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ABSTRACT

Whether in designing novel materials or simply sustaining basic biological function, the

dynamics of biological and bio-inspired macromolecules are key in multiple processes im-

pacting daily life. These dynamics involve a variety of scenarios, including the self-assembly

of biomacromolecules, their native dynamics within living cells, and their use in functional

materials in order to bind with specific foreign species. In this dissertation, a multitude

of tools in the molecular simulation arsenal are deployed to investigate biomacromolecule

dynamics in all three scenarios. We begin by using atomistic molecular dynamics to study

early-stage aggregation of human islet amyloid polypeptide (hIAPP), an amyloid-forming

protein implicated in type II diabetes. By applying the finite temperature string method,

we identify potential pathways for the first stages of self-assembly of hIAPP into dimers, as

well as relevant aggregation intermediates and their relative stabilities. We then extend our

investigation of hIAPP to the formation of trimers, for which we examine multiple possible

aggregation mechanisms and study their fundamental mechanistic and thermodynamic dif-

ferences. We then consider the design of a peptide amphiphile, consisting of a polypeptide

chain attached to an alkyl chain that drives self-assembly. We examine the dynamics and

energetics of a candidate peptide amphiphile binding to phosphate, which may be harnessed

for the sustainable sequestration of phosphate from wastewater. Finally, we proceed to apply

a combination of molecular dynamics and nonlinear manifold learning techniques to identify

the key dynamical motions of the nucleosome, another biological macromolecular system

consisting of 147 base pairs of DNA wrapped around a complex of eight histone proteins,

whose sequence-dependent behavior affects critical functions including gene expression and

DNA replication.
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CHAPTER 1

INTRODUCTION

An incredible amount of natural complexity is found in biological systems, often involving

macromolecules such as proteins, DNA, and RNA. The folding, assembling, and binding

abilities of these macromolecules underlie their essential roles in the biological processes that

sustain life, in contexts ranging from the successful folding of a protein into a structure

with specific functionality, to the assembly of multiple proteins into molecular machines, to

the compact encoding and storage of genetic information by a combination of proteins and

DNA. Studies of these systems not only provide a basis with which to understand the living

world around us, but also serve as inspiration for engineering new materials that exhibit the

molecular-level specificity, selectivity, and precision often observed in nature.

In this dissertation, we use the tools of molecular simulation and data-driven analysis

to study the dynamics of multiple biological macromolecule systems. We examine systems

of greater size and complexity as we progress through the dissertation, beginning with the

oligomerization of a naturally occurring protein implicated in the onset of disease. We

then progress to an engineered self-assembling peptide amphiphile system, designed for the

sequestration and recycling of phosphate from wastewater, before proceeding to the study

of the dynamics of the nucleosome, a DNA-protein complex responsible for the successful

packaging of DNA into chromosomes.

In Chapter 2, we examine the dimerization of human islet amyloid polypeptide (hIAPP or

human amylin). Amyloid aggregates of hIAPP have long been implicated in the development

of type II diabetes. While hIAPP is known to aggregate into amyloid fibrils, it is the

early-stage prefibrillar species that have been proposed to be cytotoxic. A detailed picture

of the early-stage aggregation process and relevant intermediates would be valuable in the

development of effective therapeutics. We use atomistic molecular dynamics simulations with

a combination of enhanced sampling methods to examine the formation of the hIAPP dimer

in water. Bias-exchange metadynamics calculations reveal relative conformational stabilities

1



of the hIAPP dimer. Finite temperature string method calculations identify pathways for

dimer formation, along with relevant free energy barriers and intermediate structures. We

show that the initial stages of dimerization involve crossing a substantial free energy barrier

to form an intermediate structure exhibiting transient β-sheet character, before proceeding

to form an entropically stabilized dimer structure.

In Chapter 3, we extend our investigation of amylin aggregation to study hIAPP trimer-

ization. We use atomistic molecular dynamics simulations with the finite temperature string

method to identify and compare multiple pathways for hIAPP trimer formation in water. We

focus on the comparison between trimerization from three disordered hIAPP chains (which

we call “3-chain assembly”) and trimerization from an hIAPP dimer approached by a single

disordered chain (called “2+1 assembly”). We show that trimerization is process uphill in

free energy, regardless of the trimerization mechanism, and that a high free energy barrier

of 40 kBT must be crossed in 2+1 assembly compared to a moderate barrier of 12 kBT for

3-chain assembly. We find this discrepancy to originate from differences in molecular-level

water interactions involved in the two trimerization scenarios. Furthermore, we find that

the more thermodynamically favorable 3-chain assembly begins from a previously identified

dimer intermediate exhibiting transient β-sheet character, which is then incorporated into a

similar trimer intermediate, suggesting stepwise aggregation dynamics.

We then proceed to study a system in which naturally occuring peptide sequences are

harnessed for the design of functional materials in the context of the recovery of valuable

resources from wastewater, which is becoming increasingly important as global population

rises and natural resources are depleted. One such resource is phosphate, which is critical for

its use in fertilizers in maintaining food production worldwide and lacks any viable substitute.

Biologically-inspired peptide amphiphiles are a particular type of material that can address

this goal of sequestering phosphate from wastewater, by incorporating a phosphate-binding

peptide sequence with an alkyl chain that drives self-assembly to form a self-assembling

micellar structure with phosphate-sequestering properties. In Chapter 3, we investigate the
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preliminary peptide amphiphile candidate C16GGGhex, which is made up of a 16-carbon

alkyl tail connected to a biomimetic, pH-responsive, and phosphate-binding hexapeptide via

a short peptide linker. We use a combination of molecular dynamics and enhanced sampling

methods to study the potential of C16GGGhex for efficient phosphate capture and release

at high and low pH conditions. Screening and clustering calculations show that phosphate

may bind with C16GGGhex at multiple locations along its peptide region, not solely at the

known phosphate-binding hexapeptide. Adaptive biasing force (ABF) simulations of both

single C16GGGhex chains and a flat layer of C16GGGhex indicate preferential binding of

phosphate at low pH, with three distinct phosphate-binding locations identified in single-

chain studies, while no preferential binding is observed at high pH.

In Chapter 5, we expand our work to the study of another essential biomolecule—DNA—

while addressing the challenge of identifying effective collective variables in molecular sim-

ulations of complex systems. We use a nonlinear manifold learning technique known as the

diffusion map to extract key dynamical motions from a complex biomolecular system known

as the nucleosome: a DNA-protein complex consisting of a DNA segment wrapped around a

disc-shaped group of eight histone proteins. We show that without any a priori information,

diffusion maps can identify and extract meaningful collective variables that characterize the

motion of the nucleosome complex. We find excellent agreement between the collective vari-

ables identified by the diffusion map and those obtained manually using a free energy-based

analysis. Notably, diffusion maps are shown to also identify subtle features of nucleosome

dynamics that did not appear in those manually specified collective variables. For example,

diffusion maps identify the importance of looped conformations in which DNA bulges away

from the histone complex that are important for the motion of DNA around the nucleosome.

This work demonstrates that diffusion maps can be a promising tool for analyzing very large

molecular systems and for identifying their characteristic slow modes.

Finally, we conclude with an overview of our results in Chapter 6. We summarize the ways

in which this dissertation has demonstrated how modern molecular simulation techniques
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and data-driven approaches are vital tools for understanding complex systems of biological

macromolecules, both in natural and artificial contexts, and provide an outlook on future

work.
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CHAPTER 2

EARLY-STAGE HUMAN ISLET AMYLOID POLYPEPTIDE

AGGREGATION: MECHANISMS BEHIND DIMER

FORMATION

Amyloid aggregates of human islet amyloid polypeptide (hIAPP or human amylin) have long

been implicated in the development of type II diabetes. While hIAPP is known to aggregate

into amyloid fibrils, it is the early-stage prefibrillar species that have been proposed to be

cytotoxic. A detailed picture of the early-stage aggregation process and relevant intermedi-

ates would be valuable in the development of effective therapeutics. Here, we use atomistic

molecular dynamics simulations with a combination of enhanced sampling methods to exam-

ine the formation of the hIAPP dimer in water. Bias-exchange metadynamics calculations

reveal relative conformational stabilities of the hIAPP dimer. Finite temperature string

method calculations identify pathways for dimer formation, along with relevant free energy

barriers and intermediate structures. We show that the initial stages of dimerization involve

crossing a substantial free energy barrier to form an intermediate structure exhibiting tran-

sient β-sheet character, before proceeding to form an entropically stabilized dimer structure.

This chapter is reproduced from [38].

2.1 Introduction

Amyloidogenic proteins have long been implicated in a host of human diseases. These pro-

teins exhibit a shared tendency to self-assemble into aggregates known as amyloid, which

share morphological properties, including a fibrillar shape with heavily β-sheet secondary

structure [70]. One such amyloidogenic protein is human islet amyloid polypeptide (hIAPP

or human amylin); this 37-residue polypeptide hormone is co-secreted with insulin in the

pancreas by β-cells and plays a role in regulating blood glucose levels [72, 41]. Heavily β-

sheet amyloid aggregates of hIAPP have been pathologically linked to the loss of pancreatic
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β-cells and the onset of type II diabetes [119], prompting studies of hIAPP fibrils and their

formation.

Extensive characterization efforts have probed the structure of the mature hIAPP fibril,

including the use of solid-state NMR (ssNMR) experiments to propose the arrangement of

individual hIAPP chains within a mature fibril. In this proposed model, hIAPP monomers

are stacked along the fibril axis, and each monomer is arranged in a U-shaped conformation

consisting of two β-strands (residues 8-17 and 28-37), connected via a loop region. Parallel β-

sheets are formed as monomeric hIAPP stack to form the mature fibril structure. This model

is consistent with two-dimensional infrared spectroscopy (2D-IR) experiments [117], as well as

electron paramagnetic resonance (EPR) measurements [4]. Furthermore, recent experiments

and simulations have studied amylin in the presence of inhibitors [6, 122, 83], binding of

amylin to metals [121], interactions between amylin and its mutants or other amyloidogenic

proteins [48, 47], as well as amylin behavior at a membrane[75, 123, 122, 29, 21, 66] and

structural rearrangements during aggregation [104].

Mature fibrils are relatively biologically inert, and the formation of prefibrillar species,

or protofilaments, has been linked to cytotoxicity [103, 50, 18, 82], prompting a shift toward

the study of early-stage amyloid aggregates. Dimers, trimers, and larger oligomers have

been proposed to be responsible for disrupting cell membranes, inhibiting metabolic func-

tions, inducing oxidative stress, and triggering apoptosis [50, 69, 117, 78, 91]. Experimental

evidence includes observations of membrane leakage prior to mature fibril formation [100]

and of disrupted cell membranes isolated from areas of fibril growth [13]. In order to better

understand the role of hIAPP in disease onset, as well as to design effective therapeutics, it

is crucial to uncover the mechanisms of early-stage fibril formation, as well as identify any

relevant intermediate structures in the aggregation process.

In particular, residues 20-29 in hIAPP are suspected to play a key role in amyloid forma-

tion [120]. This 10-residue segment is itself amyloidogenic, and mutations to this sequence

suppress amylin aggregation [120, 79, 92, 1]. However, residues 20-29 are not located within
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the heavily β-sheet fibril core in the ssNMR-based fibril model [70]. 2D-IR experiments

and molecular dynamics (MD) simulations have previously been combined to identify a key

intermediate in the early-stage aggregation of hIAPP, which featured the FGAIL region in

residues 23-27 in a transient parallel β-sheet prior to the formation of the final U-shaped

configuration [14]. In addition to this FGAIL region, residues L12A13 have recently been

suggested to form a stacked turn or disordered β-sheet during the aggregation through 2D-

IR experiments with dihedral indexing [73]. Furthermore, Chiu and de Pablo have utilized

MD simulations combined with bias-exchange metadynamics to study the mechanism by

which two disordered hIAPP monomers assemble into a U-shaped dimer [14, 20], and more

recent work has extended this approach to investigate dimer formation in the presence of a

lipid membrane [66]. Two potential dimerization mechanisms were proposed, both of which

exhibit intermediate parallel β-sheet structure in residues 23-27 (FGAIL region). The disor-

dered dimer was found to be less thermodynamically stable than both the intermediate and

the final U-shaped dimer; however, the work concludes with a cautionary note that these

results are highly dependent on the force field used (GROMOS96 53a6) [86, 20]. Subsequent

force field reviews suggested that GROMOS96 53a6 tends to over-stabilize the formation of

β-sheet in both human and rat islet amyloid polypeptide (rIAPP) [46], as well as the amy-

loidogenic polypeptide polyglutamine [32]. Newer force fields were shown to more accurately

capture experimentally determined properties, for example Cα secondary NMR chemical

shifts: one such force field is AMBERff99SB*-ILDN [65, 64].

Although GROMOS96 53a6 does predict an intermediate structure consistent with pre-

vious experimental and computational studies, given the findings of Hoffmann et al. [46],

further investigation of amylin aggregation warrants the use of a force field that better cap-

tures the conformational behavior of the hIAPP molecule, especially if studies are to be

extended to higher order aggregates. In this work, we seek a more accurate understanding

of early-stage hIAPP aggregation in water using the AMBERff99SB*-ILDN force field. We

use bias-exchange metadynamics to reveal the free energy landscape for hIAPP dimerization
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under the new, more accurate force field. Furthermore, we go beyond past studies of the

dimer and employ finite temperature string method calculations to unveil specific aggre-

gation mechanisms for the hIAPP dimer, as well as the associated changes in free energy,

revealing a substantial free energy barrier associated with the formation of an intermediate

β-sheet structure prior to formation of a locally stable structured amylin dimer.

2.2 Results and Discussion

2.2.1 Free Energy Landscape for the hIAPP Dimer

Bias-exchange metadynamics (as described in Methods) using the AMBERff99SB*-ILDN

force field was used to produce the free energy landscape of the hIAPP dimer in solution

(Figure 2.1a), plotted as a function of two collective variables (CVs), Qres 8-16 and Qres 27-35.

The two Q parameters measure similarity of residues 8-16 and 27-35 in the simulated struc-

ture to the ideal U-shaped dimer, which is extracted from the ssNMR mature fibril structure.

Further details on the chosen collective variables are found in Methods. The global free

energy minimum is found at (Qres 8-16, Qres 27-35) = (0.43, 0.38). Two local minima corre-

sponding to fully dimerized structures are found at the upper right of the plot at (0.88, 0.88)

and (0.88, 0.68), with free energies of 7.4 kJ/mol and 6.8 kJ/mol respectively. Additional

local minima are found at (0.83, 0.33), with a free energy of 6.5 kJ/mol, and (0.23, 0.68),

with a free energy of 7.3 kJ/mol; these minima correspond to partially dimerized structures.

Several features of the free energy landscape can be pieced together to understand the

dimerization process. First, the global minimum is found in a single, wide basin in the

lower left quadrant of the free energy landscape. In Figure 2.1a, conformations within

5 kJ/mol of the global minimum are bounded by the second contour line out from the

global minimum, shown in yellow. Structures in this lower left quadrant correspond to low

values of Qres 8-16 and Qres 27-35; these conformations show little similarity to the ideal U-

shaped dimer. The free energy minimum that most closely matches the U-shaped dimer is
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Figure 2.1: (a) Free energy landscape of the hIAPP dimer as a function of Qres 8-16 and
Qres 27-35, obtained via BE-MetaD and the AMBERff99SB*-ILDN force field. Free energy
values are relative to the global minimum at (Qres 8-16, Qres 27-35) = (0.43, 0.38). Contour
lines are plotted for free energies from 2.5 kJ/mol (black) to 15 kJ/mol (green), with stride
2.5 kJ/mol. All free energies greater than or equal to 15 kJ/mol are plotted in yellow. Two
local minima corresponding to dimer structures are located, at (0.88, 0.88) and (0.88, 0.68).
(b) Average amount of parallel β-sheet spanning residues 20-29 in the hIAPP dimer in

solution, as measured by β
parallel
RMSD 20-29, as function of Qres 8-16 and Qres 27-35. The value of

β
parallel
RMSD 20-29 ranges from 0 (no parallel β-sheet) to 8 (completely parallel β-sheet). Statistics

were collected from the full production simulation time of all six BE-MetaD replicas. Free
energy contours from (a) are superimposed on the plot.

found in the upper right quadrant at (0.88, 0.88), elevated over the global minimum by 7.4

kJ/mol, or approximately 3 kBT at room temperature. The relative depths, widths, and

locations in CV space of these two minima suggest that the conformational ensemble of the

hIAPP dimer is largely dominated by disordered structures dissimilar from the U-shaped

dimer. Additionally, the free energy minima in the upper right quadrant at (0.88, 0.88) and

(0.88, 0.68) are more elongated along the Qres 27-35 axis versus the Qres 8-16 axis, suggesting

that C-termini β-strands are more flexible than the N-termini β-strands. Furthermore, the

conformational terrain is relatively smooth outside of the global minimum, with no local

free energy minima deeper than 2.5 kJ/mol below their immediate surroundings; the major

barrier to the dimerization process is escaping the wide well surrounding the global minimum

centered at (0.43, 0.38).
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A number of qualitative differences arise between the AMBERff99SB*-ILDN and GRO-

MOS96 53a6 models. The GROMOS model previously suggested that the U-shaped dimer

is found at the global free energy minimum, at 1.1 kJ/mol more stable than the disor-

dered dimer. The GROMOS model also identified multiple metastable states, with free

energies within kBT of the global minimum; each of these metastable states featured a sig-

nificant amount of β-sheet structure. In comparison, the free energy landscape obtained

using AMBERff99SB*-ILDN features a U-shaped dimer at 7.4 kJ/mol above the disordered

dimer in free energy, with a single wide basin centered around the global minimum contain-

ing disordered conformations. This discrepancy is consistent with the findings of Hoffmann

et al. that found that GROMOS96 53a6 overstabilizes β-sheet secondary structure in hIAPP

and that the AMBER model can more accurately reproduce the true structure of hIAPP in

solution [46]; this prompts reexamination of the true mechanistic details behind the hIAPP

dimerization process.

While Figure 2.1a highlights individual conformational clusters and their relative stabil-

ities, little mechanistic information can be drawn from the free energy surface. In order to

extract information regarding the role of a possible transient β-sheet intermediate formed in

residues 20-29, we overlay the average amount of parallel β-sheet in residues 20-29 onto the

free energy contours from Figure 2.1a. The overlay pinpoints two clusters of parallel β- sheet

character in residues 20-29: one tight cluster at (0.33, 0.58) approximately 5.0 kJ/mol above

the global minimum, and a second diffuse cluster at (0.73, 0.73) approximately 10 kJ/mol

above the global minimum. If a β-sheet intermediate is indeed formed in residues 20-29

during the dimerization process, the transition pathway must pass through these regions of

elevated parallel β-sheet mapped in Figure 2.1b.

However, there are two such clusters of high β-sheet character in residues 20-29 and little

information to distinguish whether these two separate regions in CV space share degenerate

hIAPP conformations. It is difficult to pinpoint a specific aggregation pathway on this free

energy landscape, even moreso considering that the two Q parameters are only dependent
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on a subset of all the residues in the system. In order to obtain details on the mechanism

of aggregation, we perform finite temperature string method calculations using collective

variables that may better capture conformational changes across the entire polypeptide.

While performing yet another round of metadynamics with these more general collective

variables might be prohibitively expensive, string methods inherently focus on the transition

region, making them an attractive alternative for studying the dimerization process.

We use the finite temperature string method to examine the hIAPP dimerization process

along two collective variables: the amount of parallel β-sheet formed between hIAPP chains

and the distance between the centers of mass of each hIAPP monomer.

2.2.2 hIAPP Dimerization Pathway

Figure 2.2 shows the final transition pathway for the hIAPP dimerization process, obtained

from finite temperature string method calculations (see Methods). One end of the string

corresponds to the disordered state of the hIAPP dimer (labeled Structure I, located at

dCOM = 1.31 nm and β
parallel
RMSD = 4.32) and the opposite end of the string corresponds to the

fully formed dimer (Structure V, at dCOM = 0.40 nm and β
parallel
RMSD = 24.80). Representative

snapshots of the system are shown alongside the pathway in Figure 2.2, highlighting key

structural changes that occur during the dimerization process.

In the disordered configuration shown in Panel I, no secondary structure is formed be-

tween the two amylin chains. However, any individual disordered chain may independently

form α-helix or β-strand motifs. Panel II highlights an intermediate structure, consistent

with previous studies, exhibiting parallel β-sheet structure that has been suspected to play a

role in amyloid aggregation [120]. Increasing amounts of parallel β-sheet is formed between

the two amylin monomers as dimerization progresses, as witnessed in Panels III and IV,

which show parallel β-sheet forming in the C-termini before advancing to the N-termini to

form the full fibrillar dimer in Panel V.

The free energy profile along this dimerization pathway is shown in Figure 2.3. An
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Figure 2.2: Dimerization pathway obtained via finite temperature string method. Five repre-
sentative snapshots illustrate conformational changes that take place during dimer formation.
Water and counterions are not shown for clarity. The 35-node pathway is composed of the
results of a 32-node and smaller 4-node string method, as described in Methods. Grey points
show initial configurations for the 32-node and 4-node string method calculations.
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Figure 2.3: Free energy profile along the dimerizaton pathway obtained via finite temperature
string method. The reaction coordinate proceeds from 0.0 (disordered state) to 1.0 (fully
formed dimer). Free energy is calculated as described in Methods, sampling 35 Voronoi cells
for 150 ns each. Representative snapshots illustrate key conformational changes, including
the formation of a transient β-sheet structure after surpassing the initial free energy barrier of
approximately 7 kBT . Average secondary structure per residue across the entire dimerization
pathway is presented in Figure 2.4.
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Figure 2.4: Average β-sheet and α-helix secondary structure at each of the points where a
free energy calculation was performed in Figure 2.3, plotted by residue (ranging from 1 to
37) versus reaction coordinate (from the disordered state at 0.0 to fully dimerized state at
1.0). Secondary structure was assigned using the DSSP algorithm [53] and averaged over all
150 ns of sampling for each bin. The Barrier I and II regions corresponding to the barriers
highlighted in Figure 2.3 are marked in both plots. As Barrier I is crossed, a transient β-sheet
is formed in residues 19-24 and in the L12A13 region. The crossing of Barrier II corresponds
to simultaneous loss of β-sheet in the C-termini and increased β-sheet in the N-termini, with
regions of high β-sheet character gradually moving out towards the termini as the full dimer
is formed, accompanied with a drop in free energy.

initial free energy barrier of approximately 7 kBT is discovered, and the images provided

in Figure 2.3 indicate that this barrier corresponds to the formation of the intermediate β-

sheet structure. As the system climbs the 7 kBT energy barrier, the two amylin monomers

approach each other and align; as the system traverses past the peak of the barrier, the

transient intermediate β-sheet forms, accompanied by a drop in free energy.

Figure 2.4 shows the average secondary structure (calculated via the DSSP algorithm

[53]) per residue for the dimerization process, with barriers corresponding to those in Figure

2.3 marked. The intermediate β-sheet structure formed in the Barrier I region is found to be
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localized not only in the previously proposed region in residues 20-29 but also the L12A13

region recently proposed by Maj and coworkers [73]. Note that this is slightly shifted toward

the N-termini compared with the GROMOS model.

A small free energy barrier is observed at the opposite end of the pathway, on the order

of 2 kBT . By examining the corresponding snapshots, it becomes clear that this barrier is

associated with a conformational rearrangement of the two amylin monomers, transitioning

from two extended chains stacked side-by-side in parallel to a more compact “ribbon-like”

structure exhibiting a slight twist. This rearrangement is coupled with additional formation

of N-termini β-sheet structure, as reflected in the plot of secondary structures in Figure 2.4.

Figure 2.4 also reveals that the additional formation of β-sheet in the N-termini, and its

associated free energy stabilization, comes at the cost of relinquishing a fraction of β-sheet

in the C-termini. Furthermore, formation of the fully dimerized structure corresponds to a

shift in localization of β-sheet character away from the center of the hIAPP chain towards

the termini.

Additional mechanistic details can be uncovered by tracking the entropic and enthalpic

contributions to the changes in free energy (Figure 2.5). This is accomplished by calculating

change in potential energy ∆U and change in free energy ∆A for each sampled Voronoi cell

along the reaction coordinate with respect to the disordered bin, followed by calculating the

entropic changes using ∆A = ∆U − ∆TS. The enthalpic and entropic profiles are shown

in Figure 2.5. Enthalpic and entropic changes fluctuate as dimerization progresses, before

a sharp jump in entropic contributions occurs, corresponding to Panel E in Figure 2.3. By

overlaying multiple RMSD-aligned snapshots taken from the same trajectory as Panel E

(Figure 2.6), we see the jump in entropy reflected in the conformational degeneracy of the

dimer at both termini; while the core of the dimer remains compact, the ends of each chain

explore many configurations. The entropic contribution then drops as we move to Panel F

in Figure 2.3, stabilizing the final dimer structure by approximately 2 kBT .
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Figure 2.5: Free energy decomposition into enthalpic (∆U) and entropic (−∆TS) contribu-
tions for dimerization. ∆A is taken from the free energy calculation, performed as described
in Methods. Average potential energy is calculated from each of the 35 Voronoi cells sampled
during free energy calculation, from a total of 15003 snapshots per cell. Entropic contribu-
tions are then calculated as −∆TS = ∆A−∆U .

Figure 2.6: Six RMSD-aligned snapshots of the dimer, taken from the trajectory corre-
sponding to the free energy barrier marked by snapshot E in Figure 2. While the core of
the dimer structure remains compact across the multiple snapshots, the termini of each hI-
APP molecule explore more freely, contributing to the jump in entropy found in Figure 2.5.
Structures were aligned using VMD [9, 49].
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2.3 Conclusions

Bias-exchange metadynamics simulations have been used to study the thermodynamics of

hIAPP dimerization using the AMBERff99SB*-ILDN force field. A global free energy min-

imum corresponding to the disordered dimer has been identified, as well as a metastable

free energy minimum corresponding to the fully-formed dimer, whose value is 7.4 kJ/mol or

approximately 3 kBT higher.

The dimerization pathway for hIAPP, determined from finite temperature string method

calculations, reveals an energy barrier of approximately 7 kBT associated with the formation

of an intermediate β-sheet structure. Interestingly, this structure is localized in the previously

proposed region in residues 20-29, as well as in the more recently proposed L12A13 region.

Consistent with the results of metadynamics simulations, the fully formed dimer corresponds

to a local free energy minimum whose energy is approximately 4.5 kBT higher than that

of the disordered dimer. The fully formed dimer lies in a shallow well of approximately 2

kBT ; importantly, further free energy decomposition suggests that the final dimer structure

is entropically stabilized.

While a moderate (7 kBT ) free energy barrier is associated with the formation of the

intermediate dimer structure, the question that now arises is whether aggregation will re-

main uphill in free energy as the oligomer grows larger, or whether the aggregation process

will become favorable after a certain size oligomer has been formed, thereby initiating ex-

ponential fibril growth. Other remaining questions include whether higher order aggregates

nucleate from the globally stable disordered state, an intermediate structure formed during

dimerization, or the locally stabilized structured dimer, and how these higher order aggre-

gation events proceed. Such simulations are considerably larger in magnitude and are being

pursued in our laboratory – the results will be presented in a future publication. Further

investigations of that nature may shed light on the formation of higher order aggregates and

the effects of different physiologically relevant environments on the aggregation process.
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2.4 Methods

2.4.1 Human Amylin Dimer

We base the design of our dimer system on that of Chiu and de Pablo [20], with the major

difference being the change in force field. The simulated system consists of two hIAPP

molecules, 26,626 water molecules, and six chloride ions. The amino acid sequence for

hIAPP is KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY. The C-termini of each

polypeptide is amidated, and the side chains of Cys2 and Cys7 are linked by a disulfide bond.

Protonation states of all ionizable functional groups are assigned on the basis of their pKa

values in aqueous solution at a pH of 7.0. Each hIAPP molecule carries a formal charge of +3,

and chloride counterions are included to ensure zero net charge in the system. Polypeptides

and ions were modeled by the AMBERff99SB*-ILDN force field [64, 88], and water was

modeled by the TIP3P model [52]. The system was placed in a periodic cubic box of side

length 9.4 nm. Coulombic forces were calculated using the particle mesh Ewald algorithm

[25, 31], temperature coupling at 298 K was achieved using the Nosé-Hoover thermostat

[84], volume was held constant, and simulations were performed with a timestep of 2 fs. The

LINCS algorithm was used to constrain hydrogen bond lengths to equilibrium values [43].

2.4.2 Bias-Exchange Metadynamics

Bias-exchange metadynamics (BE-MetaD) simulations were performed to construct a free

energy landscape for the hIAPP dimer. BE-MetaD performs conventional metadynamics in

parallel on multiple replicas of the system, with atomic coordinates periodically exchanged

between replicas à la parallel tempering [89]. As in standard metadynamics [59, 16], the

final bias potential consists of a sum of small, Gaussian potentials deposited periodically

along the system trajectory in collective variable (CV) space. Free energies are calculated

from the combined statistics using the weighted histogram analysis method (WHAM) [58].

In this study, and in the following equations, each replica is biased along one CV at most.

18



The cumulative bias potential of replica i at time t, denoted V iG, is [59]:

V iG[ξi(xi(t)), t] = W
∑
t′≤t

exp

(
− [ξi(xi(t))− ξi(xi(t′))]2

2σ2
i

)
(2.1)

where ξi denotes the CV, ξ(t) is the atomic coordinate vector, and the times at which

Gaussian potentials were previously deposited are t0. The amplitude and width of the

Gaussian potentials are W and σi, respectively. Exchanges of the atomic coordinates and

velocities are attempted every 50 ps between randomly selected pairs of replicas. Coordinates

of replicas i and j are exchanged with probability pij :

pij = min

[
1, exp

(
V iG[ξi(xi(t)), t] + V

j
G[ξj(xj(t)), t)]− V iG[ξi(xj(t)), t]− V

j
G[ξj(xi(t)), t]

kBT

)]
(2.2)

where kB is the Boltzmann constant and T is the temperature. Since all replicas are held at

the same, constant temperature, the exchange probability is independent of the energy from

the true, non-biasing MD interactions. Beyond some elapsed simulation time tfill, the system

diffuses freely in CV space, and a time average of the inverse cumulative bias potential is an

estimator of the underlying free energy surface. Using WHAM, statistics from all replicas

may be combined and the free energy A may be calculated as a function of any CV ξ′ [58, 9]:

A(ξ′) = −kBT ln


∑k
i n

i
ξ′∑k

j exp

[
1

kBT

(
f j − V jG(ξ′)

)]
 (2.3)

where k is the number of replicas, and V
j
G(ξ′) is the average biasing potential acting along

ξ′ in replica j, and the f j is the normalization constant for replica j, calculated iteratively

through the WHAM algorithm. niξ′ represents the number of times that replica i visits CV

value ξ′.

Two types of CVs were chosen for the BE-MetaD calculations: Qres u-v, a measure of
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similarity of to the proposed amylin fibril structure derived from ssNMR experiments, and

β
parallel
RMSD u-v, a measure of parallel β-strand content. In each case, a range of amino acid

sequences is bounded by residues u and v. Specifically, Qres u-v is the RMSD structural

similarity of resiudes u through v to the same set of residues from the ssNMR structure

[111, 20],

Qres u-v =

〈
exp

[
−(rref

ij − rij)
2

9Å
2

]〉
i6=j

(2.4)

where rij and rref
ij are the distances, in Å, between backbone atoms i and j in the sampled

and reference configuration, respectively. The angle brackets indicate an average over all

pairs of backbone atoms belonging to residues in the sequence bounded by residues u and

v. The value of Qu-v ranges from 0, which indicates no similarity, to 1, which indicates an

identical conformation. In this study, we adoptQres 8-16 andQres 27-35 as CVs. The reference

structures are residues 8-16 and residues 27-35, respectively, of the ssNMR structure [70],

i.e. the N- and C-terminal β-strands in the fibril.

The parallel β-sheet content of a particular sequence bounded by residues u and v is

defined as [90]:

β
parallel
RMSD u-v =

∑
β

1−
(

RMSD
0.8Å

)8

1−
(

RMSD
0.8Å

)12
(2.5)

where the sum runs over all pairs of three-residue segments bounded by residues u and v

in both molecules. RMSD measures the root mean square deviation, in Å, of the positions

of the N, Cα, Cβ , C, and O backbone atoms in those (3 + 3)-residue blocks from those

in an ideal, parallel β-sheet. Put another way, β
parallel
RMSD u-v counts the number of pairs of

three-residue segments similar to the ideal parallel β-sheet, scaled by a switching function.

We adopt β
parallel
RMSD 8-16, β

parallel
RMSD 27-35, and β

parallel
RMSD 20-29 as CVs. Biasing along β

parallel
RMSD 8-16

and β
parallel
RMSD 27-35 accelerates sampling of all parallel β-sheets involving those segments, not
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just the ones in the ssNMR structure. Biasing along β
parallel
RMSD 20-29 accelerates sampling of

parallel β-sheets in the central regions of the molecules, which have been identified as a key

intermediate in the formation of fibrils [120].

BE-MetaD simulations were carried out for a system consisting of six replicas. Five

replicas were subject to the metadynamics biasing potential acting along one of the five

CVs defined above: Qres 8-16, Qres 27-35, β
parallel
RMSD 8-16, β

parallel
RMSD 27-35, or β

parallel
RMSD 20-29. The

sixth replica evolved with zero biasing potential, but was allowed to exchange coordinates

with the other replicas according to Equation 2.2. For all replicas, W = 2.0kJ mol−1 and

Gaussian potentials were deposited every 5 ps. Widths of the deposited Gaussian potentials

were σi = 0.02 for Qres 8-16 and Qres 27-35; widths of the deposited Gaussians were σi = 0.2

for β
parallel
RMSD 8-16, β

parallel
RMSD 27-35, and β

parallel
RMSD 20-29. The total simulation time was 500 ns.

The filling time tfill was 400 ns. Simulations were conducted using the GROMACS 4.5.5

simulation package [5, 44] and a modified version of the PLUMED 1.3 plugin [12]. WHAM

calculations were conducted using the METAGUI plugin for VMD [9, 49].

2.4.3 Finite Temperature String Method

In order to identify a pathway for hIAPP dimerization, we utilize the finite-temperature

string method [115], which calculates a transition pathway as a series of local points (or

“nodes”) connected by a smooth curve (or “string”) in collective variable space. Here, we

investigate the free energy landscape described in terms of two intuitive collective variables

that depend on all residues in the system: (1) parallel beta sheet character β
parallel
RMSD , following

Equation 3.1 and using all residues in the system; and (2) a measure of the spatial separation

between individual hIAPP chains. We use the distance between the centers of mass for each

hIAPP monomer.

The string is discretized into 16 nodes, located in collective variable space at zα, where

α indicates index along the string (α = 0, ..., 15). The nodes split collective variable space

into a Voronoi tessellation, where each node has an associated Voronoi cell consisting of the
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points in CV space closer to itself than any other node. We assume Euclidean geometry.

At every string method iteration, each Voronoi cell is sampled such that no bias is applied

while the system is within the boundaries of its own Voronoi cell, and a harmonic restraining

potential is applied when the system departs from its own cell:

VVoronoi =


0 system in cell

ki(‖z(x(t))− zβ‖)4 system out of cell, in cell β

(2.6)

Each string method iteration samples every Voronoi cell for 100 ps. We track the running

average of each node’s location in collective variable space since the first iteration zα. At

the nth iteration, the string is updated according to:

zn+1
α = znα −∆τ(znα − zα) + rα (2.7)

where ∆τ is chosen to be 0.1, and the smoothing parameter rα is equal to 0 for nodes

on either end of the string (α = 0 or 15), otherwise:

rα = κN2∆τ(zα+1 + zα−1 − 2zα) (2.8)

where smoothing parameter κ is 0.1, and the number of nodes along the string N is

16. After each update to the string, a cubic spline interpolation is drawn through the 16

nodes, and the nodes are redistributed along the string to maintain equal arc-length between

adjacent nodes.

We iterate through these steps until the string converges, after which we run a secondary

string method calculation with only N = 4 nodes. This additional string method calculation

aims to ensure discovery of the true fibrillar state, which BE-MetaD suggests may lie in

a relatively narrow, isolated free energy basin. This “miniature” string is initialized from

an idealized dimer structure (extracted from the ssNMR mature fibril structure [70]) to the

fibrillar end of the original, converged 16-node string, which is held pinned in CV space
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throughout the evolution of the 4-node string.

Upon convergence of the secondary string, the free energy is computed along the final

composite string, consisting of the 16-node string and 4-node string stitched together. This

is done by calculating πα, the equilibrium probability of the system to be found in Voronoi

cell α, which is then used to calculate the corresponding free energy Aα [74]:

Aα =
1

kBT
log(πα) (2.9)

To improve resolution of the resulting free energy profile, we further discretize the original

16 node string to 32 nodes, resulting in the complete pathway being described by a total of

N = 35 Voronoi cells. Each of the Voronoi cells is sampled using the same soft wall restraints

described in Equation 3.2, for 50 ns for multiple runs. For each system sampling cell α, we

collect Tα, the total simulation time spent within cell α, as well as Nαγ , the number of times

the system escapes into a neighboring cell γ. The equilibrium probabilities πα are calculated

with the following system of equations, where ναγ =
Nαγ
Tα

is the rate of escape from cell α

into γ:

N∑
γ=1

πγνγα =
N∑
γ=1

παναγ (2.10)

N∑
α=1

πα = 1 (2.11)

String method simulations were performed using the GROMACS 4.6.7 simulation package

[5, 44], the PLUMED 2.1 plugin [12], along with custom code to perform string method

calculations.
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CHAPTER 3

MOLECULAR INSIGHTS INTO THE ROLE OF WATER IN

EARLY-STAGE HUMAN AMYLIN AGGREGATION

Human islet amyloid polypeptide (hIAPP or human amylin) is known to aggregate into

amyloid fibrils and is implicated in the development of type II diabetes. Prefibrillar species

in particular have been linked to cell loss, prompting detailed investigation of early-stage

hIAPP aggregation. Insights into the mechanisms underlying early-stage aggregation and

the key intermediate structures formed during aggregation are valuable in understanding

disease onset at the molecular level and guiding design of effective therapeutic strategies.

Here, we use atomistic molecular dynamics simulations with the finite temperature string

method to identify and compare multiple pathways for hIAPP trimer formation in water. We

focus on the comparison between trimerization from three disordered hIAPP chains (which

we call “3-chain assembly”) and trimerization from an hIAPP dimer approached by a single

disordered chain (called “2+1 assembly”). We show that trimerization is a process uphill in

free energy, regardless of the trimerization mechanism, and that a high free energy barrier

of 40 kBT must be crossed in 2+1 assembly compared to a moderate barrier of 12 kBT for

3-chain assembly. We find this discrepancy to originate from differences in molecular-level

water interactions involved in the two trimerization scenarios. Furthermore, we find that

the more thermodynamically favorable 3-chain assembly begins from a previously identified

dimer intermediate exhibiting transient β-sheet character, which is then incorporated into

a similar trimer intermediate, suggesting stepwise aggregation dynamics. Some background

information from Chapter 2 is revisited for thoroughness.

3.1 Introduction

Abnormal aggregation of amyloidogenic proteins is implicated in numerous human diseases,

including type II diabetes and various neurodegenerative diseases, such as Alzheimer’s dis-
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ease. In each of these diseases, a particular protein self-assembles into a type of heavily

β-sheet fibrillar aggregate known as amyloid.[70] Human islet amyloid polypeptide (hIAPP

or human amylin) is one such amyloidogenic protein; this 37-residue hormone is secreted

with insulin in the pancreas and is involved in blood glucose regulation.[72, 41]. Formation

of amyloid aggregates of hIAPP has been linked to the development of type II diabetes as well

as the loss of pancreatic β-cells, [119] which has motivated the study of hIAPP aggregates

and the mechanism through which they are formed.

The structure of the mature hIAPP fibril has been studied extensively via various struc-

tural characterization methods, including solid-state NMR (ssNMR) experiments, used to

identify the how individual hIAPP monomers are arranged within a mature fibril. In this ss-

NMR model, hIAPP monomers are stacked one by one in the direction of the fibril axis, with

each individual hIAPP chain in a U-shaped conformation with a region of β-strand on either

side (in residues 8–17 and 28–37). As the hIAPP monomers stack in along the fibril axis,

they form parallel β-sheets as adjacent U-shaped monomers align alongside each other. Two-

dimensional infrared spectroscopy (2D-IR) experiments support this proposed structure,[117]

as do electron paramagnetic resonance (EPR) experiments.[4] Additional experimental and

computational studies have investigated the behavior of amylin and its mutants in the pres-

ence of various inhibitors and metals, [6, 122, 83, 121] as well as interactions with other

amyloid-forming proteins or with membranes.[48, 47, 75, 123, 122, 29, 21, 66] Furthermore,

studies of amylin have extended to examining structural rearrangements during aggregation,

[104] as well as identifying aggregation mechanisms.[38]

While mature amylin fibrils have been found to be biologically inert, previous studies have

found early-stage aggregates to be associated with cytotoxicity.[103, 50, 18, 82] Prefibrillar

species such as dimers, trimers, or higher order oligomers have been proposed as the key

species responsible for inducing damage to cell membranes and eventually triggering cell

death. [50, 69, 117, 78, 91] Additionally, experiments in which cells undergo addition of

hIAPP reveal membrane leakage prior to the formation of mature fibrils [100] and disruption
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of cell membranes in regions separate from areas of fibril growth,[13] further supporting the

link between prefibrillar species and cellular damage.

A thorough investigation of early-stage fibril formation, including the mechanisms un-

derlying amylin aggregation, is therefore critical in building a better understanding of how

hIAPP behaves during the onset of disease and whether intermediate structures involved

in the aggregation process could potentially be targeted therapeutically. hIAPP residues

20–29 have specifically been proposed to be key in amyloid formation,[120] and mutations

to this sequence lead to suppressed amylin aggregation.[120, 79, 92, 1] While residues 20–29

are not located in the parallel β-sheet regions formed in the mature hIAPP fibril, transient

parallel β-sheets have been shown via 2D-IR experiments and molecular dynamics (MD)

simulations to form in this region prior to fibril formation, particularly in residues 23–27

(with sequence FGAIL).[70, 14] Additionally, 2D-IR experiments with dihedral indexing have

identified residues L12A13 to form a transient stacked turn or disordered β-sheet during

aggregation.[73]

Multiple studies have utilized MD simulations to probe the dimerization of two hIAPP

monomers into a U-shaped dimer,[14, 20, 66] including our recent work[38] employing the

string method to discover the dimerization mechanism and confirming the formation of

transient β-sheet in residues 12–13 and 20–29. The string method-based study found the

final U-shaped dimer to be less thermodynamically stable than the disordered dimer by

approximately 4.5 kBT , with a single major free energy barrier of 7 kBT in the dimerization

process associated with formation of an intermediate structure exhibiting transient β-sheet

in the aforementioned residues 12–13 and 20–29.[38]

Although these new insights have clarified the dimerization process, many key questions

remain with regards to how higher order aggregates are formed, as well as how the unfa-

vorable dimerization of amylin monomers fits into the amylin aggregation process at large.

These questions include whether further addition of hIAPP monomers to the growing fibril

proceeds similarly to the dimerization mechanism, and whether that process continues to be
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uphill in free energy. The recent application of the string method to the study of early-stage

amylin aggregation has paved the way for studying these higher order aggregates; previous

MD-based work on early-stage aggregation have largely been limited to study of the dimer,

due to the reliance on the more computationally costly metadynamics approach. In this

work, we tackle the next frontier in the early-stage aggregation process—trimerization—by

extending the string method approach to discover multiple possible trimerization mecha-

nisms and compare their respective thermodynamic properties. We focus specifically on the

comparison of trimerization from three disordered amylin chains versus trimerization from

a disordered chain approaching an amylin dimer, the distinctly different free energy barriers

encountered in each case, and most interestingly, the role of molecular interactions with

water that underlie the key differences between the two aggregation processes.

3.2 Results and Discussion

The finite temperature string method was used, as detailed in the Methods section, to

identify and investigate aggregation mechanisms for hIAPP trimerization. We perform the

finite temperature string method using two collective variables: (1) a measure of parallel β-

sheet character, β
parallel
RMSD , which is described in the Methods, and (2) the radius of gyration

(Rg) of the three protein chains. β
parallel
RMSD provides a continuous measure of the amount of

parallel β-sheet formed, while Rg provides a measure of compactness; we use them together

to characterize the trimerization process from a disordered state with little β-sheet to a more

compact aggregated state exhibiting high β-sheet secondary structure.

3.2.1 Trimer Assembly from the Disordered State (“3-chain Assembly”)

We begin by investigating assembly of the hIAPP trimer from three separate disordered

hIAPP chains; we refer to this assembly process as “3-chain Assembly”. Figure 3.1 shows

the trimerization pathway discovered via the finite temperature string method. One end of
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Figure 3.1: 3-chain trimerization pathway calculated from the finite temperature string
method, with initial configurations input into the string method shown in grey. Four repre-
sentative snapshots show mechanistic details during trimer formation. Water and counterions
are removed for clarity. The disordered end of the string (Panel I) includes the previously
studied dimer intermediate (formed by the yellow and red chains). A similar intermediate
comprised of all three chains is discovered and shown in Panel II.

the pathway corresponds to the disordered state of the hIAPP trimer (Rg = 2.16, β
parallel
RMSD =

9.87, shown in Panel I), while the opposite end corresponds to the fully formed trimer

(Rg = 2.99, β
parallel
RMSD = 48.53, shown in Panel IV). Representative snapshots highlighting key

conformational changes along the trimerization pathway are shown at the top of Figure 3.1.

In Panel I, a disordered amylin chain exhibiting no secondary structure approaches two

amylin chains that are loosely associated. Interestingly, the structure of these two chains

corresponds to the intermediate structure previously observed for hIAPP dimerization,[38]

with parallel β-sheet formed in the turn region suspected to play a key role in amyloid

aggregation.[120] Panel II shows that the disordered amylin chain has associated with the

dimer intermediate observed in Panel I, forming a similar trimer intermediate that also ex-

hibits parallel β-sheet, this time in the bend region across all three chains. Taken together,

Panels I and II suggest that formation of higher-order hIAPP aggregates in the 3-chain
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assembly scenario proceeds in a stepwise manner, with individual amylin chains added se-

quentially to a growing aggregate at the intermediate parallel β-sheet stage. Increasing

amounts of parallel β-sheet are formed between the three amylin chains through Panels III

and IV, leading to the formation of the full trimer, shown in Panel V.

Free energy changes along this 3-chain assembly pathway were calculated as described

in the Methods section and are shown in Figure 3.2. A single major free energy barrier of

approximately 12 kBT is observed, corresponding to the formation of the intermediate β-

sheet structure as indicated by the snapshots in Figure 3.2 and in Panel II of Figure 3.1. The

amylin dimer intermediate rearranges to allow incorporation of the approaching disordered

third amylin chain during this 12 kBT increase in free energy, followed by a slight drop in

free energy after the trimer intermediate is formed.

Figure 3.3 shows the changes in average secondary structure per residue over the 3-chain

assembly process, calculated using the DSSP algorithm.[53] Through comparison with Figure

3.2, it becomes clear that β-sheet is formed in the intermediate structures in residues 12–13

and 20–29, which have been previously proposed[120, 73] as regions exhibiting transient β-

sheet during aggregation and observed to do so in studies of the hIAPP dimer.[38] Figure

3.3 also shows β-sheet forming primarily in the C-termini before advancing to the N-termini,

a pattern which was also observed in previous dimer studies.[38]

3.2.2 Trimer Assembly from the Dimer State (“2+1 Assembly”)

In addition to studying assembly of the hIAPP trimer from three disordered chains, we ap-

plied the finite temperature string method to the study of a trimer assembled from a single

disordered amylin chain approaching a fully formed amylin dimer. We refer to this process

as “2+1 Assembly”. The trimerization pathway discovered using the string method is shown

in Figure 3.4; the disordered end of the pathway is found at (Rg = 2.62, β
parallel
RMSD = 22.14,

shown in Panel I), and the fully formed trimer is found at the opposite end of the discovered

pathway at (Rg = 2.98, β
parallel
RMSD = 49.82, shown in Panel IV). Again, representative snap-
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Figure 3.2: Free energy profile along the 3-chain trimerization pathway found via the finite
temperature string method. The reaction coordinate extends from 0.0 (disordered state) to
1.0 (fully formed trimer). Free energy is calculated using the procedure described in the
Methods, sampling each of the 32 cells for 150 ns each. Representative snapshots are shown
to illustrate conformational changes during trimerization. A free energy barrier of approx-
imately 12 kBT is found, corresponding to the formation of a transient β-sheet structure
(shown in Panel C).

30



Figure 3.3: Average α-helix and β-sheet secondary structure along the 3-chain trimerization
pathway, plotted by residue (ranging from 1 to 37, averaged over all three hIAPP chains).
Secondary structure was calculated using the DSSP algorithm[53] and averaged over 150 ns of
sampling for each of the 32 bins along the reaction coordinate. β-sheet is found to transiently
form in residues 12–13 and 20–29 during formation of the intermediate β-sheet structure,
and as trimerization progresses, β-sheet extends to both termini, with more heavily β-sheet
character observed in the C-termini.
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Figure 3.4: 2+1 assembly pathway calculated from the finite temperature string method.
Grey points show initial configurations input into the string method. Four representative
snapshots illustrate conformational changes observed during trimer formation. Water and
counterions are not shown. The disordered end of the string (Panel I) shows a loosely formed
dimer and a disordered third chain. Increased β-sheet is formed gradually until the full trimer
is formed (Panel IV).

shots highlight the relevant conformational changes along the trimerization pathway, shown

at the top of Figure 3.4. Panels I and II show that the hIAPP dimer is first stabilized, before

the disordered third amylin chain is gradually incorporated in Panels III and IV. In contrast

with 3-chain assembly and previous studies of the dimer,[38] there is no clear intermediate

structure exhibiting β-sheet in the bend region.

We also calculate the free energy profile along the 2+1 transition pathway, shown in

Figure 3.5. A steady increase of approximately 40 kBT is calculated for the 2+1 assembly

process, with no clear intermediate metastable state. This 40 kBT rise in free energy is

associated with the stabilization of the hIAPP dimer and initial addition of the third hIAPP

chain to the dimer, as shown in Panels A-D. The free energy fluctuates around a steady value

as the third chain gradually forms greater amounts of β-sheet with the dimer, eventually

forming the full hIAPP trimer, shown in Panels E and F.
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Figure 3.5: Free energy profile along the 2+1 assembly pathway found via the finite temper-
ature string method. The reaction coordinate proceeds from 0.0 (disordered state containing
a loosely formed dimer and third disordered chain) to 1.0 (fully formed trimer). Free energy
is calculated using the procedure described in the Methods, sampling each of the 32 cells for
150 ns each. Representative snapshots are shown to illustrate conformational changes during
trimerization. A free energy barrier of approximately 40 kBT is found. The intermediate
transient β-sheet structure observed during 3-chain assembly is not found.
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Figure 3.6: Average α-helix and β-sheet secondary structure along the 2+1 assembly path-
way, plotted by residue (ranging from 1 to 37, averaged over all three hIAPP chains). Sec-
ondary structure was calculated using the DSSP algorithm[53] and averaged over 150 ns of
sampling for each of the 32 bins along the reaction coordinate. As with 3+1 assembly, β-sheet
extends to both termini, with more heavily β-sheet character observed in the C-termini.

Following our analysis for 3-chain assembly, we now calculate the average secondary

structure per residue for the 2+1 assembly process with the DSSP algorithm.[53] Figure

3.6 shows these results, with unsurprising outcomes: compared to 3-chain assembly, 2+1

assembly begins with greater amounts both β-sheet (from the already-assembled dimer) and

α-helix (from the approaching third chain). β-sheet gradually increases across the course

of 2+1 assembly, with β-sheet forming earlier and more heavily in the C-termini before the

N-termini, which was also observed for 3-chain assembly.
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3.2.3 “3-chain Assembly” versus “2+1 Assembly”

In order to understand the differences in mechanistic details and the discrepancy between

the thermodynamics of the two assembly processes (12 kBT free energy barrier for 3-chain

assembly vs 40 kBT for 2+1 assembly), we perform a series of comparisons to uncover the

key differences between the two trimerization pathways: (1) calculation of protein-water and

protein-protein hydrogen bonds during trimerization; (2) decomposition of free energy into

entropic and enthalpic components; and (3) decomposition of potential energy contributions

into inter- and intra-chain components. These three comparisons will allow us to isolate and

contrast specific interactions that contribute to the previously calculated free energy profiles,

thereby identifying how the two mechanisms differ and what contributes the unfavorability

of 2+1 assembly compared to 3-chain assembly.

We begin by comparing protein-water and protein-protein H-bonds formed during the

trimerization process, shown in Figure 3.7. Both assembly processes show a steady rise

in protein-protein hydrogen bonds as the full trimer is formed. As expected, 2+1 assembly

begins with higher protein-protein H-bond count than 3-chain assembly, reflecting the heavily

β-sheet dimer required for the 2+1 pathway. Protein-water H-bonds fluctuate during both

trimerization processes; however, there are three distinct downward trends in protein-water

H-bonds observed during 3-chain assembly, which is not observed in 2+1 assembly. This

is especially distinct during the formation of the full trimer in the last fifth of the 3-chain

assembly process, indicating the loss of protein-water H-bonds while protein-protein H-bonds

are gained during formation of the full trimer.

The protein-water and protein-protein H-bond profiles shown in Figure 3.7 were then com-

pared with profiles of enthalpic and entropic changes along the two trimerization pathways,

shown in Figure 3.8. Free energy profiles for both assembly processes were split into entropic

and enthalpic contributions. Entropic contributions were calculated using ∆A = ∆U−∆TS,

using potential energy differences ∆U and free energy differences ∆A for each cell sampled

along each trimerization pathway, calculated with respect to the first disordered state bin.
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Figure 3.7: Average protein-protein and protein-water hydrogen bonds within 3 Åover the
course of dimerization for both trimerization processes, shown with standard error. Average
number of H-bonds are calculated from each of the 32 cells sampled during free energy cal-
culation, from 15003 snapshots per cell, using the GROMACS g hbond tool. While protein-
protein H-bonds trend upward during both assembly processes, the protein-water H-bonds
show a steeper decrease in 3-chain assembly compared to 2+1 assembly. Protein-protein
H-bonds are found to form while protein-water H-bonds are lost during 3-chain assembly;
this is not observed for 2+1 assembly.

Enthalpic and entropic contributions are both observed to fluctuate throughout 3-chain

assembly, with minima in the enthalpic term corresponding with peaks in entropy across the

trimerization process. While the free energy profile for 3-chain assembly does not indicate

that the fully-formed trimer is metastable, a final dip in the enthalpic term along with its

corresponding peak in the entropic term at the end of trimerization suggest there is some

degree of entropic stabilization, which occurs in the same period in which protein-protein

H-bonds are found to increase at the expense of protein-water H-bonds, shown in Figure 3.7.

In contrast, 2+1 assembly begins with an initial rise in potential energy and decrease in

entropy. This feature is not observed in the free energy decomposition for 3-chain assembly,

suggesting that the 2+1 assembly process must undergo a transition through enthalpically

unfavorable conditions that are not observed during 3-chain assembly. As trimerization

progresses after the third disordered chain meets the already-formed dimer structure, the

entropic contribution steadily rises, leading to a steady and substantial rise in free energy of

approximately 40 kBT , which was previously shown in Figure 3.5.

Additional insights into the differences between 3-chain assembly and 2+1 assembly were
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Figure 3.8: Decomposition of free energy into enthalpic (∆U) and entropic (−∆TS) contri-
butions for both trimerization mechanisms. ∆A is taken from the free energy calculation,
performed as described in Methods and shown in Figures 3.2 and 3.5. Average poten-
tial energy is calculated from each of the 32 cells sampled during free energy calculation,
from a total of 15003 snapshots per cell. Entropic contributions are then calculated as
−∆TS = ∆A−∆U .

found by further decomposing the potential energy profiles for the two assembly processes

into intrachain, interchain, and chain-water contributions. The stark differences in trends

between the two assembly processes are shown in Figure 3.9. In 3-chain assembly, intrachain

potential energy steadily rises throughout trimerization, while in 2+1 assembly it steadily

decreases. Meanwhile, interchain potential energy fluctuates during 3-chain assembly before

finally stabilizing during formation of the full trimer, in the same period of time where

protein-water H-bonds sharply decreased while protein-protein H-bonds sharply increased

(Figure 3.7). In contrast, interchain potential energy is initially stable for 2+1 assembly,

rises during trimerization, and fluctuates during formation of the full trimer. Chain-water

potential energy appears to fluctuate independently of inter- and intrachain interactions

during 3-chain assembly, with a slight upward trend as the trimer forms; in 2+1 assembly,

this chain-water potential energy exhibits a slight downward trend, with dips in chain-

water interactions corresponding to peaks in intrachain interactions during the first half of

trimerization, and with interchain interactions during the last half.

Taken together, the comparisons above indicate that the role of water in each trimeriza-

tion process contributes greatly to the distinct differences between 3-chain and 2+1 assembly;
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Figure 3.9: Decomposition of potential energy into interchain, intrachain, and chain-water
interactions for both trimerization mechanisms. Energies are calculated from each of the 32
cells sampled during free energy calculation, from a total of 15003 snapshots per cell. Note
the contrasting trends between the two assembly processes for all three interactions plotted.

specifically, the pre-formed dimer in 2+1 assembly is stabilized by its protein-water interac-

tions, and breaking of these protein-water interactions in order to form new protein-protein

contacts during trimerization becomes unfavorable compared to formation of protein-protein

contacts from three disordered chains. Decreases in protein-water H-bonds tend to corre-

spond to gains in protein-protein H-bonds in 3-chain assembly, but this is not observed during

2+1 assembly. Increased enthalpic and decreased entropic contributions to free energy are

observed in the first portion of 2+1 assembly, when the pre-formed dimer and disordered

third chain are still separated and each surrounded by water; these conformations are not

observed at any time during the 3-chain assembly process, and neither are these thermody-

namic features. A sharp rise in entropic contributions and fall in enthalpic contributions,

however, is observed at the very end of 3-chain assembly, corresponding to the final simulta-

neous drop in protein-water H-bonds and gain in protein-protein H-bonds; this, in turn, is not

observed at any time during the 2+1 assembly process. Furthermore, chain-water potential

energy decreases during 2+1 assembly, with minima corresponding to peaks in either intra-

or interchain potential energy, indicating a tendency toward stabilization of protein-water

interactions during 2+1 assembly at the expense of establishing energetic stabilization of

protein-protein interactions within the forming amylin trimer. As the pre-formed dimer and
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Figure 3.10: Comparison of free energy profiles for both 3-chain and 2+1 assembly, using
an explicit water model (as was shown in Figures 3.2 and3.5) versus implicit water. When
the explicit water interactions are replaced with a dielectric continuum as in the implicit
model, the free energy profiles are noticeably flattened, suggesting that the moleuclar-level
interactions with water are responsible for the free energy barriers originally observed.

disordered third chain in 2+1 assembly are brought together in water, the stabilization of

pre-existing protein-water contacts is prioritized before the establishment and stabilization

of new interactions between all three chains, reflected in the thermodynamic quantities dis-

cussed and compared here. We further confirm that it is the molecular interactions involving

water that drive the differences observed in 3-chain and 2+1 assembly by recalculating the

free energy profile of trimerization for both processes (as described in the Methods) with

explicit water molecules replaced by the OBC GBSA implicit water model.[85] With every

individual interacting water atom now replaced with a dielectric continuum, the free energy

profiles are considerably flattened, as displayed in Figure 3.10, suggesting that the key differ-

ences between 3-chain and 2+1 assembly indeed originate from molecular-level interactions

with water.
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3.3 Conclusions

A finite-temperature string method approach was used to study multiple pathways of hIAPP

trimer formation and their thermodynamics, with specific focus on assembly from three

disordered chains (“3-chain assembly”) versus assembly from a dimer and one disordered

chain (“2+1 assembly”). In both 3-chain assembly and 2+1 assembly, the fully-formed

trimer was found to lie in a global free energy minimum, separated from the fully-formed

dimer by a climb in free energy. This climb is approximately 12 kBT for 3-chain assembly,

and a steep 40 kBT for 2+1 assembly; neither fully-formed trimer structure is found to be

metastable.

For 3-chain assembly, crossing of the 12 kBT barrier corresponds to formation of an in-

termediate structure exhibiting parallel β-sheet in residues 12–13 and 20–29 across all three

hIAPP chains, a structure which has been previously proposed and similar to the intermedi-

ate β-sheet structure observed in computational studies of the hIAPP dimer. Interestingly,

the string method identifies the disordered end of the 3-chain assembly as a conformation

which includes this dimer intermediate state, suggesting that hIAPP aggregation via 3-chain

assembly proceeds in a stepwise manner, using the intermediate β-sheet structure as a tem-

plate for fibril propagation.

Furthermore, a series of comparisons was used to investigate the nature of the stark dif-

ference between the 12 kBT 3-chain assembly process and the 40 kBT 2+1 assembly process.

Analysis of protein-water and protein-protein H-bonds over trimerization, decomposition of

free energy into enthalpic and entropic contributions, and decomposition of potential energy

into interchain, intrachain, and chain-water interactions linked the key differences between

3-chain and 2+1 assembly to their differences in molecular-level interactions with water. The

relatively high number of pre-existing chain-water interactions in 2+1 assembly compared

to 3-chain assembly underlie the individual differences in entropic, enthalpic, and hydrogen

bond contributions, which together ultimately result in the two distinctly different trimer-

ization free energy profiles.
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Although the current work demonstrates that 3-chain assembly is more thermodynami-

cally favorable versus 2+1 assembly, both processes are uphill in free energy, along with the

dimerization process studied in our previous work. However, aggregates have been demon-

strated to form experimentally through seeding and incubation procedures. Based on our

finding that systems with an increased number of protein-water H-bonds undergo less favor-

able aggregation, we hypothesize that aggregates can be stabilized as a result of increased

competition for hydrogen bonding with water from other molecules or due to a densely

concentrated environment. A forthcoming publication will investigate this further by in-

troducing additional species into the system, including salts and readily H-bond-forming

molecules.

Additionally, questions still remain on whether further growth toward higher order oligomers

will remain uphill in free energy, and whether spontaneous fibril growth only takes place once

a certain-sized hIAPP oligomer is formed. As we look toward higher order aggregates, ques-

tions arise about the formation of larger oligomers and whether these processes will proceed

in a similar manner as dimer and 3-chain trimer formation, or perhaps a more complex pro-

cess due to the increased number of monomers involved. Larger systems are being studied

to further clarify these issues, and will be a target of future work.

3.4 Methods

3.4.1 Human Amylin Trimer

The hIAPP trimer system was designed based on the system used previously for hIAPP

dimer simulations test by [38]. The amino acid sequence for hIAPP is KCNTATCATQR-

LANFLVHSSNNFGAILSSTNVGSNTY. Each C-termini is amidated, and Cys2 and Cys7

on each chain is linked by a disulfide bond. Protonation states were assigned on the basis

of pKa values in water at a pH of 7.0; each hIAPP chain has a formal charge of +3, and

chloride counterions are included to ensure charge neutrality. We use the AMBER ff99SB*-
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ILDN force field,[65, 64, 88] which was chosen for its previously demonstrated ability to

accurately capture behavior of amyloidogenic polypeptides and other intrinsically disordered

proteins.[46, 32] The protein system was placed in a periodic cubic box with side length 15.0

nm with 110,008 TIP3P water molecules.[52] Volume was kept constant, with coulombic

forces calculated via the particle mesh Ewald algorithm [25, 31] and temperature held at 298

K using the Nosé-Hoover thermostat.[84] A timestep of 2 fs was used, and hydrogen bond

lengths were constrained to equilibrium values using the LINCS algorithm.[43]

3.4.2 Finite Temperature String Method

We study hIAPP trimerization by employing the finite-temperature string method [115],

which calculates a transition pathway using a set of local points (“nodes”) connected in

series by a smooth curve (“string”) in collective variable space. For the trimer system, we

use two intuitive collective variables: (1) parallel β-sheet character β
parallel
RMSD , defined below in

Equation 3.1; and (2) the radius of gyration Rg of the three hIAPP chains, which provides

a measure of spatial distance between each hIAPP monomer.

The parallel β-sheet character of a particular amino acid sequence between residues

indices u and v is defined as:[90]

β
parallel
RMSD u-v =

∑
β

1−
(

RMSD
0.8Å

)8

1−
(

RMSD
0.8Å

)12
(3.1)

Equation 3.1 sums over every possible pair of three-residue segments bounded by residues

u and v in each hIAPP monomer. “RMSD” refers to the root mean square deviation (in

Å) of the positions of the N, Cα, Cβ , C, and O backbone atoms of the residues in each

pair of three-residue segments from those in an ideal parallel β-sheet. β
parallel
RMSD u-v essentially

measures the number of three-residue pairs that are arranged similarly to the configuration

of an ideal parallel β-sheet.

Each string is discretized into 16 nodes, with each node’s location in collective variable
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space denoted by zα, where α is the node index along the string (α = 0, 1, ..., 15). The

string nodes are used to generate a Voronoi tessellation, where each node is associated with

a corresponding Voronoi cell, which consists of the region in CV space closer to its associated

string node than any other node along the string. We assume Euclidian geometry for this

collective variable space. At every iteration of the string method, each Voronoi cell is sampled

such that there is no bias applied while the system is within the boundaries of the Voronoi

cell; however, if the system departs from the Voronoi cell, a soft wall harmonic restraining

potential is applied:

VVoronoi =


0 system in cell

ki(‖z(x(t))− zβ‖)4 system out of cell, in cell β

(3.2)

Each Voronoi cell is sampled for 100 ps per string method iteration, and the running

average of each node’s explored location in collective variable space zα is tracked starting

from the first string method iteration. The string is updated every nth iteration according

to:

zn+1
α = znα −∆τ(znα − zα) + rα (3.3)

where we choose ∆τ to be 0.1, smoothing parameter rα to be 0 for nodes on each end of

the string (α = 0 or 15), and for the interior nodes:

rα = κN2∆τ(zα+1 + zα−1 − 2zα) (3.4)

with smoothing parameter κ chosen to be 0.1 and the total number of nodes on the string

N is 16. Following every string update, a cubic spline interpolation is drawn through the

16 nodes, and the nodes are then redistributed along the string in order to maintain equal

arc-lengths between adjacent nodes. These steps are iterated until the string converges to a

final pathway.
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Upon convergence, the free energy is computed along the final string by calculating πα,

the equilibrium probability of the system to be found in Voronoi cell α, which is then used

to calculate the corresponding free energy Aα [74]:

Aα =
1

kBT
log(πα) (3.5)

To improve resolution of the resulting free energy profile, we further discretize the original

16 node string to a total of N = 32 Voronoi cells. Each of the Voronoi cells is sampled using

the same soft wall restraints described in Equation 3.2, for 50 ns for multiple runs. For each

system sampling cell α, we collect Tα, the total simulation time spent within cell α, as well

as Nαγ , the number of times the system escapes into a neighboring cell γ. The equilibrium

probabilities πα are calculated with the following system of equations, where ναγ =
Nαγ
Tα

is

the rate of escape from cell α into γ:

N∑
γ=1

πγνγα =
N∑
γ=1

παναγ (3.6)

N∑
α=1

πα = 1 (3.7)

String method simulations were performed using the GROMACS 4.6.7 simulation package

[5, 44], the PLUMED 2.1 plugin [12], along with custom code to perform string method

calculations.
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CHAPTER 4

DYNAMICS OF PEPTIDE AMPHIPHILES FOR PHOSPHATE

CAPTURE AND RELEASE

The recovery of valuable resources from wastewater is becoming increasingly important as

global population rises and natural resources are depleted. One such resource is phosphate,

which is critical for its use in fertilizers in maintaining food production worldwide and lacks

any viable substitute. Biologically-inspired peptide amphiphiles are a particular type of ma-

terial that can address this goal of sequestering phosphate from wastewater, by incorporating

a phosphate-binding peptide sequence with an alkyl chain that drives self-assembly to form

a self-assembling micellar structure with phosphate-sequestering properties. In this work, we

investigate the preliminary peptide amphiphile candidate C16GGGhex, which is made up of

a 16-carbon alkyl tail connected to a known pH-responsive phosphate-binding hexapeptide

via a 3 glycine linker. We use a combination of molecular dynamics and enhanced sampling

methods to study the potential of C16GGGhex for efficient phosphate capture and release

at high and low pH conditions. Screening and clustering calculations show that phosphate

may bind with C16GGGhex at multiple locations along its peptide region, not solely at

the known phosphate-binding hexapeptide. Adaptive biasing force (ABF) simulations of

both single C16GGGhex chains and a flat layer of C16GGGhex indicate preferential bind-

ing of phosphate at low pH, with three distinct phosphate-binding locations identified in

single-chain studies, while no preferential binding is observed at high pH.

4.1 Introduction

Sustainable access to clean water is an urgent global priority and involves wide-ranging chal-

lenges, including establishment of access to clean water for billions of people, as well as detec-

tion and removal of harmful toxins and contaminants from the water supply. An attractive

solution for addressing both water scarcity and water purification in a sustainable manner is
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the development of advanced water treatment technologies that simultaneously decontami-

nate wastewater while recovering valuable nutrients and resources for reuse.[76, 35, 37, 24]

Phosphate is one particular resource for which this technology would be especially impactful,

due to its critical role in sustaining food production worldwide and the dwindling global avail-

ability of non-renewable natural phosphate deposits.[24] The lack of viable substitutes for

phosphate in agricultural applications have ignited efforts in developing methods for recycling

phosphate from wastewater and agricultural runoff, from which excess phosphate currently

cannot be recovered and instead contributes to the dangerous overgrowth of algae.[95]

Interest in developing biomimetic approaches to phosphate sequestration has lead to the

investigation of various peptide sequences with the ability to bind to phosphate. One particu-

lar motif that has been shown to bind phosphates is known as the “P-loop”,[99, 118, 77] char-

acterized by the sequence Gly-Xxx-Xxx-Xxx-Xxx-Gly-Lys-(Ser,Thr), which forms a nest-like

conformation and has been shown to bind to phosphate in the body.[99] Furthermore, screen-

ing of thousands of phosphate-binding proteins have identified each of the amino acids found

in the P-loop motif as frequently occurring amino acids in the screened phosphate-binding

sites, in addition to arginine, aspartic acid, and glutamic acid.[36] Building upon study of

the P-loop, Bianchi et al. have designed a hexapeptide with the sequence Ser-Gly-Ala-Gly-

Lys-Thr (SGAGKT),[8] which was demonstrated to selectively bind to phosphate above pH

6, via a nest-like conformation with hydrogen bonds between the phosphate and the NH

backbone atoms.

One way in which this hexapeptide designed for phosphate-sequestration can be incorpo-

rated into functional materials is by conjugating the peptide sequence to an alkyl tail to form

a peptide amphiphile (PA). PAs self-assemble into micellar assemblies in water, oriented such

that the hydrophilic peptide regions face outward, shielding the hydrophobic alkyl regions

that aggregate in the center of the micelles.[114] The peptide sequences and alkyl tails can

be strategically tuned to impart specific functionalities, which has lead to their successful de-

ployment in various biomedical applications, including drug delivery,[3] immunotherapy,[11]
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and medical imaging.[15]

Previous work includes the design of the PA C16GSH,[63] a branched PA with a C16 tail

attached to two peptide chains, which forms a pH-reversible structure due to the inclusion

of histidine residues in one of the branches. At pH above 6.5, C16GSH assembles into a self-

supporting hydrogel network of entangled wormlike micelles, while at lower pH, the assembly

becomes liquid-like. The pH range in which the hydrogel forms falls within the range in which

the SGAGKT sequence was observed to bind to phosphate, making a mixture of the two PAs

an attractive design candidate for a pH-controllable structure that can be switched between

gel-like and liquid-like states, corresponding to phosphate capture and phosphate release.

The vast design space for such a PA presents a challenge, and we begin by investigating

a simple preliminary candidate PA that incorporates the C16 tail from C16GSH with the

SGAGKT hexapeptide that has been shown to successfully sequester phosphate; these two

components are linked together with a sequence of 3 glycines to form a newly designed

PA C16GGGhex (Figure 4.1). A detailed understanding of this preliminary candidate PA

is valuable for uncovering the key parameters governing successful phosphate-binding of

a peptide sequence once incorporated into a larger PA system and will ultimately provide

guidelines for design and optimization for successful recycling of phosphate from wastewater.

Here, we focus on computational characterization of C16GGGhex and its phosphate-binding

properties; an accompanying paper detailing experimental characterization will be prepared

separately.

In this work, we use atomistic molecular dynamics with the adaptive biasing force sam-

pling method to study the phosphate-binding dynamics of C16GGGhex, with focus on dif-

ferences in binding behavior at high and low pH conditions. We begin with an evaluation of

binding dynamics for a phosphate molecule binding to a single C16GGGhex chain at both

pH conditions, and compare these results to previous studies of the hexapeptide alone. We

then scale the system up to a periodic layer of C16GGGHex to evaluate the thermodynam-

ics of phosphate binding with multiple C16GGGhex organized in an assembled structure,
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Figure 4.1: Molecular structure of C16GGGhex. A C16 alkyl tail is connected by a 3 glycine
linker to the SGAGKT hexapeptide, which has previously been demonstrated to bind to
phosphate in a pH-responsive manner.

and compare these results to the single-chain studies. Interestingly, we find that once the

hexapeptide is incorporated into the PA structure, the pH dependence of phosphate binding

is reversed, with preferential phosphate capture occurring at low pH and no preferential

binding observed at high pH conditions. Furthermore, the phosphate ion is found to asso-

ciate along the peptide region of the PA in a delocalized manner, with three separate free

energy minima identified along both the glycine linker and SGAGKT region.

4.2 Results and Discussion

We apply a combination of brute force molecular dynamics (MD) and the adaptive bias-

ing force (ABF) enhanced sampling method to investigate phosphate-binding behavior of

C16GGGhex at both high and low pH conditions. Simulation tools and details are described

in the Methods section. High and low pH conditions are modeled by appropriately changing

the protonation state of the phosphate; we model low pH based on the expected phosphate

species at observed at pH 6 (H2PO−4 ) and high pH on the that for pH 11 (HPO2−
4 ). The

peptide end of the C16GGGhex PA is amidated; its structure is shown in Figure 4.1.

4.2.1 Phosphate Binding to a Single C16GGGhex Chain

We begin by screening both pH conditions using brute force MD simulations, in order to gain

basic understanding of the configurations assumed by the bound C16GGGhex-phosphate

structure. This information is then used to choose effective collective variables (CVs) to
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describe the system dynamics, which are necessary in the ABF enhanced sampling simula-

tions used to study the thermodynamics of binding at each pH condition. Brute force MD

simulations were initialized from 9 different starting configurations for each pH condition,

for a total of 180 ns simulated at each pH. Snapshots were collected every 5 ps for a total

of 36001 snapshots for each system, which were each then rotationally and translationally

aligned by the protein coordinates in each snapshot. The aligned snapshots were then an-

alyzed using the GROMACS cluster tool, using the gromos clustering algorithm with a

cutoff of 0.27 nm,[27] producing a total of 177 clusters for low pH and 2517 clusters for high

pH. The discrepancy in the number of clusters discovered at each pH is linked to the greater

number of unbound snapshots at high pH, which is our first indication that the propensity

for phosphate binding is distinctly different at the two pH conditions.

Before using the ABF sampling method to investigate this potential difference in binding

likelihood, we must choose appropriate CVs that characterize the dynamics of phosphate-

binding in our system. To do this, we examine the 8 most populated clusters calculated

from each pH. These snapshots are displayed in Figure 4.2. As expected, we identify clusters

corresponding to binding with the SGAGKT hexapeptide, which can be identified in the

snapshots as structures where the phosphate is surrounded by a 3-prong “claw” made up of

hexapeptide side chains.

However, by visual examination, we find that that the phosphate associates with the

C16GGGhex peptide region in multiple regions, and that the bound phosphate is not solely

localized to the SGAGKT hexapeptide region. Clustering results show that the phosphate

may also attach at the GGG linker, as well as in between, contacting both GGG and

SGAGKT regions. Based on this finding that the bound phosphate is delocalized around

the PA’s entire peptide region, we choose two distance CVs to characterize single-chain

phosphate binding: (1) dSGAGKT, distance from the phosphate to the center of the 3-prong

SGAGKT binding pocket; and (2) dGGG, distance from the phosphate to the center of the

GGG binding region. Details on how these distances are calculated are found in the Methods
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Figure 4.2: Top 8 most occupied clusters obtained for both high and low pH single-chain
phosphate binding simulations. Populations of clusters decrease from left to right. Note the
multiple locations at which phosphate is found to associate with the C16GGGhex chain; this
motivates our choice in collective variables described in the text.

section.

Using these two distance CVs, we then perform ABF simulations to calculate the free

energy landscapes of a phosphate ion binding to a single C16GGGhex chain at both high

and low pH. The two distinctly different free energy landscapes are shown in Figure 3 and

4. For binding at low pH, three free energy minima are found: (1) at dSGAGKT = 0.12,

dGGG = 0.71; (2) at dSGAGKT = 0.18, dGGG = 1.19; and (3) at dSGAGKT = 0.57, dGGG =

1.98.

The free energy differences between the three minima are moderate, with the deepest

minima at (1) and the most shallow at (2). Minima (2) lies at a smooth 41.6 kJ/mol climb

in free energy above (1), while a 42.7 kJ/mol barrier must be passed going from minima (2) to

minima (3), with a net free energy difference of -11.7 kJ/mol. All three minima, however, lie

at a much lower free energy when compared to the free energy maximum found in the upper

right hand side of the free energy landscape, corresponding to the a unbounded state where

the phosphate is located far from both the GGG linker and the SGAGKT hexapeptide;

this is found at dSGAGKT = 1.07, dGGG = 1.51, at 99.0 kJ/mol above the highest free

energy minima (2). Taken together, this suggests that binding between C16GGGhex and

phosphate is favorable at low pH, with three preferential binding regions along the the entire

GGGSGAGKT segment, which can be interchanged by crossing moderately high free energy

barriers.
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Figure 4.3: Free energy surface for single-chain phosphate binding at low pH conditions.
Three distinct free energy minima are found for the low pH system, with moderate free
energy barriers between them.

Unlike at low pH, there are no distinct free energy minima associated with preferential

phosphate-binding regions at high pH. Instead, a wide free energy well is found to include

configurations where the phosphate is both near and far from the C16GGGhex chain, with

free energy only decreasing as distance between the phosphate and C16GGGhex chain grows,

suggesting C16GGGhex will fail to sequester phosphate at high pH conditions. Interestingly,

these results follow an opposite pattern from previous studies of the SGAGKT hexapeptide

alone, which was shown to bind phosphate at pH of 6 and above, suggesting that interactions

with added GGG linker or the alkyl tail may drive more favorable binding to occur at lower

pH conditions. Our observation via simulation that phosphate binding is favorable at low pH

and not at high pH is further corroborated by our experimental findings that phosphate is

bound at pH 6 and released at pH 11, with switching between binding and release occurring

within seconds of pH adjustment; these results are being prepared as part of a forthcoming

manuscript.
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Figure 4.4: Free energy surface for single-chain phosphate binding at high pH conditions.
Unlike the low pH free energy landscape in Figure 4.3, there are no clear minima associated
with bound phosphate. Free energy steadily decreases as the phosphate moves further away
from the C16GGGhex chain.

4.2.2 Phosphate Binding to a Flat Layer of C16GGGhex

Our ultimate goal is to design a PA system that is able to sequester phosphate and release

it in a controllable manner, as part of a self-assembled PA structure. Thus, it is necessary

to extend the single-chain studies of C16GGGhex and its phosphate-binding properties to a

larger system in which phosphate may be captured by an assembled state of C16GGGhex.

While we expect C16GGGhex to form long cylindrical micelles, we choose here to first

perform the less computationally expensive studies of phosphate binding to a flat periodic

layer of C16GGGhex, with the goal of gaining a strong basic understanding of phosphate

binding to multiple C16GGGhex chains in a relatively simple geometry before moving on to

a system of flexible long micelles.

For both high and low pH conditions, a flat periodic layer of C16GGGhex was prepared,

with 25 C16GGGhex chains per 3-dimensional rectangular simulation box. The C16GGGhex

chains are initialized in parallel configurations along the z-axis of the simulation box, with
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Figure 4.5: Schematic showing setup of flat layer C16GGGhex simulations. 25 C16GGGhex
chains are distributed evenly across the x-y plane of the box, with the tail-end alkyl carbons
anchored at z = 0. The ABF method is then used to drive insertion of the phosphate to
multiple depths within this flat C16GGGhex layer in order to calculate the associated free
energy profile.

the z-coordinate of each tail-end alkyl carbon near z = 0. The box was then solvated with

water and equilibrated with position restraints on the C16GGGhex layer in order to stabilize

the layer at the bottom of the box. Further details are described in the Methods section.

The 25 C16GGGhex chains are distributed across the 2.5 nm × 2.5 nm x-y area of the

box, for an average concentration of 4 chains per nm2. A snapshot of the system is shown

in Figure 4.5, with waters removed for clarity. We perform these simulations at constant

volume and temperature in the absence of pressure-coupling, which causes the C16GGGhex

chains begin to form cone-like assemblies rather than a layer-like structure, rendering the

ABF calculations unhelpful.

We then perform ABF simulations using distance between the z-coordinate of the center

of mass of the phosphate ion and the z-coordinate of the center of mass of every tail-end

alkyl carbon as a collective variable, effectively measuring the depth at which the phosphate

is able to penetrate into the C16GGGhex assembly. The free energy profiles obtained from

each pH condition are shown in Figure 4.6.
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Figure 4.6: Free energy profile for phosphate binding to a flat layer of C16GGGhex. A
clear free energy minima is found for low pH conditions, spanning a width of approximately
2 nm; this is in agreement with our single-chain results, which indicated that phosphate
is able to bind at low pH in a variety of locations along the GGGhex segment. The high
pH free energy profile shows a very small minima of 2.5 kJ/mol, indicating a small amount
of stability imparted by the insertion of phosphate into a dense assembly of C16GGGhex;
besides this feature, there is no indication that phosphate binding occurs at high pH.
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The two free energy per chain profiles are in agreement with our findings for the single-

chain phosphate-binding scenario, with binding at low pH exhibiting a clear free energy well

while binding at high pH does not. The free energy at the low pH minimum lies 39.7 kJ/mol

per chain below that of the unbound state. In comparison, the high pH system exhibits

a small minimum 2.5 kJ/mol per chain, which is barely perceptible when compared next

to the low pH free energy profile. Single-chain calculations at high pH indicated no free

energy minima, suggesting that this mildly stable bound state arises purely from the effects

of multiple C16GGGhex chains in close contact. Free energy increases steeply for both pH

conditions as the distance between the phosphate and the tail-end aklyl carbons decreases,

indicating unsurprisingly that movement of the phosphate beyond the peptide region of the

PA assembly is highly unlikely. Futhermore, the free energy minima for low pH binding

is broad, spanning across 2 nm in width, which aligns with our observation in single-chain

binding that the location of the phosphate is delocalized along the peptide region once bound.

4.3 Conclusions

A combination of brute force molecular dynamics and adaptive biasing force simulations were

used to investigate the phosphate-binding properties of the peptide amphiphile C16GGGhex

at high and low pH conditions. Single-chain binding to phosphate was first screened with a

series of brute force MD simulations, and configurations were then taken from the screening

simulations and passed through a clustering algorithm to identify characteristic C16GGGhex-

phosphate configurations. Results from clustering indicated that phosphate is able to bind

to C16GGGhex at multiple locations and not only at the SGAGKT hexapeptide sequence

at the end of the PA chain. The phosphate is observed to associate with the GGG linker,

as well as between both GGG and SGAGKT regions; this suggests a rich potential sequence

design space, in which linker sequences and phosphate-binding sequences may be screened

for optimal phosphate sequestration.

Furthermore, adaptive biasing force simulations of a single C16GGGhex chain binding
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with phosphate were carried out at low and high pH conditions. Preferential binding is

observed to occur at low pH conditions, with three distinct free energy minima identified

along the peptide region of the PA. These minima are separated by moderate free energy

minima, suggesting that phosphate, once bound, can move along the peptide region in a

delocalized manner with intermittent hops between specific phosphate binding sites. ABF

studies of the system at high pH indicate no preferential binding between C16GGGhex and

phosphate, with a broad free energy minimum centered where the phosphate is unbound.

We then used ABF to study binding of a single phosphate to a flat layer of C16GGGhex

at both high and low pH as a basic characterization of phosphate binding to an assembled

C16GGGhex structure. At low pH, a free energy minimum of 39.7 kJ/mol per PA chain is

observed to correspond to successful binding with phosphate; this well is broad, spanning

2 nm across, which is in agreement with our single-chain observation that phosphate binds

to C16GGGhex in a delocalized manner. A small free energy mininum of 2.5 kJ/mol is

observed for high pH conditions; taken together with the single-chain results at high pH,

this suggests that phosphate may be captured mildly at high pH, but only in the presence

of multiple, closely-packed C16GGGhex chains.

Although the work here lays a basic foundation for understanding a preliminary PA

candidate for phosphate binding, our findings indicate multiple directions for future work

and for improved design of phosphate-binding PAs. As discussed above, our observation

that phosphate can bind with the linker in C16GGGhex, as well as between the linker and

the SGAGKT phosphate-binding sequence, indicates that there is a rich sequence design

space to be explored, where both the phosphate-binding sequence (based on the P-loop)

and linker sequences may be screened in sequence space and tested for optimal phosphate

capture; this work is currently underway in our laboratory, as well as studies extending

our phosphate-binding screening to cylindrical micellar structures, which will shed light on

binding behavior to a flexible self-assembled PA systems with increased surface area and

accessible angles between adjacent PA chains.
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4.4 Methods

We use a combination of GROMACS 5.1.4[2] and the ABF[26] enhanced sampling method as

implemented in SSAGES[108] to study C16GGGhex binding to phosphate. C16GGGhex and

phosphate at both pH conditions were modeled using the CHARMM force field,[10] and water

was modeled using the TIP3P model.[52] For the brute force molecular dynamics simulations,

a single C16GGGhex chain and a single phosphate ion were placed in a cubic box (side length

7 nm for low pH, and side length 10 nm for high pH) and then solvated, with temperature

coupling set at 300 K and volume kept constant. At each pH condition, phosphate was

initialized from 9 different starting configurations around the single C16GGGhex and MD

was run for 20 ns from each of these positions, creating a total of 180 ns simulated at

each pH. These trajectories were then analyzed by first rotationally and translationally

aligning snapshots based on protein coordinates and then using the GROMACS cluster

tool to cluster by protein backbone and phosphate coordinates in order to identify the most

frequently occurring C16GGGhex-phosphate configurations.

Based on the multiple binding locations of phosphate on the peptide region of C16GGGhex,

we pick the two distance CVs to characterize single-chain binding. First, we choose dSGAGKT,

which measures separation between the phosphate and the center of the SGAGKT binding

pocket; this is defined by the distance between the center of mass of all phosphate atoms

and the center of mass of the following atoms: {Backbone N on 8GLY, backbone N on 9LYS,

sidechain N on 9LYS, backbone N on 10THR, sidechain O on 10THR}. Second, we choose

dGGG, which measures separation between the phosphate and the center of the GGG linker

region; this is defined by the distance between the center of mass of all phosphate atoms and

the center of mass of the following atoms: {Backbone N on 2GLY, backbone N on 3GLY, O

on 3GLY, backbone N on 5SER, and sidechain O on 5SER}.

2-dimensional ABF simulations for single-chain binding to phosphate were carried out

using dSGAGKT and dGGG as CVs, with bounds of [0.05 nm, 2.0 nm] for each CV and 50

bins are used for each CV. 4 walkers were used for each ABF run. Restraints were placed for
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each CV at values of 0.0 nm and 2.5 nm with a spring constant of 500 kJ/mol nm2 in order

to ensure that the configurations explored remained in the CV space of interest. Minimum

visits to each ABF bin before forces are estimated is kept at 400. ABF was carried out and

output monitored at intervals of 10 ns until the root mean squared error compared to the

most recent output reached a plateau, resulting in 160 ns total simulation time per walker

for the high pH system and 250 ns per walker for the low pH system.

ABF simulations for the flat C16GGGhex layer were carried out using distance between

the z-coordinate of the center of mass of the phosphate and the z-coordinate of the center of

mass of the tail-end alkyl carbons, with 50 bins used across the bounds of [0.05 nm, 9.0 nm].

4 walkers were used for each ABF run. Restraints were placed at 0 nm and 9.5 nm with a

spring constant of 500 kJ/mol nm2, and minimum visits for force estimates again kept at

400. ABF was carried out and monitored at intervals of 10 ns for a total of 60 ns per walker

for both high and low pH systems.
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CHAPTER 5

EXTRACTING COLLECTIVE MOTIONS UNDERLYING

NUCLEOSOME DYNAMICS VIA NONLINEAR MANIFOLD

LEARNING

The identification of effective collective variables remains a challenge in molecular simulations

of complex systems. Here, we use a nonlinear manifold learning technique known as the

diffusion map to extract key dynamical motions from a complex biomolecular system known

as the nucleosome: a DNA-protein complex consisting of red a DNA segment wrapped

around a disc-shaped group of eight histone proteins. We show that without any a priori

information, diffusion maps can identify and extract meaningful collective variables that

characterize the motion of the nucleosome complex. We find excellent agreement between

the collective variables identified by the diffusion map and those obtained manually using a

free energy-based analysis. Notably, diffusion maps are shown to also identify subtle features

of nucleosome dynamics that did not appear in those manually specified collective variables.

For example, diffusion maps identify the importance of looped conformations in which DNA

bulges away from the histone complex that are important for the motion of DNA around

the nucleosome. This work demonstrates that diffusion maps can be a promising tool for

analyzing very large molecular systems and for identifying their characteristic slow modes.

This chapter is reproduced from [39].

5.1 Introduction

The continued development of advanced sampling techniques has extended the reach of

molecular simulations considerably, thereby enabling the study of molecular systems of sub-

stantial complexity.[107] Higher complexity is accompanied by the challenge of describing

key molecular processes. Ideally, we desire for these complex dynamics to be represented

by a few low-dimensional descriptors, but automatically identifying such descriptors and
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quantifying how well they capture the system’s dynamics can be challenging.

A range of approaches is available to discover these low-dimensional descriptors from

simulated trajectories of a particular system. One attractive option is to use a dimension-

ality reduction technique to furnish a low-dimensional embedding of data from molecular

dynamics trajectories,[30] using algorithms such as principal component analysis (PCA[51]),

isometric feature map (Isomap[112]), locally linear embedding (LLE [97]), sketch-maps,[17]

and diffusion maps.[22, 23] Diffusion maps have been widely applied to a variety of molecular

systems, including all-atom miniprotein folding, [54] self-assembly of patchy colloids, [67] and

coarse-grained protein models. [96] Furthermore, they have been adopted as part of multiple

accelerated sampling algorithms, such as diffusion-map-directed MD (DM-d-MD[124]) and

intrinsic map dynamics (iMapD[19]), and variations on the diffusion map itself have also

been developed in order to address challenges in working with data with inhomogeneous

densities and to reduce computational costs. [96, 116]

While diffusion maps have been applied in diverse contexts, there remain interesting

challenges in applying diffusion maps to large and complex macromolecular systems, which

exhibit inherently rich dynamics. One such system is the nucleosome, a DNA-protein com-

plex consisting of a DNA segment wrapped around a disc-shaped complex of eight histone

proteins.[71] The nucleosome is the basic building block of eukaryotic chromatin, which

packs into successively higher-order structures in order to form the mitotic chromosome.

Nucleosome positions and proper packaging of DNA are important for healthy cellular

function.[42, 7]

Recent work has shown that DNA sequence is a key factor that governs nucleosome

position, with different DNA sequences exhibiting different affinities for the histone octamer.

The probability of nucleosome formation changes with this affinity and can span orders of

magnitude across different DNA sequences. Several studies on DNA repositioning have been

carried out, leading to the identification of two major repositioning mechanisms: (1) the

loop propagation model,[101, 56, 68, 109, 93, 87] in which a loop of DNA is formed on one
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side of the nucleosome and moves in an inchworm-like manner along the histone complex;

and (2) the twist diffusion model,[34, 110, 94, 57] in which a twist defect is introduced into

the natural helicity of the DNA and diffuses in a corkscrew-like manner along the histone

complex. Recent work by Lequieu et al.[60] investigated the relationship between DNA

sequence and repositioning dynamics using a molecular model of the nucleosome; that study

showed that different DNA sequences indeed rely on different mechanisms to reposition

through pathways reminiscent of the proposed looping and twisting processes.

The simulations performed to reach these conclusions were considerably demanding, and

required over 5 microseconds of unbiased simulation data, for 9 different DNA sequences.

In the study of Lequieu et al. however, the order parameters used to characterize DNA

motion were identified manually, and were necessarily influenced by human biases. As such,

it is unclear if they can fully represent the true underlying dynamics of the nucleosome.

The order parameters used in Lequieu et al. were based on the two previously proposed

repositioning mechanisms, and thus analysis of the simulations focused specifically on loop

propagation and twist diffusion. It is conceivable that other motions within the nucleosome

might play important roles in cellular function, and may have been overlooked in this prior

study.

In this work, we exploit this wealth of molecular dynamics data to interrogate the dynam-

ics of the nucleosome using the diffusion map. This approach represents a bias-free method

for identifying the collective variables that dominate nucleosomal motions. We show that a

diffusion map approach is effective for identifying the collective variables previously found by

Lequieu et al. through a detailed free energy analysis. Notably, without any a priori informa-

tion, the diffusion map can distinguish DNA sequences that reposition via loop propagation

from those that reposition via twist diffusion. Furthermore, the diffusion map approach is

able to identify subtle molecular motions involving looping conformations, in which DNA

bulges away from the histone octamer, and DNA breathing, in which DNA spontaneously

unwraps from the histone complex. By applying the diffusion map to nucleosome dynamics,
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we show that both dominant and subtle dynamical modes can be automatically extracted

from molecular simulation data, thereby reinforcing the diffusion map as a useful tool for

unraveling the behavior of complex biomolecular systems.

5.2 Methods

5.2.1 MD Simulations of the Nucleosome

Molecular dynamics simulations were carried out with in-house codes using a coarse-grained

representation of the 223 base pair nucleosome, as described in Lequieu et al.[60] The

3SPN.2C model is used to represent DNA and is the most recent version of the 3SPN

model,[55, 98, 45, 33] in which DNA is represented by three sites at the centers of mass of

phosphate, sugar, and base of each DNA nucleotide. The 3SPN.2C model has been further

parameterized to capture the correct melting behavior of double-stranded to single-stranded

DNA, sequence effects, and salt effects. The AICG model is used to represent the histone

proteins, using a single site per amino acid at the side chain center of mass.[62] Interactions

between the DNA and histone proteins consist of excluded volume effects and electrostatic

forces, calculated using Debye-Hückel theory. Molecular dynamics simulations were per-

formed in the canonical ensemble using a Langevin thermostat and ionic strength of 150

mM, with frames saved for later analysis every 1 ns. Further details can be found in Lequieu

at al.[60]

5.2.2 Diffusion maps

Diffusion maps are a type of nonlinear dimensionality reduction technique originally intro-

duced by Coifman and co-workers.[22, 23] Here, we briefly step through the algorithm to

clarify and facilitate subsequent discussion. Specifically, we use the density-adapted diffu-

sion map introduced by Wang and Ferguson[116] due to the inhomogeneous sampling of

configurations in brute-force molecular dynamics simulations of the nucleosome.
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First, pairwise distances dij are calculated between datapoints xi and xj . In this case, we

use the root-mean-squared distance between translationally and rotationally aligned atomic

coordinates between two molecular configurations. dij is then passed through a Gaussian

kernel to construct matrix A, which contains the now thresholded pairwise distances, with

entries

Aij = exp

(
−d2α

ij

2ε

)
. (5.1)

Here, ε is the kernel bandwidth and α rescales pairwise distances globally in order to smooth

out density inhomogeneities in sampled configurations. We find that an α value of 0.3 works

well for configurations from all three DNA sequences considered here. The kernel bandwidth

ε defines the extent of the local neighborhood around each datapoint in which to consider

pairwise distances to other points, and we use an ε of 3.0 for our data across all sequences.

A is then row-normalized to form the Markov matrix

M = D−1A, (5.2)

where D is a diagonal matrix with entries

Dij =
∑
j

Aij . (5.3)

M is effectively a transition matrix, with entries Mij corresponding to transition probabilities

between configurations xi and xj .

Finally, M is diagonalized in order to calculate its eigenvectors {ψi} and associated

eigenvalues {λi}. Due to the Markovian nature of M, the top eigenvalue-eigenvector pair

(ψ0, λ0) is trivial; this pair corresponds to the steady-state distribution of a random walk

with λ0 = 1.

By locating a gap in the eigenvalue spectrum between λk and λk+1, one can identify

the top k non-trivial eigenvectors {ψi}ki=1 corresponding to slow diffusion modes of the sys-
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tem, which dominate over the fast modes corresponding to the remaining lower eigenvectors

{ψi}i>k. The original high-dimensional data can then be embedded in k dimensions by

projecting the data onto the top k non-trivial eigenvectors,

xi 7→ [ψ1(i), ψ2(i), . . . , ψk(i)] . (5.4)

In some cases, multiple gaps may emerge in the eigenvalue spectrum, in which case one must

avoid only using eigenvectors up to the first gap, which may produce misleading results.

The final low-dimensional embedding reflects the intrinsic manifold underlying the molecular

system as extracted from the sampled molecular dynamics data.

Analysis of nucleosome simulations using the density-adapted diffusion map began with

calculation of A for each DNA sequence studied, using Equation 5.1 and snapshots extracted

from MD simulation trajectories. M was then calculated for each sequence as described above

in Equations 5.2 and 5.3, followed by calculation of eigenvectors {ψi} and eigenvalues {λi}

for each sequence’s M. The spectra of {λi} were examined visually in order to identify gaps

and determine non-trivial eigenvectors for each sequence-specific diffusion map embedding.

Multiple collective variables (described in the following three subsections) were calculated

for each simulation snapshot used to create the embeddings and then projected onto the

non-trivial eigenvectors to create diffusion map embeddings of collective variables for each

sequence. These diffusion map embeddings of collective variables were then used to identify

sequence-specific correlations of collective variables with dominant dynamical modes of the

nucleosome system.

5.2.3 Collective Variables Describing DNA Translocation and Rotation

DNA translocation relative to the histone dyad is characterized by ST , defined as:

ST =

〈
± arccos

(
P ·P0

‖P‖‖P0‖

)〉
. (5.5)
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Here, vector P points from the center of a base step to the center of the protein complex, and

P0 is the corresponding value of P taken from a reference nucleosome crystal structure (PDB

ID: 1KX5),[28] which was used to create initial structures for the nucleosome simulations.

The average in Equation 5.5 is taken over -15, -5, +5, and +15 base steps relative to the

histone dyad, located at the central position on the nucleosome (indicated by the triangle

in Figure 5.1). If (P × P0) · f̂ ≤ 0 then the positive sign is used (otherwise, negative),

where vector f̂ points along the center of the nucleosomal DNA superhelix. Using this sign

convention, positive ST corresponds to forward translocation of DNA toward the 5’ end,

while negative ST corresponds to reverse translocation toward the 3’ end.

A second nucleosome repositioning order parameter is SR, which characterizes DNA

rotation:

SR =

〈
± arccos

(
P ·B
‖P‖‖B‖

)〉
, (5.6)

where vector B points from the center of a given base step on the sense strand to its comple-

mentary base step on the anti-sense strand. P and the average denoted by the angle brackets

are as defined for ST . If (P×B) ·D ≤ 0, then the positive sign is used (otherwise, negative).

D is a vector in the 5’ to 3’ direction along the sense strand of the DNA. If SR = −π2 , the

minor groove of the DNA double helix is oriented toward the histone core, whereas when

SR = π
2 , the minor groove is oriented away from the histone complex.

5.2.4 Collective Variable Describing DNA Breathing

DNA breathing, which involves spontaneous unwrapping and rewrapping of DNA from the

nucleosome, was characterized by two angle parameters, θforward and θbackward, shown in

Figure 5.2. Each angle is calculated between a vector from the center of mass of the histone

to the dyad, which is relatively immobile, and a vector from the 30th DNA base pair to the

first and endmost DNA base pair, which moves significantly as DNA unwraps.
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Figure 5.1: Schematic of order parameters ST and SR, which characterize DNA translocation
and DNA rotation, respectively. These order parameters are defined in Section 5.2.3.

Figure 5.2: Schematic of order parameters θforward and θbackward characterizing DNA breath-
ing, in which strands of DNA spontaneously unwrap and rewrap from the histone complex.
Each angle is calculated from two vectors: vector b points from the histone complex center
of mass to the dyad, and vectors a and c point along either end of the DNA strand, from
the 30th base pair to the first and endmost base pair.
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Figure 5.3: Schematic of the loopiness order parameter, which characterizes the extent to
which DNA bulges away from the histone octamer. Calculation of this order parameter is
described in Section 5.2.5.

5.2.5 Collective Variable Describing DNA Looping

DNA looping, which involves DNA bulging away from the histone octamer, was characterized

using a loopiness order parameter (Figure 5.3). To calculate loopiness, we first calculate two

values for each ith DNA base pair: the distance of the base pair to the histone center of

mass, li, and the location of the base pair relative to the dyad, θi. For ease of calculation, we

compute the average distance from a base pair to the histone center of mass as a function of

location θ, denoted as 〈l(θ)〉. In order to normalize 〈l(θ)〉, we then calculate the corresponding

value of this average distance in the complete absence of looping,
〈
l̄(θ)
〉
, which is calculated

from a nucleosome simulation performed in very low salt concentration for a strongly binding

DNA sequence. We then normalize 〈l(θ)〉 using
〈
l̄(θ)
〉

by calculating deviation from the loop-

free case ∆l(θ) = 〈l(θ)〉−
〈
l̄(θ)
〉
; in cases where there is no DNA looping, ∆l is approximately

0 across all locations θ, and in cases where DNA loops form, ∆l > 0. To eliminate baseline

noise, we threshold ∆l by subtracting a threshold value of 8Å, which corresponds to the

Debye length at 150 mM at which DNA-histone attraction has largely decayed. The post-

threshold looping parameter ∆l∗ is then integrated along the entire circumference around

the histone octamer (over all θ) in order to obtain our final loopiness order parameter.
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Loop Propagation

Twist Diffusion

Exhibited by sequence A

Sequence B exhibits both

Exhibited by sequence C

Quantified by ST

Quantified by SR

Figure 5.4: Schematic showing two proposed nucleosome repositioning mechanisms: loop
propagation and twist diffusion. The histone complex is represented in red, and DNA in
blue. ST and SR quantify loop propagation and twist diffusion, respectively; definitions
for these order parameters are introduced in the Methods section. Individual repositioning
propensities for sequences A, B, and C are also shown.

5.3 Results and Discussion

We apply the diffusion map to a subset of these trajectories from three representative DNA

sequences: sequence A, a strongly binding sequence that primarily repositions by loop prop-

agation; sequence B, a moderately binding sequence that exhibits a combination of loop

propagation and twisting; and sequence C, a weakly binding sequence that primarily reposi-

tions by twisting. These sequences are tabulated in Table 5.1 with their respective binding

strengths and sequence identities. Figure 5.4 summarizes the loop propagation and twisting

models of nucleosome repositioning, along with the respective repositioning behaviors for all

three sequences studied and the collective variables used to describe repositioning, which

will be introduced later in the text.

By applying the density-adapted diffusion map on configurations for sequences A, B, and

C as described in the previous section, we obtain the eigenvalue spectra shown in Figure

5.5. Snapshots for the diffusion map analysis were extracted from the molecular dynamics

trajectories at evenly spaced intervals (every 40 ns for sequences A and B, and every 25

ns for sequence C), for a total of 16,207 snapshots from sequence A, 14,917 from sequence
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Table 5.1: DNA sequences used in this work, along with their binding strengths and sequence
names used in the literature.

Sequence Name Binding Strength Name in Literature
A Strong c3 (See [102])
B Moderate TRGC (See [81] and [80])
C Weak TTAGGG (See [106])

Figure 5.5: Eigenvalue spectra for sequences A, B, and C. Note that sequences A and B
exhibit hierarchical character, indicated by multiple gaps in the eigenvalue spectra. Both
spectra show three dominant eigenvalues, followed by three moderate eigenvalues, suggesting
that three major slow dynamical modes dominate the system, while three less significant
modes still contribute to the system dynamics.

B, and 10,713 from sequence C. Sequences A and B exhibit similar hierarchical eigenvalue

spectra, indicated by multiple spectral gaps. Both sequences exhibit gaps between ψ3 and

ψ4, and between ψ6 and ψ7, suggesting that dynamics are dominated by a combination of

three major slow modes (ψ1 to ψ3) and three moderate modes (ψ4 to ψ6). The eigenvalue

spectrum for sequence C exhibits a large, distinct gap after ψ1 and a smaller gap after ψ3,

which indicates that one major slow mode dominates the system, followed by two moderate

modes.

5.3.1 DNA Translocation

First, we check if the diffusion map is able to recover the two nucleosome repositioning order

parameters studied in Lequieu et al.[60] We begin with ST , the order parameter charac-

terizing DNA translocation relative to the histone dyad. Figure 5.6 shows two- and three-
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Figure 5.6: 2- and 3-dimensional diffusion map embeddings of ST for all sequences. DNA
translocation correlates with ψ2 for sequence A, indicated by the gradient in ST along the
vertical ψ2 axis. DNA translocation correlates with ψ1 for sequences B and C, indicated by
the gradient in ST along the horizontal ψ1 axis.

dimensional diffusion map embeddings for all three sequences studied, using the first three

non-trivial eigenvectors and colored by ST . In all three sequences, DNA translocation is

found to be well parameterized by either the slowest (ψ1) or second slowest (ψ2) dynam-

ical mode identified by the diffusion map, indicating that ST correlates with slow modes

across binding affinities. The correlation of ST with either ψ1 or ψ2 in all three sequences

supports the idea that there will always be some degree of translocational motion in the nu-

cleosome repositioning process, regardless of the preference for a particular DNA sequence

to reposition by either looping or twisting.

5.3.2 DNA Rotation

Figure 5.7 shows diffusion map embeddings of SR, which quantifies DNA rotation, for all

three sequences studied, using the top three non-trivial eigenvectors and colored by SR.

There is no correlation of SR with these top three eigenvectors for sequences A and B; further

analysis confirms that SR is not well parameterized by any of the top six eigenvectors for
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these sequences. This is expected, since A and B exhibit relatively strong binding affinities

and are more likely to reposition by a looping mechanism as opposed to a twisting mechanism.

In contrast, sequence C, a weakly binding sequence that primarily repositions by rotation,

exhibits a periodic banded structure, which appears more clearly in the two-dimensional

embedding of sequence C in ψ1 and ψ3 (Figure 5.7d). Furthermore, we can construct an

effective free energy landscape from the diffusion map embedding of sequence C by collecting

a histogram of sequence C datapoints in ψ1 and SR, normalizing by the total number of

datapoints so that the resulting probability in the bins sum to 1, and taking the negative

logarithm of these probabilities. This effective free energy landscape is plotted in Figure 5.7e;

this is reminiscent of the free energy landscape calculated for sequence C using conventional

methods (umbrella sampling and WHAM) found by Lequieu et al.,[60] plotted in ST vs SR

and reproduced in Figure 5.7f; this is consistent with our earlier finding that ST correlates

with ψ1 for this sequence.

The order parameters characterizing DNA translocation and rotation emerge in the same

non-trivial eigenvector for sequence C, consistent with prior observations that sequence C

repositions via twisting. In contrast, only translocation is extracted from the underlying

MD data for sequences A and B, consistent with prior observations that sequences A and

B do not reposition through DNA twisting. Through analysis of all three sequences, we

observe that the diffusion map approach identifies a slow mode that correlates with DNA

translocation across all binding strengths. DNA rotation emerges in the same slow mode

if the sequence exhibits repositioning by rotation as well, suggesting that this particular

non-trivial eigenvector corresponds to a more general repositioning motion consisting of a

combination of translocation and, if the sequence exhibits it, rotation.

5.3.3 DNA Breathing

Next, we examine whether the diffusion map approach can be used to identify key nucleo-

some dynamics beyond the translocational and rotational repositioning mechanisms studied
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Figure 5.7: (a-c): 3-dimensional diffusion map embeddings of SR, the order parameter that
characterizes DNA rotation, for all sequences. For clarity, datapoints with greater values of
SR are shown at higher layers of the plot. There is no correlation of SR with top non-trivial
eigenvectors for sequences A and B; (d) 2-dimensional diffusion map embedding of SR for
sequence C. ψ1 correlates with cycles of DNA rotation, as indicated by the periodic bands
of SR along ψ1; (e) effective free energy constructed from the diffusion map embedding for
sequence C. Effective free energy is calculated by histogramming datapoints for sequence C
in ψ1 and SR, normalizing each histogram bin by the total number of datapoints to calculate
probabilities, and then taking the negative log of each bin. The resulting density plot
exhibits a periodic banded structure reminiscent of the free energy landscape for sequence
C constructed by conventional methods by Lequieu et al.,[60] which is plotted in (f) in ST
vs SR. Note that ST was previously found to correlate with ψ1 for sequence C; the diffusion
map has effectively unfurled the same previously calculated free energy landscape.
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in Lequieu et al.[60] One particularly interesting aspect of nucleosome dynamics is DNA

breathing, which involves unwrapping of nucleosomal DNA from the histone complex. Single-

molecule FRET experiments have shown that nucleosomal DNA can spontaneously unwrap

and rewrap from the histone octamer, allowing transcription factors, enzymes, and other

proteins to interact with previously unaccessible portions of DNA that were buried by the

histone complex.[61, 113]

Figure 5.8 shows two-dimensional diffusion map embeddings for all three sequences, col-

ored by the average of θforward and θbackward, which captures breathing on both sides of the

nucleosome. The average breathing order parameter correlates with ψ2 for sequence A, and

with ψ1 for sequences B and C. Interestingly, in each sequence, the average breathing order

parameter correlates with the same eigenvector as ST (and SR, in the case of sequence C);

this is evident in the visual similarities between Figures 5.6 and 5.8. The shared correlations

of the average breathing order parameter with ST and SR suggest that repositioning dynam-

ics and breathing dynamics are closely tied. The embeddings generated by the diffusion map

approach capture both of these motions within the same non-trivial eigenvector, implying

that these two types of dynamics are innately part of the same characteristic dynamic mode

exhibited by the nucleosome. Although the diffusion map is unable to provide an explicit

nonlinear mapping from the high-dimensional input to low-dimensional coordinates, and in-

terpretation of the low-dimensional coordinates is limited to correlating the top eigenvectors

of M with various descriptors of the system, this perceived deficiency may also be interpreted

as an advantage, since it provides a tool for identifying multiple CVs that may be coupled

together in the same slow dynamical mode, as we have just observed with ST and SR for

sequence C.

5.3.4 DNA Looping

In Figure 5.5, sequences A and B were found to exhibit hierarchical eigenvalue spectra,

with three dominant non-trivial eigenvectors (ψ1, ψ2, ψ3) and three moderate non-trivial
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Figure 5.8: Two-dimensional embeddings of the average of θforward and θbackward, which
characterizes DNA breathing, for all sequences. The average breathing order parameter for
sequence A correlates with ψ2, as indicated by the gradient in the breathing order param-
eter along the vertical ψ2 axis; ψ2 also correlates with the order parameter characterizing
DNA translocation, ST , for sequence A, as seen in Figure 5.6. The average breathing order
parameter for sequences B and C correlate with ψ1, as indicated by the gradient in the
breathing order parameter along the horizontal ψ1 axis; this eigenvector also correlates with
ST for these two sequences, again as seen in Figure 5.6. For sequence C, this eigenvector
also correlates with SR, as seen in Figure 5.7.

eigenvectors (ψ4, ψ5, ψ6). Our analysis thus far, using the diffusion map approach, has

focused on motions correlating with the top group of non-trivial eigenvectors. We now

examine the significance of the moderate non-trivial eigenvectors in sequences A and B (and

why this feature is absent from the eigenvalue spectrum for sequence C).

Figure 5.9 shows two-dimensional diffusion map embeddings of the loopiness order pa-

rameter, described in the Methods section, for sequences A, B, and C using the moderate

eigenvectors ψ4, ψ5, and ψ6. Protrusions are observed in all three embeddings for sequence

A and the embedding of sequence B in ψ5 and ψ6. Through visual inspection of configu-

rations corresponding to points within and outside of the protruding lobe, we find that the

protrusion corresponds to configurations exhibiting DNA loops. In more “loopy” configura-

tions, DNA bulges away from the histone complex, and gaps are formed between the DNA

and histone octamer. Loopy configurations are necessary for the loop propagation involved

in DNA translocation characterized by the order parameter ST , as described earlier, with

translocation dominating in more strongly binding sequences.

The emergence of loopiness in ψ4, ψ5, and ψ6 in sequences A and B is consistent with their

relative propensities for translocation. For strongly binding sequence A, loopiness emerges
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Figure 5.9: Two-dimensional diffusion map embeddings of loopiness for all sequences, plotted
by moderate eigenvectors ψ4, ψ5 and ψ6. For sequence A, more loopy configurations are
isolated by all three moderate eigenvectors. For sequence B, loopy conformations are only
isolated by ψ6. Loopy configurations are not extracted for sequence C.
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in multiple higher eigenvectors compared with moderately binding sequence B; loopy con-

figurations for sequence A are clearly isolated in ψ4 through ψ6. In contrast, loopiness only

emerges in ψ6 for sequence B, which exhibits a lower propensity for translocation compared

to sequence A. Furthermore, weakly binding sequence C repositions entirely by rotation and

does not exhibit any moderate eigenvectors. In fact, loopiness does not emerge in any of the

top 12 eigenvectors for sequence C.

DNA loop formation is important well beyond the context of the mechanics of loop propa-

gation, with implications in chromatin remodeling and spontaneous nucleosome migration,[87]

and we show that the diffusion map can automatically identify this subtle mode. Further-

more, we find that looping is embedded in higher-order eigenvectors, which diffusion map

studies often bypass while focusing on the first several dominant eigenvectors. These top

eigenvectors often extract the dynamic modes corresponding to collective variables more eas-

ily identified by hand, as the present study shows with ST and SR. We show that thorough

examination of higher-order modes can provide valuable insight into more subtle dynamics

of complex systems that may be easier for humans to miss.

5.4 Conclusions

Diffusion maps were used to extract key motions underlying nucleosome dynamics from MD

trajectories of nucleosome repositioning for three representative DNA sequences, spanning

different binding strengths (and consequently, different repositioning dynamics). Translo-

cational and rotational motions, which had been previously identified through a detailed

free energy analysis by Lequieu et al.,[60] were confirmed by the diffusion map approach.

Translocational motions were found to correlate with dominant slow modes across the three

DNA sequences examined here. Rotational motions were only found to emerge in the weakest

binding sequence studied, emerging in the same slow mode that correlates with translocation.

In addition to finding the previously reported translocational and rotational order pa-

rameters, the diffusion map analysis was also used to extract DNA breathing and looping
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motions. Measures of DNA breathing, in which DNA spontaneously unwraps from and

rewraps around the histone complex, were found to correlate with the same eigenvectors

that correlate with DNA translocation and rotation, suggesting that DNA repositioning and

DNA breathing are inherently part of the same dynamical mode. Sequences that exhibit

DNA sliding were found to exhibit hierarchical eigenvalue spectra, with looping configura-

tions isolated in the moderate eigenvectors corresponding to eigenvalues between the first

and second spectral gap. The dominance of DNA sliding over twisting is further reflected

in the order in which loopiness appears in these moderate eigenvectors. Weakly binding se-

quence C, which primarily repositions by twisting, neither exhibited a hierarchical eigenvalue

spectra nor any eigenvectors that correlated with loopiness.

The diffusion map approach is particularly useful in enabling the discovery of key dynam-

ical motions directly from MD data without defining a priori what exactly these motions

might be. Although interpretation of dominant dynamical modes is aided by embedding

user-specified order parameters in the diffusion map, as done in this work, these order pa-

rameters need not be supplied in order to calculate the non-trivial eigenvectors corresponding

to these dominant modes, nor specially created in order to interpret a specific non-trivial

eigenvector. For example, one might interpret a particular eigenvector by visually examin-

ing snapshots of the simulation drawn from different areas of the diffusion map, or use a

generalized collective variable instead (ex. fit an eigenvector as a function of atomic coordi-

nates from each simulation snapshot in the diffusion map). Considering the importance of

sequence dependence in nucleosome dynamics, diffusion maps provide an attractive solution

for rapid screening and identification of key dynamics across sequences in more complex

scenarios, for example in higher order chromatin structures or comparing across mutated

sequences. Even in the single nucleosome case studied in this work, there remain several

significant eigenvectors for which the corresponding dynamics are unknown; we are actively

working on elucidating these dynamics. More generally, this work emphasizes the possibili-

ties of uncovering unintuitive properties in MD data that may be missed by more traditional
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approaches. Here, we are able to confirm both previously known and new order parameters

using a small subset (and only 3 out of 9 total sequences) of the MD trajectories previously

used in a detailed free energy analysis, attesting to the usefulness and efficiency of applying

diffusion maps to previously simulated complex systems.
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CHAPTER 6

CONCLUSIONS

In this work, we have applied the tools of molecular simulation and data-driven analysis to

the study of multiple biological macromolecule systems, revealing the underlying dynamics

and thermodynamics of protein aggregation, ion capture by peptide amphiphile assemblies,

and nucleosomal repositioning dynamics. In Chapters 2 and 3, we found that aggregation

of human amylin in water is a process uphill in free energy for both the formation of the

dimer and trimer, with greater free energy barriers encountered in trimer formation. Using

the finite temperature string method, intermediates were found in both dimerization and 3-

chain trimerization that agree with previous experimental characterization of the early-stage

amylin assembly process, with intermediate β-sheet formation in residues L12A13 and 20–

29. Furthermore, we found 2+1 trimerization to be much less favorable compared to 3-chain

trimerization, and a thorough comparison of H-bond formation, entropic interactions versus

enthalpic interactions, and decomposition of potential energy have linked this discrepancy

to the role of protein-water hydrogen bonds in each trimerization scenario. Additionally,

string method calculations for trimerization indicated that 3-chain assembly begins from the

dimer intermediate, which is then incorporated into the trimer intermediate, suggesting a

possible stepwise aggregation mechanism, associated with moderate free energy barriers. Our

findings on the importance of H-bonds in the aggregation process also motivate questions on

whether aggregation in the presence of other proteins, with H-bond-forming molecules, or at

higher salt concentration will drive the system toward more favorable aggregate formation.

Interestingly, these additional components would add physiologically relevant components

to the system that are currently missing from our model. Remaining questions also include

whether further growth toward larger oligomers will remain uphill in free energy, and whether

spontaneous fibril growth occurs past a certain oligomer size; these may be approached by

extending the string method approach or by pivoting to a Markov State Modeling approach.

In the following chapter, we applied the ABF method in the study of peptide amphiphile
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C16GGGhex to calculate free energy landscapes corresponding to its phosphate-binding

behavior at two different pH conditions. We found preferential binding to occur at low

pH, but not at high pH conditions. Furthermore, we observed C16GGGhex to bind with

phosphate at multiple locations along its peptide region, including at the linker region rather

than with the adjacent phosphate-binding hexapeptide. These patterns are observed for

both single-chain binding simulations and studies of phosphate binding to a flat layer of

C16GGGhex. Further studies are necessary to evaluate phosphate-binding behavior when

C16GGGhex is able to assemble into long, worm-like micelles or combined with a separate

hydrogel-forming peptide amphiphile, which more accurately represent the system structure

if deployed in a functional material.

Finally, in Chapter 5, we demonstrated that the diffusion map approach is effective for

identifying and extracting meaningful collective variables that characterize the motion of

the nucleosome complex. The diffusion map was used to confirm discovery of previously

identified collective variables via a painstaking free energy-based analysis, as well as identify

more subtle features of nucleosomal dynamics that were not incorporated into those manually

specified descriptors, including looped conformations, in which the DNA bulges out from the

histone complex, and breathing motions, in which DNA on either end of the nucleosome

spontaneously unwraps from the histone complex.

While this work lays a foundation for understanding a variety of biological systems, fur-

ther study involves the investigation of larger systems and the targeting of longer timescales,

as alluded to previously. Our findings in Chapter 5 suggest that valuable insights may be

gleaned from existing molecular simulation data in order to inform the direction of this

future work. Interestingly, the free energy-based analysis from which the previously identi-

fied collective variables were drawn in Chapter 5 take similar approaches to those used in

Chapters 2 through 4, perhaps indicating the potential usefulness of taking a two-pronged

approach in future studies of complex biological systems by continuing to examine dynam-

ics and thermodynamics via free energy methods while simultaneously mining the generated
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molecular simulation data. Taken together with the current advances in free energy methods

that incorporate machine learning techniques,[40, 105] the future holds great opportunities

that incorporate existing methodologies and data-driven approaches together for the com-

putational study of complex biological systems and the novel engineered materials that they

inspire.
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