THE UNIVERSITY OF CHICAGO

GROWTH OF COHOMOLOGY OF ARITHMETIC GROUPS AND THE STABLE
TRACE FORMULA

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

BY
MATHILDE GERBELLI-GAUTHIER

CHICAGO, ILLINOIS
JUNE 2020



Copyright (©) 2020 by Mathilde Gerbelli-Gauthier
All Rights Reserved



A mes parents, qui m’ont appris a écrire et compter.

Et a Granny, qui refuse de croire que ces résultats ne servent a rien.



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . s vi
ABSTRACT . . . . viii
1 INTRODUCTION. . . . . . . s s s s s e e 1
1.1 Main Theorem . . . . . . . . . . . . 2
1.1.1 Outline of the Proof . . . . . . . . . .. . . ... ... ... ... . 4
1.2 Conditionality . . . . . . . . ... 7
1.3 Further Work . . . . . . . . . 7
2 BACKGROUND ON ENDOSCOPY AND THE TRACE FORMULA . . . . . .. 9
2.1 Unitary Groups and Their L-Groups . . . . . . . . .. .. ... .. ..... 9
2.1.1 Quasisplit Unitary Groups . . . . . . . . . . ... ... .. .. .... 9
2.1.2 Inner Forms . . . . . . . . . . ..o 11
2.1.3  L-groups . . . ..o 13
2.2 Parameters . . . . . .. 16
2.2.1 Automorphic Representations . . . . . . ... ... ... ... ... 16
2.2.2  Local Langlands Parameters . . . . . . . . .. ... ... ... .... 17
2.2.3 Local Arthur Parameters . . . . . . . . . . . ... ... ... ..... 18
2.2.4 Global Arthur Parameters . . . . . . . . . . .. ... ... ... ... 20
2.2.5 Localization . . . . . . . ... 22
2.2.6 Parameters of Inner Forms . . . . . . . . ... ... ... .. ... .. 23
2.2.7 Parameters and Conjugacy Classes . . . . . .. .. ... ... .... 23
2.2.8 Stabilizers and Quotients . . . . . . ... 0oL 24
2.2.9 Epsilon Factors . . . . . ..o 26
2.2.10 Endoscopic Data . . . . . . . ... oo 26
2.3 Packets . . . .. 29
2.3.1 Local Arthur Packets . . . . . . . . . ... ... ... ... ...... 29
2.3.2 Global Arthur Packets . . . . . . . . . .. ... ... . 30
2.3.3 Test Functions . . . . . . . . . . 31
2.3.4 Stable Distributions and Transfer . . . . . . . . .. . ... ... ... 32
2.3.5 Local Character Identities . . . . . . . . . . . . . .. ... ... ... 33
2.4 The Trace Formula and its Stabilization . . . . . . . ... ... ... .... 37
2.4.1 Contribution of a Parameter . . . . . . . . . . . ... ... ... ... 37
2.4.2 Stabilization . . . . . . ... 40
2.5 Notation Changes. . . . . . . . . . . ... 41

3 BOUNDS ON LIMIT MULTIPLICITY AND COHOMOLOGY OF ARITHMETIC
GROUPS . . 42
3.1 Upper Bounds from the Stabilization . . . . . ... .. ... ... ... ... 42
3.1.1 The Stable Multiplicity Formula . . . . . .. ... ... ... ... .. 42

v



3.1.2  Upper Bounds and the Dominant Group . . . . . .. .. .. ... .. A7

3.1.3 Towards Lower Bounds . . . . . . . ... .. ... ... ... .... 49

3.2 Limit Multiplicity . . . . . . . ..o 50
3.2.1 Level Structures . . . . . . . . ... 50
3.2.2  Choice of Test Functions. . . . . . . ... ... . ... ... ..... 54
3.2.3 The Stable Term and Characters of Representations . . . . . . . . .. 56
3.2.4  Limit Multiplicity Results . . . . . . .. .. ... ... ... .. 59

3.3 Applications to Growth of Cohomology. . . . . . . . . . ... ... ... ... 66
3.3.1 Cohomological Representations . . . . . .. ... ... ... ... .. 67
3.3.2  Computation of Cohomology . . . . . . ... ... ... ... ... .. 70
3.3.3 Arthur Parameters of Cohomological Representations . . . . . . . .. 71
3.3.4  Structure of Cohomological Arthur Packets . . . . . . ... ... ... 74
3.3.5 A Recipe for the Dimensions of Cohomology Inside a Packet. . . . . . 7
3.3.6  Limit Multiplicity for Packets of Cohomological Representations . . . 80
REFERENCES . . . . . . . e 84



ACKNOWLEDGMENTS

My profound gratitude goes to my advisor Matt Emerton. I thank him for teaching me a
great deal of mathematics, as well as an attitude of curiosity, trust, and enthusiasm towards
the practice of mathematics. I hope to carry it with me. Matt’s constant kindness and
generosity have been essential to the completion of this project; at times, the only force
pushing it forward was Matt’s belief that it would succeed.

I thank Bao-Chau Ngo for serving as my secondary advisor and for inviting me to partic-
ipate in his students’ reading groups. My gratitude also goes to Frank Calegari for serving
as my second reader and for his questions and feedback.

This project has been made possible by conversations with several experts. I thank James
Arthur, Nicolas Bergeron, Tasho Kaletha, Jasmin Matz and Yiannis Sakellaridis for useful
conversations. Special thanks go to Laurent Clozel who read and gave careful feedback on
a prototype of the proof, Colette Moeglin who spent many hours explaining mathematics to
me, and Simon Marshall who did both of those things.

The students and postdocs of the department of mathematics at the University of Chicago
have provided me with wonderful mathematical opportunities. I am thankful to have been
able to ask questions to, and bounce ideas off of: Santiago Chavez Aguilar, Sean Howe, Billy
Lee, Jeff Manning, Lucia Mocz, Drew Moore, Kostas Psaromiligkos and Minh-Tam Trinh.
Eric Stubley has been an ideal fellow traveler on the road to “becoming number theorists.”

I thank the staff of the University of Chicago’s department of mathematics for providing
me with the essential material resources and administrative support to complete my PhD.

Crucial progress on this project occurred when I was more or less squatting at Johns Hop-
kins University. I thank David Savitt and the number theory group for their warm welcome,
and Charlene Poole and Joyce Moody for helping me access much-needed workspace.

My friends in Chicago have been a constant source of support and joy, especially my
cohort-mates and friends in the department, and I thank them all. I also thank all the

vi



Graduate Students United organizers; working alongside them for change at this university
has been a true experience of solidarity. Clara del Junco in particular has been a admirable
friend, confidant and accomplice. Thank you, Clara, for taking me out to dance. I am
grateful to my roommates with whom I have shared a loving community, especially in the
midst of the pandemic during which this thesis was written. Special thanks to Olivier Martin:
I am beyond lucky to have spent a decade of mathematical coming of age with you.

I thank my parents for their unconditional love, unwavering belief in me, and dedication
to my education that made possible this whole endeavour. Thanks also go to my brothers
who somehow became men while I was away, as well as all my friends and family in Montreal
and beyond. The sporadic moments with all of you carried me through these six years in
ways that you cannot imagine.

Finally, I want to thank Joel Specter, who was around for every part of the project and
every moment of life that happened in between, from the computations of inner forms of
G Ly in the basement of Eckhart years ago to the hours leading up to my defense. He has

been the best partner anyone could hope for.

vil



ABSTRACT

We study growth of Betti numbers in towers of cocompact arithmetic lattices in unitary
groups U(a,b). In the middle degree of cohomology, the Betti numbers grow proportionally
to the volume of the manifold, but away from the middle degree, the growth is known to
be sub-linear in the volume. After rephrasing the problem into representation-theoretic
terms, we give upper bounds on the growth of cohomology in small degrees coming from
certain families of representations. These upper bounds are achieved in the framework of
the endoscopic classification of representations: we use Arthur’s stable trace formula to
bound the growth in terms of multiplicities of discrete series representations on endoscopic

groups.
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CHAPTER 1
INTRODUCTION.

Let G be a semisimple Lie group and I'(p") C G a congruence tower of cocompact arith-
metic lattices. The problem motivating this thesis is the computation of the Betti num-
bers hi(p") = dim(H*(I'(p"), C)), and more precisely of the growth rate of h*(p™) as n — oco.
Cohomology of arithmetic groups is computed representation-theoretically via Matsushima’s

formula [32]:

(P = m(m, p")h (8, K 7).

Here 7 is a unitary irreducible representation of G, with m(m,p™) its multiplicity in the
regular representation of G on L2(I'(p™)\G) and hi(g, K;n) the dimension of its i*! so-
called (g, K')-cohomology group. The finitely many cohomological representations for each
group have been classified by Vogan-Zuckerman in [46]. This reduces the question of coho-
mology growth to that of finding the limit multiplicity of cohomological representations, i.e.
the rate of growth of m(7w,p") as n — oc.

Multiplicity growth rates are best understood for discrete series representations, who
contribute to cohomology only in the middle degree. DeGeorge-Wallach [11] have shown
that if 7 is discrete series, then m(m, p") grows as fast as possible: proportionally to the
index [I'(p") : I'(1)] or, equivalently, to the volumes of the associated locally symmetric
space. If the group G does not have discrete series, no exact rates of growth are known, see
for example [10]. Even for groups which admit discrete series representations (which will
be our focus here), this leaves open the question of multiplicity growth for cohomological

representations in lower degrees. In general such representations are non-tempered: their

matrix coefficients fail to decay fast enough. DeGeorge-Wallach show a weaker result for



non-tempered representations . Their multiplicities m(m, p™) satisfy
(e, p) /D) T(1)] —— 0.

Thus the more specific question motivating this thesis is:

Question 1.0.1. Is it possible to compute the exact rate of growth of m(m,p™) for non-

tempered cohomological representations 77

In [39], Sarnak-Xue made a prediction for upper bounds interpolating between the growth

of discrete series representation and the (constant) multiplicity of the trivial representation:

Conjecture 1.0.2. (Sarnak-Xue) Let 7 be a unitary representation of G' and let
p(m) = inf{p > 2| the K-finite matrix coefficients of = are in LP(G)}.

Then
n n L—‘FE
m(m, p") < [L(pT) : T(1)]P0
By definition, the representation 7 is tempered if p(7) = 2. Thus Sarnak-Xue expect that

the extent of the failure of 7 to be tempered dictates the slowness of the growth of m(m, p™).

1.1 Main Theorem

In this thesis, we give upper bounds on the multiplicity growth of certain cohomological
representations. Let E'/F be a CM extension of number fields and p a large enough prime of
F. Let U(N —a,a) be a unitary group defined in terms of E/F from a Hermitian form, and

let I'(p™) be a sequence of cocompact lattices in U(N — a,a). Our main theorem concerns a



family 7. of representations of U(a, N — a) contributing to cohomology in degrees

a(N — 2k) a<k

a(N —a) -k k<a.

As will be discussed in the body of the text, these representations live in packets correspond-

ing to Arthur parameters whose restriction to Arthur’s SLo is v(2k) & V(l)N_2k.

Theorem 1.1.1. Let I'(p™) be a tower of full-level cocompact lattices in U(a, N — a) and
let i < a(N —a). Let hfc(pn) denote the dimension of the subspace of H(I'(p™),C) coming
from the contribution to (g, K)-cohomology of the representation ;. from global parameters

with two irreducible summands. Then
B (p") < Nm(p") VIV =20,

These are, as far as the author can tell, the first results on growth of cohomology in low
degrees for unitary groups of arbitrary rank, and which hold for any prime p large enough.
The theorem is a consequence of the endoscopic classification of representations for unitary
groups. The classification is a result of Mok [35] if the group is quasisplit, and of Kaletha—
Minguez—Shin-White [23] for inner forms, building on the seminal work of Arthur [4] who
gave such a classification for quasisplit classical groups.

Note that we are not the first to consider this specific family of cohomological represen-
tations. It encompasses all representations contributing to the so-called special cohomology
studied by Bergeron—Millson—-Moeglin [7] in their proof of the Hodge conjecture for arith-

metic quotients of the complex ball.



1.1.1  Owutline of the Proof

The result is proved in the framework of endoscopy, Arthur parameters, and the stable
trace formula, on which we start by saying a few words. The endoscopic classification of
representations for a group G/F gives a decomposition of the regular representation of the

adele group G(A ) on the discrete spectrum:

2
Lii (GIP\G(AR)) =~ B @ m(m)n
P WEHUJ
where the irreducible summands 7 = ®/ 7, are automorphic representations appearing in
the discrete spectrum with multiplicity m (7). This decomposition is given in terms of sets of
representations called Arthur packets I, indexed by Arthur parameters ¢. These parameters

stand in for representations

¥ Lp x SLy(C) — La

where LG is the L-group of G and L F is the Langlands group of F', an object whose existence
is at the present moment only hypothetical.

Endoscopy is a specific instance of the principle of functoriality in the Langlands program.
It concerns certain groups H, the so-called endoscopic groups of G, and states that if v factors
through an embedding L < L@, then there must be trace identities between the characters
of the representations 7 € II, and those of representations 7 of H in a corresponding
packet Hg . The character identities are witnessed through the trace formula Igis. (), a
distribution computing the trace of convolution by a smooth, compactly supported function f
on the subspace of chlis . spanned by the representations m € II,. More specifically, the
character identities appear in a decomposition of Igis. (f) referred to as the stabilization

of the trace formula:

[disc,il)(f) = Z Sgsqz/)(fH)- (1'1)
H



Here the sum runs over all endoscopic groups H such that v factors through LH. The distri-
butions Sgsc’ ¢( H ) are stable, meaning that they satisfy a strengthening of the conjugacy-
invariance property of characters of representations.

The summands S(ji:{sc,w( f), initially defined inductively, can be expanded explicitly as
linear combinations of traces tr 7(f) of the representations 7w € IL,;: this is the so-called stable
multiplicity formula. We write here a simplified version of the stable multiplicity formula in
which we have omitted constants which can be ignored in the asymptotic questions we are

concerned with:

S (F) =D &(n, Hytra(f). (1.2)

WEHw
The coefficients £(m, H) arise from characters of a 2-group Sy, the group of connected com-

ponents of the centralizer of the image of ¢. More precisely, there are two mappings

{representations m € Il } — {characters of Sy}

{H such that v factors through “H} — {clements of Syt

the second of which is a bijection. In this way, the coefficient {(7, H) in the decomposition
of the stable term Sgsc,w( H ) is the value of the character associated to 7 on the group

element corresponding to H.

In this context, the steps of the proof of Theorem 1.1.1 can be outlined as:

(i) (§3.3.3) Determine the parameters 1 associated to the packets containing the coho-
mological representations 7. Specifically, compute the restriction ¥ of the Arthur
parameters of packet containing these representations. This relies on work of Arthur [3]

and Adams-Johnson [1].

(i) (§3.2.2) Write the dimension of cohomology as 3, Iqisc,y(f(p")) for a specific test

5



function f(p"), summing over the parameters 1) computed in the first step.

(iii) (§2.4.2) Fix a cohomological parameter ). Use the stabilization of the trace formula

to decompose

L (FG™) = S SE (PG ).
H

(iv) (§3.1.2) By interpreting the coefficients {(m, H) appearing in the stable multiplicity for-
mula (1.2) as values of characters of Sy, conclude that there is an endoscopic group Hy,

whose contribution bounds that of all the others in (1.1), i.e. such that

for a uniformly bounded K(¢). This group Hy, corresponds to the identity element
of the group Sy, and depends only on ¥(SLy(C)). As such it is determined by the

parameter 1o, and ultimately by the choice of cohomological representations.

(v) (§3.2.4) Interpret the stable trace Sggc’w(f(p”)H¢) as the contribution of ¢ to the
multiplicity m(ﬂHw, p") for a family v of representations of Hy,. This relies on the
fundamental lemma, proved by Laumon-Ng6 for unitary groups [29], but also on a
variant for congruence subgroups due to Ferrari [14]. Then sum over all ¢ with the

Hy pm).

right 1)oo. This sum is now proportional to the multiplicity m(m
(vi) (§3.2.4 and §3.3.6) The representations 7% obtained via steps (i)-(v) from the fam-

ily ;. are the product of a discrete series representation and a character. Their limit

multiplicity is thus know by results of Savin [40], which gives the desired bounds.

Throughout the paper, many results are imported from the works [4, 23, 35] cited above.
It is the author’s hope that this thesis can serve as an introduction, however black box-filled,

for someone hoping to use the stable trace formula for “concrete” applications.



This method is in the lineage of a body of recent work applying the framework of en-
doscopy to the question of growth of cohomology. Most notably, recent progress on multiplic-
ity growth of non-tempered cohomological representations has been made by Marshall [30]
when G = U(2,1), and Marshall-Shin [31] for G = U(N,1) and p a prime splitting in the

CM extension defining the unitary group.

1.2 Conditionality

Our results are conditional on the endoscopic classification of representations for inner forms
of unitary groups, a result which remains to be fully proved in two distinct ways. As explained
in the introduction of [23], the classification depends on upcoming work of Chaudouard-
Laumon on the weighted fundamental lemma. Moreover, the proof of the classification in [23]
is not itself complete: in particular, the results appearing in this thesis as Theorem 2.3.6

and Theorem 2.4.1 are only proved for generic parameters. A full proof is expected in [22].

1.3 Further Work

The main result of this thesis is far from answering Question 1.0.1. It fails to even give
upper bounds for any particular degree of cohomology. It is nevertheless our belief that
the representations for which we do compute the rate of growth yield asymptotically all the
cohomology in the prescribed degrees. We lay out below some avenues for doing this, as well
as possible generalizations of the work of this thesis.

The most immediate obstacle to proving more general bounds is the absence of control on
the stable terms corresponding to groups H # H,,. This issue prevents us from considering
anything beyond the simplest families of Arthur parameters, as is most clearly laid out in
the discussion around Proposition 3.2.10. We expect to address this in the near future: our

hope is to show that there are enough representations in the local Arthur packets for all



characters of the group S, to appear. This would force the traces corresponding H to be
bounded, much in the way that for a nontrivial element g of a finite abelian group G, the
sum deé &(g) vanishes.

A second obstacle arises when the packet IT,, is stable, meaning that Hy = G. This
is a more serious limitation of our technique since in that case we lose access to the entire
inductive scaffolding of the stable trace formula. We hope to solve this by considering twisted
transfer to GLjy, but this is a more long-term goal.

The endoscopic classification of representations holds for symplectic and orthogonal
groups, following the work of Arthur [4]. We have written the first half of this thesis,
up to and including Section 3.1, with the idea that the group G could fairly painlessly be
taken to be orthogonal or symplectic.

Finally, we note that we have yet to state whether our main theorem corroborates Sarnak-
Xue’s conjecture. We expect that this is the case. This question boils down to comput-
ing p(m) for cohomological representations, something that will be done in upcoming joint

work with Simon Marshall [17].



CHAPTER 2
BACKGROUND ON ENDOSCOPY AND THE TRACE
FORMULA

2.1 Unitary Groups and Their L-Groups

In this section we introduce unitary groups and their endoscopic groups, L-groups, auto-
morphic representations, as well as Arthur parameters and the various objects attached to
them.

We start with some notation. Let E/F be a CM extension of number fields with Galois
group I'p JF algebraic closure F' and absolute Galois groups I'p and I'y. We denote the
places of F' and E by v and w respectively. If v is a place of F' let F, = E ®p F,.
Let oo = I' ®qQ R denote the product of all the archimedean completions of F. Let Op
and OFf be the respective rings of integers, and Ap and A g be adele rings. Let A{; be the
finite adeles, so that we have Ap = Fiio X A{;. Let Nm: Ap — A denote the norm map.

Fix x4 for k € {1}, a pair of Hecke characters of E. We fix y11 to be trivial and the
character y_1 is chosen so that its restriction to Ap/F* is the character associated to F
by class field theory.

If Fis a field and G/F is a reductive group, we will denote the center of G by Zg, or
by Z when the ambient group is clear from context. If F'is global then for any place v of F',
we denote G(Fy) by Gy and G(F) by Goo. For H C G(A ) a subgroup of the adelic points
of G, we use the notation Hy = H N G(A{;). The complexified Lie algebra of G, will be

denoted gno.

2.1.1 Quasisplit Unitary Groups

We now introduce unitary groups and their L-groups, following the exposition of Kaletha-

Minguez-Shin-White in [23, §0]. Let E/F be a quadratic algebra: either the CM extension
9



introduced above, or one of its localizations E, /Fy, in which case we have E ~ F' x F when v
is split. If this is the case, fix an isomorphism and identify £ = F' x F. Let 0 € Autp(FE)
be the nontrivial element of I'e/p if £ is a field, and the map given by o(x,y) = (y,x)
it F=FxF.

Let @ be the antidiagonal N x N matrix

In the case that E is a split quadratic algebra, set I'p :=I'p. Let UE/F(N) be the reductive

group over F whose group of F-points is GLy (F), with Galois action

T Tel
TN (9) = ) B

Ad(®y)r(g)™" 7elp\Tg

When the context is clear, the group Ug,p(N) will be denoted U(N). Its F-points can be

identified with

Ug/p(N,F) = {g € GLN(E) | Ad(®N)o(9) ™" = g}. (2.2)

It is a quasisplit unitary group, with maximal (non-split) torus given by the group of
diagonal matrices, and a Borel subgroup consisting of upper-triangular matrices. Note that
in the case that £ = F' x F', we have U(N) ~ GL and we fix an isomorphism to identify
them. Additionally we have an identification U(N, E) = GLy(E).

If the field F is global, we can consider the various localizations of U(N, F'). If v splits

in F, we have U(N, F,)) ~ GLy(F,). Otherwise U(N, F},) a quasisplit unitary group over Fy,

10



a condition that determines it uniquely up to isomorphism, as we shall see below.

2.1.2 Inner Forms

An inner form of U(N) is a pair consisting of an algebraic group G/F together with an
isomorphism

¢:G(F) = U(N,F)

lis inner. In

with the property that for all ¢ € ', the automorphism 5_1 ococofoo™
this thesis, we will always require that the inner forms be groups defined with respect to a
Hermitian space over . When we speak of G an inner form of U(N), we always make a
choice a twist £ although it is most often implicit. Furthermore, we will denote U(N) by G*
when we want to highlight that it is the quasisplit form of G. We now discuss which possible

groups G can arise as inner forms of Ug, p(NN) in the cases where F is local or global.

Local Inner Forms and the Kottwitz Sign

If v is archimedean the classification of inner forms is well-known: a unitary group over Fj, =
R is determined by its signature p + ¢ = N, with U(p,q) ~ U(q,p). The group U(p,q) is
quasisplit if and only if |p — ¢| € {0,1}. Note that since the notation U(N) is reserved for
quasisplit groups, we will denote the compact inner form of U(N,R) by Uy (R).

For v nonarchimedean, the classification of unitary groups coming from Hermitian forms
over F, is due to Landherr [27]: if N is odd, there is one class of Hermitian forms up to
isomorphism, so the group U(N, F},) is the unique unitary group of rank N. If N is even,
there are two isomorphism classes of unitary groups, only one of which (the one contain-
ing U(N, F,)) is quasisplit.

One can associate to an inner twist Gy of U(N)g, /5, a Kottwitz sign e(Gy). We record

the formulas for (G, ) depending on the base field, as computed in [25].

11



e For F;, = R, let ¢(Gy) be half the dimension of the symmetric space associated to the

group Gy. Then e(Gy) = (—1)4(Gv)—a(G2)

e For F, non-archimedean, let r(Gy) be the rank of Gy. Then e(Gy) = (—1)7(Gv)—r(G2).

Lastly, Kottwitz proves in [25] that for any group G defined over a global field, the local

signs cancel out and [[, e(Gy) = 1.

Global Inner Forms

We describe the classification of global forms of unitary groups, following the discussion
in Section 0.3.3 of Kaletha-Minguez-Shin-White [23]. When N is odd, there is no global
obstruction and any collection of local inner twists can be realized as the localization of a
global inner twist.

When N is even, the behavior of the place v in the extension E determines the cohomolog-
ical invariants attached to G. In any case, we have that Hl(I‘Fv7 Gf,’ad) ~ 7/27. If v is split
in F, the invariant of G, depends on the division algebra D, such that G, = Res?;’GL M, -
Since we only work with unitary groups coming from Hermitian forms, this invariant will
always be 0 for us. At finite nonsplit places, the quasisplit group U(N), and its unique
inner form correspond respectively to 0 and 1 in Z/2Z. At the infinite places, the invariant
associated to the group G, with signature (p,q) is % +q € Z/2Z. The condition for a
collection of local GG, to come from a global unitary group is that almost all of the invariants
associated to GGy, are zero, and that their sum is also zero. We record a consequence of this

in a lemma.

Lemma 2.1.1. Let F be a totally real field and E/F a CM extension. Then there exists
a unitary group G over F with any prescribed choice of signature at the infinite places.
Moreover, this group G can be chosen to be quasisplit outside of a set of places of size at

most 1.

12



Remark 2.1.2. The authors of [23] work with a refinement of the notion of inner form.
Recall that isomorphism classes of inner forms of G are in bijection with H'(T'p, G,q). In
addition to this, they introduce the notion of pure inner form, a triple consisting of the
group G, the map € and a cocycle z € Z1(I', G) compatible with the inner twist in the sense
that o o £ 0 0~ = Ad(2(c)). The map sending a pure inner form to z induces a bijection
between the isomorphism classes of pure inner form and H 1(F 7, G). Inner forms of unitary
groups which can be realized as pure inner forms are those which come from a Hermitian
space over F' and not over a division algebra, and these are precisely the groups we work
with. We will point out dependency on z in our results whenever it is relevant. Mainly, the
definition of the pairing in local Arthur packets is given in terms of the localization z, of the

cocycle z, but this dependency on z, cancels out globally.

2.1.3 L-groups

Throughout, we will work with the Weil group version of the L-group, primarily because
it is well-suited to our description of local parameters. In terms of the actual definition of
the L-group, this choice is purely cosmetic as the Galois actions involved will always factor
through a quotient of order at most 2.

For G/ F with F either local or global, fix a root datum. The L-group of G is a semidirect

product
LG = G X WF

The group G is the complex dual group of G, i.e. the complex-valued points of the group
whose root datum is dual to that of G. The action of Wg on G is then induced by the Galois
action on the root datum of G. As a consequence, if G is split then “G = G x Wp, and in

particular,

LGLN(F) = GLN(C) x Wp.

13



If G’ /F is an inner form of G then by definition G'(F) ~ G(F) and the corresponding Galois
actions differ by an inner automorphism. These induce isomorphisms of root data and Galois
actions, which in turn induce isomorphisms LG ~ LG,

When F' is global, we will sometimes abuse notation and write, L@, for the L-group of
the base change of G to a completion Fy. In this situation, the embedding Wgr — Wgp

induces a map L@, — LG which is the identity on G.

The L-group of U(N) is defined as
LU(N) = GLN(C) x Wk

where Wg acts through the order two quotient I'p /F- The non-trivial element o of this

quotient acts by the outer automorphism of G L preserving the standard diagonal splitting:

a(g) = @yl Ty,

where ® 5y was the matrix defined in (2.1). This L-group is shared by all inner forms of U (V).

Morphisms of L-groups

If LH and LG are two L-groups, then a morphism of L-groups is a continuous morphism
n: Ly 5 lag

which commutes with the projections onto Wgr. We will typically be concerned with L-
embeddings, where H<G.
In particular, many objects associated to a unitary group Up / 7(N) depend on a choice

of embedding of L-groups from LU E/ r(N) to L RengL ~- The connected component of the
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L-group of RengLN is the product of two copies of GL(N, C), and Wp acts through FE/F
via the automorphism that interchanges the two factors.

To define the L-embedding (often referred to as the base-change morphism) recall the
characters x, from the beginning of this section. If F'is global, we will use this character,
and if F' = F, is local, we will momentarily also denote by x the restriction of y, to EJ.

For each k € {£1} we choose an embedding
Nk LU(N) — LRengLN (2.3)

as follows. Choose an element w. of Wr \ Wg, and denote the identity N x N matrix by

Iy. Then 7y is defined as

m(gx1)=(g,'g7)x1, ged
ne(In % 0) = (xu(0)In, X (0)IN) ¥ 0, 0 €W

NIy X we) = (HCI)N,CI)]_VI) X We.

The second class of embeddings we will consider is from the L-group of a product U(Np) X
... X U(Ny) of unitary groups with 3> N; = N into “U(N). These products of smaller unitary
groups include the elliptic endoscopic groups of inner forms G of U(N). In order te define
the L-embeddings, put x; = (—1)N_Ni for each index i, and let kK = (k1,..., 7). Given x

with signature s, and for a choice of w. as above, the embedding

e 2 Y(U(N1) x ... x U(Ny)) = FU(N) (2.4)
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is defined by

nlﬁ(gla"'agT X 1) = diag(glv "'797“) X 17 gZ € GL(NZ’C>

Ne(INys - DN, @ o) = diag(Xk; (0)IN, - Xk, (0)IN,) X0, 0 € Wg

M (INys s I, % we) = diag(k1 @y s ooy k7@, ) - b X e

Note that the composite embedding 7 07, gives an embedding LU(Nl) X ... xLU(N,) —
LRes%GLN with signature (kkq, ...., Kkp).

The necessity to consider several embeddings depending on k stems from the possibility
that parameters for the pair (U(N),n4) may factor through different embeddings of the
products of groups U(NV;) associated to different signs. This will become apparent when we

introduce endoscopic groups in 2.2.10.

2.2 Parameters

Here we introduce the discrete automorphic spectrum of a unitary group G, and the local and

global parameters which will classify the (constituents of) these automorphic representations.

2.2.1 Automorphic Representations

Let (G, &) be an inner form of U(N). Fix a character w of Zg(A ) and a maximal compact
subgroup of K of G(Alf;), which in turn determines maximal compact subgroups K, hy-
perspecial at all unramified places. We consider the right-regular representation of G(Ap)

on

L2 (G(F\G(AF),w),

the discrete part of the space of square-integrable functions which transform by w under

the action of the Zg(Ap). We will sometimes drop the w when we allow for any choice of
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central character. In the cases of initial interest to us, G/F will be anisotropic, the central
character w will be trivial, and the space L2 . will be the entire automorphic spectrum of G.
However for induction purposes we will have to allow for arbitrary central characters and

for L?(G(F)\G(AF),w) to have a continuous part. The discrete spectrum decomposes as

Liiso(G(PN\G(AF)) = P m(m)

where m(7) denotes the multiplicity of 7, and the irreducible constituents are automorphic
representations. Each of these automorphic representations is a restricted tensor product m =
®1,my with each 7, an irreducible admissible unitary representation of each of the Gy. All
but finitely many of the 7, are spherical with respect to K;,. The representation 7, is said
to be tempered if its K,-finite matrix coefficients belong to the L>T€(Gy) for all € > 0.
After fixing a maximal compact subgroup Ko of G, we replace moo by the dense sub-
space of Ko-finite smooth vectors, which we view as an admissible (g0, Koo )-module. This
is no loss of information since unitary admissible representations are determined by their un-
derlying (goo, Koo )-modules, see [24, 9.2]. Thus in practice our automorphic representations

will carry an action of G(A{,) X Goo-

2.2.2  Local Langlands Parameters

We now introduce the objects classifying automorphic representations and their constituents,
beginning locally. Let F' be a local field with Weil group Wg. The Langlands group L of F

is defined as

Wg F' is archimedean
L F =
Wpg x SU(2,C) F is non-archimedean.

A (local) Langlands parameter for the reductive group G/F is a continuous homomor-
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phism

Q: L F — LG
satisfying certain conditions (see [9] for a discussion):

i) The map ¢ must commute with the natural projections Lr — W and L - wp.
¥ F F F
ii) In the non-archimedean case, the restriction must be algebraic.
¥ 18U (2,C) g
(iti) The image of of Wy under ¢ must consist of semisimple elements of LG.

(iv) If the image of ¢ in G factors through a parabolic subgroup of G, then this parabolic

subgroup must be the dual P of a parabolic subgroup P of G.

Continuous homomorphisms that satisfy condition (i) are known as L-homomorphisms.
If they additionally satisfy conditions (ii)-(iv) they are called admissible. If they satisfy
condition (iv), they are called relevant, or G-relevant. Note that this fourth condition is the
only one depending on the choice of inner form G. Finally, we say that ¢ is bounded it Wg
has bounded image in G. We will consider two parameters equivalent if they are conjugate by

an element of G and will denote the collection of equivalence class of Langlands parameters

for G by ®(G).

2.2.3 Local Arthur Parameters

In order to classify the non-tempered spectrum of GG, we consider enhancements of local Lang-

lands parameters known as local Arthur parameters. These are admissible L-homomorphisms
¥ Lp x SLy(C) — L@

such that ¢ [, is bounded. Again, two Arthur parameters are equivalent if they differ

by conjugation by an element of G, and we denote the set of equivalence classes of Arthur
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parameters by WU(G). We will sometimes refer to the SL9(C) factor appearing in the above
product as the Arthur SLy. We will say that ¢ is bounded if its restriction to the Arthur S Lo
is trivial.

To each Arthur parameter ¢ we associate a Langlands parameter ¢, as follows. Recall
(eg. [43]) that the Weil group Wg is naturally equipped with a norm homomorphism | - |

to C*. Then ¢y 1s defined as the composition

|U|1/2 0

pp  Wp—=1G, py0)=1 |0,
0 |0’—1/2

In the case where ¢ is bounded, we have ¢, =9 I I

We now describe Arthur parameters of unitary groups, following Section 2.2 of Mok [35].
The set W(U(N)) is best understood in terms of \If(RengL ~). To produce an element
of \I/(RengL N), one starts with an admissible N-dimensional representation 1 of Lg x
SLo(C) and promotes it to a homomorphism Lp — LRengL n- This is done by first
choosing an element w, € Wg \ Wg. The parameter ¢/ : Ly x SLy(C) — LRengLN is

then defined by Mok. It satisfies

W (0,9) = (¥(0,9),¢%(0,9)) x 0, (0,9) € Lp x SLs,

where ¥¢(0,g) = @Z)(wc_lawc, g). If ¢ ~ " where 9" is the contragredient of v, then the
parameter is called conjugate self-dual. There is a further notion of being conjugate self-dual

of parity £1, which depends on the parity of the resulting bilinear form.

19



The map 7, introduced in (2.3) then induces a mapping

s - W(U(N)) = U(ResEGLy) (2.5)

Y= N 0. (2.6)

This map 7 is shown by Mok, following work of Gan-Gross-Prasad [16], to be an injection
whose image is independent of the choice of w. and consists precisely the set of self-dual

representations of parity (—1)N 1.

2.2.4  Global Arthur Parameters

When trying to extend the notion of Arthur parameter given above to a global field F', one is
confronted with the current absence of a well-defined global Langlands group Lg. As a sub-
stitute for global parameters, Arthur [4, §1.4] introduces formal objects realized by combining
cuspidal automorphic representations of GL ) with representations of the Arthur SLs. In
the case of unitary groups, the general linear group of reference is GLy/E. Echoing the lo-
cal discussion, global Arthur parameters are first defined in terms of Res%:GL N, and Arthur
parameters for U(N) are then the ones factoring through a fixed embedding of L-groups.
A global Arthur parameter for GLy is a formal object consisting of a unordered sum
WV =B, = Bu(m;).
Here p; is a cuspidal automorphic representation of GLj,, and v(m;) is a representation
of SLy(C) as above, with m;n; = N; and ) ; N; = N. Departing from our references, we
will immediately restrict our attention to the set of Arthur parameters such that the @ZJZM are
pairwise distinct: we denote this set W(N) instead of Wy (N). The collection W(N) contains
a distinguished subset W, (N) consisting of simple parameters for which there is a unique

summand @Z)N . Following the theorem of Maeglin-Waldspurger [33], this subset Wg,(N)
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parameterizes the discrete spectrum of GL .

We now give the construction of global Arthur parameters for a quasi-split unitary
group G = U(N), following the exposition of Section 1.3.4 of Kaletha-Minguez-Shin-White [23].
We start by restricting our attention to the set U(N) C W(N) consisting of parameters for
which each of the p; is conjugate self-dual. This means that the cuspidal automorphic
representations ju; of GLy(Af) satisfy p; = fi;¥ where i = oo and o € I'g/p-

Now to record not only the parameter, but also its relation to the embedding 7., we
introduce the group L. If wN decomposes as a sum of 1;Xlv(m;), we associate to each index
a pair (Ug,p(ni), nx;) consisting of a quasisplit unitary group and an associated embedding

as in 2.1.3. Here the choice of sign r; is determined by ;. Then £, is the fiber product
Ly =] Ug/pni) = Wr).
1
There is a natural map % : Ly x SLy(C) — LRengL N given by the direct sum
PN = @ ® vimy)).

A global Arthur parameter for (UE/F(N),%) is then defined as a pair ¢ = (wN,@)
where IV € W(N), and
Vi Ly x SLy(C) — LUp p(N)

is an L-homomorphism such that 7, o 1) = @Z)N . This definition Arthur parameters as
consisting of two pieces of data is rather cumbersome, but it is useful to remember that wN
encodes the arithmetic information of the cuspidal automorphic representations of GLy,,
and that 1/; has the advantage of being an actual homomorphism. As such, we can (and

will) discuss, for example, the centralizer of the image of 1. We set two Arthur parameters
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to be equivalent if they are conjugate, and denote the set of Arthur parameters ¢ as above
by W(U(N),nx). Note that once again we have broken off from our references in the choice of
notation: our set W(U(N), ) is the one that the authors of [23] denote Wo(Up/p(N), nx)-
Finally, note that the map from ¢ — 1"V is an injection: this allows us to regard ¥ (U (N), 1)
as a subset of W(NV).

Remark 2.2.1. We have made two constraints on the set of parameters under consideration

here which bear highlighting. We require:

(i) that the irreducible summands v; be pairwise distinct. In Mok’s description of the

parameters in [35, §2.4] this amounts to requiring that all the [; = 1.

(ii) that each of the irreducible summands be itself conjugate self-dual. This is more
strict than requiring the whole parameter to be conjugate self-dual since we could have

had M;/ 1.

Parameters satisfying these conditions are called elliptic. These restrictions will give us
control on the group Sy, to be introduced below, whose characters determine which products
of local representations occur in the discrete spectrum. It is also the case that only the

parameters in the set which we denote by (U (N), 7,;) correspond to packets whose members

2

Jiser although this fact is far from obvious and is

actually appear in the decomposition of L
one of the main theorems in [35] and [23]. Following this result, global elliptic parameters

are also called square-integrable.

2.2.5 Localization

We now explain how global Arthur parameter ¢» € W(U(N),n;) gives rise to local Arthur
parameters ¢, at each place v. Each cuspidal representation p of GLj factors as a restricted
tensor product p = ®', over all places v of F. These representations /i, are admissible

representations of GLn(Fy). The local Langlands correspondence for GLy [19, 20, 41]
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associates to each i, an bounded parameter ¢, € ®(GLy). Following [4], we then define

the localization of ¢ at v as the direct sum

Yo = Bithyg, Yui = Ppy; @ v(m;).

These localizations a priori only belong to \I/(Res%:GL ~)- The fact that they are indeed in
the image of the map (2.5) is one of the central theorems of the endoscopic classification of

representations proved by Mok in [35].

2.2.6  Parameters of Inner Forms

Let (G,&) be an inner form of G* = U(NN). A local Arthur parameter for G is simply a
parameter for U(N) which is G-relevant, a notion that was introduced in 2.2.2. Globally,
a parameter » € W(G* n,) is G-relevant if it is so everywhere locally, see [23, §1.3.7].
We denote by (G, ¢) the collection of parameters in ¥(G*, ) which are G-relevant. In

summary, we have the following global chain of inclusions:

U(G, &) C Y (G ng) CY(N) C¥(N),

where the parameters in U(N) are conjugate self-dual, those in W(G*,7,) factor though the

embedding 7, and those in (G, §) are additionally G-relevant.

2.2.7 Parameters and Conjugacy Classes

We now explain how to attach families of conjugacy classes to objects introduced in the
previous sections. For F' global, G reductive, and any finite set S of places of F' containing
the archimedean ones, let C¥(G) denote the set of collections ¢ = {cv}ugs, where each ¢y is
a semisimple conjugacy class in G. For two sets S and S’ et ¢ ~  if ¢, = ¢, for almost

all v. Denote the set of such equivalence classes by C(G). In keeping with the notation for
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parameters, denote the special case where G = GLpy by C(NN). We can associate elements
of C(G) to automorphic representation 7 of G. Factoring m = ®/m,, where m, is unramified
at all but finitely many (non-archimedean) places, let ¢(m) = {c(my)} be the collection of the
Satake parameters of all the unramified representations.

When G = GLy we do more and associate an element of C(/N) to each parameter
¥ € Y(N). Starting with simple parameters ¢ € Wg,(N), we use the recipe for the
representation 7, prescribed by Moeglin-Waldspurger’s theorem [33] and let c(¢)) := c(my).
If the parameter v is not simple, we apply the above process to its simple constituents and
associate to 1 the conjugacy class coming from the diagonally embedded product of the

GLy;, inside of GLy. In this way we obtain a mapping

U(N) = C(N), 9+ ().

Following the work of Jacquet-Shalika [21], this mapping is injective. We denote its image

2.2.8 Stabilizers and Quotients

We recall the definition of some centralizer groups attached to a parameter . Their char-
acters will determine both the identities between representations of G and of its endoscopic
groups, as well as the multiplicity m(7) of automorphic representations inside the discrete
spectrum.

For v either local or global, we have

Sy 1= Cent(Im(v)), Q), (2.7)
Sy =Sy Z(G)WF, (2.8)
Sz/} = 7T0(S¢) (29)
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As mentionned above, when 1) is global, Im(¢)) really means Im(v). Localization of param-
eters ¢ — 1)y induces a mapping Sy, — Sy, -

When G is a unitary group, the centralizer quotients Sy, can be readily computed, as
the four authors do in [23, p.63]. In particular, in the case of F' global and ¢ € W(G*,ny)

decomposing as 1 = H_1;, we have
Sy =(Z/2Z)" 1. (2.10)

The reader who actually does open [23] to look at the computations will notice that here is
where we use the two assumptions from Remark 2.2.1. They allow us to only consider cen-
tralizer groups that are purely orthogonal. The possibility of symplectic factors is eliminated
by the assumption that [; = 1 for all 7, and that of general linear factors by the assumption
that each summand is self-dual.

Finally, we introduce the distinguished element

sy = | 1, € Sy- (2.11)
0 -1

We will sometimes conflate sy, and its image in the quotient Sy, and use the same notation

for both.

Remark 2.2.2. In Kaletha-Minguez-Shin-White’s classification of representations for inner
forms of unitary groups [23], the authors introduce a new centralizer quotient Si. In the
case that (G is a local unitary group, the two groups Si and Sy, agree 23, §1.3.4]. When
the local group G is isomorphic to GLp (the only possibility for us when the corresponding
place is split, since we only work with unitary groups that arise from global hermitian forms)

then the group 55} is isomorphic to C*. However, in that situation, the only representation

of SE/) which arises in character identities will be the trivial one, as will be discussed in
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Section 2.3.5. There is thus no loss to instead work with the group Sy, = {1}. As for the
global situation, the characters of Si that arise all factor through Sy [23, p. 89]. Finally,
we point out that we follow Mok and Arthur’s convention by denoting by Sy, the group that

the four authors of 23] denote Sy,

2.2.9 Epsilon Factors

The last invariant attached to a global parameter ¢ is €. It is a character of the group Sy,
and is defined by Arthur in [4, §1.5]. The definition involves the symplectic root num-
ber €(1/2, i) of an automorphic L-function L(s, uq) for a product of general groups. The
representation p is associated to the parameter into GL(gé) obtained by composing

with the adjoint representation. As such, the arithmetic properties of the decomposition

of L2

disc

(G(F)\G(AF)) are encoded through €. Finally, note that ¢, only depends on the
parameter ¢ and in particular is independent of the inner form of G* under consideration,

as is discussed in [23, p.89.

2.2.10 Endoscopic Data

An endoscopic datum for G is a triple (£, H, s) where

- s is a semisimple element of G,

- H/F is a connected, quasisplit group whose dual group H is the connected component

of the centralizer of s in @,
- & Lpg - LG is an L-embedding.

We will work only with elliptic endoscopic data, characterized by the finiteness of Z (ﬁ )WF .
As such, we will denote the set of elliptic endoscopic data for G up to conjugation by £(G),

dropping the “ell” subscript that appears in our references. We will also frequently abuse
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notation and refer to the group H as a stand-in for the full datum, sometimes denoting the
other two elements of the triple by £y and sp. Lastly, we will also use the formalism of
endoscopic data for our unitary groups and denote by € (N) the set of pairs consisting of a
quasisplit unitary group U(N) together with the L-embedding 7, from (2.3), extending this
pair to an endoscopic triple via the element s = I.

We now describe endoscopic groups of unitary groups. For any inner form G of Up, / r(N),

the set £(G) consists of pairs
(H75)2<U(N1)XU(N2)7T]ﬁ)7 N17N2207 N1+N2:N7

where the embedding was defined in (2.4). The signature x = ((—1)N =N (=1)N-N2)
depends on the respective ranks of the groups. The equivalence class of endoscopic data is

then uniquely determined by N7 and Na, see [35, §2.4].

Endoscopic Data and Parameters

We now import the first result concerning the objects introduced so far: the group S,
parametrizes endoscopic groups such that v factors through g. Let (H, &g, sg) € E(G) be
an endoscopic datum and ¢ € U(H,n, o&p) be an Arthur parameter. Let ¢ = £ o vH.
Since the element sz commutes with H, it also commutes with the image of 1. In this way,
we get an mapping

(H, ) = (g ovt, sp) (2.12)

from the pairs (H, v ) onto the set of pairs consisting of a parameter ¢ for G, together
with an element s of the centralizer Sy. The importance of the quotient Sy, comes from the
fact that for each parameter 1) the map from (2.12) descends to a bijection between S, and
the set of endoscopic data such that v factors through &f. We state this result below and

refer to the proof in [23], which is an adaptation of Arthur’s proof in [4, §1.4]. To simplify
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statements, we will restrict ourselves to the result we will use: a global unitary group G and

a square-integrable parameter .

Lemma 2.2.3. Let F' be global and G* = Up,p(N). Let ¢ € W(G*,nx). The map (2.12)

induces a bijection

(H, M) & (v, 5)

where the left-hand side runs over pairs where H is stands in for an endoscopic datum
(H,&,s) and wH 15 a parameter of H such that ¥ = & o v and the right-hand side runs

over elements of Sy.

Proof. The proof is the content of section 1.4 of [23], and the above statement is a reformu-
lation of Lemma 1.4.3. Our simplifying assumption that ¢ is square-integrable implies that
Sy and a fortiori 5’¢ are finite. Thus the groups 5”1/, and &, are one and the same and we

use the latter in our bijection. O]

Example 2.2.4. To fix ideas, we give an example of this bijection. Let G = U(5) be the

quasisplit unitary group in 5 variables. Fix a parameter

U= B By = (1 Wr(1) B (u Mr(2)) B (u3 K v(2))

where each p; is cuspidal automorphic representation of Up / (1), i.e. a Grossencharacter
of A%mzl. From section 2.10 we compute that Sy, = (Z/ 27)2. A choice of representatives

in Sy, for the elements of Sy, are diagonal matrices with entries

s1=(1,1,1,1,1), so=(=1,1,1,1,1), s3=(=1,-1,—-1,1,1), sq=(1,—1,-1,1,1).
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The associated endoscopic pairs are (up to a twist of @Z)H induced by the embedding £z7):

(Hy, ™) = (U(5), 41 By Kaj3)
(Ha, v™2) = (U(1) x U(4), 41 x (19 B13)),
(Hs, v113) = (U(3) x U(2), (11 B 1ba) x 3),

(Hy,vM4) = (U(3) x U(2), (1 B 1b3) X o).

Note that despite our notation (H, sz ), the same endoscopic group H appears twice, asso-
ciated to two different parameters. Observe also that we have s, = s4 in the quotient S,

and that (as is always the case), the identity element of S, corresponds to G.

2.3 Packets

The parameters introduced above serve to classify the admissible (in the local case) or
automorphic (in the global case) representations of the group G. In this section, we introduce
the set of representations associated to an Arthur parameter, known as an A-packet or Arthur
packet. We also give the character identities relating the traces of the representations in a

packet to corresponding representations for endoscopic groups.

2.3.1 Local Arthur Packets

Let G/F be a unitary group over a local field. The main local results of Mok [35, Theo-
rem 2.5.1] and Kaletha-Minguez-Shin-White [23, Theorem 1.6.1] associate to each Arthur
parameter ¢ for the group G a finite set II,, of irreducible unitary representations of G (F)
called a local Arthur packet. This packet L is empty if ¢ is not relevant, and it contains
only tempered representations when ¢ is bounded. If I, is nonempty, it is equipped with a
pairing

(, )8y x 1y, — {£1}. (2.13)
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Through this pairing, every representation 7 € Il gives rise to a character of the group S
In particular, unramified representations correspond to the trivial character. The pairing

depends on the triple (G, &, z) realizing G as a pure inner twist as discussed in Remark 2.1.2.

Remark 2.3.1. In the case where F' is archimedean, the representations contained in the
packet II;, all have the same infinitesimal character. In the case of cohomological represen-
tations, these are explicitly described by Adams-Johnson in [1]. In particular, one can speak

of “the infinitesimal character” of the parameter 1.

We recall a result of Mok that the central character is the same for all representations

in I, and is determined by both the parameter ¢ and the choice of embedding 7.

Proposition 2.3.2 (Proposition 1.5.2, 2. [23]). For each 7 € Il the central character wr :

Z(G*)(F) — C* has a Langlands parameter given by the composition

Py Lo (detxid)on,

LF fo NWF.

2.3.2 (Global Arthur Packets

Global parameters also have sets of representations attached to them. Let ¢» € ¥(G, &) be a
global parameter with localizations ¢,. The global Arthur packet Il is then defined both

in terms of the local packets and of the pairings as
I, = {7r = QuTy | Ty € Iy, , <"7TU>1PU = 1 for almost all v} )
The packet 11 is equipped with a pairing

(g Sy x Iy = {1}, (m)y =[] mo)u, (2.14)

v

determined by the maps Sy, — Sy, induced by localization. We note once again that the
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pairing depends on the full inner twist (G,£). On the other hand, the local dependence
on the pure inner twist, i.e. the dependency on the cocycle z, which appeared in the local

definition of the pairing, cancels out globally. This is explained in [23, §1.7].

2.3.8 Test Functions

We introduce test functions in order to state the character identities relating packets for
various groups, following the exposition of Section 1.5 of Arthur’s book [4]. Continuing
with F' global, we fix compatible Haar measures p on G(Ap) and p, on Gy for all v. We
also fix a maximal compact subgroup K of G(Afp). The group K determines a maximal
compact subgroup K, C G, at each place v, and we choose K so that at all the unramified
finite v the subgroup K is hyperspecial. Finally, we fix a character w of Z(Ap), which in
turn determines local characters wy.

The local Hecke algebra H(Gy,wy) is the algebra of smooth compactly supported func-
tions on (g, which transform under the center of GG, by the character w,. At the archimedean
places we further require that they be Kj-finite. We will call elements of H(Gy,wy) local
test functions.

The global Hecke algebra is defined as the restricted tensor product H(G,w) = Q) H(Gy, wy).
It is the algebra of smooth, compactly supported, K-finite functions which transform under
the action Z(Ap) by the character w. Each such test function is a finite sum of factorizable
test functions of the form f =[], fu, where each f, € H(Gy,wy) and all but finitely many f,
are the characteristic function of the maximal compact subgroup K.

A smooth, admissible representation m, of G, on a Hilbert space can be promoted to
an H(Gy,wy)-module, and the two categories are equivalent. The operator on 7, given
by convolution by f, is then of trace class, and we denote its trace by trm,(f,). Like-

wise globally, the algebra H(G,w) acts on L3

disc

(G(F)\G(AF),w) and on its irreducible

constituents 7. We denote this by R(f) (when considering the right-regular representation
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2
on Ldisc

(G(F),G(AF),w)) or by trm(f) (when f is acting on the irreducible representa-
tion 7.) Finally note that both locally and globally, the trace of f on a representation
vanishes if f € H(G,w) for w different from the central character of 7. We will sometimes

suppress the notation of the character and simply denote the Hecke algebra by H(G).

2.8.4 Stable Distributions and Transfer

We introduce the notions of stable distributions on the local and global Hecke algebras,
following Sections 3.1 and 4.2 of [35], respectively. Let v be a conjugacy class in G(Fy). The
stable conjugacy class of v is the union of all the (finitely many) conjugacy classes of G(F})
that are conjugate to v over G(Fy). A local test function f, € H(Gy) is determined by all
its so-call orbital integrals f, ¢(v) over regular conjugacy classes in G.

We start with a sketch of the definition of local transfer. Let G, be a quasisplit unitary

group. Each stable conjugacy class ¢ gives rise to a linear functional
J50) =3 267 fuc(): (2.15)
Y

where the sum is taken over all the conjugacy classes v of G(F}). The factor A(d, ) is equal
to 1 if v belongs to the stable conjugacy class 0 and to 0 otherwise. In other words, the
right-hand side is the sum of orbital integrals over the conjugacy classes belonging to the
stable conjugacy class 0. This construction gives a map from H(Gy) to the ring of functions
on stable conjugacy classes. Denote the image of this map by S(Gy). We will say that a
linear functional on H(Gy) is stable if it factors through the quotient S(Gy).

Now let G, be an arbitrary unitary group. For each endoscopic group H, of G, (in-
cluding G3), there is a map H(Gy) — S(Hy) whose definition is formally identical to (2.15)
with 0 a stable conjugacy class on H,, but in which the transfer factors are much more

delicate and are were defined by Langlands-Shelstad [28] and Kottwitz-Shelstad [26].
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This gives us a system of maps from the Hecke algebras H(Gy) to their stable counter-
parts S(Hy). If Hy is an endoscopic group of Gy, we will say that two functions f, € H(Gy)
and fg{ v € H(Hy) form a transfer pair if they have the same image under their respective
maps to S(Hy). Although the function fUH v is not uniquely determined by H, (we could
for example take any conjugate), we will sometimes abuse terminology and call one choice
of ff Y the transfer of f,.

In order to extend the notion of transfer to global test functions, it is first necessary to
know that the transfer of characteristic functions of maximal compact subgroups of G, are
the corresponding functions on H,. This is the fundamental lemma, now a theorem due to
Laumon-Ngo [29] in the case of unitary groups, and to Ngo [36] in general, after reductions

by Waldspurger [47, 48].

Theorem 2.3.3 (Fundamental Lemma). Let Gy, and Hy, be unramified reductive groups over
a non-archimedean local field F,. Let K(Gy) and K(Hy) be respective choices of hyperspecial
mazimal compact subgroups. Then their characteristic functions f, = 1 K(Gy) and fy,v =

1 K(Hy) form a transfer pair.

With this in mind, the transfer of a factorizable global test function f =[], fo € H(Gy)
is the product fH7 = [1, fo'" of its transfers, and we extend this definition to all of H(G)
linearly. We will likewise define the global stable Hecke algebra S(G*,w) := &} S(G%, wy),
where the restriction is that all but finitely many tensors must come from the characteristic
function of a hyperspecial maximal compact subgroup. Finally, we will say that a global

distribution on H(G™) is stable if it factors through the quotient S(G*).

2.8.5 Local Character Identities

The transfer of representations between G and its endoscopic groups H is encoded via iden-
tities between linear combinations of characters; the coefficients are determined by the pair-

ings (2.13). We collect the relevant results below; here F' a local field.
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We start with the existence of a distribution f& (1) on H(G). Let G*/F be a quasisplit
unitary group or a product thereof, and ¥ an Arthur parameter of G*. Then Mok shows the

existence of a stable linear form associated to the packet II;,.

Theorem 2.3.4 (Theorem 3.2.1 (a), [35]). Let ¢ € W(G™). Then there ezists a unique stable

linear form

fe 19 W)

on H(G*) determined by transfer properties to GLy. If G* = G7 x G5 and 1 = 11 x 19,
then f& () = f1 x f%.

We will not discuss in detail the character identities relating f G* (1) to traces on GLp as
they do not come into play for us, although they are critical to establishing the endoscopic
classification of representations. It suffices to say that this distribution is related to the
trace trmy, N (f) for a representation Ty, N associated to the parameter ¢. Our focus will
be on the relation between the fH () for the groups H € £(G), and the characters of
representations in the packet IL,. If G = G* is a quasisplit unitary group, these identities

were established by Mok. Recall that s is the distinguished element of S, defined in (2.11).

Theorem 2.3.5 (Theorem 3.2.1 (b), [35]). Let G* be a quasisplit unitary group, let 1 €
U(G™), and let T1, be the associated Arthur packet equipped with the pairing (-,-). Let s be a
semisimple element of Sy, and let (H, 1/1H) correspond to (1, sg) as in Lemma 2.2.3. Then

for a transfer pair (f, f7) we have

@) =3 (sypsp, ) tra(f).

WEHw

When the group is not quasisplit, the corresponding result is due to Kaletha-Minguez-
Shin-White [23].
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Theorem 2.3.6 (Theorem 1.6.1, [23]). Let (G,¢§) be an inner form of U(N) and let 1, 11,

H, sy, and (f, f7) be as above. Then

FAWH) =e(G) Y (sypsp.m)tra(f)

7T€H¢
where e(G) is the Kottwitz sign introduced in 2.1.2.

Remark 2.3.7. Here we recall something that we discussed in the introduction: the the-
orems stated in [23] are not in fact all fully proved. For example, Theorem 2.3.6 is only
proved in the case that the parameter 1 is bounded, i.e. trivial on the SLy factor. The
authors of [23] anticipate that they will provide the full proof in a pair of upcoming papers,
the first of which [22] concerns unitary groups defined with respect to hermitian forms and

will contain the results used in this thesis.

Local Packets for General Linear Groups

As was discussed in Section 2.1.1, if F is a local field associated to a place which splits in
the CM field defining our unitary group, then G ~ G Lj;. In this situation, the local Arthur

packet and the pairing are especially simple.

Theorem 2.3.8 (Section 2, [35]). If G = GLy and 1 is an Arthur parameter for G, then
the packet 1L, contains one element: the irreducible representation associated to gy, by the

local Langlands correspondence. The character ( ,my,) is trivial.

We now consider the character of identities between representations of G and that of
its endoscopic groups. They are alluded to in [35] and [23], but we give a more explicit
description based on Shin’s exposition in [42, §3.3]. For G = GLj, stable and regular
conjugacy classes coincide and the stable quotients S(G) are equal to H(G). Since the global

extension giving rise to our unitary group is C'M, we need only consider the case of GLy/F
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when F'is non-archimedean. If H = GLy, X GLy, with N1+ Ng = N, then the embedding
Nk that is part of the endoscopic datum can be used to realize H as a Levi subgroup of G.
Let P = HN be a parabolic subgroup of G containing H. Given a function f € H(G),

define the constant term along P as
P = 5]13/2(h)/ Fkhnk™Vdwdn, he H(F).
N JKH

Here the integrals are taken with respect to suitably normalized Haar measures and dp is the
modulus character for the parabolic P. The function ff is smooth and compactly supported,
and following results of van Dijk [44], it satisfies the requisite identity of orbital integrals to
be a transfer of f. We thus let fH = fP . Furthermore, if f is unramified, then fH is the
image of f under the map H(G)"" — H(H)"" induced by the Satake isomorphism. Thus
this notion of transfer satisfies the fundamental lemma.

For a parameter 1 of G, we let f& () = tr my(f) [23, §1.5] for the unique my, € I, and
extend this definition as a product to pairs of general linear groups. We let ’/Tg be the unique
representation of H in the packet associated to ¢H . Then it follows from the local Langlands
correspondence (see for example [19, p.6] and note that the twist therein is accounted here by
the one coming from the embedding 7)) that m, = Z P(Wg ), where Zp denotes normalized
parabolic induction with respect to P. In view of this and of Theorem 2.3.8, the local
character identities for G Ly amount to an equality of traces between tr 7 ( H ) and the trace

of f on the corresponding induced representation. Again this is a result of van Dijk, which

we record below.

Theorem 2.3.9 (Section 5, [44]). Let G, H, P, and f be as above. Let 7 ba a unitary
irreducible representation of H and let Ip(m) be its normalized parabolic induction with

respect to P. Then trr(f7) = tr Zp(7)(f).
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2.4 The Trace Formula and its Stabilization

We now discuss global identities between the automorphic representations of a unitary group
G and its endoscopic groups. These are encoded in Arthur’s trace formula Igj.. This
distribution, and in particular its restriction to the contributions of certain parameters, is
described in [23, §3.1] and in greater detail in [4, §3.1] and we do not go in more detail than
is needed for our applications. In particular, our arguments only make use of representations
with regular infinitesimal character. As such, the contribution of proper Levi subgroups to
the definition of Ig;s. will never come into play.

It suffices to say that ;. is a distribution on the Hecke algebra H(G, w), defined in terms
of the traces of intertwining operators on variants of LﬁiSC(G(F )\G(AFr)). These traces are
indexed by a system of Levi subgroups of G, and we will follow Arthur [4, §3.4] in denoting
the contribution of the group G itself by Rgis.. This latter distribution computes the trace
convolution by a function f € H(G,w) induced by the right-regular representation of G(Ap)

on L(ZﬁSC(G(F)\G(AF),w), and as such

Raise(f) = Y m(m) tr(m)(f).

™

Here, the sum is taken over all representations 7 appearing in the decomposition of the

space L2, (G(F)\G(AF),w) as a G(Af)-representation.

disc

2.4.1 Contribution of a Parameter

The interplay between the endoscopic and spectral decompositions of the trace formula drives
our arguments, and we start by describing the latter, that is, how I, splits into a sum of
contributions indexed by parameters ¢ € ¥(G).

The first level of decomposition is concerned with the archimedean places and is embedded

in the definition of the distribution of Ig;s.. Indeed, the initial definition of the trace formula
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is initially given (see for example [4, §3.1]) as

Lgise(f) == Z ]disc7t(f)
t

where ¢ > 0. Representations contributing to /gis. ¢ are the ones whose infinitesimal char-
acter pr satisfies |Impr| = ¢, under an appropriate choice of metric on the dual of a Cartan
subalgebra of goo.

The next level or refinement relies on the identification of parameters 1 with collections
of conjugacy classes c(¢). Let ¢ € C(G), the set of families of conjugacy classes introduced

in 2.2.7. The distribution Ig;s ¢ . described in [23, §3.1] is given by the restriction of the

2

traces defining gjsc ¢ to the subset of Lg; .

(G(F)\G(AF)) consisting of representations whose
Satake parameters at almost all unramified places correspond to the components of ¢. This

results in a decomposition

]disc,t(f) = Z ]disc,t7c(f)~
ceC(Q)

Note that for a given function f € H(G), all but finitely many summands on the right-
hand side vanish. To go from conjugacy classes to parameters, recall that in 2.2.7 we have
described an identification of the set W(N) with the subset Cqus(N) C C(N). To each ¢V €
WU(N) is thus associated an element c¢(¢N) € Caut(N). Likewise, as stated in Remark 2.3.1,
we can talk about the infinitesimal character associated to ¢N and associate to wN a real
number ¢(1/?V). Finally, recall that the map 7, induces an injection ¥(G*,7,) — W(N) given
by ¢ = (¢, V) — N Thus for each parameter 1) € ¥(G*, 1), we follow [23, p. 149] and
define

Idisc,w<f) - Z Idisc,t,c(f)'

() bt ()
The sum runs over the elements ¢ € C(G) which map to ¢(¢"") under the map C(G) — C(N)

induced by 7.
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We can similarly restrict the trace of the right-regular representation to Hecke eigen-
components of L(Qiisc<G(F>\G<A F),w) indexed by ¥ € W¥(G) in order to obtain distribu-
tions Rgise .o and Rgige - An essential step along the proof of the main global theorem of
the endoscopic classification of representations is showing that Rgsc 4 does indeed compute

the trace of the representations in the packet II;, provided that ¢ is square-integrable, i.e.

satisfies the two conditions of Remark 2.2.1.

Theorem 2.4.1 (From [35], (5.7.27), and [23], Theorem 5.0.5.). Let 1) be a global square-
integrable parameter with associated Arthur packet Iy, and let f be a global test function.
Then

Raisep(f) = Y m(m)tro(f).

melly

More is in fact true, although we won’t strictly make use of it: the multiplicity m(7) is
either 0 or 1, the latter occurring exactly when the global character (-, 7) from (2.14) is equal
to the character €, introduced in 2.2.9. Finally, note that Kaletha-Minguez-Shin-White’s
Theorem 5.0.5 of is one of the results that is stated, but not fully proved, in the case of
non-generic parameters, as mentioned in the introduction and in Remark 2.3.7.

The definition of R ;s is more straightforward than that of ;4. as it only involves traces
on the group G. However, following a result of Bergeron-Clozel [6], the ¢)-summands of both
distributions are in fact equal, provided that the infinitesimal character of 1 is regular.
Note that the parameters associated to our main objects of interest, namely cohomological

representations, have regular infinitesimal characters.

Theorem 2.4.2 (Theorem 6.2, [6]). Let ¢ be a global Arthur parameter such that the in-
finitesimal character associated to Vo is reqular. Then the contributions of the Levi sub-

groups M # G to the distribution Igisc . vanish. In particular for all f € H(G) we have

[disc,w(f) = Rdisc,z/;(f)'
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2.4.2  Stabilization

We now consider the decomposition that will drive our theorems: the stabilization of the
distribution Igjsc - This stabilization expresses Igis. (f) as a sum of stable traces of the
transfers fH for the endoscopic groups H € £(G). We refer to Arthur for the statement of
the stabilization, but the versions for unitary groups are formally identical, see for example
(3.3.2) of Kaletha-Minguez-Shin-White [23] and (4.2.1) of Mok [35]. Recall that W(N) is the

set of conjugate self-dual parameters, and ¥(G,€) C W(N).

Theorem 2.4.3 ([4], Corollary 3.3.2(b)). Suppose that » € U(N) and let f € H(G).
Then for each endoscopic group H € E(G) there is a constant (G, H) and stable distri-
butions Sﬂsgw on H(H) such that

[discw(f) = Z UG, H)Sgsc,qp(fH)' (2.16)
He&(G)

In the case of quasisplit groups, the stable distributions Sg scqp A€ defined inductively.

Remark 2.4.4. For unitary groups, the global factor «(G, H) appearing in the stabilization
of the trace formula is introduced in [35, §4.2] and [23, §3.1]. These factors are independent
of the inner form G. If G = U(N) and H = U(Ny) x U(N2) is the group appearing in an

endoscopic datum for G, then following [35, 4.2] we have

1 NyNy=0
UG H) =5 Ny, Ny #0,Np # Ny (2.17)
\}1 Ni = Ny #0.
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2.5 Notation Changes.

In the upcoming chapter we will move towards applications to multiplicity growth, but we
make a small stop to discuss notation. Having had to grapple with this herself, the author
aware that keeping track of it is one of the challenges of engaging with the material introduced
above. We take a few lines to highlight the notational choices that we have made which differ

from Kaletha-Minguez-Shin-White [23], of from Arthur [4] or Mok [35].

e Reductive groups: we have chosen to keep the long form RengL n instead of the

shorter G(N) appearing in [23] and [35].

e Collections of Arthur parameters: recall that a parameter is elliptic if the quotient of

the centralizer Sy, by Z(G)''F is finite.

— For U(N) local, the symbol W(U(N)) denotes collection of conjugacy classes of
parameters in \I/(RengL ~) which factor through the embedding & : “U(N) —
L RengL ~- The parameters in this set are self-dual but not necessarily elliptic.
This set is also denoted W(U(N)) in the four-author paper [23, p. 61].

— For U(N) over a number field, the set W(U(N),nx) is the set of equivalence
classes of self-dual, elliptic parameters of Res]]“j:GL n that factor through the em-
bedding 7,. This set is denoted Wo(UN),n;) on [23, p. 69].

— For (G,€) an inner twist of U(N), we denote the subset of W(G*, 1) consisting

of parameters that are G-relevant by U(G,¢). In [23, §1.3.7], it is denoted by

Yo (U(N),1k)(G ) —rel-

e We denote the set of elliptic endoscopic data of G by £(G), dropping the “ell” subscript
used by Kaletha-Minguez-Shin-White in [23, §1.1.1]

e If Sy is the centralizer of the image of 1, we denote the component group m(Sy,/Z ()T'F)
by Sy as in [35, §2.2], rather than by Sy, as in [23, §1.3.4].
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CHAPTER 3
BOUNDS ON LIMIT MULTIPLICITY AND COHOMOLOGY
OF ARITHMETIC GROUPS

In this last chapter we produce bounds on limit multiplicity for certain classes of repre-
sentations. The results rely on the framework introduced in Chapter 2, specifically on the
local character identities and the stabilization of the stable trace formula. In 3.1 we obtain
upper bounds on the traces of certain classes of test functions on L?hSC(G(F N\G(AFR)) using
the stable trace formula. In 3.2 we specialize the test functions and deduce results on limit

multiplicity for representations in certain Arthur packets. Finally in 3.3 we give applications

to cohomological representations.

3.1 Upper Bounds from the Stabilization

In this section, we examine in further detail the various summands of the stabilization of
the trace formula. We extract bounds on the trace of test functions from the character
identities involved. We remind the reader that throughout, we will be working with elliptic

parameters 1) whose stabilizer group .5y, is finite and whose infinitesimal character is regular.

3.1.1 The Stable Multiplicity Formula

Recall from (2.16) that the distribution /g (f) giving the trace of f on representations in

the Arthur packet IT,, decomposes as

IdiSC,lﬁ(f) = Z L(G7 H)Sgqup(fH) (31)
He&(G)
A concrete expression for each Sgs e is given by the stable multiplicity formula. Since all

the endoscopic groups appearing in the stabilization of the trace formula are quasisplit, the
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relevant results are those of [35].

We introduce some notation. If f, is a local test function and ), a local parameter,
the formula for va(@/JU) was given in Section 2.3.5. If f = [[, fv and ¢ are global, we
write f7 () := [, f7*(¢w). Recall the group Sy and the element sy, from 2.2.8, as well as

the character €, from 2.2.9. The stable multiplicity formula is the following expression:

Theorem 3.1.1 ([35], 5.1.2). For ¢ € U(N), there is a constant (SY

¢> such that

S s () = 1Sy 7 G (5)0(S9) £C ().

The term 0(5’3) is a special instance of a constant ¢(S) defined by Arthur in [4, §4.1]
for any complex reductive group S. We will not define it beyond pointing out that the
centralizers 5y, of our square-integrable parameters ¢ are always finite. In that case 5’2} is
trivial and 0(5'3
The stable multiplicity formula is initially only stated for G' a unitary group, but extends

) =1, see [35, Remark 5.1.4].

to products H = U(N7) x U(N2) as discussed in [35, §5.6]. It then takes the form

Sgsc,t/}H (fH) - (S¢ )o (Sz )fH<¢H> (3.2)

S .
1/;H€\I'(H1/1N | 1/JH|

Here U(H, PN ) is the set consisting parameters ¢ of H such that g o1 = wN . We have
given an example at the end 2.2.10 of how this set can contain more than one element. We

combine equations (3.1) and (3.2) to get the expression

1 _
Lises(f) = Y. WG.H) > We{j (s (S)m) 7 @),
HeE Q) SHew(H pN) v

This can in turn be written as a sum over pairs (H, ¢H ) where H stands in for the endoscopic
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datum (H, ¢, s) and Y factors through &. We get

1 _

Liises(f) = Y 1G, H)meﬁ (s (S)m) 7 @), (3.3)
(H H) v

Lemma 3.1.2. Let ¢ € U(G* n) and let (H,&,s) € E(GQ) be an endoscopic datum such

that v factors through &. Then there is a positive constant C (v, H) such that the contribution

of (H, ™) to the sum (3.3) is equal to

C(op, H)ell (si) £ (™).

Moreover, C(v¢, H) is bounded above and away from zero uniformly in H and 1.

Proof. This is immediate from (3.3) and it suffices to show that the product

(G, H)

C(y,H) 3:m

g (‘S_gH)
is bounded. From above we have that 0(5’2)) = 1 since ® is elliptic. Additionally, we have
uniform bounds on «(G, H) in (2.17) and on |Sy| in (2.10). O

Recall from Lemma 2.2.3 that the indexing set of pairs (H, @Z)H) is in bijection with the

centralizer quotient S,,. We can thus re-index the sum (3.3) and obtain the expression

H, H\¢H/\ H
Ljises(f) = > C(, sH )€y (s) 7 (7). (3.4)
S H€S¢
At this point, the invariants appearing in the stable trace formula depend on parameters
and representations of H. We would like to reformulate the entire expression in terms of
characters of representations of G and of elements of S;,. The relevant result in the case of

the epsilon factors is reproduced below: Mok refers to it as the endoscopic sign lemma.
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Lemma 3.1.3 (Theorem 5.6.1, [35]). Let (H,&, sg) € E(G) and i € W(G*,n,) be such
that (H, QZJH) corresponds to (v, sp). Let eg* and eg be the respective characters of 1

and Y. Let 85 be the image of @DH(—I) in the quotient Sf associated to H. Then we have

H  H G*
€ (sy) =€ (sysH)-
We will now combine the results of this section together with the character identities of
Section 2.3.5 relating fH(¢H) to the traces of the representations in the packet Il,,. This
reformulation of the stabilization of the trace formula will be conducive to producing bounds

on limit multiplicity.

Proposition 3.1.4. Let i) € U(G, &) be an Arthur parameter such that the representations
in the associated Arthur packet Iy, have reqular infinitesimal character. Let f € H(G) be a

factorizable test function. Then we have

Liises(f) = Y C,sp) €¢ Gosa) [T D (spsm, ™) trmo(fo) (3.5)

sHESw v Ty E€lLy,
= Y CWsm) Y e (sysm)lsysm,m trn(f). (3.6)
SHES¢ FEHL/,

Proof. We start from the equality (3.4):

Liises(£) = > Clw,sp)elf (sBH@H).

SHQSw

The distribution 7 ()7) was defined in the beginning of this section as f () = [, fo™* (W I).
Each local factor can be written in terms of the trace of representations in Il by the local

character identities of Theorems 2.3.5 and 2.3.6 if GG, is a unitary group, and of Theorem 2.3.9
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if G is a general linear group. In all cases, the identity is:

fq{{v(@bglv) = e(Gy) Z (S4pySHy» To) tT 0 (fo)-
TI'UGHW)
The local Kottwitz signs cancel out globally, and using the Endoscopic Sign Lemma 3.1.3,

we have rewritten the expression as

Liise(F) = D CWsme Gos) [T D0 (usmmmo) rm(fo)
SHESy v my€lly,
At all but finitely many places v, the function f, = 1k is the characteristic function
of a hyperspecial maximal compact subgroup. At these places, trm,(fy,) is only nonzero
on unramified representations m, which we remind the reader are associated to the trivial
character of Sw. Unramified local packets contain exactly one unramified representation

following [23, Proposition 1.5.2 (5)] so we can interchange the sum and product to get

O 3 twmemiontno] = T (M)
v \my€lly, melly, \ v
where m = ®,my. The global characters were defined as (-, 7) = [[, (-, my). This allows us to

rewrite

Igisep(f) = Y. Clb,sg) Y Gg*(SwSHK%SHﬂTHW(f)-

SHESw 7T€H¢

O

We consider the product eg*()(, m) as a single character of S, depending on 7. The
global statement of the endoscopic classification of representations is that m appears in the

discrete spectrum precisely when this character is trivial. For our purposes, we will fix an

element s € Sy, and vary the characters coming from the representations m € Il
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3.1.2  Upper Bounds and the Dominant Group

We once again recall the bijection from 2.2.10

(H, M) < (¢, sp)

between endoscopic groups and elements of Sy, associated to a parameter ). We now single
out one object on either side of this bijection, and show that its contribution to the distribu-
tion Igisc,qp(f) is larger than the others, subject to conditions on the choice of the function f.

Recall that the element s, € S, was the image of the matrix —I € SLy under .

Definition 3.1.5. Let (H,, @DHw) be the pair corresponding to the pair (¢, s;) containing

the distinguished element s,, under the bijection (H, VY & (Y, spp).

Note that it is possible that H,, = G, for example when the character ¢ is bounded, i.e.
when ¥(SLg) is trivial.
We now introduce a new piece of notation for the contribution of a pair (H, vH ) to the

stabilization of the trace formula.

Definition 3.1.6. Let v € ¥(G*,n,) and let (H, &, sg) be such that ¢ factors through &.

Let f be a global test function. Then define

S, sg. f)=C,sy) > € (sypsm)(sypsy. ) tra(f).
WEHw

We have now collected all the information leading up to our main technical result.

Theorem 3.1.7. Let ¢ € W(G*,nx) have regular infinitesimal character, and let f € H(G)
be a factorizable test function such that trw(f) is nonnegative for all T € Iy Then there

exist a constant C(v), which can be bounded above and below independently of v, such that

[disc,d)(f) S CW)SW? SH) f)
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Proof. We will compare the various terms appearing in the decomposition (3.6):

Liise(f) = Y. Clb.sg) Y Gg*(S¢SH)<S¢SH;7T> trm(f)

SHESdJ WEHw
= Y S@sy.f).
SHESw

[gnoring for a moment the constants C'(¢, sgr), the terms S(v, sgr, f) only differ from one an-
other via the signs eg* (sysm)(sysH, ™) € {+1} appearing as coefficients of the traces tr 7 (f).

Looking specifically at the term coming from s, we see that

e§ (s2) (55, m) =€ (0)(0,m) =1

since the group S, is a product of copies of Z /27 as seen in Section 2.2.8. Thus we have

S, sy, ) = C(,59) Y tr(m)(f).

7T€H,¢,

For any other term indexed by sy € Sy, the coefficients eg* (sysm)(sysm, ™) have the
potential to be equal to —1. Thus if the trace of f is nonnegative on all representations in

the packet I, we have

SW.sy. ) =CW.sy) > € (spsp){sypsy, ) trr(f)
WEHQZ}

<C(,sp) Y tx(m)(f)

7T€H¢
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Summing over the Sy we get

> ospes, CW,sp)
Tgise,(f) < ( S‘ZL’%) ) S, sy, f).

ZSHESIZJ C(l/J,SH)
C(,syp)
bounded above and away from zero uniformly in ¢ and H. The cardinality of Sy, is also

We of course let C'(v¢) := . We saw in Lemma 3.1.2 that the C(¢, sfr) are

bounded between 1 and 22V as we saw in Section 2.2.8, which allows us to conclude. O
In practice, the group Hy, is easily computed from ¢ |SLy-

Lemma 3.1.8. Let ¢ = B;(u;Xv(m;)) be a global square-integrable Arthur parameter. Then
the group Hy, is
Hy = U(N1) x U(N2)

where N1 = Zmizlmon m; and No = N — Nj.

Proof. The element s, € GLy is defined as (1, —1I) there I is the identity matrix of SLs.
The image of —I under the m-dimensional representation of S_Lg is — I, if m is even, and I,
if m is odd. Thus sy, = diag(—In;, In,), where Ny = 3" 11,042 and Ng = N — Ny,

with centralizer GLy, X GL,. O

Remark 3.1.9. The image 1(SL9), and by extension the dominant endoscopic group Hy,
are determined by any localization ¢, (SL9). In Section 3.3, we will use this, together with the
well-understood (archimedean) parameters of cohomological representations, to give bounds

on growth of cohomology.

3.1.8 Towards Lower Bounds

The description of the stable terms of the trace formula in terms of representations of Sy,

points the way to an approach to produce lower bounds. Such a proof would rest on showing
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that asymptotically, the stable trace S(¢, sy, f) not only bounds Iy, (f) but that the two
are in fact proportional. The argument should boil down to showing that for groups s # sy,
the size in absolute value of the stable summand S(1, sg, f) is asymptotically negligible.
A possible path to proving such a statement would be to achieve control of the coeffi-
cients €, (sySH)(sysH, ™) and to show that they are positive on average half the time. In
order for such a statement to hold for any sz in H, we would need to show that asymp-
totically, the characters ey (syspg)(sysg,T) are evenly distributed. Since the characters are
defined globally as a product, it would in fact suffice to show that at one finite place v, the
Arthur packet contains enough representations 7 for the assignment (7, -) to surject onto Si/}'
In summary, this would require a more explicit understanding of the contents of local Arthur
packets, as well as of the definition of the pairing (m,-). This type of explicit description is
given in Rogawski’s endoscopic classification of representations of U(2,1) [38]. It is used by
Marshall in [30] to give sharp rates of growth for cohomological representations.

Showing that Ig;s.(f) is proportional to S(v, sy, f) is desirable beyond the goal of achiev-
ing lower bounds. Such asymptotics will also prove necessary to get general results on upper
bounds in the case where the step of passing to an endoscopic group requires to be iterated.
We will see in the following section that our current inability to iterate our induction restricts

the types of representations for which we can bound limit multiplicity.

3.2 Limit Multiplicity

Here we apply the results of the previous section to the limit multiplicity problem.

3.2.1 Level Structures

To formulate the question of limit multiplicity, we define level structures and tower of con-
gruence subgroups of our unitary groups. Let O and Op be the rings of integers of the

global fields £ and F. We introduce some collections of places of F':
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Sy is a finite set of finite places of F', containing the places which ramify in E as well

as the places below those where the character y_ introduced in Section 2.1 is ramified.

Soo is the set of all infinite places of F.

So € Sso is a nonempty subset of the infinite places.

Note that implicit in the third requirement is the assumption that F # Q.
Let p be an ideal of F' such that the associated place vp is not in the set S and such
that the residue characteristic of p is strictly greater than 9[F : Q] + 1. We define the

subgroups U(N, p") C U(N, A{;) to be
U(N,p") :={g € UN,OF) C GL(N,Op) | g = Iy (p"Op)}-

For any finite place v of F, let U(N, p"), = U(N,p"")NU(N),. At the expense of possibly in-
cluding additional primes in the set S, note that for all v ¢ SU{wp}, the subgroup U (N, p")y
is a hyperspecial maximal compact subgroup of U(N),. This gives level structures on the
quasisplit group U(N). If H = U(Ny) x U(N») is a product of quasisplit unitary groups, we
define level subgroups H(p") = U(Ny,p") x U(Na, p").

We now discuss level structures on inner forms of U(N). Let (G,€) be an inner form
of U(N, F) defined with respect to a Hermitian inner product and with prescribed signa-
tures U(ay,by) at the archimedean places. We will require that G, be compact at the
archimedean places contained in Sp: this ensures that the group G is anisotropic. Following
the classification of global inner forms stated in Proposition 2.1.1, we have that if N is odd,
the group GG can be chosen so that GG is quasisplit at all finite places. If N is even, then G
is determined by choosing at most one place v € Sy, up to again enlarging Sy. Once that
choice is made, the group G can be chosen to be quasisplit away from {v} U S. In both

cases, this group G is realized as an inner form (G, &) as in Section 2.1.2.
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For each finite v ¢ Sy, there are isomorphisms &, : Gy — U(N)y, induced by the
inner twist. For each natural number n, we fix a compact subgroup K(p") = [[, Kv(p")
of G(Af) as follows: at all finite v ¢ S, we let Ky(p") = &, LU(N,p")y); at v € St, the
subgroup K, (p™) is an arbitrary open compact subgroup fixed once and for all independently
of n; at the archimedean places we let Ky(p™) =~ Uq, (R) X Up, (R) be a maximal compact
subgroup. Note that once again at the finite places v ¢ Sy, the subgroup Ky(p") is a
hyperspecial maximal compact subgroup. Let K¢(p") = [],co Kv(p") and Koo(p™) =
[ L)oo Ko(p™). For simplicity, we will sometimes use the notation K instead of Ky(p") for
v # vp. We extend these definitions to products of unitary groups.

We now define the (cocompact since G is anisotropic) lattices
L") = GE) N Kp(p").

Recall that Goo = HU|OO Gy and let X = GOO/KOOZGOO. Assume that G has at least one
noncompact factor. The diagonal embedding I'(p") — Hv| ~ Gv induces an action I'(p™) ~
X¢, and we will consider the quotients X (p") := I'(p")\Xg. We start by relating these

quotients to their disconnected counterparts realized as adelic double quotients. Let

Y(p") = GIENG(AR)/K(p") Za(AF).

The quotient Y'(p") is a disjoint union of finitely many copies of X (p™).

Proposition 3.2.1. Let G be an inner form of U(N) and Y (p™) be defined as above. The

cardinality of the set of components mo(Y (p™)) is bounded independently of n.

Proof. We adapt an argument from [13, §2]. Considering G as a subgroup of GLy/E, let
det : G — U(1, E/F) be the determinant map and let G' = ker(det). This map induces a
fibering of Y'(p™) over

UL FN\UQL, Ap)/det(Z(Ap)K(p")).
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The fibers are adelic double quotients for the group G, which is simply connected and has
at least one noncompact factor at infinity. So by [37, 7.12], the group G satisfies strong
approximation with respect to the set Sso and G (F) is dense in Gl(A{,ﬂ), making the fibers

connected. Thus we find that
m(Y(p™) = UL, F\U(L, Ap) /det(Z(Ap)K (") = EN\AL/det(Z(Ap)K(p")).

Now the image det(Z(Ap)) is the subgroup (A}E)N of Ale' For each finite place w, the
factor corresponding to Fy, in the quotient A}E / (A}E)N is a finite set. It follows that by
increasing the level in powers of a single prime p, one can only produce a bounded number

of components. O

We now fix a unitary irreducible admissible representation 7wy of G with trivial central
character, and let m(m, p") denote the multiplicity of 7~ in right-regular representation
of G on the space L2(I'(p™)\Goo). We will be interested in the asymptotics of the multi-

plicities m(7s0, p™) as n — o0o.

Corollary 3.2.2. Let G, I'(p"), and 7o be as above. Then

m(Teo, p’) < Z m(m) dim W;(f(p”)

7T:7roo®7rf

where the sum is taken over automorphic representations m with the prescribed T, and m(m)

is the multiplicity of the representation 7 in L2, (G(F)\G(AF),1).

disc

Proof. The K(p™)-fixed vectors of the representation 7 count precisely the occurrences of
the archimedean part mo in the quotient Y'(p). By the above, the number of components

of Y(p") is bounded independently of n. O
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3.2.2  Choice of Test Functions.

Here we define test functions whose traces will compute the multiplicity of archimedean rep-
resentations at level p™. At all non-archimedean places, they are the characteristic functions

of compact subgroups. Recall that p, denotes the Haar measure on Gj,.

Definition 3.2.3. At each finite place v, let f,(p™) be the scaled characteristic function

Lk pm),

Jol®™) = R )

Of course this definition is only dependent on n for v = vy.

Definition 3.2.4. Let v € Sy be (by definition of Sy) an archimedean place such that the

group Gy is compact. Then define f;,(p™) to be the constant function

1

o=@y

The traces of these test functions count the dimension of K (p")-fixed vectors. At the
archimedean places v € Sp, they only detect the trivial representation and have vanishing
trace on all other representations of G,. We want functions that play the same role at
the non-compact archimedean places: they should detect representations 7, contained in a
specific subset H?% C I, and vanish at all other representations. The key is that we will
only be working with Arthur packets attached to parameters ¢ having a specific 1, for v

archimedean. As such, the test function at an infinite place v only needs to isolate m, € Hg

from the other finitely many representations in the same packet.

Lemma 3.2.5. Let ¢y, be a local Arthur parameter with associated Arthur packet 1Ly, . Fix
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a subset H?/)U C 1Ly, . Then there exists a function 1Y e H(Gy) such that
1 Ty = HO
trﬂ-y(fq(})) = wv T S HU'

0 otherwise,

Proof. This follows directly from linear independence of characters for admissible represen-

tations. If v is archimedean this was proved by Harish-Chandra in [18]. O]

Definition 3.2.6. Let v be a non-compact archimedean place, let ¢, be an Arthur parameter

and fix a subset H?M C Iy, Let fu(p") = fu(p", H%) be the function fg described above.

Definition 3.2.7. Let the function f(p") be defined as f(p") = [, fo(ph). We will also
denote ff(pn> = HU'i'OO fo(py)-

Note that the function f(p™) satisfies the assumption of Theorem 3.1.7: it is a factorizable

test function whose traces on all representations contained in the packet I, are nonnegative.

Proposition 3.2.8. Let i) € W(G*,n,) be an Arthur parameter. For each v € Sxo \ Sp, fix

a subset H?Dv and a corresponding function f(p') = f(p", va). The we have

. Kp(p™)
Rdisc,w(f(pn)) = Z m(ﬁ) dim 7rf !
s
where the sum is taken over representations m € Il of the form m = (®v|oo7Tv) ®mp such

that for archimedean v, the representation m, s trivial if v € So and m, € Hg otherwise.

Proof. As stated in Theorem 2.4.1, the distribution Rgjgc ,(f) computes the sum of tr (f) =
[, trmu(fy) over all representations in the packet II;. At the finite places, the trace of
convolution by the characteristic function of a compact open subgroup K, is equal to the
product gy, (Ky) - dim 7T{)< Y. In the case of the archimedean places v € S(, the represen-

tations m, are finite-dimensional so the only representation with a K,-fixed vector is the
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trivial representation. At v € Soo \ Sp, the function f,(p™) was chosen precisely to detect

the representations 7, belonging to the subset H% : O]
v

The key input allowing us to compare multiplicity growth on G and on its endoscopic
group H is a version of the fundamental lemma for congruence subgroups, proved by Fer-
rari [14]. Tt states that provided that p is large enough, congruence subgroups of the same

level form a transfer pair.

Theorem 3.2.9 (Theorem 3.2.3, [14]). Let p be a prime of F' with localization Fy, and
residue field ky. Let Nm(p) be the cardinality of ky and let p be its characteristic. Assume
that p > 9[F : Q] + 1. Let H be an endoscopic group of G. Let d(G,H) = M

Then the functions

LKy, (0m)
n _ Yp
T 0w = K )
and .
n\H
mH _ N —n-d(G,H) Ky (p)
f(p >Up m(p) MUP<K’UP (pn))

form a transfer pair.

3.2.3 The Stable Term and Characters of Representations

Here we give assumptions under which the dominant stable term of Theorem 3.1.7 also
computes limit multiplicity on a locally symmetric space associated to Hy,. This will allow
us to compare multiplicity growth on different groups. We start by expanding the stable
distribution on H as an actual trace of representations of H for any endoscopic group H.
The results are stated in terms of arbitrary test functions with nonnegative trace, but will

be applied to f = f(p") in the next section.

Lemma 3.2.10. Let v € V(G,&) be an Arthur parameter and let H € E(G) be such
that (H,H) corresponds to (v, sg). Let f € H(G) be a factorizable test function. As-

sume that the function ff has nonnegative trace on all elements of the packet Hi/)H for
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non-archimedean v, and that fﬁ(ng’) 15 positive for all archimedean v. Then we have the

inequality

SW,s, f) < Chosp) [T 7@ T | DD trmo(fi) |- (3.7)

U|OO U<OO WUEH,II/_;,[,U

Furthermore, equality holds H = H,,.

Proof. This follows from the definition of S(v, sg, f) and the local character identities of
Section 2.3.5, applied this time to the group H instead of to GG. From the proof of Proposi-

tion 3.1.4, we have

S, sy, f) = C(,sp)eld (sH) 2 ().

We then factor fH (pH) = 1L, FH (). At the finite places we use the identities of Theo-

rems 2.3.6 and 2.3.9 to get

SW,su, ) =CWspell (BT @i - T | D2 (sl s mo) rmo(£)

U|OO U<OO WUEH{Z;IU

The element sg is by definition the image in de i of an element s of the centralizer of !,
the defining property of s being that it is centralized by the whole group H. Thus sg is the
image in 81/} u of a central element, and as such it is the trivial element of 81/) . We can now

rewrite S(v, sy, f) as the expression

Cspef (s [T AT @ - T D2 il o) rmo(£)).

vloc V<o el

Since all the traces are nonnegative by assumption, the expression above only differs from

the right-hand side of (3.7) by the presence of possible —1’s coming from the characters

eg (85 ) and (35}{) , my) and the inequality of (3.7) holds. Moreover, it is an equality precisely
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if 65(55) =1 and <ng’ my) = 1 for all 7,. This happens when the element 85 is trivial in

the quotient Sy, i.e. where H = Hy, the centralizer of ¢(—1).
[

The right-hand side of Lemma 3.2.10 computes the sum of the traces of all the represen-
tations in the packet HwH’ i.e. all possible products coming from all the local packets. Yet
the relevant representations for applications to multiplicity are the automorphic ones which
appear in L(thc(H (F)\H(Af)) with nonzero multiplicity. However, if the parameter v is

the sum of two irreducible pieces, all products of local representations of H are automorphic.

Corollary 3.2.11. Under the assumptions of Lemma 3.2.10, if the parameter b = 11 H o

has only two simple components and H = Hy, # G*, then we have

SW,sg. f)=C@W,sp) [ @ > mm) [[ormo(f).

veS ﬂ'eﬂg

Proof. 1f Hy, # G, which implies that H = U (N1) x U(Ng) with 1; an irreducible parameter

of U(N;), then the centralizer quotient S¢H is the product S@bH = S¢H X Sl/)H' From
1 2

the computations of centralizers in (2.10), this is the product of two copies of the trivial

group and characters 65 and (-, ) have no choice but to be identically 1 for all 7 € [Ty
The representations 7 € II,, which appear in the discrete spectrum are precisely the ones

satisfying EpH = (-,m) as characters of SW? a condition which is here trivially satisfied.

So m(m) =1 for all 7 and the formula is equivalent to that of Lemma 3.2.10. O

Remark 3.2.12. We hope to prove an asymptotic analogue of Corollary 3.2.10 for more
general parameters. This would consist of a statement that the stable piece of the trace
formula computes the traces of automorphic representations as the level grows, as opposed
to the traces of all representations in Hd) m. This would require showing that in the limit,

all stable terms for H' # Hy, in the trace formula for Hy, are negligible. This could follow
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from the methods by which we hope to get lower bounds discussed in Section 3.1.3, namely

showing that there are enough representations to exhaust the characters of the group S%/J H-

3.2.4  Limit Multiplicity Results

We now show that if our parameter is a sum of two irreducible pieces, we can bound the limit
multiplicity of certain representations of G' by the multiplicities of a corresponding set of rep-
resentations on one of its endoscopic groups H. Note that the fundamental lemma together
with Theorem 3.2.9 ensure that the non-archimedean contributions of the function f(p™)

satisfy the assumptions of Lemma 3.2.10.

Theorem 3.2.13. Let ) € V(G &) be a global parameter with prescribed localization 1o, and
such that ¢ = 1 By is a sum of two simple components. Assume that the infinitesimal
character of Vo s reqular. Let H%o C Iy, be a fized subset and let H?p be the subset
of 1Ly, consisting of representations such that Too € H?boo' Then there exists a compact
open subgroup KHy (p™) depending only on our choice of f(p™), and a positive constant C

depending only on oo, Hy, and K(p™) such that

S ) dimak P < € Nmpr)HCH) S (e dima ).
mell) Hy,
P well

(4

H
Moreover, at all places v ¢ S, the subgroup K, w(p”) agrees with the one introduced at the

beginning of 3.2.1.

Proof. If ¢ = 1)1 @19, then |Sy| = 2 as stated in (2.10), so there are two possible endoscopic
groups for this parameter: G* and a group H = U(N1) x U(Np) with NyNy > 0. If Hy, = G*

then the result is trivial so assume that Hy # G*. Let f(p") be the function introduced
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above section so that foo(p”™) detects the representations in the subset 119 . Then we have
o0

S () dimay * = Ry (F6")

0
WEHw

by Proposition 3.2.8. Then by Theorem 3.1.7, and using Theorem 2.4.2 and the assump-
tion that the infinitesimal character is regular to switch from Igis. ) t0 Ryige .y, We get the
inequality

" mimydimay P < C@ISW. s ).

0
7T€H¢

The parameter 1 satisfies the assumption of Corollary 3.2.10 so we can, ignoring the con-

stant C(1)) for a moment, rewrite the right-hand side as

SW.s. /) = MWD T £ @) [T D2 wmlsl).
vESy v¢S m, eIl
We will now relate the contribution of each place v in the product to a sum of traces of
representations on v.

At the infinite places, we have chosen foo = foo(p™) so that fH (yn0) = k, where k =
|H?Doo" Up to a constant depending on s, a dependency which we allow in the theorem,
this is proportional to |Hgoo|.

We now consider the places v € S £ Recall that these are finite places at which the group
Gy is potentially ramified, so that the fundamental lemma does not apply. We need to show
(i) that f (1) is bounded above independently of ¢, and (ii) that there is a compact open
subgroup K ¢ H, such that if fH(1,) # 0 then Zﬂengf Wfﬁ # 0. For (i), recall that
fg{ (y) = Zm elly, mf( v, The possible dimensions of K,-fixed vectors in 7, is bounded only
in terms of K, (and in particular independently of ;) by Bernstein’s uniform admissibility
theorem, see [8]. Furthermore, Mceglin’s arguments in [34] can be adapted to show that there

is a uniform upper bounds on the size of packets II,, proving (i). The result (ii) is more
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delicate, and is a consequence of Lemmas 5.2 and 5.4 of [31]. The combination of the two

statements (i) and (ii), together with another application of the arguments of (i), this time

H

to the packet IT | imply that fg{ (¢v) is a uniformly bounded multiple of }_ e T
v Y

Finally, at the places v ¢ S, the function fH is the characteristic function of Ky(p™),
scaled by its volume, by the fundamental lemma 2.3.3 if v # vp and by the result of Fer-
rari [14] cited in Theorem 3.2.9 for v = vp. At vy we also pick up the factor of Nm(pn)d(G’Hﬁ’).

Collecting these results and combining all the constants in the constant C' (recall that

the C(v) we imported from Theorem 3.1.7 was bounded independently of ¢) we get that

S@Wosm. ) < C-Nm(@) @[S | T[S«

WOOEH{ZOO V<00 wveﬂgv

Expanding the product, we get a sum over all possible representations in the packet T ,
recalling that the fundamental lemma ensures that the representations which contribute are
unramified at all but finitely many places. But following our assumptions on ¢ which leads
to |S£f | = 1 as in Corollary 3.2.11, all representations in the packet Hg are automorphic,

i.e. they satisfy m(7) = 1. This allows is to conclude. O

We are now ready to give upper bounds for limit multiplicities of a representation 7, of a
unitary group U(a,b). We first restrict the sets of parameters with which we work. We also
fix the choice k = 1 of sign determining our embedding of L-group LG as in Section 2.1.3.

We now define some restricted subsets of parameters.

1. Let v be any place of F', and let ¢, be a local parameter. Define ¥(v,,) C ¥(G) to be

the collection of parameters of G whose localization at v is 1.

2. Let 9o denote a choice of parameters at all places v | co. Define ¥(1so) C VU (G) to

be the collection of parameters of G whose localization at the infinite places is Y.
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3. Let \IJQ(G) be the collection of parameters satisfying the additional condition that

¥ =11 @ Y9 is a sum of two irreducible parameters.

4. Finally, let U2 () = (1) N U2(G), and similarly for U2 (o).

While the notation \D2(G) seemed to us the most natural, it bears pointing out that there
can be a risk of confusing such a set with Us(G), a notation which we have not been using,

but which denotes the set of square-integrable parameters in both [23] and [35].

We will work with Arthur parameters ¢) with regular infinitesimal characters at infinity,

and such that

U [s14(0)= v(2k) © v(1)V 2,

We now bound limit multiplicity of representations of G appearing in certain packets Il

associated to these composite parameters.

Theorem 3.2.14. Let 1o be an Arthur parameter with reqular infinitesimal character at
all infinite places, and such that Yoo |g1,,(cy= v(2k) ev(1)N=2k Fiz a subset H?%o in Iy, .
For each v € U2(1)), let

H?/} ={r=®,my € Iy | 7o € H?Poo‘}

Then

Z Z m(7) dim Wf(pn) < Nm(pn)N(N_Qk). (3.8)
1,06‘112(7/100) WEH%

Proof. We first give bounds for each parameter 1 € U2(1)n). Note that following the

restrictions on the SLy and on the number of summands, any such parameter ¢ must satisfy

N = ((2k) B ) B (v(1) B puy_op,),
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where 7 is a Grossencharacter, and ppn_9; is a cuspidal automorphic representation of
G Ly _9p. From Section 2.2.8 we have that Sy, ~ Z/2Z, and since v(2k) is even-dimensional,
the image of —I € SLo under ¢ is not central. It follows that s, is the nontrivial element
of Z/2Z. Thus we have Hy, = Ug p(2k) x Ug,p(N — 2k) independently of ¢. Following

Theorem 3.2.13, the contribution of ¢ to (3.8) satisfies

n H n
S m(m) dimf *) < ¢ Nm@EHA G S () dimay P,
WGH% Wer;%

Summing over ¢ € \112(%0), and recalling that the constants C' are bounded independently

of ¢, we get

Z Z d1m7r K ") <C- Nm(pn>d(G,H) Z Z d1m7r Hw(pn).

PEW? (Yoo ) melL) YEP? (o) We%w
(3.9)

Our goal is now to understand the right-hand side of (3.9). We momentarily ignore the
scaling factor coming from transfer, and note that the rest is bounded by the sum where we
consider all parameters in (1)), not only the ones in the subset W2(1)s). In other words,

we have

Z Z 7) dim W?(pn) < Z Z d1m7r Hw(pn). (3.10)

eV (Yhoo) mEIO (1)) eV (¥oo) wenlﬂ

To get a count on fixed vectors on the right-hand side of (3.10), we will consider more
carefully the representations 7 which contribute to the sum. Let N1 = 2k and Ny = N — 2k.
The representations 7w appearing in the sum are of the form 7 = 7 ® mo, with m; a rep-
resentation of U(NV;). Moreover, their central character is determined by Proposition 2.3.2

together with the central character of the representations of G' corresponding to the param-
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eters ¢. Let x; be the central character of m; for ¢ = 1,2. Since the representations of GG
were assumed to have trivial central character, we find that the product y1x2 is determined
by the characters x, we used in our embeddings in 2.4, as well as by the parity of N — NV,.
Going back to the formula of Proposition 2.3.2 and remembering that Ny is even, we see

that

N 1 N even
X1X2 = Xk~ =
YMN odd,

where 1 denotes the trivial character. In either case, the product xiy2 is by assumption
unramified outside of the set Sy of finite places introduced in the beginning of this section.

The multiplicity of 7 is a product m(m) = m(m)m(my) with m(m;) the multiplicity of m;
in

Liisc(U(Ni, P)\U(N;, Ap), x5)-

Since 1¥1(SLo) = v(Np) is maximally large, the representation 7y is a character and by
the computations of (2.10), the group S, is always trivial so that m(m1) = 1. Moreover,
the character m; must be of the form 6 o det where 0 is a Hecke character of U(1,Afp) =
(Ap)N™=1 which we now describe. The character fs is determined by 1 and as such
is known. The characters 6 with fixed vectors of level K(p") must have conductor divid-
ing ap”, where the ideal a is determined by the level subgroup at the ramified places v € S £
In particular, the ideal a can be fixed once and for all independently of n. The number
of characters with these ramification restrictions is asymptotically proportional to Nm(p').
Finally we note that the central character of 71 must be equal to 8 o x™ where x" denotes
the n™® power map on (A g)Nm=1,

We now count the dimension of fixed vectors coming from the parameter ¥9 mapping
into LU (N2). This parameter 1o is bounded by assumption. Mok shows that this implies
that the local constituents of mo € Il are tempered [35, Thm. 2.5.1(b)], which implies by

results of Wallach [49] that they occur in the cuspidal part of the discrete spectrum. We now
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fix the character 6 giving rise to 1. This determines, among other things, a central character
X1 and a central character xo = X,ZX ! Xfl for U(Ng). As it is the case for y1, the archimedean
part of yo is fixed and determined by 1. Let Ko(p™) = U(No, Ap) N KHy (p™). We now

want to count, for each 7o € IIy,  the quantity

Mmoo x2) = Y. Y. m(m)dimry2®)
P2 €W (12, 00) T=Too X T f

w(m)=x2

< dim Hom (7o, Lﬁusp (YQ*(Pn)7 X2))

where Y5 (p") = U(Na, F)\U(N2, Ap)/Ka r(p") and the inequality in the second line holds
for n large enough, depending on x2. We explain this inequality: the space Y5 (p"*) carries a
commuting action of the groups Goo and Ko(p") := Ko(1)/Ko(p™), the latter acting by deck
transformations. This induces a representation of G x Ko (p™) on Lgusp(YZ* (p™)), where the
representation of latter group is isomorphic to the induction of the trivial representation.
We then abuse notation and denote yo | Ka(1) by x2 again. This character is trivial on
Ky (p") for n large enough. In that case we define the space Lgusp (Y2(p™), x2) to be the
x2-eigenspace for the center of Ko(p™).

As in the Lemma 3.2.1, the space Y5(p") is a finite disjoint union of copies of the locally
symmetric space Xo(p”™) defined with respect to the same level for SU(N3). The represen-
tation 7 restricts to a finite sum of representations of SU(No, Fixo), which we will call pso.
By the result of Savin [40], for each of these components, the multiplicity m(pso, p™) grows
at most like the volume of Xo(p™), and proportionally to the volume of Xo(p™) if po is
discrete series. Summing over all components, whose number is bounded independently of n
by Proposition 3.2.1, we find that the multiplicity m(7so, ™) grows at most like the volume
of Yo(p™), i.e. the index [Ko(p™) : K2(1)]. In order to restrict ourselves to central character

X2, we will think of this index as the dimension of the regular representation of Ko(p™) on
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C[K(p™)]. The character ys of Zf¢,(pn) aPpears inside C[K»(p™)] with multiplicity

pn

[Ka(0") 2 Zigy )] = [[ZIZ((?J:)) ZSBJ] ~ Nm(p™) 271,

We then take the sum over characters x1. The product y1yx2 is unramified at p, so in order
for 1 to have K(p")-fixed vectors, the character § must have conductor dividing p". The
number of such characters grows asymptotically like Nm(p™), giving us a growth for fixed

2
vectors of at most Nm(p™)™V2. Thus we have

Z Z m(7) dim Wf(pn) < Nm(p”)N22+d(G7H)'
PEW? (Yoo) melL),

Finally, we compute d(G, H) = 2Nk—4k? and recall that N3 = (N —2k)? = N2 — 4Nk +4k>

which gives us the desired bounds. [

A note on the proof: the quantitative results we import from Savin’s work [40] are upper
bounds in general but exact asymptotics if the representations of U(N — 2k) are discrete
series. In the following section where we consider specifically cohomological representations,
one can combine the recipe for the embeddings of L-groups in (2.4) and the construction
of cohomological parameters 3.3.3 to see that the representations of U(N — 2k) are indeed

discrete series.

3.3 Applications to Growth of Cohomology.

We now give an application of the results of Section 3.2 to growth of cohomology of arithmetic
groups in congruence towers. We start with a discussion of cohomological representations
and their Arthur parameters. The description of these representations is longer than strictly
necessary for the proof of the final theorem, but we hope it can serve as an entry point for

a reader interested in computing cohomological representations of unitary groups.
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3.3.1 Cohomological Representations

The cohomology of lattices I' in Lie groups is computed from the multiplicity of automorphic

representations via Matsushima’s formula, which we now state.

Theorem 3.3.1 (Matsushima’s formula, [32]). Let G be a connected semisimple Lie group
with mazximal compact subgroup K and Lie algebra g. Let I' C G be a cocompact lattice
with associated compact locally symmetric space Xy. Denote the multiplicity of a unitary
representation w of G in the right-reqular representation LQ(F\G) by m(m,I'). Then the

dimension of the ith cohomology of Xt us:

dim(H'(Xp, C)) = > _m(m,T)dim(H' (g, K; 7).
s
The H'(g, K;7) which appear above are the so-called (g, K) cohomology groups of
the representation m. We say that an irreducible representation 7 of G is cohomological
if H*(g, K;m) # 0. Cohomological representations of all semisimple Lie groups have been

classified by Vogan and Zuckerman.

Theorem 3.3.2 ([46]). Let G be a semisimple Lie group with complexified Lie algebra g. Let
K a maximal compact subgroup of G and let g =€ @ p be the corresponding Cartan decom-
position. There are finitely many cohomological representations © of G, and an irreducible

representation m satisfies Hi(g, K;7) # 0 if and only if the following two conditions hold:
(i) m has the same infinitesimal character as the trivial representation of G;
(ii) Homy(r, Nip) # 0,

where the action of K on A'p is induced by the adjoint representation.

Vogan and Zuckerman parameterize cohomological representations in terms of so-called
f-stable parabolic subalgebras q of g. Their initial results apply only to semisimple groups: it
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is extended to groups U(a, b) in [45] and condition (ii) above implies that the central character
of the cohomological representation must be trivial. We now describe the parametrization
of cohomological representations of unitary groups as concretely as possible. Aside from
the initial results of [46], the rest of this subsection is based on computations which can be
found in Chapter 5 of Bergeron-Clozel’s book [5]. In short, cohomological representations
of U(a, b) are parametrized by refinements of partitions of N' which are compatible with the

signature (a,b).

Cohomological Representations and Bipartitions

Let t be the Lie algebra of a compact torus of G contained in K. A #-stable parabolic
subalgebra of g is a subalgebra q = [ & u determined by an element a € it in the following

manner:

(i) [is the zero eigenspace of the adjoint action of o on g;

(ii) u is the sum of the positive eigenspaces of this same action.

To each f-stable parabolic subalgebra q, Vogan and Zuckerman attach a representation Ag,
and show that this construction yields all cohomological representations up to isomorphism.
We now specialize their results to g, the Lie algebra of a unitary group G = U(a, b) with a+
b = N. (For this section only, we return to the more classical notation in which a unitary
group over R is identified by its signature.) We embed K+, = U(a) x U(b) block-diagonally
and take the Cartan subalgebra t C € to be diagonal. This t is the Lie algebra of a compact

torus 7" and the element « € it giving rise to Aq is then of the form
o = diag(Hy, ..., Hq, HY, ..., H})
where the coordinates are real numbers, the first a entries belong to the Lie algebra of U(a)

and rest to that of U(b). Up to the action of the Weyl group of K, we can assume that «
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is such that H; > H;, 1 and similarly for HZ( . Then the Lie algebra q is determined by the

relative sizes of the H; and the H Z’ . More specifically, we have:

Proposition 3.3.3 ([6], Section 5). Let o be as above and q = [&u be the associated §-stable
subalgebra. Let Z = {z1 > ... > z} be the set of distinct values taken on by the H; and HZ(

and let

a; = #{Hj = z;}, b =#{Hj = z}.

Then [ is the Lie algebra of the Levi subgroup

L= 1] Ulai,b;)

zi€Z

defined over R, and q is determined completely by the ordered tuple

B = ((a1,b1), ..., (ar, b))

of pairs of nonnegative integers such thaty ;_qa; =a and Y ;1 b; =b.

We will call these tuples B of pairs bipartitions of (a,b) and will denote the associated

Levi subgroup Lp.

Remark 3.3.4. The bipartitions of (a,b) almost parametrize the cohomological representa-
tion of U(a, b), but there is redundancy. Specifically, two bipartitions B and B’ give rise to the
same representations if B’ has adjacent pairs of the form (ag,0), (ag,0) (resp. (0,51)(0,b2))

which are collapsed into (a1+ag,0) (resp. (0,b1+b9)) in B. For example, the two bipartitions
B =1((1,2)(1,0)(2,0)), and B'=((1,2)(3,0))
give rise to the same cohomological representation of U (4, 2). These pairs where either a or b

is zero correspond to compact factors in the Levi Lg. Thus bipartitions of (a, b) parameterize
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representation with cohomology up to collapsing the compact factors. We will soon see that

this redundancy dictates the possible Arthur packets to which a representation belongs.

Keeping the above redundancy in mind, we will denote the cohomological representation

associated to the partition B by mp.

3.3.2  Computation of Cohomology

The dimensions of cohomology of a representation can be computed from the bipartition B.

We start with the result giving the dimensions of cohomology for a general group.

Proposition 3.3.5 ([46], Proposition 3.2). Let the Lie algebra q = & u be as above and let

g=2tPp be the Cartan decomposition of g. Let R = dimunyp. Then
H'(g, K, Aq) ~ Hompe (N ", C).

In particular, the smallest nonvanishing degree of cohomology of Aq is R, for which we
now give an explicit recipe in terms of the bipartition B, still following [5]. The summand p

of the Lie algebra decomposes as
p=(np)e@np) o Np)

where u™ is the negative eigenspace for the element o and dim(uNp) = dim(u™ N p) since

they are exchanged by the involution 6. Thus if q corresponds to the bipartition

B = ((a1,b1), ..., (ar, b))

and [ is the Lie algebra of L = U(ay,b1) X ... X U(ay, by), we have

dim(p) — dim(p N [ 4
p - dim(p) : (p ):ab_zaibi-

1=1
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In particular, if a;b; = 0 for all pairs, i.e. if L is compact, then the discrete series represen-

tation Ag only has cohomology in the middle degree ab.

Remark 3.3.6. In fact, we can say more. The locally symmetric spaces associated to unitary
groups are complex varieties and Bergeron-Clozel [5] give a recipe not only for the degree
of cohomology but also for the Hodge bidegrees to which a representation contributes. Let
p=p" @ p~ be the decomposition p into a holomorphic and antihomolorphic part. Then

R = R" + R~ with

R+:dimuﬂp+:2aibj, R~ =dimunp™ :Zaiij
1<j 1>]
and the contribution of Aq that appears in lowest degree is to H R*,R™ Note that the degrees

of cohomologyof Aq depend on the unordered bipartition, but that the Hodge bidegrees are

determined by the ordering.

3.3.83  Arthur Parameters of Cohomological Representations

We turn our attention to the parameters v whose Arthur packets at the archimedean places
contain cohomological representations. These will be obtained via a choice of embedding of L-
groups from parameters associated to the trivial representation of Levi subgroups of G. We
will also give a description of the packets associated to these parameters. Their construction
was given by Adams-Johnson, in [1] in conversation with work of Arthur [3], and in a language
that predates the current formulation of the endoscopic classification of representations. Re-
cently, Arancibia-Moeglin-Renard [2] have shown that Adams-Johnson’s construction yields
the same packets as the endoscopic classification by Mok [35] and Kaletha-Minguez-Shin-
White [23].

To begin, note that there is a natural way to associate to an (ordered) bipartition B
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of (a,b) an (ordered) partition Pg of N, namely by letting
PB:(Nl,...,Nr), N; =a; +b;.

Let L be the Levi subgroup associated to the bipartition B of (a, b). Then L ~ I[; GL(N;, C),
is determined by the partition Pp, together with an embedding L < G. The description of
LT ie. of the Galois action on i, is given in 2.1.3.

Cohomological Arthur parameters are realized as the composition of parameters asso-
ciated to the trivial representation of L with embeddings “L < LG. To promote the
embedding of dual groups to an L-homomorphism & el it suffices to give the image of WRr
inside of “G. We give Arthur’s construction from Section 5 of [3]. Let T be the compact
maximal torus with Lie algebra t and let

Q/JIA/,C;’ : WR — LG

be the map sending W into 7" so that for any AY € X, (T, we have

A () = 2PNzl )

where pg = Pé—Pj- Let the element (1 x o) map to ng X o, where for any group G, ng is
an element in the derived group of G such that ad n¢ interchanges the positive and negative
roots of (G’, T), and with ng = nzlng. Putting this together and denoting the embedding
of L into G by ¢, define

§.6(9w) = Ug)dp a(w).

Now let 4 ; SLy(C) x Wr — LL be the Arthur parameter of the packet containing

the trivial representation of L. It is trivial on WR and sends S Lo to the principal SLo of L.
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Then the Arthur parameter of G' corresponding to the Levi subgroup L is the composition

Vp =& aovy gt Sha X Wgr — LG.

)

Example 3.3.7. We now work out a few examples in the case of G = U(2,2) to fix ideas.
For additional examples, Bergeron-Clozel’s concrete computations of the parameters ¢y,
for G = U(2,1) can be found in [5, §4.6].

The description of the L-group of U(2,2) is the specialization to N = 4 and F' = R of

the definitions of Section 2.1.3. We have
LU(2,2) = GL4(C) x W,

where Wg acts through its Z/2Z quotient. The nontrivial element o acts by

o(g) =0 lg 1y, By=

—1

Each Levi subgroup is associated to an ordered partition. In the case where P = (4), the
associated Levi is L = G = U(2,2), the embedding of L-groups is the identity and we

have wé = wo,é'
If P=(3,1), then L = GL3 x GL; is embedded block-diagonally in G and we compute

~—
ISYEN
SN—
DO~
~—~
ISYRSY
SN—
D=
—_
—_

Q/}IA/,G'(Z X 1) =

—~
ISR
SN—
N
w
[u—

—~
INY[EN
N—
v
—_
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From this we obtain the embedding £; ~ as described above, and in turn get ¢y = §; A0v ;-

The restriction to W of the corresponding Langlands parameter Py is

901/),3(’2)41): s

Lastly we look at the partition (1,1,1,1). In this case we have L = T and the embedding

of L-groups is determined by

Vi alzxl) = 1 . ng =Py

Since in this case ¢ ; is the trivial L-morphism, we conclude that ¢y, (2x1) = ¢; a(zx1).

This parameter is bounded: it corresponds to a packet of discrete series representations.

3.83.4  Structure of Cohomological Arthur Packets

Having now given the construction of cohomological Arthur parameters, we described the

packets of representations to which they are attached.

Proposition 3.3.8 ([1], §3.3). Let L be the Levi subgroup of G determined by a partition P.
The parameter 1/@ = 5@ ;o 1/10 i s associated to a packet 1Ly, of representations of G such

that Iy, only contains cohomological representations.

We describe the specific representations contained in the packet H¢£. Unsurprisingly,

they correspond precisely to Levi subgroups L of G whose dual is L. This is explained in
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both [1] and [3], but we spell out the consequences for our parametrizations of cohomological

representations and Levi subgroups in terms of ordered (bi)-partitions.

Proposition 3.3.9. Let P = (N, ..., N;) be an ordered partition of N and ¢p := Q/JEP be the

corresponding parameter. Then the packet Ilp := 11, consists precisely of the cohomological

P

representations wg corresponding to bipartitions B = ((aq,b1), ..., (ar, by)) such that Pg = P.
We will call such bipartitions B refinements of P.

Proof. We have explained above how a Levi subgroup Lp gives rise to a morphism ) Ly The
parameters attached to B and B’ will be equivalent if they are conjugate by an element of G.
The isomorphism classes of representations wp correspond to Levi subgroups L g containing

~

the fixed torus 7', so we need only consider conjugation by N (?(T)' This action induces an
action of the Weyl group W (7', @) on T and on the root datum (X« (T'), A(T), X«(T), A(T)).
Note that the action of conjugation by T on cohomological Arthur parameters will only
modify ) i by scaling the entries of ng. This has no impact on the parameter since ng was
only specified up to scalars in the construction of v i

Thus to determine which Levi subgroups L (i.e. bipartitions) give rise to the conjugacy
class of L, we consider the action of W (G, T) (denoted W (g,t) in [1] since it is the Weyl
group of the complexified Lie algebra of G) on the bipartitions. Recall that bipartitions are
determined ultimately by an element o € t. The entries of conjugate elements w - a will
have the same values, but these values will be distributed differently among the two pieces
of t belonging to U(a) and U(b). Recall from Proposition 3.3.3 that we denote the values
appearing in the entries of a by z;. The data being preserved by conjugation is the number
of entries a; + b; which are associated to the same value z;, as well as the ordering of the z;.
Transitivity of the Weyl group action then ensures that all the possible bipartitions obtained

as a refinement of P give rise to the parameter ¢ p. O]

The next natural question is to get a description of the elements in the packet. Denote
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by W(G,T) the Weyl group of the maximal compact subgroup of G. As was alluded to when
we introduced the parametrization by bipartitions, we can act on the element o by W (G, T')
until « is in the form

o = diag(Hy, ..., Hq, HY, ..., H})

where H; > H; 1 and similarly for A z/ . This action will preserve the Levi subgroup L since
this Levi is determined by which values z; appear in the first a entries. Thus once we have
fixed «, the action of W(G’, T) on the conjugate Levis by permuting coordinates amounts
to the left-action on W (G, T)/W(G,T). For this action, the stabilizer of an element ¢ - a
is the subgroup permuting all the entries with identical values. The multiplicities of these
values are precisely encoded in the partition P, i.e. on the Levi L p. Thus hg-a =g -«
exactly when h € W(ﬁ,T ). This discussion recovers Adams-Johnson’s parametrization of

representations inside of a packet.

Lemma 3.3.10 ([1], Section 2.). Representations in the packet Hl/@ are in bijection with
W (L, TO\W (G, T)/W(G,T).

A particular case will be of interest to us: If the group G is compact, we have W (G, T) =
W(C? , T ) and each of the cohomological Arthur packets contains a unique representation. In
each of the packets, this representation is the only finite-dimensional cohomological repre-

sentation, namely the trivial one.

Example 3.3.11. As we alluded to, the overlap between cohomological Arthur packets can
be understood via the redundancy in the parametrization of representations. For example
if G =U(3,1), we can consider P = (3,1) with refinements B; = ((3,0),(0,1)) and By =
((2,1)(1,0)). The associated packet has two elements: mp, is non-tempered but 7p, is a
discrete series also associated to the bipartitions ((2,0),(1,0),(0,1)), ((1,0),(2,0),(0,1)),

and ((1,0),(1,0),(1,0),(0,1)) and as such appears in three other packets.
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3.3.5 A Recipe for the Dimensions of Cohomology Inside a Packet.

Here we give a method to easily compute the exact dimensions of cohomology coming from
the representations inside a packet I1,,. This follows Section 9 of [3], and was first explained
to the author by Simon Marshall. It does not strictly have a bearing on the proof of the
main theorem of this section, but as far as we can tell this recipe is not explicitly written
down anywhere, so we record it here.

In theorem 9.1 of [3], Arthur proves the existence of an isomorphism between two repre-

sentations py, and oy, of W x SLo(C) x Sy, on the space
Vy = @ren, H" (g, K3 ).

The representation py, is realized by constructing a representation of each of the three groups
in the product and showing they commute. The representation of S, on each cohomology
group H(g, K;7) is a character with values in {1} coming from the pairing between 1T,
and the quotient Sy,. The representation of W was initially defined by Langlands and is a
sum of characters determined by the Hodge bidegree. Finally, the representation of SLo(C)
is the traditional “Lefschetz SL9” acting on the cohomology of complex varieties: at the
level of the Lie algebra, the degree-raising operator X is given by the wedge product with
a certain element of Homy (p*t x p~, C). There is a corresponding lowering operator Y,
and H = XY — Y X has eigenvalue k — ab on H*(g, K, ).

The second representation o, is obtained from a combination of the parameter ¢ and
the Shimura X datum associated to G/ = Reng. First, fix a basepoint x of X associated
to the choice of maximal compact subgroup K. This amounts to the choice of a mapping h :
S — G'(R) where S = Rengm is the Deligne torus. The image of this mapping should
be contained in the diagonal torus T. We have S(C) = C* x C* and the restriction

of h to the first factor gives an element of X,(7T), the cocharacter group of 7', and by
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duality a character p € X*(T'). This character is the highest weight of a finite-dimensional

representation (pﬂ, V,u) of G. The map
¥ SLy x WR — &,

whose image commutes with Sy, by construction, makes V), into a SLy(C) x W X Sy-
representation denoted oy,. The content of [3, Theorem 9.1] is that the two representa-

tions (%, Vu) and (pw, Vw) are isomorphic. We now compute p,, for certain unitary groups.

Lemma 3.3.12. If G'(R) = U(a,b) x Uy (R)E* Q=1 then the representation (P, Vi) de-
scribed above is the representation N*W & 1[F:Q]_1, where W s the standard N -dimensional

representation of GLy(C).

Proof. Following the axioms for a Shimura variety [12] we find that in the case of U(a,b) a

choice of h corresponding to K is given by

where I, is the n x n identity matrix. For the compact factors h can be taken to be trivial.
Then the weight p is (1,...,1,0,...,0) with a entries labeled 1 for U(a,b), and trivial on the

other factors. This first weight is the highest weight of AW, see for example [15, §15]. O

In the examples below we will restrict our attention to the factor U(a,b) for which the

representations are not trivial.

Example 3.3.13. The above theorem tells us that we can compute the degrees of cohomol-
ogy inside the Arthur packet II, , associated to a partition P by computing the weights in
the representation oy, | SL2(C). We work with G = U(2,2) and compute the degrees of
cohomology associated to the parameters from Example 3.3.7.
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In the case of L = G, i.e. of P = (4), the representation 1 |SL2(C) is v(4). The restriction

of oy to SLo is

and the nonvanishing dimensions of cohomology in the packet are
W=rt=hr=r=1 nt=2

Note that all the cohomology in this case comes from the unique representation contained
in IT;, namely the trivial representation.

In the case of the parameter corresponding to P = (3, 1), we compute

and find that the nonvanishing dimensions in the packet are
h?=ht=h0 =2

In this case, there are two representations in the packet, corresponding to the Levi subgroups
U(2,1) x U(0,1) and U(1,2) x U(1,0) and they each contribute in all three degrees, but in
different Hodge bidegrees. For example, we can see from Remark 3.3.6 that the representation
T((2,1),(0,1)) has cohomology in H20 and that T((1,2)(1,0)) contributes to HY%2.

Finally we consider the partition P = (1,1,1,1). In this case the restriction of oy, to SLy
is the sum of six copies of the trivial representation v(0). As such, each of the six discrete

series in II,, contribute one dimension to the middle degree R4,

The combinatorics giving the weights of tensor powers of representations of S Lo rapidly
get out of hand, rendering difficult the task of giving a general recipe for degrees of coho-

mology in terms of a partition. Yet any specific example is readily computed, and it is also
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straightforward to obtain results in specific families.

Example 3.3.14. Let G = U(a,b) and let Py = (2,1,...,1) be a partition of N where 1
appears with multiplicity NV — 2. Then one can check that the representation oy, of SLy
acting on the cohomology groups @ <1 op H*(g, K; 7). decomposes into

N

O'wPN — y(2)(11:12) EB y(l)(g:§)+(N;2)

as soon as NV is large enough relative to a for the binomial coefficients to be defined. Thus
the nonzero degrees of cohomology are ha and habil, with multiplicities prescribed from

the dimensions above.

3.3.6  Limit Multiplicity for Packets of Cohomological Representations

We now give results on growth of cohomology. Note that we return to the notation of most of
this document, in which F is global and for which the subscript “oc” denotes the collection
of all the archimedean places. Fix the set Sy so that it contains all but one archimedean
place vg. Let G be the inner form of UE/F(N) such that Gy, ~ U(a,b) and all the other
factors at infinity are compact. Define the group K(p") and the cocompact lattices as in
Section 3.2.1. By Matsushima’s formula and Lemma 3.2.2, we have

1/M . i n i . Ke(p™
W) = dim(H (D), C) = 3 m(mh (gug, Kugi mo) dimry ")

WEHw
where the sum is taken over representations m such that m, is trivial (the only cohomological
representation of a compact Lie group) at all places v € Sy. We can now give our theorem
for growth of cohomology. We compute the contribution of parameters 1o, associated to a
certain partition, and will discuss below why these parameters are of a particular interest.

Additionally our current results on growth constrain us to counting only the contribution of
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global parameters of the form 1) = 1)1 H19. We explained in Remark 3.2.12 how we hope to

lift this restriction.

Theorem 3.3.15. Let 1o be the cohomological parameter of G associated to an ordered

partition with one entry equal to 2k and all the other N — 2k entries equal to 1. Let

K n
Zg,zo(P ) = Z Z hz gU07KUO’7TUO)d1m7Tf s )-
PYeW2(1ho) TEILy,

Then

22

woo <pn) < Nm(pn)N(Nka).

Proof. Since the possible contribution to cohomology of a given representation 7, is bounded,
the expression th’i (p™) grows like the contribution of parameters ¢» = 11 H 1y to the mul-
tiplicity growth of representations moo ~ my, ® 1[F:Q=1 of G. Thus the result is a direct
consequence of Theorem 3.2.13, provided that cohomological parameters satisfy its assump-
tions. From Theorem 3.3.2, cohomological representations have the same infinitesimal char-
acter as the trivial representations. In particular, it is regular. Following the discussion
in Section 3.3.3, partitions obtained as reorderings of (2k, 1, ..., 1) correspond to parameters
for which ¥(SLo) = v(2k) @ v(1)V 2%, Thus the assumptions are satisfied and the result

follows. O

Remark 3.3.16. One can wonder about the extent of the restriction posed by considering
parameters in W2 (1)) rather than ¥(1s), that is, only counting parameters whose global
shape is ¢ = ¢y H 9. The global parameters 1 € ¥(hso) \ ¥2(¢hoo) which contribute
to hﬁ/}w (p™) will be of the form

Y=y BB ... By (3.11)

where 11 = py K v (2k) for pq a Grossencharacter. For i > 1 we have ¢; = pu; Kv(1) with p;
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a cuspidal automorphic representation of GLy,. In that case, we can estimate the growth

as if GLy, x ... x GLy, was the dual group of an endoscopic group of U(N):

As in the proof of Theorem 3.2.13, the factor of 11 should contribute Nm(p™), namely

an exponent of 1 to the growth.

- Each other factor should contribute the growth of the discrete series representation

on U(N;), namely an exponent of Ni2 following the result of Savin [40].

- We then subtract 1 from the exponent to account for the fixed central character.

2y N2
- Ferrari’s result (Theorem 3.2.9) adds a NTZ’NZ to the exponent, coming from the

transfer of test functions.

Of course one cannot simply reproduce the argument of Theorem 3.2.13, chiefly on account
that if there are more than two summands, the group [[; U(V;) is not an endoscopic group
of U(N). However, we hope to obtain this growth via an iterated application of the ideas
of Sections 3.1 and 3.2. For now, we view this as a credible heuristic. It predicts a growth

exponent of
N — (2k%) + 3o NP
2

coming from parameters with shape as in (3.11). Recalling the restriction that 2k+> ;o N; =
N, one immediately sees that this exponent is maximized if there is a unique No9 = N — 2k
and that any other contribution will be asymptotically negligible in comparison. We thus

believe that the bounds of Theorem 3.3.15 should hold even when the outer sum is taken

over ¥ € V(o).

The smallest degree of cohomology for U(a,b) associated to a partition given by a re-
ordering of (2k, 1, ..., 1) is the one whose actual growth is most likely to be N (p")N (N =2k) ¢

be computed from the formulas of Section 3.3.2. It is associated to the most split bipartition
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realized as a reordering of

P = ((ay,by), (1,0), ..., (1,0), (0,1), .., (0,1)). (3.12)

We see that for (a1,b1) to be maximally split, if a < b, we will have a; = min{a, k}. Thus

the lowest degree ¢ of cohomology associated to this partition is

a(N —2k) a<k

ab — k2 k<a.

Remark 3.3.17. In the special case that the partition P from (3.12) has either a; = a or
b1 = b, the representation mp contributes to the so-called special cohomology considered
by Bergeron-Millson-Moeeglin in [7]. This portion of the cohomology can be realized as the
image of a theta lift from smaller unitary groups. In the case where a = 1, this allows the

authors to deduce the Hodge conjecture for the corresponding Shimura varieties.
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