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ABSTRACT

We study growth of Betti numbers in towers of cocompact arithmetic lattices in unitary

groups U(a, b). In the middle degree of cohomology, the Betti numbers grow proportionally

to the volume of the manifold, but away from the middle degree, the growth is known to

be sub-linear in the volume. After rephrasing the problem into representation-theoretic

terms, we give upper bounds on the growth of cohomology in small degrees coming from

certain families of representations. These upper bounds are achieved in the framework of

the endoscopic classification of representations: we use Arthur’s stable trace formula to

bound the growth in terms of multiplicities of discrete series representations on endoscopic

groups.
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CHAPTER 1

INTRODUCTION.

Let G be a semisimple Lie group and Γ(pn) ⊂ G a congruence tower of cocompact arith-

metic lattices. The problem motivating this thesis is the computation of the Betti num-

bers hi(pn) = dim(Hi(Γ(pn),C)), and more precisely of the growth rate of hi(pn) as n→∞.

Cohomology of arithmetic groups is computed representation-theoretically via Matsushima’s

formula [32]:

hi(pn) =
∑
π

m(π, pn)hi(g, K; π).

Here π is a unitary irreducible representation of G, with m(π, pn) its multiplicity in the

regular representation of G on L2(Γ(pn)\G) and hi(g, K; π) the dimension of its ith so-

called (g, K)-cohomology group. The finitely many cohomological representations for each

group have been classified by Vogan-Zuckerman in [46]. This reduces the question of coho-

mology growth to that of finding the limit multiplicity of cohomological representations, i.e.

the rate of growth of m(π, pn) as n→∞.

Multiplicity growth rates are best understood for discrete series representations, who

contribute to cohomology only in the middle degree. DeGeorge-Wallach [11] have shown

that if π is discrete series, then m(π, pn) grows as fast as possible: proportionally to the

index [Γ(pn) : Γ(1)] or, equivalently, to the volumes of the associated locally symmetric

space. If the group G does not have discrete series, no exact rates of growth are known, see

for example [10]. Even for groups which admit discrete series representations (which will

be our focus here), this leaves open the question of multiplicity growth for cohomological

representations in lower degrees. In general such representations are non-tempered: their

matrix coefficients fail to decay fast enough. DeGeorge-Wallach show a weaker result for
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non-tempered representations π. Their multiplicities m(π, pn) satisfy

m(π, pn)/[Γ(pn) : Γ(1)] −−−−→
n→∞

0.

Thus the more specific question motivating this thesis is:

Question 1.0.1. Is it possible to compute the exact rate of growth of m(π, pn) for non-

tempered cohomological representations π?

In [39], Sarnak-Xue made a prediction for upper bounds interpolating between the growth

of discrete series representation and the (constant) multiplicity of the trivial representation:

Conjecture 1.0.2. (Sarnak-Xue) Let π be a unitary representation of G and let

p(π) = inf{p ≥ 2 | the K-finite matrix coefficients of π are in Lp(G)}.

Then

m(π, pn)�ε [Γ(pn) : Γ(1)]
2

p(π)
+ε
.

By definition, the representation π is tempered if p(π) = 2. Thus Sarnak-Xue expect that

the extent of the failure of π to be tempered dictates the slowness of the growth of m(π, pn).

1.1 Main Theorem

In this thesis, we give upper bounds on the multiplicity growth of certain cohomological

representations. Let E/F be a CM extension of number fields and p a large enough prime of

F . Let U(N − a, a) be a unitary group defined in terms of E/F from a Hermitian form, and

let Γ(pn) be a sequence of cocompact lattices in U(N − a, a). Our main theorem concerns a
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family πk of representations of U(a,N − a) contributing to cohomology in degrees

i =


a(N − 2k) a ≤ k

a(N − a)− k2 k ≤ a.

As will be discussed in the body of the text, these representations live in packets correspond-

ing to Arthur parameters whose restriction to Arthur’s SL2 is ν(2k)⊕ ν(1)N−2k.

Theorem 1.1.1. Let Γ(pn) be a tower of full-level cocompact lattices in U(a,N − a) and

let i < a(N − a). Let hik(pn) denote the dimension of the subspace of Hi(Γ(pn),C) coming

from the contribution to (g, K)-cohomology of the representation πk from global parameters

with two irreducible summands. Then

hik(pn)� Nm(pn)N(N−2k).

These are, as far as the author can tell, the first results on growth of cohomology in low

degrees for unitary groups of arbitrary rank, and which hold for any prime p large enough.

The theorem is a consequence of the endoscopic classification of representations for unitary

groups. The classification is a result of Mok [35] if the group is quasisplit, and of Kaletha–

Minguez–Shin–White [23] for inner forms, building on the seminal work of Arthur [4] who

gave such a classification for quasisplit classical groups.

Note that we are not the first to consider this specific family of cohomological represen-

tations. It encompasses all representations contributing to the so-called special cohomology

studied by Bergeron–Millson–Moeglin [7] in their proof of the Hodge conjecture for arith-

metic quotients of the complex ball.
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1.1.1 Outline of the Proof

The result is proved in the framework of endoscopy, Arthur parameters, and the stable

trace formula, on which we start by saying a few words. The endoscopic classification of

representations for a group G/F gives a decomposition of the regular representation of the

adèle group G(AF ) on the discrete spectrum:

L2
disc(G(F )\G(AF )) '

⊕
ψ

⊕
π∈Πψ

m(π)π

where the irreducible summands π = ⊗′vπv are automorphic representations appearing in

the discrete spectrum with multiplicity m(π). This decomposition is given in terms of sets of

representations called Arthur packets Πψ indexed by Arthur parameters ψ. These parameters

stand in for representations

ψ : LF × SL2(C)→ LG

where LG is the L-group of G and LF is the Langlands group of F , an object whose existence

is at the present moment only hypothetical.

Endoscopy is a specific instance of the principle of functoriality in the Langlands program.

It concerns certain groupsH, the so-called endoscopic groups ofG, and states that if ψ factors

through an embedding LH ↪→ LG, then there must be trace identities between the characters

of the representations π ∈ Πψ and those of representations πH of H in a corresponding

packet ΠHψ . The character identities are witnessed through the trace formula Idisc,ψ(f), a

distribution computing the trace of convolution by a smooth, compactly supported function f

on the subspace of L2
disc spanned by the representations π ∈ Πψ. More specifically, the

character identities appear in a decomposition of Idisc,ψ(f) referred to as the stabilization

of the trace formula:

Idisc,ψ(f) =
∑
H

SHdisc,ψ(fH). (1.1)
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Here the sum runs over all endoscopic groups H such that ψ factors through LH. The distri-

butions SHdisc,ψ(fH) are stable, meaning that they satisfy a strengthening of the conjugacy-

invariance property of characters of representations.

The summands SHdisc,ψ(f), initially defined inductively, can be expanded explicitly as

linear combinations of traces trπ(f) of the representations π ∈ Πψ: this is the so-called stable

multiplicity formula. We write here a simplified version of the stable multiplicity formula in

which we have omitted constants which can be ignored in the asymptotic questions we are

concerned with:

SHdisc,ψ(fH) =
∑
π∈Πψ

ξ(π,H) trπ(f). (1.2)

The coefficients ξ(π,H) arise from characters of a 2-group Sψ, the group of connected com-

ponents of the centralizer of the image of ψ. More precisely, there are two mappings

{representations π ∈ Πψ} → {characters of Sψ}

{H such that ψ factors through LH} → {elements of Sψ},

the second of which is a bijection. In this way, the coefficient ξ(π,H) in the decomposition

of the stable term SHdisc,ψ(fH) is the value of the character associated to π on the group

element corresponding to H.

In this context, the steps of the proof of Theorem 1.1.1 can be outlined as:

(i) (§3.3.3) Determine the parameters ψ associated to the packets containing the coho-

mological representations πk. Specifically, compute the restriction ψ∞ of the Arthur

parameters of packet containing these representations. This relies on work of Arthur [3]

and Adams-Johnson [1].

(ii) (§3.2.2) Write the dimension of cohomology as
∑
ψ Idisc,ψ(f(pn)) for a specific test
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function f(pn), summing over the parameters ψ computed in the first step.

(iii) (§2.4.2) Fix a cohomological parameter ψ. Use the stabilization of the trace formula

to decompose

Idisc,ψ(f(pn)) =
∑
H

SHdisc,ψ(f(pn)H).

(iv) (§3.1.2) By interpreting the coefficients ξ(π,H) appearing in the stable multiplicity for-

mula (1.2) as values of characters of Sψ, conclude that there is an endoscopic group Hψ

whose contribution bounds that of all the others in (1.1), i.e. such that

Idisc,ψ(f(pn)) ≤ K(ψ)S
Hψ
disc,ψ(f(pn)Hψ)

for a uniformly bounded K(ψ). This group Hψ corresponds to the identity element

of the group Sψ and depends only on ψ(SL2(C)). As such it is determined by the

parameter ψ∞ and ultimately by the choice of cohomological representations.

(v) (§3.2.4) Interpret the stable trace S
Hψ
disc,ψ(f(pn)Hψ) as the contribution of ψ to the

multiplicity m(πHψ , pn) for a family πHψ of representations of Hψ. This relies on the

fundamental lemma, proved by Laumon-Ngô for unitary groups [29], but also on a

variant for congruence subgroups due to Ferrari [14]. Then sum over all ψ with the

right ψ∞. This sum is now proportional to the multiplicity m(πHψ , pn).

(vi) (§3.2.4 and §3.3.6) The representations πHψ obtained via steps (i)-(v) from the fam-

ily πk are the product of a discrete series representation and a character. Their limit

multiplicity is thus know by results of Savin [40], which gives the desired bounds.

Throughout the paper, many results are imported from the works [4, 23, 35] cited above.

It is the author’s hope that this thesis can serve as an introduction, however black box-filled,

for someone hoping to use the stable trace formula for “concrete” applications.
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This method is in the lineage of a body of recent work applying the framework of en-

doscopy to the question of growth of cohomology. Most notably, recent progress on multiplic-

ity growth of non-tempered cohomological representations has been made by Marshall [30]

when G = U(2, 1), and Marshall-Shin [31] for G = U(N, 1) and p a prime splitting in the

CM extension defining the unitary group.

1.2 Conditionality

Our results are conditional on the endoscopic classification of representations for inner forms

of unitary groups, a result which remains to be fully proved in two distinct ways. As explained

in the introduction of [23], the classification depends on upcoming work of Chaudouard-

Laumon on the weighted fundamental lemma. Moreover, the proof of the classification in [23]

is not itself complete: in particular, the results appearing in this thesis as Theorem 2.3.6

and Theorem 2.4.1 are only proved for generic parameters. A full proof is expected in [22].

1.3 Further Work

The main result of this thesis is far from answering Question 1.0.1. It fails to even give

upper bounds for any particular degree of cohomology. It is nevertheless our belief that

the representations for which we do compute the rate of growth yield asymptotically all the

cohomology in the prescribed degrees. We lay out below some avenues for doing this, as well

as possible generalizations of the work of this thesis.

The most immediate obstacle to proving more general bounds is the absence of control on

the stable terms corresponding to groups H 6= Hψ. This issue prevents us from considering

anything beyond the simplest families of Arthur parameters, as is most clearly laid out in

the discussion around Proposition 3.2.10. We expect to address this in the near future: our

hope is to show that there are enough representations in the local Arthur packets for all
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characters of the group Sψ to appear. This would force the traces corresponding H to be

bounded, much in the way that for a nontrivial element g of a finite abelian group G, the

sum
∑
ξ∈Ĝ ξ(g) vanishes.

A second obstacle arises when the packet Πψ is stable, meaning that Hψ = G. This

is a more serious limitation of our technique since in that case we lose access to the entire

inductive scaffolding of the stable trace formula. We hope to solve this by considering twisted

transfer to GLN , but this is a more long-term goal.

The endoscopic classification of representations holds for symplectic and orthogonal

groups, following the work of Arthur [4]. We have written the first half of this thesis,

up to and including Section 3.1, with the idea that the group G could fairly painlessly be

taken to be orthogonal or symplectic.

Finally, we note that we have yet to state whether our main theorem corroborates Sarnak-

Xue’s conjecture. We expect that this is the case. This question boils down to comput-

ing p(π) for cohomological representations, something that will be done in upcoming joint

work with Simon Marshall [17].
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CHAPTER 2

BACKGROUND ON ENDOSCOPY AND THE TRACE

FORMULA

2.1 Unitary Groups and Their L-Groups

In this section we introduce unitary groups and their endoscopic groups, L-groups, auto-

morphic representations, as well as Arthur parameters and the various objects attached to

them.

We start with some notation. Let E/F be a CM extension of number fields with Galois

group ΓE/F , algebraic closure F̄ and absolute Galois groups ΓF and ΓE . We denote the

places of F and E by v and w respectively. If v is a place of F let Ev = E ⊗F Fv.

Let F∞ = F ⊗Q R denote the product of all the archimedean completions of F . Let OF

and OE be the respective rings of integers, and AF and AE be adèle rings. Let A
f
F be the

finite adèles, so that we have AF = F∞ ×A
f
F . Let Nm : AE → AF denote the norm map.

Fix χκ for κ ∈ {±1}, a pair of Hecke characters of E. We fix χ+1 to be trivial and the

character χ−1 is chosen so that its restriction to AF /F
× is the character associated to E

by class field theory.

If F is a field and G/F is a reductive group, we will denote the center of G by ZG, or

by Z when the ambient group is clear from context. If F is global then for any place v of F ,

we denote G(Fv) by Gv and G(F∞) by G∞. For H ⊂ G(AF ) a subgroup of the adelic points

of G, we use the notation Hf = H ∩ G(A
f
F ). The complexified Lie algebra of G∞ will be

denoted g∞.

2.1.1 Quasisplit Unitary Groups

We now introduce unitary groups and their L-groups, following the exposition of Kaletha-

Minguez-Shin-White in [23, §0]. Let E/F be a quadratic algebra: either the CM extension
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introduced above, or one of its localizations Ev/Fv, in which case we have E ' F×F when v

is split. If this is the case, fix an isomorphism and identify E = F × F . Let σ ∈ AutF (E)

be the nontrivial element of ΓE/F if E is a field, and the map given by σ(x, y) = (y, x)

if E = F × F .

Let ΦN be the antidiagonal N ×N matrix

ΦN =



1

−1

. .
.

(−1)N−2

(−1)N−1


. (2.1)

In the case that E is a split quadratic algebra, set ΓE := ΓF . Let UE/F (N) be the reductive

group over F whose group of F̄ -points is GLN (F̄ ), with Galois action

τN (g) =


τ(g) τ ∈ ΓE

Ad(ΦN )τ(g)−t τ ∈ ΓF \ ΓE

.

When the context is clear, the group UE/F (N) will be denoted U(N). Its F -points can be

identified with

UE/F (N,F ) = {g ∈ GLN (E) | Ad(ΦN )σ(g)−t = g}. (2.2)

It is a quasisplit unitary group, with maximal (non-split) torus given by the group of

diagonal matrices, and a Borel subgroup consisting of upper-triangular matrices. Note that

in the case that E = F × F , we have U(N) ' GLN and we fix an isomorphism to identify

them. Additionally we have an identification U(N,E) = GLN (E).

If the field F is global, we can consider the various localizations of U(N,F ). If v splits

in E, we have U(N,Fv) ' GLN (Fv). Otherwise U(N,Fv) a quasisplit unitary group over Fv,

10



a condition that determines it uniquely up to isomorphism, as we shall see below.

2.1.2 Inner Forms

An inner form of U(N) is a pair consisting of an algebraic group G/F together with an

isomorphism

ξ : G(F̄ )→ U(N, F̄ )

with the property that for all σ ∈ ΓF , the automorphism ξ−1 ◦ σ ◦ ξ ◦ σ−1 is inner. In

this thesis, we will always require that the inner forms be groups defined with respect to a

Hermitian space over E. When we speak of G an inner form of U(N), we always make a

choice a twist ξ although it is most often implicit. Furthermore, we will denote U(N) by G∗

when we want to highlight that it is the quasisplit form of G. We now discuss which possible

groups G can arise as inner forms of UE/F (N) in the cases where F is local or global.

Local Inner Forms and the Kottwitz Sign

If v is archimedean the classification of inner forms is well-known: a unitary group over Fv =

R is determined by its signature p + q = N , with U(p, q) ' U(q, p). The group U(p, q) is

quasisplit if and only if |p − q| ∈ {0, 1}. Note that since the notation U(N) is reserved for

quasisplit groups, we will denote the compact inner form of U(N,R) by UN (R).

For v nonarchimedean, the classification of unitary groups coming from Hermitian forms

over Fv is due to Landherr [27]: if N is odd, there is one class of Hermitian forms up to

isomorphism, so the group U(N,Fv) is the unique unitary group of rank N . If N is even,

there are two isomorphism classes of unitary groups, only one of which (the one contain-

ing U(N,Fv)) is quasisplit.

One can associate to an inner twist Gv of U(N)Ev/Fv a Kottwitz sign e(Gv). We record

the formulas for e(Gv) depending on the base field, as computed in [25].
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• For Fv = R, let q(Gv) be half the dimension of the symmetric space associated to the

group Gv. Then e(Gv) = (−1)q(Gv)−q(G∗v).

• For Fv non-archimedean, let r(Gv) be the rank of Gv. Then e(Gv) = (−1)r(Gv)−r(G∗v).

Lastly, Kottwitz proves in [25] that for any group G defined over a global field, the local

signs cancel out and
∏
v e(Gv) = 1.

Global Inner Forms

We describe the classification of global forms of unitary groups, following the discussion

in Section 0.3.3 of Kaletha-Minguez-Shin-White [23]. When N is odd, there is no global

obstruction and any collection of local inner twists can be realized as the localization of a

global inner twist.

When N is even, the behavior of the place v in the extension E determines the cohomolog-

ical invariants attached to Gv. In any case, we have that H1(ΓFv , G
∗,ad
v ) ' Z/2Z. If v is split

in E, the invariant of Gv depends on the division algebra Dv such that Gv = ResDvFv
GLMv

.

Since we only work with unitary groups coming from Hermitian forms, this invariant will

always be 0 for us. At finite nonsplit places, the quasisplit group U(N)v and its unique

inner form correspond respectively to 0 and 1 in Z/2Z. At the infinite places, the invariant

associated to the group Gv with signature (p, q) is N
2 + q ∈ Z/2Z. The condition for a

collection of local Gv to come from a global unitary group is that almost all of the invariants

associated to Gv are zero, and that their sum is also zero. We record a consequence of this

in a lemma.

Lemma 2.1.1. Let F be a totally real field and E/F a CM extension. Then there exists

a unitary group G over F with any prescribed choice of signature at the infinite places.

Moreover, this group G can be chosen to be quasisplit outside of a set of places of size at

most 1.
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Remark 2.1.2. The authors of [23] work with a refinement of the notion of inner form.

Recall that isomorphism classes of inner forms of G are in bijection with H1(ΓF , Gad). In

addition to this, they introduce the notion of pure inner form, a triple consisting of the

group G, the map ξ and a cocycle z ∈ Z1(Γ, G) compatible with the inner twist in the sense

that σ ◦ ξ ◦ σ−1 = Ad(z(σ)). The map sending a pure inner form to z induces a bijection

between the isomorphism classes of pure inner form and H1(ΓF , G). Inner forms of unitary

groups which can be realized as pure inner forms are those which come from a Hermitian

space over F and not over a division algebra, and these are precisely the groups we work

with. We will point out dependency on z in our results whenever it is relevant. Mainly, the

definition of the pairing in local Arthur packets is given in terms of the localization zv of the

cocycle z, but this dependency on zv cancels out globally.

2.1.3 L-groups

Throughout, we will work with the Weil group version of the L-group, primarily because

it is well-suited to our description of local parameters. In terms of the actual definition of

the L-group, this choice is purely cosmetic as the Galois actions involved will always factor

through a quotient of order at most 2.

For G/F with F either local or global, fix a root datum. The L-group of G is a semidirect

product

LG = ĜoWF .

The group Ĝ is the complex dual group of G, i.e. the complex-valued points of the group

whose root datum is dual to that of G. The action of WF on Ĝ is then induced by the Galois

action on the root datum of G. As a consequence, if G is split then LG = Ĝ×WF , and in

particular,

LGLN (F ) = GLN (C)×WF .
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If G′/F is an inner form of G then by definition G′(F̄ ) ' G(F̄ ) and the corresponding Galois

actions differ by an inner automorphism. These induce isomorphisms of root data and Galois

actions, which in turn induce isomorphisms LG ' LG′.

When F is global, we will sometimes abuse notation and write, LGv for the L-group of

the base change of G to a completion Fv. In this situation, the embedding WFv → WF

induces a map LGv → LG which is the identity on Ĝ.

The L-group of U(N) is defined as

LU(N) = GLN (C) oWF

where WF acts through the order two quotient ΓE/F . The non-trivial element σ of this

quotient acts by the outer automorphism of GLN preserving the standard diagonal splitting:

σ(g) = Φ−1
N g−tΦN ,

where ΦN was the matrix defined in (2.1). This L-group is shared by all inner forms of U(N).

Morphisms of L-groups

If LH and LG are two L-groups, then a morphism of L-groups is a continuous morphism

η : LH → LG

which commutes with the projections onto WF . We will typically be concerned with L-

embeddings, where Ĥ ↪→ Ĝ.

In particular, many objects associated to a unitary group UE/F (N) depend on a choice

of embedding of L-groups from LUE/F (N) to LResEFGLN . The connected component of the
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L-group of ResEFGLN is the product of two copies of GL(N,C), and WF acts through ΓE/F

via the automorphism that interchanges the two factors.

To define the L-embedding (often referred to as the base-change morphism) recall the

characters χκ from the beginning of this section. If F is global, we will use this character,

and if F = Fv is local, we will momentarily also denote by χκ the restriction of χκ to E×v .

For each κ ∈ {±1} we choose an embedding

ηκ : LU(N)→ LResEFGLN (2.3)

as follows. Choose an element wc of WF \WE , and denote the identity N × N matrix by

IN . Then ηκ is defined as

ηκ(g o 1) = (g, tg−1) o 1, g ∈ Ĝ

ηκ(IN o σ) = (χκ(σ)IN , χ
−1
κ (σ)IN ) o σ, σ ∈ WE

ηκ(IN o wc) = (κΦN ,Φ
−1
N ) o wc.

The second class of embeddings we will consider is from the L-group of a product U(N1)×

...×U(Nr) of unitary groups with
∑
Ni = N into LU(N). These products of smaller unitary

groups include the elliptic endoscopic groups of inner forms G of U(N). In order te define

the L-embeddings, put κi = (−1)N−Ni for each index i, and let κ = (κ1, ..., κr). Given χ

with signature κ, and for a choice of wc as above, the embedding

ηκ : L(U(N1)× ...× U(Nr))→ LU(N) (2.4)
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is defined by

ηκ(g1, ..., gr o 1) = diag(g1, ..., gr) o 1, gi ∈ GL(Ni,C)

ηκ(IN1
, ..., INr o σ) = diag(χκ1(σ)IN1

, ..., χκr(σ)INr) o σ, σ ∈ WE

ηκ(IN1
, ..., INr o wc) = diag(κ1ΦN1

, ..., κrΦNr) · Φ
−1
N o wc.

Note that the composite embedding ηκ◦ηκ gives an embedding LU(N1)× ...×LU(Nr)→
LResEFGLN with signature (κκ1, ...., κκr).

The necessity to consider several embeddings depending on κ stems from the possibility

that parameters for the pair (U(N), η+) may factor through different embeddings of the

products of groups U(Ni) associated to different signs. This will become apparent when we

introduce endoscopic groups in 2.2.10.

2.2 Parameters

Here we introduce the discrete automorphic spectrum of a unitary group G, and the local and

global parameters which will classify the (constituents of) these automorphic representations.

2.2.1 Automorphic Representations

Let (G, ξ) be an inner form of U(N). Fix a character ω of ZG(AF ) and a maximal compact

subgroup of K of G(A
f
F ), which in turn determines maximal compact subgroups Kv, hy-

perspecial at all unramified places. We consider the right-regular representation of G(AF )

on

L2
disc(G(F )\G(AF ), ω),

the discrete part of the space of square-integrable functions which transform by ω under

the action of the ZG(AF ). We will sometimes drop the ω when we allow for any choice of
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central character. In the cases of initial interest to us, G/F will be anisotropic, the central

character ω will be trivial, and the space L2
disc will be the entire automorphic spectrum of G.

However for induction purposes we will have to allow for arbitrary central characters and

for L2(G(F )\G(AF ), ω) to have a continuous part. The discrete spectrum decomposes as

L2
disc(G(F )\G(AF )) =

⊕
m(π)π

where m(π) denotes the multiplicity of π, and the irreducible constituents are automorphic

representations. Each of these automorphic representations is a restricted tensor product π =

⊗′vπv with each πv an irreducible admissible unitary representation of each of the Gv. All

but finitely many of the πv are spherical with respect to Kv. The representation πv is said

to be tempered if its Kv-finite matrix coefficients belong to the L2+ε(Gv) for all ε > 0.

After fixing a maximal compact subgroup K∞ of G∞, we replace π∞ by the dense sub-

space of K∞-finite smooth vectors, which we view as an admissible (g∞, K∞)-module. This

is no loss of information since unitary admissible representations are determined by their un-

derlying (g∞, K∞)-modules, see [24, 9.2]. Thus in practice our automorphic representations

will carry an action of G(A
f
F )× g∞.

2.2.2 Local Langlands Parameters

We now introduce the objects classifying automorphic representations and their constituents,

beginning locally. Let F be a local field with Weil group WF . The Langlands group LF of F

is defined as

LF :=


WF F is archimedean

WF × SU(2,C) F is non-archimedean.

A (local) Langlands parameter for the reductive group G/F is a continuous homomor-
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phism

ϕ : LF → LG

satisfying certain conditions (see [9] for a discussion):

(i) The map ϕ must commute with the natural projections LF → WF and LG→ WF .

(ii) In the non-archimedean case, the restriction ϕ |SU(2,C) must be algebraic.

(iii) The image of of WF under ϕ must consist of semisimple elements of LG.

(iv) If the image of ϕ in Ĝ factors through a parabolic subgroup of Ĝ, then this parabolic

subgroup must be the dual P̂ of a parabolic subgroup P of G.

Continuous homomorphisms that satisfy condition (i) are known as L-homomorphisms.

If they additionally satisfy conditions (ii)-(iv) they are called admissible. If they satisfy

condition (iv), they are called relevant, or G-relevant. Note that this fourth condition is the

only one depending on the choice of inner form G. Finally, we say that ϕ is bounded if WF

has bounded image in Ĝ. We will consider two parameters equivalent if they are conjugate by

an element of Ĝ and will denote the collection of equivalence class of Langlands parameters

for G by Φ(G).

2.2.3 Local Arthur Parameters

In order to classify the non-tempered spectrum of G, we consider enhancements of local Lang-

lands parameters known as local Arthur parameters. These are admissible L-homomorphisms

ψ : LF × SL2(C)→ LG

such that ψ |LF is bounded. Again, two Arthur parameters are equivalent if they differ

by conjugation by an element of Ĝ, and we denote the set of equivalence classes of Arthur
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parameters by Ψ(G). We will sometimes refer to the SL2(C) factor appearing in the above

product as the Arthur SL2. We will say that ψ is bounded if its restriction to the Arthur SL2

is trivial.

To each Arthur parameter ψ we associate a Langlands parameter ϕψ as follows. Recall

(eg. [43]) that the Weil group WF is naturally equipped with a norm homomorphism | · |

to C×. Then ϕψ is defined as the composition

ϕψ : WF → LG, ϕψ(σ) = ψ

σ,
 |σ|1/2 0

0 |σ|−1/2


 .

In the case where ψ is bounded, we have ϕψ = ψ |LF .

We now describe Arthur parameters of unitary groups, following Section 2.2 of Mok [35].

The set Ψ(U(N)) is best understood in terms of Ψ(ResEFGLN ). To produce an element

of Ψ(ResEFGLN ), one starts with an admissible N -dimensional representation ψ of LE ×

SL2(C) and promotes it to a homomorphism LF → LResEFGLN . This is done by first

choosing an element wc ∈ WF \WE . The parameter ψ′ : LF × SL2(C) → LResEFGLN is

then defined by Mok. It satisfies

ψ′(σ, g) = (ψ(σ, g), ψc(σ, g)) o σ, (σ, g) ∈ LE × SL2,

where ψc(σ, g) = ψ(w−1
c σwc, g). If ψc ' ψ∨ where ψ∨ is the contragredient of ψ, then the

parameter is called conjugate self-dual. There is a further notion of being conjugate self-dual

of parity ±1, which depends on the parity of the resulting bilinear form.
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The map ηκ introduced in (2.3) then induces a mapping

ηκ∗ : Ψ(U(N))→ Ψ(ResEFGLN ) (2.5)

ψ 7→ ηκ ◦ ψ. (2.6)

This map ηκ∗ is shown by Mok, following work of Gan-Gross-Prasad [16], to be an injection

whose image is independent of the choice of wc and consists precisely the set of self-dual

representations of parity (−1)N+1κ.

2.2.4 Global Arthur Parameters

When trying to extend the notion of Arthur parameter given above to a global field F , one is

confronted with the current absence of a well-defined global Langlands group LF . As a sub-

stitute for global parameters, Arthur [4, §1.4] introduces formal objects realized by combining

cuspidal automorphic representations of GLN with representations of the Arthur SL2. In

the case of unitary groups, the general linear group of reference is GLN/E. Echoing the lo-

cal discussion, global Arthur parameters are first defined in terms of ResEFGLN , and Arthur

parameters for U(N) are then the ones factoring through a fixed embedding of L-groups.

A global Arthur parameter for GLN is a formal object consisting of a unordered sum

ψN = �iψ
Ni
i , ψNii = µi � ν(mi).

Here µi is a cuspidal automorphic representation of GLni and ν(mi) is a representation

of SL2(C) as above, with mini = Ni and
∑
iNi = N . Departing from our references, we

will immediately restrict our attention to the set of Arthur parameters such that the ψNii are

pairwise distinct: we denote this set Ψ(N) instead of Ψell(N). The collection Ψ(N) contains

a distinguished subset Ψsim(N) consisting of simple parameters for which there is a unique

summand ψN . Following the theorem of Mœglin-Waldspurger [33], this subset Ψsim(N)
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parameterizes the discrete spectrum of GLN .

We now give the construction of global Arthur parameters for a quasi-split unitary

groupG = U(N), following the exposition of Section 1.3.4 of Kaletha-Minguez-Shin-White [23].

We start by restricting our attention to the set Ψ̃(N) ⊂ Ψ(N) consisting of parameters for

which each of the µi is conjugate self-dual. This means that the cuspidal automorphic

representations µi of GLN (AE) satisfy µi = µ̄i
∨ where µ̄ = µ ◦ σ and σ ∈ ΓE/F .

Now to record not only the parameter, but also its relation to the embedding ηκ, we

introduce the group Lψ. If ψN decomposes as a sum of µi�ν(mi), we associate to each index

a pair (UE/F (ni), ηκi) consisting of a quasisplit unitary group and an associated embedding

as in 2.1.3. Here the choice of sign κi is determined by µi. Then Lψ is the fiber product

Lψ =
∏
i

(LUE/F (ni)→ WF ).

There is a natural map ψ̃N : Lψ × SL2(C)→ LResEFGLN given by the direct sum

ψ̃N = ⊕(ηκi ⊗ ν(mi)).

A global Arthur parameter for (UE/F (N), ηκ) is then defined as a pair ψ = (ψN , ψ̃)

where ψN ∈ Ψ̃(N), and

ψ̃ : Lψ × SL2(C)→ LUE/F (N)

is an L-homomorphism such that ηκ ◦ ψ̃ = ψ̃N . This definition Arthur parameters as

consisting of two pieces of data is rather cumbersome, but it is useful to remember that ψN

encodes the arithmetic information of the cuspidal automorphic representations of GLni ,

and that ψ̃ has the advantage of being an actual homomorphism. As such, we can (and

will) discuss, for example, the centralizer of the image of ψ̃. We set two Arthur parameters
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to be equivalent if they are conjugate, and denote the set of Arthur parameters ψ as above

by Ψ(U(N), ηκ). Note that once again we have broken off from our references in the choice of

notation: our set Ψ(U(N), ηκ) is the one that the authors of [23] denote Ψ2(UE/F (N), ηκ).

Finally, note that the map from ψ 7→ ψN is an injection: this allows us to regard Ψ(U(N), ηκ)

as a subset of Ψ(N).

Remark 2.2.1. We have made two constraints on the set of parameters under consideration

here which bear highlighting. We require:

(i) that the irreducible summands ψi be pairwise distinct. In Mok’s description of the

parameters in [35, §2.4] this amounts to requiring that all the li = 1.

(ii) that each of the irreducible summands be itself conjugate self-dual. This is more

strict than requiring the whole parameter to be conjugate self-dual since we could have

had µ∨i ' µj .

Parameters satisfying these conditions are called elliptic. These restrictions will give us

control on the group Sψ to be introduced below, whose characters determine which products

of local representations occur in the discrete spectrum. It is also the case that only the

parameters in the set which we denote by Ψ(U(N), ηκ) correspond to packets whose members

actually appear in the decomposition of L2
disc, although this fact is far from obvious and is

one of the main theorems in [35] and [23]. Following this result, global elliptic parameters

are also called square-integrable.

2.2.5 Localization

We now explain how global Arthur parameter ψ ∈ Ψ(U(N), ηκ) gives rise to local Arthur

parameters ψv at each place v. Each cuspidal representation µ of GLN factors as a restricted

tensor product µ = ⊗′µv over all places v of F . These representations µv are admissible

representations of GLN (Fv). The local Langlands correspondence for GLN [19, 20, 41]
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associates to each µv an bounded parameter ϕµv ∈ Φ(GLN ). Following [4], we then define

the localization of ψ at v as the direct sum

ψv = ⊕iψv,i, ψv,i = ϕµv,i ⊗ ν(mi).

These localizations a priori only belong to Ψ(ResEFGLN ). The fact that they are indeed in

the image of the map (2.5) is one of the central theorems of the endoscopic classification of

representations proved by Mok in [35].

2.2.6 Parameters of Inner Forms

Let (G, ξ) be an inner form of G∗ = U(N). A local Arthur parameter for G is simply a

parameter for U(N) which is G-relevant, a notion that was introduced in 2.2.2. Globally,

a parameter ψ ∈ Ψ(G∗, ηκ) is G-relevant if it is so everywhere locally, see [23, §1.3.7].

We denote by Ψ(G, ξ) the collection of parameters in Ψ(G∗, ηκ) which are G-relevant. In

summary, we have the following global chain of inclusions:

Ψ(G, ξ) ⊂ Ψ(G∗, ηκ) ⊂ Ψ̃(N) ⊂ Ψ(N),

where the parameters in Ψ̃(N) are conjugate self-dual, those in Ψ(G∗, ηκ) factor though the

embedding ηκ, and those in Ψ(G, ξ) are additionally G-relevant.

2.2.7 Parameters and Conjugacy Classes

We now explain how to attach families of conjugacy classes to objects introduced in the

previous sections. For F global, G reductive, and any finite set S of places of F containing

the archimedean ones, let CS(G) denote the set of collections c = {cv}v/∈S , where each cv is

a semisimple conjugacy class in Ĝ. For two sets S and S′, let c ∼ c′ if cv = c′v for almost

all v. Denote the set of such equivalence classes by C(G). In keeping with the notation for
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parameters, denote the special case where G = GLN by C(N). We can associate elements

of C(G) to automorphic representation π of G. Factoring π = ⊗′vπv, where πv is unramified

at all but finitely many (non-archimedean) places, let c(π) = {c(πv)} be the collection of the

Satake parameters of all the unramified representations.

When G = GLN we do more and associate an element of C(N) to each parameter

ψ ∈ Ψ(N). Starting with simple parameters ψ ∈ Ψsim(N), we use the recipe for the

representation πψ prescribed by Moeglin-Waldspurger’s theorem [33] and let c(ψ) := c(πψ).

If the parameter ψ is not simple, we apply the above process to its simple constituents and

associate to ψ the conjugacy class coming from the diagonally embedded product of the

GLNi inside of GLN . In this way we obtain a mapping

Ψ(N)→ C(N), ψ 7→ c(ψ).

Following the work of Jacquet-Shalika [21], this mapping is injective. We denote its image

by Caut(N).

2.2.8 Stabilizers and Quotients

We recall the definition of some centralizer groups attached to a parameter ψ. Their char-

acters will determine both the identities between representations of G and of its endoscopic

groups, as well as the multiplicity m(π) of automorphic representations inside the discrete

spectrum.

For ψ either local or global, we have

Sψ := Cent(Im(ψ), Ĝ), (2.7)

S̄ψ := Sψ/Z(Ĝ)WF , (2.8)

Sψ := π0(S̄ψ). (2.9)
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As mentionned above, when ψ is global, Im(ψ) really means Im(ψ̃). Localization of param-

eters ψ 7→ ψv induces a mapping Sψ → Sψv .

When G is a unitary group, the centralizer quotients Sψ can be readily computed, as

the four authors do in [23, p.63]. In particular, in the case of F global and ψ ∈ Ψ(G∗, ηκ)

decomposing as ψ = �ri=1ψi, we have

Sψ = (Z/2Z)r−1. (2.10)

The reader who actually does open [23] to look at the computations will notice that here is

where we use the two assumptions from Remark 2.2.1. They allow us to only consider cen-

tralizer groups that are purely orthogonal. The possibility of symplectic factors is eliminated

by the assumption that li = 1 for all i, and that of general linear factors by the assumption

that each summand is self-dual.

Finally, we introduce the distinguished element

sψ := ψ

1,

 −1 0

0 −1


 ∈ Sψ. (2.11)

We will sometimes conflate sψ and its image in the quotient Sψ, and use the same notation

for both.

Remark 2.2.2. In Kaletha-Minguez-Shin-White’s classification of representations for inner

forms of unitary groups [23], the authors introduce a new centralizer quotient S
\
ψ. In the

case that G is a local unitary group, the two groups S
\
ψ and Sψ agree [23, §1.3.4]. When

the local group G is isomorphic to GLN (the only possibility for us when the corresponding

place is split, since we only work with unitary groups that arise from global hermitian forms)

then the group S
\
ψ is isomorphic to C×. However, in that situation, the only representation

of S
\
ψ which arises in character identities will be the trivial one, as will be discussed in
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Section 2.3.5. There is thus no loss to instead work with the group Sψ = {1}. As for the

global situation, the characters of S
\
ψ that arise all factor through Sψ [23, p. 89]. Finally,

we point out that we follow Mok and Arthur’s convention by denoting by Sψ the group that

the four authors of [23] denote S̄ψ.

2.2.9 Epsilon Factors

The last invariant attached to a global parameter ψ is εψ. It is a character of the group Sψ

and is defined by Arthur in [4, §1.5]. The definition involves the symplectic root num-

ber ε(1/2, µα) of an automorphic L-function L(s, µα) for a product of general groups. The

representation µα is associated to the parameter into GL(g
Ĝ

) obtained by composing ψ

with the adjoint representation. As such, the arithmetic properties of the decomposition

of L2
disc(G(F )\G(AF )) are encoded through εψ. Finally, note that εψ only depends on the

parameter ψ and in particular is independent of the inner form of G∗ under consideration,

as is discussed in [23, p.89].

2.2.10 Endoscopic Data

An endoscopic datum for G is a triple (ξ,H, s) where

- s is a semisimple element of Ĝ,

- H/F is a connected, quasisplit group whose dual group Ĥ is the connected component

of the centralizer of s in Ĝ,

- ξ : LH → LG is an L-embedding.

We will work only with elliptic endoscopic data, characterized by the finiteness of Z(Ĥ)WF .

As such, we will denote the set of elliptic endoscopic data for G up to conjugation by E(G),

dropping the “ell” subscript that appears in our references. We will also frequently abuse
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notation and refer to the group H as a stand-in for the full datum, sometimes denoting the

other two elements of the triple by ξH and sH . Lastly, we will also use the formalism of

endoscopic data for our unitary groups and denote by Ẽ(N) the set of pairs consisting of a

quasisplit unitary group U(N) together with the L-embedding ηκ from (2.3), extending this

pair to an endoscopic triple via the element s = IN .

We now describe endoscopic groups of unitary groups. For any inner form G of UE/F (N),

the set E(G) consists of pairs

(H, ξ) = (U(N1)× U(N2), ηκ), N1, N2 ≥ 0, N1 +N2 = N,

where the embedding was defined in (2.4). The signature κ = ((−1)N−N1 , (−1)N−N2)

depends on the respective ranks of the groups. The equivalence class of endoscopic data is

then uniquely determined by N1 and N2, see [35, §2.4].

Endoscopic Data and Parameters

We now import the first result concerning the objects introduced so far: the group Sψ

parametrizes endoscopic groups such that ψ factors through ξH . Let (H, ξH , sH) ∈ E(G) be

an endoscopic datum and ψH ∈ Ψ(H, ηκ ◦ ξH) be an Arthur parameter. Let ψ = ξH ◦ ψH .

Since the element sH commutes with H, it also commutes with the image of ψ. In this way,

we get an mapping

(H,ψH) 7→ (ξH ◦ ψH , sH) (2.12)

from the pairs (H,ψH) onto the set of pairs consisting of a parameter ψ for G, together

with an element s of the centralizer Sψ. The importance of the quotient Sψ comes from the

fact that for each parameter ψ the map from (2.12) descends to a bijection between Sψ and

the set of endoscopic data such that ψ factors through ξH . We state this result below and

refer to the proof in [23], which is an adaptation of Arthur’s proof in [4, §1.4]. To simplify
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statements, we will restrict ourselves to the result we will use: a global unitary group G and

a square-integrable parameter ψ.

Lemma 2.2.3. Let F be global and G∗ = UE/F (N). Let ψ ∈ Ψ(G∗, ηκ). The map (2.12)

induces a bijection

(H,ψH)↔ (ψ, s)

where the left-hand side runs over pairs where H is stands in for an endoscopic datum

(H, ξ, s) and ψH is a parameter of H such that ψ = ξ ◦ ψH , and the right-hand side runs

over elements of Sψ.

Proof. The proof is the content of section 1.4 of [23], and the above statement is a reformu-

lation of Lemma 1.4.3. Our simplifying assumption that ψ is square-integrable implies that

Sψ and a fortiori S̄ψ are finite. Thus the groups S̄ψ and Sψ are one and the same and we

use the latter in our bijection.

Example 2.2.4. To fix ideas, we give an example of this bijection. Let G = U(5) be the

quasisplit unitary group in 5 variables. Fix a parameter

ψ = ψ1 � ψ2 � ψ2 = (µ1 � ν(1)) � (µ2 � ν(2)) � (µ3 � ν(2))

where each µi is cuspidal automorphic representation of UE/F (1), i.e. a Grossencharacter

of ANm=1
E . From section 2.10 we compute that Sψ = (Z/2Z)2. A choice of representatives

in Sψ for the elements of Sψ are diagonal matrices with entries

s1 = (1, 1, 1, 1, 1), s2 = (−1, 1, 1, 1, 1), s3 = (−1,−1,−1, 1, 1), s4 = (1,−1,−1, 1, 1).
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The associated endoscopic pairs are (up to a twist of ψH induced by the embedding ξH):

(H1, ψ
H1) = (U(5), ψ1 � ψ2 � ψ3)

(H2, ψ
H2) = (U(1)× U(4), ψ1 × (ψ2 � ψ3)),

(H3, ψ
H3) = (U(3)× U(2), (ψ1 � ψ2)× ψ3),

(H4, ψ
H4) = (U(3)× U(2), (ψ1 � ψ3)× ψ2).

Note that despite our notation (H,ψH), the same endoscopic group H appears twice, asso-

ciated to two different parameters. Observe also that we have sψ = s4 in the quotient Sψ,

and that (as is always the case), the identity element of Sψ corresponds to G.

2.3 Packets

The parameters introduced above serve to classify the admissible (in the local case) or

automorphic (in the global case) representations of the group G. In this section, we introduce

the set of representations associated to an Arthur parameter, known as an A-packet or Arthur

packet. We also give the character identities relating the traces of the representations in a

packet to corresponding representations for endoscopic groups.

2.3.1 Local Arthur Packets

Let G/F be a unitary group over a local field. The main local results of Mok [35, Theo-

rem 2.5.1] and Kaletha-Minguez-Shin-White [23, Theorem 1.6.1] associate to each Arthur

parameter ψ for the group G a finite set Πψ of irreducible unitary representations of G(F )

called a local Arthur packet. This packet Πψ is empty if ψ is not relevant, and it contains

only tempered representations when ψ is bounded. If Πψ is nonempty, it is equipped with a

pairing

〈 , 〉 : Sψ × Πψ → {±1}. (2.13)
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Through this pairing, every representation π ∈ Πψ gives rise to a character of the group Sψ.

In particular, unramified representations correspond to the trivial character. The pairing

depends on the triple (G, ξ, z) realizing G as a pure inner twist as discussed in Remark 2.1.2.

Remark 2.3.1. In the case where F is archimedean, the representations contained in the

packet Πψ all have the same infinitesimal character. In the case of cohomological represen-

tations, these are explicitly described by Adams-Johnson in [1]. In particular, one can speak

of “the infinitesimal character” of the parameter ψ.

We recall a result of Mok that the central character is the same for all representations

in Πψ, and is determined by both the parameter ψ and the choice of embedding ηκ.

Proposition 2.3.2 (Proposition 1.5.2, 2. [23]). For each π ∈ Πψ the central character ωπ :

Z(G∗)(F )→ C× has a Langlands parameter given by the composition

LF
ϕψ−−→ LG∗

(detoid)◦ηκ−−−−−−−−→ C× oWF .

2.3.2 Global Arthur Packets

Global parameters also have sets of representations attached to them. Let ψ ∈ Ψ(G, ξ) be a

global parameter with localizations ψv. The global Arthur packet Πψ is then defined both

in terms of the local packets and of the pairings as

Πψ =
{
π = ⊗vπv | πv ∈ Πψv , 〈·, πv〉ψv = 1 for almost all v

}
.

The packet Πψ is equipped with a pairing

〈 , 〉ψ : Sψ × Πψ → {±1}, 〈 , π〉ψ =
∏
v

〈 , πv〉ψv (2.14)

determined by the maps Sψ → Sψv induced by localization. We note once again that the
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pairing depends on the full inner twist (G, ξ). On the other hand, the local dependence

on the pure inner twist, i.e. the dependency on the cocycle z, which appeared in the local

definition of the pairing, cancels out globally. This is explained in [23, §1.7].

2.3.3 Test Functions

We introduce test functions in order to state the character identities relating packets for

various groups, following the exposition of Section 1.5 of Arthur’s book [4]. Continuing

with F global, we fix compatible Haar measures µ on G(AF ) and µv on Gv for all v. We

also fix a maximal compact subgroup K of G(AF ). The group K determines a maximal

compact subgroup Kv ⊂ Gv at each place v, and we choose K so that at all the unramified

finite v the subgroup Kv is hyperspecial. Finally, we fix a character ω of Z(AF ), which in

turn determines local characters ωv.

The local Hecke algebra H(Gv, ωv) is the algebra of smooth compactly supported func-

tions on Gv, which transform under the center of Gv by the character ωv. At the archimedean

places we further require that they be Kv-finite. We will call elements of H(Gv, ωv) local

test functions.

The global Hecke algebra is defined as the restricted tensor productH(G,ω) = ⊗′vH(Gv, ωv).

It is the algebra of smooth, compactly supported, K-finite functions which transform under

the action Z(AF ) by the character ω. Each such test function is a finite sum of factorizable

test functions of the form f =
∏
v fv, where each fv ∈ H(Gv, ωv) and all but finitely many fv

are the characteristic function of the maximal compact subgroup Kv.

A smooth, admissible representation πv of Gv on a Hilbert space can be promoted to

an H(Gv, ωv)-module, and the two categories are equivalent. The operator on πv given

by convolution by fv is then of trace class, and we denote its trace by tr πv(fv). Like-

wise globally, the algebra H(G,ω) acts on L2
disc(G(F )\G(AF ), ω) and on its irreducible

constituents π. We denote this by R(f) (when considering the right-regular representation
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on L2
disc(G(F ), G(AF ), ω)) or by tr π(f) (when f is acting on the irreducible representa-

tion π.) Finally note that both locally and globally, the trace of f on a representation π

vanishes if f ∈ H(G,ω) for ω different from the central character of π. We will sometimes

suppress the notation of the character and simply denote the Hecke algebra by H(G).

2.3.4 Stable Distributions and Transfer

We introduce the notions of stable distributions on the local and global Hecke algebras,

following Sections 3.1 and 4.2 of [35], respectively. Let γ be a conjugacy class in G(Fv). The

stable conjugacy class of γ is the union of all the (finitely many) conjugacy classes of G(Fv)

that are conjugate to γ over G(F̄v). A local test function fv ∈ H(Gv) is determined by all

its so-call orbital integrals fv,G(γ) over regular conjugacy classes in G.

We start with a sketch of the definition of local transfer. Let Gv be a quasisplit unitary

group. Each stable conjugacy class δ gives rise to a linear functional

fGv (δ) =
∑
γ

∆v(δ, γ)fv,G(γ), (2.15)

where the sum is taken over all the conjugacy classes γ of G(Fv). The factor ∆(δ, γ) is equal

to 1 if γ belongs to the stable conjugacy class δ and to 0 otherwise. In other words, the

right-hand side is the sum of orbital integrals over the conjugacy classes belonging to the

stable conjugacy class δ. This construction gives a map from H(Gv) to the ring of functions

on stable conjugacy classes. Denote the image of this map by S(Gv). We will say that a

linear functional on H(Gv) is stable if it factors through the quotient S(Gv).

Now let Gv be an arbitrary unitary group. For each endoscopic group Hv of Gv (in-

cluding G∗v), there is a map H(Gv)→ S(Hv) whose definition is formally identical to (2.15)

with δ a stable conjugacy class on Hv, but in which the transfer factors are much more

delicate and are were defined by Langlands-Shelstad [28] and Kottwitz-Shelstad [26].
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This gives us a system of maps from the Hecke algebras H(Gv) to their stable counter-

parts S(Hv). If Hv is an endoscopic group of Gv, we will say that two functions fv ∈ H(Gv)

and fHvv ∈ H(Hv) form a transfer pair if they have the same image under their respective

maps to S(Hv). Although the function fHvv is not uniquely determined by Hv (we could

for example take any conjugate), we will sometimes abuse terminology and call one choice

of fHvv the transfer of fv.

In order to extend the notion of transfer to global test functions, it is first necessary to

know that the transfer of characteristic functions of maximal compact subgroups of Gv are

the corresponding functions on Hv. This is the fundamental lemma, now a theorem due to

Laumon-Ngô [29] in the case of unitary groups, and to Ngô [36] in general, after reductions

by Waldspurger [47, 48].

Theorem 2.3.3 (Fundamental Lemma). Let Gv and Hv be unramified reductive groups over

a non-archimedean local field Fv. Let K(Gv) and K(Hv) be respective choices of hyperspecial

maximal compact subgroups. Then their characteristic functions fv = 1K(Gv) and fHvv =

1K(Hv) form a transfer pair.

With this in mind, the transfer of a factorizable global test function f =
∏
v fv ∈ H(Gv)

is the product fH =
∏
v f

Hv
v of its transfers, and we extend this definition to all of H(G)

linearly. We will likewise define the global stable Hecke algebra S(G∗, ω) := ⊗′vS(G∗v, ωv),

where the restriction is that all but finitely many tensors must come from the characteristic

function of a hyperspecial maximal compact subgroup. Finally, we will say that a global

distribution on H(G∗) is stable if it factors through the quotient S(G∗).

2.3.5 Local Character Identities

The transfer of representations between G and its endoscopic groups H is encoded via iden-

tities between linear combinations of characters; the coefficients are determined by the pair-

ings (2.13). We collect the relevant results below; here F a local field.
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We start with the existence of a distribution fG(ψ) on H(G). Let G∗/F be a quasisplit

unitary group or a product thereof, and ψ an Arthur parameter of G∗. Then Mok shows the

existence of a stable linear form associated to the packet Πψ.

Theorem 2.3.4 (Theorem 3.2.1 (a), [35]). Let ψ ∈ Ψ(G∗). Then there exists a unique stable

linear form

f 7→ fG
∗
(ψ)

on H(G∗) determined by transfer properties to GLN . If G∗ = G∗1 × G
∗
2 and ψ = ψ1 × ψ2,

then fG
∗
(ψ) = fG

∗
1 × fG∗2.

We will not discuss in detail the character identities relating fG
∗
(ψ) to traces on GLN as

they do not come into play for us, although they are critical to establishing the endoscopic

classification of representations. It suffices to say that this distribution is related to the

trace trπψ,N (f) for a representation πψ,N associated to the parameter ψ. Our focus will

be on the relation between the fH(ψH) for the groups H ∈ E(G), and the characters of

representations in the packet Πψ. If G = G∗ is a quasisplit unitary group, these identities

were established by Mok. Recall that sψ is the distinguished element of Sψ defined in (2.11).

Theorem 2.3.5 (Theorem 3.2.1 (b), [35]). Let G∗ be a quasisplit unitary group, let ψ ∈

Ψ(G∗), and let Πψ be the associated Arthur packet equipped with the pairing 〈·, ·〉. Let s be a

semisimple element of Sψ and let (H,ψH) correspond to (ψ, sH) as in Lemma 2.2.3. Then

for a transfer pair (f, fH) we have

fH(ψH) =
∑
π∈Πψ

〈sψsH , π〉 tr π(f).

When the group is not quasisplit, the corresponding result is due to Kaletha-Minguez-

Shin-White [23].
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Theorem 2.3.6 (Theorem 1.6.1, [23]). Let (G, ξ) be an inner form of U(N) and let ψ, Πψ,

H, sH , and (f, fH) be as above. Then

fH(ψH) = e(G)
∑
π∈Πψ

〈sψsH , π〉 trπ(f)

where e(G) is the Kottwitz sign introduced in 2.1.2.

Remark 2.3.7. Here we recall something that we discussed in the introduction: the the-

orems stated in [23] are not in fact all fully proved. For example, Theorem 2.3.6 is only

proved in the case that the parameter ψN is bounded, i.e. trivial on the SL2 factor. The

authors of [23] anticipate that they will provide the full proof in a pair of upcoming papers,

the first of which [22] concerns unitary groups defined with respect to hermitian forms and

will contain the results used in this thesis.

Local Packets for General Linear Groups

As was discussed in Section 2.1.1, if F is a local field associated to a place which splits in

the CM field defining our unitary group, then G ' GLN . In this situation, the local Arthur

packet and the pairing are especially simple.

Theorem 2.3.8 (Section 2, [35]). If G = GLN and ψ is an Arthur parameter for G, then

the packet Πψ contains one element: the irreducible representation associated to ϕψ by the

local Langlands correspondence. The character 〈 , πψ〉 is trivial.

We now consider the character of identities between representations of G and that of

its endoscopic groups. They are alluded to in [35] and [23], but we give a more explicit

description based on Shin’s exposition in [42, §3.3]. For G = GLN , stable and regular

conjugacy classes coincide and the stable quotients S(G) are equal to H(G). Since the global

extension giving rise to our unitary group is CM , we need only consider the case of GLN/F
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when F is non-archimedean. If H = GLN1
×GLN2

with N1 +N2 = N , then the embedding

ηκ that is part of the endoscopic datum can be used to realize H as a Levi subgroup of G.

Let P = HN be a parabolic subgroup of G containing H. Given a function f ∈ H(G),

define the constant term along P as

fP (h) := δ
1/2
P (h)

∫
N

∫
KH

f(khnk−1)dxdn, h ∈ H(F ).

Here the integrals are taken with respect to suitably normalized Haar measures and δP is the

modulus character for the parabolic P . The function fPv is smooth and compactly supported,

and following results of van Dijk [44], it satisfies the requisite identity of orbital integrals to

be a transfer of f . We thus let fH := fP . Furthermore, if f is unramified, then fH is the

image of f under the map H(G)ur → H(H)ur induced by the Satake isomorphism. Thus

this notion of transfer satisfies the fundamental lemma.

For a parameter ψ of G, we let fG(ψ) = tr πψ(f) [23, §1.5] for the unique πψ ∈ Πψ and

extend this definition as a product to pairs of general linear groups. We let πHψ be the unique

representation of H in the packet associated to ψH . Then it follows from the local Langlands

correspondence (see for example [19, p.6] and note that the twist therein is accounted here by

the one coming from the embedding ηκ) that πψ = IP (πHψ ), where IP denotes normalized

parabolic induction with respect to P . In view of this and of Theorem 2.3.8, the local

character identities for GLN amount to an equality of traces between tr π(fH) and the trace

of f on the corresponding induced representation. Again this is a result of van Dijk, which

we record below.

Theorem 2.3.9 (Section 5, [44]). Let G,H, P , and fH be as above. Let π ba a unitary

irreducible representation of H and let IP (π) be its normalized parabolic induction with

respect to P . Then tr π(fH) = tr IP (π)(f).
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2.4 The Trace Formula and its Stabilization

We now discuss global identities between the automorphic representations of a unitary group

G and its endoscopic groups. These are encoded in Arthur’s trace formula Idisc. This

distribution, and in particular its restriction to the contributions of certain parameters, is

described in [23, §3.1] and in greater detail in [4, §3.1] and we do not go in more detail than

is needed for our applications. In particular, our arguments only make use of representations

with regular infinitesimal character. As such, the contribution of proper Levi subgroups to

the definition of Idisc will never come into play.

It suffices to say that Idisc is a distribution on the Hecke algebraH(G,ω), defined in terms

of the traces of intertwining operators on variants of L2
disc(G(F )\G(AF )). These traces are

indexed by a system of Levi subgroups of G, and we will follow Arthur [4, §3.4] in denoting

the contribution of the group G itself by Rdisc. This latter distribution computes the trace

convolution by a function f ∈ H(G,ω) induced by the right-regular representation of G(AF )

on L2
disc(G(F )\G(AF ), ω), and as such

Rdisc(f) =
∑
π

m(π) tr(π)(f).

Here, the sum is taken over all representations π appearing in the decomposition of the

space L2
disc(G(F )\G(AF ), ω) as a G(AF )-representation.

2.4.1 Contribution of a Parameter

The interplay between the endoscopic and spectral decompositions of the trace formula drives

our arguments, and we start by describing the latter, that is, how Idisc splits into a sum of

contributions indexed by parameters ψ ∈ Ψ(G).

The first level of decomposition is concerned with the archimedean places and is embedded

in the definition of the distribution of Idisc. Indeed, the initial definition of the trace formula
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is initially given (see for example [4, §3.1]) as

Idisc(f) :=
∑
t

Idisc,t(f)

where t ≥ 0. Representations contributing to Idisc,t are the ones whose infinitesimal char-

acter µπ satisfies |Imµπ| = t, under an appropriate choice of metric on the dual of a Cartan

subalgebra of g∞.

The next level or refinement relies on the identification of parameters ψ with collections

of conjugacy classes c(ψ). Let c ∈ C(G), the set of families of conjugacy classes introduced

in 2.2.7. The distribution Idisc,t,c described in [23, §3.1] is given by the restriction of the

traces defining Idisc,t to the subset of L2
disc(G(F )\G(AF )) consisting of representations whose

Satake parameters at almost all unramified places correspond to the components of c. This

results in a decomposition

Idisc,t(f) =
∑

c∈C(G)

Idisc,t,c(f).

Note that for a given function f ∈ H(G), all but finitely many summands on the right-

hand side vanish. To go from conjugacy classes to parameters, recall that in 2.2.7 we have

described an identification of the set Ψ(N) with the subset Caut(N) ⊂ C(N). To each ψN ∈

Ψ(N) is thus associated an element c(ψN ) ∈ Caut(N). Likewise, as stated in Remark 2.3.1,

we can talk about the infinitesimal character associated to ψN and associate to ψN a real

number t(ψN ). Finally, recall that the map ηκ induces an injection Ψ(G∗, ηκ)→ Ψ(N) given

by ψ = (ψ̃, ψN ) 7→ ψN . Thus for each parameter ψ ∈ Ψ(G∗, ηκ), we follow [23, p. 149] and

define

Idisc,ψ(f) =
∑

c7→c(ψN ),t7→t(ψN )

Idisc,t,c(f).

The sum runs over the elements c ∈ C(G) which map to c(ψN ) under the map C(G)→ C(N)

induced by ηκ.
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We can similarly restrict the trace of the right-regular representation to Hecke eigen-

components of L2
disc(G(F )\G(AF ), ω) indexed by ψ ∈ Ψ(G) in order to obtain distribu-

tions Rdisc,t,c and Rdisc,ψ. An essential step along the proof of the main global theorem of

the endoscopic classification of representations is showing that Rdisc,ψ does indeed compute

the trace of the representations in the packet Πψ, provided that ψ is square-integrable, i.e.

satisfies the two conditions of Remark 2.2.1.

Theorem 2.4.1 (From [35], (5.7.27), and [23], Theorem 5.0.5.). Let ψ be a global square-

integrable parameter with associated Arthur packet Πψ, and let f be a global test function.

Then

Rdisc,ψ(f) =
∑
π∈Πψ

m(π) trπ(f).

More is in fact true, although we won’t strictly make use of it: the multiplicity m(π) is

either 0 or 1, the latter occurring exactly when the global character 〈·, π〉 from (2.14) is equal

to the character εψ introduced in 2.2.9. Finally, note that Kaletha-Minguez-Shin-White’s

Theorem 5.0.5 of is one of the results that is stated, but not fully proved, in the case of

non-generic parameters, as mentioned in the introduction and in Remark 2.3.7.

The definition of Rdisc is more straightforward than that of Idisc as it only involves traces

on the group G. However, following a result of Bergeron-Clozel [6], the ψ-summands of both

distributions are in fact equal, provided that the infinitesimal character of ψ is regular.

Note that the parameters associated to our main objects of interest, namely cohomological

representations, have regular infinitesimal characters.

Theorem 2.4.2 (Theorem 6.2, [6]). Let ψ be a global Arthur parameter such that the in-

finitesimal character associated to ψ∞ is regular. Then the contributions of the Levi sub-

groups M 6= G to the distribution Idisc,ψ vanish. In particular for all f ∈ H(G) we have

Idisc,ψ(f) = Rdisc,ψ(f).
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2.4.2 Stabilization

We now consider the decomposition that will drive our theorems: the stabilization of the

distribution Idisc,ψ. This stabilization expresses Idisc,ψ(f) as a sum of stable traces of the

transfers fH for the endoscopic groups H ∈ E(G). We refer to Arthur for the statement of

the stabilization, but the versions for unitary groups are formally identical, see for example

(3.3.2) of Kaletha-Minguez-Shin-White [23] and (4.2.1) of Mok [35]. Recall that Ψ̃(N) is the

set of conjugate self-dual parameters, and Ψ(G, ξ) ⊂ Ψ̃(N).

Theorem 2.4.3 ([4], Corollary 3.3.2(b)). Suppose that ψ ∈ Ψ̃(N) and let f ∈ H(G).

Then for each endoscopic group H ∈ E(G) there is a constant ι(G,H) and stable distri-

butions SHdisc,ψ on H(H) such that

Idisc,ψ(f) =
∑

H∈E(G)

ι(G,H)SHdisc,ψ(fH). (2.16)

In the case of quasisplit groups, the stable distributions SHdisc,ψ are defined inductively.

Remark 2.4.4. For unitary groups, the global factor ι(G,H) appearing in the stabilization

of the trace formula is introduced in [35, §4.2] and [23, §3.1]. These factors are independent

of the inner form G. If G = U(N) and H = U(N1) × U(N2) is the group appearing in an

endoscopic datum for G, then following [35, 4.2] we have

ι(G,H) =


1 N1N2 = 0

1
2 N1, N2 6= 0, N1 6= N2

1
4 N1 = N2 6= 0.

(2.17)
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2.5 Notation Changes.

In the upcoming chapter we will move towards applications to multiplicity growth, but we

make a small stop to discuss notation. Having had to grapple with this herself, the author

aware that keeping track of it is one of the challenges of engaging with the material introduced

above. We take a few lines to highlight the notational choices that we have made which differ

from Kaletha-Minguez-Shin-White [23], of from Arthur [4] or Mok [35].

• Reductive groups: we have chosen to keep the long form ResEFGLN instead of the

shorter G(N) appearing in [23] and [35].

• Collections of Arthur parameters: recall that a parameter is elliptic if the quotient of

the centralizer Sψ by Z(G)ΓF is finite.

– For U(N) local, the symbol Ψ(U(N)) denotes collection of conjugacy classes of

parameters in Ψ(ResEFGLN ) which factor through the embedding ξκ : LU(N)→
LResEFGLN . The parameters in this set are self-dual but not necessarily elliptic.

This set is also denoted Ψ(U(N)) in the four-author paper [23, p. 61].

– For U(N) over a number field, the set Ψ(U(N), ηκ) is the set of equivalence

classes of self-dual, elliptic parameters of ResEFGLN that factor through the em-

bedding ηκ. This set is denoted Ψ2(UN), ηκ) on [23, p. 69].

– For (G, ξ) an inner twist of U(N), we denote the subset of Ψ(G∗, ηκ) consisting

of parameters that are G-relevant by Ψ(G, ξ). In [23, §1.3.7], it is denoted by

Ψ2(U(N), ηκ)(G,ξ)−rel.

• We denote the set of elliptic endoscopic data of G by E(G), dropping the “ell” subscript

used by Kaletha-Minguez-Shin-White in [23, §1.1.1]

• If Sψ is the centralizer of the image of ψ, we denote the component group π0(Sψ/Z(G)ΓF )

by Sψ as in [35, §2.2], rather than by S̄ψ as in [23, §1.3.4].
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CHAPTER 3

BOUNDS ON LIMIT MULTIPLICITY AND COHOMOLOGY

OF ARITHMETIC GROUPS

In this last chapter we produce bounds on limit multiplicity for certain classes of repre-

sentations. The results rely on the framework introduced in Chapter 2, specifically on the

local character identities and the stabilization of the stable trace formula. In 3.1 we obtain

upper bounds on the traces of certain classes of test functions on L2
disc(G(F )\G(AF )) using

the stable trace formula. In 3.2 we specialize the test functions and deduce results on limit

multiplicity for representations in certain Arthur packets. Finally in 3.3 we give applications

to cohomological representations.

3.1 Upper Bounds from the Stabilization

In this section, we examine in further detail the various summands of the stabilization of

the trace formula. We extract bounds on the trace of test functions from the character

identities involved. We remind the reader that throughout, we will be working with elliptic

parameters ψ whose stabilizer group Sψ is finite and whose infinitesimal character is regular.

3.1.1 The Stable Multiplicity Formula

Recall from (2.16) that the distribution Idisc,ψ(f) giving the trace of f on representations in

the Arthur packet Πψ decomposes as

Idisc,ψ(f) =
∑

H∈E(G)

ι(G,H)SHdisc,ψ(fH). (3.1)

A concrete expression for each SHdisc,ψ is given by the stable multiplicity formula. Since all

the endoscopic groups appearing in the stabilization of the trace formula are quasisplit, the
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relevant results are those of [35].

We introduce some notation. If fv is a local test function and ψv a local parameter,

the formula for fHv(ψv) was given in Section 2.3.5. If f =
∏
v fv and ψ are global, we

write fH(ψ) :=
∏
v f

Hv(ψv). Recall the group Sψ and the element sψ from 2.2.8, as well as

the character εψ from 2.2.9. The stable multiplicity formula is the following expression:

Theorem 3.1.1 ([35], 5.1.2). For ψ ∈ Ψ̃(N), there is a constant σ(S̄0
ψ) such that

SGdisc,ψ(f) = |Sψ|−1εGψ (sψ)σ(S̄0
ψ)fG(ψ).

The term σ(S̄0
ψ) is a special instance of a constant σ(S) defined by Arthur in [4, §4.1]

for any complex reductive group S. We will not define it beyond pointing out that the

centralizers Sψ of our square-integrable parameters ψ are always finite. In that case S̄0
ψ is

trivial and σ(S̄0
ψ) = 1, see [35, Remark 5.1.4].

The stable multiplicity formula is initially only stated for G a unitary group, but extends

to products H = U(N1)× U(N2) as discussed in [35, §5.6]. It then takes the form

SH
disc,ψH

(fH) =
∑

ψH∈Ψ(H,ψN )

1

|SψH |
εHψ (sHψ )σ(S̄0

ψH
)fH(ψH). (3.2)

Here Ψ(H,ψN ) is the set consisting parameters ψ of H such that ξH ◦ψ = ψN . We have

given an example at the end 2.2.10 of how this set can contain more than one element. We

combine equations (3.1) and (3.2) to get the expression

Idisc,ψ(f) =
∑

H∈E(G)

ι(G,H)
∑

ψH∈Ψ(H,ψN )

1

|SψH |
εHψ (sHψ )σ(S̄0

ψH
)fH(ψH).

This can in turn be written as a sum over pairs (H,ψH) where H stands in for the endoscopic
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datum (H, ξ, s) and ψH factors through ξ. We get

Idisc,ψ(f) =
∑

(H,ψH)

ι(G,H)
1

|SψH |
εHψ (sHψ )σ(S̄0

ψH
)fH(ψH). (3.3)

Lemma 3.1.2. Let ψ ∈ Ψ(G∗, ηκ) and let (H, ξ, s) ∈ E(G) be an endoscopic datum such

that ψ factors through ξ. Then there is a positive constant C(ψ,H) such that the contribution

of (H,ψH) to the sum (3.3) is equal to

C(ψ,H)εHψ (sHψ )fH(ψH).

Moreover, C(ψ,H) is bounded above and away from zero uniformly in H and ψ.

Proof. This is immediate from (3.3) and it suffices to show that the product

C(ψ,H) :=
ι(G,H)

|SψH |
σ(S̄0

ψH
)

is bounded. From above we have that σ(S̄0
ψ) = 1 since ψ is elliptic. Additionally, we have

uniform bounds on ι(G,H) in (2.17) and on |Sψ| in (2.10).

Recall from Lemma 2.2.3 that the indexing set of pairs (H,ψH) is in bijection with the

centralizer quotient Sψ. We can thus re-index the sum (3.3) and obtain the expression

Idisc,ψ(f) =
∑

sH∈Sψ

C(ψ, sH)εHψ (sHψ )fH(ψH). (3.4)

At this point, the invariants appearing in the stable trace formula depend on parameters

and representations of H. We would like to reformulate the entire expression in terms of

characters of representations of G and of elements of Sψ. The relevant result in the case of

the epsilon factors is reproduced below: Mok refers to it as the endoscopic sign lemma.
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Lemma 3.1.3 (Theorem 5.6.1, [35]). Let (H, ξ, sH) ∈ E(G) and ψ ∈ Ψ(G∗, ηκ) be such

that (H,ψH) corresponds to (ψ, sH). Let εG
∗

ψ and εHψ be the respective characters of ψ

and ψH . Let sHψ be the image of ψH(−I) in the quotient SHψ associated to H. Then we have

εHψ (sHψ ) = εG
∗
(sψsH).

We will now combine the results of this section together with the character identities of

Section 2.3.5 relating fH(ψH) to the traces of the representations in the packet Πψ. This

reformulation of the stabilization of the trace formula will be conducive to producing bounds

on limit multiplicity.

Proposition 3.1.4. Let ψ ∈ Ψ(G, ξ) be an Arthur parameter such that the representations

in the associated Arthur packet Πψ have regular infinitesimal character. Let f ∈ H(G) be a

factorizable test function. Then we have

Idisc,ψ(f) =
∑

sH∈Sψ

C(ψ, sH)εG
∗

ψ (sψsH)
∏
v

 ∑
πv∈Πψv

〈sψvsHv , πv〉 trπv(fv)

 (3.5)

=
∑

sH∈Sψ

C(ψ, sH)
∑
π∈Πψ

εG
∗

ψ (sψsH)〈sψsH , π〉 trπ(f). (3.6)

Proof. We start from the equality (3.4):

Idisc,ψ(f) =
∑

sH∈Sψ

C(ψ, sH)εHψ (sHψ )fH(ψH).

The distribution fH(ψH) was defined in the beginning of this section as fH(ψH) =
∏
v f

Hv
v (ψHv ).

Each local factor can be written in terms of the trace of representations in Πψv by the local

character identities of Theorems 2.3.5 and 2.3.6 if Gv is a unitary group, and of Theorem 2.3.9
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if Gv is a general linear group. In all cases, the identity is:

fHvv (ψHvv ) = e(Gv)
∑

πv∈Πψv

〈sψvsHv , πv〉 trπv(fv).

The local Kottwitz signs cancel out globally, and using the Endoscopic Sign Lemma 3.1.3,

we have rewritten the expression as

Idisc,ψ(f) =
∑

sH∈Sψ

C(ψ, sH)εG
∗

ψ (sψsH)
∏
v

 ∑
πv∈Πψv

〈sψvsHv , πv〉 trπv(fv)

 .

At all but finitely many places v, the function fv = 1Kv is the characteristic function

of a hyperspecial maximal compact subgroup. At these places, tr πv(fv) is only nonzero

on unramified representations πv which we remind the reader are associated to the trivial

character of Sψ. Unramified local packets contain exactly one unramified representation

following [23, Proposition 1.5.2 (5)] so we can interchange the sum and product to get

∏
v

 ∑
πv∈Πψv

〈sψvsHv , πv〉 trπv(fv)

 =
∑
π∈Πψ

(∏
v

〈sψvsHv , πv〉

)
trπ(f)

where π = ⊗vπv. The global characters were defined as 〈·, π〉 =
∏
v〈·, πv〉. This allows us to

rewrite

Idisc,ψ(f) =
∑

sH∈Sψ

C(ψ, sH)
∑
π∈Πψ

εG
∗

ψ (sψsH)〈sψsH , π〉 trπ(f).

We consider the product εG
∗

ψ (·)〈·, π〉 as a single character of Sψ depending on π. The

global statement of the endoscopic classification of representations is that π appears in the

discrete spectrum precisely when this character is trivial. For our purposes, we will fix an

element s ∈ Sψ and vary the characters coming from the representations π ∈ Πψ.
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3.1.2 Upper Bounds and the Dominant Group

We once again recall the bijection from 2.2.10

(H,ψH)↔ (ψ, sH)

between endoscopic groups and elements of Sψ associated to a parameter ψ. We now single

out one object on either side of this bijection, and show that its contribution to the distribu-

tion Idisc,ψ(f) is larger than the others, subject to conditions on the choice of the function f .

Recall that the element sψ ∈ Sψ was the image of the matrix −I ∈ SL2 under ψ.

Definition 3.1.5. Let (Hψ, ψ
Hψ) be the pair corresponding to the pair (ψ, sψ) containing

the distinguished element sψ under the bijection (H,ψH)↔ (ψ, sH).

Note that it is possible that Hψ = G, for example when the character ψ is bounded, i.e.

when ψ(SL2) is trivial.

We now introduce a new piece of notation for the contribution of a pair (H,ψH) to the

stabilization of the trace formula.

Definition 3.1.6. Let ψ ∈ Ψ(G∗, ηκ) and let (H, ξ, sH) be such that ψ factors through ξ.

Let f be a global test function. Then define

S(ψ, sH , f) = C(ψ, sH)
∑
π∈Πψ

εG
∗

ψ (sψsH)〈sψsH , π〉 trπ(f).

We have now collected all the information leading up to our main technical result.

Theorem 3.1.7. Let ψ ∈ Ψ(G∗, ηκ) have regular infinitesimal character, and let f ∈ H(G)

be a factorizable test function such that trπ(f) is nonnegative for all π ∈ Πψ. Then there

exist a constant C(ψ), which can be bounded above and below independently of ψ, such that

Idisc,ψ(f) ≤ C(ψ)S(ψ, sH , f).
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Proof. We will compare the various terms appearing in the decomposition (3.6):

Idisc,ψ(f) =
∑

sH∈Sψ

C(ψ, sH)
∑
π∈Πψ

εG
∗

ψ (sψsH)〈sψsH , π〉 trπ(f)

=
∑

sH∈Sψ

S(ψ, sH , f).

Ignoring for a moment the constants C(ψ, sH), the terms S(ψ, sH , f) only differ from one an-

other via the signs εG
∗

ψ (sψsH)〈sψsH , π〉 ∈ {±1} appearing as coefficients of the traces trπ(f).

Looking specifically at the term coming from sψ, we see that

εG
∗

ψ (s2
ψ)〈s2

ψ, π〉 = εG
∗

ψ (0)〈0, π〉 = 1

since the group Sψ is a product of copies of Z/2Z as seen in Section 2.2.8. Thus we have

S(ψ, sψ, f) = C(ψ, sψ)
∑
π∈Πψ

tr(π)(f).

For any other term indexed by sH ∈ Sψ, the coefficients εG
∗

ψ (sψsH)〈sψsH , π〉 have the

potential to be equal to −1. Thus if the trace of f is nonnegative on all representations in

the packet Πψ, we have

S(ψ, sH , f) = C(ψ, sH)
∑
π∈Πψ

εG
∗

ψ (sψsH)〈sψsH , π〉 trπ(f)

≤ C(ψ, sH)
∑
π∈Πψ

tr(π)(f)

=
C(ψ, sH)

C(ψ, sψ)
· S(ψ, sψ, f).
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Summing over the SH we get

Idisc,ψ(f) ≤

(∑
sH∈Sψ C(ψ, sH)

C(ψ, sψ)

)
S(ψ, sψ, f).

We of course let C(ψ) :=

∑
sH∈Sψ

C(ψ,sH)

C(ψ,sψ)
. We saw in Lemma 3.1.2 that the C(ψ, sH) are

bounded above and away from zero uniformly in ψ and H. The cardinality of Sψ is also

bounded between 1 and 2N as we saw in Section 2.2.8, which allows us to conclude.

In practice, the group Hψ is easily computed from ψ |SL2
.

Lemma 3.1.8. Let ψ = �i(µi�ν(mi)) be a global square-integrable Arthur parameter. Then

the group Hψ is

Hψ = U(N1)× U(N2)

where N1 =
∑
mi≡1mod 2mi and N2 = N −N1.

Proof. The element sψ ∈ GLN is defined as ψ(1,−I) there I is the identity matrix of SL2.

The image of −I under the m-dimensional representation of SL2 is −Im if m is even, and Im

if m is odd. Thus sψ = diag(−IN1
, IN2

), where N1 =
∑
mi≡1mod 2mi and N2 = N − N1,

with centralizer GLN1
×GLN2

.

Remark 3.1.9. The image ψ(SL2), and by extension the dominant endoscopic group Hψ,

are determined by any localization ψv(SL2). In Section 3.3, we will use this, together with the

well-understood (archimedean) parameters of cohomological representations, to give bounds

on growth of cohomology.

3.1.3 Towards Lower Bounds

The description of the stable terms of the trace formula in terms of representations of Sψ

points the way to an approach to produce lower bounds. Such a proof would rest on showing
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that asymptotically, the stable trace S(ψ, sψ, f) not only bounds Idisc,ψ(f) but that the two

are in fact proportional. The argument should boil down to showing that for groups sH 6= sψ,

the size in absolute value of the stable summand S(ψ, sH , f) is asymptotically negligible.

A possible path to proving such a statement would be to achieve control of the coeffi-

cients εψ(sψsH)〈sψsH , π〉 and to show that they are positive on average half the time. In

order for such a statement to hold for any sH in H, we would need to show that asymp-

totically, the characters εψ(sψsH)〈sψsH , π〉 are evenly distributed. Since the characters are

defined globally as a product, it would in fact suffice to show that at one finite place v, the

Arthur packet contains enough representations π for the assignment 〈π, ·〉 to surject onto Ŝψ.

In summary, this would require a more explicit understanding of the contents of local Arthur

packets, as well as of the definition of the pairing 〈π, ·〉. This type of explicit description is

given in Rogawski’s endoscopic classification of representations of U(2, 1) [38]. It is used by

Marshall in [30] to give sharp rates of growth for cohomological representations.

Showing that Idisc(f) is proportional to S(ψ, sH , f) is desirable beyond the goal of achiev-

ing lower bounds. Such asymptotics will also prove necessary to get general results on upper

bounds in the case where the step of passing to an endoscopic group requires to be iterated.

We will see in the following section that our current inability to iterate our induction restricts

the types of representations for which we can bound limit multiplicity.

3.2 Limit Multiplicity

Here we apply the results of the previous section to the limit multiplicity problem.

3.2.1 Level Structures

To formulate the question of limit multiplicity, we define level structures and tower of con-

gruence subgroups of our unitary groups. Let OE and OF be the rings of integers of the

global fields E and F . We introduce some collections of places of F :
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• Sf is a finite set of finite places of F , containing the places which ramify in E as well

as the places below those where the character χ− introduced in Section 2.1 is ramified.

• S∞ is the set of all infinite places of F .

• S0 ( S∞ is a nonempty subset of the infinite places.

• S = Sf ∪ S∞.

Note that implicit in the third requirement is the assumption that F 6= Q.

Let p be an ideal of F such that the associated place vp is not in the set S and such

that the residue characteristic of p is strictly greater than 9[F : Q] + 1. We define the

subgroups U(N, pn) ⊂ U(N,A
f
F ) to be

U(N, pn) := {g ∈ U(N, ÔF ) ⊂ GL(N, ÔE) | g ≡ IN (pnOE)}.

For any finite place v of F , let U(N, pn)v = U(N, pn)∩U(N)v. At the expense of possibly in-

cluding additional primes in the set S, note that for all v /∈ S∪{vp}, the subgroup U(N, pn)v

is a hyperspecial maximal compact subgroup of U(N)v. This gives level structures on the

quasisplit group U(N). If H = U(N1)×U(N2) is a product of quasisplit unitary groups, we

define level subgroups H(pn) = U(N1, p
n)× U(N2, p

n).

We now discuss level structures on inner forms of U(N). Let (G, ξ) be an inner form

of U(N,F ) defined with respect to a Hermitian inner product and with prescribed signa-

tures U(av, bv) at the archimedean places. We will require that Gv be compact at the

archimedean places contained in S0: this ensures that the group G is anisotropic. Following

the classification of global inner forms stated in Proposition 2.1.1, we have that if N is odd,

the group G can be chosen so that Gv is quasisplit at all finite places. If N is even, then G

is determined by choosing at most one place v ∈ Sf , up to again enlarging Sf . Once that

choice is made, the group G can be chosen to be quasisplit away from {v} ∪ S∞. In both

cases, this group G is realized as an inner form (G, ξ) as in Section 2.1.2.
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For each finite v /∈ Sf , there are isomorphisms ξv : Gv → U(N)v, induced by the

inner twist. For each natural number n, we fix a compact subgroup K(pn) =
∏
vKv(p

n)

of G(AF ) as follows: at all finite v /∈ S, we let Kv(p
n) = ξ−1

v (U(N, pn)v); at v ∈ Sf , the

subgroup Kv(p
n) is an arbitrary open compact subgroup fixed once and for all independently

of n; at the archimedean places we let Kv(p
n) ' Uav(R) × Ubv(R) be a maximal compact

subgroup. Note that once again at the finite places v /∈ Sf , the subgroup Kv(p
n) is a

hyperspecial maximal compact subgroup. Let Kf (pn) =
∏
v<∞Kv(p

n) and K∞(pn) =∏
v|∞Kv(p

n). For simplicity, we will sometimes use the notation Kv instead of Kv(p
n) for

v 6= vp. We extend these definitions to products of unitary groups.

We now define the (cocompact since G is anisotropic) lattices

Γ(pn) = G(F ) ∩Kf (pn).

Recall that G∞ =
∏
v|∞Gv and let XG = G∞/K∞ZG∞ . Assume that G∞ has at least one

noncompact factor. The diagonal embedding Γ(pn) ↪→
∏
v|∞Gv induces an action Γ(pn) y

XG, and we will consider the quotients X(pn) := Γ(pn)\XG. We start by relating these

quotients to their disconnected counterparts realized as adelic double quotients. Let

Y (pn) = G(F )\G(AF )/K(pn)ZG(AF ).

The quotient Y (pn) is a disjoint union of finitely many copies of X(pn).

Proposition 3.2.1. Let G be an inner form of U(N) and Y (pn) be defined as above. The

cardinality of the set of components π0(Y (pn)) is bounded independently of n.

Proof. We adapt an argument from [13, §2]. Considering G as a subgroup of GLN/E, let

det : G → U(1, E/F ) be the determinant map and let G1 = ker(det). This map induces a

fibering of Y (pn) over

U(1, F )\U(1,AF )/det(Z(AF )K(pn)).
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The fibers are adelic double quotients for the group G1, which is simply connected and has

at least one noncompact factor at infinity. So by [37, 7.12], the group G1 satisfies strong

approximation with respect to the set S∞ and G1(F ) is dense in G1(A
f
F ), making the fibers

connected. Thus we find that

π0(Y (pn)) ' U(1, F )\U(1,AF )/det(Z(AF )K(pn)) = E1\A1
E/det(Z(AF )K(pn)).

Now the image det(Z(AF )) is the subgroup (A1
E)N of A1

E . For each finite place w, the

factor corresponding to Ew in the quotient A1
E/(A

1
E)N is a finite set. It follows that by

increasing the level in powers of a single prime p, one can only produce a bounded number

of components.

We now fix a unitary irreducible admissible representation π∞ of G∞ with trivial central

character, and let m(π∞, pn) denote the multiplicity of π∞ in right-regular representation

of G∞ on the space L2(Γ(pn)\G∞). We will be interested in the asymptotics of the multi-

plicities m(π∞, pn) as n→∞.

Corollary 3.2.2. Let G, Γ(pn), and π∞ be as above. Then

m(π∞, pn) �
∑

π=π∞⊗πf
m(π) dimπ

Kf (pn)

f

where the sum is taken over automorphic representations π with the prescribed π∞, and m(π)

is the multiplicity of the representation π in L2
disc(G(F )\G(AF ), 1).

Proof. The Kf (pn)-fixed vectors of the representation π count precisely the occurrences of

the archimedean part π∞ in the quotient Y (pn). By the above, the number of components

of Y (pn) is bounded independently of n.
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3.2.2 Choice of Test Functions.

Here we define test functions whose traces will compute the multiplicity of archimedean rep-

resentations at level pn. At all non-archimedean places, they are the characteristic functions

of compact subgroups. Recall that µv denotes the Haar measure on Gv.

Definition 3.2.3. At each finite place v, let fv(p
n) be the scaled characteristic function

fv(p
n) =

1K(pn)v

µv(K(pn)v)
.

Of course this definition is only dependent on n for v = vp.

Definition 3.2.4. Let v ∈ S0 be (by definition of S0) an archimedean place such that the

group Gv is compact. Then define fv(p
n) to be the constant function

fv =
1

µv(Gv)
.

The traces of these test functions count the dimension of K(pn)-fixed vectors. At the

archimedean places v ∈ S0, they only detect the trivial representation and have vanishing

trace on all other representations of Gv. We want functions that play the same role at

the non-compact archimedean places: they should detect representations πv contained in a

specific subset Π0
ψv
⊂ Πψv and vanish at all other representations. The key is that we will

only be working with Arthur packets attached to parameters ψ having a specific ψv for v

archimedean. As such, the test function at an infinite place v only needs to isolate πv ∈ Π0
v

from the other finitely many representations in the same packet.

Lemma 3.2.5. Let ψv be a local Arthur parameter with associated Arthur packet Πψv . Fix
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a subset Π0
ψv
⊂ Πψv . Then there exists a function f0

v ∈ H(Gv) such that

trπv(f
0
v ) =


1 πv = Π0

ψv

0 otherwise,

πv ∈ Πv.

Proof. This follows directly from linear independence of characters for admissible represen-

tations. If v is archimedean this was proved by Harish-Chandra in [18].

Definition 3.2.6. Let v be a non-compact archimedean place, let ψv be an Arthur parameter

and fix a subset Π0
ψv
⊂ Πψv . Let fv(p

n) = fv(p
n,Π0

ψv
) be the function f0

v described above.

Definition 3.2.7. Let the function f(pn) be defined as f(pn) =
∏
v fv(p

n
v ). We will also

denote ff (pn) =
∏
v-∞ fv(p

n
v ).

Note that the function f(pn) satisfies the assumption of Theorem 3.1.7: it is a factorizable

test function whose traces on all representations contained in the packet Πψv are nonnegative.

Proposition 3.2.8. Let ψ ∈ Ψ(G∗, ηκ) be an Arthur parameter. For each v ∈ S∞ \ S0, fix

a subset Π0
ψv

and a corresponding function f(pn) = f(pn,Π0
ψv

). The we have

Rdisc,ψ(f(pn)) =
∑
π

m(π) dimπ
Kf (pn)

f

where the sum is taken over representations π ∈ Πψ of the form π = (⊗v|∞πv) ⊗ πf such

that for archimedean v, the representation πv is trivial if v ∈ S0 and πv ∈ Π0
v otherwise.

Proof. As stated in Theorem 2.4.1, the distribution Rdisc,ψ(f) computes the sum of tr π(f) =∏
v trπv(fv) over all representations in the packet Πψ. At the finite places, the trace of

convolution by the characteristic function of a compact open subgroup Kv is equal to the

product µv(Kv) · dimπKvv . In the case of the archimedean places v ∈ S0, the represen-

tations πv are finite-dimensional so the only representation with a Kv-fixed vector is the
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trivial representation. At v ∈ S∞ \ S0, the function fv(p
n) was chosen precisely to detect

the representations πv belonging to the subset Π0
ψv

.

The key input allowing us to compare multiplicity growth on G and on its endoscopic

group H is a version of the fundamental lemma for congruence subgroups, proved by Fer-

rari [14]. It states that provided that p is large enough, congruence subgroups of the same

level form a transfer pair.

Theorem 3.2.9 (Theorem 3.2.3, [14]). Let p be a prime of F with localization Fvp and

residue field kp. Let Nm(p) be the cardinality of kp and let p be its characteristic. Assume

that p > 9[F : Q] + 1. Let H be an endoscopic group of G. Let d(G,H) = dimG−dimH
2 .

Then the functions

f(pn)vp =
1Kvp(pn)

µvp(Kvp(p
n))

and

f(pn)Hvp = Nm(p)−n·d(G,H)
1Kvp(pn)H

µvp(Kvp(p
n))

form a transfer pair.

3.2.3 The Stable Term and Characters of Representations

Here we give assumptions under which the dominant stable term of Theorem 3.1.7 also

computes limit multiplicity on a locally symmetric space associated to Hψ. This will allow

us to compare multiplicity growth on different groups. We start by expanding the stable

distribution on H as an actual trace of representations of H for any endoscopic group H.

The results are stated in terms of arbitrary test functions with nonnegative trace, but will

be applied to f = f(pn) in the next section.

Lemma 3.2.10. Let ψ ∈ Ψ(G, ξ) be an Arthur parameter and let H ∈ E(G) be such

that (H,ψH) corresponds to (ψ, sH). Let f ∈ H(G) be a factorizable test function. As-

sume that the function fHv has nonnegative trace on all elements of the packet ΠψHv
for
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non-archimedean v, and that fHv (ψHv ) is positive for all archimedean v. Then we have the

inequality

S(ψ, sH , f) ≤ C(ψ, sH)
∏
v|∞

fHv (ψHv )
∏
v<∞

 ∑
πv∈ΠHψv

trπv(f
H
v )

 . (3.7)

Furthermore, equality holds H = Hψ.

Proof. This follows from the definition of S(ψ, sH , f) and the local character identities of

Section 2.3.5, applied this time to the group H instead of to G. From the proof of Proposi-

tion 3.1.4, we have

S(ψ, sH , f) = C(ψ, sH)εHψ (sHψ )fH(ψH).

We then factor fH(ψH) =
∏
v f

H
v (ψHv ). At the finite places we use the identities of Theo-

rems 2.3.6 and 2.3.9 to get

S(ψ, sH , f) = C(ψ, sH)εHψ (sHψ )
∏
v|∞

fHv (ψHv ) ·
∏
v<∞

 ∑
πv∈ΠHψv

〈sHψvs
H
H , πv〉 trπv(f

H
v )

 .

The element sHH is by definition the image in SψH of an element s of the centralizer of ψH ,

the defining property of s being that it is centralized by the whole group Ĥ. Thus sHH is the

image in SψH of a central element, and as such it is the trivial element of SψH . We can now

rewrite S(ψ, sH , f) as the expression

C(ψ, sH)εHψ (sHψ )
∏
v|∞

fHv (ψHv ) ·
∏
v<∞

∑
πv∈ΠHψv

〈sHψv , πv〉 tr πv(f
H
v ).

Since all the traces are nonnegative by assumption, the expression above only differs from

the right-hand side of (3.7) by the presence of possible −1’s coming from the characters

εHψ (sHψ ) and 〈sHψv , πv〉 and the inequality of (3.7) holds. Moreover, it is an equality precisely
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if εHψ (sHψ ) = 1 and 〈sHψv , πv〉 = 1 for all πv. This happens when the element sHψ is trivial in

the quotient Sψ, i.e. where H = Hψ, the centralizer of ψ(−I).

The right-hand side of Lemma 3.2.10 computes the sum of the traces of all the represen-

tations in the packet ΠψH , i.e. all possible products coming from all the local packets. Yet

the relevant representations for applications to multiplicity are the automorphic ones which

appear in L2
disc(H(F )\H(AF )) with nonzero multiplicity. However, if the parameter ψ is

the sum of two irreducible pieces, all products of local representations of H are automorphic.

Corollary 3.2.11. Under the assumptions of Lemma 3.2.10, if the parameter ψ = ψ1 � ψ2

has only two simple components and H = Hψ 6= G∗, then we have

S(ψ, sH , f) = C(ψ, sH)
∏
v∈S

fHv (ψHv )
∑
π∈ΠHψ

m(π)
∏
v

tr πv(f
H
v ).

Proof. If Hψ 6= G, which implies that H = U(N1)×U(N2) with ψi an irreducible parameter

of U(Ni), then the centralizer quotient SψH is the product SψH = SψH1 × SψH2 . From

the computations of centralizers in (2.10), this is the product of two copies of the trivial

group and characters εHψ and 〈·, π〉 have no choice but to be identically 1 for all π ∈ ΠψH .

The representations π ∈ Πψ which appear in the discrete spectrum are precisely the ones

satisfying εψH = 〈·, π〉 as characters of SψH , a condition which is here trivially satisfied.

So m(π) = 1 for all π and the formula is equivalent to that of Lemma 3.2.10.

Remark 3.2.12. We hope to prove an asymptotic analogue of Corollary 3.2.10 for more

general parameters. This would consist of a statement that the stable piece of the trace

formula computes the traces of automorphic representations as the level grows, as opposed

to the traces of all representations in ΠψH . This would require showing that in the limit,

all stable terms for H ′ 6= Hψ in the trace formula for Hψ are negligible. This could follow
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from the methods by which we hope to get lower bounds discussed in Section 3.1.3, namely

showing that there are enough representations to exhaust the characters of the group SψH .

3.2.4 Limit Multiplicity Results

We now show that if our parameter is a sum of two irreducible pieces, we can bound the limit

multiplicity of certain representations of G by the multiplicities of a corresponding set of rep-

resentations on one of its endoscopic groups H. Note that the fundamental lemma together

with Theorem 3.2.9 ensure that the non-archimedean contributions of the function f(pn)

satisfy the assumptions of Lemma 3.2.10.

Theorem 3.2.13. Let ψ ∈ Ψ(G, ξ) be a global parameter with prescribed localization ψ∞, and

such that ψ = ψ1 � ψ2 is a sum of two simple components. Assume that the infinitesimal

character of ψ∞ is regular. Let Π0
ψ∞
⊂ Πψ∞ be a fixed subset and let Π0

ψ be the subset

of Πψ consisting of representations such that π∞ ∈ Π0
ψ∞

. Then there exists a compact

open subgroup KHψ(pn) depending only on our choice of f(pn), and a positive constant C

depending only on ψ∞, Hψ, and K(pn) such that

∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f ≤ C · Nm(pn)d(G,Hψ)

∑
π∈Π

Hψ
ψ

m(π) dimπ
K
Hψ (pn)

f .

Moreover, at all places v /∈ S, the subgroup K
Hψ
v (pn) agrees with the one introduced at the

beginning of 3.2.1.

Proof. If ψ = ψ1⊕ψ2, then |Sψ| = 2 as stated in (2.10), so there are two possible endoscopic

groups for this parameter: G∗ and a group H = U(N1)×U(N2) with N1N2 > 0. If Hψ = G∗

then the result is trivial so assume that Hψ 6= G∗. Let f(pn) be the function introduced
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above section so that f∞(pn) detects the representations in the subset Π0
ψ∞

. Then we have

∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f = Rdisc,ψ(f(pn))

by Proposition 3.2.8. Then by Theorem 3.1.7, and using Theorem 2.4.2 and the assump-

tion that the infinitesimal character is regular to switch from Idisc,ψ to Rdisc,ψ, we get the

inequality ∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f ≤ C(ψ)S(ψ, sH , f).

The parameter ψ satisfies the assumption of Corollary 3.2.10 so we can, ignoring the con-

stant C(ψ) for a moment, rewrite the right-hand side as

S(ψ, sH , f) = fH∞(ψH∞)
∏
v∈Sf

fHv (ψv)
∏
v/∈S

∑
πv∈ΠHv

trπv(f
H
v ).

We will now relate the contribution of each place v in the product to a sum of traces of

representations on v.

At the infinite places, we have chosen f∞ = f∞(pn) so that fH∞(ψ∞) = k, where k =

|Π0
ψ∞
|. Up to a constant depending on ψ∞, a dependency which we allow in the theorem,

this is proportional to |ΠHψ∞ |.

We now consider the places v ∈ Sf . Recall that these are finite places at which the group

Gv is potentially ramified, so that the fundamental lemma does not apply. We need to show

(i) that fHv (ψv) is bounded above independently of ψv and (ii) that there is a compact open

subgroup KH
v ⊂ Hv such that if fHv (ψv) 6= 0 then

∑
π∈ΠHv

π
KH
v

v 6= 0. For (i), recall that

fHv (ψv) =
∑
πv∈Πψv

πKvv . The possible dimensions of Kv-fixed vectors in πv is bounded only

in terms of Kv (and in particular independently of πv) by Bernstein’s uniform admissibility

theorem, see [8]. Furthermore, Mœglin’s arguments in [34] can be adapted to show that there

is a uniform upper bounds on the size of packets Πv, proving (i). The result (ii) is more
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delicate, and is a consequence of Lemmas 5.2 and 5.4 of [31]. The combination of the two

statements (i) and (ii), together with another application of the arguments of (i), this time

to the packet ΠHψv
, imply that fHv (ψv) is a uniformly bounded multiple of

∑
π∈ΠHψv

πK
H
v .

Finally, at the places v /∈ S, the function fH is the characteristic function of Kv(p
n),

scaled by its volume, by the fundamental lemma 2.3.3 if v 6= vp and by the result of Fer-

rari [14] cited in Theorem 3.2.9 for v = vp. At vp we also pick up the factor of Nm(pn)d(G,Hψ).

Collecting these results and combining all the constants in the constant C (recall that

the C(ψ) we imported from Theorem 3.1.7 was bounded independently of ψ) we get that

S(ψ, sH , f) ≤ C · Nm(pn)d(G,H)

 ∑
π∞∈ΠHψ∞

1

 ∏
v<∞

 ∑
πv∈ΠHψv

π
KH
v

v

 .

Expanding the product, we get a sum over all possible representations in the packet ΠHψ ,

recalling that the fundamental lemma ensures that the representations which contribute are

unramified at all but finitely many places. But following our assumptions on ψ which leads

to |SHψ | = 1 as in Corollary 3.2.11, all representations in the packet ΠHψ are automorphic,

i.e. they satisfy m(π) = 1. This allows is to conclude.

We are now ready to give upper bounds for limit multiplicities of a representation πv of a

unitary group U(a, b). We first restrict the sets of parameters with which we work. We also

fix the choice κ = 1 of sign determining our embedding of L-group LG as in Section 2.1.3.

We now define some restricted subsets of parameters.

1. Let v be any place of F , and let ψv be a local parameter. Define Ψ(ψv) ⊂ Ψ(G) to be

the collection of parameters of G whose localization at v is ψv.

2. Let ψ∞ denote a choice of parameters at all places v | ∞. Define Ψ(ψ∞) ⊂ Ψ(G) to

be the collection of parameters of G whose localization at the infinite places is ψ∞.
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3. Let Ψ2(G) be the collection of parameters satisfying the additional condition that

ψ = ψ1 ⊕ ψ2 is a sum of two irreducible parameters.

4. Finally, let Ψ2(ψv) = Ψ(ψv) ∩Ψ2(G), and similarly for Ψ2(ψ∞).

While the notation Ψ2(G) seemed to us the most natural, it bears pointing out that there

can be a risk of confusing such a set with Ψ2(G), a notation which we have not been using,

but which denotes the set of square-integrable parameters in both [23] and [35].

We will work with Arthur parameters ψ with regular infinitesimal characters at infinity,

and such that

ψ |SL2(C)= ν(2k)⊕ ν(1)N−2k.

We now bound limit multiplicity of representations of G∞ appearing in certain packets Πψ∞

associated to these composite parameters.

Theorem 3.2.14. Let ψ∞ be an Arthur parameter with regular infinitesimal character at

all infinite places, and such that ψ∞ |SL2(C)= ν(2k)⊕ν(1)N−2k. Fix a subset Π0
ψ∞

in Πψ∞.

For each ψ ∈ Ψ2(ψ∞), let

Π0
ψ = {π = ⊗′vπv ∈ Πψ | π∞ ∈ Π0

ψ∞ .}

Then ∑
ψ∈Ψ2(ψ∞)

∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f � Nm(pn)N(N−2k). (3.8)

Proof. We first give bounds for each parameter ψ ∈ Ψ2(ψ∞). Note that following the

restrictions on the SL2 and on the number of summands, any such parameter ψ must satisfy

ψN = (ν(2k) � µ1) � (ν(1) � µN−2k),
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where µ1 is a Grossencharacter, and µN−2k is a cuspidal automorphic representation of

GLN−2k. From Section 2.2.8 we have that Sψ ' Z/2Z, and since ν(2k) is even-dimensional,

the image of −I ∈ SL2 under ψ is not central. It follows that sψ is the nontrivial element

of Z/2Z. Thus we have Hψ = UE/F (2k) × UE/F (N − 2k) independently of ψ. Following

Theorem 3.2.13, the contribution of ψ to (3.8) satisfies

∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f ≤ C · Nm(pn)d(G,H)

∑
π∈Π

Hψ
ψ

m(π) dimπ
K
Hψ (pn)

f .

Summing over ψ ∈ Ψ2(ψ∞), and recalling that the constants C are bounded independently

of ψ, we get

∑
ψ∈Ψ2(ψ∞)

∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f ≤ C · Nm(pn)d(G,H)

∑
ψ∈Ψ2(ψ∞)

∑
π∈Π

Hψ
ψ

m(π) dimπ
K
Hψ (pn)

f .

(3.9)

Our goal is now to understand the right-hand side of (3.9). We momentarily ignore the

scaling factor coming from transfer, and note that the rest is bounded by the sum where we

consider all parameters in Ψ(ψ∞), not only the ones in the subset Ψ2(ψ∞). In other words,

we have

∑
ψ∈Ψ2(ψ∞)

∑
π∈Π0(ψ)

m(π) dimπ
K(pn)
f ≤

∑
ψ∈Ψ(ψ∞)

∑
π∈Π

Hψ
ψ

m(π) dimπ
K
Hψ (pn)

f . (3.10)

To get a count on fixed vectors on the right-hand side of (3.10), we will consider more

carefully the representations π which contribute to the sum. Let N1 = 2k and N2 = N −2k.

The representations π appearing in the sum are of the form π = π1 ⊗ π2, with πi a rep-

resentation of U(Ni). Moreover, their central character is determined by Proposition 2.3.2

together with the central character of the representations of G corresponding to the param-
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eters ψ. Let χi be the central character of πi for i = 1, 2. Since the representations of G

were assumed to have trivial central character, we find that the product χ1χ2 is determined

by the characters χκ we used in our embeddings in 2.4, as well as by the parity of N −Ni.

Going back to the formula of Proposition 2.3.2 and remembering that N1 is even, we see

that

χ1χ2 = χN1
κ =


1 N even

χN1
− N odd,

where 1 denotes the trivial character. In either case, the product χ1χ2 is by assumption

unramified outside of the set Sf of finite places introduced in the beginning of this section.

The multiplicity of π is a product m(π) = m(π1)m(π2) with m(πi) the multiplicity of πi

in

L2
disc(U(Ni, F )\U(Ni,AF ), χi).

Since ψ1(SL2) = ν(N1) is maximally large, the representation π1 is a character and by

the computations of (2.10), the group Sψ1 is always trivial so that m(π1) = 1. Moreover,

the character π1 must be of the form θ ◦ det where θ is a Hecke character of U(1,AF ) =

(AE)Nm=1 which we now describe. The character θ∞ is determined by ψ∞ and as such

is known. The characters θf with fixed vectors of level K(pn) must have conductor divid-

ing apn, where the ideal a is determined by the level subgroup at the ramified places v ∈ Sf .

In particular, the ideal a can be fixed once and for all independently of n. The number

of characters with these ramification restrictions is asymptotically proportional to Nm(pn).

Finally we note that the central character of π1 must be equal to θ ◦ χn where χn denotes

the nth power map on (AE)Nm=1.

We now count the dimension of fixed vectors coming from the parameter ψ2 mapping

into LU(N2). This parameter ψ2 is bounded by assumption. Mok shows that this implies

that the local constituents of π2 ∈ Πψ2 are tempered [35, Thm. 2.5.1(b)], which implies by

results of Wallach [49] that they occur in the cuspidal part of the discrete spectrum. We now
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fix the character θ giving rise to π1. This determines, among other things, a central character

χ1 and a central character χ2 = χN1
κ χ−1

1 for U(N2). As it is the case for χ1, the archimedean

part of χ2 is fixed and determined by ψ∞. Let K2(pn) = U(N2,AF ) ∩KHψ(pn). We now

want to count, for each π∞ ∈ Πψ2,∞ the quantity

m(π∞, pn, χ2) :=
∑

ψ2∈Ψ(ψ2,∞)

∑
π=π∞×πf
ω(π)=χ2

m(π) dimπ
K2(pn)
f

≤ dim Hom(π∞, L2
cusp (Y ∗2 (pn), χ2)) ,

where Y ∗2 (pn) = U(N2, F )\U(N2,AF )/K2,f (pn) and the inequality in the second line holds

for n large enough, depending on χ2. We explain this inequality: the space Y ∗2 (pn) carries a

commuting action of the groups G∞ and K̄2(pn) := K2(1)/K2(pn), the latter acting by deck

transformations. This induces a representation of G∞×K̄2(pn) on L2
cusp(Y

∗
2 (pn)), where the

representation of latter group is isomorphic to the induction of the trivial representation.

We then abuse notation and denote χ2 |K2(1) by χ2 again. This character is trivial on

K2,f (pn) for n large enough. In that case we define the space L2
cusp (Y2(pn), χ2) to be the

χ2-eigenspace for the center of K̄2(pn).

As in the Lemma 3.2.1, the space Y2(pn) is a finite disjoint union of copies of the locally

symmetric space X2(pn) defined with respect to the same level for SU(N2). The represen-

tation π∞ restricts to a finite sum of representations of SU(N2, F∞), which we will call ρ∞.

By the result of Savin [40], for each of these components, the multiplicity m(ρ∞, pn) grows

at most like the volume of X2(pn), and proportionally to the volume of X2(pn) if ρ∞ is

discrete series. Summing over all components, whose number is bounded independently of n

by Proposition 3.2.1, we find that the multiplicity m(π∞, pn) grows at most like the volume

of Y2(pn), i.e. the index [K2(pn) : K2(1)]. In order to restrict ourselves to central character

χ2, we will think of this index as the dimension of the regular representation of K̄2(pn) on
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C[K̄2(pn)]. The character χ2 of ZK̄2(pn) appears inside C[K̄2(pn)] with multiplicity

[K̄2(pn) : ZK̄2(pn)] =
[K2(pn) : K2(1)]

[ZK2(pn) : ZK2(1)]
∼ Nm(pn)N2−1.

We then take the sum over characters χ1. The product χ1χ2 is unramified at p, so in order

for π1 to have K(pn)-fixed vectors, the character θ must have conductor dividing pn. The

number of such characters grows asymptotically like Nm(pn), giving us a growth for fixed

vectors of at most Nm(pn)N
2
2 . Thus we have

∑
ψ∈Ψ2(ψ∞)

∑
π∈Π0

ψ

m(π) dimπ
K(pn)
f � Nm(pn)N

2
2+d(G,H).

Finally, we compute d(G,H) = 2Nk−4k2 and recall that N2
2 = (N−2k)2 = N2−4Nk+4k2

which gives us the desired bounds.

A note on the proof: the quantitative results we import from Savin’s work [40] are upper

bounds in general but exact asymptotics if the representations of U(N − 2k) are discrete

series. In the following section where we consider specifically cohomological representations,

one can combine the recipe for the embeddings of L-groups in (2.4) and the construction

of cohomological parameters 3.3.3 to see that the representations of U(N − 2k) are indeed

discrete series.

3.3 Applications to Growth of Cohomology.

We now give an application of the results of Section 3.2 to growth of cohomology of arithmetic

groups in congruence towers. We start with a discussion of cohomological representations

and their Arthur parameters. The description of these representations is longer than strictly

necessary for the proof of the final theorem, but we hope it can serve as an entry point for

a reader interested in computing cohomological representations of unitary groups.
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3.3.1 Cohomological Representations

The cohomology of lattices Γ in Lie groups is computed from the multiplicity of automorphic

representations via Matsushima’s formula, which we now state.

Theorem 3.3.1 (Matsushima’s formula, [32]). Let G be a connected semisimple Lie group

with maximal compact subgroup K and Lie algebra g. Let Γ ⊂ G be a cocompact lattice

with associated compact locally symmetric space XΓ. Denote the multiplicity of a unitary

representation π of G in the right-regular representation L2(Γ\G) by m(π,Γ). Then the

dimension of the ith cohomology of XΓ is:

dim(Hi(XΓ,C)) =
∑
π

m(π,Γ) dim(Hi(g, K; π)).

The Hi(g, K; π) which appear above are the so-called (g, K) cohomology groups of

the representation π. We say that an irreducible representation π of G is cohomological

if H∗(g, K; π) 6= 0. Cohomological representations of all semisimple Lie groups have been

classified by Vogan and Zuckerman.

Theorem 3.3.2 ([46]). Let G be a semisimple Lie group with complexified Lie algebra g. Let

K a maximal compact subgroup of G and let g = k⊕ p be the corresponding Cartan decom-

position. There are finitely many cohomological representations π of G, and an irreducible

representation π satisfies Hi(g, K; π) 6= 0 if and only if the following two conditions hold:

(i) π has the same infinitesimal character as the trivial representation of G;

(ii) HomK(π,∧ip) 6= 0,

where the action of K on ∧ip is induced by the adjoint representation.

Vogan and Zuckerman parameterize cohomological representations in terms of so-called

θ-stable parabolic subalgebras q of g. Their initial results apply only to semisimple groups: it
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is extended to groups U(a, b) in [45] and condition (ii) above implies that the central character

of the cohomological representation must be trivial. We now describe the parametrization

of cohomological representations of unitary groups as concretely as possible. Aside from

the initial results of [46], the rest of this subsection is based on computations which can be

found in Chapter 5 of Bergeron-Clozel’s book [5]. In short, cohomological representations

of U(a, b) are parametrized by refinements of partitions of N which are compatible with the

signature (a, b).

Cohomological Representations and Bipartitions

Let t be the Lie algebra of a compact torus of G contained in K. A θ-stable parabolic

subalgebra of g is a subalgebra q = l ⊕ u determined by an element α ∈ it in the following

manner:

(i) l is the zero eigenspace of the adjoint action of α on g;

(ii) u is the sum of the positive eigenspaces of this same action.

To each θ-stable parabolic subalgebra q, Vogan and Zuckerman attach a representation Aq,

and show that this construction yields all cohomological representations up to isomorphism.

We now specialize their results to g, the Lie algebra of a unitary group G = U(a, b) with a+

b = N . (For this section only, we return to the more classical notation in which a unitary

group over R is identified by its signature.) We embed K∞ = U(a)×U(b) block-diagonally

and take the Cartan subalgebra t ⊂ k to be diagonal. This t is the Lie algebra of a compact

torus T and the element α ∈ it giving rise to Aq is then of the form

α = diag(H1, ..., Ha, H
′
1, ..., H

′
b)

where the coordinates are real numbers, the first a entries belong to the Lie algebra of U(a)

and rest to that of U(b). Up to the action of the Weyl group of K∞, we can assume that α
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is such that Hi ≥ Hi+1 and similarly for H ′i. Then the Lie algebra q is determined by the

relative sizes of the Hi and the H ′i. More specifically, we have:

Proposition 3.3.3 ([6], Section 5). Let α be as above and q = l⊕u be the associated θ-stable

subalgebra. Let Z = {z1 > ... > zr} be the set of distinct values taken on by the Hi and H ′i

and let

ai = #{Hj = zi}, bi = #{H ′j = zi}.

Then l is the Lie algebra of the Levi subgroup

L =
∏
zi∈Z

U(ai, bi)

defined over R, and q is determined completely by the ordered tuple

B = ((a1, b1), ..., (ar, br))

of pairs of nonnegative integers such that
∑r
i=1 ai = a and

∑r
i=1 bi = b.

We will call these tuples B of pairs bipartitions of (a, b) and will denote the associated

Levi subgroup LB .

Remark 3.3.4. The bipartitions of (a, b) almost parametrize the cohomological representa-

tion of U(a, b), but there is redundancy. Specifically, two bipartitionsB andB′ give rise to the

same representations if B′ has adjacent pairs of the form (a1, 0), (a2, 0) (resp. (0, b1)(0, b2))

which are collapsed into (a1+a2, 0) (resp. (0, b1+b2)) in B. For example, the two bipartitions

B = ((1, 2)(1, 0)(2, 0)), and B′ = ((1, 2)(3, 0))

give rise to the same cohomological representation of U(4, 2). These pairs where either a or b

is zero correspond to compact factors in the Levi LB . Thus bipartitions of (a, b) parameterize
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representation with cohomology up to collapsing the compact factors. We will soon see that

this redundancy dictates the possible Arthur packets to which a representation belongs.

Keeping the above redundancy in mind, we will denote the cohomological representation

associated to the partition B by πB .

3.3.2 Computation of Cohomology

The dimensions of cohomology of a representation can be computed from the bipartition B.

We start with the result giving the dimensions of cohomology for a general group.

Proposition 3.3.5 ([46], Proposition 3.2). Let the Lie algebra q = l⊕ u be as above and let

g = k⊕ p be the Cartan decomposition of g. Let R = dim u ∩ p. Then

Hi(g, K,Aq) ' Homl∩k(∧i−Rp,C).

In particular, the smallest nonvanishing degree of cohomology of Aq is R, for which we

now give an explicit recipe in terms of the bipartition B, still following [5]. The summand p

of the Lie algebra decomposes as

p = (l ∩ p)⊕ (u ∩ p)⊕ (u− ∩ p),

where u− is the negative eigenspace for the element α and dim(u ∩ p) = dim(u− ∩ p) since

they are exchanged by the involution θ. Thus if q corresponds to the bipartition

B = ((a1, b1), ..., (ar, br))

and l is the Lie algebra of L = U(a1, b1)× ...× U(ar, br), we have

R =
dim(p)− dim(p ∩ l)

2
= ab−

r∑
i=1

aibi.
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In particular, if aibi = 0 for all pairs, i.e. if L is compact, then the discrete series represen-

tation Aq only has cohomology in the middle degree ab.

Remark 3.3.6. In fact, we can say more. The locally symmetric spaces associated to unitary

groups are complex varieties and Bergeron-Clozel [5] give a recipe not only for the degree

of cohomology but also for the Hodge bidegrees to which a representation contributes. Let

p = p+ ⊕ p− be the decomposition p into a holomorphic and antihomolorphic part. Then

R = R+ +R− with

R+ = dim u ∩ p+ =
∑
i<j

aibj , R− = dim u ∩ p− =
∑
i>j

aibj ,

and the contribution of Aq that appears in lowest degree is to HR+,R− . Note that the degrees

of cohomologyof Aq depend on the unordered bipartition, but that the Hodge bidegrees are

determined by the ordering.

3.3.3 Arthur Parameters of Cohomological Representations

We turn our attention to the parameters ψ whose Arthur packets at the archimedean places

contain cohomological representations. These will be obtained via a choice of embedding of L-

groups from parameters associated to the trivial representation of Levi subgroups of G. We

will also give a description of the packets associated to these parameters. Their construction

was given by Adams-Johnson, in [1] in conversation with work of Arthur [3], and in a language

that predates the current formulation of the endoscopic classification of representations. Re-

cently, Arancibia-Moeglin-Renard [2] have shown that Adams-Johnson’s construction yields

the same packets as the endoscopic classification by Mok [35] and Kaletha-Minguez-Shin-

White [23].

To begin, note that there is a natural way to associate to an (ordered) bipartition B
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of (a, b) an (ordered) partition PB of N , namely by letting

PB = (N1, ..., Nr), Ni = ai + bi.

Let L be the Levi subgroup associated to the bipartitionB of (a, b). Then L̂ '
∏
iGL(Ni,C),

is determined by the partition PB , together with an embedding L̂ ↪→ Ĝ. The description of

LL, i.e. of the Galois action on L̂, is given in 2.1.3.

Cohomological Arthur parameters are realized as the composition of parameters asso-

ciated to the trivial representation of L with embeddings LL ↪→ LG. To promote the

embedding of dual groups to an L-homomorphism ξ
L̂,Ĝ

, it suffices to give the image of WR

inside of LG. We give Arthur’s construction from Section 5 of [3]. Let T be the compact

maximal torus with Lie algebra t and let

ψ
L̂,Ĝ

: WR → LG

be the map sending WC into T̂ so that for any λ∨ ∈ X∗(T ), we have

λ∨(ψ
L̂,Ĝ

(z)) = z〈ρQ,λ
∨〉z̄−〈ρQ,λ

∨〉

where ρQ = ρ
Ĝ
− ρ

L̂
. Let the element (1o σ) map to nQo σ, where for any group G, nG is

an element in the derived group of Ĝ such that ad nG interchanges the positive and negative

roots of (Ĝ, T̂ ), and with nQ = n−1
L nG. Putting this together and denoting the embedding

of L̂ into Ĝ by ι, define

ξ
L̂,Ĝ

(g, w) = ι(g)ψ
L̂,Ĝ

(w).

Now let ψ
0,L̂

: SL2(C) ×WR → LL be the Arthur parameter of the packet containing

the trivial representation of L. It is trivial on WR and sends SL2 to the principal SL2 of L̂.
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Then the Arthur parameter of G corresponding to the Levi subgroup L̂ is the composition

ψ
L̂

:= ξ
L̂,Ĝ
◦ ψ

0,L̂
: SL2 ×WR → LG.

Example 3.3.7. We now work out a few examples in the case of G = U(2, 2) to fix ideas.

For additional examples, Bergeron-Clozel’s concrete computations of the parameters ϕψ

for G = U(2, 1) can be found in [5, §4.6].

The description of the L-group of U(2, 2) is the specialization to N = 4 and F = R of

the definitions of Section 2.1.3. We have

LU(2, 2) = GL4(C) oWR,

where WR acts through its Z/2Z quotient. The nontrivial element σ acts by

σ(g) = Φ−1
4 ḡ−tΦ4, Φ4 =



1

−1

1

−1


.

Each Levi subgroup is associated to an ordered partition. In the case where P = (4), the

associated Levi is L = G = U(2, 2), the embedding of L-groups is the identity and we

have ψ
Ĝ

= ψ
0,Ĝ

.

If P = (3, 1), then L̂ = GL3 ×GL1 is embedded block-diagonally in Ĝ and we compute

ψ
L̂,Ĝ

(z o 1) =



(z
z̄

)1
2 (z

z̄

)1
2 (z

z̄

)1
2 (z

z̄

)−3
2


, nQ =



1

1

1

−1


.
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From this we obtain the embedding ξ
L̂,Ĝ

as described above, and in turn get ψ
L̂

= ξ
L̂,Ĝ
◦ψ

0,L̂
.

The restriction to WC of the corresponding Langlands parameter ϕψ
L̂

is

ϕψ
L̂

(z o 1) =



z
3
2 z̄

1
2

z
1
2 z̄
−1
2

z
−1
2 z̄
−3
2

z
−3
2 z̄

3
2


.

Lastly we look at the partition (1, 1, 1, 1). In this case we have L = T and the embedding

of L-groups is determined by

ψ
L̂,Ĝ

(z o 1) =



(z
z̄

)3
2 (z

z̄

)1
2 (z

z̄

)−1
2 (z

z̄

)−3
2


, nQ = Φ4.

Since in this case ψ
0,T̂

is the trivial L-morphism, we conclude that ϕψT (zo1) = ψ
L̂,Ĝ

(zo1).

This parameter is bounded: it corresponds to a packet of discrete series representations.

3.3.4 Structure of Cohomological Arthur Packets

Having now given the construction of cohomological Arthur parameters, we described the

packets of representations to which they are attached.

Proposition 3.3.8 ([1], §3.3). Let L̂ be the Levi subgroup of Ĝ determined by a partition P .

The parameter ψ
L̂

= ξ
Ĝ,L̂
◦ ψ

0,L̂
is associated to a packet Πψ of representations of G such

that Πψ only contains cohomological representations.

We describe the specific representations contained in the packet Πψ
L̂

. Unsurprisingly,

they correspond precisely to Levi subgroups L of G whose dual is L̂. This is explained in
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both [1] and [3], but we spell out the consequences for our parametrizations of cohomological

representations and Levi subgroups in terms of ordered (bi)-partitions.

Proposition 3.3.9. Let P = (N1, ..., Nr) be an ordered partition of N and ψP := ψ
L̂P

be the

corresponding parameter. Then the packet ΠP := ΠψP consists precisely of the cohomological

representations πB corresponding to bipartitions B = ((a1, b1), ..., (ar, br)) such that PB = P .

We will call such bipartitions B refinements of P .

Proof. We have explained above how a Levi subgroup LB gives rise to a morphism ψ
L̂B

. The

parameters attached to B and B′ will be equivalent if they are conjugate by an element of Ĝ.

The isomorphism classes of representations πB correspond to Levi subgroups LB containing

the fixed torus T , so we need only consider conjugation by N
Ĝ

(T̂ ). This action induces an

action of the Weyl group W (T̂ , Ĝ) on T̂ and on the root datum (X∗(T ),∆(T ), X∗(T̂ ),∆(T̂ )).

Note that the action of conjugation by T̂ on cohomological Arthur parameters will only

modify ψ
L̂

by scaling the entries of nQ. This has no impact on the parameter since nQ was

only specified up to scalars in the construction of ψ
L̂

.

Thus to determine which Levi subgroups L (i.e. bipartitions) give rise to the conjugacy

class of L̂, we consider the action of W (Ĝ, T̂ ) (denoted W (g, t) in [1] since it is the Weyl

group of the complexified Lie algebra of G) on the bipartitions. Recall that bipartitions are

determined ultimately by an element α ∈ t. The entries of conjugate elements w · α will

have the same values, but these values will be distributed differently among the two pieces

of t belonging to U(a) and U(b). Recall from Proposition 3.3.3 that we denote the values

appearing in the entries of α by zi. The data being preserved by conjugation is the number

of entries ai + bi which are associated to the same value zi, as well as the ordering of the zi.

Transitivity of the Weyl group action then ensures that all the possible bipartitions obtained

as a refinement of P give rise to the parameter ψP .

The next natural question is to get a description of the elements in the packet. Denote
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by W (G, T ) the Weyl group of the maximal compact subgroup of G. As was alluded to when

we introduced the parametrization by bipartitions, we can act on the element α by W (G, T )

until α is in the form

α = diag(H1, ..., Ha, H
′
1, ..., H

′
b)

where Hi ≥ Hi+1 and similarly for H ′i. This action will preserve the Levi subgroup L since

this Levi is determined by which values zi appear in the first a entries. Thus once we have

fixed α, the action of W (Ĝ, T̂ ) on the conjugate Levis by permuting coordinates amounts

to the left-action on W (Ĝ, T̂ )/W (G, T ). For this action, the stabilizer of an element g · α

is the subgroup permuting all the entries with identical values. The multiplicities of these

values are precisely encoded in the partition P , i.e. on the Levi L̂P . Thus hg · α = g · α

exactly when h ∈ W (L̂, T̂ ). This discussion recovers Adams-Johnson’s parametrization of

representations inside of a packet.

Lemma 3.3.10 ([1], Section 2.). Representations in the packet Πψ
L̂

are in bijection with

W (L̂, T̂ )\W (Ĝ, T̂ )/W (G, T ).

A particular case will be of interest to us: If the group G is compact, we have W (G, T ) =

W (Ĝ, T̂ ) and each of the cohomological Arthur packets contains a unique representation. In

each of the packets, this representation is the only finite-dimensional cohomological repre-

sentation, namely the trivial one.

Example 3.3.11. As we alluded to, the overlap between cohomological Arthur packets can

be understood via the redundancy in the parametrization of representations. For example

if G = U(3, 1), we can consider P = (3, 1) with refinements B1 = ((3, 0), (0, 1)) and B2 =

((2, 1)(1, 0)). The associated packet has two elements: πB2
is non-tempered but πB1

is a

discrete series also associated to the bipartitions ((2, 0), (1, 0), (0, 1)), ((1, 0), (2, 0), (0, 1)),

and ((1, 0), (1, 0), (1, 0), (0, 1)) and as such appears in three other packets.
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3.3.5 A Recipe for the Dimensions of Cohomology Inside a Packet.

Here we give a method to easily compute the exact dimensions of cohomology coming from

the representations inside a packet Πψ. This follows Section 9 of [3], and was first explained

to the author by Simon Marshall. It does not strictly have a bearing on the proof of the

main theorem of this section, but as far as we can tell this recipe is not explicitly written

down anywhere, so we record it here.

In theorem 9.1 of [3], Arthur proves the existence of an isomorphism between two repre-

sentations ρψ and σψ of WC × SL2(C)× Sψ on the space

Vψ = ⊕π∈ΠψH
∗(g, K; π).

The representation ρψ is realized by constructing a representation of each of the three groups

in the product and showing they commute. The representation of Sψ on each cohomology

group Hi(g, K; π) is a character with values in {±1} coming from the pairing between Πψ

and the quotient Sψ. The representation of WC was initially defined by Langlands and is a

sum of characters determined by the Hodge bidegree. Finally, the representation of SL2(C)

is the traditional “Lefschetz SL2” acting on the cohomology of complex varieties: at the

level of the Lie algebra, the degree-raising operator X is given by the wedge product with

a certain element of HomK(p+ × p−,C). There is a corresponding lowering operator Y ,

and H = XY − Y X has eigenvalue k − ab on Hk(g, K, π).

The second representation σψ is obtained from a combination of the parameter ψ and

the Shimura X datum associated to G′ = ResFQG. First, fix a basepoint x of X associated

to the choice of maximal compact subgroup K. This amounts to the choice of a mapping h :

S → G′(R) where S = ResCRGm is the Deligne torus. The image of this mapping should

be contained in the diagonal torus T . We have S(C) = C× × C× and the restriction

of h to the first factor gives an element of X∗(T ), the cocharacter group of T , and by
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duality a character µ ∈ X∗(T̂ ). This character is the highest weight of a finite-dimensional

representation (ρµ, Vµ) of Ĝ. The map

ψ : SL2 ×WR → Ĝ′,

whose image commutes with Sψ by construction, makes Vµ into a SL2(C) × WC × Sψ-

representation denoted σψ. The content of [3, Theorem 9.1] is that the two representa-

tions (σψ, Vµ) and (ρψ, Vψ) are isomorphic. We now compute ρµ for certain unitary groups.

Lemma 3.3.12. If G′(R) = U(a, b) × UN (R)[F :Q]−1, then the representation (ρµ, Vµ) de-

scribed above is the representation ∧aW ⊕1[F :Q]−1, where W is the standard N-dimensional

representation of GLN (C).

Proof. Following the axioms for a Shimura variety [12] we find that in the case of U(a, b) a

choice of h corresponding to K is given by

h(z) =

 (z
z̄

)
Ia

Ib


where In is the n× n identity matrix. For the compact factors h can be taken to be trivial.

Then the weight µ is (1, ..., 1, 0, ..., 0) with a entries labeled 1 for U(a, b), and trivial on the

other factors. This first weight is the highest weight of ∧aW , see for example [15, §15].

In the examples below we will restrict our attention to the factor U(a, b) for which the

representations are not trivial.

Example 3.3.13. The above theorem tells us that we can compute the degrees of cohomol-

ogy inside the Arthur packet ΠψP associated to a partition P by computing the weights in

the representation σψP | SL2(C). We work with G = U(2, 2) and compute the degrees of

cohomology associated to the parameters from Example 3.3.7.
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In the case of L̂ = Ĝ, i.e. of P = (4), the representation ψ |SL2(C) is ν(4). The restriction

of σψ to SL2 is

∧2ν(4) = ν(5)⊕ ν(1)

and the nonvanishing dimensions of cohomology in the packet are

h0 = h2 = h6 = h8 = 1, h4 = 2.

Note that all the cohomology in this case comes from the unique representation contained

in Πψ, namely the trivial representation.

In the case of the parameter corresponding to P = (3, 1), we compute

∧2(ν(3)⊕ ν(1)) = ν(3)⊕ ν(3)

and find that the nonvanishing dimensions in the packet are

h2 = h4 = h6 = 2.

In this case, there are two representations in the packet, corresponding to the Levi subgroups

U(2, 1)× U(0, 1) and U(1, 2)× U(1, 0) and they each contribute in all three degrees, but in

different Hodge bidegrees. For example, we can see from Remark 3.3.6 that the representation

π((2,1),(0,1)) has cohomology in H2,0 and that π((1,2)(1,0)) contributes to H0,2.

Finally we consider the partition P = (1, 1, 1, 1). In this case the restriction of σψ to SL2

is the sum of six copies of the trivial representation ν(0). As such, each of the six discrete

series in Πψ contribute one dimension to the middle degree h4.

The combinatorics giving the weights of tensor powers of representations of SL2 rapidly

get out of hand, rendering difficult the task of giving a general recipe for degrees of coho-

mology in terms of a partition. Yet any specific example is readily computed, and it is also
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straightforward to obtain results in specific families.

Example 3.3.14. Let G = U(a, b) and let PN = (2, 1, ..., 1) be a partition of N where 1

appears with multiplicity N − 2. Then one can check that the representation σψP of SL2

acting on the cohomology groups ⊕π∈ΠψPN
H∗(g, K; π). decomposes into

σψPN
= ν(2)(

N−2
a−1 ) ⊕ ν(1)(

N−2
a−2 )+(N−2a )

as soon as N is large enough relative to a for the binomial coefficients to be defined. Thus

the nonzero degrees of cohomology are hab and hab±1, with multiplicities prescribed from

the dimensions above.

3.3.6 Limit Multiplicity for Packets of Cohomological Representations

We now give results on growth of cohomology. Note that we return to the notation of most of

this document, in which F is global and for which the subscript “∞” denotes the collection

of all the archimedean places. Fix the set S0 so that it contains all but one archimedean

place v0. Let G be the inner form of UE/F (N) such that Gv0 ' U(a, b) and all the other

factors at infinity are compact. Define the group K(pn) and the cocompact lattices as in

Section 3.2.1. By Matsushima’s formula and Lemma 3.2.2, we have

hi(pn) := dim(Hi(Γ(pn),C) �
∑
π∈Πψ

m(π)hi(gv0 , Kv0 ; πv0) dimπ
Kf (pn)

f

where the sum is taken over representations π such that πv is trivial (the only cohomological

representation of a compact Lie group) at all places v ∈ S0. We can now give our theorem

for growth of cohomology. We compute the contribution of parameters ψ∞ associated to a

certain partition, and will discuss below why these parameters are of a particular interest.

Additionally our current results on growth constrain us to counting only the contribution of
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global parameters of the form ψ = ψ1 �ψ2. We explained in Remark 3.2.12 how we hope to

lift this restriction.

Theorem 3.3.15. Let ψ∞ be the cohomological parameter of G∞ associated to an ordered

partition with one entry equal to 2k and all the other N − 2k entries equal to 1. Let

h
i,2
ψ∞

(pn) =
∑

ψ∈Ψ2(ψ∞)

∑
π∈Πψ

m(π)hi(gv0 , Kv0 ; πv0) dimπ
Kf (pn)

f .

Then

h
i,2
ψ∞

(pn)� Nm(pn)N(N−2k).

Proof. Since the possible contribution to cohomology of a given representation πv0 is bounded,

the expression h
i,2
ψ∞

(pn) grows like the contribution of parameters ψ = ψ1 � ψ2 to the mul-

tiplicity growth of representations π∞ ' πv0 ⊗ 1[F :Q]−1 of G∞. Thus the result is a direct

consequence of Theorem 3.2.13, provided that cohomological parameters satisfy its assump-

tions. From Theorem 3.3.2, cohomological representations have the same infinitesimal char-

acter as the trivial representations. In particular, it is regular. Following the discussion

in Section 3.3.3, partitions obtained as reorderings of (2k, 1, ..., 1) correspond to parameters

for which ψ(SL2) = ν(2k) ⊕ ν(1)N−2k. Thus the assumptions are satisfied and the result

follows.

Remark 3.3.16. One can wonder about the extent of the restriction posed by considering

parameters in Ψ2(ψ∞) rather than Ψ(ψ∞), that is, only counting parameters whose global

shape is ψ = ψ1 � ψ2. The global parameters ψ ∈ Ψ(ψ∞) \ Ψ2(ψ∞) which contribute

to hiψ∞
(pn) will be of the form

ψ = ψ1 � ψ2 � ...� ψr (3.11)

where ψ1 = µ1 � ν(2k) for µ1 a Grossencharacter. For i > 1 we have ψi = µi� ν(1) with µi
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a cuspidal automorphic representation of GLNi . In that case, we can estimate the growth

as if GLN1
× ...×GLNr was the dual group of an endoscopic group of U(N):

- As in the proof of Theorem 3.2.13, the factor of ψ1 should contribute Nm(pn), namely

an exponent of 1 to the growth.

- Each other factor should contribute the growth of the discrete series representation

on U(Ni), namely an exponent of N2
i following the result of Savin [40].

- We then subtract 1 from the exponent to account for the fixed central character.

- Ferrari’s result (Theorem 3.2.9) adds a
N2−

∑
iN

2
i

2 to the exponent, coming from the

transfer of test functions.

Of course one cannot simply reproduce the argument of Theorem 3.2.13, chiefly on account

that if there are more than two summands, the group
∏
i U(Ni) is not an endoscopic group

of U(N). However, we hope to obtain this growth via an iterated application of the ideas

of Sections 3.1 and 3.2. For now, we view this as a credible heuristic. It predicts a growth

exponent of

N2 − (2k2) +
∑r
i=2N

2
i

2

coming from parameters with shape as in (3.11). Recalling the restriction that 2k+
∑r
i=2Ni =

N , one immediately sees that this exponent is maximized if there is a unique N2 = N − 2k

and that any other contribution will be asymptotically negligible in comparison. We thus

believe that the bounds of Theorem 3.3.15 should hold even when the outer sum is taken

over ψ ∈ Ψ(ψ∞).

The smallest degree of cohomology for U(a, b) associated to a partition given by a re-

ordering of (2k, 1, ..., 1) is the one whose actual growth is most likely to be N(pn)N(N−2k). It

be computed from the formulas of Section 3.3.2. It is associated to the most split bipartition
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realized as a reordering of

P = ((a1, b1), (1, 0), ..., (1, 0), (0, 1), ..., (0, 1)). (3.12)

We see that for (a1, b1) to be maximally split, if a < b, we will have a1 = min{a, k}. Thus

the lowest degree i of cohomology associated to this partition is

i =


a(N − 2k) a ≤ k

ab− k2 k ≤ a.

Remark 3.3.17. In the special case that the partition P from (3.12) has either a1 = a or

b1 = b, the representation πP contributes to the so-called special cohomology considered

by Bergeron–Millson–Mœglin in [7]. This portion of the cohomology can be realized as the

image of a theta lift from smaller unitary groups. In the case where a = 1, this allows the

authors to deduce the Hodge conjecture for the corresponding Shimura varieties.
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