rate r. The advisor can increase fees up to the point at which
they coincide with expected excess returns. Given these fees, individual investors are
willing to supply any amount of capital, whereas the advisor maximizes the revenues
she collects per unit of assets under management. I call a spot market contract

optimal if it maximizes the spot revenues of the advisor.
Lemma 1.1. In any optimal spot-market contract, fr = p(ng, ¢¢,mye) for all t > 0.

Since the proof is standard, I omit it. The lemma is based on the intuition
that, if investors are willing to provide at least K; units of capital and pay a fee
f{ < (e, o, my), they are also willing to provide at least Ky units of capital for
any fee fr € [ff, u(nt, dt,me)]. A revenue-maximizing advisor therefore chooses the
maximum fee investors that are willing to pay. This fee coincides with the expected

veturn i(ng, b, me).

Whereas investors’ preferences pin down fees f;, the size of the fund is pinned
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down by the advisor’s demand.% By setting fees equal to expected excess returns,
the advisor is capturing the value added of the fund, Kyu(nt, ¢¢, m¢), through her
revenues. She therefore has incentives to design a compensation contract that max-
imizes the value of the fund.

The compensation contract of the manager will therefore be optimal for the ad-
visor if it minimizes the costs of running the fund, after taking into account the
incentives that the manager receives from the contract. Formally, an optimal con-

tract can be defined as follows:

Definition 1.4 (OPTIMAL CONTRACT). C = ((Cp)t>0, (Kt)t>0, (Mt)t>0, (Mt)t>0)

1s an optimal contract for initial beliefs ¢g and for initial promised value Vy if

e 8, () < i Ci b s
C € arginf EX\")t=0 / e dt — Kp(ne, hymyg) | dt|Fo
0

e q(t)

~ 0
s.t. (Mmy)y>p € arg max EC(mt)e=0 [/ e u(Cy + MIAKY) dt‘fﬂ)]
B 0

m}) >0

. 00 . .
Ee>(mt)t20 {/ eiétu(ct + Tht)\Kt) dt
0

3"0] > W

E[h|Fo] = ¢o.

In the optimal contract, the advisor explicitly takes into account that the manager

might face incentives to shirk and gain private benefits. By shirking, the manager

6. The logic would be slightly different in the alternative scenario in which fees are fixed. In this
case, the advisor would determine the amount of actively managed assets. Investors would then
supply additional capital to be invested in the passive, monitored portfolio that does not involve
agency frictions. In this framework, investors determine the total size of the fund because they
keep supplying capital until the fund’s total net return coincides with the interest rate. As already
mentioned, these two scenarios imply identical outcomes for the size of the active portfolio and for
the value of the advisor’s revenues.
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affects expected returns u(n, h,my), as well as the distribution of returns. Because
a contract’s terms are written as functions of the history of returns, the expectations
in the definition involves the probability measure of returns induced by the contract
€ and by the agent’s shirking process (1m¢)¢>0. Finally, the optimality of a contract
is always defined with respect to a promised value for the manager V[, which can be
seen as an initial outside option for the manager.

In this paper, I am interested in optimal contracts. Although verifying optimality
in the sense of Definition 1.4 appears intractable, the following proposition shows that

it suffices to search over a restricted class of contracts.

Proposition 1.2. The optimal contract is incentive compatible with full effort, that

is, m¢ = 0 for all t.

The intuition for this proposition is the following. First, as already discussed, we
lose no generality if we restrict attention to incentive-compatible contracts. Second,
optimal contracts must align the manager’s incentives to the advisor’s objectives.
Because shirking is inefficient and the advisor obtains revenues from the fund’s value
added, it is intuitive that the optimal contract will be designed to implement full
effort.

From an operational point of view, Proposition 1.2 asserts that, in searching for
an optimal contract, we can simply derive the conditions under which the manager
has no incentive to shirk and, within the class of contracts that satisfy this condition,
we can select the optimal one. In the remainder of this section, I derive the conditions
that an optimal contract must satisfy. I use these conditions in section 1.4 to derive

the optimal contract.
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1.3.4  Incentive Compatibility and Information Rent

In the previous subsection, I argued that we can restrict our attention to contracts
that are incentive compatible and that induce the manager to exert full effort. In
this subsection, I provide conditions for a contract to achieve this target. As in
static principal-agent problems, these conditions require the manager to be exposed
to some fund-level risk. Whereas in static models the principal exposes the agent to
risk by giving him a performance-contingent pay, in a dynamic model the principal
exposes the agent to risk by adjusting his future continuation value.

To design an optimal contract, the advisor needs to account for the incentives of
the manager. At any time ¢, the manager has incentives to shirk because he obtains
consumption value from shirking. However, he could be deterred from shirking if
shirking causes a loss in future utility. The manager’s future utility coincides with
his continuation value V4, which is a function of the continuation contract” and belies,

and which can be expressed as

Vi = V(et, Cbt) =E [/Oo e_é(s_t)u(cs) ds
t

:ﬂ} , (1.6)

for an incentive-compatible contract enforcing full effort. The continuation value V4
represents the present value of the future utility that the manager expects to receive
from the contract, given his current beliefs ¢;.8

Using the martingale representation approach developed in previous literature

7. A continuation contract a time ¢, C;, is a set of Fi-adapted processes
((CS)SZt? (Ks)sZta (ns)szta (m)SZt)v where 32 = {(Ru)tﬁuﬁs}'

8. Given a continuation contract C;, beliefs are a sufficient statistic for the probability measure
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(Sannikov, 2008; Williams, 2009), I obtain the law of motion for the manager’s con-

tinuation value V4.

Lemma 1.2. The manager’s continuation value evolves as
dVi = (6Vi — u(Cy))dt + BydWE (1.7)

for some Ft-adapted process (Bt)i>0-

The proof of Lemma 1.7 is standard and it is therefore omitted.

If 5, is different from zero, the manager is facing a risky consumption path, which
is inefficient. In a fully efficient allocation, the risk-neutral investors and advisor
should fully insure the risk-averse manager. However, because of moral hazard, the
advisor designs a performance-based contract € that exposes the manager to some
risk in order to provide incentives. If (¢ is positive, the utility of the manager
increases if he delivers a return that exceeds expectations. If the manager shirks,
expected returns decline and the manager suffers a loss of future utility.

As a benchmark, assume for the moment that the skill of the manager, h, is
known. In this case, the advisor can prevent shirking by offering a contract in which
the manager’s exposure to returns, [, offsets the marginal consumption value of

shirking.

of future returns. To see why, write

Vi = (1 — ¢t)E [/00 6_5(5—t)u(05)d3

t

h= 0} + &E [/ e—é(s—t)u(cs) ds
t

n=1].

The conditional expectations on the right-hand side of this equation are functions of the continuation
contract C; only.
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Lemma 1.3. If h is common knowledge, a necessary and sufficient condition for
incentive compatibility is

W (Cp)AaKy < By

A proof for Lemma 1.3 can be found in Di Tella (2017) and Di Tella and Sannikov
(2018).

The condition in Lemma 1.3 is intuitive. If the manager shirks, he reduces returns
by my¢, and hence the acquires a negative drift —%. The manager therefore suffers
a loss of continuation value equal to Bt%- However, his current utility increases
from u(Cy) to u(Cy + miAKy). The condition in Lemma 1.3 ensures that m; = 0 is

the best response of the manager to the contract, that is,

0 =argmax u(Cy+mAK;) — 5tm.
m>0 —_—— o

benefit of shirking o shirking

If the skill of the manager is uncertain, the advisor faces some additional chal-
lenges in designing an incentive-compatible contract. For example, suppose the man-
ager deviates to my = m > 0 for a small amount of time between s and s+ As. With
learning, the manager not only gains consumption value from the deviation, but he
also earns an informational advantage over the advisor and the investors. Unaware
of the manager’s deviation, the advisor and the investors update beliefs according
to equations (1.4) and (1.5). Because the true drift of returns is now pu(n, h,m),
their beliefs, ¢¢, will acquire a negative drift relative to the manager’s beliefs, qgt.

Immediately after the deviation, the difference between the manager’s and the other
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players’ beliefs, ¢; — ¢y, will be given by

~ m
GstAs — Ps+As ~ Nsps(1 — ¢S);A3-

This difference in beliefs is persistent and causes persistent distortions in the
provision of incentives. Following a deviation, the manager will always be more
optimistic than the other players, that is, ¢¢ > ¢ for all ¢ > s+ As. The manager is
not only more optimistic, but also aware of possessing correct beliefs. By having more
accurate and optimistic beliefs, the manager earns an information rent over the other
players. Intuitively, a skilled manager who is believed to be unskilled is better off than
a manager who is actually unskilled. The skilled managers can expect to surprise the
market in the future thanks to his superior skill. The truly unskilled manager cannot
expect to surprise anyone. To see how a manager earns an information rent, consider
equation (1.7). If ¢; > ¢y, shocks % [dRt — (r + u(ng, ¢¢,0))dt] have a positive drift

given by

(o — ¢ )dt > 0.

Therefore, the manager’s continuation value acquires a positive drift

Bine (¢ — ¢r)dt.

The drift 5t77t(¢~5t—¢t) captures the surprise that the manager expects other players to
receive. Suppose that, after a (hidden) deviation, the advisor promises a continuation

value Vg As to the manager. However, the true continuation value of the manager
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is larger than what the advisor explicitly promises, and it includes the additional
surplus that accrues to the manager through the future drift ﬁﬂlt(&t — ¢¢). The
present value of this additional surplus constitutes the information rent that the
manager has over the advisor and investors.

This reasoning suggests that when players are learning, an incentive-compatible
contract should provide incentives (¢ to offset the manager’s marginal utility of
shirking as well as the information rent that he could earn. I formalize this argument
using the stochastic maximum principle introduced in the contract-design literature

by Williams (2011).

Proposition 1.3. In any optimal contract,
W (Cr)Kiho < By — e, (1.8)

where & follows

de = (& — mPrdu(1 — ¢p))dt + wydWe (1.9)
for some Fi-adapted process (wt)i>0-

The term 7¢& in the incentive-compatibility condition (1.8) accounts for the infor-
mation rent that accrues to the manager after a deviation. To interpret the variable
& more clearly, consider expression (1.6). In particular, consider the fact that at any
point in time, the manager’s continuation value is a function of the continuation con-
tract C; and his beliefs ¢, that is V3 = V(C, ¢¢). For a given contract, 8¢V(€t, ot)
measures the marginal change in continuation value coming from a marginal change

in beliefs. The variable & is related to this marginal of beliefs, and therefore can be
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defined as the information rent of the manager.

Proposition 1.4.
§ = de(1 — )0V (Cy, ). (1.10)

Moreover,

& =E [/too 675(5725)775659%(1 - (/55) ds

S’t} , (1.11)
and 1n any incentive-compatible contract, & > 0.

I can now give an intuitive interpretation of the incentive-compatibility condition
(1.8). First, from equation (1.7), we know that incentives 5y correspond to the total
volatility of the continuation value V;. Second, combining (1.4) and (1.10), we see
that ¢t = nedr(1— ¢1)9yV (Ct, d¢) represents the volatility of the continuation value

that originates from the changes in beliefs. Therefore, we can interpret the quantity

Bt — et = Bt — mede(1 — o)V (Ct, b1)

as the volatility of the manager’s continuation value that originates from changes in
the continuation contract while keeping beliefs fixed.

Seen from this perspective, the incentive-compatibility condition (1.8) is ex-
tremely intuitive. Equation (1.8) states that, to provide incentives to the manager,
the advisor cannot rely on changes in beliefs to punish him for bad performance.
Although changes in beliefs do affect the volatility of the continuation value along
the equilibrium path, they cannot be exploited to prevent off-equilibrium deviations.
The reason is that the manager’s deviations do not affect his beliefs. After a devi-
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ation my, the manager’s true expected future utility declines by (5 — ntft)%, and
not by Bt%, as the advisor incorrectly thinks. Therefore, in an incentive-compatible
contract, the quantity £y — n¢& is what matters for incentive provisions, and must
be such that

m>0

0 =argmax u(Cy+mAKt) — (B — Ut§t>%'
benefit of shirking cost of shirking
In other words, the incentive-compatibility condition asserts that, to provide incen-
tives to the manager, the advisor must adjust the continuation contract so that,
keeping beliefs constant, the incentives of the manager exceed the private benefit of
shirking.

With learning, the advisor faces additional costs in providing incentives to the
manager, as indicated by the result in Proposition 1.4 that the information rent &
is positive. According to equation (1.8), for given consumption Cy, capital Ky, and
experimentation 7, a manager with uncertain skill will have to bear an additional
quantity n:& of risk relative to a manager with known skill. Because the manager is
risk averse, the advisor will have to compensate him for this additional risk with a
higher expected compensation, thus increasing the cost of the contract.

Any contract implies an information rent for the manager, and a larger informa-
tion rent implies higher costs for the advisor. Therefore, from an ex ante perspective,
the advisor prefers to design a contract that implies a small information rent. To do
so, she has to commit to reduce incentives, s, and experimentation, 7, in the fu-
ture because, as equation (1.11) shows, the manager’s information rent & is a present

value of these quantities. However, from an ex post perspective, lowering incentives
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and experimentation may not be optimal. Consequently, in order to achieve ex ante
optimality, the advisor needs to fully commit to the terms of an initial contract. In
sections 1.4 and 1.5, I study the optimal contract with full commitment and discuss
how the trade-off between ex ante and ex post optimality affects the low-performance

relationship and managerial compensation.

1.3.5 Verifying Incentive Compatibility

I conclude this section by presenting a condition that can be used to verify the incen-
tive compatibility of a contract. Proposition 1.3 offers a condition that prevents the
manager from engaging in a one-shot deviation. Although this condition is necessary
for incentive compatibility, alone it does not guarantee full incentive compatibility.
With learning, any hidden shirking will cause a persistent wedge between the man-
ager’s and the other player’s beliefs. Given this wedge, the condition in Proposition
1.3 may not be sufficient to prevent shirking. Even if (1.8) holds, the manager’s best
response to the contract may still involve a dynamic shirking strategy.

Previous literature has long recognized the challenge that state variables, like
beliefs, pose in the design of an optimal contract. The common approach is to
solve for an optimal contract by imposing the necessary condition (1.8) only. This
approach is the so called relaxed-problem approach. Then, one should verify whether
the contract so obtained satisfies a sufficient incentive-compatibility condition. This
strategy is the one undertaken by He (2012) and Di Tella and Sannikov (2018) for
private savings, by Prat and Jovanovic (2014), DeMarzo and Sannikov (2017), He

et al. (2017), and Cisternas (2018) for learning, and Williams (2011) for generic
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state variables. I take the same approach and use the following proposition to verify

whether the solution to the relaxed problem is actually incentive compatible.

Proposition 1.5. If

U (O Kiho + mi€ < By

and

wi = ne(1 = 261)&t, (1.12)
then the contract is incentive compatible.

This proposition contains a sufficient condition for incentive-compatibility. In
general, incentive-compatible optimal contracts must satisfy (1.8), but not necessarily
(1.12). In solving for an optimal contract, I adopt the first-order approach and impose
the necessary condition (1.8) as a constraint on the contract. It can be later verified
whether such a contract satisfies condition (1.12).

To interpret the sufficient condition for incentive compatibility, it is useful to refer
to the proof of this proposition in Appendix 1.C, where I show that wy —n (1 —2¢¢)&;
is proportional to the volatility of 9,V (€, ¢¢). Proposition 1.5 therefore states that
if a contract prevents instantaneous deviations and it reduces the marginal value of
beliefs after a negative shock, then it is a fully incentive-compatible contract.

This result has some intuitive appeal. If the contract lowers the marginal value of
the manager’s beliefs 8¢V(Gt, ¢¢) after a bad shock then, following a deviation, the
manager would suffer a decrease not only in his continuation value, but also in his
information rent. The manager loses part of the option to “impress” other players

in the future, thus lowering the value of his informational advantage. Together, this
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condition and condition (1.8) are sufficient to induce the manager to always exert
full effort.

Equation (1.12) is likely to hold in an optimal contract. Looking at Proposition
1.4, we see & depends on future incentives 5 and experimentation 7;. After a good
shock, the advisor has incentives to increase future incentives and future experi-
mentation because of the following reasons. First, a good shock increases expected
returns and the advisor will likely take advantage of them by increasing capital under
management K; and, by (1.8), incentives ;. Second, experimentation becomes more
profitable, so the advisor will likely increase experimentation 7; as well. We there-
fore have reasonable economic motivations to believe that in the optimal contract,

& increases after good performance.

1.4 Optimal Contract

Given the necessary incentive-compatibility condition in Proposition 1.3, I adopt a
first-order approach to solve for the optimal contract under full commitment. Ac-
cording to the first-order approach, I solve for the optimal contract in Definition 1.4
as a recursive problem subject to the incentive-compatibility condition (1.8) at every
point in time. The advisor is fully committed to the manager’s continuation value V4
and to his information rent &, which therefore constitute the recursive state variables

of the problem together with beliefs ¢;?. With full commitment, the advisor always

9. Although full commitment from both the manager and the advisor is certainly a strong
assumption, this formulation of the problem offers a key benchmark for alternative specifications.
With full commitment, the advisor implements an allocation that yields the best outcome given the
frictions of the model. After relaxing the full-commitment assumption in Appendix 1.A, I highlight
which results hold independently of the contracting assumptions and which results depend instead
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honors her past promises in terms of continuation value and information rent, and
the laws of motion (1.7) and (1.9) represent promise-keeping constraints for the ad-
visor. To provide incentives, the advisor specifies how future continuation values and
information rents evolve on the basis of performance. She therefore selects incentives
B+ and volatility wy optimally.

Formally, the optimal contract is characterized as a solution to the following
optimization problem:

J*(Vo, €0, d0) = inf EUOO@—”(i—K (¢, & 0)) dt‘?}

05070 (Ct, K, Bt.wi,nt) >0 0 a(nt) HI 1 !

st. Cy PAoKy+m& < B VE>0

cl=r
1—p

d%—@%— )ﬁ+mm$

dep = (86 — mbror(1 — ¢r)) dt + wdWE

dor = mor(1 — o) dWE.
(1.13)

Problem (1.13) is clearly challenging to solve analytically. However, we can char-

acterize some of its properties. For this purpose, consider its associated Hamilton-

on the particular contractual form that is implemented.
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Jacobi-Bellman (HJB) equation,

C
inf — — (a+one)K
C.Kpwn | aln) ( 2
C™PAc K+nE<p

. C
F g (v -

rJ (V.€ ¢) =

I—p

) T JE(V,€,6) (56— nBo(1 - 9))
1 1 1
+ 5 v (V.6 D)B% + S (V.€ 0)w? + ST (V.6 o)t 6 (1 - )

+ Ty e (VLE,0)Bew + T o (V.£.0)Bnd(1 — 8) + JEy (V,€, )wnd(1 — ¢>}. (1.14)

First, we can verify that, in any optimal contract, the incentive-compatibility
condition holds with equality, that is,

K¢ = %C’f. (1.15)

Because excess returns and fees are always positive, the advisor increases the level of
assets under management as much as the incentive-compatibility constraint permits.
Investors do not provide any capital beyond this level at the current fees because if
the incentive-compatibility condition is violated, the manager will shirk and expected
returns will not cover the fees investors pay.

Second, the HJB equation (1.14) is subject to a boundary condition J*(V, 0, ¢) =

JO(V), where the function JO(V') is the cost function for the advisor when the man-
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ager lacks skill, that is, when & = 0 is common knowledge.!? This boundary condition
is motivated by the promise-keeping constraint on the information rent £. If the ad-
visor promises zero information rent to the manager, the only way she can keep this
promise is by providing no incentives /3, and hence no capital K, and/or by stopping
experimentation 7 forever. The advisor clearly prefers to stop experimentation only,
because she can still obtain fees equal to the baseline excess return « by providing
capital to the manager.

We cannot obtain analogous boundary conditions for J*(V,&,0) and J*(V, ¢, 1).
The contract never reaches these boundaries in finite time, because beliefs ¢ have no
drift and their volatility vanishes as they approach 0 and 1. These singular points,
however, do not constitute a problem. We can indeed think of the HJB equation
(1.14) as a state constraint problem whereby beliefs are constrained between 0 and
1. Katsoulakis (1994) and Alvarez et al. (1997) show that state constraints effec-
tively replace boundary conditions in determining the solution of partial differential
equations.

Finally, we can derive an endogenous bound for the information rent £. Note
that at time 0, the advisor has no initial commitment to any information rent. As
illustrated in Definition 1.4, the optimal contract is initially defined only in terms of
the initial promised value of the manager, V|, and initial beliefs, ¢g. Therefore, we

can think of the advisor as first setting an initial information rent &y, and then solving

10. JO(V) satisfies the HIJB equation

ol
I—p

0 — inf _ E P 0 —
rJ (V) 1&1{3{0 ozUAC + Jy (V) ((5V

>+;J8V<V)62}.
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problem (1.13) given the chosen £j. The advisor chooses an initial information rent
that minimizes her costs. If Jg* (V,&, ) is convex in & and a global minimum exists,

the advisor will pick &y such that

J¢ (Vo, €0, d0) = 0.

We can further characterize the behavior of the information rent and its marginal
cost Jg in the optimal contract. For any pair of continuation value V' and beliefs
¢, define £(V,¢) as the information rent that minimizes costs for the advisor. I
formally prove the following proposition in Appendix 1.D. However, one could also
make some convexity and differentiability assumptions on J*(V,&, ¢) and directly
use the envelope theorem on (1.14) as in DeMarzo and Sannikov (2017) to derive the

following result.
Proposition 1.6. In the optimal contract, two properties hold:

I. The marginal cost of information rent is always non-positive,

Je(Vi, &, 01) <0 >0

II. Forallt >0,
& < (Vi o1).

Information rents in contracting models tend to be bounded, and propositions

analogous to 1.6 have been derived in DeMarzo and Sannikov (2017) and He et al.
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(2017). Large information rents expose the manager to risks that are irrelevant for in-
centive provision. Consequently, the advisor avoids promising excessive information
rents.

Even after deriving the properties that I have discussed so far, numerically solving
the HJB equation (1.14) is far from easy, if not far from feasible. Proposition 1.6
provides the reason. In the optimal contract, the information rent is bounded by
£(V,¢). For values of information rent far above this bound, optimal contracts
might not exist, or they might violate regularity properties required for the validity
of a dynamic programming approach. To solve for the optimal contract, we need
to know the bound &(V,¢). However, to derive this bound, we need to know the
optimal contract. We could attempt to numerically solve (1.14) by sequentially
guessing and verifying the bound function &(V, ¢). This attempt would be extremely
computationally inefficient, if not unfeasible. I take a different approach.

Proposition 1.6 itself offers a hint to solve the model efficiently. In the optimal
contract, the marginal cost Jg(Vt, &t, ¢t) is bounded above by zero, thus always sat-
isfying the endogenous bound on the information rent. I then formulate a problem
in which the marginal cost Jf(Vt,&, ¢¢) replaces the information rent £ as a state
variable. This problem is connected to the initial one through a duality relation.
In the remainder of this section, I introduce the dual problem of (1.13), derive its
properties, and show that the dual problem offers an efficient way to characterize the

contract.

35



1.4.1 The Dual Problem

I now introduce the dual problem of (1.13). Informally speaking, the purpose of
the dual problem is to replace the information rent, &, with its marginal value,
Je(Vi, &, 0t), as a state variable.

Define the multiplier

t
Y; = efr=9) {— </ O~ (g, oy, 0)~CF dS) + YO] :
0 Ao

where Yy € R, and consider the following problem:

G*(Vo, Yo, d0) =

: _ C, B
£ o ”(—t — e én,0) 0P~y - >dt
(Ct,ﬁtf};t),wzo |:/0 € Q<77t) M(Wt th ))\0_ t tnt/Btgbt( th)

so]
st dVy = (0Vy — u(Cy))dt + BrdW S

dYy = (r = )Yidt — (o, 61, 0)5=Cfdt

dr = mor(1 — ¢y)dWE.
(1.16)

I call (1.16) the dual problem, as opposed to problem (1.13), which, hereafter, I call
the primal problem.

The dual problem in (1.16) has an intuitive appeal. Consider the objective func-

tion. The term q((;;tt) — 1(ng, G, 0)5—(’;05 represents the flow cost of an advisor who
runs a fund with no information-rent problem. We can think of this hypothetical
fund as one in which the hidden action m; is observable but not contractible. In
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this case, the incentive-compatibility condition is the same as in Lemma 1.3, be-
cause shirking does not induce any belief distortion or any information rent for the
manager. The term —Yyn:5rp¢(1 — ¢¢) represents a penalty for an advisor who sets
large incentives (¢ or large experimentation rate ny. The severity of the penalty is
measured by the multiplier Y;. The advisor faces a larger penalty for incentives and
experimentation if the multiplier Y; is more negative. In the dual problem (1.16),
the advisor replaces the information rent of the manager with the multiplier Y as a
relevant state variable.

Having introduced the dual problem, I can finally show the connection with the
primal problem (1.13) and illustrate how the optimal contract can be derived as a

solution to the dual problem (1.16).

Proposition 1.7. The optimal contract is the solution to the dual problem (1.16)

with Yy = 0. The primal cost function J* and the dual cost function G* are related

by
T (Vis &t ) = sup{G™(Vi, Y, ¢p) + Y} (1.17)
Y <0
At any time t, the optimal contract implies an information rent § = —Gy-(Vy, Yz, ¢t).

Moreover, Yy = Jg(%,ft,qﬁt), and Yy <0 for allt > 0.

Proposition 1.7 is extremely powerful. It states that any optimal contract can
be obtained as a solution to the dual problem if the initial multiplier is chosen
appropriately. Moreover, by combining Proposition 1.7 with Proposition 1.6, we
obtain a recursive characterization of the optimal contract through a dual formulation

that automatically satisfies the endogenous bounds on the information rent.
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This proposition is key to overcome the computational challenges that I discussed
before introducing the dual problem. Looking at the law of motion of the multiplier
Y} in (1.16), we see that, for any choice of (Ct, Bt, nt)r>0, Yt always be non-positive as
long as Yy < 0. Because Y; = Jg(Vt, &t, ¢¢), if I restrict the state space to non-positive
value of the multiplier Y, then the marginal cost of information rent is guaranteed to
remain non-positive. Therefore, standard numerical methods are sufficient to obtain
a solution for the optimal contract.

Before numerically solving the dual problem, I exploit the homogeneity of the
problem and introduce some notation that will simplify the numerical computations
and the discussion of the results. On the basis of Lemma 1.10 in Appendix 1.D,
I can simplify the numerical burden of solving for problem (1.16) by reducing the
number of state variables from three to two. In particular, we can write the dual

cost function as

G (V.Y 9) = 0g"(y, 9),

where

0= (1= V)T

is the consumption equivalent of the manager’s continuation value, and where
y=1-¢)o Y

is a scaled version of multiplier Y. We can then define the scaled control variables

K R
L and B = b

Ot 0y (1—p)V¢’
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and derive the law of motion of continuation value © and multiplier y through Ito’s

lemma, thus obtaining

N 1-p

dvy J o 1 o a4 G

— = —- = dt d 1.1
(1_/) 1_p+2pﬁt + BroedWy (1.18)

Ut

and

Nt p
0)—cidt
))\act
C%—p

5 1 . .
+ yt <r Tt §p5t2 + Pﬂtﬂtﬁbt) dt — yi[pBe + mprdWE. (1.19)

dyr = —(1 — o) p(ne, ¢4,

In conclusion, instead of solving for G*(V, Y, ¢) as a function of three state vari-
ables, I solve the following HJB equation, which characterizes ¢*(y, ¢) as a function

of the multiplier y and belief ¢:

~ cP R
rg*(y,¢) = Cirﬁ}fn {ﬁ — (a+ 0n¢)5% — yBne

) c=r 1 .
* v - Q2
+g(y,¢)(1_p 1_p+2pﬁ>

+05(0.9) |=(L = 0)n(n. 6.0){-ef
1—
+y (7‘ -5 LR pn@aﬁ)} (1.20)
—p 1—p 2
— g5y, O)ylpB + )6 + g (v, Snd(1 — )3

¥ 5000 P08 + 0+ Sy, 1P — 6

— 055 (y, D)ylpB + nelnd(1 — ¢) }
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In the next section, I numerically solve the HJB equation (1.20) and characterize
the implications of the optimal contract for the fund flows and the manager’s com-
pensation. In interpreting the results, readers may refer to the HJB equation (1.20),
to the dynamics of promised value (1.18), and to the dynamics of the multiplier
y (1.19). However, in my interpretation of the results, I mostly rely on economic

intuition and make only minimal references to the specific details of these equations.

1.5 Results and Discussion

I numerically solve the partial differential equation (1.20) by using a finite difference
method. To solve for the optimal contract, I use Proposition 1.7 and restrict the state
space to negative values of the multiplier y. Because at y = 0 the drift of multiplier
y is negative and its volatility is 0, I do not need to impose any restrictions on the

control variables to satisfy the state constraint y < 0.

1.5.1 Calibration

To select the parameters of the model, I rely on three main strategies. If a parameter
can be directly observed, I use empirical observations of that parameter value. If a
parameter cannot be directly observed, but has a strong connection to an outcome
of my model that can be observed in the data, I select values of the parameter that
yield outcomes that match the data. Finally, I discipline unobservable preference
parameters by selecting values previously adopted in the contracting literature. Table
1.1 summarizes the parameter choice.

I set the interest rate r equal to the average real rate starting from the year 2000.
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Table 1.1: Model Parameters

Parameter Notation Value Source/Target

2.6%  Average real rate from 2000
0.1% Minimum fee in Pastor et al. (2015)
18%  High vol funds, Pastor et al. (2015)
5%  Di Tella and Sannikov (2018), DeMarzo et al. (2012)
1/3  Di Tella and Sannikov (2018)

[0y,
01 fi’) } High alpha funds, Fama and French (2010)
2.1 Convexity of cumulative flows
0.85  Flow-performance slope

Interest rate

Baseline excess return
Baseline volatility
Discount rate of manager
Risk aversion / TES™!
Bound on learning

Cost of learning
Curvature of learning cost
Gains from shirking

> IS 29 0 =

To select a value for the baseline excess return, «, I consider the sample of mutual
funds that I select in section 1.6. As in Pastor et al. (2015), I exclude all funds that
charge annual fees below 0.1%, because they are unlikely to be actively managed. I
therefore take this value to represent the minimum excess return that a fund is able
to provide.

Due to the homogeneity of the model, the volatility of returns must be large
enough to guarantee the existence of a finite solution for the contracting problem.
Intuitively, if the volatility of returns is too low, the advisor could easily detect shirk-
ing. She could therefore easily provide incentives to the manager and could exploit
the constant returns to scale of the technology to gain unbounded revenues. By
adding decreasing returns in actively managed assets, as in Berk and Green (2004), I
could avoid the possibility of unbounded returns and would therefore have additional
degrees of freedom in the choice of parameters. Unfortunately, decreasing returns
would complicate the problem substantially, because the homogeneity property of
the dual cost function G* would fail. I therefore choose a value of the volatility

o of 18%, which is close to, but a little larger than, the highest percentile of the
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standard deviation of abnormal returns in Pastor et al. (2015), which is 16.4% on an
annualized basis.

I choose the manager’s preference parameters to match choices made in previous
contracting literature. I set the discount rate of the manager, d, equal to 5% as in
DeMarzo et al. (2012) and Di Tella and Sannikov (2018), while for the inverse of the
manager’s IES, I select 1/3 as in Di Tella and Sannikov (2018).

I assume the experimentation cost is a power function of experimentation, that is,
q(e) = l—cjed for some parameters ¢ and d. 1set d to 2.1 to obtain sufficient convexity
of cumulative flows in cumulative performance. I then consider the distribution of
four-factor gross alpha in Fama and French (2010). They find that the 90th percentile
of the distribution is 1.3%. I take this number to represent the excess returns of
highly-skilled managers. I therefore set ¢ = 0.15 and 7 = 1% so that a fund with
¢ = 1 and multiplier y = 0 generates expected of 1.3%, and so that the constraint
n < 1 does not bind.

Finally, I set the gains from shirking, A, to 0.85. In this way, the slope of the flow-
performance relationship for funds with ¢ = 0.5 and with multiplier y € [—0.1, 0]

approximately matches the value of 17% estimated in Table 1.4.

1.5.2  Flows and Performance

I define the slope of the flow-performance relationship, ey, as the percentage change

in assets under management for a 1% return, that is,

_ dKi/ Ky
€ = iR,
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Figure 1.1: Slope of the flow-performance relationship and capital in the optimal contract.
The parameters of the model are as in Table 1.1.

Using the fact that in the optimal contract, K; = 0¢k(y, ¢¢) for an optimal capital-to-
value ratio k(y, ¢¢), the slope of the flow-performance relationship can be measured

as

ex(y,¢) = % (% + By, cb)) : (1.21)

where oy, (y, ¢) is the volatility of k(y, ¢).

As Figure 1.1a shows, the slope of the flow-performance relationship € is posi-
tive, meaning that assets under management increase after good performance. This
result is consistent with several empirical results.

The prediction that sets my model apart from previous theoretical literature,
such as Berk and Green (2004), is that the slope of the flow-performance relationship
increases after good performance. We can see this result in Figure 1.1a, where the
slope of the flow-performance relationship, €y, increases when the posterior ¢ and

the multiplier y increase. These two state variables have positive volatility (recall
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Figure 1.2: Convex relation between cumulative flows and cumulative returns. The solid
blue curve represents the cumulative flows as a function of cumulative performance. The
dashed red line is the tangent line at 0. Curves are shifted to represent the flows relative
to a fund that has a zero cumulative performance. Performance and flows are computed
over one year. In 1.2a, fees are assumed to be fixed and flows include changes in actively
managed capital, as well as changes in the holdings of a passive, agency-free index. In 1.2b,
fees match expected returns, and flows include only changes in actively managed capital.
Figures are drawn for initial beliefs ¢g = 0.75 and initial multiplier yg = 0. The parameters
of the model are as in Table 1.1.

equations (1.4) and (1.19), and recall that y < 0). Therefore, the slope of the flow-
performance relationship €y increases after good performance. This prediction is
new to the literature. Because no other theoretical or empirical paper has studied
how the flow-performance relationship depends on the history of a fund’s returns, I
test this prediction in Section 1.6 using mutual fund data.

Because the slope of the flow-performance relationship eg increases in past per-
formance, cumulative flows are a convex function of cumulative performance. As an
illustration, Figure 1.2 shows the one-year flow into a fund with y = 0 and ¢ = 0.75
as a function of the one-year cumulative return. To make the example more em-

pirically relevant, in Figure 1.2a, I assume the fund charges a fixed fee and collects
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additional capital to be invested in a costless, agency-free index. We can clearly
observe that the net flows into the fund are a convex function of the cumulative
returns. As good performance accumulates over time, additional positive returns
have a stronger impact on additional flows. As a result, we observe convexity on a
yearly basis. In Figure 1.2b, I allow the fund to change fees in order to match its
expected returns. The flows in Figure 1.2b thus represent changes in the actively
managed assets. Even flows of actively managed capital increase more than linearly

with cumulative performance.

Economic Motivation. Why should the slope of the flow-performance relation-
ship increase after good performance? In general, the result relies on two properties of
the model: (i) Assets under management, K, are positively related to the promised
value of the manager, v¢; (i) the growth rate of the promised value becomes more
volatile when ¢ and y increase.

Thanks to the functional assumptions in the model, the relation between assets
under management and promised value takes a particularly simple form, K; = k0.
However, this relation can be more general. We need two assumptions to obtain a
positive relation between assets under management and promised value. First, we
need to assume that assets under management enter in the incentive-compatibility
constraint and that, to increase assets, the advisor needs to expose the manager to
more risk. Second, we need to assume the manager has decreasing absolute risk
aversion.

According to the first assumption, if the advisor wants to increase assets, she also

has to increase the risk exposure of a risk-averse manager. According to the second
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assumption, if the manager is promised larger future consumption, he will be more
risk tolerant. As a result, the advisor optimally offers more risk and capital to a
manager with higher promised value and, hence, higher risk tolerance. This result
justifies why assets under management, K;, are positively related to the promised
value of the manager, ;. An analogous result holds in the dynamic contracting
models in Biais et al. (2010) and DeMarzo and Fishman (2007). These papers show
that investments (and disinvestments) at firm level depend on the agent’s promised
value. Similar to my model, when the agent has a larger promised value, the principal
can easily incentivize him to exert more effort and manage a larger firm.

Given this relation between assets and promised value, the percentage change in
assets under management for a 1% return is related to the percentage change in the
manager’s promised value for a 1% return, which coincides with 3 /o (see equation
(1.18)). I then need to discuss why the growth rate of the promised value becomes
more volatile when ¢ and y increase. To understand why, let us fix a level of risk
tolerance for the manager by fixing a promised value . In deciding how much risk
B to assign to the manager, the advisor faces a trade-off. The advisor would like
to increase the manager’s risk B in order to increase capital £ and fee revenues.
However, doing so is costly for two reasons. First, the advisor has to compensate the
risk-averse manager for the additional risk by promising more future consumption.
Second, the advisor is committed to low information rents through the multiplier y
which penalizes the provision of strong incentives to the manager.

When beliefs ¢ and multiplier y increase, the trade-off tilts in favor of a higher

volatility of the manager’s promised value, B . When beliefs ¢ are higher, expected
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returns and fees, u(n, ¢, 0), are also higher, so that the benefits of size k and incentives
B increase. As for the cost of the manager’s incentives, they decline through two
channels. First, because the manager is expected to be more productive (beliefs ¢
increase) and the advisor less constrained (the multiplier y increases), the advisor
faces lower costs in delivering future consumption promises. Therefore, the advisor
can more cheaply compensate the manager for any additional risk that he has to
bear. Second, the commitment of the advisor to low information rents is less binding
(the multiplier y increases). Because the benefits of size increase and the cost of
incentives decrease, when ¢ and y increase the advisor increases the volatility of the
manager’s promised value, B , together with k. This result illustrated in Figure 1.1b.

The mechanism that I have discussed so far highlights the dynamic connection
between capital flows and managerial incentives. Whereas learning links past perfor-
mance to expected returns in a standard way, the optimal contract links the slope of
the flow-performance relationship to expected returns because of a dynamic trade-off

between the costs and the benefits of managerial incentives.

1.5.3 Pay and Performance

Similar to capital, I define the pay-performance sensitivity as the percentage change

in compensation for a 1% increase in returns, that is,

~dCy/Cy
EC— th .
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Figure 1.3: Pay-performance sensitivity and compensation in the optimal contract. The
parameters of the model are as in Table 1.1.

Because in the optimal contract, compensation takes the form Cy = 04¢(yy, or) for
an optimal compensation-to-value ratio ¢(y, ¢) = c(y, ¢)/q(n(y, ¢)), pay-performance

sensitivity takes the form

co(n0) =+ (22D 4 Gy )

where oz(y, ¢) is the volatility of é(y, ¢).

From Figure 1.3a, we can observe that the contract implies a bonus for good
performance. Because the value of the pay-performance sensitivity, €, is always
positive, compensation increases when the manager realizes good returns. Moreover,
because the pay-performance sensitivity €5 s increasing in both beliefs ¢ and the
multiplier y, compensation will appear convex in cumulative performance. This result
is consistent with the widespread use of convex compensation schemes in the money

management industry. For example, Ma et al. (2019) document that mutual fund
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managers’ compensation is often composed of a base salary plus a bonus for good
performance. The mechanism driving the convexity of cumulative compensation
with respect to cumulative performance is identical to the one behind the convexity
of cumulative capital flows.

In addition to the pay-performance sensitivity, we can study whether performance-
based compensation is back-loaded or front-loaded, by looking at how current com-
pensation changes relative to future promises, that is, by looking at how C'/0 changes
with performance. If C'/0 decreases with beliefs ¢ and multiplier y, we say the
performance-based compensation is back-loaded. In this case, after good perfor-
mance, the advisor increases future promised consumption more than current com-
pensation, thus deferring compensation to the future. Similarly, if C'/0 increases
with beliefs ¢ and multiplier y, we say the performance-based compensation is front-
loaded.

In the optimal contract, the advisor back-loads the performance-based compensa-
tion of the manager, as shown in Figure 1.3b. This result is consistent with common
practices in the mutual fund industry that effectively postpone the delivery of com-
pensation to the manager. For example, Ma et al. (2019) show that more than 30%
of mutual fund managers are subject to deferred compensation schemes. At the
same time, they illustrate that the vast majority of the pay-for-performance schemes
rely on the average return over multiple years (on average, three years) in order
to determine the bonus. This latest feature effectively implies that, following good
performance, the manager can expect an increase in compensation for the next few

years, thus effectively back-loading his compensation.

49



Economic Motivation. Due to the agency frictions, the risk-averse manager faces
a risky compensation scheme that is based on his performance. After good perfor-
mance, the advisor rewards the manager with higher compensation, whereas after
bad performance, the manager is punished with lower compensation. However, the
riskiness of the compensation must be limited in an optimal contract, because the
manager is risk averse. With the exception of highly productive managers, who
are subject to very steep incentives, managers face a compensation path that is
smoother than returns. This result is consistent with the low point estimates of the
pay-performance sensitivity in Ibert et al. (2018).

Similar to the slope of the flow-performance relationship, the pay-performance
sensitivity increases after good performance. The motivation is analogous to the one
that I have presented for the slope of the flow-performance relationship. Compen-
sation is related to the manager’s promised value. This time, however, this relation
is based on the manager’s desire to smooth consumption. After good performance,
the advisor expects higher returns from the manager, and therefore desires to allo-
cate more capital to the manager. However, to ensure incentive compatibility with a
larger amount of assets under management, the advisor needs to expose the manager
to a riskier promised value. Given that compensation is related to promised value, a
riskier promised value for the manager translates into riskier compensation.

To understand why the advisor back-loads the manager’s performance-based com-
pensation, let us consider the trade-off that compensation involves. To study this
trade-off, fix a level of experimentation n and, hence, a level of cost ¢(n), so that

we can think of compensation and consumption as proportional. By decreasing the
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consumption-to-promised-value ratio, ¢, the advisor increases the growth rate of the
manager’s promised value (see (1.18)). A higher promised value involves a trade-off.
On the one hand, the advisor faces higher costs from a larger promised value, be-
cause she has to deliver larger future compensation. On the other hand, the advisor
benefits from a larger promised value, because if the manager has a large promised
utility, he can tolerate high levels of risk. Therefore, the advisor can exploit this
higher risk tolerance to expose the manager to more risk and increase assets under
management and fee revenues.

After a good return, the trade-off tilts in favor of a larger continuation value
and thus of a lower consumption-to-promised-value ratio ¢. On the one hand, the
advisor can now deliver any given promised utility at a lower cost because, after a
good shock, the manager is expected to be more productive (beliefs ¢ increase) and
the commitment of the advisor to low information rents is less binding (multiplier
y increases). On the other hand, because the advisor expects higher returns from
the manager, she has stronger incentives to increase the manager’s assets under
management. Hence, the advisor desires to increase the risk tolerance of the manager
through a higher promised value. Consequently, after good performance, the advisor
reduces the ratio of consumption to promised utility in order increase the growth rate
of the promised value. By doing so, the advisor back-loads the performance-based

compensation of the manager.
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Figure 1.4: Drift of multiplier y and incentives in the optimal contract. The parameters of
the model are as in Table 1.1.

1.5.4 Long-Term Implications and the Dynamics of Multiplier y

A full-commitment contract bears implications for flows, incentives, and performance
in the long run. While beliefs ¢ are martingales, the multiplier y drifts down over
time, as shown in Figure 1.4a. The negative drift of y is a robust outcome that I find
across all the parameterizations that I have explored. To understand the implications
of a negative drift of y in terms of flows, incentives, and performance, recall that we
can interpret —y as a penalty for incentives and learning. If the multiplier y becomes
more negative, the advisor faces a large penalty for incentives, B, and for learning,
1. Consequently, by giving a negative drift to y, the advisor is committing herself to
reduce incentives and expected performance over time.

By reducing incentives B over time, the advisor reduces the slope of the flow-
performance relationship and the pay-performance sensitivity. Figures 1.1a and 1.3a
show that for increasingly more negative values of the multiplier y, flows and pay

react increasingly less to performance. Moreover, for very negative values of the
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Figure 1.5: Experimentation and performance in the optimal contract. The parameters of
the model are as in Table 1.1.

multiplier ¥, the slope of the flow-performance relationship is barely affected by past
performance, thus suggesting the history dependence of the slope is, on average,
substantially smaller for managers with long tenure. I test this prediction in section
1.6.3.

By reducing experimentation 7 over time, the advisor also reduces the produc-
tivity of the manager. In Figure 1.5, we see that for very negative values of the
multiplier y, the advisor requires low experimentation 7 from the manager, which
results in lower expected returns. Almazan et al. (2004) show that older fund man-
agers are subject to more investment constraints, which, effectively, may limit the
informativeness of their returns. As long as age and tenure are correlated, my model
could provide one additional framework to interpret these empirical findings. Consis-
tently with an optimal contract, more experienced managers may simply be required

to undertake less sophisticated investments and to be subject to lower risk.
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Economic Motivation. To understand why the advisor wants to reduce the incen-
tives and the experimentation of the manager over time, let us consider the incentive
constraint (1.8) and the manager’s information rent. The advisor faces a trade-off
between ex ante and ex post efficiency. From an ex ante perspective, the advisor
wants to minimize the manager’s information rent. The information rent is costly,
because it represents a risk that the advisor cannot exploit to provide incentives to
the risk-averse manager. However, from equation (1.11), the manager’s information
rent corresponds to the present value of future incentives and experimentation. If
the advisor designs a contract with a small information rent, she has to commit to
future experimentation n and incentives B that are inefficiently low from an ex post
perspective. The commitment of the advisor to these ex post inefficient incentives
and experimentation is captured by the multiplier y. By giving a negative drift to the
multiplier, the advisor increases the penalty for incentives and experimentation over
time. To sum up, in designing the ex ante optimal contract, the advisor commits to
decreasing incentives and learning over time through the negative drift of multiplier
y. By taking ex post inefficient actions, she can reduce the ex ante information rent
of the manager, and thus relax the incentive-compatibility constraint (1.8).

Full commitment by the advisor is crucial for this result. After any period of
time, the advisor is tempted to renegotiate the contract, leaving the manager with
an unchanged continuation value, but increasing his information rent to the point at
which the multiplier y is equal to 0. In Appendix 1.A, I study contracts in which
advisor does not commit to an information rent. As expected, incentives B and ex-

perimentation 7 will simply be a function of beliefs ¢, because no other state variable
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enforces ex post inefficient choices of incentives and experimentation. However, all
the other predictions of the model about the flow-performance relationship and the
manager’s compensation continue to robustly hold, regardless on the commitment of
the advisor.

In Appendix 1.B, I provide a simple two-period contracting model with learning.
This model provides an additional example of the trade-off between ex ante and
ex post optimality that the principal faces. This two-period model is substantially
different from the dynamic model of the paper. However, I can analytically show
that the advisor commits to low experimentation ex post in order to achieve ex ante
optimality. The two-period model hence provides further support for the results of
this section and allows us to frame these results as general outcomes of contracting

models with learning.

1.6 Empirical Tests

As shown in the previous section, the model generates a slope of the flow-performance
relationship that varies over time in response to the manager’s past performance.
The model highlights the dynamic nature of the flow-performance relationship and
its connection to the manager’s incentives.

In this section, I test the predictions of the model. From the discussion in section
1.5.2, we should empirically observe that, everything else being equal, funds with
better past performance display a steeper slope in their flow-performance relation-
ship. Moreover, based on section 1.5.4, we should observe that past performance has

a weaker effect on the steepness of the flow-performance relationship if the manager
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has longer tenure.

I test the model’s prediction in mutual fund data. I focus on US mutual funds
investing in US equity, which provide a sample of money managers with very liquid
and ample investment opportunities. In principle, the general economic mechanism of
the model could apply to other money managers such as private equity funds, hedge
funds, and bond funds. However, previous studies point out that these intermediaries
face capacity constraints or undertake illiquid investments. These frictions on the
assets side of the intermediary may mechanically introduce concavity in the flow-
performance relationship.!! Because my model, for tractability reasons, abstracts
from size constraints and illiquidity, the sample of US equity mutual fund constitutes

the natural testing ground of my theory.

1.6.1 Data and Variables of Interest

The sample of mutual funds comes from the Center for Research in Security Prices
(CRSP). I consider monthly observations from December 1999 to December 2018.

I include only actively managed funds that invest in US stocks, thus excluding
index funds, ETFs, and bond and commodity funds. Because Elton et al. (2001)

document an upward bias in the performance of small funds, I include funds starting

11. Kaplan and Schoar (2005) find that the relation between flows and performance is concave
in private equity funds. They explain this result by observing that private equity funds may have
access to a limited number of deals, and that the human capital of general partners cannot be easily
scaled. Getmansky et al. (2004) illustrate that hedge funds’ returns are highly serially correlated,
and they show that a likely cause for the serial correlation is the hedge funds’ exposure to illiquid
securities. Goldstein et al. (2017) show that the relation between flows and performance is concave
in corporate bond mutual funds. As a possible explanation, they suggest that because of the
illiquidity of the corporate bond market, investors face strategic complementarities when fleeing a
fund with bad performance (Chen et al., 2010).
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from the date at which their assets under management exceed 15 million in 2011
dollars, as in Pastor et al. (2015). Finally, I restrict the sample to funds that are
open to new investors.12

CRSP reports net monthly returns and annual expense ratios for every share class.
I compute the gross returns of every share class by adding 1/12 of the expense ratio to
the net monthly return. I then compute fund-level gross returns and expense ratios
by taking a weighted average of these quantities across each fund’s share classes,
where the weights are given by the total net asset value of each share class. Pastor
et al. (2015) observe that actively managed funds are unlikely to charge less than a
0.1% annual fee. Thus, following their procedure, I exclude observations whose fees
are below the 0.1% threshold, since these observations might represent index funds
or data entry mistakes. I also exclude observations whenever fees exceed 10% per
year.

The model predicts that the manager’s tenure matters for the dynamic behavior
of the flow-performance relationship. To test this prediction, I compute the tenure
of the manager at the fund management company. CRSP provides the tenure of
managers at each fund, which is not the relevant measure of tenure according to my
model. However, I can use this information, together with managers’ and companies’
identifiers, to construct a measure of the length of the contractual relationship be-

tween managers and fund companies.!® Funds may have multiple managers. When I

12. By excluding small funds and funds closed to new investors, I avoid the incubation bias
identified by Evans (2010). Moreover, in my empirical analysis I control for fund flows over the
previous 12 months, thus effectively excluding funds of less than one year of age.

13. For each manager-company pair, I define the manager start date as the date at which the
manager first started working for the management company. I obtain this date by looking at when
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study the relation between tenure and the flow-performance relationship, I consider
the tenure of the most senior manager.

The model yields predictions about the relation between flows of capital, current
performance, and past performance. I measure the net flow of capital into fund 7 at
time t + 1 as

Kit41 — Ky
Fipp1 = ———" +K~ = - RZ]'XH, (1.22)
2

where Kj; are the assets under management of fund ¢ at time ¢, and Rﬁ[ 1 is the net
return that fund ¢ delivers to investors from time ¢ to time t 4 1.

To measure performance, first I compute the fund’s benchmark return as the
average gross return of funds with the same investment objective of the fund. Hunter
et al. (2014) show this benchmark return accounts for commonalities across similar
active strategies. Then I obtain the fund’s performance as the gross return of the

fund in excess of its style benchmark, that is,

Rii = Rit — Ry(y, (1.23)

where R;; is the gross return of fund i from ¢ — 1 to ¢, s(i) is the style of fund i (as
described by the CRSP objective classification), and R is the average gross return
of all funds with the same investment objective s. Khorana et al. (2007) and Spiegel

and Zhang (2013) use analogous measures of funds’ objective-adjusted performance.

the manager-company pair first appears in the dataset and at CRSP-reported start dates of the
manager in any of the company’s funds. This algorithm allows me to keep track of managers
within a management company. However, it does not allow me to track transfers of managers
across companies. After this procedure, I can compute the tenure of the manager in a management
company.
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I measure the past performance of a fund manager by considering the average
performance of the fund over the previous [ months (provided that the manager of

the fund did not change in those | months),

l
1
PastPerf;; ;1) = 72 (1.24)

Finally, to improve clarity in my subsequent discussion, I introduce a separate nota-

tion for the cumulative performance of the manager,
CumPeer-[t_ L = PastPeer-[t_m.

I refer to cumulative performance CumPeer-[t_m at month ¢ when I consider a
measure of performance up to and including the current month ¢, whereas I refer
to past performance PastPerfi[t_u_u at month ¢ when I consider a measure of
performance that does not include month t.

Berk and van Binsbergen (2015) and Pastor et al. (2015) document that the CRSP
database contain data-entry mistakes, some of them representing large outliers in the
distribution of flows and returns. To avoid the risk that my results are driven by
outliers, I remove the tails of the distributions of capital flows and gross returns,
keeping only observations within the 1st and 99th percentiles.

In Table 1.2, T report the summary statistics of the data used in my empirical
analysis. The final sample contains 3,903 funds, 7,635 fund-manager observations,
and 229 months. Table 1.3 contains the description of the variables used in the

empirical analysis. In this section, I compute past performance over the previous 6
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Table 1.2: Summary statistics. The sample contains 3,903 funds, 7,635 fund-manager pairs,
and 229 months.

Variable N Mean  St. Dev. Min Pctl(25) Median  Pctl(75) Max
Fiq1 283,111  —0.001 0.038 -0.173  —-0.015 —0.005 0.007 0.304
ﬁjt 283,111 0.00004 0.019 —-0.237  —0.009 0.000 0.009 0.193
Tenure;; (years) 283,111  11.671 8.292 0.085 5.490 9.753 16.005 62.038
K (USD mln) 283,111 1,209 3,947 0.1 61 228 880 135,373
ExpRatioj; (% per year) 282,966 1.235 0.498 0.100 0.950 1.180 1.455 9.950
FundAge;; (years) 283,095  15.493 13.576 0.493 6.499 12.008 19.553 94.526

Table 1.3: Definition of variables

Variable Definition Description
Fiiq Net flow Growth rate of AUM from month ¢ to month ¢ + 1 minus net return
Ry (Current) performance Gross return of fund ¢ in excess of its style benchmark
Rt Style benchmark Equally weighted average gross return of all funds with style s
PastPerfi[t_67t_1] Past performance Manager’s average performance from month ¢ — [ to month ¢ — 1
CumPerfy;_; 4 Cumulative performance Manager’s average performance from month ¢ — [ to month ¢
X; Controls 12 lags of net flows into the fund, log of fund size, expense ratio,

log of fund age, and log of the manager’s tenure
LfMyr Fund-manager fixed effect  Fixed effect for each fund-manager pair
L;éZM"” Style-month fixed effect Monthly fixed effects for funds with the same investment objective

months, that is [ = 6. In Appendix 1.F, I check the robustness of the results by

considering past performance over the previous 12 months, that is, [ = 12.

1.6.2  Prediction 1: History Dependence of the Flow-Performance
Relationship

The first prediction of the model can be summarized as follows.

Prediction 1. The slope of the monthly flow-performance relationship increases

with past performance.
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As a baseline test, I estimate the regression equation

Fipiq1 = a1 Ry + aQPastPerfi[tfl’tfl]Rit + agPastPerfi[tfl’tfl]

+ a4(PastPerfi[tfl,t71})2 (1.25)

FMgr SMon

+agRE 4+ Xy + 0, 9+ 5MOM 4y,

and test whether ag > 0. A positive coefficient on the term that capture the inter-
action between returns and past performance, PastPerfi[t_l7t_1]Rit, indicates that
the flow-performance slope is an increasing function of past performance. Whereas
the model predicts that a; is also positive, testing for a; > 0 alone cannot be taken
as evidence for my theory. Other theories, for example, Berk and Green (2004) and
Lynch and Musto (2003), predict a positive coefficient ay. Controls X;; include 12
lags of monthly net flows into the fund, the logarithm of fund size, its expense ratio,

the logarithm of the fund’s age, and the logarithm of the manager’s tenure. LgMgr

is a fixed effect for the fund-manager pair and LzStM " is a style-month fixed effect.
Standard errors are double-clustered at the month and at the fund level. Because
I measure past performance at the fund-manager level, for an observation to be in-
cluded in the estimation we need a history of at least [ + 1 months of performance

for each fund-manager pair.

Results. Columns (1) and (2) of Table 1.4 provide estimates of model (1.25), where
the past performance of the manager is computed over the previous six months, that
is [ = 6.

The data support the model’s prediction that the slope of the flow-performance
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Table 1.4: Effect of past performance on the slope of the flow-performance relationship.
Past performance is computed over 6 months. (Continues.)

Fii+1 (Net Flow)

(1) (2) (3) (4) (5) (6)
R 0.172%*  0.166***  0.172***  0.166™*  0.135™**  0.130***
(0.010) (0.010) (0.010) (0.010) (0.013) (0.013)
PastPerf; [ ¢ 1) - Rit 25625% 2270 2374FE 1347
(0.670) (0.678) (0.625) (0.609)
Rjs - I[PastPerf; y g, 1) > 0] 0.067***  0.066™**
(0.015) (0.015)
PastPerf; g, ) - I[Ry > 0] 0.052*  0.054*
(0.031) (0.032)
PastPerf; ; ¢4 1) 0.354***  0.399"**  (0.354™**  0.399***  0.244***  (.289***
(0.027)  (0.026)  (0.027)  (0.026)  (0.039)  (0.038)
(PastPerfi7[t_67t_1])2 0.566 0.408 0.316 1.137
(0.944) (0.960) (2.572) (2.624)
(CumPerf; ;g )2 0.770 0.555 0.666  —0.596
(1.285)  (1.306)  (3.742)  (3.905)
I[R;; > 0] 0.000 0.000
(0.000) (0.000)
I[PastPerf; ;g ;1) > 0] 0.002***  0.002***
(0.000)  (0.000)
R?, 0.571%%*  0.621%**  0.555"**  0.610°*  0.558"**  0.645"**
(0.128)  (0.136)  (0.130)  (0.135)  (0.140)  (0.147)
Controls Yes Yes Yes Yes Yes Yes
Style-Month FE Yes Yes Yes Yes Yes Yes
Fund-Manager FE No Yes No Yes No Yes
Observations 186,192 186,192 186,192 186,192 186,192 186,192
R? 0.347 0.378 0.347 0.378 0.348 0.378
Notes: *p < .10; **p < .05; *p < .01
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Table 1.4: (Continued.) The history dependence of the slope of the flow-performance
relationship is measured by the coefficient on PastPerf;; ¢ ;1) - Rit. Ri measures current
performance and is calculated, for each month ¢, as the gross return of fund 7 in excess of the
equally weighted average gross return of all funds with the same style. PastPerf;; ¢; 1
measures the past performance of the manager and is calculated as the average excess
return over the style benchmark in the six months from ¢ — 6 to t — 1. The dependent
variable, Fj;y1, measures the net flow of capital and is calculated as the growth rate of
assets under management from month ¢ to month ¢+ 1 minus the net return over the same
period. CumPerf;;_g ;) is the average performance of the manager over the style benchmark
in the months from ¢ — 6 to t. I[-] is the indicator function. Controls include 12 lags of
monthly net flows into the fund, the log of fund size, its expense ratio, the log of fund
age, and the log of the manager’s tenure. Standard errors are in parentheses and they are
double-clustered at the fund and at the month level.

relationship positively depends on the history of performance, as reflected by the pos-

itive coefficients on the PastPerfi[FG’tfl] R;; term. One may suspect that a positive
coefficient on PastPeer-[t_&t_l]Rit captures the convexity of flows in the cumula-
tive performance up to month ¢, that is, convexity in CumPeer-[t_&t]. In columns
(3) and (4), I replace the square of past performance with the square of cumula-
tive performance up to and including month ¢. Because of the correlation between
PastPerfi[FG,tfl]Rit and (CumPerfi[tflvt])Q, the coefficient on the interaction term
PastPeer-[t_Gyt_l]f{it decreases. However, it remains positive and statistically sig-
nificant. This result highlights that the flow-performance slope increases with past
performance even after controlling for the convexity of flows with respect to cumu-
lative performance up to the current month.

In columns (5) and (6), I address two possible concerns. First, one may sus-
pect that a positive coefficient on the interaction term PastPerfi[t_&t_l]fiit captures

a convexity in cumulative performance that the quadratic term (CumPeer-[t_l’t])2

does not fully capture. Second, one may suspect that a positive coefficient on
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Figure 1.6: History dependence of the relation between flows and performance. Past perfor-
mance is computed over 6 months. Figures (a) and (b) show how flows change with current
performance and how the change depends on past performance. I sort funds into deciles
based on their current performance and into halves based on their past performance. Past
performance is the average excess return over the style benchmark in the previous 6 months.
I then run regression of flows on dummies for the deciles of current performance, dummies
for the halves of past performance, and interactions between the two sets of dummies. As
controls, I include dummy variables for cumulative performance CumPerf;;;_g ; sorted into
deciles, 12 lagged flows, the logarithm of fund age, the logarithm of the manager’s tenure,
the logarithm of lagged assets under management, fund fees, fund-manager fixed effects,
and style-month fixed effects. The shaded areas represent 95% confidence intervals for the
change in the effect of current performance on flows when past performance increases above
the median. Confidence intervals are constructed by double-clustering standard errors at
the month and at the fund level.

In Figure (a), I plot the effect of current good performance (that is, performance relative to
the first decile) on flows, while, in Figure (b), I plot the effect of current bad performance
(that is, performance relative to the tenth decile) on flows.

PastPerfi[t_Gyt_l]Rit actually indicates that flows become more sensitive to past
performance after good current performance.In columns (5) and (6), I show that
my results are not affected by these concerns: When current performance is pos-
itive, there is only weak statistical evidence that flows are more sensitive to past

performance. On the contrary, when past performance is positive, there is strong
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statistical evidence that flows become more sensitive to current performance. These
results support the prediction of the model that good past performance increases the
sensitivity of flows to current performance.

In Figure 1.6, I use a non-parametric approach to show that flows become more
sensitive to current performance after better performance in the past. In Figure
1.6a, for every month I sort past performance PastPeer‘[FG?tfl] into halves (above
and below median), and I sort current performance R;; into deciles. I then regress
flows on dummies for the deciles of current performance, dummies for the halves
of past performance, and interactions between the two sets of dummies. I also
sort cumulative performance CumPerfi[t_&t] into deciles and add dummy variables
for cumulative performance deciles as controls. I include the same controls X;; of
equation (1.25), fund-manager fixed effects, and style-month fixed effects. Standard
errors are double-clustered at the month and at the fund level.

Figure 1.6a plots the incremental effect of current performance on flows (relative
to the first decile of current performance), and it shows that such incremental effect
is larger for above-median past performers. For example, the blue dot at decile 10
represents the increase in flows for a fund with top current performance, relative
to a fund with bad current performance, conditional on past performance being
above the median. The shaded blue area represents the 95% confidence interval for
the incremental effect of past performance. If the effect of current performance for
below-median past performers (the triangle) lies outside the shaded area, then we
reject, at a 95% confidence level, the hypothesis that the relation between flows and

current performance is the same for above-median past performers (the dot) and
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below-median past performers (the triangle).

Someone may suspect that the history-dependence of the flow-performance rela-
tionship is due to investors’ inertia. For example, investors may wait to observe good
performance both in the past and in the current month before investing in a fund.
This hypothesis would imply that, after good performance in the past, flows are less
sensitive to bad performance. Figure 1.6b illustrates the opposite happens in the
data. The figure plots the effect of current bad performance (that is, performance
relative to the tenth decile of current performance) on flows, and it highlights that
flows are more sensitive to bad performance for funds that experienced above-median
performance in the past. Consistently with my model, after good performance in the
past, flows are more sensitive not only to current good performance, but also to
current bad performance. We can therefore reject the hypothesis that the history-

dependence of the flow-performance relationship is due to investors’ inertia.

1.6.3  Prediction 2: Flows, Performance, and Managers’ Tenure

The model predicts a relation between the manager’s tenure and the history depen-

dence of the flow-performance slope. The prediction can be stated as follows.

Prediction 2. The slope of the flow-performance relationship increases less with

past performance if the manager has longer tenure.

Two mechanisms drive this prediction. The first mechanism is the optimal con-

tract itself. As discussed in section 1.5, in the long run, the advisor will constrains
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the manager’s experimentation and incentives up to the point where the slope of
the flow-performance relationship will no longer change with past performance. The
second mechanism is the convergence of beliefs. If the manager’s skill is a fixed (un-
known) parameter, then, in the long run, beliefs will converge in probability to the
true value, and a negligible amount of learning will take place.

I test the second prediction of the model by using the following regression:

Fiyy1= a9+ a1 Ry + agPastPerfi[tfl’tfl]Rit
+ agPastPerf;; ;; q)+ a4(PastPerfi[tfl’t])2 + a5RZ2t
5
Z TenureQuintile‘g . <agj + alTj Rt + agj PastPerfi[t_ Lt—1] Rit
j=2

+a3TjPastPerfi[tfl’t71] + afj(PastPerfi[tflﬂ)? + aBTj R?t)
)
Z AgeQuintile‘Z?t <a64‘7 + af‘j Rit + agl] PastPerfi[tfl,tfl]Rit
j=2
+a§4jPastPerfi[t_l7t_1] + afj(PastPeer-[t_m)Q + a?jf:ilzt>
5 . . - . -
Z SizeQuintile*g " (aOSJ + afj Rt + agj PastPerfi[t_ l,t—l]Rit
=2

—I—angastPerfi[tfl’tfl] + afj(PastPerfi[tfl’t])Q + agjf%%t>

FMgr

+d Xy + 1 + L;S;MO”

+ Ug.
(1.26)
TenureQuintile‘gt = 1 if, in month ¢, the tenure of the manager of fund 7 belongs

to the jth quintile of the distribution of managerial tenure in month ¢, otherwise

TenureQuintilegt = 0. Similarly, AgeQuintﬂegt = 1 if, in month ¢, the age of fund
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Figure 1.7: Effect of managerial tenure and fund age on the history dependence of the
relation between flows and current performance. Past performance is computed over 6
months. (Continues.)

i belongs to the j™ quintile of the distribution of fund age in month ¢, otherwise
AgeQuintilegt =0. SizeQuintilegt = 1 if, in month ¢, the size of fund 7 belongs to the
jth quintile of the distribution of fund size in month ¢, otherwise SizeQuintilegt =0.

I verify Prediction 2 by testing whether agj < 0forj=2,...,5. Asin regression
(1.25), controls X;; include 12 lags of monthly net flows into the fund, the logarithm
of fund size, its expense ratio, the logarithm of fund age, and the logarithm of the
manager’s tenure. I also control for fund-manager fixed effects, LgMgr, and style-
month fixed effects, LftM 9" Standard errors are double-clustered at the month and

at the fund level.

Results. Figure 1.7a shows that slope of the flow-performance relationship in-
creases less with past performance if the manager has longer tenure.The dots at
quintiles 2 to 5 are the estimates of agj for j = 2,...,5, and the vertical lines

represent 90% confidence intervals for the incremental effect of managerial tenure.
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Figure 1.7: (Continued.) I run regression

Fyy1= ap+ a1}~3¢t + agPastPerfi[t_&t_l]Rit
+ agPastPerf;;_g, 1) + a;;(PastPerfi[t_G,t])Q + asR%,

5
Z TenureQuintile], (aOTJ + alT] Rt + ag] PastPerf;; g1 Rit
j=2

+a3TjPastPerfi[t,67t,1} + a4Tj (PaStPerfi[tffi,t])Q + a5TjR12t>

5
Z AgeQuintile], (CLSU + af] Rit + a’;j PastPerfi[t,ﬁ,t,l]Rit
j=2

+a§1j PastPerf;;, g, 1) + afj (PastPerfi[t_G,t])2 + a?j th>
5 . . o~ . ~
Z SizeQuintile], (ag I+ af] Ryt + (125 "PastPerf;;_q 1 Rit
=2

—|—a§jPaStPel"fi[t—6,t—1} + afj(PastPerfi[t_e,t])2 + agjﬁf?t)

/ FMgr SM
+c it+l’it g +Lit On+ut7

where TenureQuintilegt = 1 if, in month ¢, the tenure of the manager of fund ¢ belongs to
the ' quintile of the distribution of managerial tenure in month ¢; AgeQuintilei't =1 if|
in month ¢, the age of fund ¢ belongs to the 4% quintile of the distribution of fund age in
month ¢; SizeQuintile;, = 1 if, in month ¢, the size of fund ¢ belongs to the 4™ quintile of
the distribution of fund size in month ¢. Table 1.3 contains the description of all the other
variables used in the regression. Standard errors are double-clustered at the month and at
the fund level. '

In Figure (a), the dots in the figure represents estimated coefficients CLQT]’S.The vertical
lines represent 90% confidence intervals for the incremental effect of tenure on the flow-
performance slope relative to the first quintile: If the vertical red line at quintile j does
not cross the dashed horizontal line, then we reject the hypothesis that ag] >0 at a 95%
confidence level.

Figure (b) is the analogous of Figure (a) for the effect of fund age on the history-dependence
of the flow-performance relationship.

Because the confidence intervals do not contain the zero for quintiles 3 to 5 (graphi-
cally, the red vertical lines do not intersect the horizontal dashed line), we reject the

hypothesis that a2Tj > 0 at a 95% confidence level for j = 3,...,5. In order words,
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the slope of the flow-performance relationship increases less with past performance
for funds with more senior managers.

Figure 1.7b is analogous to Figure 1.7a, but plots the incremental effect of fund
age on the history dependence of the flow-performance relationship. No clear correla-
tion exits between the fund’s age and the extent to which the flow-performance slope
depends on the history of performance. Compared to previous studies, my model
and my empirical analysis establish a connection between managerial tenure and the
history dependence of the flow-performance slope, rather than between fund age and
the value of the slope. Therefore, my results complement, but do not overlap with,
the results of Chevalier and Ellison (1997), who show that the flow-performance re-
lationship is less steep in older funds. Similarly, the theoretical predictions of my
model are distinct from those of Berk and Green (2004), who explain why older funds

have a flatter flow-performance relationship.

1.7 Conclusions

In this paper, I study how mutual fund flows respond to performance when port-
folio managers face optimal incentive contracts under moral hazard and learning. I
show that both flows and managerial compensation increase more than linearly in
cumulative past performance, consistent with empirical evidence.

I develop a dynamic model that explicitly takes into account the two challenges
that money management firms face: raising capital from investors and providing
incentives to portfolio managers. I illustrate the connection between the two chal-

lenges and the optimal strategy that money management firms should undertake. I
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show that the empirical patterns in capital flows and managerial compensation are
consistent with this strategy.

The model highlights the dynamic nature of the relation between flows and per-
formance. In particular, the model offers novel testable predictions on the dynamics
of the flow-performance relationship. First, after a history of good performance, flows
react more strongly to current performance. Second, the flow-performance relation-
ship depends less on the history of performance for managers with longer tenure.
I test these predictions in mutual fund data and provide empirical support for the
model.

By focusing on contracting frictions inside the money management industry, the
model offers a basis for further research on financial intermediaries. Since I provided
a partial equilibrium model, a natural extension would be to explore the asset-pricing
implications of optimal money management contracts. Building on this extension,
we can ask how monetary policy in the form of quantitative easing affects incentives
in the money management industry and to what extent the intermediary sector facil-
itates or hinders the transmission of monetary policy to the real economy. Finally, we
can modify the model and make it suitable to study optimal contracts for other types
of money managers. For example, by considering illiquid investments and Poisson
shocks, we could explain common patterns in the hedge fund industry, such as the

use of lock-up provisions and high-water marks.
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Appendix 1.A Alternative Contractual Environments

The design and implementation of the optimal contract requires the full commitment
of the advisor to the initial promises. The ex ante optimal contract implies actions
that are ex post inefficient. For example, the advisor would like to renegotiate the
contract at any time to reset Y = 0. Similarly, a contract with full commitment is
not robust to competition between advisors or to the assumption that the manager
could leave the advisor to open his own fund. In this section, I explore these two
alternative scenarios. In the first one, I consider a renegotiation-proof (or state-
contingent) contract. In the second one, I explore the incentives that a market of
atomistic investors can provide to a manager without the full commitment of an
advisor.

I first present these two contractual environment formally, then show their equiv-

alence and discuss their outcomes.

1.A.1 Renegotiation-Proof Contract

To understand the intuition behind a renegotiation-proof contract, imagine that
multiple advisors are competing for the same manager. Suppose that one of them
offers the contract in section 1.4 to the manager. After some time has passed, the
advisor will be committed to undertaking ex post inefficient actions, captured by
a strictly negative multiplier ¥; < 0. Let & (V4, Yy, ¢¢) be the information rent im-
plied by this contract at time ¢. At that point, the advisor is willing to transfer

~

wealth J(Vi, &(V, Y, dt), o) to another advisor who will then employ the man-
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ager by promising the same continuation value V4, but with a re-set information
rent é(Vt,O,czbt). At these terms, the first advisor would be indifferent between
keeping the manager and transferring him. The manager is also indifferent, be-
cause he obtains the same continuation value with the old and the new advisor.
However, the new advisor makes a strictly positive gain. She obtains a wealth

~

transfer of J(V4, &(V4, Yy, ¢t), ¢¢) from the first advisor, but she will have to bear

~ ~

costs J(V3,§(V1,0,0¢), ¢¢) to employ the manager, where J(V;,&(V4,0,¢4),0) <

~

J(Vi, EVi, Y, d1), 1)

Therefore, if the manager can be transferred across funds and an advisor cannot
commit to retain the manager, the contract of section 1.4 would not be credible. The
terms of the contract would be continuously renegotiated, making it impossible to
implement an ex ante optimal contract that requires ex post inefficient choices.

I therefore develop a notion of renegotiation-proof contracts that offer a credible
alternative to optimal contracts when the advisor cannot fully commit to the terms
of the contract. The advisor may lack commitment because the manager can be
transferred across funds, as discussed above. Alternatively, the advisor may lack
commitment because, after writing an initial contract, the advisor and the man-
ager could mutually agree to change the terms of the contract ex post, as in the
“commitment and renegotiation” model of Laffont and Tirole (1990).

Define the following set:
(0.@]
IV, 0,t) = {Gt 1 Cis IC, E {/ e_R(s_tu(C's + msAKg) ds|Ft, Cr| = V,E[h|Fy] = (b} ,
t

which represents the set of all contracts that are incentive compatible (as in Definition
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1.2) and that provide the manager with continuation value V' starting from beliefs
}.

To provide a definition of renegotiation-proof contract, I first define J(C) as the
costs for the advisor that offers contract €, and I define O(C,¢) as the time-¢ contin-
uation contract implied by €. Building on the definition in Strulovici (2011), I define

a (weakly) renegotiation-proof contract as follows.

Definition 1.5 (Weakly Renegotiation-Proof Contract). € € J(Vjy, ¢, 0) is weakly
renegotiation proof if, for all t > 0 and ' > 0 such that Vi = Vy and ¢ = ¢y,

3(0(67 t)) = 3(0(67 t/))

In a renegotiation-proof contract, the advisor must be unable to renegotiate the
terms of the contract in order to leave the manager indifferent and reduce costs for
herself. In this environment, the advisor still fully commits to a promised value for the
manager, but she is unable to commit to the manager’s information rent. Therefore,
the nature of the commitment in this model is similar to the “commitment and
renegotiation” assumption in Laffont and Tirole (1990): Although the advisor and
the manager can write a long-term contract, they can later agree to alter the terms
of the initial contract if doing so is mutually beneficial.

Even when the advisor cannot commit to an information rent for the manager, en-
forcing full effort remains optimal. In other words, Proposition 1.2 remains valid be-
cause it does not rely on any particular assumption about the advisor’s commitment.
Moreover, (1.3) also remains valid because it characterizes incentive compatibility in
any generic principal-agent setting.

For any given contract, the manager has an information rent given by equation
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(1.11). However, unlike in the optimal contract with full commitment, the advisor
does not take into account how the contract affects the agent’s information rent. The
advisor will instead take the process for the information rent as given and design a
contract that is optimal given this process. This behavior reflects the fact that the
manager and the advisor can mutually agree to change the terms of the contract in
the future and modify the implied information rent.

We can refine the search for a renegotiation-proof contract by looking at the set
of Markovian contracts, under the assumption that the optimal renegotiation-proof

contract is unique given an initial promised value and a posterior.

Definition 1.6. A contract C € J(Vy, ¢g,0) is Markovian if, for allt > 0 and t' > 0
such that Vy = Vy and ¢ = ¢y, O(C,t) = O(C,t)

Lemma 1.4. Any Markovian contract is weakly renegotiation proof. If the optimal

renegotiation-proof contract is unique, then it is Markovian.

In this paper, I do not explore the issue of multiple optimal contracts. I simply
focus on the optimal Markovian contract, which, given the previous lemma, is a
renegotiation-proof contract. Consequently, given expression (1.11) for the manager’s
information rent and the Markovian structure of the contract, we also conclude that
the manager’s information rent is Markovian in the manager’s continuation value
and beliefs. Using the homogeneity of the problem, I can characterize an optimal

renegotiation-proof contract as follows.

1
Proposition 1.8. As before, let vy = ((1 — p)Vi)T=P. In an optimal renegotiation-

proof contract, we have that Cy = tycp(er), Br = (1 — p)ViBr(dr) and m = nr(dr),
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A

where cr(@), Br(¢) and nr(¢) are the optimal controls in the HJIB equation:

—mind € B —nzgr(9) 5 TP
rJr(¢) = glﬁli {m — u(n, ¢, O)Tcp + Jr(9) (Tp . P + 5/)5 )

+ 5oL = 9)JR/(0) + 5761 - ¢>2JR"<¢>}. (1.2

The function zp solves the differential equation:

=@

2r(0)cr(9) P = Br(o)nr(9)o(1 — ) — (1 — p)BRr(S)nR(S)d(1 — ¢)2R()

nr(0)20%(1 — )25 (¢). (1.28)

DN | —

The cost function for the advisor is vy Jr(pt) and the manager’s information rent is

&= (1= p)Vezr(dr).

1.A.2 Market-Based Incentives

I now consider the case of a manager that directly collects money from investors. No
explicit contracts are written; however, the manager can maintain a stake in the fund
in order to ensure incentive compatibility. To maintain comparison with the problem
that I have studied so far, I assume the manager’s consumption is observable by the
market, together with the amount of assets under management, the manager’s stake,
and his experimentation. Consequently, these quantities must be set as functions
of the returns observed by the market, because the market could punish observed
deviations by leaving the manager in autarky.

In this framework, the manager possesses some wealth, which he allocates between
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a risk-free asset and the fund he runs. He raises capital from investors, who supply
capital perfectly elastically at the risk-free rate r. Therefore, the manager can collect
fees on the investor’s capital for the difference between the expected return of his
fund and the risk-free rate.

Absent an advisor who designs an explicit incentive contract, the manager must
resort to other implicit incentives schemes to mitigate moral hazard problem. In
particular, the manager holds a stake in the fund. If the manager had none of his
wealth invested in the fund, he would be tempted to shirk to obtain private benefits.
In this situation, rational investors would not be willing to provide capital. If, instead,
the manager has some of his own wealth invested in the fund, then investors, to some
extent, trust the manager with their own money. The stake of the manager should
be interpreted in a broad sense. One way the manager can hold a stake in the fund is
by being an investor in the fund. Alternatively, the manager may simply receive cash
payments that depend on the performance of the fund and that are not immediately
consumed. Such an example is a manager who charges symmetric (fulcrum) fees for
performance.

As in the principal-agent formulation, Proposition (1.2) continues to hold and
the manager will choose a strategy that will credibly enforce full effort. The proof
of Proposition (1.2) holds by simply reinterpreting the advisor’s cost function as the
wealth of the manager. However, the incentive-compatibility condition needs to be
slightly reformulated to fit the new contractual environment.

The incentive-compatibility condition remains essentially unchanged: Changes in

the continuation value of the manager, keeping the manager’s beliefs fixed, should
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exceed the marginal utility of shirking, as in equation (1.8). However, because no
advisor is committing to a promised value for the manager, the implementation of
this incentive-compatibility condition has to rely on the dynamics of the manager’s
wealth and beliefs.

In equilibrium, the manager’s continuation value is given by a function V (A, ¢),
which depends on the manager’s wealth A and the equilibrium beliefs about his skill

¢. The manager’s wealth evolves as

C
dAy = <7“At - Fﬁt) + (e, bt O)Kt> dt + ©0dWy,
¢

where © is the manager’s stake. The manager collects fees on the capital he raised
from investors. Fees account for a part u(¢¢, ¢, 0)(K; — Oy) of the manager’s instan-
taneous cash flow. The remaining part, p(p¢, m¢,0)Oy, is the expected excess return
from his stake in the fund. In an incentive-compatible contract, fees and expected
returns coincide and the stake ©; does not affect expected cash flows, but only the
volatility of cash flows.

I therefore rewrite the incentive-compatibility condition (1.8) by using the Marko-

vian characterization of the manager’s continuation value.

Lemma 1.5. If the market-based allocation is incentive compatible,

Va(At, 01)O10 + Vip(At, dp)mede (1 — @) = 0/ (Cr) Ky Ao + e, (1.29)

78



where & evolves as

d&e = [0& — mide(1 — &) (Va(Ar, 61)Ov () + Vi (A, de)mede (1 — p))ldt + 6 dWr.

This incentive-compatibility condition includes a role for the career concerns of
the manager, which were initially studied by Fama (1980) and Holmstrém (1999).
The incentive-compatibility condition (1.29) captures the result in Gibbons and Mur-
phy (1992) that direct incentives and career concerns add up in determining the total
incentives of the manager. In my model, direct incentives are represented by the value
of the manager’s stake, V4 (A, ¢¢)Oro. Career concerns are represented by the differ-
ence V¢(At, o)1 — d¢) — me&t. To see why, recall that Vi, (A¢, ¢¢) is the marginal
value of equilibrium beliefs, which are common among the market and the manager.
From the discussion in section 1.3.4, the information rent & is the product between
¢¢(1 — ¢¢) and the marginal value of the manager’s private beliefs. Therefore, the

difference

Vo (At, ¢1) — ﬁ

represents the marginal value of the market’s beliefs. The manager prefers the mar-
ket’s beliefs to be high in order to collect higher fees. The incentive-compatibility

condition (1.29) can then be written as

&t

Va(At, ¢1)Ot0 +nrdpr(1 — o) (qu(At, o) — S(l—0p)

direct incentives

) > u/(Ct)Kt)\a,

J/

~~
career concerns

which highlights that both direct incentives and career concerns play a role in pro-
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viding incentives to the manager.
Because the manager and the investors interact in a spot market, the implicit
market-based contract must also be renegotiation proof. The manager’s information

rent will therefore be a function of his wealth and equilibrium beliefs,

§ = E(At, o).

Given the functional form of the utility function, the manager’s continuation value

1—
and information rent are homogeneous in wealth, that is, V(A,¢) = /11_ pp v (o)
1—
and (A, ¢) = %ZM(é). Therefore, the incentive-compatibility constraint can be

written as

(1= p)oar(¢0)Oro + vy (S)mdr(1 — dr) > (1= p)e; "kido +mzpr (),
where I use ét = %, ct = % and ky = %
This contracting environment can thus be characterized as follows.

Proposition 1.9. In an optimal market-based contract, Cy = Acpr(dt), O =

~

A©n (1) and n = nag(de), where cpr(6), Onr(¢) and nag(¢) are the optimal con-
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trols in the HJB equation

1 .
oup (@) = Jaax, {cl_" +om (@) (1 —p) |7 - ch) + u(n, 6,00k — §p@202}

+ (1= p)on@(1 — 6)uly(6) + 761 - ¢>%g{4<¢>}
(1.30)

st (1= p)uar(9)00 + v (d)med(1 — @) = (1 — p)e kAo +nzpg(9).  (1.31)

The function zps solves the differential equation

Cd o (o (@) L aie2e? )| - _
5 =) (r= 20O (0,0, 0k (0) - 3006Pe? )| (0

(1= p)mar(9)d(1 — ¢)O(d)avar(d) + nar(9)26* (1 — 6)*vh,(9)

(1= pnar()6(1 — 9O(8)02hy(9) + 5nar (661~ 6%y (). (1.52)

1-p
The value function for the manager is 1’*_/)
1—p

& = éli—pZM(cﬁt)'

v(¢¢) and his information rent is

1.A.3 Results

I introduced the two models of this section separately in order to highlight the
difference between the two contracting environments. However, the two models are,
as the next proposition shows, outcome equivalent. As long as the manager has the
same commitment power of the advisor and as long as the market can observe the

same actions that the advisor can observe, a model with market-based incentives is
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renegotiation-proof contract. The parameters of the model are as in Table 1.1.

equivalent to a principal-agent model. In particular, the two models imply the same

social welfare and the same outcomes in terms of flows and compensation.

Proposition 1.10. The renegotiation-proof contract and the market-based contract

are equivalent.

In Appendix 1.E, I provide a verification argument based on the recursive repre-
sentations of the models in Propositions 1.8 and 1.9. However, we can immediately
observe that the renegotiation-proof contracting problem coincides with the prob-
lem of a manager who wants to find the minimal wealth that could support a given
lifetime utility with market-based incentives.

We can now study the flow-performance relationship and the compensation scheme
in these contractual environments. As the figures in this section show, the results

are qualitatively identical to the full-commitment model with only one exception.!?

14. T numerically solve for the models using the same parameters of section 1.5.
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Figure 1.9: Pay-performance sensitivity and compensation in the optimal renegotiation-
proof contract. The parameters of the model are as in Table 1.1.

Because the advisor or the manager is unable to commit to ex post inefficient actions,
the flow-performance relationship and the pay-performance sensitivity depend only
on the current beliefs ¢. In the full-commitment model, the advisor could commit
to reduce future information rents through a multiplier y with a negative drift. As
a result, over time, the advisor would change the manager’s incentives and experi-
mentation, even for the same value of beliefs ¢. This channel of non-stationarity is
absent when the advisor cannot commit to an information rent for the manager.

As before, the flow-performance relationship is positive and increasing in beliefs
¢ (Figure 1.8a). A good return is associated not only with a positive flow of capital
into the fund, but also with an increase in the slope of the flow-performance relation-
ship, because beliefs ¢ increase after good performance. The economic motivation
is identical to the one I discussed in section 1.5.2 and is related to the willingness
of the advisor (or the manager) to increase capital, relative to the manager’s risk

tolerance, when beliefs are higher (Figure 1.8b).
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Figure 1.10: Incentives in the optimal renegotiation-proof contract and in the market-based
contract. The parameters of the models are as in Table 1.1.

The relation between compensation and performance also matches the full-com-
mitment contract. Compensation increases with returns, and the pay-performance
sensitivity increases with past performance (Figure 1.9a), which then results in a
convex relation between cumulative pay and cumulative performance. Moreover,
performance-based compensation is again back-loaded after positive returns (Figure
1.9b). Interestingly, the manager does not need an advisor to defer his compensation
and increase his stake in the fund. This result is consistent with anecdotal evidence
that hedge fund managers tend to invest most of their performance fees in the hedge
fund itself (Agarwal et al., 2009).

Although the outcomes of the two models are identical, the implementation is
different. In the contract designed by the advisor, the advisor adjusts the explicit
contractual terms of the manager to ensure incentive compatibility (Figure 1.10a). In
the market-based allocation, the manager adjusts his implicit incentives by holding

a larger stake in the fund (Figure 1.10b). In the optimal mechanisms, these two im-
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plementations will provide the manager with identical incentives and, consequently,

result in an identical flow-performance relationship and compensation scheme.

Appendix 1.B Static Model

In this appendix, I consider a two-period contracting model in order to provide an
analytically tractable example of how, when moral hazard interacts with uncertainty,
a principal optimally designs a contract that features reduced experimentation in the
future.

To improve tractability, the assumptions on the agent’s preferences are different
from the main model. However, rather than being a shortcoming of this example,
this difference further goes to the generality of my result.

Before studying the two-period model, consider a one-period model to establish

a benchmark. Suppose returns are normally distributed and given by
R~ N(a+nh,o?) —m,

where m is the agent’s hidden action, which gives him a private benefit Am, and
h € {0,1} is the agent’s unknown skill. The principal is risk neutral, whereas the
agent has CARA utility with absolute risk aversion . Because returns are normal,
the agent’s utility can be expressed in the mean-variance form. I focus on linear
contracts that enforce m = 0. In these contracts, the agent’s final consumption is
given by

V=A+C,
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where

A= B(R— (a+n¢0))

captures the risk exposure of the agent, and C represents his expected consumption.
The principal controls experimentation through 7. I assume that n € {0,1} and
that it involves no costs. To ensure incentive compatibility, we must impose 3 > A.

Then, the optimal contract solves

maxE[R] — C
s.t. B> A

C— %52 > Up.

It is straightforward to verify the following lemma:
Lemma 1.6. In a one-period contract, = X and n1 = [{¢pg > 0}.

Now consider a two-period model. Output in period t is normally distributed
and given by

Rt ~ N(a+ nth, 0%) — my,

where my is the hidden action of the agent, which gives him a private benefit \ay,
with A € (0,1). To reduce unnecessary complications, I assume 7y = 1 and ¢g > 0.
The principal can choose 11 € {0,1}. Because m; > 0 is inefficient, I focus on
contracts that implement m; = 0.

Neither the principal or the agent discount the future. The principal is risk

neutral, whereas the agent has CARA preferences over the final payout. The final
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compensation of the agent is given by

V=Ag+A1+C,

where Ay is the performance-based compensation at time t, and C' is a promised
expected compensation that is pinned down by a participation constraint.

I focus on linear contracts where Ay takes the form Ay = By(Ry — (v + meody),
and where [; is chosen in order to make the contract incentive compatible. Because
the agent is risk averse, in an optimal contract, ¢ will be chosen to be as small as
possible, as long as it ensures incentive compatibility.

Finally, once the principal and the agent sign a two-period contract, they fully
commit to it. In particular, the principal can commit to a future choice of 7.

It is immediate to notice that $; = A, because the last stage of the game is
analogous to a standard static problem. However, the choice of §y depends on future

learning. In particular, to ensure incentive compatibility, me must have

Po = A(1 = E[ni¢m(Ro,0)])

where ¢(Rg, m) is the principal’s posterior as a function of the time 0 return Ry and
the time 0 hidden action m.

By Bayes’ Law, the posterior is given by

¢1 = (1 =0)go + 0(Ry — a),
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so that the constraint on Sy becomes
Bo > A+ ME[n].

This inequality is the counterpart of (1.8) in the paper, and AvE[n] represents the
agent’s information rent in this two-period model.

Similar to the one-period model, the principal solves

maxE[Rg + R1] - C
s.t. Bo > A+ AE[n]

- %(ﬁg) + %) > Up.

Because the incentive-compatibility and participation constraints must bind, the

problem reduces to finding an Ry-measurable learning strategy n; that maximizes
_ Y\2_
E[n(¢1 — yA°0)] - §A2v2(E[m])2-

Unlike the one-period model, setting 71 = 1 when expected returns are positive is

no longer always optimal.

Proposition 1.11. There exists a ¢ such that n = 0 if ¢1 < ¢, whereas n; = 1 if
1 > ¢. Moreover, ¢ > 0.

Proof. Let a state be a return realization R at time 0. Suppose that there exist a
set of states RR and a set of states RR' such that the posterior ¢ in all states in

RR is lower than the posterior in all states of RR’, and such that also that n; = 1 in
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RR, while 71 = 0 in RR’. Let v be the measure associated with the normal density
with mean o + ¢g and variance 0. Consider n = min(v(RR),v(RR’)) and suppose
that n = v(RR’). Now consider a set rr C RR and a set r7’ C RR' such that
v(rr) = v(rr’) = n. Consider a new contract with a new experimentation policy
n'. This policy is such that: (i) if R € v/, o'(rr') = 1, (ii) if R € rr, n(R) = 0
(iii) if R € RR'\ v/, n/(R) = 0, and (iii) if R € RR\ rr, /(R) = 1. Since
rr’ and rr have the same measure, it follows that (E[n}])? = (E[n1])?. However,
since ¢1(R') > ¢1(R) for all R’ € r’ and R € rr, under the new policy we have
E[n)(¢1 — vA%0)] > E[n1(¢1 — ¥A\%0)]. This contradicts 7 being optimal. Given
that ny is binary, it immediately follows that the optimal choice takes the form of a
threshold rule. Denote the threshold with ¢.

It remains to show that the threshold ¢ is positive. To do so, consider the

objective function, which can be written as
E [771 (¢1 — A% — %AQ@QEM])] :
The necessary condition for optimality is that
m=0 if ¢ <N+ %AQ@QE[M,

which then implies that ¢ > Y\25 + %)\2172E[771] > 0.
0]

As in the dynamic model of the paper, the principal commits to a reduced amount

of future learning in order to improve current incentives. The mechanism in this static
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model is very clear: Future experimentation 7; requires stronger incentives 5. But
because exposing the agent to risk is costly, the principal has an incentive to reduce
future experimentation below the ex post optimal level in order to improve ex ante

icentives.

Appendix 1.C Proofs for Section 1.3

Before proceeding to the proofs, I need to introduce some formal notation that I
have omitted in the main body of the paper. Let (2, F*, P) be a probability space.
(Wi)i>0 is a Wiener process on this probability state and the manager’s skill h is a
random variable on (£2,3%). The path of returns (R¢);>0 is also a random variable
(Q,F%) on (€, F*). I denote with P® a probability measure over the set of paths of
returns for a given contract C. As in section 1.3.3, (F)¢>0 is the filtration generated

by the path of returns (R¢)s>0, possibly augmented by the P-null sets.

1.C.1 Proof of Proposition 1.1

Proof. Let PG be the probability measure on (€2, F) conditional on h =1 and let
PB be the probability measure on (Q, Fx) conditional on i = 0.
Let

t
Wte’o = / dRs — (r + p(ns,0,mg))ds (1.33)
0

and define the likelihood ratio

t t
1
thexp{/ ndeE’O—E/ nfé‘ds},
0 0



which represents the ratio between the likelihood that the path (Rs)p<s<; is gener-
ated by a skilled manager (h = 1) and the likelihood that the same path is generated
by an unskilled manager (h = 0).

Since players use Bayes’ rule to form beliefs,

pXi
= 1.34
o pXt+ (1—p) (1:34)
We can then apply Ito’s lemma and obtain
(1—p)p* 2 (1—p)p €0
dor = — e X¢)“dt + e XedW, ™.
oXi+ (- I X a—pyN
Using (1.33) and (1.34), we conclude that
1
dor = m(1 — Gt)or—(dBy — (r + pu(im, ¢, ma))dt).
(]

1.C.2  Proof of Proposition 1.2

I proceed by contradiction. Let € be an optimal contract and let (m;);>¢ be the
best response of the manager to the contract. Suppose that (m¢);>q is strictly larger
than zero with positive probability.

Since this contract is Fr-adapted, this means that the contract specifies the time

t allocation (Ct, K¢, n¢,m¢) as a function of the history of returns (Rs)o<s<¢. For
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example, compensation at time ¢ can be written as,

Cr = C'((Rs)o<s<t);
experimentation at time ¢ can be written as

e =n'((Rs)o<s<t)-
and shirking at time ¢ can be written as

mt = m'((Rs)o<s<t)-

Now consider an alternative contract €. This contract is designed in the following
way. If the history of returns at time ¢ is (Rs)o<s<¢, the contract specifies capital and
experimentation at time t as equal to the capital and experimentation that contract

C specifies after history (Rg — fos My, du)o<s<t, where

S
s = m' (RS—/ mudu) .
0 0<s<t

For example, experimentation at time ¢ for contract C is given by

s
77152"775((Rs—/ ﬁmdu) )
0 0<s<t
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However, under contract €, consumption is specified as

A S A~
Cy=Ct <(RS — / M du) ) + M K.
0 0<s<t

If the agent never shirks when he’s offered the alternative contract é, he obtains
a consumption process that coincides with the consumption process he obtains by
shirking in contract C. If the agent chooses a shirking process (mé)tzo with contract
é, he obtains the same consumption process he would have obtained in contract C
from a shirking process (m¢ +m})>0.

Because (m¢);>0 is the best response of the manager to contract €, that is,

o0
(my)i>0 € arg max E [/ e Otu(Cy + miAKy) dt

(m})e>0 0

Fo, e}

then it must be the case that (0);> is the best response of the manager to contract

A

G, that is,

w A
(0)g>0 € arg max E [/ e_(stu(Ct) dt

(my)e>0 0

?Oaé‘| ,

since, otherwise, (my);>0 would not be a best response in the original contract.
Under the new contract € the agent receives the same lifetime utility as in contract

C. However, the costs for the principal change by

E UOOO et (1 — ﬁ) mi Ky dt] <0.

Since ¢(7) > A, then the principal is now bearing lower costs. This contradicts

the assumption that € is an optimal contract.
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1.C.3 Proof of Proposition 1.3

I use the stochastic maximum principle to derive necessary conditions for incentive
compatibility, as in (Williams, 2011). Fix an incentive compatible contract with full
effort, C. Consider a shirking process m = (m);>p. Let PC Dbe the probability
measure over path of returns for which VVt(3 is a standard Brownian motion. Let P™

be a measure under which

t
wm=we— [ ™t

0o O

is a standard Brownian motion.

I denote with 7 a stopping time at which the principal stops experimentation
forever, that is, 7 = inf{t > 0 : ns < 0,V¥s > t}. After time 7, Lemma 1.3 applies
and the skill of the manager becomes irrelevant for returns and incentive provision.
In particular, the manager’s continuation value at 7, V-, does not depend on beliefs
about the manager’s skill.

Instead of considering the posterior beliefs ¢; as state variable, it is convenient
to work with the log-likelihood ratio xy = log X, where X is the likelihood ratio.

We can then express beliefs as a function of the log-likelihood ratio,

X

() (1.35)

T 1-ptpet

More precisely, let x4+ be the principal’s log-likelihood ratio and let x4+ + Ax; be
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the agent’s log-likelihood ratio. The laws of motion of x+ and Az; are given by:

1
dry = <¢($t) - 5) nidt + ntthe

m
dAxy = —tndt.
o
The continuation value of the agent, given C and m, can be written as

00
E {/ F%ne_&u(c% + miAKy) dt‘ffo} .
0

where [ = fil_]];g is a density process representing the change of measure for the

path of returns induced by the shirking strategy m. By Girsanov’s Theorem, I'"* as

AT = (—% 4 (@ + Axy) — w@:g) Dy dWE.

Let V be the multiplier for I'" and let ;¢ be the multiplier’s volatility. Similarly,
let & be the multiplier for Az; with volatility wy. The Hamiltonian for the agent’s

optimization problem is the following:
m m
Pu(C +mAK) + (=2 + (Ux + Az) = $(2)) T8 + 2 (1.36)

If m = 0 is optimal, it must be the case that m = 0 maximizes (1.36) with I'"* =1
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and Az = 0, which happens only if

u' (C)NK + e _ b <0.

o o

The multipliers V and ¢ solve the following backward stochastic differential equations
(BSDEs)
dVy = (8Vy — u(Cy))dt + BrdW

dér = (66 — d¢(1 — dp)mBy)dt + S dWE, (1.37)

with terminal conditions

Solving the BDSE for V¢, we obtain

(0. ¢]
V=V, =E [/ e~ Ou(Cy) dt
t

).

1.C.4  Proof of Proposition 1.4

Proof. To show that § = ¢(1 — ¢¢)0y V4, it is sufficient to show that & = 0,V4,
where z; is the log-likelihood ratio at time ¢. The fact that 0,V = ¢¢(1 — ¢t)8¢1/15
follows from equation (1.35).

Consider

oo
Vi =E [/ e %u(Cy) ds
t

7).
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Given an initial log-likelihood ratio z¢, we can write

(0.]
(1= p+pe")V; = E [/ (1 — p+ pelTsto)edsy(Cy) ds
t

Fi,h= O} .
Differentiating with respect to x4+ we obtain

o0
pe"tVi + (1 —p+pe™)0,Vy = E [/ peAmSerte_ésu(Cs) ds
t

Fy h = o} . (1.38)

which can be rearranged as

0th = ¢t(Gt - Vt)

where

o0
G =E [/ e % u(cs) ds

t

Ft,h= 1} .
Using Girsanov’s theorem and Ito’s lemma, we can derive the law of motion of
ot(Gt — V),

dgp(Gy — Vi) = (66¢(Gr — Vi) — mBron (1 — bp))dt + widWE, (1.39)

for some Fy-adapted process (w))¢>0, with the terminal condition ¢, (G — V;) =0,
where 7 = inf{t > 0: ng < 0,Vs > t}. Using the comparison principal for BSDEs
(1.37) and (1.39) (Pham, 2009), we conclude that & = ¢¢(Gy—V;) = 0, Vy. Moreover,

we can solve the BSDEs and obtain

&:ELA e B (1 — ) ds

).
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It now remains to prove that, in an incentive compatible contract, & > 0. In

order to show that & is positive, consider the BSDE:
& = (0& — npon(1 — d)& — mor(1 — dp)u/ (Cy)AK o) dt + SdWE,

with terminal condition 5; = 0.
By the incentive-compatibility condition (1.8), =& —ue(Cy) KiAa > — 5. More-
over, nto(1—¢p¢) > 0. Hence, from the comparison principle for BSDE (Pham, 2009),

it follows that ét < &. Moreover, ét can be written in closed form as

= | [ e B0ty 6,1 0/ (CoME o ds
t

F t] >0,
from which we conclude that & > 0. O

1.C.5 Proof of Proposition 1.5

Proof. Let gzgt be the agent’s posterior at time ¢, while ¢; is the principal’s. Define

&t

= o1(1 — o)’

which evolves as

dé; = <5Ct — B + i (1 — ¢e)Ge — me(1 — 2¢t)Wgt> dt + wey dWE
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where
L W §e(1 — 20¢)my
< (1 — ¢t)

(1.40)

I want to show that, if the conditions of the proposition are satisfied, then V; +
(&t — ¢¢)C¢ is an upper bound on the continuation value of the agent at time ¢. Since
dp = ¢p, this will prove that the agent has no (strictly) better strategy than choosing
my = 0 for all t > 0.

Let 7 = inf{t > 0 : ns < 0,Vs > t} be the stopping time at which the principal
stops experimentation. For ¢ > 7 we have that ( = 0 and standard arguments imply
that V4 is an upper bound for the agent’s continuation value (DeMarzo and Sannikov,
2006; Sannikov, 2008).

For t < 7, consider an arbitrary deviation up to time t and let
t é é gt
Gi= [ eou(Cu s mahIGs) ds e (Viok (61 - 00)6).
0
It suffices to show that G¢ is a supermartingale for ¢ < 7. Indeed, in this case

C‘Ft} ,

-
Gt > E[G|F¢] = E {/ e 5u(Cs + msAKg) ds + ¢ TV
0

which then would imply that

Vi + (¢t — 1)t > E {/T e 0=y (Cy + agAKy) ds + e 0TV
¢

7).

In order to show that W} is a supermartingale, it is sufficient to prove that the
drift of dW; is non-positive. Using [to’s lemma, and after some simplifications, the

99



drift of dG¢ reduces to
_ m m ~ m
e lu(Cy + miAKy) — u(Cy) — 5t7t + (1 — Cbt)ft?t — (ot — ﬁbt)wgt;] :

Recall that & = ¢¢(1 — ¢¢)(¢. Combining the assumptions of the proposition with
equation (1.40), we conclude that the drift is maximized for my = 0. For my = 0 the
drift of dGy is zero. Hence, for an arbitrary deviation mg, drift of G¢ is non-positive

and Gy is a supermartingale. O

Appendix 1.D Proofs for Section 1.4

To prove the two propositions in Section 1.4, I first develop a series of lemmas to help
organize the results. Before presenting the lemmas, let me introduce some notation
that will facilitate the exposition. I denote with G‘JZ € the optimal contract for the
primal problem when the initial state is given by V', £ and ¢. I denote with GZ%Y, é
the optimal contract for the dual problem when the initial state is given by V, Y
and ¢.

Let € be an incentive-compatible contract that enforces no shirking, delivers
expected lifetime utility V' to the agent and that implies an information rent £. 1
denote with J(V, &, ¢|C) the primal cost function when the principal chooses contract
C. Similarly, I denote with G(V,Y, ¢|C) be the dual cost function when the principal
chooses contract €. Then we must have that J*(V, &, ¢) = J(V, §,¢\G{2€7¢) and
GH(V.Y, ) = G(V.Y, 0[Py ).

Any optimal contract for the dual problem implies an information rent. Given

100



a contract € that specifies Fy-adapted processes for incentives and experimentation,
(Bt)t>0 and (n¢)¢>0, I denote with 3 (C, ¢) the information rent implied by the contract

C when beliefs are ¢, that is,

s@mo:ELA a“m&@u—¢aﬁk4.

I will often consider the information rent implied by an optimal contract for the dual
problem Gl‘;’Y’ & To simplify notation I denote this information rent as é V)Y, 0) =
Py g0 0)

Throughout this appendix, I use the following notation for the left and right
derivatives of a function. Consider a function of n variables h(x1,...,x,). I denote

the left derivative with respect to z; as

. h(xy, .o xg, oo mg) — h(xy, . — g, X))
hxi—(xl,...,xn) :El_l>r61+ - y

and I denote the right derivative with respect to z; as

. h(zy,... ;46 ) — h(xg, .o T,
hy+(x1,...,2p) = lim (71 ! n) = h{z1 ! n>

E e—0t €
Whenever the left and right derivative coincide, I use the usual notation hy, (1, ..., xn)

to denote the derivative of h with respect to ;.

Lemma 1.7. Consider an incentive compatible contract C.
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IfE [fooo — (M(m,@,o)%cﬁ) dt

3"0] 1s finite, then

E {/ e " (YVimeBron (1 — ¢p)) dt
0

= vaée.on -~ | [T (ulon 02t ) a

g

,

¥

Proof. Let
~ t —
Yy = l— (/0 65(5_T)M(77t7¢t,0);7—tcf d8> +Y}

o

so that

}/t _ et(T*(S)Yi

102



For a finite 7" > 0, we can use integration by parts to obtain

T
E [/ e (YVimBroe(1 — ¢r)) dt|Fo
0

= [/OT e 0 (f/ﬂ)tﬁt%(l — ¢t)> dt

0
T T
- / ( / e—5snsﬁs¢s<1—¢s)ds> na
0 t

%}
T
/O 6_6Snsﬁs¢s(1 — ¢s)ds

T T
/ 6_6t (/ 6_6(S_t)77558¢5(1 — ¢s) ds) df/t
0 t

T )
/O e Snsﬁsqbs(l — ¢s)ds

T T
. —rt —d0(s—t) _ Nt ~p
E[ /O e ( /t e, Bygs(1 ¢>s>ds> (i 61, 0) 2 C

Fo

5 T
Yt/t 6_687735%?58(1 - 9253) ds

= f/()E o

+E Fo

=Yk Jo

Fo

Using the monotone convergence theorem and the law of iterated expectations

we can conclude that

E {/ e " (YimBior (1 — ¢r)) dt
0

.

T
= lim E [/0 e (Vi B (1 — @) dt|Fg

= Ypé(C, ¢p) — E {/0 e "t (M(ﬂt,¢t70)77>\t—?cf> dt

5.
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Since Yy = Yjp, this concludes the proof. ]
Lemma 1.8. G*(VY, ¢) is decreasing and concave in Y.

Proof. Fix V and ¢, consider Y0 and Y1 such that YO < Y. Then

(V.Y e) < JVYhele) o ) = (V.Y 0) + (V0 = Yhg < M (.Y, 9),

where the first equality follows by applying Lemma 1.7.

To show convexity, consider v € [0, 1] and define Y = vY? 4 (1 — »)Y'1. Then

v (VY0 6) + (1 =) " (V.Y )
<vI(V.YY 6leRy o) + (1= 0)J(V.YL gleDy )

=J"(V,Y", ¢)
The last equality holds because, under contract C‘Z%;,YV’ 6= (CY, K¢ n{,0))i>0,

t v
Yy = el [— ( / 5o + anqut”)z—t(ot’/)ﬂ ds) - Y”} .
0 g

]

Lemma 1.9 (Weak Duality). Let C be an incentive compatible contract that delivers

expected lifetime utility V' to the agent and that implies an information rent £&. Then

J(V.§,0|€) = G(V,Y, ¢|€C) +Y¢
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Proof. This follows immediately from Lemma (1.7), since

J(v,5,¢|e>=E[/Oooe—”(() (i, 61, 0) L=t ”’ftcp) dt"fo]
(VY¢|€>+E{ ( ’”ftcp> it

g

+E {/0 e " (YimeBror (1 — ¢r)) dt

.

= G(V,Y,8|C) + YE.

O

Lemma 1.10. The dual cost function is homogeneous with G*(V)Y, ¢) = 0g*(y, ¢)

for a continuous function g*(y, d).

Proof. Let
1
T

b= (1= pV)T

be the consumption equivalent of the manager’s continuation value and let

y=(1-90) Y
be scaled version of multiplier Y. Define the scaled control variables

C K. A
== k=2t B= b

V¢ U (I—p)Vs

(1.41)

The laws of motion of promised value © and multiplier y can be obtained by applying
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Ito’s lemma,
N 1-p
dvy J o 1 2o A €
= —- = dt aw. 1.42
% (1_p 1_p+2pﬁt + BrogdWy (1.42)

and

L
Ao
) | 59 5 A e

1 e St R 1 K ytlpBe + nepeldWy . (1.43)

dyr = —(1 — o) (e, ot 0) v —cl dt
1
t

From equation (1.42), we obtain

1—
By = B exp /t L—i+1p32—lﬁ2 ds+/tBSdWe (1.44)
0 1—p 1—p 2 s 2 0 s

Using expressions (1.41) and equation (1.44), we can write the objective function

as

cl—p R ~
(i) as (g B
o) e By | — — p(ne, d,0) =y — yedpmu By | dt

F
Ao 0

(1.45)

where By is a density process,

t 1 t
Bt:exp{/ ﬁdeE—a/ 52ds}.
0 0

Minimizing (1.45) is equivalent to minimizing the expectation in (1.45) subject
to beliefs and the law of motion of multiplier y, (1.43). To see why, notice that any

policy that is optimal for initial states 7, yg, and ¢ must also be optimal for 276, Y0,
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and ¢q, with @6 £ 0.

Le g*(y, ¢) be defined by

9" (o, ¢0) =
e (f—%pﬁp@?) ds (¢ B
Ainf L / € ’ g N M(Uta ¢t7 0)_05
(ct,Be:mt)t>0 0 q(n) Ao
- ytcbmtﬁt) dt|Fy
st. dor = neor(1 — o) Bdt + (1 — o) dWE (1.46)

3

o ctp dt

dyr = — (1 — é¢)pu(nt, ¢, 0)

) ctlfp 1 R
tye (-3 +p + =pBf + peBroy | di
—p 1—p 2

— ytpBe + mede) Bt — yelpBr + o) dAWE,

where Wte is a Brownian motion under the measure @ such that 2—% g, = Bt. Then

1
G*(V)Y,¢) = vg*(y, ») where 0 = ((1 — p)V)1=F and y = (1 — )0~ PY. u
Lemma 1.11. IfY <0, G* is differentiable with respect to'Y .

Proof. Let us use Lemma 1.10 to obtain G*(V,Y, ¢) = vg*(y, ¢) for y = (1—¢)0~PY.
Since G* is concave in Y, then ¢* is concave in y. Therefore, the right and left
derivatives of ©¢g* with respect to y always exist in the interior of the domain.
Moreover, Gy (V,Y,9) exists if and only if dgy(y, ¢) exists. Suppose that there
exist a point, (0g, Yo, ¢g) where g; 4 < g;_. Consider a test function F' such that

F(v,y,9)—0g*(y, ¢) has a local minimum at (0q, yo, ¢g) and such that F(0q, yo, ¢g)—
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009 (yo, ¢0) = 0.

Then consider a p € (g;+,g;_) and take another test function

. . . 1.
F-(0,y,0) = F(0,y0,¢) + 0p(y — o) — iv(y —y0)%.

For any arbitrary ¢ > 0, Fz(0,y, ) > 0g*(y, ¢) in a neighborhood of (g, yo, ¢p)
and (0, yo, ¢g) is a minimizer of F:(0,y, ) — 0g*(y, ). Then the viscosity subsolu-

tion property of Fz (Pham, 2009) implies that
N _ c ~cP A
rg(y,¢) — inf § —— —(a+onP)f— —ypng
e.3m | 4(¢) oA

% 5 Cl_p 1 A9
+9°(y.9) (Tp_ 1_p+§pﬁ)

+p [_(1 - ¢t):u(77a Qb, O)%Cp

) A= 1. A
+y (r — T e pn&b)] (1.47)
—p 1—p 2

— pylpB +ndlB + Fyly. o)ne(1 — ¢)B
|
§F¢¢(y,¢)772¢2(1 —¢)?

3

1[p3+n¢12} <0,

[PB +7]¢]2 is always strictly positive. To see why, suppose that n = 0. In this case,
since g*(y, ¢) is decreasing and concave in y, we must have that ¢*(y, ¢) — %py > 0.

Then the first order condition with respect to B holds and imply that

cP 1 R

ar— = (9" (y, 0) — 3PY)b,
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which in turn implies that B > () because ¢ is also positive, since ¢*(y, ¢) — ppy > 0
and the marginal utility of consumption is infinite at ¢ = 0. Since [pB + 7](25]2 is
strictly positive and ¢ is arbitrary, the inequality in (1.47) is a contradiction. Hence,
f)g;} (y,0) = f)g;_(y,gzﬁ), from which it immediately follows that G, (V.Y,¢) =
G;_(V, Y, ). O

Lemma 1.12. IfY <0, then

~

Proof. Consider the left derivative

Gik/—(‘/a}/a(é): lim G*(‘/’Y,qb)—G*(V,Y—E,gb)

e—0t €

Since G*(V,Y —¢€,¢) < G(V,Y —e, ¢|GQK¢), then

G*(V,Y,0) — G(V.Y — ¢, ¢|CD
G _(V,Y,6) > lim ( ) — G( CYy ) _

e—0Tt €

~

_ T —is _ - _
_ B /0 =950 Bs05(1 — bs) ds|Fo| = —E(V,Y, 0)

Similarly, consider the right derivative

e—0t €
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Then

G(V,Y +e, eD — G*(VY,
v+ (V.Y ¢) < lim ( 1€y s) V.Y, 9)

e—0Tt €

T
=—-F [/0 6768n555¢5<1 - (bS) ds

~

Fo| =—€(V}Y,9)

Hence

(Y, 0) < —E(V,Y,¢) < Gy _(V,Y, ).

Since G* is differentiable with respect to Y when Y < 0, we conclude that

~

Gy (V.Y,9) = =E(VY, ¢). -
Lemma 1.13. f(V,O,qb) = lim__, o+ é(V, —€,0)

Proof. Let & = f(VO,O,qbg). Since Y; < 0 for all ¢ > 0, this means that & =
§(Vi,Ys, 1) < lim_,g+ £(V, =€, ). Define 7€ = lim,_, o+ £(V, —¢, ). Suppose that
D=¢(V,0,¢) — &€ >0.

In general,

! 1)
=B [ ¢ PBunon(i =0 ds| o | +E [P

t
<E /O 6_58ﬁ5775¢5(1 — ¢s)ds|Tp| +&,

which implies that

t
D<E [/0 6_5858773¢s(1 - (bs) ds|Fo
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Since t is arbitrary, we conclude that D = 0.

Lemma 1.14. For any arbitrary & and Y,
G*(V,Y,¢) < JH(V,€, ¢) = Y¢.
Proof. Using Lemma 1.9, we can see that, for any arbitrary ¢ and Y,

TH(V,6,6) = YE=J(V,&0lCh¢ 4) = YE= GV, Y, 0|CL, 4) > G*(V, Y, 9).

Lemma 1.15. For any arbitrary Y,
G (V.Y 9) = J(V.E(V.Y,9),¢) = YE(V.Y, ).
Proof. Using Lemma 1.9, we can see that, for any arbitrary Y,

TX(V,E(V,Y,6),6) < J(V,E(V,Y, 6), 8€y ) = G*(V, Y, 6) + YE(V, Y, 9).

Lemma 1.16. IfY = argsupy <o{G*(V, Y @)+ Y'Y, then

~

V.Y, 0)=¢, ifY <0
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and

~

§(V,0,9) <¢.

Proof. Since G*(V,Y’, ¢) is concave and differentiable with respect to Y for Y < 0,

the first-order condition holds and

—Gy(V.Y,¢) =¢
if Y <0, and
_Gik/— (V7 07 ¢) < S
if Y = 0. Using Lemmas 1.12 and 1.13, we conclude the proof. O

Lemma 1.17. J*(V,£(V,0,6),¢) < J*(V,&, ) for all € > £(V,0, ).

Proof. It € > £(V,0,¢) then 0 = argsupy<o{G*(V,Y’,¢) + Y'¢}. Let

gzarg pqin {J*(‘/,f,Qé)}
§2€(V,0,0)

From Lemma 1.14, it follows that G*(V,0,¢) < J(V, €, ¢). But, by Lemma 1.15, we
must also have G*(V,0,¢) > J*(V,£(V,0,0),$). Therefore, J(V,&, ¢) is minimized

by £ =¢(V,0,9).
]

Lemma 1.18. Consider { < f(V, 0,¢) and let Y = argsupy <p{G*(V, Y/ ¢)+Y'E}.

Then G%/)Y¢ is optimal also for the primal problem for initial states V', & and ¢.
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Moreover,

TH(V.€ ) = sup {G*(V.Y',¢) +Y'¢}. (1.48)
Y/<0

Proof. By Lemma 1.16, 61‘3 Y. implies information rent &, so it is a candidate for an

optimal contract given states V', £ and ¢. Then the following holds:

IV, 810y 4) = T*(V.£,0)

> sup {G*(V,Y', 9) + Y€} = G*(VY, ¢) + Y¢
Y'<0

=G*(V,Y,9) + YE(V.Y, ¢).

The first inequality holds because GXQY é cannot be better than the optimal contract,
the second inequality holds because of Lemma 1.14. The following equality holds be-
cause Y = argsupyro{G*(V,Y’, ¢) + Y'¢}. Finally, the last equality holds because
of Lemma 1.16.

By Lemma 1.9, J(V,§,¢|€l‘2x¢) = G*(V,Y,$) + YE(V,Y,$). Hence, all the

inequalities hold with equality, G%/) Y. is optimal for the primal problem and

T (V,€,¢) = sup {G*(V.Y', ) + Y€}
Y7<0

]

Lemma 1.19. J*(V &, ¢) is differentiable, decreasing and convex in & for £ <

~

§(V,0,0).

Proof. When & < £(V,0,6), the solution to the maximization problem in (1.48)
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is interior and the envelope theorem holds (Milgrom and Segal, 2002). Therefore
Jf*(V,é, ¢) exists and it is equal to Y, where Y = argsupy<o{G*(V,Y", ¢) + Y'¢}.
Since Y <0, J*(V, &, ¢) is decreasing in £ for £ < f(V, 0,¢).

To prove convexity consider €0 < £(V,0,¢) and €1 < £(V,0,¢) and let & =

(1 — )&V + vel. Using the concavity of G*(V,Y,0) and Lemma 1.18 we obtain

T (V,€,¢) = sup {G*(V.Y', ) +Y'¢"}
¥7<0

< (=) sup{G*(V,Y,8) + Y} + v sup {G*(V,Y", ¢) + Y1}
Y’<0 Y’<0

= (1—0)J*(V,€9, ) + vJ*(V, €L, 9).

Lemma 1.20. f(V, 0,9) is a global minimum of J*(V,&, ¢) with respect to §.

Proof. From Lemma 1.17, £(V,0,¢) is a global minimum for & > £(V,0,¢). From
Lemma 1.19, f(V, 0,¢) is a global minimum also for { < f(V, 0,¢). Therefore, & >

~

V.0, ¢) is a global minimum J*(V, &, ¢) with respect to &. O
5( Y Y ¢) g Y ) p

1.D.1  Proof of Propositions 1.6 and 1.7

Proof. Consider an initial promised value for the agent, V{), and initial beliefs ¢q.
Since £(Vp, 0, ¢p) is a global minimum for J*(Vp, €, ¢g) with respect to & (by Lemma
1.20), the principal sets £y = f(VO,O,qﬁo). By Lemma 1.18, C‘%’O@O is the optimal
contract for the principal at time zero, and equation (1.48) holds. At any time ¢t Y; <

0, and combining Lemmas 1.16, 1.18, and 1.19, we obtain that & = é(Vt,Yt,@) =
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—Gy-(V4, Yy, ¢t) and that Yy = J*(V},ft, ¢¢). We then obtain Proposition 1.7.
Let £(V4, ) = é(Vt,O qbt) Considering that Jg*(Vt,&,@) = Y; < 0 and that
& = —G (Vi Ye, ¢1) < =G (Vi,0,6¢) < &(V3,0,¢¢) (by the concavity of G* and

by Lemma 1.13 ), we obtain Proposition 1.6.

Appendix 1.E Proofs for Appendix 1.A

1.E.1 Proof of Lemma 1.4

Proof. The first part of the Lemma follows directly from the definition of Markovian
contract and weakly renegotiation-proof contract.

Suppose that the optimal renegotiation-proof contract is unique. Consider stop-
ping times ¢ > 0 and ¢’ > 0 such that V; = V and ¢; = ¢». By uniqueness of the
contract, it follows that O(C,t) = O(C,#). To see why, if O(C,t) # O(C,t') then
contract € such that O(€’,s) = O(€, s) for all s # ¢t and O(C',¢) = O(C, ') would be
incentive-compatible given (1), ¢g), weakly renegotiation-proof and payoff-equivalent
to €, thus contradicting the uniqueness of the optimal renegotiation-proof contract.

]
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1.E.2  Proof of Proposition 1.8

Proof. Using the expression (1.11) for &, we obtain

& =E /too 6_6(S_t)ﬂ8n8¢8<1 — ¢s) ds

Ft

=E /OO 6_5(S_t)(1 - p)%@%%(l - Cbs) ds

t

Fi

=k /OO 6_6(8_t)@§_p33778¢s(1 — ¢s)ds

t
00 SN\ 1=p
/t 6_5(8_t) (Z_j) Bsﬁsﬂ%(l - ¢s) ds

— (1 - p)‘/lfzb

Fi

— 5. PR

where

A=kl AT M Ba(1 — 6a) s\ (1.49)

t

for a density process Byg such that
2 ° R 2 42
Big = exp {/t (1 —p)pudW, — §/t (1—p)°ps du} :

The objective function can be written as

c1fp N ~
. T _fgr_<16p_ 187,0 +%p'8§) ds Ct Bt — Ntz p
voE /O e By - M(Uta Pt O) Ct dt|Fo | ,

q(n) Ao
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where By is a density process,

t 1 t
Bt:exp{/ 5de§—§/ 52ds}.
0 0

Minimizing equation (1.50) is equivalent to minimizing the expectation in (1.50)
subject to the law of motion of beliefs (under the probability measure implied by
the density process By) and where z; is given by (1.49). To see why, notice that
if a strategy ((ct)e>0, (Bt)tEO» (mt)¢>0) is optimal for 9y and ¢, then it must also be
optimal for 136 and ¢, even if 136 # 0g. Equation (1.27) in Proposition 1.8 is the
associated HJB equation.

Because the strategy ((ct)i>0, (Blf)t207 (nt)¢>0) depends only on beliefs ¢, then
the information rent implied by the contract is given by (1 — p)Vizg(¢¢) where

Fe|,  (1.51)

t

2R<¢t) =E [/OO efts(ic(gbu)lip) duét36(¢s)ﬁ(¢5)¢5(l - Qbs) ds

Equation (1.28) in Proposition 1.8 is therefore obtained in the following way. Ac-
cording to equation (1.51), the drift of zg(¢¢) (under the probability measure implied

by the density process Bt) is

cr(00)' Pzp(dr) — Br(de)nR(d1) (1 — o).

The drift of zp(¢¢) (under the probability measure implied by the density process
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Bt) can also be obtained by using Ito’s lemma:

(1= P)BR(OIIR($)6(1L ~ 6)2(0) + nR(6)6*(1 — 6)2Zh(0).

Equating the two drifts, we obtain the differential equation (1.28) that characterizes

ZR-

1.E.3  Proof of Proposition 1.9

Proof. The proof is analogous to the proof of Proposition 1.8 and it is therefore
omitted. We just need to use A, instead of vy, as the scaling process. We also need

to consider that

Bt = Va(At, 01)O10 + Vi (A, d)medr (1 — ¢r)

when deriving the differential equation for the information rent. ]

1.E.4 Proof of Proposition 1.10

Proof. Consider the HJB equation (1.30) in Proposition 1.9. I will show that vy;(¢) =

JR(¢)_(1_p) with cp7(¢) = cp(®)Jr(0), m(d) = nr(4), and O(¢) such that
1(0)O0 + %MT(?)n(gb)qb( ¢) = Br(¢)Jr(¢)~17P) is a solution to that HIB equa-

~1
tion (1.30) with zp/(¢) = <%) 2p().
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Using v7(¢) = Jp(¢) =177 in the HIB equation (1.30), we obtain

J cl=r 1 c
—— = max Jp(®) P+ |r— —
{1—p wl?) q(n)

— (1= p)nOad(1 — ¢)Jr(d) " J(0)

1 -
+ u(n, ,0)k — 5[)9202]

— 50— 2P0~ 9 TR(8) 2 T(6)? — 5PeR(1 - ¢>2JR<¢>‘1J%<¢>}

s.t. (1= p)vas(9)O0 + vy (@)md(l — ¢) = (1 — p)e kAo + nzp ().

Substituting for B (¢), the incentive-compatibility constraint becomes

B = Jp(¢)\ P PkNa + UJR(éb)l_le]w_(q;),

while

O = 3+ (1 — ¢)Jp(d) 1 JR(0). (1.52)

After some simplifications, the HJB becomes

J cl=r 1 c J RS
—— = max J Pl —+4 ,,0k]——ﬂ2

— 61~ O)BIR(9)  Tpl6) — 3621 - ¢>2n2JR<¢>1J;$<¢>}

st B = Jp(0)" P PkAo + nJg(e) =P ZlM_(i).

Consider now & = c¢Jp(¢), k = Jp(¢) and zp(¢) = JR(QS)l*leMT(ZS). The HJB
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can thus be written as

§ el=r ¢ 101
EJR(@ = Crrﬁlallxk {lTp + [r ~am (1, ¢, O)k} = 5PP°JR(9)

01— B)nBTy() — 5671 - ¢)2n2J}§(¢>}

s.t. B =& PkXo +nzp(e).

This equation is equivalent to

—mind € B —nzgr(9) . 5 1
TJR(¢)_21§2{@_M(”’¢’O) oA Cp+JR(¢)(1—p_1—p+§pﬁ)

+ Bnol1 — 6K (6) + 5°6*(1 — ¢>2JR”<¢>)}.

Once we verify that zg(¢) = JR(qb)l_pz—Al{(—Zs), then the equation that we have just
derived coincides with the HJB equation (1.27) in Proposition 1.8. In particular,
the optimal controls are cg(¢), Bp(¢) and np(d). It therefore remains to verify that

2g(9) = JR(qb)l_pil]‘{(—?). Combining the HJB equation (1.30) with the ODE (1.32),

we obtain
c 1— . v o
- Mﬂ(j’() s C (1= Pt~ o) %; At ¢>2mﬂj§$ SHOE

(1 = p)nar(9)d(1 — $)O(d)avar () + mar(9)26* (1 — ¢)*v)yr(9)

+ (1= P (8)6(1 — )8(8)0,(0) + (62621 — 0)%4(0).
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We can then use substitutions and simplifications analogous to the ones we used

for the HJB equation (1.27), and obtain

2r(0)cr(9)' P = Br(o)nr(9)o(1 — ) — (1 — p)BRr(S)nR(S)d(1 — ¢)2k()

= JTR(9)%6%(1— 0)°4(0)

We have therefore verified that vy (¢) = Jp(¢)" 1P, cyp(@) = cp(d)Jp(s),
M (9) = nr(9). Oar(8)o = Br(9) + 6(1 = ) T(¢) "' Jp(¢), and
zp(9) = (%);_p) Zr(9)-

Appendix 1.F Robustness Checks
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Table 1.5: Effect of past performance on the slope of the flow-performance relationship.
Past performance is computed over 12 months. (Continues.)

Fit+1 (Net Flow)
(1) (2) (3) (4) (5) (6)

Rit 0.184%* 01777 0.184%%  (.177%%  0.153%*  (.147***
(0.010)  (0.009)  (0.010)  (0.009)  (0.015)  (0.015)

PastPerf; [y 19, 1] - Rit 3768 3285 3607 3175
(1.141)  (1.186)  (1.029)  (1.023)

Rit . I[[PastPerfi’[t_llt_u > O] 0062**»< 0063***
(0.019)  (0.020)

PastPerf; ;,_19,_1) - [[Rj > 0] 0.041 0.043
(0.045)  (0.046)
PastPerf; (; 15, 1) 0.432%%  (.584™F  0.432°%F  (.584%F  (.203"F (443"
(0.035)  (0.039)  (0.035)  (0.039)  (0.047)  (0.051)

(PastPerf; 19, 17) 0.427 0.660 —4.145  —0.528
(2.017)  (2.246) (9.092)  (9.521)

(CumPerf; ;15 4)? 0.502 0.774 6.694 2.852

(2.368)  (2.636)  (11.395)  (12.105)

I[R;; > 0] —0.000 —0.000
(0.000) (0.000)
]I[PastPerfi’[t_m?t_u > O] 0002*** 0002***
(0.000) (0.000)
R 0.620%%*  0.687***  0.617***  0.682"*  0.590"**  (.694***
(0.162) (0.174) (0.163) (0.175) (0.169) (0.183)
Controls Yes Yes Yes Yes Yes Yes
Style-Month FE Yes Yes Yes Yes Yes Yes
Fund-Manager FE No Yes No Yes No Yes
Observations 153,127 153,127 153,127 153,127 153,127 153,127
R2 0.351 0.383 0.351 0.383 0.351 0.383
Notes: *p <.10; **p < .05; ***p < .01
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Table 1.5: (Continued.) The history dependence of the slope of the flow-performance
relationship is measured by the coefficient on PastPerf;; 121 - Rit. R; measures current
performance and is calculated, for each month ¢, as the gross return of fund 7 in excess of the
equally weighted average gross return of all funds with the same style. PastPerf;; 19 1)
measures the past performance of the manager and is calculated as the average excess
return over the style benchmark in the twelve months from ¢ — 12 to t — 1. The dependent
variable, Fj;y1, measures the net flow of capital and is calculated as the growth rate of
assets under management from month ¢ to month ¢t + 1 minus the net return over the
same period. CumPerf;; 194 is the average performance of the manager over the style
benchmark in the months from ¢ — 12 to ¢. I[-] is the indicator function. Controls include
12 lags of monthly net flows into the fund, the log of fund size, its expense ratio, the log
of fund age, and the log of the manager’s tenure. Standard errors are in parentheses and
they are double-clustered at the fund and at the month level.
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Effect on flows (%) vs. first decile

Past perf.. =@= Above median =& : Below median % Past perf.. =@= Above median =& : Below median
(] 0.0 1
£
c
1.04 g A
%) A — p - - - A- A=
> A— A~
R 057 s
g Ve
0.5 2
]
3 -1.0 1
=
w
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9
Current performance decile Current performance decile
(a) Current good performance and flows (b) Current bad performance and flows

Figure 1.11: History dependence of the relation between flows and performance. Past
performance is computed over 12 months. Figures (a) and (b) show how flows change
with current performance and how the change depends on past performance. I sort funds
into deciles based on their current performance and into halves based on their past per-
formance. Past performance is the average excess return over the style benchmark in the
previous 12 months. I then run regression of flows on dummies for the deciles of current
performance, dummies for the halves of past performance, and interactions between the
two sets of dummies. As controls, I include dummy variables for cumulative performance
CumPerf;;; g4 sorted into deciles, 12 lagged flows, the logarithm of fund age, the loga-
rithm of the manager’s tenure, the logarithm of lagged assets under management, fund
fees, fund-manager fixed effects, and style-month fixed effects. The shaded areas represent
95% confidence intervals for the change in the effect of current performance on flows when
past performance increases above the median. Confidence intervals are constructed by
double-clustering standard errors at the month and at the fund level.

In Figure (a), I plot the effect of current good performance (that is, performance relative to
the first decile) on flows, while, in Figure (b), I plot the effect of current bad performance
(that is, performance relative to the tenth decile) on flows.
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Figure 1.12: Effect of managerial tenure and fund age on the history dependence of the
relation between flows and current performance. Past performance is computed over 12
months. (Continues.)
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Figure 1.12: (Continued.) I run regression

Fy1= agp+aiRiy+ GQPaStPerfi[t—IQ,t—l]Rit

+ agPastPerf;;_15, 1) + a4(PastPerfi[t_12,t})2 + asR?
5 . . o~ . ~
Z TenureQuintile?, (ag] + af] Ry + a2T] PastPerf;; 121 Rit
=2

+a§jPastPerfi[t,127t,1} + afj (PastPeer-[t,12’t])2 + agjﬁi?t)
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j=2
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where TenureQuintilegt = 1 if, in month ¢, the tenure of the manager of fund ¢ belongs to
the 7' quintile of the distribution of managerial tenure in month ¢; AgeQuintilei't =1 if|
in month ¢, the age of fund ¢ belongs to the 4 quintile of the distribution of fund age in
month ¢; SizeQuintile;, = 1 if, in month ¢, the size of fund ¢ belongs to the 4™ quintile of
the distribution of fund size in month ¢. Table 1.3 contains the description of all the other
variables used in the regression. Standard errors are double-clustered at the month and at
the fund level. '

In Figure (a), the dots in the figure represents estimated coefficients CLQT]’S.The vertical
lines represent 90% confidence intervals for the incremental effect of tenure on the flow-
performance slope relative to the first quintile: If the vertical red line at quintile j does
not cross the dashed horizontal line, then we reject the hypothesis that ag] >0 at a 95%
confidence level.

Figure (b) is the analogous of Figure (a) for the effect of fund age on the history-dependence
of the flow-performance relationship.
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CHAPTER 2
THE TRANSMISSION OF QUANTITATIVE EASING TO
CORPORATE BOND PRICES AND ISSUANCE

This chapter is a joint work with Mattia Montagna (DG MF Systemic Risk and
Financial Institutions, European Central Bank, Frankfurt am Main, Germany). The
views expressed in this chapter are those of the authors and do not necessarily reflect

those of the European Central Bank.

2.1 Introduction

Since the financial crisis of 2008, the traditional tools of monetary policy have been
challenged by market segmentation, financial instability, and low interest rates. As
a consequence, central banks in advanced economies have become increasingly re-
liant on unconventional measures, among which quantitative easing (QE) features a
primary role. However, despite the large scale of such programs, surprisingly little
research has investigated their effects on the financing activities of firms and the chan-
nels through which they affect the real sector of the economy. By providing extensive
and robust evidence of the transmission channels of QE, this paper contributes to
filling the gap between monetary policy and economic theory and highlights the key
empirical facts that theoretical papers in this area should try to match.

We exploit the European Central Bank (ECB)’s Corporate Sector Purchase Pro-
gram (CSPP) to study the transmission channels of QE on the cross section of cor-

porate bond prices and firms’ financing activity. A number of papers have analyzed
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the effects of asset purchases by looking at the yields of the securities that past QE
programs targeted. However, previous contributions did not compare the targeted
securities to reasonable control groups, nor did they investigate the effects of QE
on security issuance. Therefore, such studies provided only suggestive evidence on
the transmission channels of QE, because they lacked counter-factual observations
and omitted any information contained in bond issuance decisions. Our approach
exploits the cross-sectional heterogeneity of bonds and firms in the euro area and al-
lows us to disentangle the marginal contribution of each transmission channel while
controlling for a set of bond- and firm-level characteristics. We therefore identify
channels of transmission on the basis of appropriate counterfactual evidence. More-
over, by looking at the effect of QE on issuance, we are able to establish the presence
of transmission channels that we could not have observed in bond prices alone.

In our identification strategy, we rely on the particular rules that govern the
eligibility of a bond for the CSPP. Through the CSPP, the ECB can purchase euro-
denominated bonds issued by non-bank corporations domiciled in the euro area. On
the day of the announcement, the ECB identified a set of securities that are eligible
for purchase and a set of non-eligible securities. More specifically, the ECB was
allowed to buy only securities that were accepted as collateral for its refinancing
operations. This policy rule gives us a chance to explore the heterogeneous impact
of QE on different securities based on their eligibility.

Besides the rules that govern eligibility, the past price performance of eligible and
non-eligible bonds also strengthens our identification strategy. Before the announce-

ment of the program, the market for eligible corporate bonds in the euro area was
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not showing any sign of distress. Instead, in the months leading up to the CSPP
announcement, prices declined substantially for non-eligible bonds. Thanks to the
possibility of clearly separating the effect on eligible securities and the effect on dis-
tressed securities, we are able to disentangle whether QE mostly affected securities
on the basis of their eligibility or their distress.

Our results challenge conventional wisdom on the transmission channels of un-
conventional monetary policy.! In particular, we find that after the announcement,
the price of eligible securities increased less than the price of non-eligible securities,
that the issuance of eligible securities increased more than the issuance of non-eligible
securities, and that eligible issuers (that is, firms that issue eligible bonds) did not
increase issuance more than non-eligible issuers. Whereas heterogeneity in price
change is mainly observed across different firms, rather than across different bonds
within the same firm, heterogeneity in bond issuance is observed within firms that
substitute eligible issuance for non-eligible issuance.

The first transmission channel we consider, the scarcity channel, implies that QE
corresponds to an increase in the aggregate demand for eligible bonds. Previous
studies, which ignored the possibility of issuers supplying more eligible bonds, then
argued that the ultimate outcome should be an increase in the price of eligible bonds.
Our results demonstrates the limited power of such studies. We find that a scarcity
channel is present and that it manifests itself through eligible firms increasing the

issuance of eligible bonds compared to non-eligible bonds. In fact, firms are natural

1. Bernanke et al. (2012) explain the leading views of central bankers on the transmission chan-
nels of monetary policy and stress the role of asset scarcity and portfolio rebalancing as key mech-
anisms in explaining the effect of QE on relative asset prices.

137



short sellers of their own securities so that, if issuance frictions are limited, the
scarcity channel should only marginally affect relative prices, and should instead
primarily affect relative bond quantities. In equilibrium, firms should issue bonds of
any certain class up to the point where investors’ demand is satiated and no relative
price premium is present across different bond classes.

We document that differences in price changes of bonds after the CSPP an-
nouncement are mainly driven by differences in their previous price performance,
thus suggesting that risk is the primary channel of transmission to prices. Before the
CSPP announcement, several firms experienced large drops in their debt valuation.
After the announcement, these firms were the ones that enjoyed the largest price
increases. However, these firms did not increase issuance in the months after the an-
nouncement. Although seemingly contradictory, these two findings can be reconciled
in a framework where firms may take inefficiently high levels of risk.2 If QE is able
to reduce the incentives for inefficient risk-taking, we might simultaneously observe
an increase in debt prices and a negligible, or even negative, change in issuance. As
another possible explanation, we might expect these riskier firms to be facing a bind-
ing borrowing constraint or to be operating below capacity. Although we control for
credit ratings in our empirical analysis, we chose to assess a firm’s riskiness on the
basis of its past price performance because ratings may respond with a significant
lag to negative news and because prices may reflect risks and sources of uncertainty

that are not perfectly captured by credit ratings.3

2. Stein (2012), Greenwood et al. (2016), and Woodford (2016) provide models of excessive risk
taking.

3. Rating agencies’ downgrades are known to lag the market (Hull et al., 2004; Tang, 2009).
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If a liquidity channel is present, then, when the central bank increases the supply
of liquid assets by purchasing bonds with reserves, we should expect the prices of
more liquid assets to decline. We exclude the presence of such a channel on the basis
of two pieces of evidence. First, although eligible bonds are more liquid that non-
eligible bonds because, if we control for past price performance the effect of QE on the
price of eligible bonds is either negligible or even positive. Second, we repeat all our
analyses using the announcement of the Public Sector Purchase Program (PSPP)
of the ECB. This program involved a much larger supply of liquidity, and yet we
are unable to find any statistically significant difference across the price changes for
eligible and non-eligible corporate bonds.

We conduct our analyses using a novel data source that contains information
on all securities issued in the euro area and that is compiled and managed by the
Eurosystem. We focus on euro-denominated debt securities issued by non-financial
corporations (NFCs). On the one hand, we restrict the sample to euro-denominated
bonds because we would like to avoid concerns related to exchange-rate movements.
On the other hand, we exclude financial institutions because QE directly affects
their investment opportunities and we would therefore struggle to identify channels
of transmission that operate through changes in the cost of borrowing, which is the
main objective of this paper.

We are especially interested in how QE changes firms’ cost of borrowing, because
the ECB itself identified it as a key channel to transmit monetary-policy actions to
the real economy. For example, in the January 22, 2016, the ECB announced the

PSPP in a press release stating that
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“Asset purchases provide monetary stimulus to the economy in a context
where key ECB interest rates are at their lower bound. They further ease
monetary and financial conditions, making access to finance cheaper for
firms and households. This tends to support investment and consump-

tion, and ultimately contributes to a return of inflation rates towards

2%7.

The remainder of the paper is organized as follows. In section 2.2, we discuss
the transmission channels of QE identified by the theoretical literature. In section
2.3, we relate our paper to previous empirical literature. In section 2.4, we provide
background information on the euro area corporate bond market and the institutional
details of the CSPP. In section 2.5, we describe the data used in this paper. In section
2.6, we explain the details of our econometric analyses by presenting the variables
of interest and the empirical strategies. In section 2.7, we assess the implications of
our cross-sectional analyses as tests for the presence of scarcity, liquidity, and risk
channels. We conclude the paper with section 2.8.

Appendices contain further information and all plots and tables. Appendix 2.A
contains further details on all the QE programs of the ECB. Appendix 2.B con-
tains all plots mentioned in the main body of the paper and related to the CSPP
announcement. Appendix 2.C contains all tables used for the analysis of the price
impact of the CSPP. Appendix 2.D contains all tables used for the analysis of the
issuance around the CSPP announcement. Finally, Appendix 2.FE contains analogous
plots and tables for the announcement of the PSPP.
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2.2 Theoretical Framework

To better explain the implications of our empirical results, we first discuss the main
transmission channels of unconventional monetary policy that the theoretical liter-
ature has suggested. To facilitate the explanation, consider the basic one-period
asset-pricing equation,

Py = Elmy 141D; 111|F], (2.1)

where Pj; is the price of security 7 at time ¢, 7 411 is the stochastic discount factor
(SDF) from time t + 1 to ¢, D; ;41 is the payoff of the security at time ¢ 4 1, and
JF¢ is the time-t o-algebra capturing the available information. By simply looking at
this equation, we can clearly identify three possible ways in which monetary policy
can affect asset prices: (i) by changing the distribution of 7,1, (ii) by changing
the distribution of D1, or (iii) by changing investors’ information F;.

How does this simple equation help us understand the effects of QE? Consider,
for example, a frictionless consumption-based asset-pricing model, such as the one in
Wallace (1981). In this model, QE is financed by non-distortionary lump-sum taxes,
which thus leave 7t ¢+11 unaltered. Moreover, asset purchases do no directly affect
the distribution of the asset’s payoff nor the information available to investors. The
conclusion that, in this setting, QE is neutral is therefore not surprising.

To overcome the neutrality of QE that is embedded in any frictionless model,
economists have developed a series of models in which QE does have an effect on
asset prices and, consequently, on the allocation of credit and resources. In these

models, unconventional monetary policy activates one or more channels of transmis-
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sion, leading to a change either in the relative price of financial instruments or in the
wedge between market prices and fundamental values, or both.

Whereas most models analyze the impact of QE on asset prices while keeping
supply fixed, in the real world, firms are natural short sellers of their own securities.
Therefore, if they act as neoclassical arbitrageurs, the presence of some transmission
channels may simply result in a change in the firms’ liability composition rather than
in the relative prices of financial instruments. This possibility must be kept in mind
in order to fully understand the consequences of QE and interpret them within the
framework of economic theory.

The channels of transmission identified by the theoretical literature are the scarcity
channel, the liquidity channel, the risk channel, and the signaling channel. We dis-

cuss them below.

Scarcity channel

A scarcity channel arises whenever securities are valued for reasons beyond the flow
of consumption that they provide. In this case, the SDF m; ;11 depends not only
on the consumption stream of the investors, but also on their portfolio composition.
As a central bank purchases assets, those assets become scarcer and their valuation
increases. This channel therefore implies that, everything else kept constant, the
prices of securities purchased by the central bank should increase. Moreover, whereas
a scarcity channel should manifest itself only when the central bank starts purchasing
assets and thus making them scarcer, the presence of (limited) arbitrage possibilities

for some agents may imply that most of the price impact will be observed at the
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announcement.

Models of this type date back to Tobin (1969), who assumes that investors have
preferences over assets, as if assets were consumption goods. More recently, new
models have been developed that feature agents with a “preferred habitat,” that is,
agents who have preferences for assets with some particular maturity or risk profile,
as in Vayanos and Vila (2009), Krishnamurthy and Vissing-Jorgensen (2012), and
Greenwood et al. (2010). Although these models offer many degrees of freedom in the
choice of the assets investors exogenously value and of the extent to which investors
value such assets, some of them endogenously generate preferences for assets. For
example, in Lenel (2017), assets are valued depending on the extent to which they
can be used as collateral for borrowing.

We can can thus summarize an empirical prediction of the scarcity channel as

follows.

Empirical prediction (1): A scarcity channel implies that, following QE, the price of

eligible securities should increase relative to other securities, if supply is fixzed.

However, this prediction may not hold if some investors do not have preferences
over assets and have short-selling opportunities. In this case, prices will always reflect
the fundamental value of the underlying cash flow, whereas the quantity of assets
supplied to habitat investors will adjust to align the assets’ prices to the valuation
of the short sellers. Because firms are natural short sellers of their own debt, if they

are unconstrained, the presence of investors with preferences for assets implies that
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quantities, rather than prices, will adjust in response to QE. We can then obtain a

second empirical prediction of the scarcity channel.

Empirical prediction (2): If firms are unconstrained in the capital market, the quan-
tity of eligible securities will increase relative to non-eligible securities, leaving relative

prices unchanged.

Liquidity channel

A liquidity channel is a specific form of scarcity channel and it takes into consid-
eration the fact that QE involves the central bank swapping securities for reserve,
thus increasing the supply of highly liquid assets. If investors value assets for their
liquidity, QE will then lower liquidity premia, thus causing the price of liquid assets
to decline relative to the price of less liquid assets. These effects have been cap-
tured by models as in Drechsler et al. (2014) and Bianchi and Bigio (2014), where
investors face liquidity shocks and need to keep a buffer of liquid assets to avoid
costly liquidation.

The empirical prediction of the liquidity channel is therefore the following.

Empirical prediction: A liquidity channel implies that, following QE, the price of

more liquid securities decreases relative to the price of less liquid securities.
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Risk channel

QE may affect asset prices also by changing investors’ valuation of risk or the amount
of economic risk itself. For example, in many intermediary asset-pricing models, QE
is non-neutral if the central bank, by swapping risky assets for riskless assets, re-
laxes the balance-sheet constraints of intermediaries and modifies their consumption
stream. In this case, a risk channel works mainly through changes in risk premia,
driven by changes in the distribution of the SDF 7 ;1. Several papers in this area,
such as He and Krishnamurthy (2013), Brunnermeier and Sannikov (2016), Curdia
and Woodford (2011), Gertler et al. (2010), and Gertler and Karadi (2011), view
QE essentially as a distortionary taxation that modifies the consumption stream of
marginal investors, thus changing equilibrium risk prices.

Whereas most theoretical contributions focus on the effect on monetary policy on
risk prices, we can also entertain the possibility that monetary policy may directly
affect the quantity of risk in the economy, and hence the distribution of the payoff
Dy 1. This possibility is reasonable if, as argued in Stein (2012), Greenwood et al.
(2016), and Woodford (2016), central bank interventions directly address market
failures that would lead to excessive risk-taking.

Therefore, a first empirical prediction of the risk channel relates QE to changes

in prices of risky securities.

Empirical prediction (1): A risk channel predicts that, following QE, the price of
riskier securities increases relative to the price of less risky security, all else being

equal.
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Moreover, whenever risk prices decrease, the cost of capital of risky firms de-
creases as well, thus stimulating more issuance. This consideration leads to a second

prediction.

Empirical prediction (2): If a risk channel acts through risk prices, then, following
QE, the issuance of riskier firms should increase relative to the issuance of less risky

firms, all else being equal.

Signaling channel

According to the last transmission channel that we discuss, namely, the signal-
ing channel, unconventional monetary policy conveys new information to investors.
Specifically, monetary authorities may possess superior information on financial mar-
kets and the real economy, and they might reveal such information when they an-
nounce new policy measures. However, this informational effect may either increase
or decrease asset prices, because investors could interpret the policy either as a neg-
ative signal that the economy is performing badly, or as a positive signal that some
securities are considered of high enough quality for a central bank to purchase them.
Furthermore, unconventional monetary policy may also signal the willingness of au-
thorities to step in to prevent major disruptions in financial markets, thus reducing
policy uncertainty. Finally, as in Eggertsson et al. (2003), Clouse et al. (2003), and
Bhattarai et al. (2015), asset purchases may serve as a credible commitment for

the central bank to keep low interest rates in the future when the short-term rate
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has already reached its lower bound. This last signaling effect implies that QE an-
nouncement should flatten the term structure. Although we do not directly test for
the presence of a signaling channel, we do control for movements of term structure

of interest rates.

2.3 Related Empirical Literature

Several papers have analyzed the impact of QE on bond prices and yields. However,
previous QE events lacked one of the key features of the CSPP, namely, the ability
to clearly distinguish distressed securities from eligible securities. Therefore, many
of the previous contributions could not clearly disentangle the effects of a scarcity
channel and a risk channel. Researchers often claim to find evidence of a scarcity
channel, but also acknowledge the peculiar market circumstances in which they found
it.

Krishnamurthy and Vissing-Jorgensen (2011) and Krishnamurthy and Vissing-
Jorgensen (2013) find that the QE announcements by the Fed mainly affected the
yields of the securities that the program targeted, with limited effects on other secu-
rities. This finding is consistent with the presence of a scarcity channel. However, as
they highlight, the Fed launched a mortgage-backed security (MBS) purchase pro-
gram in a period when the MBS market was particularly distressed and prices had
previously dropped.

Similar to our paper, D’Amico et al. (2012) and D’Amico and King (2013) explore
the cross-sectional impact of QE announcements using security-level data. They fo-

cus on government bonds and document the heterogeneity in the response of different
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securities depending on their maturity and whether they are eligible for the program.
They find evidence of a scarcity channel, which is present even at the time of the
purchase, even though the effects are temporary. However, they also note that their
findings may be, at least in part, the result of purchases taking place in a period
of particular financial distress and low market liquidity. Gagnon et al. (2011) find
that QE announcements lowered the yields of long-term securities but attribute this
change in yields mostly to a reduction in risk premia, rather than a reduction in the
expected path of short-term rates.

Similar to our study, Abidi et al. (2017) focus on the CSPP program and doc-
ument that it had the largest price effect on non-eligible bonds. They therefore
conclude that non-eligible bonds benefited the most from the program. Instead, we
highlight debt value increased the most for distressed bonds. Indeed, as we disen-
tangle the marginal contribution of each transmission channel of QE and employ a
more comprehensive dataset, we are able to separately identify the role of eligibility
and financial distress.

Hamilton and Wu (2012) and Greenwood and Vayanos (2014) adopt the model
of Vayanos and Vila (2009) to quantify the differential impact of QE on the prices
of assets of different maturities. Both contributions find that the relative supply of
bonds of different maturities is associated with relative prices and expected returns.
Hamilton and Wu (2012) stress, in particular, how effects tend to be stronger when
the interest rate is at the lower bound, whereas Greenwood and Vayanos (2014)
highlight how supply effects are more pronounced when risk aversion is higher. Both

elements (very low rates and high risk aversion), however, are likely to coexist in
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periods of financial distress. This observation highlights that the non-neutrality of
QE on prices may be tightly linked to markets being impaired.

Many other papers have looked at the QE announcements by the Fed, the ECB,
the Bank of England, and the Bank of Japan (Altavilla et al., 2015; Andrade et al.,
2016; Falagiarda and Reitz, 2015; Fratzscher et al., 2016; Joyce et al., 2011; Lam,
2011; Swanson, 2011, 2015; Szczerbowicz et al., 2015; Ueda, 2012), and find that
asset purchases have a significant effect on yields, that most of this effect is observed
at the announcement, that eligible assets experience the greatest price increases, and
that long-maturity bonds are more significantly affected by QE. None of these studies
however, systematically employed counterfactual analysis.

By contrast, our cross-sectional analysis establishes that scarcity does not play a
role in the price reaction to QE. Rather, market impairment is the leading condition
for QE to exert a positive impact on security prices.

We also move beyond this stream of literature and look at the issuance of bonds
by NFCs in the euro area, and find convincing evidence that the price impact of
a scarcity channel is neutralized by firms substituting across sources of financing.
Once again, CSPP provides a unique identification opportunity. Indeed, contrary to
the Fed program, CSPP targets private entities that are not government entities or
government-sponsored enterprises and are thus more likely to respond to changes in
the external environment in a profit-maximizing way. Moreover, we can once again
rely on the large cross section of European firms to develop counterfactual analysis.

In the QE literature, Di Maggio et al. (2016) conduct an analysis on quantities

that is similar to ours. They study mortgage origination after the first round of QE
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in the US, and find that mortgages that were eligible for purchase by the Fed were
originated in larger quantities than non-eligible mortgages.

An established empirical literature tries to identify the effects of capital market
conditions on the determination of firms’ liability structure (Baker et al., 2003; Baker
and Wurgler, 2000; Faulkender, 2005; Faulkender and Petersen, 2006). This literature
consistently finds that an increase in firms’ issuance of liabilities of a certain class
is able to predict low returns for the same instrument in the future, suggesting that
firms time the market in order to take advantage of the high valuation of certain
securities.

To the extent that QE introduces a demand shock in the capital market that
lower yields of certain asset classes, our paper can bring insights into this area of the
academic debate. Indeed, QE can be interpreted as a quasi-experimental demand
shock. The changes that we observe in the firms’ issuance policy hint toward an
attempt by managers to actually time the market.

In this literature, whether managers are actually successful at reducing their cost
of capital is still debated (Butler et al., 2006). Although we do not fully tackle this
issue, because doing so would require us study the effects of QE on bank loans and
equity, we provide suggestive evidence that QE does not reduce the cost of borrowing.
Indeed, eligible firms do not increase their total issuance compared to non-eligible
firms, even though they do substitute across forms of bond financing. This behavior
is symptomatic of an equilibrium where, regardless of the preferences investors have
over assets, firms act as arbitrageurs that prevent market valuation from deviating

too much from fundamentals.
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2.4 Background Information on the Euro Area Corporate

Bond Market and the CSPP

Starting in October 2014, the ECB launched a series of four asset-purchase programs
(APP) that, combined, contributed to a total of €1,896bn of the ECB portfolio as of
May 2017. Such programs are the third Covered Bond Purchase Program (CBPP3),
the Asset-Back Securities Purchase Program (ABSPP), the Public Sector Purchase
Program (PSPP) and the Corporate Sector Purchase Program (CSPP).

In this section, we highlight the key features of the CSPP, which is the focus of our
paper. We briefly describe the other programs in Appendix 2.A, which also contains
details on the various changes that have been made to the programs’ duration and
size.

The CSPP targets euro-denominated bonds issued by euro-area private corpora-
tions, excluding credit institutions. Because we are interested in NFCs, Figure 2.1
plots the outstanding amount of euro-denominated bonds issued by NFCs in the 19
countries of the euro area. Toward the end of the period, the size of the market is
€958bn,* which is approximately 10% of the nominal GDP in 2016, which amounts
to €10,745bn.5 Europe has a mainly bank-based financial system and its corporate
bond market is not particularly big relative to that in the US, where NFCs’ bonds

amount is approximately 30% of the nominal GDP.6

4. Source: Centralized Security Database. See section 2.5.
5. Source: ECB’s Statistical Data Warehouse, http://sdw.ecb.europa.eu/.

6. At the end of 2016, the outstanding amount of NFC bonds in the USA was $5,075bn
and the nominal GDP in the same year was $18,569bn. Source: St. Louis Fed’s FRED,
https://fred.stlouisfed.org/.
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On top of this general background, the CSPP was announced in a period that was
characterized by high levels of distress in the corporate bond market. Because the
we study the effects of the CSPP announcement on distressed bonds, we discuss the

situation of the euroa area corporate bond market before presenting the institutional

details of the CSPP.

2.4.1 The Corporate Bond Market before the CSPP Announcement

The corporate bond market in Europe was going through a period of price declines in
the two months leading up to the CSPP announcement. In January 2016, The Wall
Street Journal wrote, “A wave of selling has taken Europe’s corporate-bond market
to levels typically seen during recessions, another indication that the turmoil in global
markets could spread into the wider economy” (Whittall, y 18). Other newspaper
articles can later be found discussing the low valuation of corporate bonds at the
beginning of 2016 (Barley, ry 3; Platt, y 12; Smith, ry 5). Signs of distress in the
corporate bond market are also discussed in the February and March 2016 Economic
Bulletins of the ECB (ECB, 2016a,b).

Figure 2.2 in Appendix 2.B plots the average daily log prices and log returns
for bonds with ratings between BBB+ and BB, and Figure 2.3 provides separate
series for eligible and non-eligible bonds in this rating range. From these figures,
non-eligible bonds appear to have experienced the largest price increase following the
announcement. However, non-eligible bonds also appear to have been going thorough
a period of intense pressure in the months before the CSPP announcement.

To gain further insight, we consider the performance of bonds before the an-
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nouncement of the CSPP. For each bond, we consider the log-price change from
December 10, 2016, to February 11, 2016 (four weeks before the announcement). We
then group bonds into deciles according to their log-price change in this period. We
then identify a group of distressed bonds (bonds in the first decile), a group of mildly
distressed bonds (bonds in the second decile), and a group of non-distressed bonds
(bonds in the third decile or higher).

Figure 2.4 show the behavior of bond prices and returns when they are grouped
by level of distress. The only series that experiences a substantial jump around the
CSPP announcement are the ones of the bonds in a state of distress.

These patterns cannot be observed around other QE announcements. Indeed, in
Appendix 2.E, we repeat the same exercises for the PSPP announcement. In this
case, eligible and non-eligible bonds do not seem to display any heterogeneity in
their response to this monetary-policy announcement. Rather, their prices move in
parallel fashion, which suggests that liquidity premia should not play a role, because
the PSPP involved a much larger supply of reserves. However in the month preceding
the PSPP announcement, no significant decline occurred in bond prices.

To our knowledge, no paper rigorously attempts to identify the causes of the
corporate bond price decline at the beginning of 2016, and investigating them is well
beyond the scope of our paper. However, it suffices to highlight that the European
corporate bond market was, at that time, going through a period of high downward
pressure and increasing uncertainty.

Although the ECB policy decision may well have been an endogenous response to

this situation, this possibility does not detract from our analysis. On the contrary,
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we can exploit the institutional details of the CSPP as well as the price history of
different bonds in the months leading up to the announcement to better identify the

channels through which QE works.

2.4.2 Institutional Details on the CSPP

The peculiarity of the CSPP, compared to all the QE programs undertaken by the
Fed, is that it directly targets corporate securities, as opposed to bonds issued by
governments or government-sponsored entities. This peculiarity provides an ideal
framework to test the transmission channels of monetary policy to the real economy,
because it establishes a direct link between central bank purchases and real economic
entities. Indeed, the stated aim of the program is to reinforce the pass-through of
monetary-policy stimuli to the real economy by directly acquiring marketable debt
of private corporations.

The program was announced on March 10, 2016, and purchases started on June
8, 2016. At the time of the announcement, the ECB was already conducting the
CBPP3, ABSPP, and PSPP, totaling €60bn each month combined, with the PSPP
constituting the great majority of the total. On March 10, 2016, the ECB announced
the intention to introduce the CSPP and raise the combined amount of bond pur-
chases to €80bn each month starting from April 2016, whereas CSPP purchases were
said to begin toward the end of the second quarter of the same year. Purchases were
intended to last until March 2017, or beyond if necessary.

Contrary to the Fed, the ECB has always accepted corporate bonds as collateral

for its refinancing operations, provided that they satisfy a list of eligibility criteria.
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These criteria must be satisfied also in order for a bond to be eligible for CSPP
purchases, together with some additional requirements.

Specifically, in order to be eligible as collateral, securities must satisfy the fol-
lowing requirements: (1) They must be debt instruments, (2) they must be euro-
denominated and (3) issued in the euro area, (4) the issuer must be established in
the euro area or in a G10 country, and (5) the securities must have a rating of at
least BBB- (or equivalent), for long-term debt, or A-2 (or equivalent) for short-term
debt. A list of bonds that are eligible as collateral is published daily on the ECB
website.

In addition to these requirements, the ECB set further restrictions on the bonds
that can be purchased under the CSPP program. In particular, bonds issued by
credit institutions and by entities whose ultimate parent is a bank are excluded from
the set of eligible securities. Moreover, the issuer must be domiciled in the euro area.

On April 21, 2016, the ECB released some additional technical details that, among
other things, specify that bonds, in order to be eligible for CSPP, must have a
maturity between 6 months and 31 years. The ECB made this choice in order to avoid
too frequent portfolio adjustments, while also including in the set of eligible securities
the bonds of smaller firms that finance themselves with short-term liabilities.

The eligibility criteria must be satisfied at the time of the purchase. If a bond
loses eligibility status (e.g., because of a downgrade), the ECB is not required to sell
it. Moreover, as for all the other asset-purchase programs, the ECB will reinvest all
the capital repayments until reinvestment is deemed appropriate.

The size of the program is not negligible. Indeed, as of May 2017, the ECB
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held a portfolio of €89.8bn bonds purchased under the CSPP, with average monthly
purchases of €7.5bn.” These numbers compare with the €887bn total outstanding
amount of bonds issued by NFCs in the euro area as of February 2016, of which
€500bn were eligible as collateral at that time.

Purchases are carried out both in the primary and the secondary market, with
the exception of bonds issued by public undertakings that are purchased exclusively
in the secondary market. As of May 2017, 85.34% of the CSPP holdings have been
purchased on the secondary market.

The ECB regularly discloses the monthly purchases and holding for each program.
It also publishes the list of the securities that are held in its portfolio and makes
such securities available for security lending. The amount of individual securities

purchased is, however, not disclosed.

2.5 Data

The main source of data is the Centralized Security Database (CSDB). The CSDB
contains security-level information on every equity, debt, and hybrid instrument
issued by euro-area residents. This dataset is managed by the Eurosystem and
is updated at a monthly frequency with observations starting in February 2011,
although the coverage is limited before the beginning of 2013.

The CSDB provides comprehensive information about each security. Such in-
formation includes, although it is not limited to, international security identifica-

tion numbers, outstanding amount, currency denomination, security type (e.g., zero

7. Source: ECB, https://www.ecb.europa.eu/mopo/implement/omt/html/index.en.html.
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coupon bond, perpetuity, etc.), maturity date, issue date, yield to maturity, a set of
issuer identifiers (name, legal entity identifier code, bank identifier code, monetary
financial institution ID at the ECB), issuers’ sector (government, NFC, monetary
financial institution, insurance company, pension fund, asset management firm, or
other financial institution), and issuer’s industry.

We perform an extensive series of cleaning and filtering exercises on the initial
CSDB data to improve its quality and make them suitable for our econometric anal-
ysis. The detailed procedure is available upon request.

We are interested in euro-denominated bonds issued by NFCs. The reason
to exclude foreign-currency-denominated bonds is that their issuance may be re-
lated to foreign-exchange expectations that reasonably change at the time of major
monetary-policy announcements. Including foreign-currency-denominated securities
would therefore make our results difficult to interpret. As for the choice to focus
on NFCs, although under the CSPP, bonds issued by non-bank financial institutions
may be eligible, we choose to eliminate all financial corporations from the set of se-
curities that we consider. The reason is that QE directly affects both the investment
opportunities and the financing opportunities of these institutions, thus preventing
us from disentangling whether their issuance has changed in order to accommodate
different investment strategies or in order to take advantage of new financing oppor-
tunities.

We group euro-denominated debt securities issued by NFCs into two main cate-
gories: eligible bond and non-eligible bonds. We define a security as eligible at the

end of a given month the ECB accepts it as collateral at that date. The CSDB pro-
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vides information about whether each instrument, in any given month, is accepted
by the ECB as collateral for its refinancing operations. However, the list of eligible
securities is published daily on the ECB’s website.

We then use information about the credit rating of the issuers. We include ratings
from the four ECB-recognized rating agencies (S&P, Fitch, Moody’s and DBRS).
We then assign a numerical value to each rating (1 for AAA, 2 for AA+, etc.) and
compute the median rating for each security, as a summary statistic of its credit
quality.

We then download daily bond prices from Datastream. Prices refer to the end of
the day. Although price data are not available for all bonds, we obtain price data for
1,541 bonds, covering 72% of the outstanding amount of bonds issued by NFCs in the
period between November 2015 and June 2016. For these bonds, we also collected

the bid-ask spreads from Bloomberg.

2.6 Details of the Analysis of Bond Prices and Issuance

In this section, we provide the details of the econometric analysis of the effect of
the CSPP announcement on bond prices and issuance that we use to identify the
channels of transmission of QE, which we discuss in section 2.7.

We employ a difference-in-differences approach, augmenting our regressions with
a series of fixed effects that take into account a series of determinants of the heteroge-
neous impact of QE on bond prices and issuance. We disentangle the heterogeneity
that comes from across-firm variations as well as from within-firm variations, thus

controlling for the particular valuation and financing needs of individual firms at any
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given time.
We first discuss the details of the price analysis and then the details of the issuance

analysis. All results are discussed and compared in section 2.7.

2.6.1 Price Analysis

Here, we describe the variables of interest and the regression specification for our
cross-sectional difference-in-differences identification of the transmission channels of
monetary policy. Both are chosen in a way that allows us to compare securities
differing on a relevant characteristic of interest, while controlling for a series of other

factors.

Variables of Interest

The dependent variables of interest are the log prices and the log returns of bonds
issued by NFCs in the euro area. We indicate with Pj; the price of bond ¢ on day ¢,
and its day t log return is given by log Pj; — log Py 1.

The explanatory variables of interest are the interaction between security-level
(or firm-level) variables and time dummies for the CSPP announcement. As we
discuss in section 2.6.1, we choose the explanatory variables and their interaction
because a statistical association between the dependent variables of interest and
such interactions would be evidence of a particular transmission channel and its
importance relative to others.

The bond-level explanatory variables of interest are related to the eligibility of

the bond as a collateral, its rating, and its past performance. In particular, we define

159



the following variables:

e Elig;, an indicator for whether security ¢ is accepted as collateral by the ECB

at the beginning of the sample period;

e Distr;, an indicator for whether security ¢ was distressed before the announce-

ment of the CSPP;

e MildDistr;, an indicator for whether security ¢ was experiencing a form of mild

distress before the announcement of the CSPP;

e [llig;, an indicator for whether the security has a high bid-ask spread.

Securities are defined as distressed or mildly distressed on the basis of their per-
formance in the months before the announcement. For each security, we compute the
log-price change from December 10, 2015 (three months before the announcement)
to February 11, 2016 (four weeks before the announcement). We then sort securities
into deciles according to their price change. We classify the securities in the first
decile (the worst performing ones) as distressed, and classify the securities in the
second decile (the second worst performing ones) as mildly distressed.

Securities are instead defined as illiquid (Illiq = 1) on the basis of their bid-ask
spread, relative to their price. For each security, we compute the average spread-to-
price ratio in the period between December 10, 2015, and February 11, 2016. We
then sort bonds into quintiles and define as illiquid those securities in the highest
quintile.

In terms of transmission channels, Elig distinguishes securities on the basis of

their exposure to the scarcity channel, and Distr and MildDistr distinguish securities
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on the basis of their exposure to a risk channel. We introduce Illiq as a control.

Table 2.1 in Appendix 2.C reports the correlation between the eligibility indicator
of the bond, whether it is investment grade (BBB- or better), indicators for the
distress state of the bond, and its illiquidity. The table uses the sample of bonds
that we use in our empirical analysis. Although the eligibility is correlated with the
investment-grade status and the distress indicators in a intuitive way, the overlap is
far from perfect. In a regression setting, this imperfect correlation allows to identify
which force is dominant in explaining the cross-sectional response of bond prices to
the CSPP announcement.

We also group securities into eight maturity bins and use them to construct
maturity-day fixed effects, which partial out movements in the term structure. The
maturity bins are the following: (i) up to 6 months, (ii) 6 months to 1 year, (iii) 1 to
2 years, (iv) 2 to 5 years, (v) 5 to 10 years, (vi) 10 to 20 years, (vii) 20 to 30 years,
and (viii) longer than 30 years.

When looking at returns, we are interested in knowing whether returns, on the
day of the announcement, are larger for a set of securities than for others. However,
liquidity, for some bonds, may be an issue, and we therefore consider the possibility
that part of the effect may be observed also on the day following the announcement.
When looking at prices, we ask whether prices of some set of bonds experience a
persistent increase relative to some other set of bonds, following the announcement.

Therefore, the time dummies to be used in our analysis are:

e EventDay, an indicator that takes the value of 1 on the day of the CSPP
announcement;
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e DayAfter, an indicator that takes the value of 1 on the day following the CSPP

announcement day;

e Post, an indicator that takes the value of 1 from the day of the CSPP an-

nouncement onward.

We use the first two time dummies for the analysis of returns, and the third one for
the analysis of prices.
We also construct firm-level explanatory variables that are analogous to the bond-

level ones:

e Elighk;, an indicator for whether security i is issued by a firm that issues bonds
that are accepted as collateral by the ECB at the beginning of the sample

period;

e DistrF;, an indicator for whether security ¢ is issued by a firm that was dis-

tressed before the announcement of the CSPP;

e MildDistrF;, an indicator for whether security ¢ is issued by a firm that was

experiencing a form of mild distress before the announcement of the CSPP.

Similarly to the Distr and MildDistr dummies, DistrF and MildDistrF are con-
structed based on the past price performance. However, this time, we aggregate the
total value of the bonds issued by each firm and group firms into deciles according
to the log change of their total bond value. Firms in the first decile are classified as

distressed, and firms in the second decile are classified as mildly distressed.
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Similarly to the bond-level variable, EligF' captures the exposure of firms to the
scarcity channel, DistrF and MildDistrF capture the exposure of firms to a risk

channel, and we introduce InvGrF as a control in some regression specifications.

Empirical Strategy

We use the variables introduced in section 2.6.1 in a linear regression setting. Coef-
ficients on the interactions of bond-level (or firm-level) variables with time dummies
are associated with the transmission channels of monetary policy. For example,
when we analyze prices, a positive coefficient on the Elig*Post interaction indicates
a scarcity channel is present and it more than compensates for a liquidity channel.
The coefficients on Distr*Post and MildDistr*Post capture the extent to which mar-
ket impairment, changes in risk perception, or in expectation of future (risk-adjusted)
profitability determines the transmission on unconventional monetary policy.

We begin with the simple possible model to detect the presence of a scarcity

channel. For returns, we estimate

log P;y — log Pj; 1 = 1EventDayy, - Elig; + SoDayAfter; - Elig; 4+ Fixed Effects + w;y,
(2.2)

whereas for log prices, we use

log P;; = BPosty - Elig; + Fixed Effects + ;. (2.3)

To disentangle the possible transmission channels in the cross-section, we ex-
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plore augmented models that include interactions of the distress dummies with time
dummies.

In particular, for the daily returns, we consider the following regression:

log Pit —log Pjy—1 =
f1EventDay; - Distr; + v EventDayy - Distr; + 01 EventDay, - MildDistr;
+B9DayAfter, - Distr; + y9DayAfter, - Distr; + doDayAfter; - MildDistr;  (2.4)

+Fixed Effects + w4,

whereas for log prices, we estimate

log P;; = BPost; - Elig; 4+ yPost; - Distr; + 0Post; - MildDistr; + Fixed Effects + ;.
(2.5)

All specifications include a security fixed effect that takes into account the un-
observed heterogeneity across securities (and hence issuers) and of the initial price
level, a fixed effect for the coupon-type-day combination that takes into account that
different coupon types (fixed, floating, zero, etc.) may be related to heterogeneous
responses to monetary-policy announcements, and a maturity-day fixed effect to par-
tial out effects coming from the movement in the term structure of the interest rates.
We also show results when rating-day fixed effects are excluded or included. These
should partially absorb some of the effects that are associated with expectations of
higher chances of rating upgrade and with changing risk premia. However, note that

the current credit rating of a bond may not properly capture some risk components.
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In the baseline specification, we use country-industry-day fixed effects to control
for the heterogeneous exposure of different countries and industries to unconventional
monetary policy and to control for demand conditions. However, this specification
does not allow us to disentangle whether the effects that we observe are due to het-
erogeneous price impact across bonds within a given firm or across firms themselves.

To test whether the effect derives from heterogeneity within firms, we also es-
timate a model using firm-day fixed effects. We then compare these results to the
estimates of a model that uses country-industry-day fixed effects, but uses firm-level
regressors EligF', DistrF, and MildDistrF instead of their bond-level counterparts.

We use a three-month window around the announcement date and consider only
securities whose price is available throughout the entire period, thus avoiding con-
cerns related to new issuance and expirations. We also consider only securities with
ratings between BBB+ and BB, to ensure the sample of securities has comparable
credit quality, while leaving a degree of heterogeneity that is rich enough to identify
the desired effects. We then obtain a sample of 391 bonds observed over a period of
131 days. Of these bonds, 70.3% are eligible, 87.0% have investment grade, 8.1% of
them experienced financial distress before the CSPP announcement, and 7.6% were
in a state of mild distress.

We present results for both non-weighted and weighted regressions, with weights
given by the initial outstanding amount of each bond. Standard errors are always
clustered in order to allow for unrestricted correlation at the security and country-

industry-day level.
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2.6.2 Issuance Analysis

We now describe the variables of interest and the regression specification for the
difference-in-differences analysis of bond issuance. This analysis mirrors the analysis
of bond prices, with some differences due to the less granular and lower-frequency
nature of the bond issuance data. However, our strategy remains that of comparing
firms and types of issuance that are differently exposed to a channel of transmission
of interest, while controlling for a set of other factors.

As before, we study whether the effects that we observe are an across-firm or a
within-firm phenomenon, by choosing either country-industry-month or firm-month

fixed effects.

Variables of Interest

We are interested in the issuance of bonds by individual NFCs in the euro area.
For each firm, we distinguish between the issuance of securities that are eligible and
securities that are not eligible. Therefore, each month ¢, all issuance observations
are indexed by the pair (i, Elig), where 7 indexes the firm and Elig € {0,1} is an
indicator for whether the issuance is eligible or not. We denote with IZF;hg the net
issuance of bonds by firm ¢ in month ¢, with Elig indicating the eligibility class
of such issue. Net issuance is expressed in nominal (i.e., face value) terms and is
computed as issuance of new securities plus changes in the outstanding amount of
existing securities, including expirations.

To take into account the different size of various firms, we scale issuance by the

total outstanding amount of bonds of firm ¢ at the beginning of the sample period,
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B;o. Therefore, the LHS variable of interest is

%

Bio '
which we call scaled net issuance. Tables 2.14 and 2.15 in Appendix 2.D report
summary statistics for the net scaled issuance at the firm-eligibility level in the 3
months and 10 months around the announcement, respectively.

We also conduct firm-level analysis in which the variable of interest is the total
net issuance of a firm, which we indicate as I;; and which is equal to I 2 + ]z%f' This
variable is also scaled by B;p in our empirical analysis.

As before, we exploit the interaction between issue-level (or firm-level) variables
and time dummies for the CSPP announcement in order to detect the presence of
transmission channels of monetary policy. We focus in this section on the presence
of a scarcity channel and the incentives of firms to favor eligible bonds versus non-
eligible bonds. Therefore, the only issue-level explanatory variable of interest is Elig,
which, as mentioned before, indexes issues that are eligible for CSPP.

The relevant time dummies are instead

e EventMonth, an indicator that takes the value of 1 in the month of the CSPP

announcement;

e MonthAfter, an indicator that takes the value of 1 in the month following the

CSPP announcement month;

e NextMonths, an indicator that takes the value of 1 in all the subsequent months

included in the sample.
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We also conduct analyses with firm-level variables. In particular, we use

e EligF,;, which tells whether firm ¢ had eligible bonds outstanding at the begin-

ning of the sample period;

e DistrF;, an indicator for whether security ¢ is issued by a firm that was dis-

tressed before the announcement of the CSPP;

e MildDistrF;, an indicator for whether security ¢ is issued by a firm that was

experiencing a form of mild distress before the announcement of the CSPP.

The variables DistrF and MildDistrF are constructed as in section 2.6.1.

Empirical Strategy

We test for the presence of a scarcity-channel-induced change in the issuance policy
by regressing the net scaled issuance on the eligibility-time-dummy interactions and
fixed effects. A positive coefficient on, for example, Elig*NextMonths indicate that,
following the CSPP announcement, firms have increased the issuance of eligible bonds
more than the issuance of non-eligible bonds, even after a two-month lag. If such an
effect is observed, we are led to conclude, on the basis of the previous results, that a
scarcity channel is present, but its relative price effects are neutralized by the action
of firms that adapt their issuance policy to take advantage of the investors’ higher

marginal appetite for eligible securities.
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We therefore estimate a linear model in the form

IElig
it :
—— =aklig
Big
+ p1EventMonth; - Elig + SoMonthAfter; - Elig + f3NextMonths; - Elig

Elig

+ Fixed Effects + Uy

(2.6)

We specify the model with firm fixed effects or with firm-eligibility fixed effects
(in the latter case, the coefficient « is not identified). In the baseline specification,
we include country-industry-month fixed effects.

To assess whether the results that we obtain from the baseline model are the
results of within- or across-firm heterogeneity, we estimate a model that includes
firm-month fixed effects, thus looking only at firms that issue both eligible and non-
eligible bonds.

We compare the results from the model with firm-month fixed effects with the
results of a model that uses country-industry-month fixed effects but employs the
firm-level eligibility dummy EligF, instead of the issuance-level dummy Elig. In this
latter model, we aggregate the total issuance at the firm-month level, so that, letting

Liy =1 2 +1 i1t7 the model for across-firm heterogeneity is in the form

It ,
it _aEligF,
Big el

+ f1EventMonthy - EligF; 4+ foMonthAfter; - EligF;, + S3NextMonths; - EligF;
+ Fixed Effects + u;y,

and we use firm fixed effects and country-industry-month fixed effects.
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We also estimate a version of model (2.6) that includes interactions between the
distress dummies DistrF and MildDistrF and the time dummies. We also include
firm fixed effects or firm-eligibility fixed effects and country-industry-month fixed
effects.

We perform these regression analyses employing a three- and a 10-month window
around the announcement. In both cases, we consider only the firm-eligibility pairs
(1, Elig) that are observed at the beginning of the sample period. In other words,
we consider the issuance of eligible (ineligible) bonds by firm 4 only if firm i has
a positive amount of eligible (ineligible) bonds outstanding at the beginning of the
sample period. We do so to avoid dealing with issues related to the endogeneity of the
eligibility of the issuer. For example, we would like to avoid concerns about issuers
receiving a rating upgrade because of a more accomodative monetary policy, thus
allowing their issuance to be eligible only after (and because of) the announcement.

When a three-month window is considered, the dataset contains 2,476 issuers,
of which 182 are eligible (i.e., had eligible securities at the beginning of the sample
period) and 2,383 issue non-eligible securities, meaning 89 of them issued both eligible
and non-eligible securities. When a 10-month windows is used, 2,396 issuers are
present in the dataset, of which 177 are eligible, 2,301 issue non-eligible securities,
and 82 issue both eligible and non-eligible bonds.

All regressions are weighted by the firms’ total outstanding amount of bonds at
the beginning of the sample period, B;y. We show results for three different levels
of clustering of the standard errors: one that allows only for heteroschedasticity, one

that allows also for correlation within firm-eligibility pairs, and one that allows for
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correlations among all observation belonging to the same country-industry-eligibility

group.

2.7 Results on the Transmission Channels of QE

We now discuss the evidence that our cross-sectional analysis provides on the trans-
mission channels of QE. In particular, we separately discuss the available evidence,
or lack thereof, of a scarcity, liquidity, and risk channel.

All tables are in the Appendix, with Appendix 2.C containing all regression tables
for the analysis of the price effect of the CSPP announcement, and Appendix 2.D

containing all regression tables for the issuance.

2.7.1 Scarcity Channel

We find evidence of a scarcity channel because firms increased the issuance of eligible
securities relative to non-eligible securities. We find no evidence of an increase in the
price of eligible securities relative to non-eligible securities. Moreover, the relative
cost of borrowing for eligible and non-eligible firms seems to be unaffected by this
channel, because eligible firms did not issue more bonds than non-eligible firms in re-
sponse to the announcement. Our results indicate, therefore, that although investors
may have a preferred habitat, firms, being natural short sellers of their own debt,
adjust the relative issuance of eligible and non-eligible debt, although total issuance
remains unaffected by a scarcity channel.

On the day of the announcement, eligible assets experienced lower returns, which

resulted in a persistently lower price change relative to non-eligible assets in the three
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months following the announcement. Focusing on column (4) of Table 2.2, we observe
that, in the two days following the announcement, eligible bonds experienced returns
that, on average, were 70 basis points lower than non-eligible bonds, even after
controlling for any effect that is coming from the country and industry of the issuer,
shifts in the term structure, and changes in the market valuation of credit ratings. In
Table 2.3, we observe that the differential price change tended to be persistent, even
if its statistical significance depends on the weighting and the inclusion of rating-day
fixed effects.

Most of the heterogeneity in the price change happens across firm variation, with
no heterogeneity in the price change across eligible and non-eligible bonds within a
given firm. Moreover, the across-firm effect tends to be more strongly persistent.
Indeed, when we control for firm-day fixed effects in Table 2.4, we observe essentially
no heterogeneity in the price change of eligible and non-eligible securities. In the three
months following the announcement, eligible securities appreciate relative to non-
eligible securities of the same issuers, as shown in Table 2.5, although the difference
is not statistically significant. However, as shown in Tables 2.6 and 2.7, eligible firms
strongly under-performed non-eligible firms both on the announcement day and in
the subsequent three months in terms of their overall debt valuation. Focusing on
columns (4) in both tables, we observe eligible firms experiencing returns of 87 basis
points below non-eligible firms in the two days after the announcement, with the
return gap widening in the subsequent three months to 182 basis points.

As for the issuance, after the announcement, we observe an increase in eligible

issuance compared to non-eligible issuance. This increase can be observed in Table
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2.16 where, if we focus on column (6), we estimate that the eligible monthly issuance
increased by 1.87% relative to non-eligible monthly issuance in the three months after
the announcement. Given that the total amount of bonds outstanding for the firms
in the sample was €888.4bn at the end of November 2015, the monthly net issuance
of eligible securities increased by €16.6bn more than the monthly net issuance of
non-eligible securities.

In contrast to what we find for prices, the heterogeneity in the issuance can be
primarily observed within firms, because we find no change in the total issuance of
eligible firms relative to non-eligible firms. This finding indicates that a scarcity
channel is unlikely to lower the cost of capital of firms. As we see in column (4)
of Table 2.18, firms that issued both eligible and non-eligible bonds increased the
eligible issuance by 2.53% in the three months after the announcement, compared to
the previous three. Given that their total outstanding amount of bonds was €451bn
in November 2015, these firms increased the issuance of eligible bonds relative to non-
eligible ones by €11.4bn each month. The fact that estimates for the coefficient of
interest are larger when we control for firm-month fixed-effects demand for financing,
suggests the presence of a negative correlation between the firm-level monetary policy
shock and firm-level shocks to demand for financing. Therefore, following Khwaja
and Mian (2008) and Jiménez et al. (2014), we can be reasonably confident tha, if
we conduct firm-level analysis, we would not be overestimating the impact of the
CSPP announcement. Backed by these consideration, in Table 2.20, we compare the
total issuance of eligible firms with the total issuance of non-eligible firms. We find a

small negative impact of firm eligibility on total issuance, although not statistically
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significant. This result indicates that eligible firms did not borrow more than non-
eligible firms, thus suggesting that the scarcity channel was not effective at lowering
the relative cost of borrowing.

The results of the within-firm analysis provides a clarification regarding the mech-
anism behind our findings. Firms issuing both eligible and non-eligible bonds are
likely unconstrained, and therefore they can freely adjust their liability structure in
response to changes in the market condition. If they act as neoclassical investors,
even if habitat investors are present, the only possible equilibrium after QE is the
one where firms adjust the relative quantity of eligible and non-eligible issuance up
to the point where the habitat investors’ valuation of the different bond categories is
aligned with the firms’, which coincides with the fundamental valuation. Therefore,
we should observe no heterogeneity in the price change of bonds issued by these
firms. However, quantities should adjust so that issuance of eligible bonds increases,

which is exactly what we observe in the data for this set of firms.

2.7.2  Liquidity Channel

We find no evidence of a liquidity channel. Indeed, if a liquidity channel was a
driver of the lower returns of eligible securities on the day of the announcement, we
should observe an analogous fact when the PSPP was announced, because it involved
monthly purchases for €60bn each month.

We therefore repeat the same analysis we conducted for the CSPP also for the
PSPP and find no heterogeneity across eligible and non-eligible securities. Regression

results are available in the online Appendix. In Appendix 2.E, we simply report time-
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series plots of corporate bond prices around the PSPP announcement as a simple
illustration of the lack of any heterogeneous effect of unconventional monetary policy.
We can therefore comfortably reject the hypothesis that a liquidity channel is
responsible for the transmission of QE to the euro area bond prices and issuance.
Moreover, this result allows us to rule out the explanation that eligible and non-
eligible bonds simply load differently on monetary-policy factors. Indeed, if the
heterogeneity we observe were simply due to the fact that non-eligible bonds load
more on monetary policy factors, we would observe them increase in price more than

eligible ones also after the PSPP announcement.

2.7.3 Risk Channel

We find that the risk channel is the main driver of the transmission of QE to bond
prices. Specifically, the price of distressed bonds increased more on the day of the
announcement than the price of other bonds. However, distressed firms did not
increase issuance, relative to non-distressed firms. Because of this latter result, we
hesitate to claim that a risk channel operates through risk prices. If QE decreased
risk prices, then riskier firms would face lower costs of borrowing and less binding
financing constraints, and they would therefore issue more bonds. Because we fail
to find evidence of this outcome, we are inclined to instead support the idea that
the riskiness of the underlying asset decreased. Other explanations for the lack
of increased issuance for these firms may include the fact that distressed firms are
financially constrained or that they may be already operating below capacity.

On the announcement day, distressed bonds experienced consistently higher re-
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turns than other firms, which also resulted in persistently different price changes.
If we look at Table 2.8, we can observe that distressed and mildly distressed bonds
experienced significantly higher returns than other bonds. This differential effect
can be observed also within eligible and non-eligible firms, with magnitudes that, for
distressed bonds, range between 1.5% and 2% over a two-day period. The difference
persists in the following months, as we see in Table 2.9. However, in this longer
period, distressed bonds issued by non-eligible firms seem to be the ones experienc-
ing the largest increase in valuation, with a price increase of 4.3% when we control
for illiquidity. By contrast, the valuation of distressed bonds issued by eligible firms
increase by 2.6%.

The role of distress in the transmission of QE to prices can also be observed across
bonds issued by the same firm. In Tables 2.10 and 2.11, we control for firm-day fixed
effects and still find a large and statistically significant effect of past performance
on the price increase of bonds following the announcement. The results also hold
when we use firm-level distress indicators, as in Tables 2.12 and 2.13. However,
we cannot establish a comparison between eligible and non-eligible firms due to the
strong collinearity of the eligibility and distress dummy variables at firm level.

If we look at the issuance of distressed firms, we find no evidence that it has
increased. In Tables 2.22 and 2.24, we include dummies for the distress status of the
issuer, thus augmenting the regression in Tables 2.16 and 2.20. Instead of observing
distressed firms issuing more than non-distressed ones, the coefficients on the Distr
and MildDistr interactions indicate that distressed firms did not issue more than

non-distressed ones.
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Overall, our results suggest that a risk channel is a key component of the trans-
mission of QE to bond prices and a crucial determinant in how different firms benefit

from unconventional monetary policy.

2.8 Conclusions

We provided a cross-sectional analysis of the effects of quantitative easing on corpo-
rate bond prices and issuance. We exploit the fact that non-eligible bonds experi-
enced a period of distress in the months leading to the CSPP announcement in order
to clearly disentangle a scarcity channel and a risk channel.

We found that although a scarcity channel seems to be present, its effect can be
mainly observed within firms and its price effects are neutralized by firms changing
their mix of issued bonds in order to satisfy investors’ demand.

As far as prices are concerned, the most powerful channels seem to be related to
changes in the quantity and/or price of risk. This channel mainly manifests itself in
heterogeneous responses of bond prices across firms. Firms whose bonds experienced
the largest price decline in the months preceding the QE announcement were the ones
that experienced the largest increase in their debt valuation after the announcement
of the program. However, no heterogeneous effect on the issuance can be detected
in the cross section of firms on the basis of past performance.

Although the latter two facts seem to be mutually inconsistent, they can be
reconciled in a model where the private sector tend to take excessive risk compared
to a socially optimal allocation, as in Stein (2012), Greenwood et al. (2016), and

Woodford (2016). This behavior may appear if, for the example, the private sector
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has incentives to issue money-like securities that are subject to runs but does not
internalize the social cost of early liquidation. If QE corrects these incentives by
satiating the economy’s demand for money, we may at the same time observe a
reduction in the economy-wide risk and a little, or even negative, change in total
bond issuance. The reason is that absent QE, the privately chosen level of issuance
would be characterized by an inefficient mix of liabilities and/or excessive issuance.

Although developing a full theoretical model was beyond the scope of this paper,
our results should constitute the empirical background for any model trying to ex-
plain the channels through which QE affects market prices, financing decisions, and,

ultimately, real economic activity.
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Appendix 2.A Further Details of the ECB’s

Asset-Purchase Programs

In this appendix, we provide a brief overview of the ECB’s asset-purchase pro-
grams. Because we already discussed the CSPP in detail in section 2.4.2, here we
mainly focus on the remaining programs: the third Covered Bond Purchase Program
(CBPP3), the Asset-Back Securities Purchase Program (ABSPP), and the Public
Sector Purchase Program (PSPP)

Details on the exact size of each individual program were not usually disclosed
ex ante. However, when the PSPP was announced on January 22, 2015, the ECB
disclosed the intention to buy a total amount of €60bn each month of securities cov-
ered by the ABSPP, CBPP3, and PSPP programs. This total amount was increased
to €80bn when the CSPP was announced, on March 10, 2016. However, the ECB
publishes its security holdings and monthly purchases at the end of every month,
aggregated by program.

The duration of the APPs was first announced on January 22, 2015, when the
ECB stated its intention to carry on asset purchases until September 2016. The
duration was then prolonged to March 2017, following a press conference on Decem-
ber 3, 2015, when the ECB also announced it would keep reinvesting the principal
payments on the securities purchased under the APPs for as long as necessary. On
January 19, 2017, the ECB further prolonged the extension of the APPs to December
2017, deciding, however, to reduce the monthly purchases to €60bn from April 2017.

Finally, the Eurosystem makes available for security lending all the assets pur-
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chased under the PSPP and CSPP and publishes a list of the available ISINs, because,
given the large scale of the APPs, the ECB wanted to set up adequate facilities to

prevent episodes of collateral scarcity.

Below, we describe the program-specific details, including the eligibility criteria
for securities to be covered by each program and the rationale that the ECB put

forward for these programs.

The Asset-Back Securities Purchase Program (ABSPP)

Under the ABSPP, the ECB carried on purchase of asset-backed securities with the
stated purpose of reducing banks’ funding risk and stimulating lending by facilitating
the sales of pools of loans in the secondary market.

The ABSPP was announced on September 4, 2014, and the detailed technical
modalities were release on October 2, 2014. Purchases began on November 21, 2014,
and as of May 2017, the ECB was holding €23,653mn in securities purchased under
the ABSPP program.

The Third Covered Bond Purchase Program (CBPP3)

The CBPP3 is a credit-easing measure aimed at facilitating the extension of credit
to the real economy through the purchase of covered bonds issued by euro-area
monetary financial institutions (MFIs). Indeed, a covered bond is a debt instruments,
usually issued by a credit institution, that is backed by a pool of assets capable of

covering the claims arising from the bond until its maturity. Moreover, the assets
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backing the covered bond are used as collateral by the covered bondholders in case
of default of the issuer.

The CBPP3 is the third in a series of CBPPs that was initiated in July 2009. The
CBPP3 was announced on September 4, 2014, and the detailed technical modalities
were released on October 2, 2014. Purchases began on October 20, 2014, and as
of May 2017, the ECB was holding €219,927mn in securities purchased under the
CBPP3 program.

The Public Sector Purchase Program (PSPP)

The PSPP is the largest of APPs and encompasses securities issued by the euro area’s
public sector including central governments, recognized agencies, local governments,
and international and multilateral organizations®.

This program was undertaken with the purpose of providing further monetary
accommodation in a low rate environment, anchor medium- and long-term inflation
expectations, and provide support to the forward guidance of the ECB.

Furthermore, to be eligible for any APP, a security must have a yield to maturity
that exceeds the deposit facility rate, in order to avoid arbitrage.

The PSPP was announced on January 22, 2015, and the detailed technical modal-
ities were released on the same day. Purchases began on March 9, 2015, and as of
May 2017, the ECB was holding €1,563bn in securities purchased under the PSPP

program.

The PSPP imposes restrictions on the eligibility requirements of securities. In

8. The latter two account for about 10% of the PSPP purchases.
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particular, public sector securities must be accepted as collateral at the ECB (see
section 2.4.2 for details) and, initially, they must have had a residual maturity at the
time of purchase between 2 and 30 years. Moreover, the yield to maturity of securities
must be above the deposit facility rate at the time of the purchase, although some
exceptions have been allowed starting from January 2, 2017. From the same date,

the lower limit on the residual maturity has been decreased to one year.

Appendix 2.B Plots

2.B.1 NFC Bond Market

900 950
1 1

Outstanding amount (EUR bn)
850
|

800
1

T T T
2015 2016 2017

Date

Figure 2.1: Outstanding amount of euro-denominated bonds issued by non-financial corpo-
rations in the Euro-area. The vertical line marks the announcement of the CSPP (March
10, 2016).
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2.B.2 Prices and Returns around the CSPP Announcement
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Figure 2.2: Weighted average of log-prices and log-returns of bonds issued by Euro-area
NFC with bond rating between BBB+ and BB. The weights are given by the initial out-
standing amount of the bond. Bonds in this figure have been traded for the entire sample
period. The vertical line marks the announcement of the CSPP (March 10, 2016).
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Figure 2.3: Weighted average of log-prices and log-returns of eligible and non-eligible bonds
issued by Euro-area NFC with bond rating between BBB+ and BB. The weights are given
by the initial outstanding amount of the bond. Bonds in this figure have been traded for
the entire sample period. The vertical line marks the announcement of the CSPP (March
10, 2016).
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Figure 2.4: Weighted average of log-prices and log-returns of bonds issued by Euro-area
NFC with bond rating between BBB+ and BB. Bonds are classified as distressed, mildly
distressed and not distressed. The distress state is defined on the basis of the price perfor-
mance of the bond in the months before the announcement (see Section 2.6.1 for details).
The weights are given by the initial outstanding amount of the bond. Bonds in this figure
have been traded for the entire sample period. The vertical line marks the announcement

of the CSPP (March 10, 2016).
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Figure 2.5: Weighted average of log-prices and log-returns of bonds issued by Euro-area
NFC with bond rating between BBB+ and BB. Bonds are classified as liquid or illiquid.
Illiquidity is defined on the basis of the average bid-ask spread in the months before the
announcement (see Section 2.6.1 for details). The weights are given by the initial out-
standing amount of the bond. Bonds in this figure have been traded for the entire sample
period. The vertical line marks the announcement of the CSPP (March 10, 2016).
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2.B.3 Issuance around the CSPP Announcement
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Figure 2.6: Net issuance of euro-denominated bonds issued by non-financial corporations
in the Euro-area. Here, bonds are defined as eligible if they can be used as collateral for
the ECB’s refinancing operations. The vertical line marks the announcement of the CSPP
(March 10, 2016).
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Figure 2.7: Residuals of a project of firm’s scaled net issuance by eligibility (I itlig /Bip) on
firm-month and firm-eligibility fixed effects. Net issuance Ighg represents the net issuance

of eligible or non eligible bonds (Elig = 1 or Elig = 0, respectively) by firm ¢ in month ¢.
The vertical line marks the announcement of the CSPP (March 10, 2016).
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Appendix 2.C Effect of CSPP on Bond Prices — Tables

Table 2.1: Correlation between bond-level indicator variables. Elig = 1 if the bond is
eligible as collateral at the beginning of the sample period. InvGr = 1 if the bond has
median rating above BBB- at the beginning of the sample period. Distr and MildDistr
take value 1 if the bond is, respectively, in a state of distress or mild distress before the
announcement. Distress is defined on the basis of the price performance of the bond in the
months before the announcement (see Section 2.6.1 for details). Finally, Illiq = 1 if the
bond has a high bid-ask spread in the period before the announcement (see Section 2.6.1
for details). The sample period covers the three months prior and post the announcement.
The sample contains only securities that are continuously traded throughout the sample
period and that have median rating between BBB+ and BB.

Elig InvGr  Distr  MildDistr Mliq

Elig 1 0.347  -0.296 -0.170 -0.081
InvGr 0.347 1 -0.161 -0.288 0.145
Distr -0.296  -0.161 1 -0.086 0.315

MildDistr  -0.170  -0.288  -0.086 1 0.097

Iliq -0.081  0.145  0.315 0.097 1
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Table 2.2: Regression for the announcement effect of CSPP on daily bond returns. Event-
Day = 1 on March 10, 2016 (announcement day), while DayAfter = 1 on the following day.
Elig = 1 if the bond is eligible as collateral at the beginning of the sample period. The
coefficient in the row “Compound effect” is the sum of the coefficients in the previous two
rows. The sample period covers the three months prior and post the announcement. The
sample contains only securities that are continuously traded throughout the sample period
and that have median rating between BBB+ and BB. This table uses country-industry-
day fixed effects. Standard errors are clustered at country-industry-day and security level.
Standard errors are in parentheses.

Log-return (%)

(1) (2) (3) (4)

EventDay*Elig —0.329 —0.491"*  —0.347"*  —0.505***

(0.205) (0.238) (0.175) (0.190)
DayAfter*Elig —0.238**  —0.271"*  —0.198**  —0.195™*

(0.093) (0.123) (0.073) (0.083)
Compound effect -0.567*"  -0.762***  -0.545*"* -0.700***
o 0227) (0262 (01s)  (0194)
Country-industry-day FE Yes Yes Yes Yes
Security FE Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes
Rating-day FE No No Yes Yes
Weighted No Yes No Yes
Observations 49,010 49,010 49,010 49,010
R? 0.375 0.434 0.420 0.489
Notes: *p < .10; **p < .05; *Fp < .01
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Table 2.3: Regression for the announcement effect of CSPP on daily bond prices. Post
= 1 on and after March 10, 2016 (announcement day). Elig = 1 if the bond is eligible
as collateral at the beginning of the sample period. The sample period covers the three
months prior and post the announcement. The sample contains only securities that are
continuously traded throughout the sample period and that have median rating between
BBB+ and BB. This table uses country-industry-day fixed effects. Standard errors are
clustered at country-industry-day and security level. Standard errors are in parentheses.

Log-price (%)
(1) (2) (3) (4)

Post*Elig —1.180*"*  —1.071**  —0.785"**  —0.618

(0.390) (0.538) (0.283) (0.398)
Country-industry-day FE Yes Yes Yes Yes
Security FE Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes
Rating-day FE No No Yes Yes
Weighted No Yes No Yes
Observations 49,387 49,387 49,387 49,387
R? 0.983 0.984 0.986 0.987
Notes: *p <.10; **p < .05; *Fp < .01
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Table 2.4: Regression for the announcement effect of CSPP on daily bond returns. Event-
Day = 1 on March 10, 2016 (announcement day), while DayAfter = 1 on the following
day. Elig = 1 if the bond is eligible as collateral at the beginning of the sample period.
The coefficient in the row “Compound effect” is the sum of the coefficients in the previous
two rows. The sample period covers the three months prior and post the announcement.
The sample contains only securities that are continuously traded throughout the sample
period and that have median rating between BBB+ and BB. This table uses firm-day fixed
effects. Standard errors are clustered at country-industry-day and security level. Standard
errors are in parentheses.

Log-return (%)

(1) (2) (3) (4)
EventDay*Elig —0.152  —0.318 —0.053 —0.105
(0.191)  (0.300)  (0.148)  (0.175)

DayAfter*Elig 0.059  0.117*  0.031  0.065
(0.059)  (0.065)  (0.051)  (0.040)

Firm-day FE Yes Yes Yes Yes
Security FE Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes
Rating-day FE No No Yes Yes
Weighted No Yes No Yes
Observations 45,370 45,370 45,370 45,370
R? 0.559 0.601 0.576 0.627
Notes: *p <.10; ®*p < .05; *p < .01
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Table 2.5: Regression for the announcement effect of CSPP on daily bond prices. Post
= 1 on and after March 10, 2016 (announcement day). Elig = 1 if the bond is eligible
as collateral at the beginning of the sample period. The sample period covers the three
months prior and post the announcement. The sample contains only securities that are
continuously traded throughout the sample period and that have median rating between
BBB+ and BB. This table uses firm-day fixed effects. Standard errors are clustered at
country-industry-day and security level. Standard errors are in parentheses.

Log-price (%)
(1) (2) (3) (4)

Post*Elig 0.558 1.336 0.555 1.168*
(0.484)  (0.888) (0.396)  (0.627)
Firm-day FE Yes Yes Yes Yes
Security FE Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes
Rating-day FE No No Yes Yes
Weighted No Yes No Yes
Observations 45,719 45,719 45,719 45,719
R? 0.992 0.993 0.993 0.994
Notes: *p <.10; F*p < .05; *Fp < .01
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Table 2.6: Regression for the announcement effect of CSPP on daily bond returns. Event-
Day = 1 on March 10, 2016 (announcement day), while DayAfter = 1 on the following
day. Eligk' = 1 if the bond is issued by a firm having bonds that are eligible as collateral
at the beginning of the sample period. The coefficient in the row “Compound effect” is
the sum of the coefficients in the previous two rows. The sample period covers the three
months prior and post the announcement. The sample contains only securities that are
continuously traded throughout the sample period and that have median rating between
BBB+ and BB. This table uses country-industry-day fixed effects. Standard errors are
clustered at country-industry-day and security level. Standard errors are in parentheses.

Log-return (%)

(1) (2) (3) (4)
EventDay*EligF —0.510  —1.244%*  —0.126  —0.694%
(0.320)  (0.433)  (0.208)  (0.246)

DayAfter*EligF —0.265 —0.557*  —0.186  —0.180*
(0.177)  (0.212)  (0.173)  (0.094)

Compound effect -0.775*  -1.801*** -0.312 -0.874**
(0.382)  (0.500)  (0.242)  (0.180)

Country-industry-day FE Yes Yes Yes Yes
Security FE Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes
Rating-day FE No No Yes Yes
Weighted No Yes No Yes
Observations 49,010 49,010 49,010 49,010
R?2 0.538 0.692 0.776 0.947
Notes: *p <.10; F*p < .05; *p < .01
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Table 2.7: Regression for the announcement effect of CSPP on daily bond prices. Post =
1 on and after March 10, 2016 (announcement day). EligF = 1 if the bond is issued by
a firm having bonds that are eligible as collateral at the beginning of the sample period.
The sample period covers the three months prior and post the announcement. The sample
contains only securities that are continuously traded throughout the sample period and
that have median rating between BBB+ and BB. This table uses country-industry-day
fixed effects. Standard errors are clustered at country-industry-day and security level.
Standard errors are in parentheses.

Log-price(%)
(1) (2) (3) (4)

Post*EligF —2.266™"*  —4.538***  —1.344**  —1.816***

(0.468) (0.562) (0.307) (0.314)
Country-industry-day FE Yes Yes Yes Yes
Security FE Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes
Rating-day FE No No Yes Yes
Weighted No Yes No Yes
Observations 49,387 49,387 49,387 49,387
R? 1.000 1.000 1.000 1.000
Notes: *p <.10; **p < .05; *p < .01
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Table 2.8: Unweighted regression for the announcement effect of CSPP on daily bond
returns. EventDay = 1 on March 10, 2016 (announcement day), while DayAfter = 1 on
the following day. Elig = 1 if the bond is eligible as collateral at the beginning of the
sample period. Distr and MildDistr take value 1 if the bond is, respectively, in a state of
distress or mild distress before the announcement. Distress is defined on the basis of the
price performance of the bond in the months before the announcement (see Section 2.6.1 for
details). The sample period covers the three months prior and post the announcement. The
sample contains only securities that are continuously traded throughout the sample period
and that have median rating between BBB+ and BB. This table uses country-industry-
day fixed effects. Standard errors are clustered at country-industry-day and security level.
Standard errors are in parentheses.

Log-return (%)

All firms Eligible firms Ineligible firms
1) (2) (3) (4) (5) (6)
EventDay*Elig —0.146 —0.139 —0.185 —0.190
(0.101) (0.099)  (0.122)  (0.122)
EventDay*Distr 1.481%** 1.382%** 1.285***  1.224%**  1.694***  1.368%**
(0.325) (0.308) (0.434)  (0.418)  (0.556)  (0.496)
EventDay*MildDistr 0.498%** 0.462** 0.267 0.245 0.534 1.122
(0.188) (0.182) (0.178)  (0.171)  (0.968)  (1.218)
EventDay*Illiq 0.291* 0.177 1.285
(0.170) (0.151) (0.789)
DayAfter*Elig —0.129**  —0.127** —0.072 —0.074
(0.062) (0.064) (0.064) (0.065)
DayAfter*Distr 0.551%** 0.523***  0.626™**  0.604™** 0.271 0.149
(0.151) (0.152) (0.214)  (0.202)  (0.472)  (0.314)
DayAfter*MildDistr 0.406** 0.396** 0.505** 0.497** 0.011 0.232
(0.175) (0.177) (0.223)  (0.228)  (0.651)  (0.784)
DayAfter*Illiq 0.083 0.066 0.482
. .___._._._______to146p (0115 (0.689)
Elig two-day effect -0.276%**  -0.266*** -0.257* -0.264**
(0.099) (0.098) (0.132)  (0.131)
Distr two-day effect 2.032%** 1.905%** 1.911%*%*%  1.828***  1.965™** 1.517%*
(0.343) (0.332) (0.448)  (0.431)  (0.763)  (0.601)
MildDistr two-day effect 0.904*** 0.858***  0.772***  0.741*** 0.546 1.354
(0.228) (0.226)  (0.259)  (0.258)  (0.986)  (1.066)
Illiq two-day effect 0.374* 0.243 1.767**
. ___________ o218y __(0188) (0.734)
Country-industry-day FE Yes Yes Yes Yes Yes Yes
Security FE Yes Yes Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes Yes Yes
Rating-day FE Yes Yes Yes Yes Yes Yes
Observations 49,010 49,010 42,900 42,900 6,110 6,110
R2 0.409 0.409 0.481 0.481 0.751 0.753
Notes: *p < .10; **p < .05; F*p < .01
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Table 2.9: Unweighted regression for the announcement effect of CSPP on daily bond
prices. Post = 1 on and after March 10, 2016 (announcement day). Elig = 1 if the bond is
eligible as collateral at the beginning of the sample period. Distr and MildDistr take value
1 if the bond is, respectively, in a state of distress or mild distress before the announcement.
Distress is defined on the basis of the price performance of the bond in the months before
the announcement (see Section 2.6.1 for details). The sample period covers the three
months prior and post the announcement. The sample contains only securities that are
continuously traded throughout the sample period and that have median rating between
BBB+ and BB. This table uses country-industry-day fixed effects. Standard errors are
clustered at country-industry-day and security level. Standard errors are in parentheses.

Log-price (%)

All firms Eligible firms Ineligible firms
(1) (2) (3) (4) () (6)
Post*Elig —0.425*  —0.395*  0.060 0.027

(0.239)  (0.233)  (0.349)  (0.344)

Post*Distr 2.053%5%%  2.449%FF 3. 080%**F  2.679%F  5.224%F* 4 28T
(0.938)  (0.941)  (1.107)  (1.105)  (1.190)  (1.023)

Post*MildDistr L7109 15317 1.718%% 1572%  0.790  2.832%**
(0.450)  (0.439)  (0.524)  (0.514)  (1.129)  (0.937)

Post*Tlliq 1.496*** 1.180%** 3.786"**

(0.305) (0.292) (1.273)
Country-industry-day FE Yes Yes Yes Yes Yes Yes
Security FE Yes Yes Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes Yes Yes
Rating-day FE Yes Yes Yes Yes Yes Yes
Observations 49,387 49,387 43,230 43,230 6,157 6,157
R? 0.986 0.986 0.990 0.990 0.993 0.994
Notes: *p <.10; **p < .05; **p < .01
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Table 2.10: Unweighted regression for the announcement effect of CSPP on daily bond
returns. EventDay = 1 on March 10, 2016 (announcement day), while DayAfter = 1 on
the following day. Elig = 1 if the bond is eligible as collateral at the beginning of the
sample period. Distr and MildDistr take value 1 if the bond is, respectively, in a state of
distress or mild distress before the announcement. Distress is defined on the basis of the
price performance of the bond in the months before the announcement (see Section 2.6.1
for details). The sample period covers the three months prior and post the announcement.
The sample contains only securities that are continuously traded throughout the sample
period and that have median rating between BBB+ and BB. This table uses firm-day fixed
effects. Standard errors are clustered at country-industry-day and security level. Standard
errors are in parentheses.

Log-return (%)

All firms Eligible firms Ineligible firms
[€Y) 2 3) ) 5) (6)
EventDay*Elig —0.061 —0.071 —0.055 —0.062
(0.118)  (0.116)  (0.120)  (0.118)
EventDay*Distr 1.444%%*%  1.391*%**  1.353%**  1.321*** 1.377***  (0.949**
(0.421)  (0.430)  (0.466)  (0.473)  (0.490)  (0.466)
EventDay*MildDistr 0.669***  0.678*** 0.571* 0.570** 0.661 1.273
(0.251)  (0.249)  (0.295)  (0.290)  (0.926)  (1.297)
EventDay*Illiq 0.293* 0.184 1.398
(0.172) (0.153) (1.146)
DayAfter*Elig 0.025 0.019 0.029 0.025

(0.049)  (0.045)  (0.047)  (0.045)

DayAfter*Distr 0.396**  0.361** 0.426* 0.409* 0.196 —0.043
(0.197)  (0.184)  (0.235)  (0.228)  (0.658)  (0.467)

DayAfter*MildDistr 0.435* 0.441* 0.477 0.477 0.115 0.457
(0.238)  (0.241)  (0.324)  (0.327)  (0.906)  (0.964)

DayAfter*Illiq 0.192* 0.101 0.780
,,,,,,,,,,,,,,,,,,,,,,,,, (0.105) ______ (0.089) ________(0.780)
Elig two-day effect -0.036 -0.052 -0.026 -0.036

(0.134) (0.129) (0.134) (0.130)
Distr two-day effect 1.840***  1.753™**  1.779***  1.730™*** 1.573* 0.907

(0.425) (0.431) (0.477) (0.483) (0.915) (0.700)
MildDistr two-day effect  1.104***  1.120***  1.048***  1.047*** 0.776 1.730

(0.273) (0.276) (0.361) (0.361) (1.089) (1.209)
Illiq two-day effect 0.485** 0.286* 2.178**
,,,,,,,,,,,,,,,,,,,,,,,,, ©.198) (0169 (1.023)
Firm-day FE Yes Yes Yes Yes Yes Yes
Security FE Yes Yes Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes Yes Yes
Rating-day FE Yes Yes Yes Yes Yes Yes
Observations 45,370 45,370 40,820 40,820 4,550 4,550
R2 0.571 0.571 0.547 0.547 0.731 0.733
Notes: p < .10; *p < .05; FMFp < .01
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Table 2.11: Regression for the announcement effect of CSPP on daily bond prices. Post
= 1 on and after March 10, 2016 (announcement day). Elig = 1 if the bond is eligible
as collateral at the beginning of the sample period. Distr and MildDistr take value 1 if
the bond is, respectively, in a state of distress or mild distress before the announcement.
Distress is defined on the basis of the price performance of the bond in the months before
the announcement (see Section 2.6.1 for details). The sample period covers the three
months prior and post the announcement. The sample contains only securities that are
continuously traded throughout the sample period and that have median rating between
BBB+ and BB. This table uses firm-day fixed effects. Standard errors are clustered at
country-industry-day and security level. Standard errors are in parentheses.

Log-price (%)

All firms Eligible firms Ineligible firms
(1) (2) (3) (4) (5) (6)
Post*Elig 0.622 0.568 0.632 0.587

(0.443)  (0.427) (0.425) (0.413)

Post*Distr 3228 2.972%F  2758%F  2568*F  5.198%* 4,038
(1.003)  (0.980) (1.101) (1.103)  (1.354)  (1.236)

Post*MildDistr 1.320%+%  1.381%%*  0.998**  0.995"*  0.798  2.911***
(0.352)  (0.357)  (0.470) (0.471)  (1.265)  (1.004)

Post*Illiq 1.474%** 1.142%** 4.084%**

(0.286) (0.243) (1.514)
Firm-day FE Yes Yes Yes Yes Yes Yes
Security FE Yes Yes Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes Yes Yes
Rating-day FE Yes Yes Yes Yes Yes Yes
Observations 45,719 45,719 41,134 41,134 4,585 4,585
R? 0.994 0.994 0.994 0.994 0.989 0.992
Notes: *p <.10; ®p < .05; *Fp < .01
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Table 2.12: Unweighted regression for the announcement effect of CSPP on daily bond
returns. EventDay = 1 on March 10, 2016 (announcement day), while DayAfter = 1 on
the following day. EligF = 1 if the bond is issued by a Firm having bonds that are eligible as
collateral at the beginning of the sample period. DistrF and MildDistrF take value 1 if the
bond is issued, respectively, by a firm that was in a state of distress or mild distress before
the announcement. Distress is defined on the basis of the price performance of the bonds of
the firm in the months before the announcement (see Section 2.6.1 for details). The sample
period covers the three months prior and post the announcement. The sample contains
only securities that are continuously traded throughout the sample period and that have
median rating between BBB+ and BB. This table uses country-industry-day fixed effects.
Standard errors are clustered at country-industry-day and security level. Standard errors
are in parentheses.

Log-return (%)

All firms Eligible firms Ineligible firms
(€Y) (2) 3) 4) (5) (6)
EventDay*EligF —0.069 —0.068
(0.195) (0.194)
EventDay*DistrF 1.788***  1.787***
(0.195) (0.198)
EventDay*MildDistrF 0.496* 0.495* 0.221 0.226
(0.258) (0.260) (0.152) (0.150)
EventDay*Illiq 0.008 —0.028 0.057
(0.076) (0.074) (0.044)
DayAfter*EligF —0.101 —0.108
(0.127) (0.124)
DayAfter*DistrF 0.516** 0.531**
(0.209) (0.217)
DayAfter*MildDistrF 0.479** 0.489** 0.544***  0.550™**
(0.195) (0.190) (0.135) (0.136)
DayAfter*Illiq —0.081 —0.033 —0.248*
s (ooes) (o3 (0.130)
EligF two-day effect -0.170 -0.176
(0.224) (0.220)
DistrF two-day effect 2.304%**%  2.318%**
(0.306) (0.317)
MildDistrF two-day effect 0.975***  0.985***  0.764*** 0.776***
(0.357) (0.356) (0.226) (0.226)
Illiq two-day effect -0.073 -0.061 -0.191
s o149 (0089 (0.139)
Country-industry-day FE Yes Yes Yes Yes Yes Yes
Security FE Yes Yes Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes Yes Yes
Rating-day FE Yes Yes Yes Yes Yes Yes
Observations 49,010 49,010 42,900 42,900 6,110 6,110
R2 0.583 0.583 0.776 0.776 0.962 0.962
Notes: p < .10; Fp < .05; *Fp < .01

200



Table 2.13: Unweighted regression for the announcement effect of CSPP on daily bond
prices. Post = 1 on and after March 10, 2016 (announcement day). EligF = 1 if the bond
is issued by a Firm having bonds that are eligible as collateral at the beginning of the
sample period. DistrF and MildDistrF take value 1 if the bond is issued, respectively, by
a firm that was in a state of distress or mild distress before the announcement. Distress
is defined on the basis of the price performance of the bonds of the firm in the months
before the announcement (see Section 2.6.1 for details). The sample period covers the three
months prior and post the announcement. The sample contains only securities that are
continuously traded throughout the sample period and that have median rating between
BBB+ and BB. This table uses country-industry-day fixed effects. Standard errors are
clustered at country-industry-day and security level. Standard errors are in parentheses.

Log-price (%)

All firms Eligible firms Ineligible firms
(1) (2) (3) (4) (5) (6)
Post*EligF —0.996  —0.985

(0.796)  (0.801)

Post*DistrF 3.320* 3.295*
(1.910)  (1.903)

Post*MildDistrF 1.399%%%  1.381%%*  1.255%%%  1.202%*
(0.377)  (0.375)  (0.370)  (0.381)

Post*lliq 0.137 0.275 —0.346

(0.190) (0.217) (0.466)
Country-Industry-day FE Yes Yes Yes Yes Yes Yes
Security FE Yes Yes Yes Yes Yes Yes
Coupon.Type-day FE Yes Yes Yes Yes Yes Yes
Maturity-day FE Yes Yes Yes Yes Yes Yes
Rating-day FE Yes Yes Yes Yes Yes Yes
Observations 49,387 49,387 43,230 43,230 6,157 6,157
R2 1.000 1.000 1.000 1.000 1.000  1.000
Notes: *p < .10; **p < .05; Fp < .01
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Appendix 2.D Effect of CSPP on Bond Issuance — Tables

Table 2.14: Summary statistics for scaled net issuance by firm-eligibility pair in a 3 month
window around the CSPP announcement.

Net Issuance (%) Summary Statistics
Eligibility Months N Mean  St. Dev. Min Pctl(25)  Median ~ Pctl(75) Max
All All 15,390 8.617  37.183 —362.371 0.000 0.000 0.000 1,365.654
Non-eligible — All 14,298  8.930 38.325 —362.371 0.000 0.000 0.000 1,365.654
Eligible All 1,092 4.514 15.330 —32.645 0.000 0.000 0.971 210.526
All Before CSPP 7,695  8.286 34.067  —362.371 0.000 0.000 0.000 950.000
All Post CSPP 7,695  8.948 40.057  —168.421 0.000 0.000 0.000 1,365.654

Non-eligible ~ Before CSPP 7,149  8.645 35.153 —362.371 0.000 0.000 0.000 950.000
Non-eligible ~ Post CSPP 7,149  9.215 41.255 —168.421 0.000 0.000 0.000 1,365.654
Eligible Before CSPP 546 3.582 12.356 —14.324 0.000 0.000 0.000 84.211

Eligible Post CSPP 546 5.445 17.778 —32.645 0.000 0.000 2.127 210.526

Table 2.15: Summary statistics for scaled net issuance by firm-eligibility pair in a 10 month
window around the CSPP announcement.

Net Issuance by Eligibility (%) Summary Statistics

Eligibility Months N Mean  St. Dev. Min Pctl(25) Median  Pctl(75) Max
All All 49,560 8.914 160.007  —615.385 0.000 0.000 0.000 33,839.500
Non-eligible Al 46,020  9.306 165.984  —615.385 0.000 0.000 0.000 33,839.500
Eligible All 3,540  3.818 15.710 —62.888 0.000 0.000 0.871 513.636
All Before CSPP 24,780  8.906 55.958 —300.000 0.000 0.000 0.000 5,555.556
All Post CSPP 24,780 8923  219.258  —615.385 0.000 0.000 0.000 33,839.500
Non-eligible ~ Before CSPP 23,010  9.281 57.833 —300.000 0.000 0.000 0.000 5,555.556
Non-eligible ~ Post CSPP 23,010  9.331 227.503  —615.385 0.000 0.000 0.000 33,839.500
Eligible Before CSPP 1,770 4.021 18.253 —35.714 0.000 0.000 0.809 513.636
Eligible Post CSPP 1,770 3.615 12.670 —62.888 0.000 0.000 0.953 150.000
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Table 2.20: Regression for the announcement effect of the CSPP (announced on March 10,
2016) on total bond issuance by firms using a 3 month window around the announcement.
EventMonth = 1 on March 2016, MonthAfter = 1 on April 2016, NextMonths = 1 in
the subsequent months. EligF = 1 if the firm has bonds that are eligible as collateral at
the beginning of the sample period. This table uses country-industry-month fixed effects.
Standard errors are corrected for heteroschedasticity or otherwise clustered at the specified
level. Standard errors are in parentheses. All regressions are weighted by the outstanding
amount of bonds of the issuer at the beginning of the sample period.

Total Net Issuance (%)

(1) (2) (3)
EventMonth*EligF 3.978"*  3.978" 3.978
(2.021)  (2.273)  (3.267)

MonthAfter*EligF —2.293 —2.293  —2.293**
(1.735)  (1.974) (1.088)
NextMonths*EligF —0.666 —0.666 —0.666
(1.448)  (1.523) (1.433)
Country-industry-month FE Yes Yes Yes
Firm FE Yes Yes Yes
Firm clustered SE No Yes No
Country-industry-eligibility clustered SE No No Yes
Observations 13,373 13,373 13,373
R2 0.587 0.587 0.587
Notes: *p < .10; **p < .05; *Fp < .01
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Table 2.21: Regression for the announcement effect of the CSPP (announced on March 10,
2016) on total bond issuance by firms using a 10 month window around the announcement.
EventMonth = 1 on March 2016, MonthAfter = 1 on April 2016, NextMonths = 1 in the
subsequent months. EligF = 1 if the firm has bonds that are eligible as collateral at
the beginning of the sample period. This table uses country-industry-month fixed effects.
Standard errors are corrected for heteroschedasticity or otherwise clustered at the specified
level. Standard errors are in parentheses. All regressions are weighted by the outstanding
amount of bonds of the issuer at the beginning of the sample period.

Total Net Issuance (%)

(1) (2) (3)
EventMonth*EligF 3.655*  3.655" 3.655
(1.983)  (2.046)  (2.864)

MonthAfter*EligF -1.310 —-1.310 —1.310
(1.348)  (1.405) (0.831)
NextMonths*EligF —0.137 —=0.137 —0.137
(0.539)  (0.567) (0.548)
Country-industry-month FE Yes Yes Yes
Firm FE Yes Yes Yes
Firm clustered SE No Yes No
Country-industry-eligibility clustered SE No No Yes
Observations 40,360 40,360 40,360
R2 0.408 0.408 0.408
Notes: *p < .10; **p < .05; *Fp < .01
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Table 2.22: Regression for the announcement effect of the CSPP (announced on March
10, 2016) on bond issuance using a 3 month window around the announcement with firm
distress indicators. EventMonth = 1 on March 2016, MonthAfter = 1 on April 2016,
NextMonths = 1 in the subsequent months. Elig = 1 if the issuance is eligible as collateral.
DistrF and MildDistrF take value 1 if the bond is issued, respectively, by a firm that
was in a state of distress or mild distress before the announcement. Distress is defined
on the basis of the price performance of the bonds of the firm in the months before the
announcement (see Section 2.6.1 for details). This table uses country-industry-month fixed
effects. Standard errors are corrected for heteroschedasticity or otherwise clustered at the
specified level. Standard errors are in parentheses. All regressions are weighted by the
outstanding amount of bonds of the issuer at the beginning of the sample period.

Net Issuance by Eligibility (%)

€Y (2 (3) (4) (5) (6)
Elig 0.943** 0.943** 0.943**
(0.402) (0.433) (0.399)
EventMonth*Elig 3.593 3.593%  3.593* 3.593 3.593 3.593

(2.198)  (1.900)  (2.173)  (2.216)  (2.294) (2.339)

EventMonth*DistrF 0.839 0.839 0.839 0.839 0.839 0.839
(1.697)  (1.652)  (1.682)  (1.715)  (1.760)  (1.795)

EventMonth*MildDistrF —0.288 —0.288 —0.288 —0.288 —0.288  —0.288
(2.807)  (2.491)  (2.621) (2.673)  (3.060)  (3.121)

MonthAfter*Elig 0.089 0.089 0.089 0.089 0.089 0.089
(0.844)  (0.877)  (0.786)  (0.801)  (0.510) (0.520)

MonthAfter*DistrF —1.676 —1.676 —1.676 —1.676 —1.676 —1.676
(1.464) (1.437) (1.362) (1.389) (1.319) (1.345)

MonthA fter*MildDistrF —4717  —ATIT  —ATIT  —471T  —4717  —4717
(3.690)  (3.080)  (3.559)  (3.630)  (3.732) (3.805)

NextMonths*Elig 2.016%*  2.016**  2.016**  2.016%*  2.016%**  2.016%**
(0.873)  (0.855)  (0.790)  (0.806)  (0.618) (0.630)

NextMonths*DistrF —1.059 —1.059 —1.059 —1.059 —1.059  —1.059
(1.815)  (1.804)  (1.894)  (1.931)  (1.700) (1.733)

NextMonths*MildDistrF 3.261 3.261 3.261 3.261 3.261 3.261
(3.801)  (3.828)  (4.602)  (4.693)  (4.495)  (4.584)

Country-industry-month FE Yes Yes Yes Yes Yes Yes

Firm FE Yes No Yes No Yes No

Firm-eligibility FE No Yes No Yes No Yes

Firm-eligibility clustered SE No No Yes Yes No No

Country-industry-eligibility clustered SE No No No No Yes Yes

Observations 2,877 2,877 2,877 2,877 2,877 2,877
R2 0.392 0.489 0.392 0.489 0.392 0.489
Notes: *p < .10; **p < .05; ***p < .01
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Table 2.23: Regression for the announcement effect of the CSPP (announced on March
10, 2016) on bond issuance using a 10 month window around the announcement with
firm distress indicators. EventMonth = 1 on March 2016, MonthAfter = 1 on April 2016,
NextMonths = 1 in the subsequent months. Elig = 1 if the issuance is eligible as collateral.
DistrF and MildDistrF take value 1 if the bond is issued, respectively, by a firm that
was in a state of distress or mild distress before the announcement. Distress is defined
on the basis of the price performance of the bonds of the firm in the months before the
announcement (see Section 2.6.1 for details). This table uses country-industry-month fixed
effects. Standard errors are corrected for heteroschedasticity or otherwise clustered at the
specified level. Standard errors are in parentheses. All regressions are weighted by the
outstanding amount of bonds of the issuer at the beginning of the sample period.

Net Issuance by Eligibility (%)
1) (2 (3) (4) (5) (6)

Elig 1.000*** 1.000** 1.000**
(0.223) (0.408) (0.435)
EventMonth*Elig 3.039 3.039 3.039 3.039 3.039 3.039
(2.163) (2.063) (2.155) (2.165) (2.248) (2.259)
EventMonth*DistrF 0.627 0.627 0.627 0.627 0.627 0.627
(1.367) (1.309) (1.330) (1.337) (1.340) (1.347)
EventMonth*MildDistrF 1.575 1.575 1.575 1.575 1.575 1.575
(2.028) (1.779) (1.662) (1.670) (1.644) (1.652)
MonthAfter*Elig —0.454 —0.454 —0.454 —0.454 —0.454 —0.454
(0.769) (0.704) (0.708) (0.711) (0.436) (0.438)
MonthAfter*DistrF —1.903* —1.903* —1.903* —1.903* —1.903**  —1.903**
(1.096) (1.049) (1.037) (1.042) (0.948) (0.953)
MonthAfter*MildDistrF —2.900 —2.900 —2.900 —2.900 —2.900 —2.900
(2.366) (2.093) (2.062) (2.073) (2.698) (2.712)
NextMonths*Elig 0.750** 0.750** 0.750** 0.750** 0.750*** 0.750***
(0.338) (0.318) (0.322) (0.323) (0.253) (0.254)
NextMonths*DistrF —0.886 —0.886 —0.886 —0.886 —0.886 —0.886
(0.909) (0.892) (1.004) (1.009) (0.999) (1.004)
NextMonths*MildDistrF 0.759 0.759 0.759 0.759 0.759 0.759
(0.988) (0.961) (1.228) (1.235) (1.129) (1.135)
Country-industry-month FE Yes Yes Yes Yes Yes Yes
Firm FE Yes No Yes No Yes No
Firm-eligibility FE No Yes No Yes No Yes
Firm-eligibility clustered SE No No Yes Yes No No
Country-industry-eligibility clustered SE No No No No Yes Yes
Observations 9,154 9,154 9,154 9,154 9,154 9,154
R2 0.478 0.517 0.478 0.517 0.478 0.517
Notes: *p < .10; **p < .05; **Fp < .01
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Table 2.24: Regression for the announcement effect of the CSPP (announced on March
10, 2016) on bond issuance using a 3 month window around the announcement with firm
distress and eligibility indicators. EventMonth = 1 on March 2016, MonthAfter = 1 on
April 2016, NextMonths = 1 in the subsequent months. EligF = 1 if the firm has bonds
that are eligible as collateral at the beginning of the sample period. DistrF and MildDistrF
take value 1 if the bond is issued, respectively, by a firm that was in a state of distress
or mild distress before the announcement. Distress is defined on the basis of the price
performance of the bonds of the firm in the months before the announcement (see Section
2.6.1 for details). This table uses country-industry-month fixed effects. Standard errors
are corrected for heteroschedasticity or otherwise clustered at the specified level. Standard
errors are in parentheses. All regressions are weighted by the outstanding amount of bonds
of the issuer at the beginning of the sample period.

Total Net Issuance (%)

(1) (2) 3
EventMonth*EligF 4.692 4.692 4.692
(2.983) (3.391) (4.924)
EventMonth*DistrF 2.850 2.850 2.850
(2.736) (2.993) (4.165)
EventMonth*MildDistrF 0.026 0.026 0.026
(3.417) (3.962) (4.152)
MonthAfter*EligF —4.172* —4.172 —4.172%*
(2.372) (2.783) (1.708)
MonthAfter*DistrF —5.497** —5.497** —5.497***
(2.305) (2.498) (1.942)
MonthAfter*MildDistrF —7.490 —7.490 —7.490
(5.067) (6.515) (7.386)
NextMonths*EligF —1.018 —1.018 —1.018
(1.973) (2.077) (1.870)
NextMonths*DistrF —3.595 —3.595 —3.595*
(2.510) (2.701) (2.147)
NextMonths*MildDistrF 2.199 2.199 2.199
(4.594) (5.763) (5.844)
Country-industry-month FE Yes Yes Yes
Firm FE Yes Yes Yes
Firm clustered SE No Yes No
Country-industry-eligibility clustered SE No No Yes
Observations 2,349 2,349 2,349
R>2 0.573 0.573 0.573
Notes: *p < .10; *fp < .05; **p < .01
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Table 2.25: Regression for the announcement effect of the CSPP (announced on March
10, 2016) on bond issuance using a 10 month window around the announcement with firm
distress and eligibility indicators. EventMonth = 1 on March 2016, MonthAfter = 1 on
April 2016, NextMonths = 1 in the subsequent months. EligF = 1 if the firm has bonds
that are eligible as collateral at the beginning of the sample period. DistrF and MildDistrF
take value 1 if the bond is issued, respectively, by a firm that was in a state of distress
or mild distress before the announcement. Distress is defined on the basis of the price
performance of the bonds of the firm in the months before the announcement (see Section
2.6.1 for details). This table uses country-industry-month fixed effects. Standard errors
are corrected for heteroschedasticity or otherwise clustered at the specified level. Standard
errors are in parentheses. All regressions are weighted by the outstanding amount of bonds
of the issuer at the beginning of the sample period.

Total Net Issuance (%)

(1) (2) 3
EventMonth*EligF 4.522 4.522 4.522
(2.817) (2.909) (4.182)
EventMonth*DistrF 2.977 2.977 2.977
(2.480) (2.620) (3.534)
EventMonth*MildDistrF 2.227 2.227 2.227
(2.240) (2.157) (2.423)
MonthAfter*EligF —2.917 —2.917 —2.917%**
(1.839) (1.949) (1.111)
MonthAfter*DistrF —4.638** —4.638** —4.638%**
(1.835) (1.903) (1.366)
MonthAfter*MildDistrF —4.831* —4.831 —4.831
(2.852) (3.096) (3.969)
NextMonths*EligF —0.702 —0.702 —0.702
(0.712) (0.823) (0.825)
NextMonths*DistrF —2.120* —2.120 —2.120
(1.160) (1.387) (1.361)
NextMonths*MildDistrF 0.431 0.431 0.431
(1.244) (1.601) (1.641)
Country-industry-month FE Yes Yes Yes
Firm FE Yes Yes Yes
Firm clustered SE No Yes No
Country-industry-eligibility clustered SE No No Yes
Observations 7,522 7,522 7,522
R>? 0.548 0.548 0.548
Notes: *p < .10; **p < .05; **tp < .01



Appendix 2.E Effects of the PSPP Announcement
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Figure 2.8: Weighted average of log-prices and log-returns of bonds issued by Euro-area
NFC with bond rating between BBB+ and BB. The weights are given by the initial out-
standing amount of the bond. Bonds in this figure have been traded for the entire sample
period. The vertical line marks the announcement of the PSPP (January 22, 2015).
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Figure 2.9: Weighted average of log-prices and log-returns of eligible and non-eligible bonds
issued by Euro-area NFC with bond rating between BBB+ and BB. The weights are given
by the initial outstanding amount of the bond. Bonds in this figure have been traded for
the entire sample period. The vertical line marks the announcement of the PSPP (January
22, 2015).
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CHAPTER 3
FINANCIAL INTERMEDIATION AND FLIGHTS TO
SAFETY

3.1 Introduction

Many existing contributions have interpreted countercyclical demand for riskless as-
sets as reflecting time-varying costs of external financing. However, evidence from
the behavior of the banking system exposes the empirical gaps of this theory. Indeed,
banks can currently rely on virtually unlimited funds from central banks, but they
are nevertheless holding record-high levels of excess reserves.

In this paper, I show that episodes of sudden portfolio re-allocation towards risk-
less securities are a robust feature of a game of incomplete information between
investors and an intermediary. Specifically, I model a continuous time interaction
between a population of investors and a large intermediary. Investors can purchase
riskless securities and let the intermediary manage the remaining part of their cap-
ital. In exchange of its services, the intermediary receives a proportional fee, which
is determined endogenously. Besides the risk-free asset, the intermediary has also
access to a risky investment opportunity whose expected return (above the risk-free
rate or below the risk-free rate) is its private information and is associated with the
intermediary’s type (good or bad). Investors do not observe the type of the inter-
mediary or its portfolio allocation, but can observe a signal that coincides with the
returns generated by the intermediary.

The key state variable of the model is the intermediary’s reputation, i.e. in-
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vestors’ posterior beliefs that the intermediary is of the good type. The law of
motion of reputation is endogenous and depends on the entire history of the inter-
mediary’s performance. This provides incentives for the intermediary to choose a
portfolio allocation between riskless and risky assets in order to manipulate the dis-
tribution of the signal and, consequently, the evolution of its reputation. Clearly,
in equilibrium, investors will rationally anticipate the strategy of the intermediary,
neutralizing signal manipulation and giving rise to instances of signal jamming of
the type discussed in Stein (1989).

The model generates episodes of hoarding of riskless assets that bear a qualitative
similarity to those observed during financial crises (see Acharya and Merrouche, 2012
Ashcraft et al., 2011 and Beber et al., 2009 for empirical investigations of liquidity
hoarding during the latest crisis). Hoarding, in my model, takes place in the asset
side of the intermediary’s balance sheet, as soon as it heavily invests in riskless
securities in order to control the evolution of its reputation.

Contrary to existing literature, liquidity hoarding, in my model, is not directly
associated with changes in exogenous state variables. Indeed, demand for riskless
assets, in a Markovian equilibrium, negatively depends on the intermediary’s reputa-
tion, which evolves endogenously as investors learn by observing returns. Therefore,
hoarding will typically happen after a sequence of particularly low returns.

The equilibrium of the model is characterized by investors learning the type of
the intermediary and by intermediaries of different types choosing the same portfolio
allocation. Investors use Bayes’ rule to update their beliefs about the type of the

intermediary after observing the entire history of returns. As long as investors,
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who are risk-neutral, expect the intermediary to deliver returns above the risk-free
rate, the intermediary will survive and manage investors’ capital. However, when
beliefs fall below a threshold, the intermediary will be terminated, since investors
will prefer to hold riskless securities. The bad intermediary, therefore, imitates the
portfolio allocation of the good one. Indeed, if this was not the case, the two types
would generate signals with different volatility and, hence, they could be immediately
separated, leading to the termination of the bad type.

I provide analytical results showing that, when reputation is low enough and
the risk of early termination is high, the intermediary, rather than gambling for
resurrection, will become risk averse and minimize the risk in its portfolio. This
outcome is in stark contrast with most of the existing literature on risk-shifting and
is linked to the learning dynamics and the infinite horizon of the model'. Indeed, near
the threshold below which the intermediary is terminated, the expected excess return
on the intermediated asset is approximately zero, according to investors’ beliefs.
Therefore, a small amount of risk is sufficient for the good intermediary to exceed,
on average, investors’ expectations and, thus, to ensure that beliefs acquire a positive
drift. Moreover, if a negative shock to returns, and hence to reputation, is realized,
the good intermediary will be terminated and it will lose the option to signal its
type through returns. Therefore, the optimal choice is to minimize the amount of
portfolio risk.

In order to highlight the key mechanisms behind the model’s results and test their

robustness, I develop some variations and extensions of the basic set-up. I show that

1. Panageas and Westerfield (2009) have shown that the risk-taking incentives of convex payoff
schemes may disappear if an asset manager has an infinite investment horizon.
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lack of commitment about the intermediary’s trading strategy is crucial in delivering
the results of the paper. Indeed, whenever the intermediary can ex-ante commit to
a portfolio allocation, no hoarding happens, since the signal-manipulation incentives
disappear. Moreover, I show that hoarding can be observed also in those situations
in which the intermediary cannot control the law of motion of investors’ capital. This
remarks that the relevant incentives entirely come from the informational asymme-
tries in the model.

To account for the recurring nature of liquidity hoarding episodes, I also develop
a model where the type of the intermediary evolves stochastically. Indeed, if the type
is fixed, beliefs will converge with probability one to either zero or one, reflecting the
fact that beliefs must be asymptotically correct. This would imply that, if we consider
a partial equilibrium model with a single intermediary, liquidity hoarding episodes
are transient and will disappear in the long run. By allowing the intermediary’s
type to be time-varying, episodes of liquidity hoarding may appear with a cyclical

pattern. My analysis suggests that the model is robust to this extension.

The rest of the paper is organized as follows. In section 3.2, I compare this paper
to the existing literature. I then introduce the model in section 3.3, where I also give
the definition of sequential equilibrium and provide a characterization. In section 3.4,
I characterize and solve for a Markovian equilibrium where the state variables are
the capital of investors and the reputation of the intermediary. Section 3.5 contains
variations and extensions of the model. Finally, section 3.6 concludes. All proofs are

collected in Appendix 3.A, while Appendix 3.B contains additional plots.
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3.2 Related Literature

The relation between investors’ confidence, reactions to news and liquidity hoarding
has always been one of the reasons provided to explain historical patterns in demand
for liquidity and riskless assets. Friedman and Schwartz (1971) wrote the following

about the Great Depression:

“Excess reserves, which in January 1931 had for the first time since 1929,
when data became available, reached the $100 million level and had then
declined as confidence was restored, again rose, reaching a level of $125-
$130 million in June and July. Once bitten, twice shy, both depositors
and bankers were bound to react more vigorously to any new eruption
of bank failures or bank difficulties than they did in the final months of

1930.”

A sharp rise in excess reserves has also been observed during the recent financial
crisis (see Figure 3.7 in Appendix 3.B).

My model is able to rationalize these facts by appealing to one simple friction,
i.e. the information asymmetry about the type of the intermediary and its portfolio
allocation. This is in contrast with the banking and macro-finance literature, which
usually appeals to moral hazard or unobservable cash flows as key frictions in financial
markets (Bernanke and Gertler, 1989; Bernanke et al., 1999; Gertler and Karadi,
2011; Gertler and Kiyotaki, 2010).

A similar comparison can be made with the literature on intermediary asset

pricing with frictions. The main result of this literature is the pro-cyclical variation
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of demand for risky assets and the key driving force is the presence of leverage
constraints or market incompleteness (Brunnermeier and Sannikov, 2014; He and
Krishnamurthy, 2012, 2013). In my model, the driving forces behind the same kind
of result are simply the inter-temporal incentives of intermediaries to manipulate the
distribution of returns in bad times in order to avoid risks of reputation losses.

Flight to quality and liquidity hoarding have been subject to discussion under
different perspectives in previous theoretical literature. In Bernanke et al. (1996)
the key driver of these phenomena are time-varying agency costs. In Vayanos (2004)
it is stochastic volatility coupled with risk of early liquidation of the intermediary.
For Caballero and Krishnamurthy (2008) the reason behind liquidity hoarding lies in
exogenous liquidity shocks and knightian uncertainty. Acharya et al. (2012), Acharya
et al. (2007) and Acharya and Skeie (2011) focus instead on the role of external
financing frictions and the variation in credit risk, investment opportunities and roll-
over risk, respectively, to explain variation in demand for safe assets. Finally, in Gale
and Yorulmazer (2013) the absence of contingent markets for the provision of liquidity
creates incentives for investors to occasionally hoard liquidity for precautionary or
speculative reasons.

This paper is also closely related to the literature on reputation in dynamic games.
Fudenberg and Levine (1992) provide the classic benchmark in a discrete time model,
where they derive bounds for the equilibrium payoffs of the rational large player, as
its discount rate tends to zero. Faingold and Sannikov (2011) extend this model to
continuous time and obtain a sharper characterization of the equilibrium payoffs.

These models share the common feature that reputation does not carry a premium
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per se, but it just affects the actions of players. Board and Meyer-ter Vehn (2013)
model a reputation game between consumers and a firm whose product quality is
private information. The firm enjoys reputational dividends, as reputation affects
the market price of the product. Similarly, in my paper, reputation will directly
affect the cash flow of the intermediary through the fee paid by investors.

My approach also bears connections with the recent literature of continuous time
games. However, besides the fact that my set-up differs from the typical principal-
agent problem, an additional point of departure is the fact that, in my model, the
intermediary controls also the volatility of the signal, and not only its drift. Holm-
strom and Milgrom (1987) is the first contribution to the literature of continuous
time games where the signal follows a diffusion process whose probability distribu-
tion is controlled by an agent. Later, Sannikov (2007) and Sannikov (2008) extended
this framework to more general settings and showed that the key state variable in
this class of models is the continuation value of the agent. Indeed, this is the relevant
variable to take into consideration in the provision of dynamic incentives. DeMarzo
and Sannikov (2006) apply these techniques to the optimal design of securities of
firms and He (2009) extends the analysis to firms growing as a geometric Brownian
motion whose drift is controlled by the agent.

The type of economic interaction explored in this paper is very similar to the
typical setting in the delegated asset management literature. Hugonnier and Kaniel
(2010) is probably the closest, in spirit, to my paper. Indeed, they characterize the
optimal portfolio allocation of an asset manager who has to dynamically raise funds

from external investors. However, their implicit assumption is that the asset manager
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is able to ex-ante commit to a dynamic trading strategy and that, in choosing it, the
asset manager takes into account how the strategy will affect the dynamic incentives
of investors. This leads to the possibility of sub-game imperfection. In my model,
the equilibrium is subgame perfect and is characterized by imperfect information and
by the impossibility of the asset manager to commit to a state contingent trading
strategy.

Vayanos (2004) explores the time variation of liquidity premia in a general equi-
librium model with intermediation. Stochastic volatility is the main state variable
of the model and intermediaries are subject to early termination according to an
exogenously specified rule, that is based only on the short-term performance of the
intermediary. In my model, time-varying demand for safe assets does not depend on
stochastic volatility, but only on the endogenous evolution of reputation. Further-
more, in my set-up, the termination rule is endogenous and depends on the entire
history of the intermediary’s performance.

Other papers (Basak and Cuoco, 1998; Cuoco and Kaniel, 2011; Kaniel and Kon-
dor, 2013) have analyzed the asset pricing implications of delegated asset manage-
ment. Despite I limit the analysis to a partial equilibrium environment, I provide
a micro-foundation to the asset manager’s compensation when he faces a set of risk
neutral and competitive investors. This makes the fees paid to the asset manager
naturally dependent on the historical performance of the funds, while in previous
contributions fees where either fixed or assumed to depend on past performance
through an exogenously specified function. Fees, in my model, represent a premium

that the intermediary receives for its reputation.
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Indeed, contributions in the active portfolio management literature, e.g. Berk
and Green (2004), showed that the presence of competitive capital markets is able to
dramatically change the empirical asset pricing implications of models with interme-
diation. While, in Berk and Green (2004), equilibrium is achieved through changes in
the size of the fund and decreasing returns to scale, in my model adjustment happens

through the price, i.e. the fee, paid by investors to access the fund’s services.

3.3 Model

I consider a partial equilibrium model where a large intermediary and a population of
investors are present. Investors have the choice of either investing in a riskless asset
or let an intermediary manage their capital. The intermediary manages investors’
fund in exchange of a proportional fee that, in equilibrium, constitutes a premium
for its reputation. The intermediary can be one of two types and investors cannot

observe the type of the intermediary.

3.3.1 Investment Opportunities

0 =rdt, r >0,
St

; 0
for a given 5.
The other two assets are risky. The price of the first risky asset, defined as the
good asset, evolves according to
S}

Dk dt + odWy,
Stl M1 t
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for a given Sé, while the second asset, defined as the bad asset, follows

dS?

DU odt + od W,
StQ K2 t

for a given Sg. Note that both risky assets have the same volatility and are exposed
to the same Weiner process.

The following assumption provides the reason why the two assets are defined as

good and bad.

Assumption 3.1. In an economy where no individual is risk-lover, the bad asset is

dominated by the other two, i.e.

Bl >1 > 3.

Investors can only hold positive amounts of the riskless asset and let an interme-
diary manage the remaining part of their portfolio. The intermediary can be one of
two types, good or bad. Both types can invest in the riskless security, but they differ
in terms of the risky investment opportunity that is available to them. Indeed, the
good intermediary can invest in the good asset but not in the bad one, while the bad

intermediary can invest in the bad asset, but not in the good one.

3.3.2  Players

The economy is populated by a unit measure of small and atomistic investors so that

none of them, taken individually, is able to influence the incentives of the intermedi-
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ary.
Investors are risk neutral and discount future utility at rate r, thus evaluating a

consumption process (ct)¢>0, conditional on the history of the game up to time ¢,

o0
E {/ e ey ds’&",{] :
0

where (ff"{ )t>0 is the investors’ information filtration, which will be fully characterized

according to

in section 3.3.3.

Investors are endowed with a stock of capital K at time zero. At each time t,
they decide which fraction of their capital that will be invested in riskless assets.
The remaining part will be managed by the intermediary from time ¢ to time t + dt.
Let 6; € [0, 1] be the fraction of capital that investors delegate to the intermediary
and let dR; be the return generated by the intermediated assets. Then, the law of

motion of investors’ capital is

K

= (1 — Qt)rdt + 9t<th — ftdt). (3,1)
Ki

ft is the proportional fee received by the intermediary for managing capital from
t to t+dt. The fee in paid up-front at time ¢ and investors will receive the full return,
dRy, generated by the intermediated assets. The fee will be endogenously determined
by a break-even condition for investors. The existence of fees will provide incentives
for the bad intermediary to keep operating despite the socially wasteful investment
opportunity. The intermediary cannot save on its own account and immediately

consumes all the fees it receives. Therefore fees have to be non-negative.
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Once investors decide the amount of assets that the intermediary will manage,
the latter will be free to choose a portfolio allocation between the riskless asset and
the risky investment opportunity available. In this sense, the portfolio allocation of
the intermediary is not contractible.

Indeed, the intermediary will choose a process for the fraction of risky assets in
its portfolio, which I call portfolio risk and denote with (i;);>0, after the investors’
capital has been transferred to the intermediary and after fees have been collected.
Investors cannot directly observe the choice of portfolio risk. Moreover, even if it
was revealed, there would be no mechanism to impose a penalty on an intermediary
that deviates from a previously agreed portfolio risk.

The intermediary is risk neutral and discounts future consumption at rate p.
Given a process for the assets under management, (6;K¢)¢>0, the intermediary re-

ceives a lifetime utility, conditional on the history of the game up to time ¢, of

E { /O T 0, K s ds‘?t] . (3.2)

where (JF¢)¢>0 represents the intermediary’s information filtration (more on this in
section 3.3.3).
Therefore, given an investment strategy (it);>o for the intermediary, the return

on the assets under management is described by
dRy = rdt + it (hpq + (1 — h)pug — r)dt + izodWs. (3.3)

h € {0,1} is random variable, drawn at time zero, that defines the type of the
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intermediary. h = 1 indicates that the intermediary is of the good type and, thus,
has access to the good investment opportunity. A = 0 means that the intermediary
is bad and can therefore invest in the bad asset.

Given the risk neutrality of the players, it is necessary that the portfolio risk, i,
lies in a compact set in order to guarantee the existence of a solution to the portfolio
allocation problem, at least in the limiting case of perfect information with a good

intermediary. Hence, I assume the following.

Assumption 3.2. The intermediary is subject to a minimum and a mazimum port-
folio risk constraints, i.e.

1t € [i,ﬂ Vt.
with 0 < 1 < 1.

A positive upper bound for i; can be interpreted as a limit on risk-free borrowing.
While a no-short selling constraint would impose ¢ = 0, this model actually requires
the slightly stronger assumption that  is strictly positive. The motivation is related
to the learning part of the model that will be described in section 3.3.4 and in
Proposition 3.2 in particular. To explain briefly, the fact that the intermediary has
always to hold some risk in its portfolio guarantees that returns are always stochastic
and investors will always learn from them. This avoids theoretical complications in
the dynamic game when considering deviation to a portfolio risk zg > ( when the
equilibrium risk is 7+ = 0. In these cases, the equilibrium returns are deterministic
and investors do not learn from them in equilibrium. If, however, the intermediary

deviates, then it will provide investors with a return that, with probability 1, differs
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from the equilibrium (deterministic) one. Strong assumptions would then be needed
to pin down the off-equilibrium beliefs of investors.

A further assumption will be needed to ensure the existence of a solution to the
model in the perfect information case. As it will become clear in section 3.4.1, when
the intermediary is of the good type and there is perfect information, in equilibrium
fees will be constant and capital will grow as a geometric Brownian motion with drift
r. The following assumption is then necessary for the continuation value of the good

intermediary to be bounded under perfect information.

Assumption 3.3. The intermediary is more impatient than investors, i.e.

p>r.

In the next subsection, I will precisely describe the information structure of the

game and formalize the definition of the strategies of the players.

3.3.83  Information Structure

There are two sources of asymmetric information in this game. The first one is that
the type of the intermediary (good or bad) is private information of the intermediary
itself. The second one is that investors do not observe the portfolio allocation 7 of the
intermediary, but only the total return dR;. This implies that investors’ strategies
cannot directly depend on the type of the intermediary they are facing, or on the
history of the Wiener process (W3)s>0.

To set the notation, let (€2,F*, P) be a probability space and let the Wiener
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process (W¢)i>0 and the type of the intermediary h be independent random variables
on (2,5%).

In order to formally define the strategies of the investors, let (fft[ )t>0 be the
filtration generated by the process (R;);>0, possibly augmented by the collection of
P-null sets. An action 6; for the investors at time ¢ is an Sftl -measurable function
that maps histories of returns up to time ¢ into the action space of delegated portfolio
share, [0, 1].

The intermediary is instead endowed with a larger filtration, namely a filtration
(Ft)¢>0 that is generated by h and (W});>0 and is possibly augmented by the col-
lection of P-null sets. Therefore, an action 4; for the intermediary at time ¢ is an
Fi-measurable function that maps its type and histories of the Wiener process up to
time ¢ into the action space [¢,]. Let ztG and P indicate the action it conditional
on the type being good (h = 1) and bad (h = 0), respectively. Since I consider only
pure strategy equilibria, the filtration (J});>( coincides with the filtration generated
by h and (Rt)tZOQ and, hence, it is without loss of generality to assume that the
actions of the two types, ztG and ztB , are public, i.e. they depend on the history of
the signal (Rs)o<s<t-

Finally, the fee f; is defined as an ?tl -measurable random variable that represents
the premium investors are willing to pay to the intermediary to have access to its
intermediation services.

Investors do not know the type of the intermediary they are facing. At time

zero, they start with a prior ¢g € [0, 1] that the intermediary is of the good type.

2. See Appendix 3.A.1 for a proof.
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Conditional on the intermediary having a positive amount of assets under manage-
ment, investors will receive a signal, coinciding with the return generated by the
intermediary, dRR¢. On the basis of the signal and of the equilibrium strategies of the
two types, investors will update their beliefs. A belief process (¢¢)¢>( is therefore
a stochastic process, adapted to (I}"tI )t>0, representing the probability that investors
assign, at each time t, to the good intermediary. I refer to ¢; as the reputation of

the intermediary at time .

3.3.4  Sequential Equilibrium Definition and Characterization

I will now define and characterize a sequential equilibrium of this game. The fol-
lowing definition implicitly assumes the existence of market clearing mechanism for
the allocation of investors’ funds. Moreover, it assumes that, whenever investors are
indifferent between the riskless asset and the intermediary, they will let the inter-
mediary manage their whole portfolio, provided that the intermediary generates a

strictly positive expected excess return, according to their information®.

Definition 3.1 (Public Sequential Equilibrium). A public sequential equilibrium
consists in a fee process (ft)i>0, @ process for the fraction of capital managed by
the intermediary (0¢)¢>0, a portfolio risk process (it)>g and a belief process (¢¢)i>0,
such that, for all times t > 0 and after every history of the game up to time t, the

following conditions hold.

3. In a partial equilibrium setting with risk-neutral investors like this one, it is not possible to
precisely pin down quantities. One way to justify this assumption, is to think that the intermediary
can always request an infinitesimally smaller fee and break the tie in its favor. This is the reason
why, according to Definition 3.1, in equilibrium 6, = 1 if and only if f; > 0.
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(i) Investors break even,

fr = Elig(hpg + (1 = h)ug — 1)|F{].

(11) 0y = 1 if and only if Eliz(huy + (1 — h)ug — 7’)|3"{] > 0, 6 = 0 otherwise.

(iii) Guven the public strategy profile (it)¢>0 and an initial ¢ € [0, 1], beliefs (¢¢)¢>0

are updated using Bayes’ rule and are consistent with the public strategy profile,

¢¢ = E[h|F]].

(i) (it)t>0 mazimizes the intermediary’s lifetime utility (3.2) given (i), (i), (i)

and the law of motion of capital (3.1).

We have seen that we can restrict our attention to equilibria in public strategies.
This means that the strategies of the two types may differ, but they will depend
on the history of the process R;. The following proposition provides a stronger

characterization of the equilibrium strategies of the two types.

Proposition 3.1. In equilibrium, iz 1s fftl measurable P-a.s. and, therefore, ztG = ztB

P-a.s..

The intuition for this result is that, being (iz);>0 related to the volatility of the
process (R¢)i>0, an observer is able to learn about it very quickly thanks to the
high frequency movements of (R;);>0. Therefore, if the two types choose different

portfolio risks, consistency of beliefs will impose to assign a correct and degenerate
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posterior probability distribution over types. Since the bad intermediary destroys
value for investors, the bad intermediary will be terminated if it is separated. Given
this belief formation rule, the bad type has incentives to pool with the good one.

Since zero measure deviations do not change the lifetime utility of the players, I
will simply assume that the two types pool at every time t. We can therefore simply
denote as (it);>0 the common choice of portfolio risk process of the two types.

Proposition 3.1, however, leaves a large number of possible equilibria. Indeed,
given investors’ expectations about the process (it)¢>( chosen by the good type, both
types will have an incentive to pool to such process in order not to be considered
bad and terminated by investors.

For the purposes of this paper, I will simply assume that the bad intermediary
imitates the choice of the good one. The good intermediary is free to choose the
process (it)¢>0 that maximizes its lifetime utility, without concerns of seeing its
own reputation decreased or increased because of its choice of (it);>p. In other
words, the good intermediary chooses its portfolio risk while assuming that investors
update their beliefs exclusively on the basis of the returns they observe. Investors
understand this and understand that the bad intermediary will imitate the good one.
Therefore, they will not penalize deviations towards strategies that are optimal for
the good intermediary, given the way in which investors learn from returns. I leave
the investigation of more general equilibrium refinement concepts for future work*.

Once the intermediary chooses its portfolio allocation, it will generate a return

4. Extending the divinity refinement concept of Banks and Sobel (1987) to continuous time
games seems to be a promising way to pin down the type of pooling equilibrium that I assume in
this paper.
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that will be delivered to investors without any agency friction. Since different types
of intermediaries induce different probability distribution over returns, investors will
exploit the history of returns to learn the type of the intermediary. Standard filtering
results, extensively used in the literature on learning and continuous time strategic
experimentation (Bolton and Harris, 1999; Hansen and Sargent, 2011; Pastor and

Veronesi, 2009; Veronesi, 1999), lead to the following Proposition.

Proposition 3.2. Given a prior at time 0 that the intermediary is good ¢q € [0, 1],
and given an equilibrium strategy profile (it)¢>0, a belief process (¢1)r>0 s consistent

with the strategy profile if, when 6y > 0, it satisfies the stochastic differential equation

doy = p(dr) (ir0) T (dRy — p(iy, d)dt) (3.4)

with

o(or) = (1 — dr)o Mg — po)

and

p(it, or) =1 + it [prpn + (1 — @)z — 7]
and where the expression for dRy is given by (3.3), while, when @ =0, d¢y = 0.

The terms @(it, ¢t), (ita)fl and (i, ¢t), as well as, the distribution of dR;
depend on ;. However, they do so for different reasons. Indeed, the quantities
o(is, &), (iz0) "1 and p(it, ¢¢) are set by investors as a function of the strategy played
in equilibrium by the intermediary. It follows that those terms will be taken as given
by the intermediary when it has to choose its trading strategy. On the contrary, the
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distribution of dR; directly depends on the action of the intermediary. The interme-
diary, therefore, will consider how the distribution of dR; changes when it considers
deviations from the equilibrium strategies.

Of course, an equilibrium must be such that the intermediary has no incentives
to deviate. But, by keeping the distinction clear, I intend to stress the main channel
through which signal manipulation incentives arise.

Suppose that the intermediary is contemplating a deviation (i});>( from the equi-
librium (4¢)¢>0. This will induce a different probability distribution for the signal
dR; so that, under the intermediary’s information filtration, the law of motion of

beliefs is given by

dor = @(¢¢) (it0) L [+ i (hpuy + (1= R)pg — 1) — iy, d)]dt + (1) (i) ~L (i) dWy.

In equilibrium, the intermediary must have no incentive to choose a trading strat-
egy that is different from the equilibrium one. Therefore, under the information

filtration of the intermediary, the equilibrium law of motion of beliefs is given by

dy = () (h — ) 2 Mdt + @(¢¢)dW5.

The drift in the latest equation is positive if the intermediary is good, i.e. if
h = 1, while it is negative when the intermediary is bad, i.e. when A = 0. This
reflects the fact that, while under the information filtration of investors beliefs are
martingales, under the information filtration of the intermediary they converge a.s.

to either 0 or 1, depending on whether the intermediary is bad or good, respectively.
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While the bad intermediary has to follow the trading strategy chosen by the
good one, the latter can choose a trading strategy in order to control the evolution
of capital and beliefs by manipulating the distribution of returns dR;. Indeed, by
controlling the evolution of K; and ¢, the intermediary is controlling the process
for its cash flow Kyf;. For example, the good intermediary may have an incentive
to choose a low 7 in order to reduce the volatility of the signal and, consequently,
of beliefs and capital, despite this will reduce their drift. However, in equilibrium,
these incentives will be understood by investors who will then scale the signal by
the appropriate liquidity ratio 7¢+. This could give rise to a phenomenon of signal-
jamming in the demand for riskless assets. The intermediary may try to manipulate
the distribution of the signal by demanding less risk, but such manipulation will be

offset in equilibrium by the rational expectations of the investors.

The discussion so far has been quite general and players’ actions at time ¢t may
depend on the entire history of returns up time ¢. In the next section, I discuss the

properties of an equilibrium that is Markovian in capital and beliefs.

3.4 Markovian Equilibrium

Investors’ capital and beliefs naturally embody the entire history of the game and
constitute natural state variables of the model. In an equilibrium that is Markovian
in these state variables, the intermediary has to consider two elements which affect
the amount of assets under management and the fees in future periods: the growth

rate of investors’ capital (3.1) and the change in its reputation (3.4).
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Thanks to the functional form of the intermediary’s utility, it is possible to guess

and verify®, that the continuation value of the intermediary will be linear in capital,

V(K. ¢) = Kg(9), (3.5)

and that the players’ strategies will be functions of the intermediary’s reputation only
and not of the level of capital, since capital is essentially a scaling variable. There-
fore, let i(¢¢) denote the value of the intermediary’s risk at time ¢ in a Markovian
equilibrium and let 6(¢;) be the value of 6 in a Markovian equilibrium.

The break even condition (i) in Definition 3.1, will therefore become

ft = f(or) = i(dr) [Pt + (1 — oo — 1] (3.6)

Since i(¢) > 0 for all ¢ by Assumption 3.2, then condition (ii) of Definition 3.1
can be expressed in terms of a threshold ¢ for the intermediary’s reputation below
which the expected excess return of the intermediary’s portfolio, given investors’

information, is negative for any possible value of i(¢). Such threshold is given by
L )
¢=—— (3.7)

p1— p2

For any ¢ > ¢ the intermediary will generate, according to investors’ information,
a strictly positive expected excess return. By condition (i) in Definition 3.1, this

excess return equals f(¢) and represents reputation rent of the intermediary, collected

5. See Proposition 3.3 below.
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in the form of fees, while investors will break even. If instead ¢ < ¢, investors expect
the intermediary to generate negative excess returns. Since the intermediary cannot
pay investors to allow it to experiment, investors will set 8(¢) = 0, beliefs will be no
longer updated and the intermediary will be terminated forever.

In the rest of this section, I will derive boundary conditions for the limiting cases
of $ = ¢ and ¢ = 1. I will then characterize the equilibrium in the open set (¢, 1)
and provide numerical results. Since I am assuming that the bad intermediary pools
on the trading strategy that is optimal for the good intermediary given (3.1) and
(3.4), I can solve for an equilibrium by simply focusing on the trading strategy and

continuation value of the good intermediary.

3.4.1 Boundary Conditions and Degenerate Beliefs Case

It is straightforward to derive the boundary condition at ¢ = ¢. Since, at that point,

the intermediary is terminated it must be the case that

9(¢) =0 (3.8)

and that g(¢) = 0 for all ¢ € [0, ¢].

I now derive the equilibrium continuation value and trading strategy in the perfect
information set-up. On the one hand, this provides a benchmark towards which we
can compare the imperfect information equilibrium outcomes. On the other hand
it provides a second boundary condition that is needed to solve the model with

imperfect information.
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Let ¢ = 1. By equation (3.4), this implies that there will be no learning. Given

the guess (3.5), the Hamilton-Jacobi-Bellman (HJB) equation is

pg(1) = max {f(1) + g(1)(r +i[(n1 —7) = (1))}
i€li,i)
It is clear that the solution requires i(1) = i and the continuation value exists

under Assumption 3.3 with

g(1) = ———. (3.9)

3.4.2 Markovian Equilibrium Characterization

I will now characterize a Markovian equilibrium of the game. I will show that,
provided that a function g(¢) exists and that it satisfies certain conditions, then
the continuation value is indeed given by K¢g(¢). Finally, I will provide analytical
results about the shape of g(¢) and the equilibrium portfolio risk i(¢) for ¢ in a
neighborhood of ¢. Contrary to what standard model with convex incentive schemes
predict, the intermediary displays risk aversion near the termination threshold and,
in equilibrium, it will keep as little risk as possible in its portfolio.

Since the intermediary maximizes (3.2) subject to (3.1) and (3.4), the HJB equa-
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tion is
py(¢) = _max{ fl9) +
~—~

flow payoff

g1 L= 1) = F(0)
L e

first orderzﬁect of d¢

+g@)r +iln 1) = (0) + 10
first order effect of dK
Ly 2 i

second orde?rr effect of d¢

+

b SO }

J/

interaction effe‘ctc of dp and dK

in the interval (¢, 1). It is important to bear in mind the difference between i(¢) and
i in equation (3.10). i(¢) represents the equilibrium trading strategy with respect to
which beliefs are consistent. It is therefore taken as given by the intermediary. i is the
choice variable of the intermediary, which is chosen in order to control the distribution
of returns and, consequently, the distribution of capital growth and beliefs changes.
Of course, in equilibrium, the optimal choice of ¢ by the intermediary must coincide
with i(¢).

An equilibrium i(¢) is therefore defined as a fixed point

i(¢) € arg max { ¢ (9)0(®) L) | g(8)i(uy - )
1€ [,1] i(p)o

+50"(0)0(0)%- +¢wwwwf—}<an>
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with f(¢) = i(¢)[¢p1 + (1 — @)ug — 7]
Consequently, in equilibrium g must solve the following second order differential

equation

+9/(@)(1 - )’ (M)Q +

+g(@)[r +i(o)(1 — &) (11 — p2)]+ (3.12)
Ly, 2 2 [ M1 — M2 2
AR (=l I

+ 4 (¢)p(1 — ¢) (1 — p2)i(o)

where i(¢) is defined as in (3.11) and f(¢) = i(¢)[dpu1 + (1 — ¢)ug — 7).

For the purposes of this paper, I will work under the assumption that there exists
a solution to (3.12). A careful exploration of questions related to existence and

uniqueness of the solution to the HJB equation will be subject to future research.

Assumption 3.4. There exists a bounded function g: [p, 1] — R that is twice con-
tinuously differentiable in (¢,1) and that satisfies (3.12) with boundary conditions

9(6) = 0 and g(1) = {57,

So far, I have guessed that the continuation value of the good intermediary is
linear in capital and heuristically proceeded to characterize an equilibrium by means
of equations (3.11) and (3.12). The following proposition provides a verification

theorem that confirms that my guess and characterization are valid if Assumption

3.4 holds.

Proposition 3.3. Under Assumption 3.4, if (¢t)1>0 evolves according to (3.4) with
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ir = i(¢¢), where i(¢) solves (3.11) for any ¢ € (p,1), then V(Ky, ¢¢) = Kig(or)
is the continuation value of the good intermediary at time t and (i(¢¢))i>0 is the

equilibrium trading strategy.

A second order differential equation like (3.12) does not lend itself to straightfor-
ward analytical solutions. However, it is possible to characterize the shape of g(¢)
when ¢ is sufficiently close to the termination threshold ¢. Similarly, is it possible
to solve for the equilibrium portfolio risk i(¢4) in the proximity of ¢.

While someone may expect the good intermediary to have incentives to risk-shift
and gamble as much as possible in order to leave the neighborhood of ¢, the following

Proposition shows that exactly the opposite happens.

Proposition 3.4. Under Assumption 3.4, there exists an € > 0 such that

9"(¢) <0 Vo€ (dd+e)

and

i(p)=1i Vo€ (d,d+e).

The proposition shows that the marginal value of capital g(¢) is concave near
®, so that the intermediary is averse to the risk of reputation losses in that region.
Furthermore, rather than gambling for resurrection, the intermediary chooses the
safest feasible portfolio near the termination threshold. This is in stark contrast
with models of risk-shifting with convex payoffs.

The reason behind this result is that, when ¢ is close enough to ¢, a very small

portfolio risk is sufficient for the good intermediary to give a positive drift to investors’
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beliefs. Moreover, the intermediary has no incentive to increase the volatility of the
belief process above the equilibrium one. Indeed, if a negative shock is realized and
the intermediary is terminated, the good intermediary would lose the option to signal
its type and gain reputation in the future. Therefore, near the threshold, for any
equilibrium i(¢), the unconstrained maximizer of the right-hand side of (3.11) is
strictly smaller than i(¢) itself and, hence, the only possible equilibrium is the one
where i(¢) = 1.

The result of Proposition 3.4 is consistent with evidence of liquidity hoarding and
flight to quality during financial crises. Given a sequence of bad returns that drive
down intermediaries’ reputation, the model predicts a shift of their portfolio towards
safe assets, which, in most cases, consist in currency or short-term government bonds.

In section 3.5.1, I introduce a variation of the model where the intermediary can
commit to a state contingent trading strategy. A comparison between Proposition
3.4 and Proposition 3.5 in section 3.5.1 highlights the role of incomplete contracts
in generating hoarding of safe assets. Indeed, if the intermediary could commit to a
trading strategy, in equilibrium the intermediary would always invest in risky assets
up to the limit ¢. This is because the signal manipulation incentives disappear and
only concerns about the growth rate of capital remain. On the contrary, when the
intermediary cannot commit, it will have incentives to trade off expected returns for

lower volatility in order to control the evolution of beliefs.

3.4.8 Numerical Results

I will now report numerical solutions to ODE (3.12).

249



20 T T T T 20

0 02 04 06 08 1 0 02 04 06 05 1
o o
(a) Marginal Value of Capital (b) Risky Assets to Total Capital

Figure 3.1: Case 1. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
1 = 0.05, i = 0.015, o = 0.07, p = 0.06, i = 20 and i = 10~°.

Figure 3.1 shows the marginal value of capital g(-) of the good intermediary and
the portfolio risk as a function of the beliefs of investors. The model in the Figure
is parameterized as follows: r = 0.03, u1 = 0.05, uo = 0.015, ¢ = 0.07, p = 0.06,
i=20and : = 1079, As a robustness check, in Appendix 3.B, I report numerical
results for eight alternative parameterizations of the model. The shape of the value
function and the shape of the demand for risky assets are robust to changes in the
parameters.

We can immediately notice a pattern that we can call of liquidity hoarding. For
high levels of reputation, the intermediary will invest in the risky asset as much as
possible. However, there is a level of reputation below which the demand for risky
assets decreases very rapidly until it reaches its lower bound.

It is easy to see how this mechanism is likely to play a role during financial crises.

Indeed, the dynamics of the reputation are tightly linked to the history of returns
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on the assets under management. Given a long enough sequence of bad return,
the reputation of the intermediary may fall below a critical level and trigger a run
towards liquid and safe assets.

For illustrative purposes, Figures 3.2 and 3.3 show the time series of the demand
for risky assets in a simulated economy, when the returns are generated by the good
and by the bad intermediary, respectively. This pattern, conditional on the bad type,
is qualitatively similar to the evolution of excess reserves in Figure 3.7. There we see
that, in a short interval of time, excess reserves saw a dramatic increase. This would
be consistent with ¢ moving through the critical region from above, thus making ¢
fall and demand for riskless assets increase.

Since beliefs are asymptotically correct®, the “typical” time series, when the type
is fixed and ¢ is high enough, will be characterized by small probabilities of liquidity
hoarding if the intermediary is good, and high probability of liquidity hoarding if the
type is bad, but with no recurring patterns. One way to obtain recurring episodes
of hoarding is to allow the type to be time-varying. Preliminary results from this
model are available in section 3.5.4 and show the robustness of the model to this
extension.

It is interesting to note that the function g is decreasing for high values of ¢ and
this region coincides with the one where i(¢) = i. The reason is that, once i hits
the upper limit, it can no longer be increased. Therefore, the expected return on
the assets under management (under the probability measure induced by the good

intermediary) stays constant but the fees raised by the intermediary keep increasing

6. In this model, learning stops when ¢ = é, so, conditional on the bad type, beliefs converges
with probability one to ¢.

251



1 20 I
0.8
15
0.6F
- S10f
0.4t
5 .
02t
0 ' ' : ' 0 ‘ ' : '
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
(a) Beliefs (b) Risky Assets to Total Capital

Figure 3.2: Good Intermediary. Time series of investors’s beliefs and demand for risky
assets as share of total capital under management when returns are generated by the good
type. Parameter values are : r = 0.03, pu; = 0.05, us = 0.015, o = 0.07, p = 0.06, i = 20
and 7 = 1077,

as ¢ increases. This has the effect of reducing the growth rate of capital’.

3.5 Variations and Extensions of the Model

In this section, I briefly introduce and discuss alternative specification of the model
developed in sections 3.3 and 3.4. The purpose is to convince the reader that the
results of the model are due to the interaction between asymmetric information
incomplete contracting and that the results of the model are robust to modifications

of the model.

7. In Appendix 3.5 I show the results for a version of the model where the growth rate of capital
is exogenous and where the marginal value of capital is always increasing in ¢ for all experimented
parameterizations.
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Figure 3.3: Bad Intermediary. Time series of investors’s beliefs and demand for risky assets
as share of total capital under management when returns are generated by the bad type.
Parameter values are : r = 0.03, u1 = 0.05, po = 0.015, o = 0.07, p = 0.06, i = 20 and
i=107".

3.5.1 Model with Commitment

Consider a model that is identical to the model of section 3.3, but assume that the
intermediary can commit to some portfolio risk i; at each time ¢ in a sequential game
with investors. The assumption about the unobservability of the type is maintained
but, at, each time ¢, the investor proposes and commit to a portfolio risk.

Investors are still learning the type of the intermediary by looking at the perfor-
mance its portfolio. However, the signal manipulation incentive of the intermediary
does not exist anymore. Indeed, as the intermediary commit to a particular trading
strategy, investors will set their learning rule in order to update beliefs solely on the
basis of the performance of the risky part of the intermediary’s portfolio. There-

fore the continuation value is still linear in capital, V (K, ¢) = Kj(¢), but the HJB
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equation takes the form
X {i(ébm + (1 =)u2 —r)+

+ 7 (0)o(1 - 0)? (@)2 +

+ () +i(1 — 6) (1 — p2))+ (3.13)
Ly 9 o (1 — H2 2
by o op (B2

+ ()61~ 0)(m — n2)i |

Denote with i(¢) the equilibrium risk in the intermediary’s portfolio.
A proposition analogous to Proposition 3.3 and lemmas analogous to 3.2 and 3.5
hold also for g(¢) if a bounded, continuously differentiable bounded function g exists

that satisfies (3.13) in (¢, 1) with boundary conditions §(¢) = 0 and §(1) = i(/;lf_r?ﬂ).
The following result, when compared with Proposition 3.4, highlights the impor-

tance of the lack of commitment in generating hoarding of riskless assets

Proposition 3.5. Suppose that there exists a continuously differentiable bounded

function § satisfying (3.13) in (¢, 1) with boundary conditions §(¢) = 0 and §(1) =

7 —r . . . . . ~
%. If the intermediary can commit to a state contingent trading strategy i(¢),

then i(¢) =i for all ¢ € (¢,1].

Numerical results are provided in Figure 3.4 and it is clear that, once the incen-
tives to manipulate the signal are absent, the intermediary will make the socially

optimal choice. Qualitatively, the results are robust to changes in the parameters.
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Figure 3.4: Commitment. Case 1. Marginal value of capital for the good intermediary and
demand for risky assets as share of total capital under management. Parameter values are:
r = 0.03, 1 = 0.05, po = 0.015, 0 = 0.07, p = 0.06, i = 20 and 7 = 10~7.

3.5.2  FExogenous Capital Growth

Consider now a situation where the intermediary is free from concerns about the
growth rate of investors’ capital. This could be the case of a small fund that is active
in a large market with very diversified investors. Specifically, assume that the law of

motion of the capital under management is

K,
D = pdt + vdZy (3.14)
Ky

where Z; is a Weiner process independent of W.
The fee will be determined by market clearing in the same way as before, so that

expected return for the investors is equal to the risk free rate.
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The HJB equation for the good type is now

pi(¢) = max {f(¢>+

0<i<i

(1= a)ps +apz —7) — f(@)]+  (3.15)

in the interval (¢, 1] with terminal conditions §(¢) = 0 and §(1) = ;(/[?T_rr) In the
previous equation, p = p — L, %(qﬁ) is the equilibrium portfolio risk, defined in an
analogous way to (3.11), and f(¢) = i(¢)[ou1 + (1 — ¢)ug — r] is the equilibrium fee.

Results for a parameterization of the model are reported in Figure 3.5 and are
robust to changes in the parameters. The qualitative features of i(¢) are the same
as in section 3.4. In fact, under existence conditions analogous to Assumption 3.4,
Proposition 3.4 holds also for §(¢) and i(¢). However, from the numerical solutions,
we can observe that the marginal value of capital, §(¢), is always increasing in

reputation. This provides suggestive evidence that the downward sloping part of

the function g(¢) in section 3.3 is due to the decreasing rate of capital growth when
i(6) =
3.5.8 Heterogeneous Volatility

The results of the paper rely on the fact the two risky assets have the same volatility
and that the two types choose the same portfolio risk. It is easy to see that the

results continue to hold if the two assets have different volatility. Suppose that the
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Figure 3.5: Exogenous Capital Growth. Case 1. Marginal value of capital for the good
intermediary and demand for risky assets as share of total capital under management.
Parameter values are: r = 0.03, 1 = 0.05, pus = 0.015, ¢ = 0.07, p = 0.06, ¢ = 20 and
i=10"Y.

good asset has volatility o, while the bad asset has volatility %0, for £k > 0. This
means that, in equilibrium ztB = k:ztG for every t, as a straightforward modification
of Proposition 3.1. To simplify notation, let ; be the equilibrium choice of the good
type.

This implies that the expected return on the portfolio of the bad intermediary is
r+itk (g —r), while the volatility is o4¢. But this is mathematically and economically
equivalent to a model where both assets have the same volatility ¢ and the expected
return of the bad asset is ,u/2 = k(uo — r) + r, which is still lower than r, since
o — 1 < 0. Therefore, heterogeneous volatility does not pose any threat to the

conclusions of the model.
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3.5.4  Time Varying Hidden Types

In a model like the one presented in sections 3.3 and 3.4, beliefs converge with
probability one to either 1 or ¢ depending on the type of the intermediary. This
implies that episodes of liquidity hoarding will disappear in the long run. A natural
extension is to consider a case in which the type of the intermediary, rather than being
a time-constant process, evolves over time. The definitions of section 3.3 can be easily
modified to explicitly deal with a process (ht)¢>o for the type of the intermediary.
However, Proposition 3.1 cannot be straightforwardly extended to this setting since,
now, there is no guarantee that the continuation value of the bad intermediary is
zero under perfect information. In this section, I provide a brief discussion of this
model, which will be subject to further research in the future.

Suppose that (h¢)¢>0 is independent of (W;);>0 and that it follows a continuous-

time Markov chain with generator

where A\; > 0 and X9 > 0 and the state vector is (1,0)’.
The law of motion of beliefs, conditional on 6y > 0 and on the two types pooling,

is then modified as follows (see Theorem 9.1 in Liptser and Shiryaev, 2001):

dpy = [~Xadr + M (1 — dp)ldt + o(ir, &) (io) " (dRe — p(iy, dr)dt) ;

while dopy = [—Aa¢r + A1 (1 — ¢¢)]dt when the intermediary does not generate signals.
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At ¢y = 1, reputation is deterministically decreased by an amount —\gdt, while
at ¢ two cases have to be distinguished, depending on the stationary probability of

the good type,
AL
T=—.
AL+ Ag

When 7 < ¢, the reputation of the intermediary deterministically decreases when
no signal is given to investors. Therefore, when the value ¢ is hit, the intermediary
will be shut down. On the contrary, when © > ¢ the process ¢; deterministically
moves upward when ¢ is hit and, therefore, the continuation value of the intermediary
at that point will not, in general, be zero. These two situations give rise to different
terminal conditions, different continuation values when ¢ € [0, ¢] as well as possibly
different incentives for the bad intermediary to imitate the good one or to separate
itself.

In this richer framework, it is necessary to explicitly model the continuation value

of both types in the interval [¢, 1], conditional on them pooling. For the good type
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we have

©(d)

i(¢)o

+9(o)(r +i(pur — 1) — f(9)+
Ly, 90<¢)2~

+59°(9) 02 2+ 5.16)

10 P@) 2
+g(¢)i(¢)z o+

+ 9/ (@)= + M (1 = 9)] +

deterministic trend of d¢

+ 2aD(0) ()] |

-~

type’s jump

+9'(9)

[i(p1 —7) — f(@)]+

and similarly, for the bad type,

Ly p1 — 2\ 3.17
3O - o (M) (347

+V(@)p(d)i(o)o+
+V(0)[=da + (1 - )]+

+ A2lg(¢) — ()]

i(¢) is the equilibrium portfolio risk that such that, given i(¢) in equation (3.16),
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the good intermediary optimally chooses i = i(¢) and the bad intermediary imitates

it.

Consider first the case of m < ¢, so that ¢ is an absorbing barrier. Then, Propo-
sition 3.1 holds and the bad intermediary imitates the good one. Indeed, if the two
types were separated and the intermediary was bad, then beliefs would be reset to
0 and would deterministically converge to ¢ < ¢. Under the investors’ perspective,
expected returns are below the risk-free rate and therefore the intermediary will be

inactive forever. This, therefore, provides us with boundary conditions g(¢) = 0 and
b(¢) = 0. Moreover, for all ¢ € [0, ¢] we will have g(¢) = 0 and b(¢) = 0.
At ¢ = 1, no learning happens by observing returns, but ¢ will deterministically

decrease. Since the choice of 7 now affects only the growth rate of capital, in equilib-

rium we will have i(1) = 4 and the relations between g(1), ¢'(1), b(1) and ¥'(1) will

be given by
Cilp =) A B A2
g(1) = P (Up — +[b(1) !J(U]p — (3.18)
and
_ E(M —) Y A2 B Al
1) = p =1+l — p2) ’ mp —r+i(pu — p2) Flot) b(mp —r+i(u — p2)
(3.19)

A numerical result is shown in Figure 3.6. Note that the parameterization differs
from Figure 3.1 in section 3.4, but it can be compared with Figure 3.12 in Appendix
3.B. The qualitative features of the model are unaffected. However, the flight to

riskless assets seems to be more dramatic, since the region of the state space where
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Figure 3.6: Switching Types. § < ¢. Case 6. Marginal value of capital for the good
intermediary and demand for risky assets as share of total capital under management.
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i shifts from 7 to ¢ is now narrower.
Consider now the case of T > ¢, so that, at ¢, investors beliefs are deterministi-

cally move upward. The boundary conditions at ¢, provided that the two types are

pooling, are

0(0) = o ()2 MU= gy - ()2 (3.20)
and ) )
b(6) = 0(§) 2O (g(5) () L (3.21)

At ¢ = 1, the boundary conditions are the same as in (3.18) and (3.19), provided
that the two types are pooling.

262



The formal investigation of the properties of this model is still ongoing, but
I can provide a result that holds under reasonable conditions. First, we need an
analogous of Assumption 3.4, i.e. we need to assume the existence of bounded, twice
continuously differentiable functions g and b that solve (3.16) and (3.17) — for an i(¢)
such that the maximizer in (3.16) coincides with i(¢) — and that satisfy the boundary
conditions (3.18), (3.19), (3.20) and (3.21). Call this condition C1. Second, I will
need to show that g(¢) > b(¢) and g(¢) > b(¢) for ¢ is a right-neighborhood of ¢.

Let this be condition C2.

Claim 3.1. If conditions C1 and C2 hold, then there exists an € > 0 such that

q"(¢) <0 and i(¢p) =i for all ¢ € (¢, + €).

The proof is omitted, since it follows the same reasoning of the proof of Proposi-
tion 3.4, after noting two facts. The first one is that ¢’(¢) > 0 follows directly from
C2 and (3.20). The second one is that, at least in a right-neighborhood of ¢, the

bad intermediary will pool, for, otherwise g(¢) = ¢g(0) and, since the intermediary

receives no flow payoff when ¢ € [0, ¢], this would imply that g(¢) = 0.

The fact that Claim 3.1 holds when m > ¢ underscores the intuition supporting
that the value of the signaling option is a key driver of the model’s results. Indeed, if
reputation falls below the threshold, the good intermediary would be unable to signal
its type until ¢ is reached again. This option may be less valuable if 7 < ¢. This is
because the deterministic drift of beliefs may be negative enough that, even under

the information filtration of the good type, beliefs may still be drifting downward.
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3.6 Conclusions

I developed a model of financial intermediation with asymmetric information that
delivers outcomes that qualitatively resemble episodes of liquidity hoarding. The
incentives of the intermediary to manipulate the evolution of investors’ beliefs, cou-
pled with the impossibility to commit to a trading strategy, are the key drivers of
the results. When reputation is close to the threshold below which the intermediary
is terminated, a risk neutral intermediary displays risk aversion, despite being sub-
ject to a convex compensation scheme. This is because, in an infinite horizon game,
termination would make the good intermediary lose the option to signal its type and

gain reputation.
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Appendix 3.A Proofs

3.A.1 Proof of Lemma 3.1

Here, I provide a lemma supporting the claim that restricting our attention to public
strategies is without loss of generality.

Let (S'f)tzo be the filtration generated by h and (R¢)¢>¢ and is possibly aug-
mented by the collection of P-null sets. Recall that we are dealing with a probability
space (£, F*, P) and that I have defined (F¢);>0 as the filtration generated by (W;)¢>0

and h.

Lemma 3.1. Given the assumptions that Fy = ?(J)D and that the filtrations (F¢)i>0
and (?f)tzg are augmented by the P-null sets, we have that I3 = 9’{3 for allt > 0.

Therefore, there is no loss of generality in assuming that strategies are public.

Proof. Let us proceed by contradiction and suppose that there exists a 7 defined as
T=inf{t >0:3Bst. BeF; and B ¢ I}

and note that, for every t, S’f C F;.

Since both filtrations are generated by continuous processes, then they are left-
continuous (see Karatzas and Shreve (1991), Chapter 2.7). A filtration (G¢);>0 is
said to be left-continuous if §; = G,—, where §,— = 0 (Us<9s). By convention,
S0~ = So-

Suppose then that 9’5 C Fr. By definition of 7 we must have, fff_ = -,
leading us to a contradiction, since, by left-continuity, 977]_3 =3 - =7
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Suppose instead that 3"7].3 = J,. By Proposition 7.7 in Chapter 2.7 of Karatzas
and Shreve (1991), the filtration (F3);>0 is also right-continuous. A filtration (G¢)s>0
is said to be right-continuous if §; = G;+, where G+ = Ns>+Gs.

This means that we must have ¥ = F_4. However, by definition of 7 we must
also have H’f+ C J;+. This would imply that 3"711 C 9’5, contradicting that (S"f)tzo

is an increasing sequence of o-algebras.

We therefore conclude that 3’“{3 = F; for all ¢. H

3.A.2  Proof of Proposition 3.1

This proof follows the same lines of Theorem 7.17 and Lemma 5.2 in Liptser and
Shiryaev (2001) with some minor modifications to allow the proof to work for any

finite time ¢ in an infinite horizon game.

Proof. Given a time interval [0, t], consider a partition of n sub-intervals with end
points 0 = t,, 0 < tp1 < -+ <tpyn =t such that max; [t,, ;41 —t, ;] — 0 as n — oo.

Then consider

tnit+1 2
[, vwwme+a—hm2—mm% (3.22)

n—1 Inyit1 nit1
i Qt/ sV /’ I+ s (s + (1 — B)pug — 7)]ds
. t, ; t

n,.
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Note that |r + ig(huy + (1 — h)ug — )| < r+iD, for D = |ug — r| + |po — 7|,

therefore
n—1 tn,it1 2
> / [r + is(hut + (1 — h)pg — 7)]ds
i=0 \/ln;i
<(r +5D)2 t-max [ty j11 — tyi| =0, as n — oo.
1
Also,
n—1 tn,it1 tn,it1
> / is0sdW / [r +is(hpr + (1 — h)ug —r)]ds p| <
=0 tn,i tn,i
B tnit1
§(r+iD)-t-max/ 1505dWs| — 0 asn — 00.
t tn,i

since [ty j+1 — tp;| — 0 for all @ and {iso},>( is a bounded process.

As for the remaining term, note that, by Ito’s lemma
2
S S
tn,i tn,i
and hence

2
tnit1 tnit1
2 2

52 g

Sn,i tn,i+1
/ iy dWy | is, ;0dWs, . +/ (z'sg)2d8,
t ' ’ t

n,t n,t

with s,.1 € [tnistns14l-

We can then substitute the latter expression in the first term in the right-hand
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side of (3.22) and obtain

n—1 t. 2 t t
n,i+1 S
tn,i 0 0 t

1=0 n,t

The second term in the right-hand side of (3.23), however, converges in proba-

bility to zero, since

tnit1 Snyi
/ / iyo dWy, | isodWy
tn t

K n,t

2
Sn,i _
< |max sup (/ (Mo dwu> . (z'a)2 t—0

t Sn,le[tn,iathrl,i] tn,i

as n — oo

since [ty j41 — ty | — 0 for all i and {iy0},>0 is a bounded process.

The left-hand side of (3.22) is clearly &rtl -measurable and converges to an ?tl -
measurable random variable as n — oo, while the right-hand side converges in prob-
ability to fg(’isU)Q ds. Tt therefore follows that fg (is0)? ds is itself F/-measurable.

We can then straightforwardly apply Lemma 5.2 in Liptser and Shiryaev (2001)
and use the fact that both i+ and o are strictly positive, to conclude that there exist
an fftl -measurable process (23)03 s<t, that is progressively measurable with respect
to (?ﬁ)ogsgt and such that iy = i; P-a.s..

Therefore, let (ztG )i>0 be the equilibrium public strategy of the good type, then
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consistency of beliefs imposes
s+A s+A
=0 if Is>0,A>0s.t. / (iu0)? du # / (iga)2 du.
S S

Therefore, it is optimal for the bad intermediary to pool P-a.s.

3.A.3 Proof of Proposition 3.2

In equilibrium, the law of motion of the signal is given by
dRy = [r 4 i¢(hpy + (1 — h)pg — 7)]dt + izod Wy

where (i¢);>0 is an (fﬂ{ )t>0 progressively measurable process, while h is hidden to
investors. The fact that only the drift changes depending on the type of the inter-
mediary calls for an application of Girsanov’s theorem to find an appropriate change
of measure and derive the likelihood ratio of the two types. However, care should
be taken since Girsanov’s theorem cannot be extended straightforwardly to the infi-
nite horizon case. Fortunately, Huang and Pages (1992) and Revuz and Yor (2013)

provide a framework to extend the result to the infinite horizon case.

Proof. Let PG hbea probability measure on (2, fféo) induced on the good type. Define
PE in an analogous way for the bad type.
We are interested in finding a random variable & representing the ratio be-

tween the likelihood that the path (Rs)o<s<¢ is generated by the good type and
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the likelihood that the same path is generated by the bad type. Note that Wy =
fg [dRs —rds —is(pg —1)](iso) "1 ds is a Weiner process conditional on the bad type.

Let

n=(u1 — pg)o

and define the local martingale

|
§t = exp {nWt - 577215} :

It can be seen that Epp[¢¢] = 1 for all £. From Proposition 1 in Huang and Pages
(1992) it follows that there exists a measure Q on (€2, FL.) such that the restriction
of @ on fftI is equivalent to the restriction of P2 on F; and, moreover, if restricted

to (£2, 3"75[), & is the likelihood ratio dQ/dPB. Furthermore,

is a standard Weiner process for (Q,?go, (). We can think of ) as a probability
measure whose restriction on (2, 3’{ ) coincides with the restriction on (€, F/) of PC.
for all t.

By consistency of beliefs in equilibrium

P&t

¢t:p€t+(1—p)

(3.24)
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If we then apply Ito’s lemma we obtain

(- pp? 2 (1-p)p
R o e s A A o s

D) ﬁéthNVt-

Finally recall that dW; = [dRs — rds — is(ua — 7)ds](iso) 1. It is then sufficient

to substitute for dW; in the previous expression and use (3.24) to conclude that
doy = (1 - ¢t)¢tw&t0)_l(d}%t — p(it, ¢r)dt)
where pu(it, o) =+ i¢ [Pepn + (1 — ¢p)po — 7], O

3.A./ Proof of Proposition 3.3

The proof of this Proposition follows the same lines of standard verification theorems
as those in Chapter 10 of Oksendal (2013). However, given the game-theoretic set-
up of the model, it is essential to keep in mind that, given an equilibrium portfolio
risk i(¢), the good intermediary is free to choose its portfolio risk. The two will
coincide in equilibrium by the consistency condition given by (3.11). Expectations

are understood to be expectations conditional on F.

Proof. To begin with, note that V(0,¢) = 0 and the function V(K,¢) = Kg(¢)
satisfies this condition. Similarly, V (K, ¢) = 0 if ¢ < ¢ and K g(¢) satisfies also this

condition. Let us therefore focus on the case K > 0 and ¢g > ¢.
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Define 7 = inf{t : ¢; < ¢}. I want to show that

Kog(do) > E { / ' e—f’tfwt)tht}

for any feasible process of the control (it);>0 when K; follows (3.1), ¢; follows (3.4)
and f(¢) and i(¢) are defined by (3.6) and (3.11).
Let

—pmin{¢,7} min{t,7} —ps
Wy=e? 7 Kmin{t,7}9(¢min{t,r}) +/O e f(¢s)Ksds

Define

and

By Ito’s lemma

min{¢,7} min{t,7}
0 0
(3.25)

By (3.10) and (3.11), D[Ksg(¢s),is] attains its maximum when iy = i(¢ps) and
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D[Ksg(ds),is) <0 for any is. Therefore
min{¢,7}
/0 e PVKsg(ds),is] Ws > Wy — Wy, (3.26)

with equality if the control (is)s>(0 coincides with the optimal one.
The left-hand side of (3.26) is a local martingale that is bounded from below by

—Wy = =V > —o0o. Hence, it is a supermartingale. Taking expectations in (3.25)

we obtain

EW <Wy+E

min{¢,7}
/0 e P DIKsg(ps),is] dSI < Wy = Kog(¢o)

with equalities if the control (is)s>( is the optimal one.
Hence,

min{¢,7} 3
Kog(po) > E /0 e P f(ps) K ds

+E [e_pmin{t’T}Kmin{t,7}9(¢min{t,7}) .

Using the fact that we must have

lim E [e_pmin{t’T}Kmin{t,r}g(¢min{t,7})] = 0.

t—o0

then, by the monotone convergence theorem, as t — oo, we conclude

Kog(do) > E { / " (60K, ds}

for any feasible portfolio risk process (is)s>0, with equality if is = i(¢s) P-a.s..
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It follows that Kpg(¢g) is the continuation value and (i(¢¢));>0 is indeed the

strategy played by the intermediary in equilibrium.

3.A.5 Proof of Proposition 3.4

Let us re-write (3.12) with a more parsimonious notation as

S0 (O)6P(1 — 622 =

—i(¢)(—02+¢01) — ¢ (9) (1 — )22 + g(¢) (5 —i(d) (L — )01) — g (#) (1 — )d1i ()
(3.27)

where the parameters k, 1,9 and J are all strictly positive.
I break down the proof in a series of Lemmas. Assumption 3.4 is taken for
granted in all of them. All limits in the form ¢ — ¢ are understood to be for

sequences converging to ¢ from above.
Lemma 3.2. liminf, , 54'(¢) > 0.

Proof. Suppose, towards a contradiction, that lim inf P g (¢) < 0. Then, in any
interval (¢, ¢ + ¢), there exists a sequence ¢, — ¢ such that lim,—c0 ¢'(¢n) < 0.

Let €5, = ¢ — é. By a first order Taylor expansion

0(6) = 9(6) = o Gu)en +ofen) = alom) = (o0 + %),

n

Then, there is an 7 > 0 large enough such that <g/(¢ﬁ) + @) ep < 0, which
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contradicts the fact that g(¢n) must be non-negative.

Lemma 3.3. There exists an € > 0 such that, for all ¢ € (¢, ¢ +¢), ¢’ (¢) <0.

Proof. By lemma 3.2 and by equation (3.27) we must conclude that lim sup 63 J"(¢) <
0, that is, there exists an € > 0 such that, for all ¢ € (¢, ¢-+¢) we have that ¢’ (¢) < 0.
O

Lemma 3.4. lim inf¢_>¢; d(¢) = lim Supy,_, g d'(¢) and possibly both are equal to
+o00. Moreover, lim inf(b_)& J"(¢) = lim SUP g, d"(¢) and possibly both are equal to

—0Q.

Proof. Recall that, by Lemmas 3.2 and 3.3, there exists a neighborhood of ¢ where
liminf, 5 g (¢) > 0 and lim SUD 5 g"(¢) <0 for all ¢ in that neighborhood.

Suppose, by way of contradiction, that lim inf¢_>¢-) d(¢) = H > 0 and that
limsup,,_, 5 ¢ (¢) > H. This means that there exists an H' > H such that ¢'(¢) = H'
for infinitely many ¢ in any neighborhood of ¢, contradicting the fact that ¢"(¢) < 0
for all ¢ in a neighborhood of ¢.

This, together with equation (3.27), implies the claim.

O

With some abuse of notation, let ¢’(¢) = lim 5 g (¢) and ¢"(¢) = lim 5 J"(¢).

It is understood that both can be infinity.

Lemma 3.5. ¢'(¢) > 0 and ¢"(¢) < 0.
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Proof. Suppose, by way of contradiction, that ¢’(¢) = 0. By (3.27), this also implies
¢"(¢) = 0. Let ¢ = sup{od : ¢ > ¢,¢"(¢) = 0}. We must have ¢”(¢) > 0 for all

¢ € (¢, ¢+ ¢) for some small enough e, for otherwise we would have g(¢) < 0, since

9(9) = /; [g¢g"<x>dxdx

Consider ¢/ € (0,¢) and let ¢/ = <;A§—|— ¢’. By a first order Taylor expansion

~

9(¢') = 9(8) + ' (9)e' + o(e) = o(e) (3.28)

7)) =d(9)+g"(d)e' + ole) = ole) (3.29)

Substituting (3.28) and (3.29) into (3.27) we obtain

206621 - )2 = (—51i<¢’> + Of, )) 2

Since 61 > 0 and i(¢') is strictly positive and bounded away from zero, it follows
that, for & small enough, ¢”(¢/) < 0, contradicting that ¢”(¢) > 0 for all ¢ < ¢ <
ds + €.

Therefore it follows that ¢'(¢) > 0 and ¢”(¢) < 0.

Lemma 3.6. i(¢) = ¢ in a neighborhood of ¢.
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Proof. An immediate corollary of the Lemmas of this part of the appendix is that

in a neighborhood of ¢.
It follows that, in this neighborhood, the unconstrained maximizer in (3.10) is

positive and equal to

I want to show that M (¢) < i(¢) if ¢ is close enough to ¢ and, hence, that the only
possible equilibrium is the one where i(¢) = i.
Towards a contradiction, suppose that, in equilibrium, M (¢) > i(¢). It then

follows that

1

£6"(0)6(68) > ~4 (@)p(8)0i(0) — 39/ (O)e() " — 2 g(0)i(é) s — )

Substituting the latter expression in (3.12) we obtain

paté) 2 1(60)+ @2 [0 - 1) = 19 4 469 [+ it - ) - £00)].

Because f(¢) — 0 and g(¢) — 0as ¢ — ¢, we would conclude that 1im¢—><5 J(¢) <

0. But this contradicts Lemma 3.5. Therefore, for ¢ close enough to ¢, we must have

M(¢) < i(¢). O
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3.A.6  Proof of Proposition 3.5

The right-hand side of equation (3.13) is linear in i. To prove the claim, it is therefore

sufficient to show that, for all ¢ € (¢, 1],

C(¢) = (1 + (1= P)uz — 1) + G(¢)(1 — @) (1 — p2) + G (#)d(1 — @) (1 — p2) > 0.

Proof. Recall that an analogous of Proposition 3.4 holds for §(¢), so that, §'(¢) > 0.
Since §'(¢) > 0, if ¢ is sufficiently close to ¢, then C(¢) > 0. By assumption,
C(¢) is continuously differentiable in (¢, 1). Therefore, consider ¢’ = inf{¢ : ¢ >
¢ and C(¢) < 0}. By way of contradiction, suppose such ¢’ exists. Then we must
have C(¢’) = 0 and C’(¢') < 0.

From C(¢') = 0, I can derive that

_ @+ Q=g —1)

i) - (oo = RS e ) (3.30)
while from (3.13), we obtain
24/ ()1~ o) =28 —I) g g 3:31)

¢'(1—=¢')r

where kK = @

Compute
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and use (3.30) and (3.31) to obtain

GO ) - (o)l + 210000

p1 — p2 ¢ (1 — ¢)K2 =0

which contradicts that C’(¢) < 0.

Appendix 3.B Additional Plots
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Figure 3.7: Excess reserves of institutions subject to minimum reserve requirements in the
Euro Area and the United States
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Figure 3.8: Case 2. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.02,
p1 = 0.05, gy = 0.015, 0 = 0.07, p = 0.06, i = 20 and ¢ = 107,
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Figure 3.9: Case 3. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.04,
p1 = 0.05, pg = 0.015, o = 0.07, p = 0.06, i = 20 and ¢ = 1077,
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Figure 3.10: Case 4. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
p1 = 0.05, gy = 0.015, 0 = 0.07, p = 0.06, i = 10 and ¢ = 107,
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Figure 3.11: Case 5. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
p1 = 0.05, pg = 0.015, o = 0.10, p = 0.06, i = 20 and ¢ = 1077.
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Figure 3.12: Case 6. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
p1 = 0.05, gy = 0.015, 0 = 0.04, p = 0.06, i = 20 and ¢ = 107,
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Figure 3.13: Case 7. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
p1 = 0.04, po = 0.015, o = 0.07, p = 0.06, i = 20 and ¢ = 1077.
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Figure 3.14: Case 8. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
p1 = 0.05, gy = 0.015, 0 = 0.07, p = 0.06, i = 30 and ¢ = 107,
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Figure 3.15: Case 9. Marginal value of capital for the good intermediary and demand for
risky assets as share of total capital under management. Parameter values are: r = 0.03,
p1 = 0.05, pg = 0.015, 0 = 0.07, p = 0.07, 7 = 20 and ¢ = 1077.
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