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ABSTRACT

Electroweak Baryogenesis(EWBG) aims to explain the matter anti-matter asymmetry at

the Electroweak energy level. However the Standard Model alone is not enough to provide

all the three Sakharov Criteria, so we turned to the MSSM. First, we discussed the maxi-

mum CP Violation(CPV) that could exist in the neutral Higgs sector of MSSM, especially

in the lightest neutral Higgs. We found that there is a constraint from the lightest Higgs

mass and that the observed mass 126 GeV has already put a rather strong upper bound

on CPV. Because the existence of CP-violating phases also modifies hV V and hbb̄ coupling,

the CPV also receives constraints from Higgs precision measurements. After taking EDM

and flavor physics constraints into account, we showed that the maximal CPV we can get

from the lightest neutral Higgs is no higher than 3%. In the second part of this thesis, we

looked into another necessary condition of EWBG, a strong first-order Electroweak phase

transition(EWPT). We discussed the order of EWPT in the most general effective Higgs

potential and especially the interesting correlation between this order and the triple Higgs

self-coupling. We showed that a strong first-order EWPT could lead to a large modification

of the Higgs self-coupling and could even change its sign. And this possible deviation could

be detected through the channel H → HH → bb̄γγ. We reported a significance of 7.5 σ for

λ3 = −λSM3 at the LHC(14 TeV and 3000 fb−1).
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CHAPTER 1

INTRODUCTION: THE STORY OF ELECTROWEAK

BARYOGENESIS

1.1 Baryogenesis

The first proposal of baryogenesis came out as an explanation for the matter anti-matter

asymmetry problem, which started with the observation that the material we have seen is

mostly made of protons and neutrons etc, which astrophysists called baryon content, instead

of their anti-particles. Matter anti-matter asymmetry, more concisely, the phenomenon that

matter and anti-matter are not uniform in scales of at least the Hubble scale, has been

supported by evidences at different scales and from both the experimental and theoretical

sides. At smaller scale, within our galaxy, the density of antiprotons in the cosmic ray is

consistent with the secondary production p + p → 3p + p̄. Zooming out a little bit, at the

scale of cluster of galaxies, a background of Gamma-radiation from the annihilation between

matter and anti-matter is not observed. And the absence of diffuse Gamma ray and a

distortion of CMB also strongly supports the existence of an asymmetry at an even larger

scale. On the theoretical side, the premordial nucleosynthesis theory has displayed glorious

success in predicting the cosmological abundances of light elements, H,He,D,B, Li and it

needs an input parameter η =
nB−nB̄

s to lie within the range 1.5× 10−10 < η < 7× 10−10,

which is exactly the baryon asymmetry at the early stage of the universe evolution. Some

theorists think that this asymmetry could be taken simply as an initial condition, however

this explanation ended up with many unnatural parameter problems; while on the other

hand, baryogenesis theories try to explain the generation of this asymmetry on the basis of

quantum field theories and to tell the whole story from the very beginning.

In the widely cited paper published in 1967, Sakharov proposed the famous three neces-

sary conditions for baryogenesis, the so-called Sakharov Criteria. Firstly, we need a baryon-

number-violating process (otherwise asymmetry cannot be generated from symmetric initial
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conditions); Secondly, both C and CP violations are needed (its easy to prove that any

process which produces an excess of baryons will be accompanied by some complimentary

process which produces an excess of antibaryons at the same rate); And the last condition is

a departure from the thermal equilibrium state (one can prove that the equilibrium average

of B is zero).

1.2 Electroweak Baryogenesis

There are many different theoretical attempts trying to explain the mechanism of baryoge-

nesis, for example, Planck scale baryogenesis, GUT baryogenesis, Electroweak baryogenesis,

Leptogenesis and the Affleck-Dine mechanism. Among these candidates, Electroweak Baryo-

genesis is especially attractive due to many reasons. Firstly, it’s associated with Electroweak

phase transition at 100 GeV , predicts new physics around 1 TeV and thus provides an impor-

tant connection between cosmology and collider physics, having rich testable phenomenology

at the LHC era. The second reason is that, naively speaking, within the mechanism of Elec-

troweak Baryogenesis, the Standard Model(SM) alone can provide all the three Sakharov

conditions. The Baryon number violation was realized by the sphaleron process, which is

intrinsic to the SM gauge theory; The SM also has multiple sources of CP-Violation, such

as the phase in the CKM matrix, that has been shown responsible for the CP-Violation in

Meson decays; And at last the Electroweak phase transition itself is a non-thermal equilibri-

um process. However the Electroweak Baryogenesis also has its difficulties and as we’ll show

in a second, the Standard Model itself is not sufficient for generating such a large baryon

asymmetry from many perspectives.

EWBG happens during the EWPT. This little cartoon below(Fig 1.1) demonstrates the

process of EWPT1. The right side is the symmetric phase, and the left side is the phase

after symmetry breaking and the Higgs field has obtained a finite vacuum expectation value.

This transition is first-order, so it will start with nucleation of bubbles and bubbles expand

1. copyright of Fig 1 belongs to David E. Morrissey and Michael J. Ramsey-Musolf
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Figure 1.1: Electroweak Baryogenesis

until filling the whole space. To have baryogenesis, we need CP-violating interactions within

the wall, so that when material hit the wall, the transmission and reflection coefficient is

asymmetric for opposite charges. A charge asymmetry will develop in front of the wall and

then this charge asymmetry would be converted into Baryon asymmetry through sphaleron

process. This sphaleron process is intrinsic to SM Gauge vacuum structure. In the symmetric

phase, its active but in the broken phase, its strongly suppressed by a Boltzmann factor. So

when the wall passes and absorbs these newly generated baryons, this asymmetry could be

preserved in the broken phase. The sphaleron rate in the symmetric phase is,

Γ(T ) = κ(αWT )4

But in the broken phase, the sphaleron process is suppressed by a Boltzmann factor,

Γ(T ) = µ(
MW

αWT
)3M4

W exp(−
Esph(T )

T
)

As we mentioned in the last paragraph, a more careful calculation shows that the SM

alone is not enough to generate such a large baryon asymmetry. Firstly, even though the

3



CKM phase in the SM has been proved to have direct connection with the CPV observed

in meson decay, it’s not large enough to generate the currently observed baryon asymmetry.

Second, it’s confirmed that in SM, the EWPT cannot be strong first-order. In other words,

a strong first-order phase transition needs the Higgs mass to be as low as 40 GeV , which is

apparently inconsistent with the measurement of 125.5 GeV . Therefore both discrepancies

point to the fact that we need new physics. New physics can not only provide new sources of

CP violation, but also modify the Higgs effective potential through couplings between new

particles and Higgs. And MSSM is a good candidate to achieve these two goals.

1.3 Thesis Outline

In this thesis, we’ll focus on Electroweak Baryogenesis and especially its connection to the

low-energy supersymmetric theories, such as MSSM and NMSSM. Here is the structure of

this thesis work. In the first two parts, I talked about two necessary components of EWBG,

the CP Violation and the strong first-order phase transition. More specifically, in the CP-

Violation part, I discussed the possibility of obtaining a large enough CP-Violation within

the MSSM neutral Higgs sector, how the existence of a large CP-Violation would affect the

Higgs phenomenology and what’s its implication for EDM experiments. In the second part,

I introduced in detail our research on the most general effective Higgs potential that gives

a strong first-order EW phase transition and assessed the possibility of telling the order of

the EWPT by measuring the Higgs self-coupling in the future LHC experiments and thus

making a bridge between cosmology and collider physics. The third part of the thesis is kind

of independent from the other parts. I included here our recent work on the reversed sign of

bottom Yukawa couplings and its phenomenology.
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CHAPTER 2

CP VIOLATION IN THE NEUTRAL HIGGS OF MSSM

2.1 A little background of CP violaltion

From the introduction, we know that the CP violation is a necessary ingredient for the Elec-

troweak Baryogenesis, and since SM (CKM) alone is not enough to explain the large baryon

asymmetry, it then becomes a portal to new physics. Besides that, CP violation (CPV) is

is also important in its own right. Throughout the history of particle physics, discoveries

related to CPV have led to many spectacular progresses, e.g. CKM theory predicted the

existence of three generations. What’s more, the special CP-violation characteristics (also

special flavor structures) confirmed in nature has put very strong constraints on new models,

e.g. the smallness of EDMs in electron, neutron and Mercury has to be satisfied when con-

structing any new model beyond SM. At last, the CPV in the Higgs sector is an important

subject. In 2012, a Higgs-like boson with mass 125.5 GeV has been discovered. But its CP

nature and coupling constants are still waiting to be measured accurately. We would like

to know the possible CP mixing within the Higgs sector and its relations with the Higgs

couplings to fermions and W/Z gauge bosons.

CP transformation is such a transformation that in addition to taking the mirror image of

the world, one also replaces each particle of matter with its anti-matter correspondent. CP

invariance says that all physical processes look the same after taking the CP transformation

of all participants. In 1957, parity violation was already proposed and discovered in the

Co-60 β-decay experiments. Since then the charge conjugation and parity symmetries were

believed to be maximally broken in the weak interactions. But the CP together might still

be a good symmetry in the frame of SM. However in 1964, Christenson, Cronin, Fitch and

Turlay discovered that the long-lived K meson also decays to two charged pions with a

braching ratio of 2 × 10−3, which shows that the physical eigenstates of neutral K meson

are not the CP eigenstates, in other words provided indirect evidence of existence of CP

5



Figure 2.1: Box Diagram

violation.

Ususally people talk about 2 types of CP violation, the direct CPV and the indirect

CPV. The indirect CP-violation, like the discovery in 1964, happens when the small admix-

ture of opposite CP decays in a CP-conserving way, while in the direct CP-violation, the

interference is not between two opposite CP eigenstates, but between two decay amplitudes.

The K meson decay is a good example of indirect CPV. K0 and K0 states are the strong

eigenstates generated in the collider/reactor experiments and they decay through EW in-

teractions. What’s more, they can turn into each other through box diagrams as shown in

Fig 2.1. The transformation between K0 and K0 relies on the flavor changing current asso-

ciated with the charged W bosons and this coupling corresponds to the off-diagonal term in

the CKM matrix for example Vdt̄. As we’ll show right away, a non-vanishing CP violation

needs a nonzero phase in it. The decay and transformation of K0 and K0 can be described

by the following matrix.

H = M +
i

2
Γ =

 H11 H12

H21 H22


where M and Γ are hermitian matrix. It can be proved that the eigenstates of this

Hamiltonian are CP eigenstates

|K1,2〉 =
1√
2

(|K0〉 ± |K0〉)

only if M12 = M21 and Γ12 = Γ21, i.e. M12 and Γ12 are both real numbers. Therefore a

6



small CP violation can be characterized by the quantity ε

ε =
1

2

1
2ImΓ12 + iImM12

ReM12 − i
2ReΓ12

such that the new eigenstates can be written as: |KS〉 = |K1〉 + ε|K2〉 and |KL〉 = |K2〉 +

ε|K1〉. this is what physicists call indirect CP violation, where CPV happens due to a

small mixing of CP-even and CP-odd components in the physical states. Here in the Kaon

example, KS,L ( short-life and long-life states) are the physical states while K1,2 are the CP

eigenstates. ε is the variable used to quantify the strength of an indirect CP violation. CP

is conserved if ε is zero.

2.2 CP violations in MSSM

The Minimal Supersymmetric Extension of the Standard Model (MSSM) is an attractive

scenario that leads to a well defined spectrum of particles at low energies, with dimensionless

couplings that are related to the Standard Model (SM) ones by symmetry relations. For third

generation superpartners with masses of the order of the TeV scale, this scenario leads to

radiative electroweak symmetry breaking, it is consistent with unification of couplings at

high energies [1] and in the presence of R-Parity contains a Dark Matter particle identified

with the lightest neutralino [2],[3]. The Higgs sector of the theory contains two doublets,

and at tree-level supersymmetry demands it to be of type-II and CP-conserving, with an

upper bound on the lightest CP-even Higgs mass equal to the gauge boson mass MZ . These

properties are modified at the quantum level [4]–[23]. On one hand, as it is well known,

in the absence of CP-violation, the upper bound on the lightest CP-even Higgs mass is no

longer MZ but could be raised to values of order 130 GeV for stop masses of the order of a

few TeV and sizable values of the trilinear stop mass parameter At. The observed values of

the Higgs mass may be then well explained in this scenario [24]. On the other hand, radiative

corrections also induce deviations from the type-II behavior that become more prominent
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for large values of the ratio of vacuum expectation values tan β and small values of the

non-standard Higgs boson masses. In order to talk about the CPV happening inside the

MSSM Higgs sector, first let’s take a look at the Higgs sector of MSSM. The most general

CP-violating Higgs potential of the MSSM may conveniently be described by the effective

Lagrangian

LV = µ2
1(Φ
†
1Φ1) + µ2

2(Φ
†
2Φ2) + m2

12(Φ
†
1Φ2) + m∗212(Φ

†
2Φ1) + λ1(Φ

†
1Φ1)2 + λ2(Φ

†
2Φ2)2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) + λ5(Φ

†
1Φ2)2 + λ∗5(Φ

†
2Φ1)2 (2.1)

+λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ∗6(Φ

†
1Φ1)(Φ

†
2Φ1) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + λ∗7(Φ

†
2Φ2)(Φ

†
2Φ1) .

CP violation in the Higgs potential of the MSSM leads to mixing mass terms between

the CP-even and CP-odd Higgs fields. Thus, one has to consider a (4 × 4)-dimensional

mass matrix for the neutral Higgs bosons. In the weak basis (G0, a, φ1, φ2), the neutral

Higgs-boson mass matrix M2
0 may be cast into the form

M2
0 =

 M̂2
P M2

PS

M2
SP M2

S

 , (2.2)

where M̂2
P andM2

S describe the CP-conserving transitions (G0, a)→ (G0, a) and (φ1, φ2)→

(φ1, φ2), respectively, and M2
PS = (M2

SP )T contains the CP-violating mixings (G0, a) ↔

(φ1, φ2). The analytic form of the submatrices is given by

M̂2
P =

 − cβTφ1
+ sβTφ2
v

sβTφ1
− cβTφ2
v

sβTφ1
− cβTφ2
v M2

a −
sβ tan β Tφ1

+ cβ cot β Tφ2
v

 , (2.3)

M2
SP = v2

 0 Im(λ5e
2iξ)sβ + Im(λ6e

iξ)cβ

0 Im(λ5e
2iξ)cβ + Im(λ7e

iξ)sβ

 − Ta
v

 sβ cβ

−cβ sβ

 , (2.4)
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M2
S = M2

a

 s2
β −sβcβ

−sβcβ c2β

 −
 Tφ1

v cβ
0

0
Tφ2
v sβ

 (2.5)

−v2

 2λ1c
2
β + 2Re(λ5e

2iξ)s2
β + 2Re(λ6e

iξ)sβcβ λ34sβcβ + Re(λ6e
iξ)c2β + Re(λ7e

iξ)s2
β

λ34sβcβ + Re(λ6e
iξ)c2β + Re(λ7e

iξ)s2
β 2λ2s

2
β + 2Re(λ5e

2iξ)c2β + 2Re(λ7e
iξ)sβcβ

.
CP violation in the effective two Higgs Doublet Model (2HDM) can be induced by phases

of the soft SUSY-breaking parameters at the loop level [25]–[33]. In this model, the lightest

neutral Higgs is no longer a CP-eigenstate, but a mixture of CP-even and CP-odd states.

The presence of CP-violation in the mass parameters of the theory is natural within the

MSSM, and may be related to the mechanism that explains the baryon asymmetry in the

universe [34]. The presence of CP-violation in the Higgs sector may lead to a modification of

the neutral Higgs properties that may be tested at the LHC in the near future. In particular,

the recently discovered Higgs boson at the LHC [35] may be the lightest of the three neutral

states, with a non-vanishing CP-odd component.

Due to the current lack of observation of CP-violation observables beyond those present in

the Standard Model, in particular the electron and the neutron electric dipole moments [36]–

[39], large phases in the gaugino mass and the µ parameters tend to be in conflict with a

light supersymmetric spectrum [40]–[47]. These restrictions may be alleviated by assuming

large values of the first and second generation slepton and squark masses. Even in this case,

two-loop CP-violating effects may be large enough to lead to observable CP-violating effects

which may be in conflict with present experimental bounds.

In a recent article [49], the authors analyzed the CP-odd mixing of the heavy neutral

states, allowed by the current flavor physics, Higgs and electric dipole moment constraints.

In this article, we shall concentrate on an analysis of the CP-odd component of the lightest

neutral Higgs in the MSSM, given all available constraints from both the experimental and

the theoretical side (for a previous study, see Ref. [48]). We provide an analytical under-
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standing of the parameters that control this CP-odd component and analyze the impact of

these parameters on the Higgs observables. We shall compare these analytical results with

the ones provided by CPsuperH2.3, which is used to calculate the masses of neutral Higgs,

their production rates, decay widths and couplings with other particles [29, 32, 33]. Based

on this analysis, we found that if the stop particles are assumed to be lighter than a few TeV,

the requirement of obtaining a 125.5 GeV Higgs mass already puts a strong constraint to the

parameter space and already restricts the possibility of a CP-odd mixing higher than about

10%. Moreover, the current measurements of the lightest CP-even Higgs production rates

puts further constraints on this possibility and so does the non-observation of the electron,

neutron and Mercury electric dipole moments. Based on these facts, we study the capability

of the LHC to detect the small CP-odd components of the lightest neutral Higgs within the

MSSM.

This part is organized as follows. In subsection 2.3 we describe the relevant parameters

controlling the CP-violating effects in the neutral Higgs sector. In subsection 2.4 we provide

analytical formulae for the neutral Higgs mass matrix elements and describe the interrelation

between the CP-odd component of the lightest Higgs and its mass. In section 2.5 we describe

similar constraints affecting the decay branching ratios of the lightest neutral Higgs boson.

In sections 2.6 and 2.7 we discuss the constraints coming from electric dipole moments and

flavor physics. We discuss the possible measurement of the lightest neutral Higgs CP-odd

component at the LHC in section 2.8. We reserve section 2.9 for our conclusions.

2.3 CP-odd Component of the Lightest Neutral Higgs Boson

The CP-violating phases in the low energy 2HDM may come in the MSSM soft breaking

parameters. Since these CP-violating effects are induced at the loop-level, the only relevant

phases are the ones associated with supersymmetric particles that couple strongly to the

Higgs bosons, namely the stops, sbottoms and staus, and the gluinos that couple strongly to

these particles [25]–[33]. The relevant complex phases are then the ones of the trilinear soft

10



couplings of the stops, sbottoms and staus to the Higgs field, ΦAt , ΦAb , ΦAτ , respectively,

the phase of the gluino mass parameter ΦMg̃
, and the one of the Higgsino mass parameter

µ, Φµ. Besides, one should also consider the variations of the magnitude of tan β, |At,b,τ |,

|Mg̃|, |µ|, mH+ , and the mass parameter MSUSY, that controls the overall third generation

mass scale. CP-violating effects are induced by non-decoupling threshold corrections and

become relevant whenever the imaginary part of µAt,b,τ and/or of µMg̃ is non-zero and of

the order or larger than the square of the third generation sfermion masses, which we shall

assume to be of the order of a few TeV.

Our objective is to study regions of parameter space in which a large CP-odd component

of the lightest neutral Higgs is present. Since this component may only be induced by mixing

between the would-be CP-even and CP-odd Higgs states, it is clear that the heavier neutral

Higgs bosons should be light, with masses not much larger than the weak scale. Such values

of the non-standard Higgs boson masses lead naturally to large variations of the fermion

couplings to the lightest neutral Higgs with respect to the Standard Model ones, and also

leads to a reduction of the lightest neutral Higgs mass via the mixing with the other neutral

states.

In the analysis of the parameters of the model, we shall require the mass of the lightest

neutral state to be consistent with the measured value of about 125.5 GeV. Due to theoretical

uncertainties in the calculation of the neutral Higgs masses, which is of the order of 3 GeV,

we shall retain values of the parameters which lead to a Higgs mass between 122.5 and

128.5 GeV. Moreover, the bottom and tau couplings of the lightest Higgs boson cannot differ

significantly from the ones of the SM without leading to significant variations of the Higgs

decay branching ratios, in conflict with observations at the ATLAS and CMS experiments.

In general, since the electroweak gauge boson couplings of the lightest Higgs tend to be close

to the SM ones, variations of the effective bottom coupling gH1bb̄
of more than about 20%

with respect to the SM (leading to variations of the branching ratio of the decay of the Higgs

boson to pairs of gauge bosons of about 30%) are disfavored by data.
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Although currently only one Higgs boson has been detected, there is information on the

possible presence of additional Higgs bosons within the MSSM due to the non-observation

of non-standard Higgs signatures. Currently, the strongest bounds on the presence of non-

standard neutral Higgs bosons come from the searches of the gluon fusion or bbΦ production

of heavy neutral Higgs bosons at the LHC, with subsequent decays into tau pairs [50],[51],[52].

These searches become particularly efficient for large values of tan β and low values of the

charged Higgs mass mH+ , for which the production rate is large. These searches, combined

with previous LEP results, gave a strong constraint on the tan β − MA two dimensional

plane (CP-violation was not considered in the LHC analyses). A small window of tan β

survives in lower-MA region, where larger CP-violation is most likely to arise. In particular,

for non-standard Higgs boson masses of the order of the weak scale, values of tan β > 10 are

strongly restricted by the searches performed by the CMS and ATLAS experiments.

2.4 Constraints on CP violation in the Higgs sector from the

lightest neutral Higgs mass

Since the LHC has measured a Higgs boson with mass around 125.5 GeV, it is natural to

identify it with the lightest neutral Higgs boson, which tends to have SM-like properties

when masses of the heavier Higgs bosons are larger than 200 GeV. For stop masses of the

order of a few TeV, this strongly restricts the plausible MSSM parameter space. As the

charged Higgs mass goes up, the lightest CP-even Higgs mass depends mostly on |Xt|, with

Xt = At − µ∗/ tan β [25]–[31]. For values of the stop masses of the order of a few TeV a

maximum value of the order of 130 GeV is obtained for values of |Xt| of about 2.4 MSUSY,

for large values of the charged Higgs mass, and goes smoothly down for smaller values of

mH+ . Thus acceptable values of the Higgs mass are obtained for values of |Xt| larger than

MSUSY but not larger than 3MSUSY. For values of |Xt| larger than 3 MSUSY the lightest

CP-even Higgs mass decreases sharply and, in addition, problems with vacuum stability may
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be generated [53].

To explore the correlation between the CP-odd component and the mass of the lightest

Higgs, we’ll start from the 3 × 3 mass matrix, defining the mixing between the would-be

CP-even components of the two Higgs doublets and the CP-odd Higgs boson in the absence

of CP-violating effects, φ1, φ2 and a, respectively. Let’s separate out the tree-level terms

and investigate the contributions from the CP-violating phases, taken as small perturbations

here, to see how those perturbations affect the mass eigenstates of the neutral Higgs sector.

The full mass matrix can be written as,

M2 = M2
Tree +M2

Loop (2.6)

=


M2
as

2
β +M2

z c
2
β −(M2

a +M2
z )sβcβ 0

−(M2
a +M2

z )sβcβ M2
ac

2
β +M2

z s
2
β 0

0 0 M2
a

+


∆11 ∆12 δ1

∆21 ∆22 δ2

δ1 δ2 0

(2.7)

where δi,∆ij can be considered as perturbations and we’ll investigate their effects on Higgs

mass in the following. With the relative phase ξ between the two Higgs doublets set to be

zero, δi, ∆ij can be expanded as follows,

δ1 = v2(Im(λ5)sβ + Im(λ6)cβ)

δ2 = v2(Im(λ5)cβ + Im(λ7)sβ)

∆11 = −v2(2λ1c
2
β + 2Re(λ5)s2

β + 2Re(λ6)sβcβ)−M2
Zc

2
β

∆12 = ∆21 = −v2(λ34sβcβ +Re(λ6)c2β +Re(λ7)s2
β) +M2

Zsβcβ

∆22 = −v2(2λ2s
2
β + 2Re(λ5)c2β + 2Re(λ7)sβcβ)−M2

Zs
2
β

(2.8)

The values of the quartic couplings may be found in Ref. [27]. In order to understand the

main effects, we should go to the Higgs basis ({φ1, φ2}→{h1, h2}) by rotating by the angle β,

which becomes the proper diagonalization angle in the decoupling limit. The transformation

matrix O links the 3 neutral Higgs further with their mass eigenstates by {h1, h2, a}T =
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O{H1, H2, H3}T , thus H1 can be expanded as H1 = O11h1 + O21h2 + O31a. In this case,

we get,

OM2
diagO

T

=


M2
Z cos2 2β M2

Z cos 2β sin 2β 0

M2
Z cos 2β sin 2β

(
m2
a +M2

Z sin2 2β
)

0

0 0 m2
a



+


cβ sβ 0

−sβ cβ 0

0 0 1




∆11 ∆12 δ1

∆12 ∆22 δ2

δ1 δ2 0




cβ −sβ 0

sβ cβ 0

0 0 1



=


M2
Z cos2 2β + η θ ξ2

θ m2
a + M2

Z sin2 2β + ρ ξ1

ξ2 ξ1 m2
a

 (2.9)

where M2
diag is the eigenvalue matrix and

ξ1 = −δ1sβ + δ2cβ

ξ2 = δ1cβ + δ2sβ

θ = (∆22 −∆11) sin β cos β + ∆12 cos 2β −M2
Z cos 2β sin 2β

η = ∆11c
2
β + ∆22s

2
β + ∆12 sin 2β

(2.10)

In the result of equation(4), we can see that the final corrections to m2
H1

come from

the three terms, ξ2, θ, η. In this limit, ξ2 defines the strength of the mixing between a

and h, i.e. it fixes the CP-odd component of the lightest Higgs. Defining the parameter
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Yt = At + µ∗ tan β, one can demonstrate that, at one loop

η =
3h4
t v

2 sin4 β

8π2

[
log

(
M2

SUSY

m2
t

)
+
|Xt|2

M2
SUSY

(
1− |Xt|2

12 M2
SUSY

)]
(2.11)

θ = −M2
Z cos 2β sin 2β +

3h4
t v

2 sin2 β sin 2β

16π2

[
log

(
M2

SUSY

m2
t

)

+
|Xt|2

2M2
SUSY

+ Re

(
XtY

∗
t

2M2
SUSY

(
1− |Xt|2

6M2
SUSY

))] (2.12)

ξ2 = Im

(
3h4
t v

2 sin2 β sin 2β

32π2

[
XtY

∗
t

M2
SUSY

(
1− |Xt|2

6M2
SUSY

)])
(2.13)

where v ' 246 GeV is the Higgs vacuum expectation value. The above equations provide

a generalization of the expressions for the Higgs mixing parameters in terms of Xt and Yt

in the CP-conserving case [54]. The parameter η displays the well known one-loop radiative

corrections to the lightest (would be CP-even) Higgs mass, which are maximized for values

of the stop mixing parameter |Xt| =
√

6 MSUSY. Notoriously, for the same values of the stop

mixing parameter the parameter ξ2 vanishes. Hence, a sizable CP-odd component of the

lightest neutral Higgs boson is always associated with departures from the maximal values

of its mass.

The above property is clearly shown in Figures 2.2 and 2.3 where we display the value

of the CP-odd component of the lightest neutral Higgs against its mass, obtained by the

CPsuperH code [32],[33]. for two different values of tan β and the charged Higgs boson

mass, consistent with the current experimental bounds coming from direct searches for non-

standard Higgs bosons at the LEP and LHC experiments. During this procedure, 400, 000

points were randomly generated and uniformly scattered all over the space spanned by

the relevant parameters. We choose the values of the supersymmetry breaking parameter

MSUSY = 2 TeV and the rest of the parameters were varied in the following ranges : At from

2 TeV to 6 TeV, |µ| from 2 TeV to 6 TeV, ΦM3
, ΦA, Φµ, ΦM2

from −180◦ to +180◦, |M3|
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Figure 2.2: Correlation between the H1 CP-odd component and its mass for tan β = 5.5 and
a charged Higgs mass MH+ = 260 GeV. The moduli and phases of all relevant parameters
Af , Mg̃ and µ were varied in the range explained in the text and the overall stop mass scale
MSUSY was fixed at 2 TeV.

Figure 2.3: Correlation between the H1 CP-odd component and its mass for tan β = 20 and
a charged Higgs mass MH+ = 800 GeV. The moduli and phases of all relevant parameters
Af , Mg̃ and µ were varied in the range explained in the text and the overall stop mass scale
MSUSY was fixed at 2 TeV.
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from 500 GeV to 3 TeV. The hierarchy factor ρ, denoting the difference between the masses

of the first and second generation sfermions and the third generation ones plays only a small

role in this analysis and was chosen to be equal to one. From this plot we see that there is

an upper limit for the lightest neutral Higgs mass around 127 GeV for a charged Higgs mass,

MH+ = 260 GeV and tan β = 5.5, which increases to 131 GeV for a larger MH+ = 800 GeV

and tan β = 20. These maximal values arise with zero CP-odd component in Higgs sector,

as expected from our discussion above.

For values of |Xt|/MSUSY 6=
√

6, the value of ξ2 may increase and the CP-odd component

of the lightest neutral Higgs may be sizable. However, the parameter η is pushed to lower

values lowering the Higgs mass. Moreover, the existence of large ξ2 or θ, no matter positive

or negative, will drag m2
H1

further down due to mixing effects. That’s the reason why we

have a anti-correlation between CP-violation and Higgs mass in the MSSM.

In Figures 2.2 and 2.3 , as before, the CP-odd component was defined to be O31. As the

mass goes down, the CP-odd component may increase but is constrained by the requirement

of obtaining agreement with the measured Higgs mass value. Although one obtains larger

values of mH1
for MH+ = 800 GeV the parabola-like upper limit on the CP-odd component

of the lightest Higgs is much sharper, which implies much smaller CP-odd components in

the acceptable Higgs mass range. Such a behavior is not surprising, and reflects the decrease

of the mixing angle O31 with the charged Higgs mass, namely

O31 ' −ξ2/M2
H+ . (2.14)

Rewriting the above equation in terms of the mass parameters µ and At, from Eq. (2.13)

one finds

O31 ∝ −
3h4
t v

2 sin4 β

16π2m2
H+

Im(µAt)

M2
SUSY

(
1− |Xt|2

6M2
SUSY

)
, (2.15)

where we have neglected subleading terms, suppressed by 1/ tan2 β factors.

Therefore, the largest CP-violating effects that can be generated at larger mH+ is when
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Figure 2.4: CP-odd component of H1 and MH1
as a function of the phase of Atµ, for

|At| = |µ| = 3 MSUSY and for values of other relevant parameters varied in the ranges given
in the text. The blue and red points represent the values obtained for MH+ = 300 GeV and
800 GeV, respectively. The solid and dashed black lines in the left panel are the estimated
value of the H1 CP-Odd component by using Eq. (2.15), with ht evaluated at the MH+

scale, for MH+ = 300 GeV and 800 GeV, respectively. The dashed contour lines in the right
panel represent the values of |Xt|/GeV. The overall supersymmetry breaking stop mass scale
MSUSY was fixed to 2 TeV.

|At| and |µ| acquire large values, while the angle arg(µAf ) is fixed to give the largest possible

value of the im(µAt), but still rendering Xt at acceptable values to obtain the proper Higgs

mass. For smaller values of the charged Higgs mass, the arg(µAf ) tends to be pushed to

lower values, in order to reduce the mixing effects and keep the Higgs mass in an acceptable

range.

To confirm this intuition, we swept the phases of µ and Af from −180◦ to +180◦ but fixed

the modulus of both µ and Af to large values, |µ| = |Af | = 3MSUSY, with MSUSY = 2 TeV

and tan β = 5. The gaugino masses were fixed to M1 = 200 GeV, M2 = 200 GeV and

M3 = 2.7 TeV and the phases of three gaugino mass terms were fixed to zero. The left panel

of Figure 2.4 shows the variation of the lightest neutral Higgs boson CP-odd component

with the arg(µAt). We see that, if the Higgs mass constraint is ignored, a maximum of the

CP-odd component is obtained for phases larger than 90 degrees, actually near 120 degrees.
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Figure 2.5: Values of the Higgs mass for MH+ = 300 GeV, corresponding to the right panel
of Fig. 2.4, but with the scattered points colored according to the value of arg(AtM

∗
3 ). The

subdominant dependence of the Higgs mass on arg(AtM
∗
3 ) explains the spread of the Higgs

mass values in Fig. 2.4. We can see an enhancement of Higgs mass when arg(AtM
∗
3 ) = 0

and a minimum for values of arg(AtM
∗
3 ) = ±180◦.

The reason for that lies in Eq.(2.15). The dependence of O13 on this phase is parametrized

by the multiplication of two terms, Im(µAt) and
(
1− |Xt|2/(6 M2

SUSY)
)
. It is easy to show

that for the parameters chosen the maximum moves away from a phase of 90 degrees, since

larger values of the product of these terms may be obtained by decreasing Im(µAt) but

increasing the second term. The analytical extremes for |µ| = |At| = 3MSUSY and tan β = 5

are located at values of φAµ ≡ arg(µAt) such that cosφAµ ' −0.5 and cosφAµ ' 0.94. This

correspond to arg(µAt) ' 120◦ and 240◦ (maxima), and 20◦ and 340◦ (minima), respectively.

To verify this effect, we plotted Eq. (2.15) as a function of arg(µAt) on top of the left panel

of Fig. (2.4) (the dashed line for mH+ = 800 GeV and the solid line for mH+ = 300 GeV).

In each case, the top Yukawa coupling was chosen at the charged Higgs mass scale. We find

that Eq. (2.15) describes within a good approximation the lightest neutral Higgs CP-odd

component computed by CPsuperH.

Consistency with the observed Higgs mass puts additional constraints on arg(µAt). The
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right panel of Figure 2.4 shows the strong dependence of the Higgs mass on the amplitude

of Xt for both mH+ = 300 GeV and mH+ = 800 GeV. Since MSUSY = 2 TeV , the

maximization of Higgs mass occurs close to |Xt| = 4.8 TeV, about 2.4 MSUSY, which is

consistent with our analysis above and for |µ| = |At| = 3MSUSY and tan β = 5 corresponds

to a phase of µAt close to zero. As the phase increase the CP-odd component increases, but

the Higgs mass decreases. In order to keep the Higgs mass within the acceptable range, one

needs |Xt| < 6 TeV, and should keep |arg(µAt)| below 80 degrees, putting a bound on the

possible CP-odd component of the lightest Higgs boson. This bound is about 5 percent in

the particular case of MH+ = 300 GeV.

Observe that the Higgs mass is not a single-valued function of |Xt| but for each |Xt| the

Higgs mass values are within a broad band, which is due to the fact that there are small

changes in the lightest Higgs mass induced by the variation in the phase of AtM
∗
3 , and mostly

coming from threshold corrections to the top Yukawa coupling. An example of this variation

is shown in Figure 2.5, where we show that indeed, besides the overall dependence on Xt,

which is fixed by the phase of µAt, there is a dependence on the phase of AtM
∗
3 leading to

larger Higgs mass values for these phases equal to zero. Observe that, since this effect does

not depend on the sign of the arg(AtM
∗
3 ), in Figure 2.5 we present the results as a function

of |arg(AtM
∗
3 )|.

2.5 Constraints from the Higgs H1 branching ratios

As stressed above, a large CP-odd component of the lightest neutral Higgs may only be

obtained for low values of the charged Higgs mass. Such values of the charged Higgs mass

lead in general to large mixings not only with the would-be CP-odd Higgs but also between

the two would-be CP-even Higgs bosons. Since the would-be CP-odd Higgs and the heavier

would-be CP-even Higgs have tan β enhanced couplings to the down fermions, in general one

expects significant deviations of the down couplings of the lightest neutral Higgs with respect

to the SM one. This can be seen by writing the down-quark couplings [30], normalized to
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the SM values, in the Higgs basis

gSH1dd
=

1

hd + δhd + ∆hd tan β

{
Re(hd + δhd)

− sin βO21 + cos βO11

cos β

+ Re(∆hd)
O21 cos β +O11 sin β

cos β
− [Im(hd + δhd) tan β − Im(∆hd)]O31

}
(2.16)

gPH1dd
=

1

hd + δhd + ∆hd tan β
{(Re(∆hd)−Re(hd + δhd) tan β)O31

− Im(hd + δhd)
− sin βO21 + cos βO11

cos β
− Im(∆hd)

O21 cos β +O11 sin β

cos β

}
(2.17)

where we have assumed that

hd + δhd + ∆hd tan β =
md

√
2

v
(2.18)

is real and positive. For moderate or small values of tan β one can in a first approximation

ignore the small radiative correction effects and, hence

gSH1dd
' O11 − tan β O21

gPH1dd
' −O31 tan β. (2.19)

Then, as anticipated, the corrections to the down-quark and charged lepton couplings are

proportional to the non-standard components of the lightest neutral Higgs, O21 and O31,

but enhanced by a tan β factor. Morever, while O31 is approximately given by Eq. (2.14),

O21 ' −
θ

m2
H+

. (2.20)

As we can see from Fig.2.6, the scalar coupling of the lightest Higgs boson, gS
H1bb̄

, nor-

malized to its SM value, can grow significantly when mH+ is pulled down. Large deviations,

however, are in tension with current experimental measurements [55],[56],[57] that show a

21



Figure 2.6: gS
H1bb̄

coupling for different values of mH+ . We have fixed |Af | = 3MSUSY =

6 TeV; varying |µ| from 2 to 6TeV, and ΦA,ΦM2,ΦM3,Φµ from −180◦ to 180◦.

good agreement of the Higgs production rates with the SM predictions.

Since we are considering the possibility of sizable values of ξ2 (the CP-odd component),

the deviations from SM Higgs branching ratios may be minimized if θ, which controls the

mixing between two CP-even components, is kept small. Small values of θ correspond to the

condition of alignment in the case of CP-conservation [54],[58],[59] and can be achieved for

moderate values of tan β ' O(10) if |µ|/MSUSY and |At|/MSUSY become sizable. However,

as we shall see, for alignment to happen with |At| and |µ| smaller than 3 MSUSY, Re(Atµ)

must be maximized. Since maximal values of this quantity are obtained for small values

of Im(Atµ) controlling the CP-odd component of the lightest Higgs, there must be some

correlation between the CP-odd component of H1 and the deviation of the H1 down quark

couplings with respect to the SM-ones. We can obtain an analytical understanding of this

correlation by approximating the mass of the lightest Higgs by

m2
H1
'M2

Z cos2 2β + η, (2.21)

with η given in Eq. (2.11). This is what happens for small or moderate mixing in the neutral
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Higgs sector. One can now rewrite Eqs. (2.12) and (2.13) as

θ =
1

tan β

[
−M2

Z cos 2β +m2
H1

+
3h4
t v

2 sin4 β

16π2
Re

(
Xt(Y

∗
t −X∗t )

M2
SUSY

(
1− |Xt|2

6M2
SUSY

))]
,

(2.22)

ξ2 =
1

tan β

3h4
t v

2 sin4 β

16π2
Im

(
Xt(Y

∗
t −X∗t )

M2
SUSY

(
1− |Xt|2

6M2
SUSY

))
. (2.23)

Since for moderate or large values of tan β, Xt ' At, Y
∗
t −X∗t ' µ tan β and cos 2β ' −1,

one can see that the parameter θ can only be reduced if the real part of a loop suppressed

quantity proportional to Re(Atµ) is of order of m2
H1

+M2
Z . This loop suppressed quantity is

the same one whose imaginary part controls the CP-odd component. Hence, when ξ2 becomes

sizable, quite generally θ cannot be suppressed and becomes also sizable. Therefore, from

Eqs. (2.14), (2.20) and (2.19), we conclude that a significant CP-odd component in general

leads to large deviations of the bottom coupling to H1 with respect to the SM value.

The deviation of theH1 couplings to the gauge bosons with respect to the SM ones depend

on O2
21 and O2

31, which are in general small quantities, much smaller than the parameters

controlling the deviation of the bottom and tau couplings. It is then expected that for

moderate or large values of tan β the variation in the BR(H1 → V V ), with V = W,Z, γ, is

mainly governed by the variation of the bottom quark coupling to H1. The deviation in H1

down quark coupling with respect to the SM can then be inferred by the observed branching

ratios of the lightest neutral Higgs to gauge bosons, namely H → WW ∗, H → ZZ∗,H → γγ,

which have been measured at the LHC up to rather high confidence level [55],[56],[57].

We calculated the H → ZZ∗ branching ratio in the MSSM using CPSuperH2.3 and also

its value predicted by the SM for the same Higgs mass. We plotted the correlation between

the CP-odd component of H1 and its decay branching ratio into Z gauge bosons. In the

left panel of Fig. 2.7 we show the dependence of these quantities on the variables tan β and

Φµ. tan β is varied from 4.0 to 10.0 and Φµ from −180◦ to 180◦. Other parameters are

chosen to maximize the Higgs mass i.e. arg(AtM
∗
g̃ ) ' 0, (in this particular example the

choice of ΦA = −177.9◦ and ΦMg̃
= 173.9◦ came from a scan of parameters to be presented
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Figure 2.7: Correlation between the CP-odd component of H1 and the H1 decay branch-
ing ratio in the ZZ channel. The left panel shows the case when mH+ = 300 GeV,
|µ| = 3MSUSY=6 TeV, while the right panel corresponds to mH+ = 600 GeV and
|µ| = MSUSY=2 TeV. In both scans, we have varied the phase of µ and the value tan β,
while the rest of the relevant parameters were fixed to the values shown on the plot. All
points shown here satisfy our MH1

constraint(122.5-128.5 GeV). The different colors repre-
sent different values of tan β.

below). Seen from this plot, the variation of tan β determines the shape of the arch, while

Φµ explains the spreading along the axis of the CP-odd component. A correlation between

the lightest Higgs boson CP-odd component and its branching ratio into gauge bosons is

thus observed for each independent tan β, more specifically, the larger CP-odd component is

chosen, the lower becomes the branching ratios, i.e. the more deviated from the SM values.

The requirement that these branching ratios do not deviate by more than 30% of the SM

values sets a constraint for the CP-odd component of H1, which according to Fig. 2.7 is

tightly below 5% for MH+ = 300 GeV.

For comparison, in the right panel of Fig. 2.7 we present the results for smaller values

of |µ| and larger values of the charged Higgs mass, namely |µ| = MSUSY = 2 TeV and

mH+ = 600 GeV. The value of the stop mixing parameter was kept at |At| = 3 MSUSY.

The values of the CP-odd component are reduced by an order of magnitude with respect to

the case described in the left panel, as it is expected from the fact that O31 is proportional
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to |µ|/m2
H+ . There is an additional small reduction, associated with the fact that for this

value of |µ| the possible range of ΦAtµ required to obtain values of |Xt| consistent with the

mH1
constraints is smaller than in the previous case. On the other hand, the branching

ratio BR(H1 → ZZ) becomes closer to the SM value. Due to the correlation between O13

and the deviation of the H1 decay branching ratios with respect to the SM ones discussed

above, if in the future LHC constrains the H1 decay branching ratios to be closer to the

SM ones, this will lead to further constraints on the possible CP-odd component of H1. In

the following, we shall concentrate on finding the maximal value of the CP-violating phase

consistent with present constraints.

Under the above considerations, a careful scan of the whole parameter space was con-

ducted to find the maximum CP-odd component of H1. In order to maximize it, we

chose as low values of mH+ as possible and for each fixed mH+ we scan tan β within

the area not excluded by heavy Higgs boson searches. Since all what matters are rela-

tive phases, and the CP-violating effects are maximized for large values of |µAt|, we fixed

MQ = MU = MD = MSUSY = 2 TeV, |µ| = |At| = 3 MSUSY, M1 = 0.2 TeV, M2 = 0.2 TeV.

All five varied parameters can be found in the table. The maximal CP-odd component for

each scan is listed in Table 2.1 and 2.2.

In Table 2.1, we show the results without including the constraints from the H1 branching

ratios. For all values of mH+ , the larger CP-odd component of H1 is obtained when the

lightest Higgs mass reached the lower bound we have set, i.e. 122.5 GeV , due to the tension

between a large CP-odd component and a large enough H1 mass we have proved before. As

mH+ goes up, we see that ΦµAf is moving closer to 120◦ (or 240◦). That’s because mH+

is bringing up the mass of the lightest Higgs and allowing more fluctuation range in ΦµAf .

However the value of the H1 CP-odd component gets lower because the suppression coming

for a larger mH+ greatly compensates the impact of a larger phase ΦµAf .

In Table 2.2, we added the constraint on the H1 decay branching ratios, which lead

to somewhat smaller CP-odd components for each fixed mH+ . For mH+ = 250 GeV and
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Table 2.1: Maximum CP-odd(only mass constraint)

mH+(fixed) tan β ΦAf Φµ |Mg̃| ΦMg̃
ΦµAf CP-odd Mass

BRMSSM(H1→ZZ)
BRSM(H1→ZZ)

250 8.0 158.2◦ 114.0◦ 3000.0 134.0◦ 272.2◦ 8.87% 122.6 0.469
300 9.2 98.8◦ 2.67◦ 3000.0 108.6◦ 101.5◦ 5.72% 122.6 0.555
350 9.0 138.2◦ 115.9◦ 3000.0 129.5◦ 254.1◦ 3.87% 122.5 0.656
400 8.7 66.6◦ 39.3◦ 3000.0 76.5◦ 106.0◦ 2.81% 122.6 0.739

Table 2.2: Maximum CP-odd (mass + Boson coupling constraints)

mH+(fixed) tan β ΦAf Φµ |Mg̃| ΦMg̃
ΦµAf CP-odd Mass

BRMSSM(H1→ZZ)
BRSM(H1→ZZ)

250 8.3 18.3◦ -78.1◦ 3000.0 17.7◦ 300.2◦ 4.83% 126.6 0.703
300 9.5 -177.9◦ -94.0◦ 3000.0 173.9◦ 88.1◦ 5.01% 124.4 0.701
350 7.8 -44.3◦ -53.8◦ 3000.0 -52.1◦ 261.9◦ 3.80% 122.6 0.709
400 8.7 66.6◦ 39.3◦ 3000.0 76.5◦ 106.0◦ 2.81% 122.6 0.739

300 GeV , we see the branching ratio bound dominates the selection of the right Higgs mass

and for the maximum H1 CP-odd components, the Higgs mass tends to be pushed away from

its theoretical lower bound. For mH+ = 350 GeV and 400 GeV , instead, the Higgs mass is

still the main constraint for CP violation. The maximum value of the CP-odd component

appears for charged Higgs masses of about 300 GeV given both constraints. The trend in

ΦµAf is the same as that in table 2.1.

2.6 EDM Experiments and CP violation

In addition to the collider results on the high-energy end, low-energy experiments, especially

the Electric Dipole Moment (EDM) measurement with extremely high precision, impose

strong constraints on the CP violation. The relation between EDM and CP violation can be

understood this way. For elementary particles with spin, the electric and magnetic dipole

moments must be in parallel with spin ~s. Thus the potential energy of an electric or magnetic

dipole in an external field is given by

−de~s · ~E − dm~s · ~B (2.24)
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Here de and dm are the electric and magnetic dipole moments. Now let’s consider the

transformation properties of ~s, ~E and ~B under T. ~E is invariant under T while ~s and ~B

change sign under T. To keep the potential energy unchanged, we need de → −de. Thus any

observation of a non-vanishing electric dipole moment would violate the invariance under

time-reversal transformation, and thus also violate CP.

Following the discussion, it’s clear that current EDM experiments will also put constraints

on the CP violating properties in the Higgs sector (see for instance Refs. [60],[61]). In this

section we shall explore the constraints on the possible CP violation in the MSSM Higgs

sector given the present bounds on the electron EDM (eEDM), the neutron EDM and the

Mercury EDM, namely [36]–[39].

∣∣∣∣dne
∣∣∣∣ < 2.9× 10−26cm ( 95% confidence level)∣∣∣∣dHge
∣∣∣∣ < 3.1× 10−29cm ( 95% confidence level)∣∣∣∣dee
∣∣∣∣ < 8.7× 10−29cm ( 90% confidence level)

(2.25)

Theoretical calculations show that the primary contributions to EDM come from both one-

loop and two-loop diagrams [42]. The dominant two-loop contributions come from the so-

called Barr-Zee type diagrams [43],[44](there are other two-loop contributions [45], not in-

cluded in CPsuperH, which become subdominant in the regime we are working on). The

contribution of the neutral Higgs sector also comes in through the so-called Barr-Zee type

diagrams as following: The approximate amplitude of this diagram can be calculated as:

iMν
BZ ∼ i

4

3

me

v2

αeme

(4π)3
κeκ̃t{f(

m2
t

m2
h

)− g(
m2
t

m2
h

)} (2.26)
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where,

f(z) =
z

2

∫ 1

0
dx

1− 2x(1− x)

x(1− x)− z
ln

(
x(1− x)

z

)
g(z) =

z

2

∫ 1

0
dx

1

x(1− x)− z
ln

(
x(1− x)

z

) (2.27)

The largest of this kind of diagram are associated with the t/t̃/chargino loop, and have

amplitude comparable to the one-loop contribution due to the large Yukawa coupling with

the 3rd generation of fermions, this diagram can be written as

−de
i

2
ēσµνγ5eFµν (2.28)

where de is just the electric dipole moment. Again we will need a γ5 term which comes from

the mixing of scalar part(CP-even) and pseudoscalar part(CP-odd) in the Higgs, recall the

pseudoscalar coupling between Higgs fermions has the shape of

−
mf

v
hΦ̄f ipfγ5Φf (2.29)

The dominant two-loop electric dipole moment contributions are proportional to the same

CP-violating phases which governs the CP violating strength in the Higgs sector, contrary to

the one-loop contributions which are governed by CP-violating phases associated to particles

that couple only weakly to the Higgs fields. In other words, large CP violation effects in the
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Higgs sector are likely to be associated with large two-loop EDM contributions, beyond the

experimentally observed limits and could be therefore constrained by EDM experiments.

Therefore, to allow for large CP-violation effects in the Higgs sector we may need to

resort to cancellations between one-loop and two-loop EDM contributions. The main one-

loop contributions are from those diagrams involving loops of charginos, neutralinos and

gluinos with first and second generation sfermions [46],[47]. Therefore, the amplitudes of

one-loop diagrams are in part determined by the mixing in the mass eigenstates of charginos

and neutralinos, which is associated with the values of µ,M1,M2, tanβ, and in particular

the phases arg(µMi), which also affect the two loop chargino and neutralino contributions.

The one-loop contributions decrease for heavier first and second generation squarks and

sleptons. As we said before, we shall characterize the ratio of the first and second to the

third generation sfermion masses by a hierarchy factor ρ, which is an input parameter in the

CPsuperH code.

Figure 2.8: One-loop contribution to the electron EDM. All the points shown in this plot
lead to a value of MH1

compatible with the observed Higgs mass. The relevant parameters
are fixed as follows : mH+ is fixed at 325 GeV, |µ| = |A| = 3MSUSY=6 TeV, tan β is varied
from 4 to 9, Φµ,ΦA,ΦM2

,ΦM3
are varied from -180 to 180 and |M3| from 1.5 TeV to 3 TeV.

In Figure 2.8 we display the one-loop contribution to the electron EDM. From Figure 2.8,

we find that, as expected, both the one-loop chargino and neutralino contributions to the
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Figure 2.9: Correlation between 1-loop and 2-loop Contributions to the electron ED-
M(’eEDM’ in the axis labels stands for electron EDM). All the points shown give appro-
priate H1 mass values, among which the colored ones satisfy the electron EDM bound of
8.7× 10−29e cm. This is the same scan as in Fig. 2.8. The colors in the left panel represent
the values of ρ and in the right panel the H1 CP-Odd component. This plot illustrates
that the eEDM constraint can be avoided by cancellation between the 1-loop and 2-loop
contributions.

electron EDM decrease as we raise ρ. Up to ρ. The maximum chargino contribution remains

higher than the acceptable eEDM limit (8.7×10−29cm) up to values of ρ = O(10). Another

feature seen from this plot is that the amplitude of chargino-loop diagrams is pronouncedly

larger than that of neutralino-mediated ones, differing by an order of magnitude. Thus,

unless the phases are highly fine tuned, it is very difficult for EDM to cancel within one-loop

level diagrams.

The left panel of Fig. 2.9 shows the correlation between the one and two-loop con-

tributions to the electron EDM for parameters which survive the current bounds on this

quantity(eEDM< 8.7× 10−29e cm). Points in this figure are colored according to the value

of the hierarchy factor ρ. In the right panel we show the same correlation but points are

colored according to the size of the CP-odd component of the lightest neutral Higgs boson.

We find that most of the allowed points lie closely around a straight line across the origin

point with slope −1 which indicates that an approximately exact cancellation occurs between

one-loop and two-loop contributions to the electron EDM. Figure 2.10 shows the correlation
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Figure 2.10: The H1 CP-odd component vs the hierarchy factor ρ, using the same scan as
in Fig. 2.8. All the points shown in this plot give appropriate H1 mass values and satisfy
the eEDM bound.

between the CP-odd component of H1 and the hierarchy parameter ρ. As shown in the

right panel of Fig. 2.9 and Fig. 2.10, larger CPV coexists with larger two-loop (or one-loop)

EDM components and, for third generation squark masses of the order of one TeV, appears

around a ρ = 2 peak, where the one-loop contributions are sizable and cancellations between

one and two-loop contributions are significant. Therefore the possibility of a pronounced

CP-violating effect in the Higgs sector relies on significant cancellations between one-loop

and two-loop EDM contributions.

In order to explore the maximum allowed CP-odd component of H1 given currently

measured EDMs, we use CPSuperH2.3 to scan over all relevant variables, choosing low values

of the charged Higgs mass and large values of the stop mixing. More specifically, we chose

MSUSY = 2 TeV (including all squark and slepton masses) and |µ| = |Af | = 3 MSUSY. The

electroweak gaugino masses values were fix at |M1| = |M2| = 200 GeV, ΦM1
= 0 (since only

the relative phases matter), and the charged Higgs mass was fixed at mH+ = 300 GeV so

that we can get sizable CP violation and also keep BR(H → V V ) within an acceptable range

at the same time. The value of tan β was varied from 5.5 to 9.5 (consistent with the current
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Table 2.3: Maximum CP odd component points after taking EDM constraints into accoun-
t.The values of the stop and Higgsino mass parameter were fixed to |At| = |µ| = 3MSUSY =
6 TeV . The other relevant parameters were varied in the range explained in the text.

No. tan β Φµ ΦA |Mg̃| ΦMg̃
ρ ΦM2 mh

BRMSSM(H1→ZZ)
BRSM(H1→ZZ)

CP-odd component

1 9.5 −45.7◦ −18.5◦ 2300 54.2◦ 9.17 11.3◦ 122.7 0.782 3.00%
2 9.0 −34.1◦ −31.6◦ 3000 39.0◦ 3.86 10.2◦ 122.7 0.776 3.07%
3 8.9 −2.8◦ −62.7◦ 3000 9.9◦ 5.26 −18.9◦ 122.5 0.774 3.04%
4 8.5 23.3◦ −88.0◦ 3000 −17.0◦ 3.44 −39.9◦ 122.6 0.772 2.96%
5 8.6 177.4◦ −121.3◦ 2750 172.7◦ 8.53 −149.4◦ 123.8 0.796 2.41%

experimental bounds), the hierarchy factor ρ was varied between 1 and 10, while |M3| was

varied from 1.5 TeV to 3 TeV. The phases of the mass parameters ΦAf , Φµ, ΦM3
, ΦM2

were

varied from −180◦ to +180◦. To fight against the high elimination rate associated with the

experimental constraints and the huge complexity in computing EDMs, we implemented a

gradient descent method in the 3D subspace spanned by parameters ΦM2
, Φµ, and ρ to bring

the three EDM values into acceptable ranges. The descending process was fast with proper

steps and iteration algorithm. Finally we found 4200 points passing all constraints, with a

maximum CP-odd component of H1 to be 3.07%, which is consistent with our observations

above.

To exemplify the values of the parameters leading to relevant O31, in Table 2.3 we show

some of the points with maximal H1 CP-odd component, the parameters for which they are

obtained, as well as the relevant parameters in the Higgs sector.

Observe that these five different examples have similar characteristics : The values of

arg(µMg̃)
<∼ 10◦, as expected in order to cancel the large one-loop contribution to the

neutron EDM, induced by the gluino loops. Moreover, the value of arg(µM2) is within 30◦

of 0 or 180◦. The value of arg(µAt) ' 65◦, being sizable and of similar order in all examples,

is necessary to obtain a sizable CP-odd component of H1 without inducing a large negative

correction to its mass or to the branching ratio of its decay into vector bosons. As is shown

in the table 2.3 the maximal CP-odd component is now again associated with the minimal

allowed values of the Higgs mass. This may be understood from the fact that, as shown in

Fig. 2.5, the largest values of mH1
are associated with values of arg(AtM

∗
3 ) = 0. However,
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since the electric dipole moment constraints lead to arg(AtM
∗
3 ) ' arg(Atµ), a large CP-odd

component of H1 leads to values of the Higgs mass away from its maximal value. Hence,

the Higgs mass combined with the constraints on electric dipole moments puts an additional

bound on the possible values of the H1 CP-odd component.

We want to stress that |M1| and |M2| are not determinant factors in the determination

of the maximal H1 CP-odd components. We changed |M1| = |M2| to be 1 TeV but kept

|µ| = |Af | = 3 MSUSY, and got the maximum CP-odd to be 2.91%, not much different

from the previous 3.07%. We also checked the maximal CP-violation in the CPX scenario

in which |µ| = 4 MSUSY, |Af | = 2 MSUSY, |M1| = |M2| = 1 TeV, M3 = 3 TeV, while the

three trilinear coupling phases ΦAt,b,τ are independent. We did the scan for this scenario

and found that it gave a smaller CP-odd component of about 2%. This effect comes mostly

from the change of |µ| and |Af |, which can be easily seen from Eq. 2.15. This agrees with

the numerical results of a recent paper [49] focusing on the CP Violation in the heavy Higgs

sector of the MSSM.

In general, we observe that the cancellation of the three EDMs needs some fine tuning at

level of order 10 in relevant phases. In order to illustrate the general pattern of cancellations

we investigate the behavior of the three EDMs around the points of maximal H1 CP-odd

component found above. For instance, Fig. 2.11 shows the values of the three EDMs consid-

ered here, for points around point 1 in Table III, and varying ρ and ΦM2
only. The mass and

the lightest neutral Higgs boson CP-odd component contour lines are not shown on these

plots since they are almost constant over the whole region displayed (122.7 GeV and 3.0%

respectively). The dashed contour line indicates the ratio of the BR(H → ZZ) to the SM

values, showing acceptable values over this whole region of parameter space. The parame-

ters ρ and ΦM2
are chosen because they have nearly nothing to do with the neutral Higgs

masses and affect only weakly the CP-violation in the Higgs sector (i.e. O31) but they affect

strongly the EDMs through one-loop diagrams. As illustrated in these plots, there seems to

be no difficulty in finding some combinations of ρ and ΦM2 to circumvent the strong EDM
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Figure 2.11: EDM constraints in the ΦM2
–ρ plane. The allowed regions for the three kinds

of EDMs are drawn in different colours on this patch of the 2D parameter plane. The other
relevant parameters were chosen to be the same as in parameter set 1 in Table 2.3, i.e.
tan β = 9.5,Φµ = −45◦, ΦA = −18◦, M3 = 2300 GeV, ΦM3

= 55◦. The dashed lines
show countors of the ratio BRMSSM (H1 → ZZ) /BRSM (H1 → ZZ), which displays a tiny
fluctuation of about 0.1% over the whole range.

constraints, at least for the current bounds. All points allowed in these examples, however,

have values of ρ >∼ 4, implying that in this example one cannot achieve the maximum H1

CP-odd component, as we showed before, which are obtained for values of ρ ' 2.

Figure 2.12 shows the correlation between the phases of µ and M2 for the points which

are consistent with the electron, neutron and mercury EDM’s. As Fig. 2.12 shows, no matter

what value the hierarchy factor ρ takes, there is always some point where the three constraint

regions overlap with each other. As ρ goes up, one-loop contribution fades away and two-

loop diagrams dominate since propagators of first 2 generations of squarks and sleptons only

come into play in one-loop diagrams. The blue stripe allowed by eEDM measurement rotates

towards constant Φµ. This phenomenon can be easily understood since ΦM2
affects the mass

structure of charginos and neutralinos, which control the main one-loop contributions to the

eEDM. The red stripe stands for Mercury EDM, which depends only weakly on ΦM2
, and it

grows wider as ρ increases, which may be understood due to the smaller degree of cancellation
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Figure 2.12: EDM constraints in the Φµ – ΦM2
plane for different values of ρ. All other

relevant parameters are consistent with the ones in parameter set 1 in Table 2.3 (the same
as in Fig. 2.11).
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between Φµ and the gluino phase necessary to be consistent with the current experimental

bounds on this quantity.

2.7 Flavor Physics Constraints

The flavor physics implications of the MSSM depend very strongly on the exact flavor struc-

ture of the soft supersymmetry breaking parameters. Small missalignments between the

squark and the quark mass matrices can induce large flavor violating effects, without having

an impact on any other observables. Since in our work we are considering the MSSM as a low

energy effective theory, without any assumption of the supersymmetry breaking mechanism

at high energies, it is not possible to obtain precise predictions on the flavor observables. In

order to obtain an estimate of the flavor violating effects, we used the results of CPsuperH,

which are based on the assumption of minimal flavor violation, with additional flavor misal-

lignments induced by up-Yukawa effects [62]–[68], which lead to non-vanishing contributions

from flavor violating couplings of the gluino with the left-handed down-quarks and scalar

down-quarks.

In general, since in the models under consideration the squarks are heavier than about

2 TeV, tan β is moderate and the charged Higgs mass is about 300 GeV, one does not expect

large flavor violating effects. These effects, however, may be enhanced by the presence of

large trilinear couplings between the Higgs and the third generation squarks. In Figure 2.13

we show the predictions for two relevant observables, namely the branching ratios of the

decays of Bs → µ+µ− and B → Xsγ. The current experimental values of these observables,

BR(B → Xs + γ) = (3.55± 0.24+0.09
−0.10 ± 0.03)× 10−4

as estimated by the Heavy Flavor Averaging Group for Eγ > 1.6 GeV [69], and

BR(Bs → µ+ + µ−) = (2.9± 0.7)× 10−9
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Figure 2.13: The branching ratio values of the decay channels Bs → µ+ + µ− and channel
B → Xs + γ, computed in CPsuperH, are displayed for points allowed by all experimental
constraints considered in this article. The points are colored by the CP-odd component of
H1. The red pentagram marks the current experimental values. The red triangle in the plot
displays the prediction by Standard Model. The regions allowed at the 68% and 96% C.L.
are displayed by dashed lines.

as recorded by LHCb and CMS analyses [70] are in somewhat good agreement with the SM

predictions [71],[72],[74] given by

BR(B → Xsγ) = (3.15± 0.23)× 10−4

(see Ref. [73] for an alternative calculation of this rate) and

BR(Bs → µ+µ−) = (3.65± 0.23)× 10−9.

In our analysis, we performed a small rescaling of the values of B → Xsγ given by CPsuperH

in order to obtain the proper SM results [72] for large squark and charged Higgs masses.

In Figure 2.13 we show with dashed lines the regions allowed at the 68% and 96% confi-

dence level (C.L.). We see that under the above assumptions, for the maximal CP-violating

effects in the Higgs sector, the predicted values of these two observables are in good agreement
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with the experimental values and actually this model leads to a similarly good description of

these observables to the one obtained in the SM. Therefore, these flavor observables do not

put additional constraints on the allowed values of the CP-odd component of the lightest

neutral Higgs boson.

2.8 Probes of the H1 CP-odd Component at the LHC.

The small CP-odd components of the lightest CP-even Higgs boson make its detection d-

ifficult. A variety of observables that may lead to the determination of the H1 CP-odd

component have been constructed and different experiments are proposed to measure a CP

mixing directly, for example, the azimuthal angle correlations between two jets in Higgs

plus two jets channel via gluon fusion [75], the polarization correlation in the H → γZ and

H → γγ channels [76], the angular distribution of the products in the tt̄H channel [77],[78],

as well as the distribution over the angle between the planes of e−e+ pairs arising from

conversion in diphoton decays [79],[80].

A promising channel, h→ τ−τ+, has been proposed to investigate the CP nature of the

Higgs boson at the LHC [81],[82],[83], and becomes suitable to test CP-violation in the Higgs

sector of the MSSM. In the recent proposal, Ref. [82], the mixing angle, φτ , defined as:

tanφτ =
gPhττ
gShττ

(2.30)

can be determined by measuring the spin correlation of the tau lepton pairs, which lead to

particular differential distributions of the tau pairs in the Higgs decays. These correlations

are characterized by an angle φ∗CP , defined from the impact parameters and momenta of the

charged prongs a− and a+ in the decays τ− → a− + X and τ+ → a′+ + X in the a−a′+

zero-momentum frame. The measured differential distribution of the Higgs boson decaying

into tau-pairs with respect to φ∗CP can be described by:
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dσ(pp→ H1 → ττ)

dφ∗CP
' u cos(φ∗CP − 2φτ ) + v (2.31)

The major background comes from the Drell-Yan production of τ pairs whose effects can

be minimized by cuts. It is claimed that the Higgs mixing angle φτ can be measured to

a precision of ∆φτ ≈ 14.3◦(5.1◦) at the high luminosity LHC (14 TeV) with an integrated

luminosity of 500 fb−1(3 ab−1) (Ref. [81], instead, claims a sensitivity of about 11◦ at

3 ab−1).

In the Higgs basis, considering only the dominating terms, tanφτ can be approximated

by

tanφτ '
O31 tan β

O11 −O21 tan β
, (2.32)

which leads to values of φτ of order of 10◦ for values of O31 and O21 of a few percent and

tan β ' 10, and grows for larger values of tan β.. For instance, for point 1 in Table 2.3, a

value of tanφτ = 0.236 is obtained, corresponding to φτ = 13◦, within the reach of LHC.

This is well within the claim reach of the high luminosity LHC.

To get a better perception of the power of the h → τ−τ+ measurement, in Fig.2.14 we

plot, for the points we found satisfying all current experimental constraints considered in this

paper, the maximum value of φτ in the tan β−ρ plane. In other words, these values represent

the experimental sensitivity needed in order to start probing the CP-odd component of H1

in the MSSM for that particular parameter region.

It is then clear that if the value of O31 is close to the maximal values consistent with

current experimental constraints, the LHC may probe this CP-violating effects in the high

luminosity run. It is also clear that in order for the LHC to probe the CP-odd component

of H1 in the MSSM, the charged Higgs mass should be of order of the weak scale and

tan β > 5. This region of parameters will be efficiently probed by the LHC in the search for

Higgs bosons decaying into τ -pairs in the near future. Moreover, as stressed before a large

CP-odd component of H1 is in general associated with a modification of the branching ratios
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Figure 2.14: Maximum value of φτ , Eq. (2.30), in the tan β - ρ plane, obtained from a a
scan of the phases of all relevant parameters, Af , µ, M3 and M2, for mH+ = 300 GeV,
|At| = |µ| = 3MSUSY = 6 TeV. The values of tan β and ρ are varied within a fairly large
range, and points consistent with the present experimental constraints are selected.

of H1 and hence precision measurements of the H1 properties will further test the region of

parameter space consistent with a significant CP-odd component of H1.

2.9 Conclusion

In this article, we studied the values of the CP-odd component of the lightest neutral Higgs

allowed by current experimental constraints. We derived new analytical expressions in the

Higgs basis that allow a good understanding of the parametric dependence of this component

on the supersymmetry breaking parameters. We showed that the values of the stop left-right

mixing parameter that maximize the lightest CP-even Higgs mass lead to a suppression of

the dominant loop contribution to the CP-odd component of the lightest Higgs boson. Since

for stop masses of order of the TeV scale, stop mixings close to the ones that maximize

mH1
are necessary in order to obtain SM-like Higgs masses of order of the one observed

experimentally, the measured Higgs mass puts a significant constraint on the possible values

of the H1 CP-odd component.
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Moreover, we showed that large H1 CP-odd components lead necessarily to a significant

increase of the width of the lightest neutral Higgs decay into bottom quarks. Since the

width of H1 → bb̄ is the dominant decay width of H1, this increase leads also to a significant

modification of the branching ratio of the decays of H1 to gauge bosons, what leads to a

further constraint into large H1 CP-odd components.

Electric dipole moments put a further constraint on this possibility. Although cancel-

lations between one-loop and two-loop contributions may lead to acceptable values of the

electron EDM, which is the most precisely bounded one at this point, the strong alignment

between the phases of µ and the gluino mass leads to further restrictions on the possible

obtention of a large H1 CP-odd component. At the end, we showed that the CP-odd com-

ponent of H1 is restricted to be smaller than about 3%. Furthermore, we analyzed relevant

flavor physics observables and shoed that they do not set additional constraints on this H1

property.

We also studied the possible experimental detection of the H1 CP-odd component at the

LHC. The h→ τ−τ+ channel presents a very efficient probe of this possibility. The CP-odd

coupling of the τ lepton to H1 is proportional to the H1 CP-odd component but it is enhanced

by a tan β factor. Due to this enhancement, we showed that, for values of the charged Higgs

mass of the order of the weak scale and tan β > 5, a determination of the H1 CP-odd mixing

is possible at a high luminosity LHC, but only for values close to the largest allowed values

of this mixing. The observation of a non-vanishing CP-odd component of H1 would then put

strong constraints on the parameter space of the MSSM. Further constraints coming from

precision measurement of the H1 branching ratios and searches for heavy Higgs bosons may

further probe the parameter space consistent with an observable CP-odd component of H1

in the MSSM.

Let us emphasize in closing that the constraints on the CP-violating components of H1

discussed in this paper are specific for the MSSM and could not be generalized to more

general two Higgs doublet models, where larger CP-violating effects in the Higgs sector may
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be present, as has been discussed in Refs. [75]–[83]. Some of these constraints are related to

the specific properties of the radiative corrections leading to the Higgs mass generation in

the MSSM and may be avoided in non-minimal supersymmetric extensions, like the NMSSM

(see for instance Ref. [84]). Finally, while the LHC capabilities are limited, measurement of

the CP-violating component of H1 may be improved at lepton colliders, as was discussed in

detail in Refs. [85]–[88]. We plan to come back to these subjects in the near future.
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CHAPTER 3

STRONG FIRST-ORDER EW PHASE TRANSITION

3.1 Introduction

After the Higgs discovery at the LHC [89, 90], the Higgs properties, including the Higgs mass

and the Higgs couplings to the Standard Model (SM) particles have been measured [91–93].

Those measurements show that the Higgs boson properties are close to the SM ones. Those

properties are related to the gauge transformation properties of the Higgs field and with

the mechanism of electroweak symmetry breaking, but provide little information about the

properties of the Higgs potential. In the SM, a quadratic coupling and a quartic coupling

completely specify this potential. In the theories beyond the SM, there can be contributions

to the effective potential from the higher dimensional operators, with an effective cut-off

given by the characteristic new physics scale of the theory. As a result, the self-interactions

of the Higgs field, most notably the triple Higgs coupling (λ3), are modified.

We know from the introduction that understanding the nature of the EPT will advance

our knowledge of the possible realization of electroweak baryogenesis[102], which is an at-

tractive explanation of the baryon anti-baryon asymmetry, that can only happen if the EPT

is first order. And λ3 is closely related to the strength of the electroweak phase transition

(EPT) [94–101].

A first order electroweak phase transition (FOEPT) may lead to the production of grav-

itational waves, but the characteristic scales associated with it make their detection very

difficult, albeit not impossible, to detect in the near future [108–112]. Alternatively, the

models that lead to a FOEPT through a relevant modification of the zero temperature ef-

fective potential can be probed from the deviation of λ3 from its SM value, as suggested in

previous studies [96, 99, 100].

At the LHC, λ3 can be probed by the process of double Higgs production. Mainly due

to the destructive interference between the one-loop diagrams, the production cross section
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reduces initially, as the λ3 is enhanced from its SM value. At the next-to-leading order, the

minimum occurs for λ3 ∼ 2.45λSM3 [113]. Further enhancement of the λ3 value increases

the cross section again, which exceeds the SM value for λ3 > 5λSM3 . The cross-section

also increases if the correction to λSM3 is negative. The bb̄γγ, bb̄τ+τ−, bb̄W+W− and bbb̄b̄

channels [114–122] have been studied. These studies showed that around 50% accuracy can

be achieved from the bb̄γγ channel alone assuming that λ3 is not too far away from its SM

value and the acceptance for different values of λ3 stays the same. However, as pointed out

in [118], the acceptance drops significantly for large values of λ3. In this article we perform a

detailed study of the impact of a large deviation from λSM3 on the double Higgs production

process. We also present an analysis of the LHC searches for this process including relevant

QCD background contributions that have been overlooked in the previous studies.

The organization of this article is as follows : In Sec. 3.2, we calculate the values of λ3

if the EPT is first order in a simplified model, where we include higher order terms in the

effective potential. In Sec. 3.4, we compare our results to those obtained in singlet extensions

like the ones that may be obtained from the scalar Higgs sector in the Next to Minimal

Supersymmetric Standard Model (NMSSM). In Sec. 3.5, we discuss the measurement of λ3

at the LHC, for the SM-like values as well as for values of λ3 that present a large positive

or negative deviation with respect to the SM value. We reserve Sec. 3.6 for the conclusions

and some technical details to the Appendices.

3.2 The Effective Potential and the Trilinear Higgs Coupling

A modification of the nature of the phase transition may be achieved by adding extra terms

to the Higgs potential [123–125]. These may appear through relevant temperature dependent

modifications of the Higgs potential, beyond those associated with the increase of the effective

mass parameter, which lead to the symmetry restoration phenomenon (see, for example,

Refs. [126–139]).

Alternatively, these effects may be already present at zero temperature, through addi-
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tional terms in the Higgs potential induced by integrating out new physics at the scales above

the weak scale. In this section we concentrate on the second possibility and illustrate the

impact of such additional terms on the enhancement of λ3 in minimally extended models.

Several simple extensions of the SM are capable of generating the required extra terms

in the potential and have been studied in the literature [94–101, 140–144]. In Sec. 3.4, we

analyze one such example, where a gauge singlet is added to the SM. This can lead to a

relevant modification of the trilinear Higgs coupling with respect to the SM value λSM3 , even

for values of the singlet mass much larger than the weak scale. In such a case, the singlet

decouples from physics processes at the LHC, allowing a comparison of these results with

the ones obtained in the effective low energy field theory.

In this section, we take a general approach to the effective field theory (EFT), where

non-renormalizable terms are added to the Higgs potential. We investigate whether these

can potentially generate considerably larger cross-sections for gg → hh process compared to

the standard model. We also explore the possibility of these being compatible with a strongly

first order electroweak phase transition (SFOEPT). Such modifications to λSM3 would make

for a viable probe to the new physics at the LHC and beyond.

3.3 Non-renormalizable terms in the low energy Higgs potential

The general formalism in this section is as follows. All the tree-level effective operators

represented by powers of
(
φ†φ
)

are added to the usual Higgs potential at the temperature

T = 0 as follows

V (φ, 0) =
m2

2
(φ†φ) +

λ

4
(φ†φ)4 +

∞∑
n=1

c2n+4

2(n+2)Λ2n

(
φ†φ
)n+2

, (3.1)
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where φ = v + h and hence the VEV is given as 〈φ〉 = 246 GeV. This leads to a correction

to the SM value of the triple Higgs coupling as shown in the Appendix A.1.

λ3 =
3m2

h

v

(
1 +

8v2

3m2
h

∞∑
n=1

n(n+ 1)(n+ 2)c2n+4v
2n

2n+2Λ2n

)
. (3.2)

The non-zero temperature effects are approximately accounted for by adding a thermal

mass correction term to the Higgs potential. This term is generated in the high-T expansion

of the one loop thermal potential. At temperature T, we get m2(T ) = m2 + a0T
2. We

have ignored the small cubic term contributions as well as the logarithmic contributions

as they are suppressed compared to the contributions from higher order terms. Here we

have assumed that the heavy new physics is not present in the EFT at the weak scale and

therefore its contribution is Boltzmann suppressed at the EPT scale. In such a case a0 is a

constant proportional to the square of SM gauge and Yukawa coupling constants. Assuming

all c2n ' 1, the minimum value that Λ can achieve is 174 GeV in this formulation, at which

point the convergence of the series is lost for values of φ close to its VEV. However, in any

consistent EFT, the cut-off scale Λ will be considerably higher than 174 GeV.

Using Eq. (3.2), we define another quantity δ which quantifies the deviations of the

trilinear Higgs coupling with respect to the SM value as

δ =
λ3

λSM3

− 1 =
8v2

3m2
h

∞∑
n=1

n(n+ 1)(n+ 2)c2n+4v
2n

2n+2Λ2n
, (3.3)

where we restrict |c2n+4| < 1.

The values of the enhancement of λ3 for a given Λ for all potentials satisfying these

conditions are shown in Fig. 3.1. This maximal possible value, shown in the the upper-most

black (dashed) line in all the panels in Fig. 3.1, is obtained assuming all c2n = 1 and leads to

a large enhancement even at a relatively large value of Λ. However, the only condition that

we have imposed on the potential so far is the existence of a local minimum with a second

derivative consistent with the measured Higgs mass mh ' 125 GeV. For this minimum
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to represent the physical vacuum of the theory, however, it should be a global one. As

we shall show, the global minimum requirement imposes strong constraints on the possible

enhancement of the triple Higgs coupling.

In our further analysis, we choose not to consider the terms of the order higher than(
φ†φ
)5

as they introduce negligible corrections for the cut-offs higher than v as shown in

Fig. 3.1. We separately analyze the nature of the phase transition and the maximum positive

and negative values for δ in each of the three cases corresponding to
(
φ†φ
)3

,
(
φ†φ
)4

and(
φ†φ
)5

. Let us stress that these momentum independent operators preserve the custodial

symmetry and evade the tight phenomenological constraints coming from the ρ parame-

ter. The momentum dependent non-renormalizable operators [101, 145–147], instead, may

contribute to the oblique corrections and are very tightly constrained by the electroweak

precision measurements. A particularly relevant one for our analysis is

cH
8Λ2

∂µ(φ†φ)∂µ(φ†φ), (3.4)

This correction plays a relevant role in the singlet case that we shall discuss below, but is

also restricted by Higgs precision measurements and tend to be small. Hence, in most of our

analysis we shall ignore the momentum dependent corrections but we shall consider them in

the comparison with the singlet case in section 3.4.2.

3.3.1 Higgs Potential of order (φ†φ)3

From Eq. (3.1) and Eq. (3.2), the potential and the triple Higgs coupling are given by

V (φ, T ) =
m2 + a0T

2

2

(
φ†φ
)

+
λ

4

(
φ†φ
)2

+
c6

8Λ2

(
φ†φ
)3

(3.5)

λ3 =
3m2

h

v

(
1 +

2c6v
4

m2
hΛ2

)
(3.6)
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This case has been studied in the literature in various contexts [94–101]. We point out a few

key things pertaining to this case in the present context.

We require c6 > 0 for the stability of the potential. The requirement that there should

be a minimum of the potential at φ = φc degenerate with the extreme at φ = 0 for the

temperature T = Tc leads to

λ2 = 4m2(Tc)
c6
Λ2
. (3.7)

This implies that m2(T ), which is the curvature of the potential at φ = 0, should be greater

than zero at T = Tc for the phase transition to be of the first order. The minimum of the

potential at the critical temperature is at

(
φ
†
cφc

)
= v2

c = −λΛ2

c6
. (3.8)

what implies that an additional condition to obtain a FOEPT is that the effective quartic

coupling should be negative, namely λ < 0.

The value of the Higgs mass imposes a relation between λ and c6, namely

λ+
3c6
2Λ2

v2 =
m2
h

2v2
(3.9)

Using Eq. (3.8) and Eq. (3.9) gives

c6
Λ2

=
m2
h

3v2
(
v2 − 2

3v
2
c

) (3.10)

From where all coefficients m2, λ and c6 may be written in terms of the mh, vc and v. Using

these relations one obtains
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T 2
c =

3c6
4Λ2a0

(
v2 − v2

c

)(
v2 − v2

c

3

)
. (3.11)

Demanding both c6 and T 2
c to be positive, we get vc < v. This translates into an upper

bound on c6 using Eq. (3.10)

c6
Λ2

<
m2
h

v4
. (3.12)

Then from the Eq. (3.6), we conclude that the coupling can be enhanced by a factor

of three at most. Moreover, demanding v2
c > 0, or equivalently λ < 0, puts an additional

constraint on the obtention of a FOEPT, namely

c6
Λ2

>
m2
h

3v4
(3.13)

what implies a minimal enhancement of a factor two thirds.

This implies that a FOEPT may only be obtained if the following conditions are fulfilled.

2

3
≤ δ ≤ 2. (3.14)

Moreover, for c6 = 1, Eq (3.12) and Eq (3.13) imply a bound on the effective cutoff Λ,

namely

v2

mh
< Λ <

√
3v2

mh
, (3.15)

which correspond to upper and lower bounds on Λ of approximately 484 GeV and 838 GeV

respectively, and larger enhancement δ is obtained for the smaller values of the cutoff. The

phase transition becomes stronger first order for smaller values of the cutoff and becomes a

weakly first order one for values of Λ close to the upper bound in Eq. 3.15. Let us stress that
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for values of Λ below the lower bound in Eq. 3.15, Λ < 484 GeV, the minimum at T = 0 is

no longer a global minimum and hence electroweak symmetry breaking does not occur.

Figure 3.1: Triple Higgs coupling correction δ as a function of the cutoff Λ. The upper
dashed black line shows the maximum value of δ for the infinite sum with all |c2n| = 1.

The dashed dark blue shows the values consistent with a FOEPT for the
(
φ†φ
)3

potential

extension, for c6 = 1, while for the same conditions solid light blue line is forbidden due
to the absence of electroweak symmetry breakdown. Fig. 1(a) and 1(b) show the results

for the
(
φ†φ
)4

potential. The different colors correspond to the different hierarchies of

the effective potential coefficients as explained in the text. Fig.1(a) shows the general case
while the Fig. 1(b) shows the result if a first order electroweak phase transition (FOEPT)

is demanded. Fig. 1(c) and 1(d) show similar results but for the
(
φ†φ
)5

potential, with

different colors again corresponding to different coefficient hierarchies defined in the text.
The lower solid black line shows the maximal negative values of δ possible for the order(
φ†φ
)4

potential.

In Fig 3.1, we show the possible triple Higgs coupling enhancement factor δ as a function

of the cutoff Λ for different extensions of the SM effective potential. The particular case of
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the potential of order
(
φ†φ
)3

is represented by the blue curve. The maximum enhancement

λ3 = 3λSM3 is achieved at Λ ∼ 484 GeV. For the cut-offs above Λ ∼ 838 GeV, not shown

in the figure, the phase transition is not first order anymore, but the Higgs potential is still

a viable one. Note that the low value of the cut-off does not necessarily correspond to any

physical mass scale, as will be discussed in the singlet case, in Sec. 3.4.

Let us note before closing that in Ref. [148] it is found that for a FOEPT to take place,

the enhancement due to a six-dimensional operator to the Higgs potential cannot be larger

than ∼ 20%. In order to understand the difference of their result with ours we notice that

in their normalization, the coefficient of the (φ†φ)3 term is written as c̄6λ
f2 , where λ is the

coefficient of the (φ†φ)2 term. The discrepancy is due to the assumption in Ref. [148] that

c̄6 > 0 and c̄6v
2/f2 small. As we showed above, for a FOEPT to take place, the effective

quartic coupling λ < 0, which means c̄6 < 0 is required for the stability of the potential.

Also, for λ < 0, the required condition to obtain a positive Higgs mass is c̄6v
2/f2 < −2

3 .

Thus, in the notation of Ref. [148], |c̄6|v2/f2 cannot be used as a small expansion parameter

in the region of parameters consistent with a FOEPT. Finally, the upper bound assumed on

c̄6/Λ
2, coming from Ref. [95], is similar to the one we derived in Eq. (3.12) and is applicable

to c6/Λ
2 and not to c̄6/Λ

2.

3.3.2 Higgs Potential of order (φ†φ)4

From Eq. (3.1) and Eq. (3.2), the potential and the triple Higgs coupling are

V (φ, T ) =
m2 + a0T

2

2

(
φ†φ
)

+
λ

4

(
φ†φ
)2

+
c6

8Λ2

(
φ†φ
)3

+
c8

16Λ4

(
φ†φ
)4

(3.16)

λ3 =
3m2

h

v

(
1 +

2c6v
4

m2
hΛ2

+
4c8v

6

m2
hΛ4

)
(3.17)

This case is particularly interesting because contrary to the (φ†φ)3 case, the trilinear

Higgs couplings may be either enhanced or suppressed and one can even get an inversion of

the sign of λ3 with respect to λSM3 . As mentioned before, a suppression or change of sign
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of λ3 would be interesting from the collider perspective as it avoids the problem of a strong

destructive interference between the box and the triangle diagrams for gg → hh.

The orange and green regions in Fig. 3.1(a) and Fig. 3.1(b) correspond to the regions

consistent with the experimental values of the Higgs mass and the Higgs VEV. Fig. 3.1(a)

shows the possible modifications (δ) of the λSM3 possible in this case. Fig. 3.1(b) outlines

the region in Fig. 3.1(a) which corresponds to the FOEPT. This shows that an inversion of

sign or suppression of λ3 with respect to λSM3 necessarily implies that the phase transition is

not a first order one. In the construction of Fig. 3.1(b), we have not considered the region of

the parameter space corresponding to potentials with barriers between the minima at φ = 0

and φ = v at T = 0. This is due to the fact that a metastability analysis would be required

to determine the part of this region in which a FOEPT takes place. Therefore, this rather

small region is neglected in our analysis. As a result of this, a small part of the dashed blue

curve is not surrounded by the shaded regions. The same is true for Fig. 3.1(d).

In Fig. 3.1(a) and Fig. 3.1(b), the different colors indicate different regions of the param-

eter space. The orange region corresponds to |c6| = 1, 0 < c8 < 1, while the green region

corresponds to |c6| < 1, c8 = 1. The regions can overlap, because a different combination

of c6 and c8 can produce the same value of δ for the same cut-off. In fact, beneath all of

the orange region above the blue curve, there exists a green region. We observe that it is

possible to obtain λ3 values ranging from −2λSM3 to 6λSM3 for cut-offs higher than 250 GeV.

Demanding a FOEPT reduces it to a smaller range from 5
3λ

SM
3 to 5λSM3 . We also note from

Fig. 3.1(b) that the FOEPT has a lower bound on the cut-off ∼ 300 GeV, which is somewhat

lower than in the (φ†φ)3 case. Note that, the contribution to λ3 from the dim-8 operators

is suppressed compared to that from the dim-6 operators. The fact that in a (φ†φ)4 theory,

λ3 has a much larger range in the general case compared to a (φ†φ)3 theory, and in the

region consistent with the FOEPT is because with c8 being a positive number, c6 is allowed

to take negative values in the range of |c6| < 1 in a (φ†φ)4 theory, while 0 < c6 < 1 has to

be fulfilled in a (φ†φ)3 theory.
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Let us stress that negative values of δ imply that the curvature is decreasing at φ = v. If

this behavior is preserved at larger values of φ, one would expect a maximum of the potential

for φ > v. Then the stability of the potential means there has to be one more minimum

for φ > v. The deeper the extra minimum, the more negative is the value of λ3. Thus,

demanding the physical minimum to be a global one, a maximal negative value would occur

at the point where both minima have the same potential value.

In order to retain the analytic control, we plot the analytical bound coming from the

point marking the end of the absolute stability. For (φ†φ)4 case, this bound is the black

curve at the bottom of each panel of Fig. 3.1. As shown in appendix A.2, this maximally

negative enhancement is given as

δ > − x

1 +
√

1 + x
, where x =

4v4

m2
hΛ2

. (3.18)

Observe, however, that for Λ ' 250 GeV the second minimum would occur at values of φ

of order or larger than Λ, and hence this analytical result should be taken with care. The

numerical results of Fig. 3.1 were obtained by only demanding the physical minimum to be

the global one. The largest negative enhancements obtained numerically are consistent with

the predictions of Eq. (3.18) up to values of Λ ' v. Let us stress again that although we

show examples with very low cutoff values, those low cutoff values may be hard to realize in

any realistic model.

3.3.3 Higgs Potential of order (φ†φ)5

From Eq. (3.1) and Eq. (3.2), the potential and the triple Higgs coupling in this case are

V (φ, T ) =
m2 + a0T

2

2

(
φ†φ
)

+
λ

4

(
φ†φ
)2

+
c6

8Λ2

(
φ†φ
)3

+
c8

16Λ4

(
φ†φ
)4

+
c10

32Λ6

(
φ†φ
)5

(3.19)

λ3 =
3m2

h

v

(
1 +

2 c6v
4

m2
hΛ2

+
4 c8v

6

m2
hΛ4

+
5 c10v

8

m2
hΛ6

)
(3.20)
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Most of the analysis is the same as that for the
(
φ†φ
)4

case, and the extra minimum

develops for φ > v, when the correction to λSM3 is negative. Barring the possibility of

metastability, the bound on the maximal negative correction corresponds to the point in

which the extra minimum is degenerate with the physical one.
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Figure 3.2: Example of order (φ†φ)5 potentials that correspond to the negative correction
and also produce SFOEPT. In the left panel, the red line indicate the potential at T = 0,
the blue line correspond to the temperature where the curvature at φ = 0 is 0. The green
line correspond to the intermediate temperature of ∼ 35 GeV. The purple curve on the right
shows the potential at T = Tc. The coefficients c6 = 0.906, c8 = −1, c10 = 0.346, while
Λ ∼ 263 GeV, Tc ∼ 44 GeV assuming a0 ∼ 3 as in the SM and δ = −1.23.

Fig. 3.1.c shows the possible modifications to λSM3 by viable Higgs potentials that obey

the experimental constraints on the Higgs mass and the VEV. We see that for the cut-

offs near 250 GeV, one can obtain variation in the λ3 from −5λSM5 to 7λSM3 . Such large

deviations make the triple Higgs coupling measurements at the LHC an exciting probe to the

new physics. Fig. 3.1(d) shows a subset of the region in the left panel, in which a SFOEPT

can take place. The black and the blue lines are retained from the Fig. 3.1.a and Fig. 3.1.b

and serve as a reference for the comparison between the top and the bottom rows.

In Fig. 3.1.c and Fig 3.1.d the orange regions correspond to |c6| = 1, |c8| < 1, 0 < c10 < 1,

green region corresponds to |c6| < 1, |c8| = 1, 0 < c10 < 1 and the purple region corresponds
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to |c6| < 1, |c8| < 1, c10 = 1. As expected, two clusters are observed in the orange and green

regions corresponding to the sign flips of c6 and c8 respectively. As in the case of (φ†φ)4, there

is overlap between the regions. The green region being present beneath all the area occupied

by the orange region, while the purple region is present beneath all the area occupied by the

other two colors.

An interesting feature of this kind of potential is the presence of negative enhancements

in Fig. 3.1.d for the orange and green regions. This means that in principle there are regions

of parameters in which a negative enhancement of λ3 may be obtained consistently with a

FOEPT.

Fig. 3.2 shows an example of the Higgs potentials, which is of order (φ†φ)5, and satisfies

the Higgs mass and the VEV constraints and also undergo a SFOEPT with large negative

enhancements of the triple Higgs coupling. In the left panel, the red line at the bottom

corresponds to the potential at T = 0, while the blue line depicts the potential at T = Tf

that corresponds to the curvature at φ = 0 being 0. The green (dashed) line represents an

intermediate temperature. In the right panel, the purple curve shows the phase transition

of the corresponding potential in the left panel at T = Tc. Let us stress that negative

enhancements of the triple Higgs couplings are only consistent with a FOEPT for small

values of the cutoff, Λ <∼ 350 GeV. Hence, the correlation between the negative enhancements

and the absence of a FOEPT remains generally valid.

3.4 Minimal extension with a singlet

Minimal extensions of the SM with just one singlet and their impact on electroweak baryoge-

nesis have been studied in the literature [96, 97, 99, 148–154]. Well motivated UV complete

scenarios such as the NMSSM also have an additional singlet, which can mix with the SM

Higgs [94].

In subsection A we calculate the maximum enhancement of the triple Higgs coupling

that can be allowed under the constraints of electroweak baryogenesis and the experimental
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constraints coming from the LHC. In subsection B we assume that the singlet is heavy

and integrate it out giving rise to an EFT. The resultant expressions for the triple Higgs

enhancement and bounds on the FOEPT region can be shown to be the same as those

generated from the full Lagrangian in the small mixing angle limit. At the same time,

this approach represents an example of the potentials discussed in the previous section and

therefore allows to discuss the validity and limitations of the effective theory approach.

3.4.1 Enhancement in the full scalar Lagrangian of the singlet extension

Consider a general scalar potential, with one-loop thermal correction only in the mass term,

that can be written in a canonically normalized Lagrangian for the SM extended with one

singlet field φs

V (φh, φs, T ) =
m2

0 + a0T
2

2
φ2
h +

λh
4
φ4
h + ahsφsφ

2
h +

λhs
2
φ2
sφ

2
h + tsφs +

m2
s

2
φ2
s +

as
3
φ3
s +

λs
4
φ4
s

(3.21)

Here, φh is the higgs field. The VEV for the Higgs field is v = 246 GeV. We assume that ms

is larger than the weak scale and we therefore ignore the very small temperature corrections

affecting the singlet mass.

We stay in the limit, where as and λs are much smaller compared to ahs and λhs and drop

the as and λs terms. In this limit, we can retain analytical control over the expressions for

the mixing and triple Higgs enhancement, which helps us clearly demonstrate the connection

with the EFT. Within this approximation, the mass squared matrix in the basis (φh φs) is

M2 =

m2
11 m2

12

m2
21 m2

22

 =

 2λhv
2 2 (ahs + λhsvs) v

2 (ahs + λhsvs) v m2
s + λhsv

2

 , (3.22)

56



where the VEV of the singlet field calculated at the Higgs vacuum is

vs = − ts + ahsv
2

m2
s + λhsv

2
. (3.23)

The gauge eigenstate basis can be converted to the mass eigenstate basis as follows

φh = cos θ h1 − sin θ h2 + v, (3.24)

φs = sin θ h1 + cos θ h2 + vs. (3.25)

The mixing is given as

tan 2θ =
4v(ahs + λhsvs)

2λhv
2 −m2

s − λhsv2
=

4v(ahsm
2
s − tsλhs)

(2λhv
2 −m2

s − λhsv2)(m2
s + λhsv

2)
(3.26)

We use Equations (3.22) and (3.26), to convert the potential in Eq. (3.21) to the mass

basis (h2 h1) at the temperature T = 0, where h1 is the lighter of the two scalar fields.

The third derivative of the potential in Eq. (3.21) with respect to h1 gives the triple Higgs

coupling for the lower mass excitation as

λ3 = 6λhvh cos3 θ

[
1 +

(
λhsvs + ahs

λhvh

)
tan θ +

λhs
λh

tan2 θ

]
. (3.27)

In the limit of v2 � m2
s, one can easily show that the h1 mass is given by

m2
h = 2λhv

2 − 4v2 (ahsm
2
s − tsλhs)2

(m2
s + λhsv

2)3
(3.28)

Using Eq. (3.29), Eq. (3.28), and Eq. (3.26), we get

λ3 =
3m2

h

v

[
cos3 θ +

(
2λhsv

2

m2
h

)
sin2 θ cos θ

]
. (3.29)

For θ = 0, we recover the SM result of λ3 =
3m2

h
v .
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In the small θ limit, the above formula reduces to

λ3 =
3m2

h

v

[
1 +

(
2λhsv

2

m2
h

− 3

2

)
tan2 θ

]
. (3.30)

The same result can be recovered in the EFT approach by integrating out the heavier

state as shown in the next section 3.4.2. For the FOEPT in such a potential, we impose the

following conditions.

V (0, Tc) = V (vc, Tc) , V ′ (vc, Tc) = 0. (3.31)

This leads to [94]

v2
c =

1

λhs

(
−m2

s +

√
2

λh

∣∣∣∣ms ahs −
λhs ts
ms

∣∣∣∣
)
. (3.32)

Here vc is the value of the doublet scalar field at the critical Temperature (Tc). The value

of S is set to

vs,c = − ts + ahsv
2
c

m2
s + λhsv

2
c
, (3.33)

which minimizes the potential at φh = vc. The constraints on the derivatives

V ′ (φc, Tc) = 0, V ′ (v, 0) = 0, (3.34)

imply a0T
2
c = 8

(
F (v2

c )− F (v2)
)
. Here F (φ2) = −V

′(φ,0)
φ and v = 246 GeV.

In Fig. 3.3 we show the enhancements of the trilinear couplings for different values of

the singlet mass msinglet and the quartic coupling λh. The orange region in the Fig. 3.3

corresponds to the region consistent with a FOEPT, i.e. the boundaries correspond to

v2
c = 0 and T 2

c = 0.

From Eq. (3.32) and Eq. (3.28), it follows that for Tc = 0, or equivalently vc = v one
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Figure 3.3: Contours of the mixing parameter sin2 θ (solid blue line) and of the enhancement
of the triple-Higgs coupling (dashed green line) given by Eq. (3.29) in the msinglet–λh plane.
Blue shaded region denotes 2σ exclusion due to gluon fusion channel. The orange shaded
region represents the region consistent with a FOEPT. The region excluded up to 2σ confi-
dence level by Higgs precision measurements is shaded in red. The constraints coming from
mW are shown by magenta (short-dashed) lines. In the top-left panel we present results for
λhs = 0.5, while in the top-right, bottom-left and bottom-right panels we present results for
λhs = 1, 2, 4 respectively.
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obtains

tan2 θ(vc = v) '
m2
h

λhsv
2

(3.35)

Similarly, for vc = 0, one obtains

tan2 θ(vc = 0) '
m2
h

3λhsv2
(3.36)

Using these expressions for small mixing angles, Eq. (3.30), one can easily show that

δ(vc = v) ' 2−
3 m2

h

2λhsv
2

(3.37)

while in the case of vc = 0 one obtains

δ(vc = 0) ' 2

3
−

m2
h

2λhsv
2
. (3.38)

The region compatible with a FOEPT is always between these boundaries of vc = 0

and vc = v. Thus, the enhancement to the triple Higgs coupling is always less than 3, a

result similar to the one obtained in the (φ†φ)3 extension of the Higgs potential discussed in

section 3.3.1. Finally, let us mention that the SFOEPT constraint of vc > 0.6Tc, is almost

always satisfied in the showed orange region.

In Fig. 3.3, we also show experimental constraints coming from Higgs physics and elec-

troweak precision measurements. The mixing parameter sin2 θ is denoted by the blue con-

tours. The precision measurements of the SM-like Higgs properties at the LHC already

impose strong constraints on the possible mixing angle of the singlet with the doublet. For

example, the measurement of the Higgs production signal rates imposes an upper bound

on sin2 θ. If one takes the gluon fusion production process, the combined measurement of

ATLAS and CMS gives a signal strength [35]

µggF = 1.03+0.17
−0.15. (3.39)
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When the other subleading processes, including the weak boson fusion, associated production

and tth production are considered z, one obtains a combined signal strength

µ = 1.09+0.11
−0.10. (3.40)

Since the mixing with a singlet leads to an overall decrease of all couplings to fermions

and gauge bosons, the Higgs decay branching ratios will not be affected and the signal

strength will be proportional to cos2 θ. Hence, from Eqs. (3.39) and (3.40) one obtains a

95% confidence level upper bound on sin2 θ, namely

sin2 θ < 0.11 (3.41)

if the fit to all production processes is considered, and sin2 θ < 0.27 if only the more precisely

measured gluon fusion processes are considered. In our work, we shall considered both

bounds, as an indication of the constraints on the possible realization of this scenario.

In the case of small θ, as seen from the Eq. (3.30), the correction to λ3 compared to the

SM is proportional to sin2 θ. From this, it is evident that the upper bound on the mixing

will be translated into an upper bound on the enhancement of λ3,

δ < sin2 θmax

(
2λhsv

2

m2
h

− 3

2

)
∼ sin2 θmax

(
8λhs −

3

2

)
. (3.42)

Hence, these constraints become more severe for smaller values of λhs.

From Eqs. (3.30) and (3.42), we also see that reducing λhs below
3m2

h
4v2 leads to small

negative values of δ. Therefore, a small suppression of the triple higgs coupling with respect

to the SM is viable for these values of λhs. As shown in Fig. 3.3, for these values of λhs the

FOEPT region shifts rapidly to the higher mixing values and becomes unviable. Thus, there

is trade-off between FOEPT and supression of the triple Higgs coupling with respect to the

SM as shown in the EFT case in the previous section.
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Moreover, a light singlet that mixes with the SM Higgs will be produced at the LHC and

may be searched for in various decay channels. This puts an additional constraint on the

realization of this model, which is also shown in Fig. 3.3. The region to the left of the dark

red solid line is excluded by the Higgs searches in the WW and ZZ channels [155].

The mixing between the doublet and the singlet is also constrained by precision W mass

measurement [156, 157]. The world average for the mass of the W boson is [158]:

mW = 80.385 ± 0.015 GeV (3.43)

including data from LEP II [159], CDF [160] and D0 [161]. The prediction of the W mass is

obtained by calculating the muon life time, which yields the relation,

m2
W (1−

m2
W

m2
Z

) =
πα√
2GF

(1 + ∆r), (3.44)

where ∆r summarizes the radiative corrections. In the SM, mSM
W = 80.361±0.007 GeV [162,

163], which corresponds to ∆rSM = (37.979 ± 0.406) × 10−3 , with the mass of the Higgs

mh = 125 GeV. From Eq (3.44), ∆rexp = (36.32 ± 0.96) × 10−3, which is about 1.7σ from

the SM value. ∆r can be parametrized as

∆r = ∆α +
c2w
s2
w

(
δm2

Z

m2
Z

−
δm2

W

m2
W

) + (∆r)rem, (3.45)

where ∆α is the radiative correction to the fine structure constant α, and cw and sw are

the cosine and sine of the weak mixing angle. The second term is the on-shell self-energy

correction to the gauge boson masses, which is well approximated by its value at zero mo-

menta, and relates to the ρ parameter as − c
2
w
s2
w

∆ρ. The last term, (∆r)rem, includes vertex

corrections and box diagrams at one loop level, which are subleading. In the case of having
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a singlet mixed with the SM Higgs, ∆r is given by

∆r = ∆rSM − c2w
s2
w

(∆ρsinglet −∆ρSM ), (3.46)

where ∆ρsinglet and ∆ρSM are the ∆ρ calculated in the the case with a mixed-in singlet and

the SM [164].

∆ρsinglet −∆ρSM = GF
m2
Z

2
√

2π2
sin2θ

(
HT (

m2
Singlet

m2
Z

)−HT (
m2
h

m2
Z

)

)
, (3.47)

where

HT (x) =
3

4
x

(
log(x)

1− x
−

log(x×m2
Z/m

2
W )

1− x×m2
Z/m

2
W

)
. (3.48)

The constraints on sin2 θ obtained from the W mass become quite severe since as men-

tioned above, the SM is already in tension with the W mass measurement, and the singlet

contribution increases this tension. The 2 σ constraint coming from ∆r calculated from

Eq (3.46) is shown by the lowered dashed magenta line in Fig. 3.3. On the other hand, if

one assumes that some other new physics, which does not modify the loop induced Higgs

production processes in a relevant way is responsible for the difference between the SM and

the current W mass measurement the bounds become significantly weaker as seen from the

upper dashed magenta line in Fig. 3.3. It follows from Fig. 3.3 that even considering the

tight constraints coming from Higgs measurements and precision electroweak parameters, a

strongly first order phase transition is possible in these scenarios, provided λhs
>∼ 1. Large

values of the singlet mass, of the order of the TeV scale, are possible in this case, making

sin2 θ small. In our analysis, we ignore the one loop contributions to the effective potential

since they are suppressed compared to the tree level mixing effects. When λhs is sizable, as

we show in the lower panels in Fig. 3.3, those corrections may not be negligible and should

be taken into account in a more refine analysis of the critical parameters.

Before concentrating on the EFT analysis let us stress that an important contribution to
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the double Higgs production cross section that is always missed in this analysis is the resonant

double Higgs production induced by the singlet. This can lead to a relevant contribution if

the singlet is below the TeV scale and the mixing is sizable [165]. For instance, at the LHC

with a center of mass energy of 14 TeV a 500 GeV singlet with a mixing of sin2 θ = 0.2,

will lead to a resonant production cross section through gluon fusion for the singlet of about

1.13 pb [166]. Under these conditions the branching ratio BR(S → hh) ∼ 0.013. Then

the double Higgs production rate induced by the singlet is about 15 fb, which is about

a factor of 4 smaller than the SM double Higgs production rate. Such a singlet would

show up in the invariant mass distribution as a narrow resonance, as the singlet width is

about 17 GeV. When the singlet gets heavier, say about 1 TeV, and for a mixing angle

sin2 θ = 0.1, the double Higgs production induced by the singlet is reduced to about 2.6 fb,

which is significantly suppressed compared to the double Higgs production from the box and

triangle diagrams, and difficult to detect in the standard decay channels. Then, in the region

of a heavy singlet and small mixing angle, the EFT gives a proper description of the physics

involved in double Higgs production. In this case, the singlet presence may only be inferred

indirectly and one can make contact with an effective theory description of the modification

of the trilinear couplings and of the double Higgs production rate.

3.4.2 EFT formulation for the singlet extension

In the limit of large values of the singlet mass ms, and small mixing between the SM-like

Higgs and the heavy singlet, we can integrate out the heavy singlet, and the resulting EFT

should describe the same physics as we have described in the previous subsection.

For momenta very small compared to the masses of the scalars, solving the equation of

motion for the singlet gives

φs = − ts + ahsh
2

m2
s + λhsh

2
. (3.49)
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Substituting this into the original potential in Eq. (3.21) yields an effective potential for h,

which is given by [94]

V (h, T ) =
m2(T )

2
φ2
h +

λh
4
φ4
h −

(
ts + ahsφ

2
h

)2
2
(
m2
s + λhsφ

2
h

) . (3.50)

where m2(T ) = m2
0 +a0T

2. The integration out of the singlet also leads to a modification of

the Higgs kinetic term, which means that the well normalized Higgs field H will no longer be

given by h, but will be affected by the mixing with the singlet. In other words, substituting

the EOM of S in its kinetic term leads to an h dependent normalization factor,

(∂µφh)(∂µφh) + (∂µφs)(∂
µφs)→

(
1 +

4φ2
h(am2

s − tsλhs)2

(ms2 + λhsφ
2
h)4

)
(∂µφh)(∂µφh). (3.51)

Demanding H to be well normalized and retaining up to first order in the small parameter

z =
(am2

s − tλhs)2v2

m8
s

(3.52)

we obtain

φH = φh +
2zφ3

h

3 v2
+O(φ5

h). (3.53)

The corresponding cH is

cH
4Λ2

=
z

v2
. (3.54)

The variable z defined above is related to the mixing angle between the singlet and the

doublet. From Eq. (3.26), we can write

tan2 2θ =
16z

(2λhy − 1− λhsy)2 (1 + λhsy)2
= 4 tan2 θ +O(tan3 θ). (3.55)
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Substituting Eq. (3.61) and retaining first order in z we get

tan2 2θ = 16z +O(z2) = 4 tan2 θ +O(tan3 θ) =⇒ tan2 θ ∼ 4z (3.56)

Inverting the relation between φh and φH given in Eq. (3.53) one obtains

φh = φH −
2z

3 v2
φ3
H +O(φ5

H), (3.57)

Substituting this in Eq. (3.50), we get an effective potential, which retaining up to order H6

corrections is given by

Veff (φH , T ) =
m2

2
φ2
H +

(
λh − 2z/y

4
− 2m2z

3v2

)
φ4
H +

(
−4z(λh − 2z/y) + 3zλhs

6v2

)
φ6
H ,

(3.58)

where y = v2/m2
s. This shows that the presence of a large negative correction to the quartic

coupling, of order 2z/y. This correction, which depends only on ratios of mass parameters,

allows for the presence of a negative effective quartic coupling which according to our analysis

of the EFT at this order in section 3.3.1, is essential for the obtention of a FOEPT.

Using this potential Eq. (3.50) we apply the Higgs mass condition to write

(
V ′′eff −

V ′eff
φH

)∣∣∣∣
φH=〈φH〉

= m2
H , where 〈φH〉 = v +

2zv

3
. (3.59)

Solving this simultaneously with

V ′eff
φH

∣∣∣∣
φH=〈φH〉

= 0, (3.60)
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leads to a relation of the value of λ and the Higgs mass.

λ = λh −
2z

y
=
m2
H

2v2
+

(
2m2

H

v2
− 6λhs

)
z. (3.61)

Since m2
H/(2v

2) ' 1/8, for small values of z the coefficient of the quartic coupling λ is small

in magnitude and may be negative for λhs of order 1.

Moreover, a sizable correction to the sixth order term appears, which is there even in

the absence of kinetic terms corrections. Observe that λh − 2z/y, which as shown above

corresponds to λ in the EFT analysis, appears also in the first term in the φ6
H coefficient.

Since λ is small as discussed above, the φ6
H coefficient is dominated by the second term in

the bracket. The cut off scale can be then calculated from

c6
8Λ2

∼ 3λhsz

6v2
=
λhs(am

2
s − tλhs)2

2m8
s

. (3.62)

The corresponding cutoff scale is, for c6 = 1

Λ2 =
m8
s

4λhs(am
2
s − tλhs)2

. (3.63)

Thus, when (am2
s − tλhs) and λhs become sizable, Λ could be significantly lower than ms.

However, am2
s − tλhs is related to sin2 θ, which is constrained by electroweak symmetry

breaking, precision Higgs measurements, heavy SM-like Higgs searches, and W mass as

discussed above, the cutoff scale can not be lowered arbitrarily. For example, since λ is

small, from Eq. (3.61), we have

λh ∼
2z

y
=

2(am2
s − tλhs)2

m6
s

. (3.64)

Then the cutoff scale is about

Λ2 ∼ m2
s

2λhλhs.
(3.65)
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It is instructive to compare these results with those shown in Fig. 3.3. For instance, when

msinglet is about 1.4 TeV, λhs = 2, and λh = 2, that is close to the boundary of the orange

region in the bottom-left panel of Fig. 3.3, the cutoff scale is about 494 GeV, which is about

the lower bound of the cutoff scale in a (φ†φ)3 theory and is consistent with the left boundary

of the orange region in this figure. Similarly, for the same results of λh and λhs, and for

msinglet = 2.4 TeV, that is closed to the other boundary in the bottom-left panel of Fig. 3.3,

the effective cutoff scale that is obtained from Eq. (3.65) is about 848 GeV that is very close

to the upper bound on Λ that is obtained for a FOEPT in the (φ†φ)3 extension. One can

check that similar values of the cutoff are obtained at the left and right boundaries of the

orange regions in Fig. 3.3 for other values of λh, λhs and msinglet.

After substituting Eq. (3.61) and considering the field fluctuations of the field φH ,

φH = vH +H, (3.66)

we obtain,

λ3 ≡ gHHH =
3m2

H

v

(
1 + 4 z

(
2λhsv

2

m2
H

− 3

2

))
. (3.67)

Using this in Eq. (3.67) we obtain

λ3 =
3m2

H

v

(
1 +

(
2λhsv

2

m2
h

− 3

2

)
tan2 θ

)
(3.68)

This formula is the same as that obtained in Eq. (3.30) from the small mixing limit of the

enhancement up to tan2 θ order in the full renormalizable Lagrangian. Thus, as expected,

the EFT approach is equivalent to the small mixing limit of the full theory. To make the

analogy more transparent let’s emphasize that from Eq. (3.57) the fluctuations of the field
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φh = v + h and H are related by

h =

(
1− tan2 θ

2

)
H ' cos θ H (3.69)

That is the same relation we obtain between h1 and h in the full theory, Eq. 3.24, when we

consider negligible h2 fluctuations associated with its decoupling from the low energy theory.

We note that the effective potential derived in Eq. (3.58) is of order φ6
H . This is the same

order as the (φ†φ)3 potential described in section 3.3.1. In this case, however, the range of

values of δ is not constrained from 2/3 to 2 as expected from the (φ†φ)3 theory, but is shifted

to lower values. This is due to the kinetic terms corrections we were not considered in the

analysis in Section 3.2. For λhs
>∼ 1, the kinetic term corrections remain significantly smaller

than the ones associated with the effective potential modification, which are controlled by the

λhs coupling. Expressing Eq. (3.67) in terms of c6 and cH , using Eq. (3.62) and Eq. (3.54),

we obtain

λ3 =
3m2

H

v

(
1 + c6

2v4

m2
hΛ2
− 3

2
cH

v2

Λ2

)
, (3.70)

This is consistent with Eq. (3.6) when cH = 0. Also, this is consistent with Eq.(34) in

Ref [148] and Eq. (124) of Ref. [167] when taking λ = m2
h/(2v

2). As mentioned before,

our expression is more suitable for the study of the region of parameters consistent with a

FOEPT in which λ is small and negative and the proper relation between λ and the Higgs

mass can only be obtained after including the higher order corrections proportional to c6,

Eq. (3.9).

Higher powers of φH in the Eq. (3.58) can be obtained by retaining more terms in the

expansions with respect to z and y variables. For instance, we have checked that at next

order the well normalized field is given by

φH = φh +
2zφ3

h

3v2
−

2(z2 + 4yzλhs)φ
5
h

5v4
(3.71)
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Expressing h in terms of H,

φh = φH −
2zφ3

H

3v2
+

2(13z2 + 12yzλhs)φ
5
H

15v4
(3.72)

one can obtain the value of δ, as we did below, that is given by

δ =

(
−6 +

8v2λhs
m2
h

)
z +

(
30− 48v2λhs

m2
h

)
z2 +

(
40λhs −

32v2λ2
hs

m2
h

)
yz (3.73)

That indeed reproduces the small θ expansion of the exact formula, Eq. (3.30).

Again, it is straightforward to see that H and h are related by

h =

(
1− tan2 θ

2
+

3 tan4 θ

8

)
H ' cos θ H (3.74)

as expected from the relation between h1 and h in the full theory, Eq. (3.24).

Before we concentrate on collider phenomenology, let us comment on the negative en-

hancement in a theory with a mixed-in singlet. Once a small singlet quartic coupling λs is

turned on to stabilize the potential, λhs can go to negative values, as long as |λhs| <
√
λhλs.

A small λs leads to a contribution to λ3 suppressed by sin3 θ, ∼ 6λsvs sin3 θ. As seen in

Eq. (3.68), a negative λhs provokes a negative enhancement while a small positive λs adds

negligible contribution to λ3. We note that, in the EFT context, the λs term generates a

term of order 1
4λs

a4
hs

ms8H
8 in the effective potential, and allows for the terms of order of H6

negative. Therefore, a theory with a negative λhs may results in a negative enhancement

in λ3 as we go beyond a (φ†φ)3 theory described before, as shown for instance in the green

region in Fig 3.1.

3.5 measurement of the triple Higgs coupling at the LHC

The triple Higgs coupling λ3 can be probed by the double Higgs production at the LHC.

At the leading order (LO), there are two diagrams contributing to the process. The triangle

70



diagram, which is sensitive to λ3 and the box diagram. The two diagrams interfere with

each other destructively. The LO matrix elements of the subprocess are known [168–170].

NLO QCD corrections are known [171] in an EFT approach, by applying the low energy

theorem (LET) [172] within the infinite quark mass approximation. NNLO corrections in

the large quark mass limit are calculated in [173–175]. Next-to-next-to-leading logarithmic

(NNLL) corrections are calculated in [176]. For our analysis, we shall take a NNLO K-

factor = 2.27 [173].

For our analysis, we assume the double Higgs production is modified because of the altered

λ3 coupling. The double Higgs production rate could also be modified by introducing new

particles that couple to gluon, and the Higgs in the loop [177, 178]. Those new particles

change the amplitudes corresponding to the triangle diagram and the box diagram at the

same time and also contribute to the single Higgs production, which is well measured at the

LHC. Therefore, those contributions are constrained and tend to be small for the double

Higgs production [178].

For the Higgs decays, we consider γγ, τ+τ−, W+W− and bb̄ modes, which are measured

in the single Higgs production at the LHC. The production rate of double Higgs is suppressed

by three orders of magnitude compared to the single Higgs production at the LHC [166], so

one of the two Higgs bosons needs to decay to bb̄ for statistics, and γγ, τ+τ−, and W+W−

modes can be considered for the other Higgs boson. We do not study the bb̄W+W− decay

mode due to the overwhelming tt̄ background, that renders a low significance [115, 116].

The four b final states suffers from a large QCD background and therefore are very difficult

for the LHC even in the boosted region of the Higgs, where the jet substructure techniques

may be used [115]. In this work, we are therefore going to focus on the bb̄γγ mode.

The irreducible background in the hh→ bb̄γγ channel include bb̄γγ, tt̄h(γγ) and z(bb̄)h(γγ)

processes. Considering the possibility that a charm or light quarks fake a bottom quark, and

a light jet fakes a photon, the processes cc̄γγ, jjγγ, and bγjj also contribute to the back-

ground. The tt̄h background can be efficiently suppressed by vetoing extra jets, leptons or
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missing energy. Requiring the invariant mass of the two b-jets, mbb̄ and the two photons,

mγγ within some window of the Higgs mass helps to reduce the Zh background and the

QCD background. In the previous studies, a cut on the invariant mass of the two Higgs

bosons, mhh [116, 118, 120], or some equivalent cuts were required [121] was imposed to

further reject the background. In those studies, it was shown that an O(1) precision in the

triple Higgs boson coupling λ3 may be achieved at the 14 TeV run of the LHC, with a high

integrated luminosity of order 3000 fb−1.
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Figure 3.4: Normalized mhh distributions for λ3 = λSM3 , λ3 = 2.45λSM3 and λ3 = 7λSM3
and λ3 = − 2 λSM3 . The cancellation between the box and triangle diagram is exact at

λ3 = 2.45λSM3 at 2mt threshold, that explains the dip. Note that the distribution shifts to
smaller values as λ3 increases
.

As pointed out in [118], and also noticed in [121], the acceptance for new physics with

large λ3 compared to the SM value is much lower for the same set of cuts. The reason for this

behavior is that the mhh distribution is very different for the SM and for new physics with
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a large λ3. When mhh is below the 2mt threshold, there are only real parts of the triangle

and the box diagram, and these two diagrams interfere with each other destructively. The

cancellation is exact at the 2 mt threshold at λ3 = 2.45λSM3 . When mhh is above the

2 mt threshold, imaginary parts start to develop, and the destructive interference is not as

strong as it is below the 2mt threshold. So as λ3 increases, the cross section increases more

significantly below the 2 mt threshold than above the 2 mt threshold. This means that, as

λ3 increases, the distribution of mhh shifts to smaller values, as shown in Fig 3.4, where

we plot the normalized mhh distribution using MCFM [179] for various values of λ3. Thus,

using the same set of cuts for new physics with a large λ3 lead to a low acceptance at the

LHC. Therefore, a modified cut on mhh, mhh < 2mt should be used when search for new

physics with a large λ3.

The mhh distribution also helps to distinguish positive and negative values of λ3. For

negative λ3, the mhh distribution shifts to larger values compared to the positive λ3 that

yields the same production for gluon fusion because of the constructive interference between

the box and the triangle diagrams, as shown in Fig 3.4. Then, the negative and positive

values of λ3 that have the same total rate of gluon fusion can be distinguished by studying

the mhh distribution.

3.5.1 Double Higgs production in the bb̄γγ channel

In order to understand the impact of the cuts in the mhh invariant mass distribution on the

reach for double Higgs production at the LHC and future colliders, we have performed a

collider study of this process for different values of the triple Higgs coupling and in different

Higgs decay channels. In spite of the low rate, one of the most sensitive channels is when

the Higgs decays into photons, since it allows a good Higgs reconstruction with relatively

low background. We therefore performed a collider study for the hh → bb̄γγ channel. The

signal with various values of λ3 is generated by MCFM [179] and passed to Pythia8 [180] for

parton shower and hadronization, and then passed to Delphes [181] for detector simulation.
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We apply a NNLO K-factor of about 2.27 for the signal [173], The background processes are

generated with MadGraph [182] and then passed to Pythia and Delphes. We apply a NLO

K-factor = 1.1 for tt̄h and a NNLO QCD, NLO EW K-factor = 1.33 for Zh [166]. There

are no higher order corrections known for the QCD backgrounds, and therefore, all the QCD

processes are normalized to LO. We take a b-tagging efficiency of 70% and a mistag rate of

24% for c-jets and 2% for light jets [183]. We adopt a photon tagging rate of 85% and a jet

to photon fake rate εj→γ = 1.2× 10−4 [184]. We require the following cuts

pt(b) > 30 GeV, |η(b)| < 2.5, pt(γ) > 30 GeV, |η(γ)| < 2.5

112.5 GeV < mbb < 137.5 GeV, 120 GeV < mγγ < 130 GeV. (3.75)

For the SM case, we further require

mhh > 350 GeV, (3.76)

while for λ3 > 3 λSM3 , we require

250 GeV < mhh < 350 GeV. (3.77)

The results for LHC 14 TeV are displayed in Table 3.1. As shown in Table 3.2, the significance

reaches 5σ level at λ3 ∼ 6.5λSM3 , and λ3 ∼ −0.2λSM3 at 14 TeV and 3000 fb−1. One caveat

of this analysis is that we include a K-factor for the signal (and also for the ZH and tth

background), but the QCD background is only considered at LO. If we assume a K-factor

of about 2 for the QCD processes, the significance will drop by a factor of
√

2, which can be

compensated by the fact that there are two detectors.

It is instructive to compare these results with those obtained by the LHC experimental

collaborations. ATLAS and CMS have performed similar studies on the hh→ bbγγ channel.

For HL-LHC, ATLAS expects a 1.3 σ significance for the SM case [121], and the CMS
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σ (fb) Eq (3.75) + Eq (3.76) (fb) Eq (3.75) + Eq (3.77) (fb)

hh(bb̄γγ) (λ3 = λSM3 ) 0.15 1.0× 10−2 -

hh(bb̄γγ) (λ3 = 5λSM3 ) 0.26 - 1.12 × 10−2

hh(bb̄γγ) (λ3 = 7 λSM3 ) 0.71 - 3.3× 10−2

hh(bb̄γγ) (λ3 = 9 λSM3 ) 1.43 - 6.08× 10−2

hh(bb̄γγ) (λ3 = 0) 0.29 1.33×10−2 -

hh(bb̄γγ) (λ3 = −λSM3 ) 0.50 2.26× 10−2 -

hh(bb̄γγ) (λ3 = −2λSM3 ) 0.77 2.94× 10−2 -

bb̄γγ 5.05×103 1.34×10−2 4.0×10−2

cc̄γγ 6.55× 103 4.19 ×10−3 2.68×10−2

bb̄γj 9.66×106 4.60×10−3 1.38×10 −2

jjγγ 7.82×105 2.38×10−3 5.26×10−3

tt̄h 1.39 1.40×10−3 2.33×10−3

zh 0.33 6.86×10−4 9.01×10−4

bb̄jj 7.51×109 5.34×10−4 6.47 ×10−4

Table 3.1: Cross section in fb of the hh signal and various backgrounds expected at the LHC
at
√
s = 14 TeV after applying the cuts discussed in Eq (3.75), (3.76) and (3.77).

λ3 λSM3 5λSM3 7λSM3 9λSM3 0 -λSM3 -2λSM3
S/
√
B 3.3 2.1 6.0 11 4.4 7.5 9.8

Table 3.2: Significance expected for hh at the LHC at
√
s = 14 TeV for an integrated

luminosity of 3000 fb−1 after applying cuts in Eq (3.75) + Eq (3.76) (λ3 < 3λSM3 ), or

Eq (3.75)+Eq (3.77) (λ3 > 3 λSM3 ).
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expectation is about 1.6 σ [185]. These results are about a factor two weaker than the ones

we obtain in our study. On the other hand, the results from current theoretical studies show

a significance range from 2σ to 6σ [114, 116, 118, 120]. The difference with the experimental

results may proceed from different sources. In our analysis, we use very simple cuts, and we

do not attempt to optimize the cuts for the SM background, but we believe extra cuts do

not help much in this case as it is a rare process. We also do not try to perform a realistic

detector simulation.

The main issue we want to stress is the impact of the cuts in the invariant mass distri-

bution when studying possible modifications of the triple Higgs coupling. We obtain a very

significant sensitivity improvement in the case where λ3 deviates significantly from the SM,

when we implement the new cuts in Eq. (3.77) we propose for such cases. For instance,

when λ3 = 5λSM3 , if we use the cuts in Eq. (3.76), we only expect a 0.67σ significance, while

we expect 2.1σ significance if we use the cuts in Eq. (3.77). Similar large improvements are

obtained for other sizable values of λ3 > 3λSM3 .

Due to the relatively low sensitivity of the LHC in looking for double Higgs production,

it is interesting to consider similar signatures at future colliders, in particular a future high

energy pp collider. The sensitivity will depend on many factors, including the center of mass

energy and the detector performance. To be specific, we shall consider the case of 100 TeV pp

collider, assuming that the detector performance stays the same as at the LHC, performing

similar cuts as the ones in the LHC analysis. We show the results in Table 3.3 and Table 3.4.

In our analysis, we considered only positive values of λ3, since as shown above, the LHC

is already sensitive to the negative values. It is then easy to extrapolate the same analysis

for higher energies. The results presented in Table 3.3 show that a 100 TeV collider should

be sensitive to triple Higgs boson couplings λ3 ∼ 5λSM3 , where the same cuts proposed in

Eq (3.75) were used. The significance we obtain is similar the ones obtained in Refs. [186]

and [101] for the same process. Again, we obtain a significant improvement of the sensitivity

at large values of λ3 > 3λSM3 when the new cuts on mhh given in Eq. (3.77) are used.
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σ (fb) Eq (3.75) + Eq (3.76) (fb) Eq (3.75) + Eq (3.77) (fb)

hh(λ3 = λSM3 ) 3.4 0.11 -

hh(λ3 = 3λSM3 ) 1.48 0.042 -

hh(λ3 = 5λSM3 ) 4.45 - 0.10

bb̄γγ 1.7×106 0.129 0.52

cc̄γγ 1.0×105 6.45 ×10−2 0.42

bb̄γj 1.19×105 1.68×10−2 6.72×10−2

jjγγ 2.73×106 1.92×10−2 7.3×10−2

tt̄h 86.41 2.72×10−2 2.53×10−2

zh 0.88 1.76×10−3 1.4×10−3

bb̄jj 4.07×1010 2×10−3 4.7 ×10−3

Table 3.3: Cross section of the hh signal and various backgrounds expected at a 100 TeV
collider after applying the cuts discussed in Eq (3.75), (3.76) and (3.77).

λ3 λSM3 3λSM3 5λSM3
S/
√
B 11 4.5 5.3

Table 3.4: The significance of double Higgs production expected for hh at a 100 TeV collider
for an integrated luminosity of 3000 fb−1 after applying cuts in Eq (3.75) + Eq (3.76)
(λ3 < 3λSM3 ), or Eq (3.75) + Eq (3.77) (λ3 > 3 λSM3 )

.

3.5.2 Double Higgs production in the bb̄τ+τ− channel

Since the Higgs has many different significant decay channels, it is useful to think about

double Higgs production in channels different from the bbγγ considered in this work. A

particularly interesting one is the bbττ channel. The bb̄τ+τ− channel enjoys a larger cross

section but suffers from the difficulty in the event reconstruction due to the missing energy

associated with τ decays. It also suffers from larger backgrounds that should be properly

considered to obtain a realistic reach estimate.

The τ pair invariant mass mττ may be estimated by the missing mass calculator [187],

and similar methods could be used to estimate mhh in this channel. In order to estimate

the reach in this channel, we shall assume that the mττ invariant mass can be reconstructed

with a similar resolution as mbb [187] invariant mass. Furthermore, we shall assume that the

two Higgs invariant mass mhh can be reconstructed as well as it is obtained at the parton

level. The discovery reach is then estimated adopting the cuts and background calculations
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presented in Ref. [116].

We go beyond the analysis of Ref. [116] by including the relevant background coming

from the bbjj process. Under the above conditions, and assuming a jet to τ fake rate

εj→τ = 1/100 [118], we obtain a significance S/
√
B ∼ 3.75 for λ3 = λSM3 , that is similar

to the one obtained in the γγ channel. However, estimating mhh in the bbττ channel is

very difficult. For that reason, CMS preforms a preliminary study using the Stransverse

mass mT2 instead of mhh to distinguish the signal from the background, and shows a 0.9σ

significance for HL-LHC [185]. That is significantly smaller than the one found in [119] using

a similar method. Therefore, the bbττ channel may represent a good complementary channel

to the bbγγ one, and should be studied further.

3.6 Conclusions

In this work, we have studied the modifications of the triple Higgs couplings in theories in

which the Higgs potential is modified by the addition of higher order, non-renormalizable

operators, induced by the presence of new physics at the weak scale. Contrary to previous

statements in the literature, we have shown that, a simple addition of a dimension six

operators may lead to a large modification of the triple Higgs coupling λ3 with respect to

its SM value in the regions of parameter space consistent with a FOEPT.

Furthermore, the addition of higher order operators may also lead to a reduction of the

triple Higgs coupling, or even its change of sign, with relevant implications for collider physics.

Interestingly, negative enhancements of the triple Higgs coupling tend to be associated with

a second order phase transition, while a first order phase transition tends to be associated

with a large positive enhancement of this coupling.

We also argue, building up on the previous results in the literature, that different values of

the triple Higgs coupling will have a strong impact not only on the total cross section, but also

on the invariant mass distribution of double Higgs production at the LHC. This motivates

the use of different cuts for double Higgs production for values of the trilinear coupling about
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or smaller than the SM value than for the large values of λ3. The determination of the total

cross section, together with the analysis of the invariant mass distribution may give hints

not only about the magnitude of the departure of the Higgs coupling with respect to the SM

value, but also of its sign. Considering these different cuts in the invariant mass distribution

and including background processes that were previously ignored in the literature, we showed

that at the 14 TeV run of the LHC at high luminosities of order of a 3.3σ is expected for

λ3 = λSM3 , and a 5 σ significance is expected for λ3 = 6.5λSM3 (-0.2 λSM3 ) for the bb̄γγ

channel. The bb̄τ+τ− channel presents a promising complementary channel.
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CHAPTER 4

WRONG-SIGN BOTTOM YUKAWA COUPLING IN

LOW-ENERGY SUPERSYMMETRY

4.1 Introduction

The Higgs discovery [188],[189] has led to the confirmation of the Standard Model as the

proper effective theory at the weak scale. No new particle has been seen at the LHC, imply-

ing that physics at the weak scale is weakly interacting or that strongly interacting particles,

if present, should lead to signatures involving soft decay products or in channels with large

irreducible backgrounds. Searches for new physics under these conditions should be comple-

mented by precision measurements of the properties of the Standard Model particles as well

as rare processes rates.

Although the gauge sector of the Standard Model has been tested with high precision, the

Higgs sector properties are still greatly unknown. The signal strength of different production

and decay channels are in overall agreement with the Standard Model, but the errors are

still large, and the coupling of the Higgs with third generation quarks and leptons is subject

to big uncertainties. Indeed, while the central value of the production rate of the Higgs in

association with top quarks is currently a factor two larger than the SM value, the central

value of the production rate of the Higgs decaying into bottom quarks and produced in asso-

ciation with heavy gauge bosons seems to be 40 percent lower than the SM prediction [190].

Although the differences between the theoretical predictions and the experimental values

could be the result of statistical fluctuations, it is interesting to consider the possibiiity that

the couplings of the Higgs to top and bottom quarks differ from the SM values due to new

physics effects.

In this article, we shall consider the possibility that not only the magnitude but also the

sign of the Higgs coupling to bottom quarks differ from the Standard Model predictions.

This is an intriguing possibility that could be realized in the simplest two Higgs doublet
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extension of the Standard Model [191]. Such region of parameters has been invoked recently

also in models that lead to large rates of lepton flavor violating decays of the Higgs bosons

h → τµ[198] and on theories of flavor at the weak scale [199]. In this article we study the

possible realization of this scenario within the minimal supersymmetric extensions of the

SM, namely the MSSM [192],[193],[194],[195] and the NMSSM[196].

Low energy supersymmetry [197] leads to the stability of the weak scale under the large

radiative effects induced by possible heavy particles, like the ones associated with an hypo-

thetical Grand Unified Theory (GUT). It also leads to the radiative breaking of the elec-

troweak symmetry, induced by corrections associated with the superpartners of the third

generation quarks. The low energy theory contains at least two Higgs doublets and therefore

the coupling of the Higgs to bottom quarks may be affected by mixing between the different

CP-even Higgs bosons in the theory. Such region of parameters has been invoked recently

also in models that lead to large rates of lepton flavor violating decays of the Higgs bosons

h→ τµ [198] and on theories of flavor at the weak scale [199].

Large negative variation of the bottom quark coupling to the SM Higgs may be obtained

in the MSSM at large values of tan β, the standard ratio of the Higgs vacuum expectation

values, and values of the heaviest CP-even Higgs boson masses not far above the weak

scale [191]. This region of parameter space, however, is strongly restricted by searches for

Higgs bosons decaying into τ -lepton pairs [200],[201], what makes the realization of this

scenario difficult. As we shall show in this article, the scenario is more easily realized in

the NMSSM, although the necessary values of the coupling λ of the singlet superfield to the

doublet Higgs superfields are larger than the ones leading to perturbative consistency of the

theory up to the GUT scale.

This article is organized as follows. In section 2 we analyze the possibility of a wrong

Yukawa coupling within two Higgs doublet models. In section 3 we study the possible

realization of this idea within the MSSM and the NMSSM. After pointing out the difficulties

of its realization in the MSSM, in section 4 we present a numerical analysis of this question
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within the NMSSM. In section 5 we study the question of perturbativity of the theory while

studying the evolution of couplings up to high scales. In section 6 and 7 we study the

experimental probes of this scenario. We reserve section 8 for our conclusions.

4.2 Wrong sign Yukawa in Type II Two Higgs Doublet Models

The tree-level couplings of 2HDM Higgs to Gauge bosons and fermions, are listed as below,

ghV V = sβ−α , (4.1)

ghtt̄ = mt
v

cα
sβ
≡ mt

v

(
sβ−α + cβ−αt

−1
β

)
, (4.2)

ghbb̄ = −mb
v

sα
cβ
≡ mb

v

(
sβ−α − cβ−αtβ

)
, (4.3)

where sα (sβ) = sinα (sin β), cα (cβ) = cosα (cos β) and sβ−α (cβ−α) = sin(β−α) (cos(β−

α)). As we can see from Eq. (4.2), for the gauge boson couplings to be SM-like, we need

sβ−α ≈ 1. In this case, for moderate values of tan β, the Higgs coupling to top-quarks or

other up type fermions becomes SM-like due the tan β suppression of the second term on

the right hand side of Eq. (4.2). However, for the Higgs to b-quark coupling, Eq. (4.3), a

wrong sign could arise without changing the Higgs decay width and branching ratio when

ghbb̄/g
SM
hbb̄

' −1. This could be achieved with minor changes of the Higgs couplings to

top-quarks and weak gauge bosons for sizable values of tan β and

tβ cβ−α ≈ 2. (4.4)

This is in contrast with the condition tβcβ−α ' 0 that ensures a SM-like coupling of the

bottom-quark to the Higgs boson.

The scalar potential of the most general two-Higgs-doublet extension of the SM may be
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written as :

V = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 + h.c.) + 1

2λ1(Φ
†
1Φ1)2 + 1

2λ2(Φ
†
2Φ2)2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)2 + [λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)]Φ

†
1Φ2 + h.c.

}
, (4.5)

After converting to the Higgs basis [202],[203], the Higgs potential above could be rewritten

as:

V ⊃ . . .+ 1
2Z1(H

†
1H1)2 + . . .+

[
Z5(H

†
1H2)2 + Z6(H

†
1H1)H

†
1H2 + h.c.

]
+ . . . , (4.6)

where we have only retained those terms relevant for the following discussion and the new

couplings Z ′is are associated with previous λ′is by the following relations [58],[204],[54]

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2(λ3 + λ4 + λ5)s2
2β + 2s2β

[
c2βλ6 + s2

βλ7
]
, (4.7)

Z5 ≡ 1
4s

2
2β

[
λ1 + λ2 − 2(λ3 + λ4 + λ5)

]
+ λ5 − s2βc2β(λ6 − λ7) , (4.8)

Z6 ≡ −1
2s2β

[
λ1c

2
β − λ2s

2
β − (λ3 + λ4 + λ5)c2β

]
+ cβc3βλ6 + sβs3βλ7 , (4.9)

The CP-even Higgs mixing angle in this basis is identified with β − α. Consequently, we

have [58],[54]

cβ−α =
−Z6v

2√
(m2

H −m
2
h)(m2

H − Z1v2)
. (4.10)

This term should be small and can be realized in both the decoupling limit, i.e. mH � v

and the alignment limit, i.e. Z6 ≈ 0.
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4.3 Wrong sign Yukawa couplings in the MSSM and the NMSSM

The Higgs sector of the MSSM is a type-II 2HDM and it consists of two Higgs doublets with

tree-level quartic couplings which are related to the squares of the weak gauge couplings.

Since Supersymmetry imposes concrete values for the quartic couplings λi it is interesting to

check whether the wrong sign Yukawa coupling could arise in the frame of MSSM without

conflicting with other Higgs phenomenology. For this, one has to take into account the

relevant radiative corrections arising from the interaction of the Higgs field with the third

generation fermions and their scalar superpartners. In the MSSM, it’s well known that a SM-

like neutral Higgs boson could only be obtained in two distinct scenarios, i.e. the decoupling

limit [58]-[216] and the alignment limit [58],[204],[216],[59]. The decoupling limit happens

when mh � mH , while the alignment limit arises when one of the CP-even Higgs bosons,

when expressed as a linear combination of the real parts of the two neutral Higgs fields, lies in

the same direction in the two Higgs doublet field space as neutral Higgs vacuum expectation

values. This alignment does not in general depend on the masses of the non-standard Higgs

bosons.

It’s not difficult to work out the expression of Z6 at the one-loop level. The largest one-

loop contributions are proportional to the fourth power of the top-quark Yukawa coupling

ht, namely:

Z6v
2 = −s2β

{
m2
Zc2β −

3v2s2
βh

4
t

16π2

[
ln

(
M2
S

m2
t

)
+
Xt(Xt + Yt)

2M2
S

−
X3
t Yt

12M4
S

]}
, (4.11)

where mZ is the neutral gauge boson mass, mt is the top quark mass, MS is the stop mass

scale, Xt = At − µ/tβ , Yt = µ tβ + At, At is the trilinear stop-Higgs coupling and µ is the

Higgsino mass parameter. Combined with Eq. (4.10), we get:

tβ cβ−α '
−1

m2
H −m

2
h

[
m2
h +m2

Z +
3m4

tXt(Yt −Xt)
4π2v2M2

S

(
1−

X2
t

6M2
S

)]
. (4.12)
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In Equation (4.12), if we substitute in Yt−Xt = µ(tβ+ 1
tβ

), in the large tan β limit where

Xt = At − µ/tβ ≈ At, we get the following estimate [54]:

tβ cβ−α '
−1

m2
H −m

2
h

[
m2
h +m2

Z +
3m4

t

4π2v2

µ

MS

(
At
MS
−

A3
t

6M3
S

)(
tβ +

1

tβ

)]
. (4.13)

If we want tβ cβ−α to be as large as 2, it’s clear that we need to let the third term

in the square bracket to be as negative as possible. Unfortunately this will lead to an

unacceptably large value of tan β, which makes the Yukawa coupling to down type fermions

non-perturbative. In order to see that, let’s recall the fact that stability of the Higgs potential

demands that |At| and |µ| should both be smaller than 3 [205]. Under this constraint, the

minimum of the expression µ
MS

(
At
MS
− A3

t

6M3
S

)
is −4.5, which is achieved for At/MS = 3 and

µ/MS = 3. A rough estimate of the coefficient
3m4

t
4π2v2 is m2

h/16 which is very small compared

to the first two positive terms in the square bracket. Thus, for tβ cβ−α to reach the target

value 2, tan β needs to be large. More specifically, for mH ≈ 250 GeV , the necessary values

of tan β ≈ 30, while for mH ≈ 500 GeV these values become very large, tan β ≈ 120. These

values of mH and tan β are excluded by heavy Higgs searches at the LHC [200],[201]. One

could avoid these constraints for larger values of the heavy Higgs mass, larger than 1 TeV.

However, for mH ≈ 1 TeV the necessary values of tan β ≈ 500, and it is difficult to keep

the perturbative consistency of the theory at such large values of tan β. Thus we reach the

conclusion that the current LHC bounds make it very difficult to invert the sign of the Higgs

coupling to bottom quarks within the MSSM.

Next let’s turn to the Next-to-Minimal supersymmetric extension of the SM (NMSS-

M) [196], with only an extra singlet superfield added on top of the MSSM. The CP-even

singlet will mix with the two neutral CP-even Higgs bosons. We considered the simpler case

when the superpotential is scale invariant and and thus the complete Lagrangian would have
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an accidental Z3 symmetry,

W = λŜĤu · Ĥd +
κ

3
Ŝ 3 + huQ̂ · Ĥu ÛcR + hdĤd · Q̂ D̂c

R + h`Ĥd · L̂ ÊcR , (4.14)

where Ŝ, Ĥu, Ĥd denote the singlet and doublet Higgs superfields, and Q̂, D̂R, ÛR are the

quark superfields, while L̂, ÊR are the lepton superfields, hi are the Yukawa couplings and λ

and κ are both dimensionless couplings. The most significant change in the NMSSM would

be that at tree level, there is an extra correction proportional to 1
2λ

2v2 in the M2
11 term of

the Higgs basis. This term is well known since it can lift up the upper limit of the lightest

Higgs mass at tree level [206], thus make it possible to reach 125 GeV without the large

quantum corrections needed in the MSSM [207],[208],[209]–[213]. What’s more important in

this case, is that it can modify the Z6 and Z1 terms introduced earlier in the MSSM case and

release the strong tension between tan β and MA present in the MSSM to make cβ−αtβ = 2

feasible. In the NMSSM, it’s straightforward to get the expression for Z6 at moderate or

large values of tβ , including only the stop loop corrections, namely [218]:

Z6v
2 ≈ 1

tan β

[
m2
h +m2

Z − λ
2v2
]

+
3v2h4

tµXt

16π2M2
S

(
1−

X2
t

6M2
S

)
(4.15)

which leads to

tβ cβ−α ≈
−1

m2
H −m

2
h

[(
m2
h +m2

Z − λ
2v2
)

+
3m4

tAtµtβ

4π2v2M2
S

(
1−

A2
t

6M2
S

)]
(4.16)

Compared with Equation (4.12), we got an extra −λ2v2 term in the parenthesis, which tends

to push tβ cβ−α towards positive values and makes it promising to get tβ cβ−α = 2 with

smaller values of tan β. However, for that purpose we need λ to be of order 1. We found that

when λ or κ are large, say λ ≈ κ ≈ 1, the chargino, neutralino and Higgs loop contributions

are also sizable and can not be neglected when evaluating Higgs mass and couplings, more

specifically tβ cβ−α in this case. After taking these into consideration, the phenomenological

86



analysis becomes more complicated and a numerical analysis with full quantum corrections

up to two-loop level are necessary to select the proper region of parameter space leading to

the inversion of the bottom coupling. On the other hand, large λ could lead to a Landau pole

problem at energies lower than the Grand Unification scale. In the following two sections we

will discuss these two issues and assess the possibility of negative Yukawa couplings in the

NMSSM.

As we will show in later sections, beyond the problems associated with perturbativity,

this simple framework leads to problems in the CP-even Higgs sector, since the square of

the lightest CP-even Higgs boson mass is generically pushed to negative values due to large

mixing effects. A possible solution to this problem is to add a non-zero singlet tadpole term

χS to the potential

∆V = ξS S + h.c. (4.17)

This term breaks the accidental Z3 symmetry and could be a result of the supersymmetry

breaking mechanism at high scales [214]. A large |ξS | could keep the singlet decoupled

from the two neutral Higgs bosons [196], reducing the problem to an approximate 2x2 Higgs

mixing one, with low energy quartic couplings that are modified by terms proportional to

powers of the couplings λ and κ.

4.4 NMSSM Results: Full Analysis

As mentioned in the last section, besides the large one-loop quantum corrections to M2
11,

there are relevant two-loop corrections in the NMSSM from various sources, which also give

non-trivial contributions to the Higgs mass matrix at large values of λ, κ and that modify

the bottom Yukawa coupling in a significant way, by adjusting the mixing between the two

light CP-even Higgs bosons. From the full expression of the squared mass matrix elements

at two-loop level [196], it’s straightforward to see that the most important κ or λ dependent

contributions come from Higgs and chargino/neutralino loops. After a short numerical check,
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Figure 4.1: In this plot, λ = 1.3 and κ = 0.1 are fixed, and µ and χs are varied. The gray
area is excluded for negative Higgs mass. And Red contour lines are the lightest Higgs mass,
you can see we show the 125GeV with solid style. And the lightest chargino mass contours
are displayed in purple.

we found that for values of κ and λ of order one, these Higgs and electroweakino-loop

corrections could be as large as a few tens of percent of the unperturbed squared mass

matrix elements. This observation points to the fact that in order to find the accurate

Higgs mixing and Yukawa couplings at large valudes of κ and λ, one has to take these loop

corrections into account.

In the rest of this section, we conducted a numerical search for a wrong-sign Yukawa

coupling within NMSSM model using the NMSSMTools code [219], which includes the most

relevant two-loop radiative corrections. Some typical parameters can be found in Table

4.1. In this calculation, we took a large value of the tadpole term and scanned parameters

including tan β,mA, µ, λ and κ. More specifically, we fixed At, Aτ and Ab at 1500 GeV and

used squark and slepton masses MS = 1 TeV. The weak gauginos were assumed to be heavy

M1,2 ' 1 TeV, while the gluino mass was fixed at M3 = 2 TeV.

Since we would like to modify the bottom-quark coupling without strongly affecting the

coupling to gauge bosons, sin(β − α) ' 1. This implies that cos(β − α) tan β ' 2 may
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only be obtained for moderate or large values of tan β. Taking into account the strong

existing constraints on this region of parameters for the low values of the MSSM-like CP-

odd Higgs mass [200],[201] necessary to induce a large correction to the bottom coupling, we

concentrated on moderate values of tan β. In particular in our analysis, tan β was chosen

to be in the range 6–8, while µ was scanned over the whole range consistent with a stable

Higgs potential, i.e. from −3MS to 3MS . At last we vary mA within the interval between

250 GeV and 350 GeV.

As we stressed above, in order to reduce the problem to an effective 2x2 mass matrix,

similar to the MSSM case, we added a singlet tadpole term. In addition, we verified that

for zero tadpole values it is difficult to obtain parameter sets that satisfy the lightest Higgs

mass constraint (e.g. 122 GeV - 128 GeV), proper chargino and neutralino masses and Higgs

decay rates at the same time. A typical example of this tension is shown in Figure 4.1. In

this plot we fixed the λ, κ, mA, Af etc. at values that favor a large values of tan β cos(β−α)

(at least for larger ξS) and then we scanned over the values of µ and χS to search for changes

in the sign of the bottom coupling. As we can see, when ξS is close to 0, the proper Higgs

mass and chargino masses above the current bound may not be obtained for any of the

values in our scan of parameters. To let the proper Higgs mass coexist with proper chargino

properties, χS should be at least of order 108 to 109 GeV3. The same qualitative result is

obtained for all sizable values of λ and κ necessary to obtain a change of sign of he bottom

coupling. Therefore, in the following analysis, we set the tadpole term χS to a fixed value,

which was arbitrary chosen to be 6 × 1010. Parameters are randomly drawn from uniform

distributions and we discard all points which give the wrong lightest Higgs mass or fail other

collider experimental constraints. The results of this analysis are shown in Figure 4.2.

From Figure 4.2, it’s clear that the demand of wrong-sign bottom Yukawa fixes λ to be

of order 1, and all λ’s leading to a solution have values above 0.8; the constraint on κ is not

quite tight, possible values of κ span the whole region from 0 to 1, with a gentle dependency

on λ. All points have κb close to -1 as demanded, and satisfy the constraints in the Higgs
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Figure 4.2: Scatter plot of all points that survive the 125 GeV mass constraint and predict a
wrong-sign bottom Yukawa coupling. The colorbar shows the value of κb which is the ratio
between Higgs to bb̄ coupling and its SM value, i.e. gNMSSM

hbb̄
/gSM
hbb̄

. All points have κb close
to -1 as demanded.

Table 4.1: Typical parameters found by NMSSMTools that gave negative Higgs to bb̄ cou-
plings
No. tan β mA µ λ κ Mi,(i=1,2) Af3 mh1

κb BR(h1 → bb̄) mh2
mH+

1 8.0 335 -1121 1.51 0.076 1000 1500 124.2 -0.86 60.6% 293 158
2 7.0 338 -1089 1.50 0.280 1000 1500 128.0 -0.83 54.0% 292 160
3 8.0 347 -1096 1.42 0.423 1000 1500 124.0 -0.86 61.0% 278 157
4 8.0 339 -1020 1.36 0.730 1000 1500 126.1 -0.87 56.3% 270 157

sector.

In figure 4.3, we plotted the κg v.s. κb and κγ v.s. κb, with κi being the ratio of the

Higgs coupling to the particle i to its value in the SM. All points are consistent with the

current experimental constraints. We see that apart from a change in sign of the bottom

Yukawa, all solutions show values of the couplings that are within 20% of the SM values, that

coincide with the naive requirement for general 2HDM provided by the authors of Ref. [191].

In particular, Fig. 4.3, shows that κγ is below 0.96 and κg is between 1.12 and 1.13.

Another characteristic of those surviving points in Table 4.1 is that they all have low

charged Higgs mass. Even though they are heavy enough to avoid the search for t →
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Figure 4.3: Display the couplings of the SM-like Higgs to γ, down-type quark and gluon and
κ is the ratio between the calculated value and the SM value. The points here are the same
points shown in Fig 4.2 that survived relevant experiments and gave wrong-sign Yukawa
couplings to down-type quarks. Left panel: κγ v.s. κD; right panel: κg v.s. κD. In the
left panel, the three stripes correspond to the three values of tan β we used in our search,
namely tan β = 6, 7, and 8.

H+b decay, but the H → H±W∓ channel opens up and becomes the dominant decay

mode of the heavier neutral Higgs H and the CP-odd Higgs A. This observation has many

phenomenological consequences. On one hand, the branching ratio of H → τ+τ− would

be squeezed even when tan β is large, so that we could push tan β higher than the current

bound provided by CMS for the mmax
h senario. This speculation is confirmed by the Fig. 4.4,

in which we see that all the BrH→τ+τ− values are lower than 3%. On the other hand, this

large BrH→H±W∓ also means that measurement through this exotic decay channel at LHC

is possible.

4.5 Renormalization Group Evolution

The discussions in previous sections demonstrated that to reverse the sign of Higgs to bottom

coupling the values of the λ or κ couplings, or both need to take sizable values. However this

region of parameter leads to the so-called Landau-pole problem, i.e. coupling constants will
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Figure 4.4: Correlations between the branching ratios of the main decay channels of H2
when bottom Yukawa coupling is negative.

reach infinity at some energies much lower than the GUT scale during the renormalization

group evolution [221]. This problem can be solved by extending the gauge groups, for

example, to SU(3)c×SU(2)1×SU(2)2×U(1)Y , more specifically SU(2)1 is the weak group

coupling with the third generation and Higgs sector while SU(2)2 couples with the first two

generations [220]. The symmetry breaking from SU(2)1 × SU(2)2 to the regular SU(2) is

achieved by a bi-doublet chiral field Σ happening at energies < Σ >= u of the oder of a

few TeV. Considering only the particles in the NMSSM, we get the following one-loop RGE
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equations for α’s and Yukawa couplings.

dα̃1

dt
= −33

5
α̃2

1, (4.18)

dα̃2

dt
= −α̃2

2, (4.19)

dα̃3

dt
= 3α̃2

3, (4.20)

dYt
dt

= −Yt
(
Yλ + 6Yt −

16

3
α̃3 − 3α̃2 −

13

15
α̃1

)
, (4.21)

dYλ
dt

= −Yλ
(

4Yλ + 2Yκ + 3Yt − 3α̃2 −
3

5
α̃1

)
, (4.22)

dYκ
dt

= −6Yκ (Yλ + Yκ) (4.23)

Figure 4.5: Below the red dashed line is the allowed region of λ and κ in the NMSSM
model; the blue contours shows the allowed boundaries of λ and κ for different values of
the new SU(2) coupling g1 at u = 3 TeV. Below each line all couplings are perturbative
during 1-loop RG evolution up to the energies of 1016GeV . The contour lines correspond to
g1 = 3.5, 3.0, 2.5, 2.0 and 1.5 from right to left. Values of g1 greater than 3.5 would violate
the perturbative condition and are ignored. The grey points show the values of κ and λ
associated with negative values of the bottom Yukawa, shown in Fig. 4.2.

Taking the new symmetry breaking sector into consideration, above the symmetry break-

ing scale, due to the presence of new particles the previous RGE equations would be replaced
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by the ones shown below:

dα̃′2
dt

= 2α̃′
2
2, (4.24)

dα̃′′2
dt

= −4α̃′′
2
2, (4.25)

dα̃3

dt
= 2α̃2

3, (4.26)

dYt
dt

= −Yt
(
Yλ + 6Yt −

16

3
α̃3 − 3α̃′2

)
, (4.27)

dYλ
dt

= −Yλ
(

4Yλ + 2Yκ + 3Yt − 3α̃′2
)
, (4.28)

dYκ
dt

= −6Yκ (Yλ + Yκ) , (4.29)

where

α̃i(t) = g2
i (t)/(4π)2, Yλ(t) = λ2(t)/(4π)2, Yκ(t) = κ2(t)/(4π)2 (4.30)

Figure 4.6: Energy at which some coupling becomes non-perturbative for each λ and κ
combination for a fixed values of g1 at u = 3 TeV. The left panel corresponds to g1 = 1.5
while the right panel corresponds to g1 = 3.0. The lines labeled with 1016GeV in the two
panels are consistent with the two contour lines in Figure 4.5 with the corresponding g1
values.

The modification to the renormalization group equations gives us more flexibility in the
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choice of λ and κ. In Fig. 4.5, we displayed the RGE result with and without new gauge

couplings. We can see that the constraint from the requirement of avoiding the Landau-

pole problem is quite stringent since the maximum viable values for λ is of order 0.7 and

becomes smaller for larger values of κ. Therefore, all solutions with negative bottom Yukawa

couplings, which are associated with values of λ > 0.8, lead to the loss of perturbativity below

the GUT scale. In Fig. 4.5, we also show the improvement after including the extended gauge

sector. The running of the parameters are dictated by the modified RGE’s as shown below.

It is clear that large values of α′2 lead to a smaller β function for λ and hence to a slower

increase of λ at large energies. From Figure 4.5, we can see that the strong constraint on the

λ and κ plane is pushed outwards towards larger values of both parameters. For instance,

when g1 is 3.5, a combination of λ = 1.4 and κ = 0.2 would be allowed, which has been

guaranteed to give a negative value of the Higgs to bb̄ coupling. In order to show this, in

Fig. 4.5 we also show the values of λ and κ associated with the NMSSM solutions found in

Fig. 4.2 (grey points).

4.6 Radiative Higgs Decay to Quarkonia

The change of sign of the bottom Yukawa coupling may have relevant phenomenological

consequences. One Higgs process affected by the bottom Yukawa coupling is the radiative

decay of the Higgs to Quarkonium, in particular to the Υ meson, which is composed of bb̄.

Within the Standard Model, the direct and indirect Feynman diagrams have an approximate

accidental cancelation, which effectively excludes this decay process at all but very high

luminosities. Figures 4.7 and 4.8 show the direct and indirect Feynman diagrams, taken

from Ref. [222].

The resulting decay widths of H → Υ(nS)+γ in terms of κb, the bottom Yukawa coupling
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Figure 4.7: Feynman diagrams for the direct amplitude of H → V + γ, where V represents
the quarkonium bound state [222].

Figure 4.8: Feynman diagram for the indirect amplitude of H → V + γ [222].
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relative to the SM value, are given by [222]

Γ[H → Υ(1S) + γ] = |(3.33± 0.03)− (3.49± 0.15)κb|2 × 10−10 GeV

Γ[H → Υ(2S) + γ] = |(2.18± 0.03)− (2.48± 0.11)κb|2 × 10−10 GeV (4.31)

Γ[H → Υ(3S) + γ] = |(1.83± 0.02)− (2.15± 0.10)κb|2 × 10−10 GeV,

where the first term derives from the indirect diagram and the second term, which is modified

by κb, derives from the direct diagram. Note that the change in sign from κb = 1 to

κb = −1 gives a factor increase of between 102 and 104 in the decay widths. Using Γ(H) =

4.195+0.164
−0.159× 10−3 GeV [223], the Higgs branching ratio to Υ(1S, 2S, 3S) + γ final states for

the SM are (0.610, 2.15, 2.44)×10−9. For κb = −1, the branching ratios are (1.11, 0.518,

0.378)×10−6, which are still small but significantly larger than the SM values.

The predicted number of H → Υ(nS) + γ events at the LHC is calculated as

N =
Γ(H → Υ(nS) + γ)

Γ(H)
× σ(p+ p→ H)× Lint. (4.32)

We calculate the expected number of H → Υ(nS) + γ events for both κb = 1 and κb = −1

using an integrated luminosity of Lint = 30 fb−1, the to-date LHC integrated luminosity for

2016 [224]. The Higgs total cross section is taken to be σ(p+ p→ H) = 5.57× 104 fb [223].

The results are shown in Table 4.2.

κb Υ(1S) Υ(2S) Υ(3S)
1 0.001± 0.01209 0.0036± 0.0094 0.0041± 0.008
-1 1.85± 0.01 0.865± 0.009 0.631± 0.008

Table 4.2: Number of expected events for H → Υ(nS) + γ decays for κb = 1 and κb = −1
with an integrated luminosity of 30 fb−1.

We also examine the number of expected events by the end of LHC Run 2 and Run 3.

The approximate target integrated luminosity gathered by the end of Run 2 is 130 fb−1,

while the expected total integrated luminosity by the end of Run 3 is 300 fb−1 [225]. The

predicted number of events for each case are shown in Table 4.3.
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κb Υ(1S) Υ(2S) Υ(3S)

Run 2 (130 fb−1)
1 0.00442± 0.06214 0.0155± 0.0483 0.0178± 0.0414
-1 8.02± 0.32 3.75± 0.15 2.73± 0.11

Run 3 (300 fb−1)
1 0.0102± 0.1434 0.358± 0.1115 0.0408± 0.0956
-1 18.5± 0.7 8.65± 0.36 6.31± 0.26

Table 4.3: Number of expected events for H → Υ(nS) + γ decays at the end of Run 2 and
Run 3.

Of particular interest within the phenomenology of the wrong-sign bottom Yukawa are

the affected processes which can be examined at the LHC. We focus specifically on the Higgs

decays h→ Υ(nS) + γ, h→ gg, and h→ γγ. While the gluon coupling may be constrained

mostly by the rate of gluon fusion production processes, the photon coupling is constrained

by Higgs decays, namely

κ2
γ =

ΓNMSSM (h→ γγ)

Γ(hSM → γγ)
. (4.33)

Searches for h → Υ(nS) + γ have been performed previously for the 8 TeV runs with

approximately 20.3 fb−1 of luminosity [228]. The current limits on the branching ratios at

95% CL are given for Υ(1S, 2S, 3S) +γ final states as (1.3, 1.9, 1.3)×10−3 ([227], [228]). An

increase in sensitivity for these decays on the order of 103 is therefore required in order to

probe the affects of a wrong-sign bottom Yukawa, which we have found to give branching

ratios of approximately (1.11, 0.518, 0.378)×10−6. This process is therefore not an effective

method of searching for a wrong-sign bottom Yukawa with current luminosity, and will

require a significant improvement in the search method.

4.7 Higgs coupling to gluons and photons

The h → gg decay is a loop-mediated process with contributions from the top and bottom

quark loops, which in an appropriate normalization contribute 4.1289 and −0.2513+0.3601i

to the amplitude, respectively, with SM values [191].

Changing the sign of κb therefore results in a shift in κg of approximately +13% . As can
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be seen in Figure 4.3, the actual values of κg for our set of points range between 1.11 and

1.14. This is a large effect, but observing this effect at the LHC is complicated by systematic

errors in the primary gg fusion production cross section. Ref. [229] provides expected error

estimates for κg of 6-8% for an integrated luminosity of 300 fb−1 and 3-5% for an integrated

luminosity of 3000 fb−1. Any effects from the bottom Yukawa coupling are therefore unlikely

to be resolvable from systematic errors at the current gathered luminosity of 30 fb−1, but

hints may become observable by the end of Run 2 and the effects should be resolvable by

the end of Run 3.

Similarly, the h→ γγ decay amplitude includes top and bottom quark loop contributions,

among others. We note from Figure 4.3 that the value of κγ within our set of points

ranges from between approximately 0.90 to 0.96. Estimates for LHC uncertainties in the

measurement of κγ are given as 5-7% for 300 fb−1 integrated luminosity and 2-5% for 3000

fb−1 integrated luminosity [229]. The measurement of κγ may therefore allow an examination

of the viability of the wrong-sign bottom Yukawa within the NMSSM by the end of LHC

Run 3.

4.8 Conclusions

The current uncertainties in the determination of the Higgs coupling to bottom quarks leave

room for a change of magnitude and sign of this coupling. In this article we have studied the

possible implementation of this idea within the MSSM and the NMSSM. We have shown hat

in the MSSM this could only be achieved for values of mA and tan β that are ruled out by

current searches for heavy Higgs bosons decaying into tau pairs. On the other hand, in the

NMSSM, consistent solutions may be found, that avoid current experimental limits, but for

values of the couplings λ and κ that lead to a Landau pole at scales below the GUT scale.

This perturbativity problem may be solved by the introduction of an extended gauge sector

that slows down the evolution of λ at high energies.

In general, the required low values of mA and large values of λ lead to charged Higgs
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bosons mass that are lower than the top quark mass, and hence, strongly constrained by

searches for charged Higgs bosons proceeding from the decay of top quarks. Models that

avoid these constraints have masses of the charged Higgs within 10 to 15 GeV of the top

quark mass.

We studied the possible experimental implications of such a change of sign, in particular

in the radiative decay of the Higgs to quarkonia and on the modification of the gluon and

Higgs couplings.
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APPENDIX A

SUPPLEMENTARY MATERIAL

A.1 Triple Higgs Coupling

We add tree-level non renormalizable operators to the Higgs potential to get the most general

effective potential at the tree-level

V (φ) =
∞∑
n=1

k2n

2n
φ2n, (A.1)

where k2 = m2, k4 = λ and, for n ≥ 3,

k2n

2n
=

c2n

2nΛ2(n−2)
(A.2)

For the potential to have minimum at the VEV it must satisfy

∂V

∂φ

∣∣∣∣
φ=v

=
∞∑
n=1

k2nv
2n−1 = 0. (A.3)

The second derivative at the VEV must be the square of the Higgs boson mass as dis-

covered by the CMS and ATLAS experiments at the LHC [107, 188]

∂2V

∂φ2
=
∞∑
n=1

(2n− 1)k2nφ
2n−2,

∂2V

∂φ2

∣∣∣∣
φ=v

=
∞∑
n=1

(2n− 1)k2nv
2n−2 = m2

h. (A.4)
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Dividing A.3 by v and then subtracting it from A.4, we get

∞∑
n=2

(2n− 2)k2nv
2n−2 = m2

h,

∞∑
n=2

(n− 1)k2nv
2n−4 =

m2
h

2v2
. (A.5)

The third derivative will give the triple Higgs coupling as we are already in the canonical

normalization, where we can substitute φ = h+ v and v = 246 GeV.

∂3V

∂φ3

∣∣∣∣
φ=v

=
∞∑
n=2

(2n− 1)(2n− 2)k2nv
2n−3. (A.6)

Multiplying A.5 by 6v and subtracting it from A.6 we get

λ3 =
∂3V

∂φ3

∣∣∣∣
φ=v

=
3m2

h

v

(
1 +

∞∑
n=3

4(n− 1)(n− 2)k2nv
2(n−1)

3m2
h

)
. (A.7)

Substituting for k in terms of the cut-off of the effective theory (Λ) and the corresponding

dimensionless coefficients (c2n) from Eq. (A.2), we obtain

λ3 =
3m2

h

v

(
1 +

8v2

3m2
h

∞∑
n=3

n(n− 1)(n− 2)c2nv
2(n−2)

2nΛ2(n−2)

)
, (A.8)

where |c2n| < 1. This can be written as

λ3 =
3m2

h

v

(
1 +

8Λ2

3m2
hv

2

∞∑
n=3

n(n− 1)(n− 2)c2n

(
v2

2Λ2

)n)
. (A.9)

From this we clearly see that the the series converges, even if all c2n are 1, for

Λ >
v√
2
∼ 174 GeV. (A.10)
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A.2 Maximal Negative Enhancements of λ3 for (φ†φ)4 and (φ†φ)5

The value of the triple Higgs coupling λ3 is associated with the third derivative of the

potential at the minimum, which corresponds to the change in the potential curvature. At

the minimum of the Higgs potential at the VEV, the curvature value is a measured positive

constant. Therefore, a negative λ3 implies even lower curvatures for the higher values of

φ. In the extreme case, where the curvature turns negative, this will generate a maximum.

Hence there has to be one more minimum for even higher values of φ sot that the potential

is stable in the limit of φ→∞. Let the position of such a minimum be φ = p.

This potential can be written as

v(φ) =
k8

8

(
φ2 − v2

)2 (
φ2 − p2

)2
− k8

8
v4p4 (A.11)

Comparing this expression with the generic form of the Higgs potential, Eq. (3.16), we get

k6

6
= −3k8

4
(p2 + v2),

λ

4
= −k8

8
(p4 + v4 + 4p2v2) (A.12)

Substituting this in Eq. (A.5) we obtain a relation between k8 and the Higgs mass, namely

k8 =
m2
h

v2(p2 − v2)2
(A.13)

Substituting in Eq. (A.12) gives

k6 = −
3m2

h

2v2

(p2 + v2)

(p2 − v2)2
(A.14)

k8 has to be positive for the stability of the potential. Therefore k6 is the only term that

contributes to the enhancement with opposite sign. The maximal negative value it can take
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is, for c6 < 1,

k6 = − 3

4Λ2
, (A.15)

Equating the right hand sides of the Eqs. (A.14) and Eq. (A.15) yields

2m2
h(p2 + v2)Λ2 = (p2 − v2)2v2 (A.16)

Solving for p2 gives

p2 − v2 =
m2
hΛ2 ±

√
m4
hΛ4 + 4m2

hΛ2v4

v2
(A.17)

The right hand side must be greater than 0 as p > v. This implies

p2 − v2 =
mhΛ

v2

(
mhΛ +

√
m2
hΛ2 + 4v4

)
(A.18)

From Eq. (A.7), we know

λ3

λSM3

− 1 =
8v4

3m2
h

(k6 + 3k8v
2) (A.19)

Substituting Eq. (A.14) in Eq. (A.19) gives

λ3

λSM3

− 1 = − 4v2

p2 − v2
(A.20)

Using Eq. (A.18), we get the maximum negative enhancement, namely

δ =
λ3

λSM3

− 1 = − x

1 +
√

1 + x
, where x =

4v4

m2
hΛ2

. (A.21)
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A.3 The Order of Phase Transition and The Sign of

Enhancement in (φ†φ)4

In the main text, we mentioned the correlation between the sign of the Higgs self-coupling

enhancement δ and the order of the EW phase transition. More specifically, we found that

all the models with negative enhancement correspond to second-order phase transition. Now

let’s give it a rigorous mathematical proof. Let’s assume the form of our effective Higgs

potential is as follows:

V (φ) =
m2 + αT 2

2
φ2 +

β

4
φ4 +

γ

6
φ6 +

κ

8
φ8 (A.22)

At zero temperature, the minimum is at φ = v and at higher temperature when the

φ2 term dominates, the potential looks like a parabola with the minimum at φ = 0. First

let’s think of what dynamic behavior the potential should have for a second-order PT. In

order to have a second-order PT, the global minimum should have a smooth and continuous

transition from φ = 0 to φ = v when the universe cools down. To make things easier, we

can think of the moment right after the global minimum moves away from zero, say, moves a

tiny distance φ = ε away, now the minimum potential is negative. If we take this time point

as a critical point, around this point, the second-order derivative of the potential at φ = 0

is exactly zero. Above that temperature or say before that time point, the global minimum

should have been at φ = 0 all the time and the minimum potential is also zero. This critical

point corresponds to the time when m2 +αT 2 = 0, and by claiming that φ = 0 be the global

minimum, we get the necessary and sufficient condition for the second-order PT to be:

V (φ) =
β

4
φ4 +

γ

6
φ6 +

κ

8
φ8 > 0, for ∀φ ∈ (0, v) (A.23)

And next we only need to prove that Eq. (A.23) always holds as long as the enhancement δ
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is negative. First, let’s write down the second-order derivative of Eq. (A.22),

∂2V (φ)

∂φ2
φ=v

= m2 + 3βv2 + 5γv4 + 7κv6 = m2
h (A.24)

And the following first-order derivative condition,

∂V (φ)

∂φ φ=v
= m2v + βv3 + γv5 + κv7 = 0 (A.25)

Combining Eq. (A.24) and Eq. (A.25), we can get rid of m,

β + 2γv2 + 3κv4 =
m2
h

2v2
> 0 (A.26)

In the meantime, we have the enhancement of the Higgs self-coupling to be,

δ ∝ γ + 3κv2 (A.27)

γ + 3κv2 < 0 (A.28)

The last step of this proof would be to prove the condition A.23 holds given the two con-

straints Eq. (A.26) and Eq. (A.28). To simplify it, we’ll define some new variables to substi-

tute the existing ones. We are going to use x = β/v4 and y = γ/v2 and t = φ2/v2 instead of

the old β, γ and φ. Now in the 2D plane spanned by axis x and y, we see the two constraints

above corresponds to a triangular area shown below in Fig. (A.1) Now it’s clear that all the

shadowed area lies on the right of all of those red dashed lines, which means no matter what

φ is in Eq. (A.23), it’s always satisfied as long as the enhancement is negative. Thus till now,

our proof is done. One more word, in the same way we could prove that the same conclusion

doesn’t hold after including the higher-order term (φ†φ)5. In that case, there is no tight

correlation between the sign of the enhancement and the order of the phase transition, as

the example shows in the main text.
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Figure A.1: Allowed region is colored by blue.
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