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ABSTRACT

Microbes are the most common form of life on Earth and play a crucial role in biogeochemical processes
that sustain all forms of life. Similar to every other habitat on Earth, microbes occupy almost every part of
the human body and play an important role in health and disease. Our understanding of the ecology and
evolution of microbes has been significantly changed due to the recent revolution in DNA sequencing
technology and the rise of ‘omics data, which has transformed microbiology to a data-rich science. But new
challenges are arising as computational tools and training that enable effective utilization of ‘omics data are
lacking. Here | present my efforts to solve bottlenecks in the analysis of microbial ‘omics, and to empower

microbiologists engaged in ‘omics data science.

My work in developing computational tools has been driven by specific questions in microbial ecology. By
utilizing high resolution ‘omics analysis approaches, | illuminated the evolutionary journey of cryptic
microbial residents of the human oral cavity, with a focus on members of the candidate division TM7. My
analysis revealed that TM7s split into groups of tongue specialists and dental plaque specialists, indicating
that oral TM7s are “picky” regarding their desired habitat within the mouth. While plaque specialists
associated with TM7 from environmental samples from an evolutionary and functional perspectives, tongue
specialists associated with TM7 from animal gut. These findings indicate an ecological resemblance
between the plaque environment and non-host environments such as soil and sediment from a microbial
point of view, suggesting that the plaque environment may have served as a stepping stone for
environmental microbes to adapt to host environments for some clades of human associated microbes.
Additionally, | revealed that prophages are widespread amongst oral-associated TM7, while absent from
environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host
environment, perhaps by facilitating horizontal gene transfer. An in-depth description of my findings from
the oral cavity is followed by a discussion of novel tools along with examples of their applications, and a

discussion of good practices for scalable, high resolution exploration of 'omics data.



CHAPTER 1 INTRODUCTION

1.1 Diversity, abundance, and importance of microbial life

They are hard to notice and easy to ignore as we go about our daily lives, and yet microbes are everywhere,
and are not only the most common form of life on Earth (Whitman, Coleman, and Wiebe 1998), but also
perform biogeochemical processes essential in recycling molecules and making them available to sustain
all forms of life on Earth (Falkowski, Fenchel, and Delong 2008; Planavsky et al. 2014). Microbes are
profoundly abundant and occupy every niche on Earth, from soil (Torsvik, Dvreas, and Thingstad 2002;
Delmont et al. 2015) to oceans (Béja et al. 2002; Delmont et al. 2018), and as far as we can tell, also within
and on top of every plant (Hardoim et al. 2015; Vorholt 2012; Reinhold-Hurek et al. 2015) and animal

(Amato et al. 2019; Reveillaud et al. 2019; Dudek et al. 2017; Dewhirst et al. 2012; Bahrndorff et al. 2016).

1.2 The human oral microbiome

Similar to every habitat on Earth, we are also colonized by microbes, that form the human microbiome, and
that are abundantly found across our body (Turnbaugh et al. 2007); and each person is estimated to contain
as many microbial cells as human cells (Sender, Fuchs, and Milo 2016). Microbial community structure and
its variations have been associated with health and disease (Martinez-Guryn, Leone, and Chang 2019),
hence our understanding of the composition and distribution of microbes across body sites is highly
important from a medical perspective. The oral cavity is amongst the richest reservoirs of microbes in the
human body, and is approximated to harbor more than 600 microbial species (Dewhirst et al. 2010) that
are found in high densities (Sender, Fuchs, and Milo 2016) across anatomically diverse sites within the
mouth (Welch, Dewhirst, and Borisy 2019), and play an important role both in oral and non-oral diseases

(Wade 2013).



1.3 Opportunities and challenges in sequencing-enabled study of microbial life

The recent revolution in the field of microbiome has been largely driven by the emergence of new DNA
sequencing technologies that allow access to large-scale genomic information. Studies utilizing the
accessibility of sequencing data are producing deep insights into naturally occurring microbial populations,
and are changing our understanding of the Tree of Life (Brown et al. 2015; Spang et al. 2015), transform
our view of microbes performing key biogeochemical processes (Koch, van Kessel, and Licker 2019;
Delmont et al. 2018), leading to discovery of novel biosynthetic pathways (Libis et al. 2019) and novel

antibiotics (Hover et al. 2018), and much more (Quince et al. 2017).

As microbiology is transforming into a data-rich science, microbiologists are faced with new challenges
(Kyrpides, Eloe-Fadrosh, and lvanova 2016). The complexity of the data requires novel algorithmic
solutions, and a myriad of computational tools developed by the scientific community strive to address this
need (List of Bioinformatics Software - omicX), but there are no established standards to guide researchers
toward the appropriate tools for their specific needs (Quince et al. 2017). On the other hand, heavy reliance
on standard workflows with rigid analysis steps, limits the creative exploration of researchers and prevents
the utilization of the full potential of data. Moreover, as the field evolves, the requirement to integrate multiple
sources of information, such as genomics, transcriptomics, proteomics and other ‘omics data in a multi-
‘omics approach increases, but tools that allow such integration are lacking (Kyrpides, Eloe-Fadrosh, and
Ivanova 2016). Proper training that would enable microbiologists to take advantage of the surge in ‘omics
data, and the infrastructure to support efficient use of data are lacking as well (Kyrpides, Eloe-Fadrosh, and
Ivanova 2016). Efforts are being made by the scientific community to put forth standards of analysis
(Bowers et al. 2017), but awareness of these guidelines amongst researchers and reviewers of studies that
heavily rely on ‘omics approaches is still lacking (Shaiber and Eren 2019). Improper analysis due to the
complexity of the data could yield false conclusions (Koutsovoulos et al. 2016), and errors propagate as
erroneous data are deposited to public databases (Shaiber and Eren 2019; Chen et al. 2019¢). Sequencing
technologies continue to evolve at a rapid pace with long read (van der Helm et al. 2017; Bertrand et al.
2019), droplet microfluidics (Zilionis et al. 2017), and Hi-C technologies (Belton et al. 2012), to name a few,

suggesting that these challenges are likely to persist.



1.4 Anvi'o - an integrated analysis and visualization platform for ‘omics data

Throughout my graduate studies | addressed these challenges primarily by taking a leading role in the
development of anvi'o. Anvi'o is open source software with more than 65,000 lines of code for the analysis
and visualization of ‘omics data (Eren et al. 2015). The latest version of anvi'o (v6 “esther”) includes 125
programs that each perform a unique task, and an object-oriented design, allows for these programs to be
extended, as well as combined together. To execute this modularity, anvi'o relies on a collection of
databases that are created, modified, merged, split, and queried through the various atomic programs
(Figure 1). The anvi'o databases allow researchers to combine information from various ‘omics data-types,
including genomes, metagenomes, and meta-transcriptomes, and apply a variety of ‘omics analysis
approaches, including various metagenomic, pagenomic, meta-pan-genomic, and phylogenomic
approaches (Yeoman et al. 2019; Eren et al. 2015; Delmont et al. 2019, 2018; Reveillaud et al. 2019;
Delmont and Eren 2018). Along with the flexibility in the design of each analysis, offered by this design, the
anvi'o databases generated per project can be shared as stand-alone files in addition to standard summary
tables and plots. Sharing an anvi'c database allows other scientists to easily reproduce results, and

moreover, to explore novel questions by utilizing the anvi’o interactive interface.
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Figure 1: The anvi'o programs, databases and concepts form an interconnected network. This screenshot
taken from http://merenlab.org/software/anvio/network/ presents how atomic anvi'o programs interact with
anvi'o databases and relate to concepts in microbial ‘omics. On the top right is the anvi'o symbol for anvi'o
v6 ‘esther’ (https://github.com/merenlab/anvio/releases/tag/v6).

The interactive interface is perhaps what distinguishes anvi’'o more than anything when comparing to other
‘omics analysis tools. The complexity of ‘omics data often means that relying on summary statistics or on a
single type of visualization is not sufficient. But most workflows available for the analysis of ‘omics data
produce static figures and summary tables, and each researcher is required to “dig” into the data within
these tables. Due to the magnitude and complexity of these datasets, independent exploration requires
high proficiency in computational approaches of data science, which is not necessarily an expertise held
by every microbiologist. Anvi'o circumvents this predicament by allowing users to manually explore their
data using an interactive interface that allows switching between a variety of visualization strategies

seamlessly.

Although, the flexibility and breadth of the analyses offered by anvi'o provide a steep learning curve for a

novice user. To help microbiologists take advantage of the variety of offered functionalities, anvi'o tutorials



include more than 115,000 words in total, of which | personally contributed more than 10,000 words spread
across four tutorials (http://merenlab.org/2018/07/09/anvio-snakemake-workflows/;
http://merenlab.org/2016/11/08/pangenomics-v2/; http://merenlab.org/2019/03/14/ncbi-genome-download-
magic/; http://merenlab.org/2019/10/17/export-locus/). In addition, | have composed and taught a workshop
to graduate students interested in learning approaches to the analysis of microbial ‘omics data using anvi'o
(for which material is provided at http://merenlab.org/2018/09/09/microbial-omics-workshop/) and | am
actively engaged with the community of anvi'o users through github (https://github.com/merenlab/anvio),

Slack (https://anvio.slack.com/), and Google Group (anvio@googlegroups.com).

In summary, anvi'o offers flexible and interactive analysis of ‘omics data that empowers microbiologists to
take an active role in data analysis and utilize the depth of knowledge offered by complex ‘omics data. By
contributing to the development of anvi'o and providing training to members of the scientific community |

strived to empower scientists engaged in data-rich microbiology.

1.5 The anvi'o workflows - increasing the accessibility of large-scale and reproducible analyses using anvi’'o

The flexibility offered by the atomic programs included in anvi'c comes with a price. Typical analysis steps
become very numerous and grow in proportion to the number of samples/genomes that are being analyzed.
Identifying this bottleneck, | implemented the anvi'o workflows, a collection of commonly-used analysis
strategies for microbial ‘omics. The anvi'o workflows rely on the Snakemake workflow management system
(Késter and Rahmann 2012), which offers easy deployment to any computing system, automatic
parallelization of independent analysis steps, and the ability to seamlessly resume interrupted workflows
without repeating steps that were previously completed. Extensive documentation, helpful error messages,
draft configuration files that can be edited by users to suit their analysis needs, and the reliance on
Snakemake allow users with minimal knowledge of command line tools to perform analyses at scale. The
anvi'o workflows are similar to other existing tools in many ways (Dean et al. 2018; Clarke et al. 2019;
Uritskiy, DiRuggiero, and Taylor 2018; Kieser et al. 2019), but instead of offering static figures and tables,
anvi'o workflows produce the aforementioned anvi'o databases and hence allow scientists to reach the

initial steps of interactive exploration of ‘omics data in a streamlined manner.



1.6 High resolution microbial ‘omics at scale to study questions in microbial ecology

My efforts in developing computational tools were strongly driven by my focus on specific questions in
microbial ecology. The following chapters expand on applications of these tools to study specific
ecosystems, as well as include an in-depth description of the anvi'o workflows. Chapter 2 describes the
application of high resolution microbial ‘omics to investigate the ecology, evolution, and mobilome of poorly
understood, yet prevalent members of the oral microbiome. In particular in this study we reveal dental-
plaque specialists and tongue specialists amongst oral-associated TM7, and show that while plaque
specialists are functionally and phylogenetically associated with environmental TM7, tongue-specialists are
associated with other host-associated TM7 from animal gut, suggesting that at least for TM7, plaque
resembles non-host environments. Chapter 3 expands on the functionality and design of anvi'o workflows.
Chapter 4 includes descriptions of applications of anvi'o workflows in a variety of contexts, including the
reanalysis of previously published data to highlight limitations and offer solutions for metagenomics
analyses, as well as the analysis of newly generated data that led to the identification of a Wolbachia
plasmid that could provide exciting possibilities for genomic engineering with potential application in the

population control of mosquitoes that carry and transmit dengue, West Nile, and Zika viruses.

Overall, this work provides insights into the genomes, ecology, evolution and mobilome of cryptic microbes
in the context of multiple ecosystems, including the human oral cavity, human blood samples, and insect
ovaries, and includes a discussion of novel tools and good practices for high resolution exploration of large

scale 'omics data.
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2.1 Abstract

Microbial residents of the human oral cavity have long been a major focus of microbiology due to their
influence on host health and their intriguing patterns of site specificity amidst the lack of dispersal limitation.
Yet, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among
the taxa that belong to recently discovered branches of microbial life. Here we used daily tongue and dental
plaque metagenomes from multiple individuals and reconstructed 790 non-redundant genomes, 43 of which
resolved to TM7 that formed six monophyletic clades distinctly associated either with plaque or with tongue.
Both pangenomic and phylogenomic analyses grouped tongue-specific TM7 clades with other host-
associated TM7 genomes. In contrast, plaque-specific TM7 grouped together with environmental TM7
genomes. Besides offering deeper insights into the ecology, evolution, and the mobilome of cryptic
members of the oral microbiome, our study reveals an intriguing resemblance between dental plague and
non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a
stepping stone for environmental microbes to adapt to host environments for some clades of human
associated microbes. Additionally, we identify that prophages are widespread amongst oral-associated
TM7, while absent from environmental TM7, suggesting that prophages may play a role in adaptation of

TMY7 to the host environment.

2.2 Introduction

Since the inception of microbiology as a new discipline following Antoni van Leeuwenhoek’s historical
observation of the animalcules (Lane, 2015), the human mouth has remained a major focus among
microbiologists. The oral cavity is a rich environment with multiple distinct niches in a relatively small space
partially due to (1) its diverse anatomy with hard and soft tissue structures (German and Palmer, 2006), (2)
the differential influence of the host immunity throughout the oral tissue types (Moutsopoulos and Konkel,
2018), (3) its constant exposure to exogenous factors. Microbial residents of the oral cavity complement
their environment with their own sophisticated lifestyles. Oral microbes form complex communities that
show remarkable patterns of horizontal and vertical transmission across humans and animals (Ferretti et

al., 2018; Song et al., 2013), temporal dynamism (Caporaso et al., 2011; Hall et al., 2017; Mark Welch et



al., 2014), spatial organization (Mark Welch et al., 2016), and site-specificity (Dewhirst et al., 2010; Eren et
al., 2014; Mark Welch et al., 2019), where they influence the host health (Lamont et al., 2018) and the
ecology of the gastrointestinal tract (Schmidt et al., 2019). Altogether, the oral cavity offers a powerful

environment to study ecology and evolution of microbial systems.

One of the fundamental pursuits of microbiology is to understand the determinants of microbial colonization
and niche partitioning that govern the distribution of microbes in their natural habitats. Despite the low
dispersal limitation in the human oral cavity that ensures everything to be everywhere, extensive site-
specificity among oral microbes has been observed since the earliest studies that used microscopy and
cultivation (Socransky and Manganiello, 1971), DNA-DNA hybridization (Mager et al., 2003) and cloning
(Aas et al., 2005) strategies. Factors influencing microbial site-specificity include (1) the nature of the
underlying substrate (permanent teeth vs. mucosal surfaces), (2) keratinization and other features of the
surface topography, (3) proximity to sources of saliva, gingival crevicular fluid, and oxygen, (4) and ability
of microbes to adhere both to the substrate and to one another (Gibbons and Houte, 1975; Simoén-Soro et
al., 2013; Socransky and Manganiello, 1971), overall creating a fascinating ecological environment to study

microbial colonization.

Our understanding of the ecology of oral microbes leapfrogged thanks to the Human Microbiome Project
(HMP) (Human Microbiome Project Consortium, 2012), which generated extensive sequencing data from
more than 200 healthy individuals and 9 oral sites. Studies focused on the HMP data confirmed major
taxonomic differences between microbial communities associated with dental plaque and mucosal sites in
the mouth (Lloyd-Price et al., 2017; Segata et al., 2012). Recruiting metagenomic short reads using single-
copy core genes, Donati et al. demonstrated that while some members of the genus Neisseria were
predominantly found in tongue dorsum samples, others were predominant in plaque samples (Donati et al.,
2016), and Eren et al. revealed that even populations of the same species that differed by as little as one
nucleotide in 16S rRNA gene amplicons could show extensive site specificity (Eren et al., 2014). Strong
associations between oral sites and their microbial residents even at the finest levels of resolution raise
questions regarding the drivers of such exclusiveness (Mark Welch et al., 2019). However, identifying

genetic or functional determinants of site-specificity require insights into microbial pangenomes.



The human oral cavity is one of the most well characterized microbial habitats of the human body. The
Human Oral Microbiome Database (HOMD) (Chen et al., 2010) describes more than 750 oral phylotypes
based on full-length 16S rRNA gene sequences, 70% of which have cultured representatives, enabling
genome-resolved analyses that cover a considerable fraction of oral metagenomes (Nayfach et al., 2016).
Yet, one-third of the known oral taxa are missing or poorly represented in culture collections and genomic
databases, and include some that are common in the oral cavity (Vartoukian et al., 2016), including
members of the Candidate Phyla Radiation (CPR) (Brown et al., 2015), such as Saccharibacteria (TM7),
Absconditabacteria (SR1), and Gracilibacteria (GN02). CPR bacteria form distinct branches in the Tree of
Life both based on their phylogenetic origins (Hug et al., 2016) and functional makeup (Méheust et al.,
2019); they lack many biological pathways that are considered essential (Brown et al., 2015) and have
been shown to rely on epibiotic lifestyles (Bor et al., 2019), with a complex and poorly understood
relationship with a microbial host (Bor et al., 2018). Their unique lifestyle (He et al., 2015), diversity and
prevalence in the oral cavity (Camanocha and Dewhirst, 2014), association with distinct oral sites (Bor et
al., 2019), and potential role in disease (Abusleme et al., 2013; Brinig et al., 2003) make them important

clades to characterize for a fuller understanding of the ecology of the oral cavity.

Successful efforts targeting these enigmatic members of the oral microbiome produced the first genomic
evidence to better understand their functional potential and ecology. The first genomes for oral TM7
emerged from single-amplified genomics studies (Marcy et al., 2007) and were followed by He et al.'s
pioneering work that brought the first TM7 population into culture (He et al., 2015), establishing a deeper
understanding of its relationship with an Actinomyces host. Additional recent cultivation efforts are proving
successful in providing access to a wider variety of oral TM7 (Collins et al., 2019; Cross et al., 2019;
Murugkar et al., 2019). Recent genome-resolved and single-amplified genomics studies have also
produced genomes for oral GNO2 and SR1 (Campbell et al., 2013; Espinoza et al., 2018), and recently the
first targeted isolation of oral SR1 strains has been reported, but genomes were not produced (Cross et al.,
2019). Despite the promise of these studies, our understanding of the ecology and evolution of these

fastidious oral clades is incomplete.
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Here we investigated phylogenetic and functional markers of niche partitioning of enigmatic members of
the oral cavity, with a focus on members of the candidate phylum TM7. We used a metagenomic assembly
and binning approach to recover metagenome-assembled genomes (MAGs) from the supragingival plaque
and tongue dorsum of healthy individuals. Our genomes represented prevalent and abundant lineages that
lack genomic representation in the HOMD and National Center for Biotechnology Information (NCBI)
genomic databases, including members of the CPR. Using a multi-omics approach we show that oral TM7
species are split into plaque and tongue specialists, and that plaque TM7 phylogenetically and functionally
associate with environmental TM7, while tongue TM7 associate with TM7 from animal guts. To assess the
generality of our results we carried out read recruitment from approximately 200 tongue and 200 plaque
Human Microbiome Project (HMP) samples; results confirm that the genomes we identified are prevalent,
abundant, and site-specific. In order to associate MAGs with 16S rRNA sequences and hence associate
MAGSs with phylotypes previously identified based on 16S rRNA, we used long-read sequencing (nanopore
sequencing). Our findings suggest that at least for TM7, dental plaque resembles non-host habitats, while
tongue- and gut-associated TM7s are more strongly shaped by the host. In addition, our results shed light
on other understudied members of the oral cavity, and allow for better genomic insight into prevalent, yet

poorly understood members of the oral microbiome.

2.3 Results and Discussion

To create a genomic collection of oral microbes, we sampled supragingival plaque and tongue dorsum of
seven individuals on four to six consecutive days. Shotgun metagenomic sequencing of the resulting 71
samples yielded 1.7 bilion high-quality = short-reads (Supplementary table 1a at
doi:10.6084/m9.figshare.11634321). We independently co-assembled plaque and tongue samples from
each individual to improve our ability to detect rare organisms and to minimize errors associated with single-
assemblies (Chen et al. 2019c). The resulting 14 co-assemblies (7 people x 2 sites) contained 267,456
contigs longer than 2,500 nts that described approximately 1,163 million nucleotides and 1,554,807 genes
(Supplementary table 1b at doi:10.6084/m9.figshare.11634321). To reconstruct genomes from these
metagenomes we used a combination of automatic and manual binning strategies that resulted in 2,463

genome bins. Independent assembly and binning of metagenomes from similar habitats can result in the
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recovery of multiple near-identical genomes (Raveh-Sadka et al. 2015; Delmont et al. 2018). To increase
the accuracy of downstream analyses we employed only the 857 of 2,463 bins that were 0.5 Mbp or larger
(Supplementary table 2g at doi:10.6084/m9.figshare.11634321), then removed redundancy by selecting a
single representative for each set of genomes that shared an ANI > 99.8% (see Methods). This resulted in
a final collection of 790 non-redundant genomes (Supplementary tables 2a-b, 3a-e at

doi:10.6084/m9.figshare.11634321).

Automatic binning approaches can yield composite genomes that suffer from contamination, influencing
downstream ecological and evolutionary insights (Shaiber and Eren 2019), even when single-copy core
genes suggest the absence of an apparent contamination (Chen et al. 2019c). To minimize potential errors,
we used anvi'o to manually inspect, and when necessary, further refine key genomes in our study by (1)
visualizing the change in GC-content and gene taxonomy of each contig, (2) performing ad hoc searches
of sequences in public databases, and (3) ensuring the agreement across all contigs with respect to
sequence composition signal and differential coverage, the coverage of contigs by reads recruited from our
metagenomes as well as metagenomes from other studies. In order to improve accuracy of genome
assembly via analysis of differential coverage (Quince et al. 2017), we sampled each subject on at least 4
separate days. Our reproducible workflow includes each genome bin for interactive inspection (see

Methods).

After removal of human host DNA-contamination, which accounted for 5%-45% of the reads per sample,
competitive read recruitment revealed that the final list of genomes recruited 47% of the reads from our
metagenomes, with a range of 10%-74% per sample. Confidently assessing the origins of the remaining
short reads is difficult as many factors can explain unaccounted short reads including but not limited to the
missing genomic context due to (1) host eukaryotic contamination, (2) poor assembly of strain mixtures, (3)
incomplete metagenome-assembled genomes, and (4) mobile genetic elements such as viruses and
plasmids that are often difficult to bin. A major driver of the variability we observed in the percentage of
reads recruited by our MAGs across samples was the assembly quality, as we found a significant correlation
(R% 0.67, p-value: 2e7'®) between the percent of reads recruited by the assembled contigs and MAGs for

each metagenome (Supplementary table 1a at doi:10.6084/m9.figshare.11634321, Figure 8). The
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collection of 790 genomes recruited a significantly larger fraction of the reads in plaque metagenomes
(51.6%) than in tongue metagenomes (38.3%) (z-score: 3.73, p-value: 0.0002), which may be partially due
to the fact that a larger number of our genomes were derived from plaque samples (463 vs 327)
(Supplementary table 2b at doi:10.6084/m9.figshare.11634321). Overall, despite variation between
samples, our analysis shows that MAGs encompassed most of the microbial genomic content estimated to
be included in each assembly, and represent a large (near 50%) portion of the reads after removal of human

DNA.

2.3.1 Metagenome-assembled genomes reveal new lineages including members of the Candidate Phyla

Radiation

In order to assess how taxons represented by our MAGs are distributed relative to known oral taxons, we
performed a phylogenomic analysis using our genomes as well as the 1,332 genomes from the HOMD
(accessed on August 15t 2018) (Supplementary table 6b at doi:10.6084/m9.figshare.11634321). Our strict
criteria of inclusion of genomes with at least 18 of the 37 ribosomal proteins that we used for phylogenomics
removed 539 genomes from the analysis, including 492 low completion (<70%) MAGs, 23 high completion
(>=70%) MAGs, and 24 genomes from the HOMD. The 275 MAGs that passed this quality-control threshold
covered much of the diversity at the abundant genera of the samples we collected, as evident by a
comparison to taxonomic composition estimates using 16S rRNA amplicon data and metagenomic short-
reads (Supplementary tables 2e-f, 4a-h, and 5a-j at doi:10.6084/m9.figshare.11634321, Supplementary

Information file).

Some lineages contained members exclusively from our collection and not in the HOMD (Figure 2),
including 51 genomes that we identified as members of the CPR, which formed a distinct branch, as
expected (Figure 2). Our MAGs also included novel genomes from non-CPR lineages not represented in
the HOMD (Figure 2). While some of these deeply branching MAGs clearly represent novel genomes, it is
conceivable that others could be due to MAG contamination in which ribosomal proteins from distant

populations were mixed together. To guard against this possibility we carried out three rounds of manual
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refinement that benchmarked our genomes against multiple genomic and metagenomic resources (see

Methods).

A large fraction of the CPR genomes in our collection belonged to the phylum Ca. Saccharibacteria (TM7;

43). The rest were affiliated with the phyla Ca. Absconditabacteria (SR1; 5) and Ca. Gracilibacteria (GN02;

3).
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Figure 2: MAGs cover most of the abundant genera of the oral microbiome as well as represent lineages
absent in public genomic databases. The dendrogram in the middle of the figure organizes 227 MAGs,
1582 genomes from the HOMD, and a single archeon, which was used to root the tree, according to their
phylogenomic organization based on our collection of ribosomal proteins. The bars in the innermost circular
layer represent the length of each genome. The second layer shows the phylum affiliation of each genome.
The third layer shows the 10 most abundant genera in our samples as estimated by KrakenUniq. The fourth
layer shows the affiliation of genomes as either MAGs from our study (blue) or genomes from HOMD (grey).
The outermost layer marks novel genomes of lineages that lack representation in HOMD and NCBI. The
lowest taxonomic level that could be assigned using CheckM and sequence search (see Methods) is listed
for each novel lineage.
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2.3.2 TM7 phylogenomic clades correspond to site of recovery

Our collection included 43 non-redundant TM7 MAGs (Supplementary table 2b at
doi:10.6084/m9.figshare.11634321), presenting an opportunity to investigate associations between their
lifestyles (i.e., cosmopolitan or site-specific) and their ancestral relationships. For this, we first examined
the biogeography of TM7 populations by estimating their relative abundance in each of the 71
metagenomes through metagenomic read recruitment (Figure 3a, Supplementary tables 7a-c at
doi:10.6084/m9.figshare.11634321). We defined a given TM7 population as detected in one of the 71
samples if at least 50% of the nucleotides of the genome were covered by at least one short read. We
detected 42 of the 43 TM7 populations either only in plaque or only in tongue samples, but never in both
(Figure 3a, Figure 9, Figure 10). The exception was T_C_M_Bin_00022, which we detected in 4/6 tongue
samples and 6/6 plaque samples from participant C_M, but not in any other participant (Figure 2a).
Interestingly, patterns of single nucleotide variations (SNVs) in samples of individual C_M suggest the
existence of mixed sub-populations represented by T_C_M_Bin_00022 in tongue, while in plaque samples
it appears monoclonal. To compare the variability of T_C_M_Bin_00022 we considered the 22,507 (of total
476,713) nucleotide positions at which both plaque and tongue samples had coverage of at least 20x, and
found no variability in plaque samples, while there were 449 nucleotide positions (2%) in tongue samples
that included variability, and where the ratio between the two competing nucleotides was at least 0.1
(median ratio 0.38), demonstrating intra-population diversity in tongue samples (Supplementary table 7t at
doi:10.6084/m9.figshare.11634321). Other than this seemingly “cosmopolitan” population that was present
in both tongue and plaque metagenomes, all TM7 genomes in our collection appeared to be specialists for

plaque or tongue habitats.
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Figure 3: Detection of TM7 genomes across oral metagenomes and their phylogeny.(A) Most TM7
populations are exclusively detected in either tongue or plaque samples in our dataset. For each of the 43
MAGs (on the x-axis) the green and blue bars represent the portion of plaqgue and tongue samples,
respectively, in which it is detected (detection > 0.5). (B) Phylogenetic organization of TM7 genomes reveals
niche-associated oral clades. The phylogenetic tree at the top of the panel includes the 52 oral TM7 as well
as 5 genomes of Firmicutes that root the tree. The layers below the tree describe (top to bottom): “Oral site”
- the oral site to which each of our MAGs corresponded, where blue marks tongue dorsum, green marks
supragingival plaque and a green-blue combination marks the “cosmopolitan” TM7; “Study” - the study
associated with each genome: our MAGs (purple), Espinoza et al. 2019 (teal), Marcy et al. 2007 (blue), He
et al. 2015 (red), and Cross et al. 2019 (orange). A red circle appears on the dendrogram and indicates the
junction that separates the majority of plaque specialists from tongue specialists, and bootstrap values
appear above branches that separate major clusters. 1 Refined versions of genomes, which we previously
published (Shaiber and Eren 2019). £ Genomes from IMG that we refined in this study, but for which
accession numbers for refined versions are available in Cross et al. 2019.

We then sought to investigate whether the ancestral relationships among TM7 genomes could explain their
intriguing site-specificity. For this, we combined our 43 MAGs with 9 human oral TM7 genomes from the
literature. In addition to 3 single amplified genomes that we downloaded from the Integrated Microbial
Genomes and Microbiomes database (IMG/M) (Chen et al. 2019a) and refined (see Methods) and a MAG

from Marcy et al. (Marcy et al. 2007), we included 4 MAGs from Espinoza et al. (Espinoza et al. 2018) after
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manually refining composite TM7 genomes (Shaiber and Eren 2019), and the first cultivated strain of TM7,
TM7x (He et al. 2015) (Supplementary table 7d at doi:10.6084/m9.figshare.11634321). The phylogenomic
analysis of these 52 genomes separated tongue and plaque-associated genomes into distinct branches,
where we could identify a single node on the tree that separated 41 of the 42 plaque associated genomes,
suggesting that the site-specificity of TM7 is an ancestral trait. Another observation emerging from this
analysis was that TM7x, which was cultivated from a saliva sample, clustered together with plaque-

associated genomes, suggesting that its niche is most likely dental plaque rather than tongue (Figure 10).

2.3.3 TM7s found in plaque and tongue share exclusive ancestry with environment- and host-associated
TMT7s

Previous studies have shown that the human associated members of TM7 are polyphyletic, and cluster
together with TM7 genomes of environmental origin (Camanocha and Dewhirst 2014; McLean et al. 2018).
Taking advantage of the large number of genomes we have reconstructed, we revisited this observation by
performing a phylogenomic analysis using all publicly available TM7 genomes in the NCBI's GenBank
database as of 1/16/2019 (Figure 4). We identified six monophyletic human oral clades that were associated
either with tongue (T1, T2) or plaque (P1, P2, P3, P4) (Figure 4). Using a pair-wise comparison of the
average nucleotide identity (ANI) of oral TM7 genomes, we further identified sub-clades corresponding to
genus and species level groups within the six monophyletic clades, including 12 species of TM7
represented each by at least 2 genomes in our collection (Figure 4, Supplementary tables 7f-h at
doi:10.6084/m9.figshare.11634321, Supplementary Information). We then used a combination of long-read
sequencing along with the phylogenetic analysis to compare our clades to the 6 previously described TM7
oral groups (G1-G6) based on 16S rRNA gene amplicons (Camanocha and Dewhirst 2014). We determined
that our monophyletic clades T1, T2, and P4 correspond to G3, G6, and G5, respectively (Supplementary
table 7e,i at doi:10.6084/m9.figshare.11634321). In contrast, clades P1, P2, and P3 all correspond to group
G1, showing that G1 is likely composed of at least 3 distinct monophyletic oral clades. We have not
recovered any MAGs for TM7 groups G2 and G4, which have been previously shown to have low

prevalence as compared to other TM7 groups (B. Bor et al. 2019).
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While tongue clades T1 and T2 clustered with genomes recovered from animal gut and together formed a
deep monophyletic branch of an exclusively host-associated superclade shaded blue in Figure 4, plaque
clades were interspersed with genomes from environmental sources (Figure 4). The exceptions to this clear
distinction between plaque and tongue clades were T_C_M_Bin_00022, a cosmopolitan oral population
that clustered within the clade T2, and the plaque-associated P_C_M_MAG_00010 (the only member of
the clade P4) which was placed as a far outlier to all other oral TM7 and clustered together with genomes
from animal gut (baboon feces). Animal-gut-associated genomes that grouped within the host-associated
superclade were recovered predominantly from sheep and cow rumen samples, but also included genomes
from termite gut, mouse colon, and elephant feces, suggesting an ancient association for members of the
host-associated superclade and their host habitats (Figure 4, Supplementary table 7e at
doi:10.6084/m9.figshare.11634321). Similarly, the inclusion of genomes recovered from dolphin dental
plaque together with human-plaque-associated TM7 suggests an ancient association for plaque-specialists
with the dental plaque environment. The phylogenetic clustering of tongue-associated TM7 genomes with
TM7 genomes from animal gut, to the exclusion of environmental TM7, suggests that tongue and gut share
a higher degree of ancestral relationship compared to those that are associated with plaque and with
environments outside of a host. We know from previous studies that even though microbial community
structures and membership in the human oral cavity and gut microbiomes are different, the ‘community
types’ observed at these habitats are predictive of each other (Ding and Schloss, 2014), suggesting a level
of continuity for host influences at these distinct sites that shape microbial community succession. Ancestral
similarity between tongue- and gut-associated TM7s compared to those associated with non-host
environments suggests that the host factors that influence microbial community succession may also have
played a key role in the differentiation of host-associated and non-host-associated branches of TM7. We
also know from previous studies that overall microbial community profiles in dental plaque dramatically
differs from mucosal sites in the mouth with little overlap in membership (Eren et al., 2014; Segata et al.,
2012). The strong ancestral associations between TM7 clades of plaque and non-host environments, as
well as the depletion of plagque specialists from the host-associated superclade, suggest that from a

microbial point of view, at least in the context of TM7, dental plague resembles a non-host environment.
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What led to the divergence of TM7 populations? Since TM7 have highly reduced genomes and have been
found to be epibionts of other bacteria, primarily Actinobacteria (Bor et al., 2019; Kantor et al., 2013), one
reasonable hypothesis is that the bacterial hosts of each TM7 clade are the drivers of the link between TM7
ecology and evolution. Such an hypothesis would imply that the similarity between tongue TM7 and gut
TMT7 is driven by the colonization of the gut and tongue environments by closely related bacterial hosts that
provide a niche for TM7. Furthermore, it would imply the exclusion of such suitable hosts from the plaque
environment, and vice versa, it would imply that plaque-specialist TM7 are dependent on bacterial hosts
that are absent from the tongue and gut environments. In this context, it is notable that human oral
Actinomyces species show strong site-specificity and little overlap in membership of dental plaque vs.
tongue dorsum inhabitants (Mark Welch et al. 2019) and that Actinobacteria are rare in the human gut
(Segata et al., 2012). An alternative hypothesis is that the mechanisms by which TM7 adapt to distinct
habitats and distinct bacterial hosts are shaped by independent evolutionary events. While the existence
of suitable bacterial hosts is likely an important factor, under this hypothesis, TM7 may acquire “local”’
bacterial hosts as they adapt to new environments. Our data are not suitable to evaluate either of these
hypotheses. Yet given the ancestral similarity between dental plaque TM7 and TM7 from soils and
sediments, it is conceivable to hypothesize that the dental plaque environment was able to support
environmental TM7, while tongue and gut environments forced a distinct evolutionary path as suggested
by the nested monophyletic superclade that is exclusively associated with host habitats. This depiction of
TM7 evolution raises another question about the nature of dental plaque as a host habitat: why is dental
plaque not as different from soil and sediment as tongue or gut? It is possible that fixed hard substrate of
dental plaque renders it more similar to soils and sediments than to the constantly shedding epithelial
surfaces of tongue and gut habitats from a microbial point of view. Whether dental plaque may have served
as a stepping stone for environmental microbes by offering them a relatively safe harbor on the human
body for host adaptation for some clades of human associated microbes is an intriguing question that

warrants further study.

In summary, our data reveal the existence of at least 6 monophyletic oral TM7 clades with clear

biogeography within the oral cavity, and a strong divide between the evolutionary history of host-associated
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and non-host-associated TM7 genomes. Additionally, our analysis reveals 12 species of TM7 that are
represented by multiple genomes in our collection and lays the groundwork for definition of taxonomic
groups within this candidate phylum. The phylogenomic organization of genomes corresponds to their niche
(tongue/plaque) in our dataset, suggesting a link between environmental distribution of these genomes and

their evolutionary history in the context of ribosomal proteins.
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Figure 4: Phylogenetic analysis of human oral TM7 with all TM7 genomes on the NCBI’s GenBank shows
association of plaque TM7 with environmental genomes, and tongue TM7 with TM7 from animal stool. The
phylogenetic tree at the top of the figure was computed using ribosomal proteins and includes 5 Firmicutes
as an outgroup. Regions of the tree that are associated with either plaque or tongue clades from Figure 3
are marked with green or blue shaded backgrounds respectively. Bootstrap support values are shown next
to branches separating major clusters of oral clades. Subclades are marked with rectangles below the
branches they represent. The layers below the tree provide additional information for each genome. From
top to bottom: Clade: the clade association is shown for each cluster of oral genomes. Oral Site: the oral
site with which the genome is associated is shown for our MAGs in accordance with Figure 3. Source: the
source of the genome, where red: human oral, brown: animal gut, cyan: dolphin oral, black: environmental
samples. Reference: the genomes from this study in blue, and genomes from Parks et al. in grey (Parks et
al. 2017). The majority of the rest of the genomes originate from various publications from the Banfield Lab
at UC Berkeley. The insert at the top right of the figure shows boxplots for ANI results for genomes in each
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Figure 4 (continued): subclades against all other genomes. Data points represent the ANI score for
comparisons in which the alignment coverage was at least 25%. Within-subclade comparisons appear in
green and between-subclades comparisons appear in red.

In summary, our analysis reveals 12 species of Saccharibacteria that are represented by multiple genomes
in our collection and lays the groundwork for definition of taxonomic groups within this candidate phylum.
The phylogenomic organization of genomes corresponds to their niche (tongue/plaque) in our dataset,
suggesting a link between environmental distribution of these genomes and their evolutionary history in the
context of ribosomal proteins. But the samples we used to generate our 43 Saccharibacteria MAGs
represent only 7 individuals. We next sought to identify whether these patterns were representative of the

distribution of TM7 among a wider cohort of healthy individuals.

2.3.4 Prevalence of TM7 across individuals is associated with TM7 clades, linking TM7 ecology and

evolution

To assess the occurrence of these oral TM7 populations in a larger cohort of healthy individuals, we used
a metagenomic short-read recruitment strategy to characterize the distribution of 52 oral TM7 genomes
within 413 HMP oral metagenomes (with 30,005,746,488 pairs of reads) that included 196 samples from
supragingival plaque and 217 tongue dorsum samples and were sampled from 131 individuals
(Supplementary tables 7j-k at doi:10.6084/m9.figshare.11634321). We conservatively defined a genome to
be present in a metagenome only if at least 50% of it was covered by at least one short read (see Methods).
In addition to oral genomes, we also included three circular TM7 MAGs that were reconstructed from
environmental samples and manually curated to circularity (Albertsen et al. 2013; Kantor et al. 2013; Brown
et al. 2015). As expected, these 3 environmentally derived genomes (RAAC3, GWC2, and S_aal) were not
detected in any oral metagenome (Figure 5, Supplementary tables 7l-n  at
doi:10.6084/m9.figshare.11634321). The occurrence pattern of TM7 genomes across the HMP individuals
matched their occurrence in our seven participants, where all populations except the two genomes of sub-
clade T2_b (T_C_M_Bin_00022, and TM7_MAG_Illl_B_1) were strongly associated with either tongue or
plaque (Figure 5). Members of sub-clade T2_b indeed appeared to be cosmopolitan and were detected in
both plaque and tongue samples (Figure 5). The most prevalent tongue-associated genome and plaque-

associated genome were detected in samples from 45% and 50% of the HMP individuals, respectively
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(Figure 5). In contrast, TM7x, the first cultured strain of TM7, was detected in only 5% of the HMP
individuals. While the majority of the samples in the HMP dataset were taken from the tongue dorsum and
supragingival plaque, there are additional oral sample types. Our analysis of these additional sample types
suggested that certain TM7 populations have a preferential association with oral sites other than the tongue
and supragingival plaque (Supplementary table 70 at doi:10.6084/m9.figshare.11634321, Supplementary
Information file). Of particular notice, the single MAG of clade P4 (group G5), which was previously
suggested to associate with periodontitis (Abusleme et al. 2013) appeared to associate with subgingival
plaque, but occurred similarly in subgingival plaque metagenomes of patients with periodontitis and healthy
individuals (Supplementary table 7p-s at doi:10.6084/m9.figshare.11634321). These results confirm that
the exclusive association of most TM7 oral populations with either plaque or tongue is a general feature
and not restricted to the participants of our study and reveal prevalent and abundant tongue and plaque

specialists.
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Figure 5: Detection and coverage of TM7 populations in the HMP plaque and tongue samples reveals
abundant populations and niche specificity. The tree at the top of the figure and the two layers of information
below it are identical to the one in Figure 3. Barplots below the tree show the portion of plaque (green) and
tongue (blue) HMP samples in which each TM7 was detected, using a detection threshold of 0.5. Boxplots
at the bottom of the figure show the normalized coverages of each TM7 in plaque (green) and tongue (blue)
HMP samples in which it was detected.

2.3.5 TM7 pangenome reveals functional markers of niche specificity

We next sought to identify functional markers for the niche association of the plaque and tongue specialists.
We utilized a pangenomic approach to identify functional determinants of niche specificity and investigate
the functional differences between members of the various TM7 clades and subclades. Our analysis
organized the total 40,832 genes across 55 genomes into 9,117 gene-clusters (GCs), 4,045 of which were
non-singletons (i.e., occurred in at least 2 genomes) and included up to 162 homologous genes from the

collection of 55 TM7 genomes described above (Figure 6, Supplementary tables 8a-b at
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doi:10.6084/m9.figshare.11634321). The gene-clusters can themselves be clustered into groups that show
similar distribution across genomes. By computing the hierarchical clustering of GCs based on their
presence or absence in genomes we identified a collection of 205 core GCs that are found in nearly all
genomes, as well as clusters of accessory GCs, many of which were exclusively associated with oral
habitats or phylogenomic clades (Figure 6), confirming that the agreement between phylogenomics and
ecology of these genomes was also represented by differentially occurring GCs. The proportion of genes
with functional hits varied dramatically between the core and accessory TM7 genes. While more than 90%
of core gene-clusters had functional annotations, COGs only annotated 29% of singletons, and 22% to 88%
of non-singleton accessory gene-clusters (Supplementary table 8c at doi:10.6084/m9.figshare.11634321),

revealing a vast number of unknown genes.

Whereas phylogenomics infers associations among genomes based on ancestral relationships,
pangenomics reveals associations based on gene content (Dutilh et al. 2004), which can emphasize
ecological similarities between genomes (Delmont and Eren 2018), primarily due to the fact that non-
singleton accessory genes are the only drivers of hierarchical clustering based on gene content. The
hierarchical clustering of TM7 genomes based on GCs predominantly matched their phylogenomic
organization (Figure 12); however, it recapitulated their niche-association better than phylogenomics
(Figure 12). Specifically, the plague-associated genome P_C_M_MAG_00010 of the clade P4 (group ‘G5’),
which is a distant outlier to all other oral TM7 according to phylogeny (Figure 3b), was placed together with
all other plaque-associated TM7 (Figure 12). The data underlying this placement can be seen in the
enrichment of P_C_M_MAG_00010 with GCs that belong to the 'Extended Core 2' cluster, generally
characteristic of plaque TM7 and absent from tongue-associated TM7 such as clades T1 and T2 (Figure 6,
Supplementary table 8c at doi:10.6084/m9.figshare.11634321). This enrichment appears to be responsible
for the placement of P_C_M_MAG_00010 together with the other plaque-associated genomes and
environmental genomes in Figure 12. In summary, these results show that the occurrence pattern of gene-

clusters groups together phylogenetically-distinct clades of plaque-associated TM7s.
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Figure 6: Pangenome of TM7 - Accessory gene-clusters include clade-specific and niche-specific markers.
The dendrogram in the center of the figure organizes the 4,045 gene-clusters that occurred in more than
one genome according to their frequency of occurrence in the 55 TM7 genomes. The 55 inner layers
correspond to the 55 genomes, where our MAGs that associated with tongue and plaque are blue, and
green, respectively; and previously published oral and environmental genomes are in black and brown,
respectively. The colored regions in these 55 layers correspond to the presence of a gene-cluster in the
corresponding genome. The circular layers of genomes are ordered according to their phylogenetic
organization. The outermost circular layer highlights clusters of GCs that correspond to the core or to group-
specific GCs. On the top right, the phylogenetic tree is shown and below it, the three top horizontal layers
represent sub-clade, clade, and oral-site associations of genomes. The next three layers include statistics
of coverage for each genome in the HMP oral metagenomes and show (from top to bottom) 1) the maximum
interquartile mean coverage 2) occurrence in tongue samples 3) occurrence in supragingival plaque
samples. The last two horizontal layers show the number of singleton GCs and the length for each genome.
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The large number of TM7 genomes we recovered affords the opportunity to investigate key functional
properties shared by all TM7s by examining the functions encoded by core GCs. As expected, the TM7
core GCs included many genes involved in translation, replication, and housekeeping (Supplementary table
8d at doi:10.6084/m9.figshare.11634321). The core GCs also included genes involved in amino-acid
transport. Since TM7 lack the genes to produce their own amino acids (ref), these genes likely play an
important role in scavenging amino acids from the environment or from the bacterial host. The core GCs
also included several genes with potential roles in binding to the host, including components of a type IV
pilus system that was identified in all genomes. Oral-associated TM7 have been shown to have a parasitic
lifestyle in which they attach to the surface of their bacterial host (He et al. 2015; Cross et al. 2019), but the
mechanism utilized for this attachment is unknown. Type IV pilus systems have been found to be enriched
in CPR genomes as compared to other bacteria (Méheust et al. 2019) and were also specifically noted in
TM7 genomes (Marcy et al. 2007). Type IV pilus systems are involved in many functions, including
adherence (Craig, Forest, and Maier 2019), and could potentially be utilized by TM7 to attach to the bacterial
host. Most of the components of the type IV pilus system we detected in the TM7 genomes occurred in a
single operon with conserved gene synteny (Figure 7a). Additional copies of some of the type IV pilus
proteins appear in various loci of the genome (Supplementary table 8a at
doi:10.6084/m9.figshare.11634321). We found that while the cytosolic components of the type IV pilus
system (PilT, PilB, PilC, PilM) were highly conserved across all genomes, components involved in the
alignment of the system in the peptidoglycan (PiIN) and the major and minor pilin proteins (PilE, and PilV)
appeared in clade or sub-clade -specific gene-clusters and were completely absent from all genomes of
clade T1 and from the single genome of clade P4 (Figure 7a, Supplementary table 8d at
doi:10.6084/m9.figshare.11634321). Variability in PilV has been shown in the past to confer binding
specificity (Ishiwa and Komano 2003) and in the case of TM7, the clade-specific nature of PilV and PilE
sequences could be driven by host-specificity. While T1 genomes were lacking the components of the pilus
system with known adhesive roles, they were highly enriched in proteins with a Leucine-rich repeat (LRR)
(COG4886), which are often found in membrane bound proteins that are involved in adherence (Bella et al.
2008). 104 of the 207 proteins that were annotated with an LRR belonged to a single gene-cluster

(GC_00000003) which was exclusively associated with T1 genomes, and each T1 genome had a total of
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12-24 LRR proteins (COG4886) (Supplementary table 8a at doi:10.6084/m9.figshare.11634321). In
summary, our analyses suggest that the diversity of pilin proteins could be driven by the host-specificity of
TM7 species, and that TM7 species that lack pilin proteins could rely on alternative mechanisms such as

LRR proteins for adherence.

Additional proteins that we identified to have a potential role in host attachment included proteins with a
LysM repeat, which is a motif found in a wide range of proteins that are involved in binding to peptidoglycans
(Buist et al. 2008). So far, the identified hosts of TM7 are all Gram-positive bacteria, and hence
peptidoglycan binding could be a mechanism in which TM7 attach to their hosts. We found 33 GCs
associated each with one of four COG functions that included LysM repeats and comprised a total of 169
genes (91 with COG0739, 6 with COG0741, 71 with COG1388, 1 with COG1652). We identified a Murein
DD-endopeptidase MepM with a LysM domain (COG0739) in most genomes within a conserved operon,
which included components of a Type IV Secretion system including VirB4 and VirB6 (Supplementary table
8a at doi:10.6084/m9.figshare.11634321). Similarly to what we observed for the type IV pilus system, the
cytosolic component, Virb4, was highly conserved across all genomes, while the membrane bound Virb6
varied and appeared to be clade (and even sub-clade) -specific. This secretion system is also associated
with motility in gram-positive bacteria (Marcy et al. 2007), and could potentially be used by TM7 for motion,
and/or translocation from one host to another. We detected an additional protein with a LysM repeat
(COG1388) in nearly all genomes. While in most genomes this proteins was flanked by genes involved in
cell division, in the genomes of Clade T1_b, this locus included an insertion of 1-3 copies of a Leucine-rich
repeat (LRR) protein, which as we mentioned above, also has a potential role in adherence. Overall,
proteins with a LysM domain are common amongst oral TM7 and could provide another mechanism for

attachment to the host surface.

The occurrences of functions across phylogenetic clades could reveal lifestyle differences that are not
necessarily highlighted by the occurrences of gene-clusters. Since gene-clusters in a pangenome describe
genes that are highly conserved in sequence space, identical functions can occur in distinct gene-clusters,
rendering it difficult to describe core and accessory functions in a pangenome based on core and accessory

gene-clusters. Here we developed a statistical approach that allows the identification of core and accessory
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functions, and reveals enriched functions in any given subset of genomes in a pangenome (i.e., a
phylogenomic clade). In this approach a logistic regression (binomial GLM) is fit to the occurrence of each
COG function, using the clade affiliation as the explanatory variable. As this test is performed independently
for each function, we computed g-values from p-values to account for multiple tests. We considered a
function to be enriched if the g-value was below 0.05, hence setting the expected proportions of false
discovery at 0.05. More information regarding this approach is available at

http://merenlab.org/2016/11/08/pangenomics-v2/#making-sense-of-functions-in-your-pangenome.

Of the 972 unique functions, we identified 320 (34%) as the functional core, which included genes
predominantly identified in all genomes, and 300 that were significantly enriched in specific clades (Figure
13 here and supplementary table 8q-r at doi:10.6084/m9.figshare.11634321). While there was a wide
overlap between core functions and core GCs, 131 core functions occurred in clade-specific GCs, of these,
21 were exclusively associated with one GC from the ‘Extended Core 1’ cluster and one GC from the ‘T1’
cluster, further showing the uniqueness of clade T1 amongst the oral TM7 genomes. (Figure 13,
supplementary table 8a at doi:10.6084/m9.figshare.11634321). Other cases also revealed functions that
may have undergone selective pressure in a clade-specific manner. For example, a single copy of an RTX
toxin-related Ca2+-binding protein, was highly conserved in nearly all genomes (gene-cluster
GC_00000221), but appeared to have a slightly different variant in genomes P1_c (GC_00001826), and
T2 (GC_00001332). Our examination of the top 100 most enriched functions revealed many membrane
associated genes, including, but not limited to functions that were highlighted above by our examination of
GCs (Supplementary table 8f at doi:10.6084/m9.figshare.11634321). For example, tongue and plaque
clades appeared to be differentially enriched for transporters of ions and metals. Genes involved in
respiration as well as genes involved in translation and stress-response were also differentially enriched for
tongue and plaque clades. Overall, our analysis of the functional composition of oral TM7 shows that along
with differences in accessory functions, sequence divergence of particular core genes distinguishes various
clades, and in particular highlights members of clade T1 as outliers amongst the TM7 oral clades, matching

their deep phylogenetic position. In addition, we identified functions that characterize tongue and plaque
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clades and could provide targets for future endeavors to understand the unique biological features of

members of each clade.

Overall, our data show that both accessory functions and core functions distinguish plaque and tongue
specialists. While the core genome includes many functions common to all bacteria, it also includes many
functions that are known to be enriched in CPR genomes. In particular, our data reveals proteins with
potential roles in adherence, and suggests that while cytosolic components are highly conserved,
extracellular proteins appear to be clade-specific, suggesting that interaction with the host and with the
environment are important drivers in differentiating between TM7 oral clades. In addition, plaque-specialists
that are phylogenetically distinct are functionally related and group together with environmental genomes
based on GCs, while tongue-specialists group together with TM7 from animal gut. While members of clade
T1 appear as outliers that differ both in functional composition and in the sequence divergence of many
core functions as compared to other oral TM7, the functional composition of members of clade T2, which
includes the cosmopolitan T2_b genomes, appears to represent an intermediate between the strictly host-

associated group and the plaque/environmental group.
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Figure 7: TM7 type IV pilus operon and TM7 prophages. A) Type IV pilus operon is highly conserved in
TM7 genomes, but missing many components in genomes of the tongue-associated clade T1. Type IV pili
operons from 52 of the 55 TM7 that included pilC are aligned according to pilC (yellow). Genomes are
organized according to their phylogenetic organization shown in Figure 6. The top 10 functions identified in
these operons appear with color filling, while the rest of the functions appear in grey. B) Some phage groups
span phylogenetic clades, while other phage groups associate with specific clades. At the top of the panel
the two prophages of phage group pg08 are compared and on the bottom of the panel the two prophages
of the phage group pg02 are compared. White arrows signify genes as identified by Prodigal. Homologous
genes, identified as belonging to the same gene-cluster, are connected by colored areas. A function name
assigned by KEGG, COG or Pfam functional annotation source appears for genes for which it was available.
On the left the phylogenetic clade of the TM7 host of each prophage is listed next to the host genome name.
The genome-wide average nucleotide identity (JANI) appears for each pair of the host genomes, where C/I
stands for alignment coverage / alignment identity.

2.3.6 Mobile elements and prophages in TM7 genomes

Little evidence for phage association with members of the CPR has been found so far (Chen, et al. 2019b).
Dudek et al. recovered a phage associated with a TM7 genome from a dolphin plaque metagenome (Dudek

et al. 2017) and Paez-Espino et al. identified phages with a predicted SR1 host (Paez-Espino et al. 2016)
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in human oral metagenomes. A smaller genome size has been shown to correlate with the lack of lysogenic
phages (Touchon, Bernheim, and Rocha 2016), and a lack of prophages in CPR genomes would fit this
trend. To evaluate whether oral TM7 were indeed devoid of integrated prophages, we used an automatic
approach based on VirSorter (Roux et al. 2015) and the recently published “inovirus detector” (Roux et al.
2019), along with a manual approach (see Supplementary Information), to identify 9 “phage groups” each
composed of closely related prophages that were recovered from multiple TM7 genomes spanning all oral
clades (Supplementary table 8g at doi:10.6084/m9.figshare.11634321). We did not identify any prophages
in the three environmental genomes. Phage groups generally associated with closely related hosts but were
not restricted to hosts of the same TM7 species, or even the same oral clades (Figure 7b, Supplementary
table 8g at doi:10.6084/m9.figshare.11634321). A blast search of prophage nucleotide sequences against
the NCBI's nr nucleotide collection returned no significant hits, confirming the novelty of these phage
sequences. Using CRISPRCasFinder (Couvin et al. 2018) we identified CRISPR spacers targeting
prophages of two “phage groups” in closely related hosts, validating the association of these prophages
with their corresponding hosts. We identified CRISPR spacers and CRISPR related proteins in genomes
representing clades P1, P2, P3, P4, and T2, but not in T1 nor in the three environmental genomes. The
lack of CRISPR systems in the environmental TM7, despite their close affiliation with plaque TM7, raises
the question whether these systems were recently acquired by oral clades. To investigate this hypothesis,
we blasted cas9 proteins from 6 genomes representing all 5 CRISPR-containing clades, and found that
these best matched cas9 protein from a variety of oral TM7 and a variety of Firmicutes, but no environmental
TM7 nor any other CPR (Supplementary table 8p at doi:10.6084/m9.figshare.11634321). These results
suggest that cas9 proteins might have been acquired by oral TM7 from Firmicutes. While some TM7 clades
appear to lack CRISPR systems, we identified restriction modification (RM) systems in genomes
representing all oral clades, including clade T1, as well as in the environmental genomes GWC2 and
RAAC3 (Supplementary table 8a at doi:10.6084/m9.figshare.11634321). These RM systems could serve
as alternative measures against foreign DNA for TM7 that lack CRISPR systems. Overall our data show
that prophages are common amongst oral TM7, and appear to be a unique feature of oral TM7, while absent
from environmental TM7. In addition, CRISPR systems appear to be common amongst specific clades of

oral TM7, but not a common feature of all TM7. While additional analyses that include a larger collection of
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environmental genomes will be required to verify this observation, a specific association of prophages with
host-associated TM7 suggests that prophages may have played an important role in the adaptation of TM7

to the host environment, perhaps by facilitating horizontal gene transfer.

In search of other mobile genetic elements, we identified transposases in 18 TM7 genomes representing
all oral clades and environmental genomes (Supplementary table 8n at
doi:10.6084/m9.figshare.11634321). The varying location of the highly conserved transposases we
identified in genomes of sub-clade T1_a suggests recent mobility, and that at least some of these elements
are indeed active transposons (Supplementary tables 8a,0 at doi:10.6084/m9.figshare.11634321). Blast
search of genes annotated as transposases revealed that while the majority appear to be strongly

associated with members of the CPR, two transposases had more close hits from non-CPR bacteria.

2.3.7 Additional members of the CPR are prevalent in the oral cavity, including a tongue-associated SR1

In addition to TM7, other members of the CPR have been commonly found in the human oral cavity,
specifically members of the candidate phyla SR1 and GN02 (Camanocha and Dewhirst 2014). Using full
length 16S rRNA, Camanocha and Dewhirst identified three clones corresponding to SR1 (HOT-345, HOT-
874, and HOT-875) and three that corresponded to GN02 (HOT-871, HOT-872, and HOT-873) in the
human oral cavity, of which, genomes have been previously published for all of these except SR1 HOT-
875 (Camanocha and Dewhirst 2014; Campbell et al. 2013). While none of the GN02 and SR1 MAGs in
our collection included 16S rRNA, which would allow a direct match to the Human Oral Taxon (HOT)
designation, using a pangenomic analysis along with ANI statistics we were able to match MAGs to
genomes representing HOT-871, HOT-873, HOT-345, and HOT-874 (Figure 14, Figure 17, Supplementary
tables 9a-h at doi:10.6084/m9.figshare.11634321). Only a single tongue-associated SR1
(T_B_F_MAG_00004) did not match any previously published genome, and could potentially represent
HOT-875, since it is the only known oral SR1 that currently lacks genomic representation. A recent study
presented the successful isolation of an SR1 HOT-875, but a genome has not been sequenced (Cross et

al. 2019).

33



In order to investigate the niche association of these CPR genomes, we mapped the short reads from the
HMP metagenomes. While SR1 HOT-874 and HOT-345 were enriched in plaque samples,
T_B_F_MAG_00004 was highly enriched in tongue samples, as it was detected in 37% of tongue samples
(9% of plaque samples), and was highly abundant in some samples, recruiting 0.09% on average and up
to 2.09% of the reads in tongue samples (Figure 15, Figure 16, Supplementary tables 9l-n at
doi:10.6084/m9.figshare.11634321). Oral GN0O2 were all associated with plaque, and nearly absent from
tongue samples (Figure 17, Figure 18, Supplementary tables 9i- at doi:10.6084/m9.figshare.11634321).
Our ANI analysis suggests that HOT-871 and HOT-872 represent the same genus as genomes from both
of these lineages match with ANI>85% (alignment coverage>30%), while HOT-873 represents a separate
genus and likely a separate family or order, as suggested by Camanocha & Dewhirst (Camanocha and
Dewhirst 2014) (Supplementary tables 9e-f at doi:10.6084/m9.figshare.11634321). Overall our GNO2 and
SR1 MAGs extend the collection of genomes available for these under-studied members of the oral
microbiome, and our analysis demonstrates their niche partitioning and reveals the prevalence of a tongue-

associated SR1.

2.3.8 Novel non-CPR lineages represent prevalent members of the oral microbiome

Our collection included 34 MAGs that based on phylogenomics and blast sequence search represent 11
lineages with no representation on NCBI (from here on referred to as “novel MAGs”), and appear to include
two unnamed species of the genus Prevotella, single unnamed species of the genera Mogibacterium,
Propionibacterium, Leptotrichia, and Capnocytophaga each, as well as an unnamed genus in the family
Flavobacteriaceae, an unnamed family within the class Clostridia, and unnamed families (and potentially
unnamed orders) within the classes Bacteroidia and Mollicutes (Figure 2, Supplementary table 10a-d at
doi:10.6084/m9.figshare.11634321, Supplementary Information file). Populations represented by these
novel MAGs were absent from skin and gut samples, and in fact of our 790 MAGs, we found only two MAGs
that were consistently detected in gut samples. Both of these MAGs belong to the species Dialister invisus,
which were previously found to be the only abundant gut-associated microbes that were detected with

considerable abundance in the oral cavity (Franzosa et al. 2014, Eren et al. 2014).
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The oral microbiome is highly represented in genomic databases (Vartoukian et al. 2016; Nayfach et al.
2016), hence we next sought to check if the lack of genomic representation for these novel MAGs is due to
low prevalence. We mapped short reads from the HMP metagenomes to these MAGs to estimate their
prevalence and abundance across oral sites. Overall, these novel genomes presented strong tropism for
either tongue or plaque, with the exception of three populations that appear to consistently recruit reads
from both plaque and tongue samples, represented by the Flavobacteriaceae MAGs, T_A_M_MAG_00009
(Clostridiales), and three Capnocytophaga MAGs (Figure 20). While we found some populations to be rare,
which could explain their lack of genomic representation in databases, other populations were extremely
prevalent  (Figure 21, Figure 22, Figure 23  Supplementary table 10e-h  at
doi:10.6084/m9.figshare.11634321). In addition to their high prevalence, some of these novel MAGs were
highly abundant. P_B_M_MAG_00008 (Capnocytophaga) recruited on average 1% of the reads of plaque
samples and two of the Propionibacterium MAGs recruited up to 18% of the reads of a single plaque
metagenome, and on average 0.7% for plaque metagenomes (Supplementary table 10h at

doi:10.6084/m9.figshare.11634321).

The most prevalent novel MAGs were five closely related MAGs of the family Flavobacteriaceae, which we
detected in approximately 98.5% and 80% of HMP plaque and tongue samples, respectively, and reached
high relative abundance, recruiting up to 2.98% of the reads of a single metagenome, and on average
0.19%, 0.62% of tongue, and plaque samples respectively (Supplementary tables 10e,g at
doi:10.6084/m9.figshare.11634321). ANI comparison of these MAGs to each other and to representatives
of all Flavobacteriaceae species on RefSeq suggested they represent a single new species in an unnamed
genus, as within group ANI was >93.8% (with >80% alignment coverage), while they had no significant
alignment with any other Flavobacteriaceae genome (Supplementary table 10ij at
doi:10.6084/m9.figshare.11634321). A phylogenomic analysis placed these MAGs in a subgroup of
Flavobacteriaceae together with Cloacibacterium, Chryseobacterium, Bergeyella, Riemerella, Cruoricaptor,
Elithabetkingia, and Soonwooa (Figure 23). While all five Flavobacteriaceae MAGs had high sequence
similarity, both ANI results and the phylogenetic analysis clustered these genomes according to the site of

recovery, suggesting the existence of a plaque and tongue-specific sub-population. Three of our
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Flavobacteriaceae genomes were highly complete according to estimation by SCGs and were of length
1.7-1.8Mbp, considerably shorter than other Flavobacteriaceae genomes, as well as other commonly found
oral microbes. The short length of these genomes as compared to other Flavobacteriaceae suggests a
recent genomic reduction and possibly strong host-association. A strong host-association could lead to
many auxotrophies and could explain why this species has never been isolated despite being an abundant
and ubiquitous member of the oral microbiome. The recovery of novel genomes for these prevalent

members of the oral microbiome could help shed light on their role and could assist future cultivation efforts.

2.4 Conclusions

Using genome resolved metagenomics, we have recovered much of the known diversity of the human oral
cavity using samples from only 7 individuals, providing genomes for prevalent, yet uncultivated members
of the microbiome, and highlighting phylogenetic and functional markers of niche partitioning of the cryptic
candidate phylum TM7. Our findings group TM7 from the supragingival plaque with environmental TM7,
both functionally and phylogenetically, while tongue-associated TM7 group together with lineages
associated with animal gut, suggesting that at least for TM7, the supragingival plaque resembles non-host
environments, while the tongue and gut TM7s are more strongly shaped by the host. Drivers of
differentiation between the various microbial niches within the oral cavity are largely unknown, and could

be revealed by applying similar approaches to study additional members of the oral microbiome.

2.5 Material and methods

Metagenomic assembly

Short reads from 71 metagenomes were quality filtered using the illumina-utils library (Eren et al. 2013)
with the ‘iu-filter-quality-minoche’ program using default parameters, which removes noisy reads using the
method described in (Minoche, Dohm, and Himmelbauer 2011). We then used MEGAHIT (D. Li et al. 2015)

v1.0.6 to co-assemble the set of all quality filtered metagenomes originating from one oral site (either plaque
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or tongue) of one donor, for a total of 14 co-assemblies. We used anvi-display-contigs-stats to get a

summary of contigs statistics for each co-assembly.

To process assembly FASTA files we used the anvi'o contigs workflow which includes the following steps:
we simplified the names of contigs in each one of the 14 assembly products using anvi'o (Eren et al. 2015)
v5.5, and then used ‘anvi-gen-contigs-database’ to generate a contigs database in order to annotate the
contigs. Briefly, anvi'o used Prodigal (Hyatt et al. 2010) v2.60 to find open reading frames. Centrifuge (Kim
et al. 2016) was used to annotate genes with taxonomy. ‘anvi-run-ncbi-cogs’ was used to annotate genes
with COG functions (Tatusov et al. 2000). ‘anvi-run-hmms’ was used to identify single copy core genes

(SCGs) using a collection of built-in HMM profiles.

Metagenomic read recruitment, and initial automatic binning

In our metagenomic workflow we used Bowtie2 v2.3.4.3 (Langmead and Salzberg 2012) to recruit short
reads from the set of metagenomes used for co-assembly to the assembly product; samtools (H. Li et al.
2009) was used to sort the output sam files into bam files; anvi'o was used to profile the bam files and
compute coverage and detection statistics, and merge the profiles of each metagenomic sets. We then
used CONCOCT (Alneberg et al. 2013) to create a preliminary collection of genomic bins. In short,
CONCOCT uses coverage and composition to bin contigs together. We then used the anvi'o interactive
interface to manually refine, using the method described below, the bins created by CONCOCT. Finally,
we retained all MAGs of length greater than 0.5Mbp, and redundancy in SCGs below 10% for the rest of

the analysis.

Sequence search

We used the NCBI nucleotide collection to search for nucleotide sequences, and the NCBI non-redundant
protein sequences database to search for protein sequences. For 16S rRNA sequences, we used the online
blast tool on the HOMD website (http://www.homd.org/?name=RNAblast&link=upload), where we used the

16S rRNA RefSeq Version 15.2 (starts at position 28) with default settings.

37



Manual bin refinement

We used the anvi'o interactive interface to refine our MAGs, as well as TM7 we downloaded from the IMG,
which as previously reported (J. S. McLean et al. 2018), include contamination. Our refinement approach
utilized the different clustering organizations available on the anvi'o interactive interface, which rely on
sequence composition and differential coverage across multiple metagenomes. Our refinement was also
assisted by the taxonomic assignments of contigs assigned based on Centrifuge annotation of genes. In
cases in which we could not confidently distinguish contamination based on the clustering organizations,

we used blast of specific sequences to assist us in making refinement decisions.

Refinement of our MAGs included between two to three rounds of refinement per MAG: 1) Refinement
using the coverage information in the 4-6 samples used to assemble each MAG 2) Refinement of 63 MAGs
which we identified as contaminated based on their coverage across our full collection of 71 metagenomes,
and then used this coverage profile for refinement 3) Refinement of CPR MAGs and novel MAGs based on

their coverage patterns in the HMP samples.

Refinement of TM7 genomes downloaded from IMG was done using coverage of their contigs across the

HMP samples.

Naming scheme of MAGs

Names of the final MAGs included the prefix “ORAL”, followed by a single letter to specify the type of
samples used for the assembly of the MAG (“P” or “T” for plaque or tongue), followed by the ID of the
individual (for example “C_M”", which stands for “couple ‘C’, male”), followed by either “Bin” or “MAG” if the
MAG had completion below or above 70% as estimated using the Campbell et al. collection of single copy
core genes (SCGs) (Campbell et al. 2013), and followed by a number, where for each co-assembly the
MAGSs had a series of numbers from “00001” to the maximum number of MAGs that were retained from

that co-assembly.
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Removing redundancy and analysis of the non-redundant collection of MAGs

In order to identify near-identical MAGs, NUCmer (Delcher et al. 2002) was used to calculate the average
nucleotide identity (ANI) between each pair of MAGs that were estimated by CheckM to belong to the same
phylum. MAGs that had no phylum designation from CheckM were assigned phylum affiliation using
phylogenomics (see below) and blast of protein sequences against the NCBI’'s non-redundant database.
We determined that a pair of MAGs are redundant if their ANI was 99.8% with the alignment length covering
at least 50% of the shorter of the two genomes. For each group of redundant genomes, the genome with
the highest ‘completion minus redundancy’ was chosen as the representative of the group, where
completion and redundancy were calculated by anvi'o based on single-copy core genes. If multiple

redundant genomes had the same ‘completion minus redundancy’ then the longest genome was chosen.

We merged the sequences of the collection of non-redundant bins into one FASTA file, and processed this
FASTA file using the anvi'o contigs workflow as mentioned above. We then also used this FASTA file to
recruit reads from all 71 metagenomes, and used the anvi'oc metagenomics workflow as mentioned above
to generate a merged profile database. We used anvi-split to generate a profile database and contigs
database for each MAG, followed by ‘anvi-interactive’ and inkscape in order to generate PNG images for
all MAGs with contigs organized using a combined metric of differential coverage and sequence
composition, and data points showing interquartile values of the mean coverage of contigs. We used these

images to identify MAGs that required additional refinement.

Read recruitment from public metagenomes

We used ‘anvi-run-workflow’ with the ‘metagenomics’ workflow to recruit reads from oral samples of the
Human Microbiome Project (HMP) (Human Microbiome Project Consortium 2012). The metagenomics
workflow of ‘anvi-run-workflow’ uses Snakemake (Késter and Rahmann 2012) to execute the steps
described above for our metagenomic read recruitment analysis. We used the same approach to also

recruit reads from previously published metagenomes from periodontitis patients (Califf et al. 2017) to the
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TM7 pangenome. The raw metagenomes of Califf et al. were obtained directly from the authors since the

FASTAQ files published by Califf et al. included only a single read for each pair of raw reads.

Quantifying human contamination in metagenomes

We ran the aforementioned metagenomics workflow using anvi-run-workflow and used the human genome
build 38 (GRCh38) from NCBI to quantify the number of reads matching the human genome in each sample.
We estimated the number of reads that originate from microbes (or “non-human” reads) in each sample as

the total number of reads minus the number of reads that mapped to the human genome.

Relative abundance estimations of MAGs

For each MAG we used the number of reads that mapped to it, divided by the total number of non-human
reads as the unnormalized abundance. All unmapped reads were counted as an UNKNOWN bin. In order
to account for different genome lengths, which is expected to impact the number of reads expected from
each population at a given true abundance, we divided each normalized abundance by the genome length.
Since the genome length is unknown for the UNKNOWN bin, as it represents an agglomeration of whole
genomes and portion of genomes that we did not recover, we used an arbitrary choice of 2Mbp as the
normalization factor. The choice of this arbitrary factor changes the overall estimation of the portion of

unknown reads, but not the observed trends.

Taxonomic profiles of metagenomes based on short reads

We used KrakenUniq (Florian P. Breitwieser and Salzberg 2018) to generate taxonomic profiles for all
metagenomes. Briefly, KrakenUniq uses counts of unique k-mers to estimate the relative abundance of

taxa in a sample, based on short-reads.

Phylogenomic analyses
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For phylogenomic analysis we used our collection of 37 ribosomal proteins, which are in the overlap of the
bacterial and archaeal single copy core gene collections created by Campbell et al. (Campbell et al. 2013)
and Rinke et al. (Rinke et al. 2013): Ribosom_S12_S23, Ribosomal_L1, Ribosomal_L10, Ribosomal_L11,
Ribosomal_L11_N, Ribosomal_L13, Ribosomal_L14, Ribosomal_L16, Ribosomal_L18e, Ribosomal_L18p,
Ribosomal_L19, Ribosomal_L2, Ribosomal_L21p, Ribosomal L22, Ribosomal_L23, Ribosomal_L29,
Ribosomal_L2_C, Ribosomal_L3, Ribosomal_L32p, Ribosomal_L4, Ribosomal_L5, Ribosomal_ L5 C,
Ribosomal L6, Ribosomal _S11, Ribosomal S13, Ribosomal S15, Ribosomal S17, Ribosomal S19,
Ribosomal_S2, Ribosomal_S3 C, Ribosomal_S4, Ribosomal S5, Ribosomal S5 C, Ribosomal_S6,
Ribosomal_S7, Ribosomal_S8, Ribosomal_S9. To compute phylogenetic trees based on these ribosomal
proteins, we used ‘anvi-run-workflow’ with the ‘phylogenomics’ workflow. The phylogenomics workflow
included running ‘anvi-get-sequences-for-hmme-hits’ to export a FASTA file with the concatenated and
aligned ribosomal proteins with the following parameters: ‘--align-with famsa’ to perform alignment of protein
sequences using FAMSA (Deorowicz, Debudaj-Grabysz, and Gudys 2016); ‘--concatenate-genes’ to
concatenate the sequences of the various ribosomal proteins; ‘--return-best-hit’ to instruct the program to
return only the best hit in case that a single HMM profile had two hits in one genome; “--get-aa-sequences’
to output amino-acid sequences; ‘--hmm-sources Campbell_et_al’ to use the Campbell_et_al HMM source
(Campbell et al. 2013) to search for genes. For Figure 2 we also included the parameter --max-num-genes-
missing-from-bin 19’ to only include genomes that contain at least 18 of the 37 ribosomal proteins. For the
rest of the phylogenomics analyses we used ‘--min-num-bins-gene-occurs’ to ensure that only ribosomal
proteins that occur in at least 50% of the genomes are used for the analysis. The resulting alignments were
trimmed using trimAl (Capella-Gutiérrez, Silla-Martinez, and Gabaldén 2009) with the setting *-gt 0.5’ to
remove all positions that were gaps in more than 50% of sequences, and a maximum likelihood
phylogenetic tree was computed using IQ-TREE (Nguyen et al. 2015) with the ‘WAG’ general matrix model
(Whelan and Goldman 2001). Phylogeny of CPR genomes was computed with only 36 of the 37, excluding
Ribosomal_L32p since it was absent from all TM7 genomes. In order to root phylogenetic trees we used
an outlier genome in each analysis: for Figure 2 we used a genome of the archeal Methanobrevibacter
oralis, and for all other phylogenomic analyses we used a collection of five members of the Firmicutes:

Acidaminococcus intestini, Eubacterium rectale, Staphylococcus aureus, Streptococcus pneumoniae,
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Veillonella parvula. To remove the Firmicutes from the trees in Figure 6, Figure 14, Figure 17we used the

python package ete3 version 3.1.1 (Huerta-Cepas, Serra, and Bork 2016).

Processing publicly available genomes

To process FASTA files, we used ‘anvi-run-workflow” with the ‘contigs’ workflow, which includes the steps
of the anvi'o contigs workflow as described above. In order to generate the data in supplementary table 8a
(at doi:10.6084/m9.figshare.11634321), our workflow also included running ‘anvi-run-pfams’ to annotate
functions with Pfams (EI-Gebali et al. 2019), and we used ‘anvi-get-sequences-for-gene-calls’ to get all
protein sequences and used GhostKoala (https://www.kegg.jp/ghostkoala/) to annotate genes with KEGG

functions (Kanehisa, Sato, and Morishima 2016).

Assessing the occurrence of populations in metagenomes

We used anvi-mcg-classifier with the settings ‘--get-samples-stats-only’, --alpha 0.1’, which determines a

threshold of 0.6 detection value for to determine occurrence, ‘--zeros-are-outliers’, which considers

positions with zero coverage as outlier coverage values when computing the non-outlier mean coverage.

We used the anvi-mcg-classifier output to determine the occurrence of TM7 populations in our collection of

71 metagenomes. In order to account for the different number of reads per sample when comparing non-

outlier mean coverage values, we normalized these values. To compute the normalization factor, we first

divided the number of reads in each sample by the maximum number of reads in the biggest sample (so

that the normalization factor would be < 1 for all samples). We then divided the non-outlier mean coverage

values in each sample by the normalization factor.

Pangenomic analyses
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We used ‘anvi-run-workflow’ with the ‘pangenomics’ workflow to compute the pangenome. In this workflow,
we used ‘anvi-gen-genome-storage’ to generate a genomes storage database. ‘Anvi-pan-genome’ accepts
the genomes storage as input and uses BLAST (Altschul et al. 1990) to get similarity scores for all protein
sequences of each pair of genes. Similarity scores are then used to form clusters of genes using the Markov
Cluster algorithm (MCL) (Enright, Van Dongen, and Ouzounis 2002) using the default parameters of anvi-
pan-genome (minbit of 0.5, and MCL inflation of 2). We used ‘anvi-script-add-default-collection’ to add a
collection that includes all GCs, and then used ‘anvi-summarize’ to create a summary table. For the TM7
pangenome in Figure 6, when running ‘anvi-summarize’, we used the collection of GCs that we created by
manual selections in the interactive interface. For visualization of pangenomes, we created a second
pangenomic database using ‘--min-occurrence 2’ to exclude singleton GCs (GCs that occur only in a single

genome), and used ‘anvi-display-pan’ to run the anvi'o interactive interface.

Average nucleotide identity (ANI)

We used anvi-compute-ani with the settings ‘--method ANIn’, in order to perform alignment using MUMmer
(NUCmer) (cite), and *--min-alignment-fraction 0.25’ to only keep scores if the alignment fraction covers at
least 25% percent of both genomes. For the ANI data presented in Figure 6, we first computed ANI without
the flag ‘--min-alignment-fraction’ to get all alignment statistics, and then we imported ANI values only for

pairs of genomes with alignment coverage of at least 25%.

Extraction of 16S rRNA sequences

To export all 16S rRNA sequences from contigs databases we used ‘anvi-get-sequences-for-hmme-hits’ with

parameters ‘--hmm-sources Ribosomal_RNAs’ and "--no-wrap’.

Analysis of nanopore sequences

In order to filter human contamination, we mapped long read sequences to the human genome using

minimap2 (H. Li 2018). The remaining contigs were used to generate anvi’'o contigs databases as described
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above. Sequences of 16S rRNA were extracted and blasted against HOMD, and the results were used to

assign group affiliation to TM7 genomes as described below.

Group affiliation of TM7 based on 16S rRNA

We exported ribosomal RNA sequences from all TM7 genomes, including ones downloaded from NCBI.
We then blasted 16S rRNA sequences against the eHOMD as explained above. For each genome, we
identified the group affiliation (G-1, G-2, etc.) of the closest hit on HOMD. In addition, we blasted nanopore
reads that matched to TM7 against the collection of oral TM7 genomes. We used blast hits to associate
TM7 MAGs with a 16S rRNA group affiliation. The 16S rRNA group affiliations are summarized in
Supplementary table 7i for oral genomes, and in Supplementary table 7e at

doi:10.6084/m9.figshare.11634321 for the all TM7 downloaded from NCBI.

Functional enrichment analysis

We used ‘anvi-get-enriched-functions-per-pan-group’ to find enriched functions per TM7 clade. This
program fits a logistic regression (binomial GLM) to the occurrence of each COG function across genomes,
using clade affiliation as the explanatory variable. It tests for equality of proportions across clade affiliation
using a Rao score test, which gives a test statistic (“enrichment score”) and p-value. g-values are estimated
from p-values using the R package “qvalue” (Storey, Taylor, and Siegmund 2004). We considered a
function to be enriched if the g-value was below 0.05; this controls the expected proportion of false positives
at  0.05. More  details on how to use this method are  provided here:

http://merenlab.org/2016/11/08/pangenomics-v2/#making-sense-of-functions-in-your-pangenome.

Identifying prophages in TM7 genomes

We used Virsorter (Roux et al. 2015) and the “Inovirus detector” (Roux et al. 2019) to identify contigs that

include phage sequences. Contigs predicted as viral were manually inspected, and all contigs which gene
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content was also consistent with a plasmid or another mobile genetic element, i.e. did not include either a

viral hallmark gene or capsid-related gene(s) were excluded.

We further examined all remaining contigs to verify their placement in the prospective genomes, using the
data in Supplementary table 8a at doi:10.6084/m9.figshare.11634321, as well as blast searches of protein
sequences (see the notes in Supplementary table 8g at doi:10.6084/m9.figshare.11634321 for more
details). We used functional annotations to identify additional contigs containing phage-related functions
that were not identified by VirSorter/Inovirus detector. In addition, we identified additional phages by
searching for contigs with many homologs (according to GC occurrence) to the identified phages. We

repeated this process recursively and identified 11 more contigs that contain partial or complete prophages.

To identify start and end positions of prophages, we relied on identifying genes that appear to be TM7
genes as per their association with GCs. When possible, we used closely related TM7 genomes that lacked
the prophage genes, to identify the position of the genes flanking the prophage, and hence confirming the

insertion position of the prophage.

Identifying CRISPRs

We used the web service CRISPRCasFinder at https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
(Couvin et al. 2018) to search for CRISPR spacers in the 55 TM7 genomes. Along with a summary of the
results, the web application allows the direct download of a FASTA file of all high confidence spacers
(evidence level 3 or 4 as defined by Couvin et al). We used the FASTA file of high confidence spacers to

blast spacer sequences against the TM7 genomes.

Statistics and visualization

We used ggplot2 version 3.2.1 to generate boxplots and barplots of abundances, as well as barplots of

occurrences across metagenomes. To compare the number of reads recruited by our MAGs from our
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plaque and tongue metagenomes, we ran a two-sided Z-test, using the Python package statsmodels

(Seabold and Perktold 2010).

Access to previously published sequences

We downloaded all oral genomes from the HOMD FTP site
(ftp://ftp.homd.org/HOMD_annotated_genomes/, and ftp://ftp.homd.org/NCBI_annotated_genomes/).
Notice that while the TM7 genomes we downloaded from IMG had no accessions associated with them at
the time we accessed them on the IMG, there have since then been refined versions of these genomes

published and accession numbers for these refined genomes are available in Cross et al. 2019.

We used nchi-genome-download (https://github.com/kblin/ncbi-genome-download) to download genomes
from GenBank. We used anvi-script-process-genbank-metadata to process the metadata produced by ncbi-
genome-download, and generate input files that we then used to run the contigs workflow of anvi-run-
workflow. TM7 genomes from GenBank were downloaded on 1/16/2019; GNO2 and SR1 on 12/17/2018;

Flavobacteriaceae on 9/20/2019; Clostridiales on 9/25/2019;
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2.6 Supplementary Material

2.6.1 Supplementary Figures
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Figure 8: The percent of reads that map to MAGs is correlated with the quality of the assembly. The percent
of reads that mapped to the non-redundant collection of MAGs out of the total number of reads, excluding
reads that mapped to the human genome is presented for each of the 71 metagenomes as a function of
the percent of reads that mapped to all contigs in the assembly. Blue curve represents a linear regression
model with the grey shaded area marking the 95% confidence intervals. R-squared value and p-value for
the linear regression appear above the curve.
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Figure 9: Normalized relative abundances of TM7 population per individual for the participants of our study.
For those cases in which multiple closely related populations were recovered from multiple participants,
each population is detected only in the participant from which it was recovered. The exceptions are when
a closely related population exists, but assembly or binning failed to recover this population. In those cases
of assembly/binning failure, each of the closely related population is recovered with similar abundance

mpi

Figure 10: Normalized relative abundances of each of our 43 TM7 MAGs in the 71 metagenomes. The
shape and fill color of each dot is according to the sample type (tongue/plaque), while the stroke color is
according to the participant ID from which the sample was taken.
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Figure 11: GC clusters represent clade-specific GCs. Data points represent the portion of the GCs of a GC
bin that occur in each genome and colored according to clade designations of genomes.
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Figure 12: Organization of TM7 genomes according to the occurrence of gene-clusters clusters oral
genomes according to oral site affiliation. The dendrogram at the top represents the phylogenetic
organization based on ribosomal proteins, while the dendrogram on the bottom represents the hierarchical
organization of genomes based on the gene-cluster frequency of occurrence across genomes using
euclidean distance and ward ordination. The information at the center of the figure shows the site affiliation
of each oral TM7 in accordance with Figure 5. Branches that appear in bold black color represent
environmental and plaque-associated genomes that are phylogenetically-distinct, but that are grouped
together based on their gene content, and nested together with plaque-associated genomes.
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Figure 13: Functional core includes mostly core GCs, but also many clade specific GCs. Each of the 970
functions are organized in the tree in the center of the figure according to their occurrence in the 55
genomes (using Euclidean distance and Ward’s method) . The first 55 layers correspond to the TM7
genomes, where layers corresponding to tongue MAGs are blue, plaque MAGs are green, and previously
published genomes are black. Bars in these 55 layers represent the presence of a function in the genome.
The layers are ordered using the phylogenetic tree from Figure 3b. The next layer includes a stacked bar
representing the portion of GC bin affiliation of each gene associated with a function. The red arc in the
outermost layer marks the functions that were defined as part of the core for this TM7 pangenome. Notice
that while the majority of the core functions are associated with core GCs, there are many that are
associated with clade-specific GCs.
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Figure 14: pangenomic analysis of SR1 genomes. The dendrogram at the center of the figure organizes
gene-clusters according to their occurrence across the 14 SR1 genomes. The circular layers correspond to
the 14 SR1 genomes and are ordered according to their phylogenetic organization. In these circular layers,
colored sections mark the presence of gene-clusters in the corresponding genome. On the top right, the
phylogenetic tree is shown and below it, the four horizontal layers correspond to (top to bottom) 1) Human
Oral Taxon designation according to 16S rRNA sequences 2) Sample type (environmental: black, plaque:
dark green, saliva: light green, canine supragingival plaque: brown, tongue: blue, dolphin gingival sulcus:
cyan) 3) Number of singleton gene-clusters 4) Total length of the genome.
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Figure 15: Detection of SR1 populations in the HMP plaque and tongue samples reveals prevalent
populations and niche specificity. Barplots showing the portion of plaque (green) and tongue (blue) HMP
samples in which each SR1 was detected, using a detection threshold of 0.5.
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Figure 16: Normalized coverage of SR1 populations in HMP oral samples according to sample type.
Boxplots showing the normalized coverages of each SR1 in plaque (green) and tongue (blue) HMP. For
each genome, data is only shown for samples in which it was detected, according to the same criteria of

detection used in Figure 15.
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Figure 17: pangenomic analysis of GNO2 genomes. The dendrogram at the center of the figure organizes
gene-clusters according to their occurrence across the 25 SR1 genomes. The circular layers correspond to
the 25 SR1 genomes and are ordered according to their phylogenetic organization. In these circular layers,
colored sections mark the presence of gene-clusters in the corresponding genome. On the top right, the
phylogenetic tree is shown and below it, the four horizontal layers correspond to (top to bottom) 1) Human
Oral Taxon designation according to 16S rRNA sequences 2) Sample type (environmental: black, plaque:
dark green, saliva: light green, canine supragingival plaque: brown, tongue: blue, dolphin gingival sulcus:
cyan) 3) Number of singleton gene-clusters 4) Total length of the genome.
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Figure 18: Detection of GNO2 populations in the HMP plaque and tongue samples reveals the plaque
specificity of oral members of this candidate phylum. Barplots showing the portion of plaque (green) and
tongue (blue) HMP samples in which each GN02 was detected, using a detection threshold of 0.5.

Figure 19: Normalized coverage of GNO2 populations in HMP oral samples according to sample type.
Boxplots showing the normalized coverages of each GNO2 in plaque (green) and tongue (blue) HMP. For
each genome, data is only shown for samples in which it was detected, according to the same criteria of

detection used in Figure 18.
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Figure 20: Presence of the novel populations in HMP tongue and plauge samples. Barplots of the portion
of plaque (green) and tongue (blue) samples in which each of the novel genomes occur. The presence of
a population in a sample was determined according to a threshold of 0.5 detection value.
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Figure 21: Presence of the novel populations in HMP oral samples by sample type. Barplots of the portion
of samples in which each of the novel genomes occur, plotted by sample type for all 9 HMP sample types
in which at least one novel population was detected. The presence of a population in a sample was
determined according to a threshold of 0.5 detection value.

Figure 22: Normalized coverage of the novel populations in HMP oral samples according to sample type.
Boxplots of the normalized coverage of the novel population. Color of data-points are according to the

sample type. For each genome, data points are only shown for samples in which the genome was detected,
according to the same detection threshold used in Figure 21.
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Figure 23: Phylogenomic analysis of Flavobacteriaceae genomes indicates oral MAGs represent an
unnamed species in an unnamed genus within Flavobacteriaceae. Below the dendrogram, layers include
the name and length of each genome. The 5 novel Flavobacteriaceae MAGs are indicated with red color
and the Prevotella genome that was used to root the tree is indicated with blue color.

2.7 Supplementary information

2.7.1 Comparison of taxonomic composition using three methods

In order to investigate how the recovery of MAGs spans taxonomic units, we compared the estimation of
taxonomic composition (at the genus level) of samples based on our MAGs with two other methods,
KrakenUnig (F. P. Breitwieser, Baker, and Salzberg 2018), which utilizes short-reads, and hence
circumvents potential challenges due to assembly and binning, and Minimum Entropy Decomposition
(Eren, Morrison, et al. 2015) combined with GAST-based (Huse et al. 2008) taxonomic assignment of 16S
rRNA amplicon sequence variants. While KrakenUniq lists 441 genera with above zero abundance in at
least one sample (Supplementary table 4f at doi:10.6084/m9.figshare.11634321), GAST identified 40
(Supplementary table 5e at doi:10.6084/m9.figshare.11634321) and our genomes represented 37 distinct
genera (Supplementary table 2f at doi:10.6084/m9.figshare.11634321). We included the 15 most abundant
genera according to each method, which amounted to a list of 19 genera, and to which we added TM7, in
a comparison of relative abundance estimations by the three methods. Overall, the three methods

presented similar trends for most of these 20 taxa, but also revealed further discrepancies (Figure 24,
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Figure 25, Figure 26). While 16S rRNA amplicons allow the taxonomic assignment of each sequenced
amplicon (to various levels of resolution), it suffers from primer biases for specific taxa (Eloe-Fadrosh et al.
2016). While the study of metagenomes does not suffer from these primer biases, the ability to assign
taxonomy to every sequenced read is limited by the reference database, leaving many reads either
unidentified, or worse, wrongly classified (Escobar-Zepeda et al. 2018). While MAGs allow a confident
taxonomic assignment (to known taxa), normalizing coverages to estimate relative abundance is
challenging, especially when it is required to account for many unassigned reads. In addition, the
occurrence of populations that undergo genomic reorganizations, and the occurrence of populations with
large within-population variability, limits the ability to assemble short reads into large contigs and hence our
ability to generate high quality MAGs. In conclusion, we could examine trends of particular taxons as these
are revealed by a particular method, but none of these methods is likely to inform us of actual relative
abundances. With these limitations in mind, our data shows that while the abundance profiles at the genus
level are similar for the majority of the abundant genera, there are specific taxa for which there are major

differences, such as Actinomyces, Rothia, and Fusobacterium (Figure 24, Figure 25, Figure 26).

To process the amplicon sequencing data mentioned above, we used the Oligotyping (Eren, Murat Eren,
et al. 2013) command o-pad-with-gaps to pad sequences with gaps and eliminate length variation. We used
Minimum Entropy Decomposition (MED) (Eren, Morrison, et al. 2015) to identify amplicon sequence
variants (ASVs) across samples and determine microbial community structure, and we used Global

Alignment for Sequence Taxonomy (GAST) (Huse et al. 2008) to assign taxonomic affiliation to each ASV.

We selected the genera used for the comparison of the relative abundance estimation between the three
methods (MAGs, KrakenUnig, and 16SrRNA) by identifying the 15 most abundant genera according to
each method and then merging these to a list of a total of 20 genera: Actinomyces, Aggregatibacter,
Campylobacter, Capnocytophaga, Corynebacterium, Derxia, Fusobacterium, Gemella, Genus,
Granulicatella, Haemophilus, Leptotrichia, Neisseria, Porphyromonas, Prevotella, Pseudomonas, Rothia,
Streptococcus, Streptomyces, TM7, Veillonella. We considered TM7 as a “genus” for the sake of this
analysis, despite the fact that it includes multiple genera. Of these “top genera”, Derxia was completely

absent from both KrakenUnig and MAGs, and Gemella and Granulicatella were completely absent from
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KrakenUnig. On the other hand, Pseudomonas, and Streptomyces appear in the top 15 abundant genera
of the KrakenUniq results but were completely absent from the MAGs and 16S rRNA ASVs. Lastly, TM7
was completely absent from the 16S rRNA ASVs, despite being amongst the top abundant genera
according to MAGs. We used ggplot2 (Wickham 2016) to generate relative abundance plots per sample
per method. The tables used to generate relative abundance plots based on MAGs, KrakenUnig and 16S
rRNA are available in Supplementary tables 2f, 4f, and 5e at doi:10.6084/m9.figshare.11634321,
respectively. Tables with relative abundance for various taxonomic levels for MAGs, KrakenUniq and 16S
rRNA are available in Supplementary tables 2e, 4a-e, and 5a-d at doi:10.6084/m9.figshare.11634321,

respectively.
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Figure 24: Taxonomic profiles using 16S rRNA gene amplicon sequence variants (ASVs) produced by MED
with taxonomic assignment from GAST.
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Figure 25: Taxonomic profiles based on metagenomic short reads using KrakenUnigq.
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Figure 26: Taxonomic profiles based on coverages of MAGs.

2.7.2 Phylogenomic analysis of MAGs and HOMD genomes

P_C_M_Bin_00033 presents such an example of a deeply branching genome. In fact this genome is placed
in phylogeny as a deep branch within Tannerella (of phylum bacteroidetes), but CheckM assigned this
genome to the genus Granulicatella of phylum Firmicutes. This is likely due to a composition of at least two
genomes that contribute SCGs to this genome. We also identified such issues with a certain genome from
HOMD, “Capnocytophaga_sp__ 003", which has an atypical genome length greater than 6Mbp, and indeed
seems composite as it forms an unusually deep branch within Capnocytophaga, and in fact CheckM failed

to assign any phylum affiliation to this genome.

2.7.3 Aveage Nucleotide Identity (ANI) of oral TM7

Each of the monophyletic clades that we identified include diverse sub-clades as evident by multiple sub

clusters within each clade (Figure 4), hence we sought to search for genomic identity boundaries that could
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allow the definition of distinct species within these clades. To examine whether phylogenetic clusters within
the clades we identified correspond to species of TM7, we computed the average nucleotide identity (ANI)
between each pair of genomes. Multiple studies have suggested a 95% cutoff using ANI to determine
bacterial species (Jain et al. 2018; Konstantinidis and Tiedje 2005). Our analysis revealed 12 sub-clades
that included at least 2 genomes each and separated according to a within-group alignment coverage of
>25% and identity >90% (Figure 4, Supplementary tables 7f, 7g, 7h, and 7i at
doi:10.6084/m9.figshare.11634321). We hypothesize that each of these represent a separate species,
despite the slightly lower than the aforementioned 95% identity cutoff. Genomes of sub-clades T2_a and
T2 b aligned between each other with alignment coverage of 50%-70% and identity of 85%-88%,
suggesting that these two represent two species of the same genus (Figure 4, Supplementary table 7h at
doi:10.6084/m9.figshare.11634321). There were only two other cases in which outgroup members had
alignment coverage above 25%. P_C_M_Bin_00016 had 30% alignment coverage and 83% identity to
P_B_M_MAG_00013 (P1_a), suggesting that it could belong to the same genus as the genomes of sub-
clade P1_a. Similarly, P_C_M_Bin_00022 appears to be a single representative amongst our genomes of
a species that belongs to the same genus as P2_b, as it aligned with ~50% coverage and ~85% identity
with all four members of P2_b (including TM7x). Since we found no other significant alignment between

members of distinct sub-clades, these TM7 genomes potentially represent at least 11 distinct genera.

2.7.4 Occurrence of TM7 across additional oral sample types, other than supragingival plaque and tongue

dorsum, and including samples from patients with periodontitis

In order to examine the occurrence of the TM7 populations across the oral cavity, we used 68 HMP samples
with a total of 7 additional sample types (Supplementary table 7j at doi:10.6084/m9.figshare.11634321), as
well as 24 subgingival samples from 9 patients with periodontitis. The number of reads per sample was
comparable across sample types with the exception of saliva samples, which had a lower number of reads
per sample by an order of magnitude as compared to other sample types (Figure 27). TM7 populations
were detected in all sample types except for the single hard palate sample (Figure 28, Supplementary table
40 at doi:10.6084/m9.figshare.11634321). While presence of populations in the subgingival plaque mostly

matched with their presence in supragingival plaque, some populations were found in a larger portion of
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the 10 subgingival plaque samples as compared to supragingival plaque (Figure 28). Moreover, we found
that occurrence in subgingival plaque did not imply occurrence in supragingival plaque. For example, from
the 5 individuals for which P_C_M_Bin_00016 (clade P1) was detected in the subgingival plaque, we only
detected this population in the supragingival plagque of one individual. P_C_M_MAG_00010 (sub-clade
P4 _a) also appeared to be enriched in subgingival plaque vs. supragingival plaque. This genome belongs
to group ‘G5’, which has been previously suggested to be enriched in patients with periodontitis based on
studies of 16S rRNA amplicons (Abusleme et al. 2013). Our analysis of subgingival samples from patients
with periodontitis revealed a similar occurrence as compared to the 10 subgingival plaque samples of the
8 healthy HMP individuals (Figure 30, Figure 31, Supplementary table 7p-s at
doi:10.6084/m9.figshare.11634321). In Palatine tonsils and throat samples we detected only tongue-
associated TM7, while in Keratinized gingiva samples only members of clade T2, and sub-clade P1_c were
detected. T_C_M_Bin_00011 (sub-clade T2_c) appeared more prevalent and abundant in keratinized
gingiva samples than in tongue samples, and T_B_F_Bin_00010 (clade T2) was more abundant in buccal
mucosa samples than in tongue samples (Figure 29, Supplementary table 4o at
doi:10.6084/m9.figshare.11634321). Due to the low number of HMIP samples per sample type (other than
tongue dorsum and supragingival plaque) further investigation would be required in order to confidently

determine whether such associations exist.

The pair-end reads of the 24 subgingival plaque samples from patients with periodontitis from the study by
Cliff et al. (Califf et al. 2017) were received directly from the authors, since the samples that were deposited
on MG-RAST with the original Califf et al. publication included only one of the pairs of reads. Raw
sequences were analyzed and the occurrence of TM7 MAGs in these samples were assessed as described

in the Methods section.
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Figure 27: Number of reads per metagenome. Each data point represents the number of reads in a single
sample for the 9 sample types.
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Figure 28: Occurrence of TM7 across oral sample types. For each of the 55 genomes (on the x-axis) the
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Figure 29: Coverage of TM7 across oral sample types. Boxplots of the normalized coverages of each TM7

across samples. Data points are colored according to sample type.

Figure 30: Occurrence of TM7 in subgingival plaque samples of healthy individuals and individuals with
periodontitis is mostly matching. Bars indicate the portions of subgingival plaque samples from healthy
individuals (green) and individuals with periodontitis in which each of the 55 TM7 are detected.
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Figure 31: Coverage of TM7s in subgingival plaque. Boxplots of the normalized mean coverage of TM7 in
samples of healthy individuals (green) and individuals with periodontitis (red).

2.7.5 Mobile elements and prophages in TM7 genomes

In order to systematically search TM7 genomes for evidence of prophages we used VirSorter (Roux et al.
2015) and the “inovirus detector” (Roux et al. 2019) to automatically detect contigs that potentially include
prophages in the TM7 genomes and detected 47 contigs with potential prophages (Supplementary table

8g at doi:10.6084/m9.figshare.11634321). We extended this list to a total of 58 contigs by manually
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identifying additional contigs using functional annotations as markers for phages, and by searching for
contigs with GCs that associate with the contigs detected by VirSorter/”inovirus detector” (Supplementary
table 8g at doi:10.6084/m9.figshare.11634321). We manually examined these contigs, and identified 36
contigs that include partial or complete prophages, which we manually curated to determine the likely start
and end nucleotide  positions of the prophages (Supplementary table 8g at
doi:10.6084/m9.figshare.11634321). In order to search for conserved sequences amongst these phages,
we employed a pangenomic approach. Our pangenomic analysis revealed contigs that likely represent
different fragments of the same prophage (Figure 33), we merged these contigs, and removed 9 contigs
that were mostly composed of singleton gene-clusters to generate a second pangenomic analysis with a
refined collection of 25 prophages (Figure 32). Clustering this refined collection of prophages according to
the occurrence of gene-clusters revealed 9 “phage groups” of closely related prophages present in two or

more TM7 genomes (Figure 32).

Functional annotation is lacking for most virus genes, and the sequence diversity amongst the viral proteins
is high, as is demonstrated in the lack of shared GCs across phages in Figure 32. Hence, it is challenging
to find suitable targets for phylogenetic analysis of phages. In an effort to study the phylogenetic
relationships of the phages we used two hallmark genes of (pro)phages: (1) integrase, and (2) terminase
to compute phylogenies. We performed a phylogenetic analysis using the 13 integrases we identified in our
collection of prophages (Figure 33). Our results reveal cases in which phages that associate with highly
divergent hosts rely on similar integrases, while phages that otherwise appear to be closely related (i.e.
belong to the same “phage group”) often rely on divergent integrases (Figure 33). The phylogenetic tree
we computed using the 10 tail terminase large subunit identified in the prophages showed a better overall
concordance with the organization according to GCs (Figure 32, Figure 35). Genomes of phage groups
“pg02”, “pg07”, and “pg08” had high within-group identity of the terminase large subunit, but “pg01”, which
also shows large variability in the pagenomic analysis (Figure 32) included prophages with divergent
terminase large subunit, despite the fact that their hosts belonged to the same species (P1_a). While it
appears that distantly related phages, infecting distantly related hosts, can use very similar integrases

(Figure 35), our data does not include an case in which distantly related phages harbor similar terminases
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(Figure 36). To examine the novelty of these prophages we searched for similar nucleotide sequences
using Blast against the NCBI's nr nucleotide collection, but this search had no results, emphasizing the

novelty of these sequences.
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Figure 32: Pangenomic analysis of TM7 prophages reveals 9 “phage groups” of closely related phages.
The dendrogram at the center of the figure represents the hierarchical clustering, using euclidean distance
and Ward’'s method, based on the frequency of occurrence of 143 GCs, each containing at least two
homologous genes from at least two prophage sequences. The 22 inner circular layers represent prophage
sequences, where each data point marks the presence or absence of a protein that belongs to the
corresponding GC. Colors of these 22 layers are according to their “phage group” affiliation. The two
outermost circular layers represent the combined homogeneity index for each GC, and the GCs that were
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Figure 32 (continued): annotated with a COG function (green). A low homogeneity index signifies higher
sequence diversity amongst the proteins that comprise a GC. The dendrogram at the top right represents
the hierarchical clustering of the prophage sequences according to the GC frequency of occurrence using
Euclidean distance and Ward’s method. The first horizontal layer below the dendrogram marks the two
prophages that include a TM7 core protein. The next two layers show the clade affiliation of the TM7
genomes, and the “phage group” affiliation. The lowest three horizontal layers show the number of
singletons, number of genes per kbp, and the total length for each prophage sequence.

The recovery of multiple closely related phages from TM7 genomes, as well as the presence of host (TM7)
genes on the same contigs that contain the phage genes provide strong evidence for the association of
these phages with the TM7 genomes. To further enforce this association, we used CRISPRCasFinder
(Couvin et al. 2018) to search the TM7 genomes for CRISPR spacers and survey existing spacers for ones
that match our collection of prophages. CRISPRCasFinder identified 66 CRISPR arrays, of which 14 had
evidence level 3 or 4 as defined by Couvin et al. (Couvin et al. 2018) (Supplementary table 8| at
doi:10.6084/m9.figshare.11634321), and originated from 12 genomes spanning clades P1, P2, P3, P4, and
T2, but not T1 nor any of the environmental genomes. We blasted the set of 14 CRISPR arrays against the
TM7 genomes and found a total of 9 spacers with blast hits that were not self-hits (i.e. not a blast match of
the spacer to itself), which included 7 spacers with a single external match (i.e. a match outside of the
genome where the spacer was found), 1 spacer with two external matches, and 1 spacer with 2 external
matches and one internal match, showing that this spacer was self targeting (Supplementary table 8m at
doi:10.6084/m9.figshare.11634321). 5 of these 9 spacers had hits to pg01 prophages, and revealed that
this family of prophages targets a wide variety of TM7 species within the ‘G1’ oral caldes P1, P2, and P3
(Supplementary table 8m at doi:10.6084/m9.figshare.11634321). Another spacer matched a pg06
prophage. While we found pg06 prophages in genomes of sub-clades P2_a and P2_c, this spacer was
found in a P3_a genome. An additional spacer from a P3_a genome matched a prophage from a P1_a
genome suggesting the existence of multiple phage groups that target a variety of ‘G1’ oral genomes. Two
additional spacers had hits across G1 genomes, but these matched sequences that we did not identify as
prophages and were composed of singleton GCs with no functional annotation, deeming it hard to
determine whether these are prophages or other mobile genetic elements. As mentioned above, we found
a spacer from P_A_F_Bin_00032 to be self-targeting. Despite being potentially detrimental and confer
autoimmunity, self-targeting spacers are fairly common (Stern et al. 2010). In this case, the spacer matched

3 of the 4 genes in our dataset that comprise GC_00002421 in P2_a genomes. This GC had no COG
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function, but was recognized to have a ‘PEGA domain’ by Pfam, which is found in surface layer proteins.
While this GC was unique to members of P2_a, it seems that this protein is conserved and represents a
core function in the TM7 pangenome, since a protein with this annotation was found in nearly all genomes,
and almost always flanked by a “Sortase (surface protein transpeptidase)’. The apparent viability of the
P_A_F_Bin_00032 population as evident by the recovery of the genome, despite the CRISPR self-targeting
of a core function might suggest that this core function is not strictly required for the survival of TM7 in the

oral cavity.

In contrast to the oral clades P1, P2, P3, P4, and T2, we found no evidence for CRISPR-cas systems in T1
genomes nor in the three environmental genomes. The CRISPRCasFinder output included contigs from T1
genomes, but these only had evidence level 1 or 2, suggesting that they could be spurious identifications
(Supplementary table 8| at doi:10.6084/m9.figshare.11634321). Indeed, many of these appeared to fall
within genes that belong to a single GC, suggesting that something about the sequence of these specific
genes confuses the CRISPRCasFinder algorithm. There was only one contig from one of the three
environmental genomes (GWC2) that was included in the output of CRISPRCasFinder, but it had evidence
level 1, and the identification fell within a TM7 core protein, and hence is likely an erroneous identification.
In accordance with the lack of CRISPR arrays, we did not find any of the CRISPR associated proteins in
the environmental genomes nor in genomes of clade T1, but we did find these proteins in genomes of the
oral clades P1, P2, P3, P4, and T2. We find the lack of prophages and the lack of CRISPRs in environmental
genomes to be highly interesting, since these fall within the G1 group to which the P1, P2, and P3 clades
belong, which could imply that these CRISPR-cas systems are unique to oral-associated (or more generally
to animal-associated) TM7, but an analysis of a wider variety of environmental TM7 would be required to
test this hypothesis. To search for the potential source for CRISPR proteins in oral TM7, we blasted cas9
proteins from 6 genomes representing all 5 CRISPR-containing clades, and representing the three GCs
annotated as cas9 proteins, against the NCBI’s nr protein sequences. All 6 cas9 proteins were matching
the same collection of proteins from oral TM7, but no environmental TM7. The top non- TM7 matches were
of Firmicutes (Bacilli and Clostridia), suggesting that these proteins were once horizontally transfered from

Firmicutes to oral-associated TM7. Future investigations could include a phylogenetic analysis of CRISPR
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associated proteins of TM7 along with ones from other CPR and non-CPR (including human-associated)
genomes to further shed light on the source of CRISPR systems in TM7 genomes, and whether these are

unique to mammalian-associated TM7.

While T1 and environmental genomes lacked CRISPR-cas systems, they could alternatively rely on
restriction modification systems to defend against phages. Based on COG annotations, we identified Type
| and/or Type Il restriction-modification systems in 34 TM7 genomes spanning all identified oral clades and
two of the three environmental genomes, GWC2 and RAAC3. In addition to lacking CRISPR-cas systems,
,members of clade T1 were also lacking a protein annotated with the COG function “Phage shock protein
PspC (stress-responsive transcriptional regulator)”, which was found in nearly all genomes from all other

oral clades and in two of the three environmental genomes.

In addition to prophages, we identified other mobile genetic elements in many TM7 genomes. 33 genes
coding for various transposases were detected in 18 genomes, covering all oral clades and the three
environmental TM7. These genes comprised a total of 22 GCs, and up to four transposases per genome
(Supplementary table 8n at doi:10.6084/m9.figshare.11634321). The transposases were predominantly
associated with GCs unique to specific lineages. 19 of the 22 GCs were singletons (i.e. identified in a single
genome), the three other GCs, GC_00003909, GC_00002371, and GC_00001084 were identified in two,
three and seven genomes, respectively. GC_00001084 was annotated as an “ISXO2-like transposase
domain” by Pfam and was identified in most P3_a and three P1_b genomes. GC_00002371 was identified
in 3 (out of 5) T1_a genomes and was annotated with the COG function “Transposase InsO and inactivated
derivatives”. While the transposases in T1_a genomes were highly conserved in protein sequences, they
occurred in differing positions  within the genomes (Supplementary table 8a at
doi:10.6084/m9.figshare.11634321), suggesting recent mobility of these elements. GC_00003909 was
detected in the two P1_c genomes with the COG function “Transposase and inactivated derivatives, IS30
family”. In both P1_c genomes, this transposase occurred in the same exact position within the genome,

suggesting that this might represent an inactive transposon.
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In order to examine the potential origin of the TM7 transposases, we searched for similar sequences in
NCBI's non-redundant protein sequence database (Supplementary table 8o at
doi:10.6084/m9.figshare.11634321). The vast majority matched best to transposases from other TM7
genomes or other CPR genomes, including many genomes recovered from environmental samples. For
example, the single transposase from T_C_M_MAG_00008 had best matches to other oral TM7, but also
matched many other CPR, including CPR MAGs recovered by Probst et al. from an aquifer (Probst et al.
2018). In contrast, T_C_M_Bin_00011 included what appears to be only the N-terminal region of an IS30-
family transposase which matched best to transposases from a Streptococcus agalactiae genome (89%
coverage and 52% identity in protein sequence). Examination of the contig on which this transposase was
detected showed that it is not likely to be explained by a binnig error, as this transposase was flanked by
many core proteins of TM7 on one side, but on the other side, it was flanked by three short proteins that
belonged to singleton GCs (i.e. with no homologs in the TM7 pangenome) and no functional annotation
(gene ids 21837-21839 in Supplementary table 8a at doi:10.6084/m9.figshare.11634321). A blast search
of protein sequences matched these three proteins with a surprisingly high identity (94%-100%) to genes
from other oral bacteria representing various phyla, including Firmicutes, Fusobacteria, and Proteobacteria.
The presence of a partial transposase next to genetic elements that appear to be widely shared between
oral microbes could reflect a mechanism for horizontal gene transfer between TM7 and non-CPR oral
microbes, but requires further validation. In summary, these results suggest that the transposases carried
by oral TM7 genomes are predominantly anciently associated with CPR genomes, but also include
transposases that were likely transferred to oral TM7 from other mammalian-associated bacteria more

recently, and could potentially be used to incorporate proteins that are widely shared by oral bacteria.
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Figure 33: Pangenomic analysis of a potential prophages includes multiple contigs that likely represent
fragments of the same prophage. The gene content of each prophage is represented by an individual layer,
and the 9 main groups of TM7-associated prophages are highlighted in different colors across layers.
Layers that are in black color are ones that consisted mostly of singletons and were hence excluded from
subsequent analysis. On the top right of the figure, the color bars in the top horizontal layer highlight pairs
of contigs that belong to the same genome and that we identified as fragments of the same prophage and
merged for the subsequent pangenomic analysis (Figure 32). In next horizontal layer, each genome for
which we identified multiple prophage contigs is associated with a unique color, so that contigs that are in
the same genome can be identified.
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Figure 34: phylogeny of phages based on integrases. The dendrogram at the top of the figure represents
the maximum likelihood phylogenetic tree of the prophages based on protein sequences of integrases. The
names of genomes in which the phage was identified appear below the dendrogram, and a suffix of “_1”
and “_2” marks the two prophages that were identified in T_C_F_MAG_00008. “GC”: marks the integrases
that were in non-singleton GCs. “Clade”: the clade or subclade (if one exists) association of the host of each
prophage. “Phage group”. phage group designation. “Same genome”: highlights two prophages from
T_C_F_MAG_00008. “Type of phage”: either inovirus (green) or caudovirales (pink).
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Figure 35: Phylogeny of phages based on terminases. The dendrogram at the top of the figure represents
the maximum likelihood phylogenetic tree of the prophages based on protein sequences of terminase large
subunit. The names of genomes in which the phage was identified appear below the dendrogram. “Gene
cluster id”: marks the integrases that were in non-singleton GCs. “Clade”: the clade or subclade (if one
exists) association of the host of each prophage. “Phage group”: phage group designation. “Same genome”:
highlights two prophages from T_C_F_MAG_00008.

2.7.6 Novel non-CPR MAGs

Our collection of MAGs included 43 genomes with no closely related genome in HOMD (Figure 2,
Supplementary table 10a at doi:10.6084/m9.figshare.11634321). In order to test the novelty of these
genomes, we blasted the protein sequences of the ribosomal proteins of these populations against the
NCBI non redundant protein sequences database. In conjunction with the phylogenetic analysis (Figure 2),
blast results confirmed that 34 of these genomes represent 11 lineages with no representation on NCBI
(from here on referred to as “novel MAGs”), while the additional 9 genomes belong to two lineages from
the family Eubacteriaceae and matched genomes of Stomatobaculum longum and Lachnospiraceae

bacterium oral taxon 096 on the NCBI, which were absent from the HOMD at the time that we downloaded
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the HOMD genomes, but have since then been added (Supplementary tables 10b, 10c at

doi:10.6084/m9.figshare.11634321).

2.7.7 A novel MAG for a member of the Mollicutes

Members of the Mollicutes, a class of bacteria that lack cell wall (Davis et al. 2013) are known to be
commonly found in the human oral cavity. In particular, Mycoplasma are highly ubiquitous members of the
oral microbiome (Dewhirst et al. 2010) and include some pathogens. Studies based on 16S rRNA amplicons
identified two taxons, HMT-504 and HMT-906, as potential members of the Mollicutes on a deep
phylogenetic branch between other known Mollicutes and members of the class Erysipelotrichia (Dewhirst
et al. 2010). T_C_F_MAG_00011 has no closely related genome on GenBank (Supplementary table 10c
at doi:10.6084/m9.figshare.11634321) and our phylogenomic analysis with representatives of all taxa under
the classes Mollictutes and Erysipelotrichia as available on GenBank on 12/24/2018. (Figure 36) placing it
deeply branching between these two classes, suggesting it could represent either HMT-504 or HMT-906.
Notice that we excluded two GenBank genomes annotated as Erysipelotrichia (GCF.900120365.1,
GCF.000178255.1) from our analysis, since our preliminary phylogenetic analysis showed these are likely
not members of Erysipelotrichia. The closest genomes to T_C_F_MAG_00011 on were members of the
genus acholeplasma, including many plant pathogens, but also including a horse oral pathogen (Atobe,
Watabe, and Ogata 1983). Our analysis using the HMP metagenomes showed that T_C_F_MAG_00011
is associated with the tongue and occurs in 20% of HMP individuals for which tongue samples are available

(Figure 20, Supplementary table 10c at doi:10.6084/m9.figshare.11634321).
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Figure 36: Phylogeny based on ribosomal proteins places T_C_F_MAG_00011 closest to genomes of

Acholeplasmatales. Phylogenetic tree of T_C_F_MAG_00011 (blue) together with RefSeq genomes of
class Erysipelotrichia (green), phylum Tenericutes, including class Mollicutes, and within it orders
Entomoplasmatales and Mycoplasmatales (grey), and Acholeplasmatales (brown), along with five other
Firmicutes, representing classes Bacilli, Clostridiales, and Negativicutes as outliers to root the phylogeny
(purple). Two genomes wrongly annotated as Erysipelotrichia appear in red color.

2.7.8 Novel Clostridiales MAGs represent prevalent tongue-associated populations

We recovered 5 Clostridiales MAGs for which we could not assign a family designation (Figure 37). 3 MAGs
were closely related and seem to represent a prevalent tongue-associated species, and were detected in
>50% of HMP tongue metagenomes (Figure 20). We detected an additional population
(T_A_M_MAG_00009) in 30% of tongue samples and 20% of plaque samples, while T_C_M_MAG_00006
was detected only in seven HMP tongue samples (3%), and were each distant phylogenetically from any
other genome on our phylogenomic analysis using all Clostridiales genomes from (Supplementary tables

10e-h at doi:10.6084/m9.figshare.11634321).
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Figure 37: Phylogenomic analysis of Clostridiales genomes from NCBI with our Clostridiales MAGs. A
maximum likelihood phylogenetic tree was computed based on our collection of ribosomal proteins using
representative genomes for all taxa of order Clostridiales in RefSeq. Our MAGs are highlighted with purple
color. The tree was rooted using a Prevotella genome.

2.7.9 Novel Bacteroidia MAGs include a tongue-specialist and a subgingival plaque specialist

One of our Bacteroidia MAGs (P-A-M_MAG_00010) matched a genome recently recovered from a
metagenomic sample of periodontal pockets of a patient with periodontitis (McLean et al. 2015)) and seems
to represent the same species. Mclean et al. named this population Candidatus Bacteroides
periocalifornicus (CBP), an odd choice given the fact that phylogenomic analyses show that it is not a
member of the genus bacteroides (McLean et al. 2015). Torres et al. (Torres et al. 2019) showed that this
CBP is enriched in subgingival plaque samples as compared to supragingival plaque samples, which our
analysis also confirms (Figure 21, Figure 22), an expected result as both analyses relied on the same HMP
samples. Two closely related Bacteroidia (T_B_M_MAG_00007, T_C_F_MAG_00010) were prevalent in

tongue samples, and detected in 40% of HMP tongue samples (Figure 20, Supplementary table 10f at
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doi:10.6084/m9.figshare.11634321). CBP was the closest relative to these MAGs, but with an average of
76% identity of the amino-acid sequences of ribosomal proteins, suggesting that these two lineages are

distant and potentially represent distinct genera or families within Bacteroidia.
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Summary. Affordable high-throughput sequencing strategies and rapidly emerging new ‘omics approaches
revolutionize microbiology and offer unprecedented access to the ecology and evolution of naturally
occurring microbial life. However, accelerated progress in microbiology amidst this data revolution requires
the empowerment of microbiologists with software tools that enable integrated analyses of complex ‘omics
data. Anvi'o is an open-source, community-driven analysis and visualization platform that empowers
microbiologists to work with multiple ‘omics strategies, perform exploratory data analyses, and visualize
large datasets interactively. Yet, implementing an ‘omics workflow in anvi'o starting from raw sequencing
data requires the orchestration of a large number of atomic computational tasks, which can be discouraging.
Here we implement an easy-to-use and extensible workflow management strategy for anvi'o to lower
barriers for complex ‘omics analyses. Availability. The URL http://github.com/merenlab/anvio serves the
codebase for the anvi'o snakemake workflows and the URL http://merenlab.org/anvio-workflows serves a

comprehensive user tutorial.
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3.1 Introduction

Advances in molecular approaches and sequencing chemistry have turned every corner of biology into a
‘data-enabled’ discipline, including microbiology, the study of the most diverse and numerous forms of life
(Whitman, Coleman, and Wiebe 1998) that makes our planet continue to tick (Falkowski, Fenchel, and
Delong 2008). New data emerging form increasingly popular ‘omics data generation approaches (i.e.,
metagenomics, metatranscriptomics, metaproteomics, etc) offer new insights into the ecology and evolution
of microbes through new ‘omics strategies (i.e., genome-resolved metagenomics, pangenomics,

phylogenomics, etc).

We previously have introduced anvi’'o (Eren et al. 2015), a comprehensive software platform that affords
in-depth analyses of ‘omics data (Delmont et al. 2018; Reveillaud et al. 2019; Yeoman et al. 2019) through
interactive visualization strategies and extensive online tutorials. As of today, anvi'o comprises more than
hundred programs, each of which performs individual tasks that can be flexibly combined to build complex
analytical workflows (represented as a network at http://merenlab.org/nt). However, preparing raw
sequencing data for exploratory analyses in anvi'o typically require many atomic steps of computation that
dramatically increase with number of samples (i.e., quality filtering, assembly of short reads, read
recruitment, etc). For instance, our recent genome-resolved metagenomics survey of 7 genomes in the
context of 88 metagenomes resolved to more than 3,000 atomic steps of computation (Shaiber and Eren
2019), which demonstrates that even a relatively simple ‘omics analysis can become intractable for those

who do not have substantial training in bioinformatics.

3.2 The anvi’'o workflows

Here we present the anvi'o workflows, a collection of commonly-used bioinformatics strategies for microbial
‘omics. The anvi'o workflows rely on Snakemake (Kdéster and Rahmann 2012), which offers easy
deployment to any computer system, automatic parallelization of independent analysis steps, and the ability
to resume an interrupted workflow without repeating steps that were successfully executed. In many ways

the anvi'o workflows are comparable to previous studies that offered means to streamline ‘omics analyses
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(Dean et al. 2018; Uritskiy, DiRuggiero, and Taylor 2018; Arkin et al. 2018; Clarke et al. 2019; Stewart et
al. 2019; Murovec, Deutsch, and Stres 2019; P.-E. Li et al. 2017; Kieser et al. 2019; Naccache et al. 2014),
but instead of static figures and tables, our workflows yield data products for the anvi’o ecosystem, enabling

interactive exploration of the initial analyses.

The URL http://merenlab.org/anvio-workflows serves an online user tutorial.

3.3 General design

The main entrance point of the anvi'o workflows is the command line program anvi-run-workflow, which
distributes within the codebase of anvi'o v5 or later and currently gives access to four workflows: contigs,
metagenomics, pangenomics, and phylogenomics. These workflow management system is a collection of
Python modules designed with object oriented principles in mind and use multiple inheritance models to
extend any workflow with another, whether they are ‘built-in’ workflows described here, or ‘external’
workflows that can be implemented and specified by users. The anvi'o workflows dynamically generate
template JSON configuration files with default options for users to edit, processes user-provided
configuration files, sanity checks the input data, and imports Snakemake (Kdster and Rahmann 2012)
Python modules to resolve task dependencies and task scheduling within the boundaries of user-defined

computational resources. A detailed description of each workflow is provided below.

3.4 Contigs workflow

The contigs workflow includes steps for annotating FASTA files using the anvi’o contigs database. The only
mandatory step includes running anvi-run-contigs-database, which includes running prodigal (Hyatt et al.
2010) for gene calling amongst other steps described in Eren et al. (Eren et al. 2015). Optional steps include
identifying single copy core genes (SCGs), functional annotation, taxonomy assignment and more
(supplementary text 01). To enable handling FASTA files, the contigs workflow is inherited by all other built-

in workflows.
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3.5 Metagenomics workflow

Metagenomes are rich with information and highly complex, and as such their analysis could take many
forms. Accordingly, the metagenomics workflow, includes two modes: 1. Assembly-based analysis (“default
mode”) 2. Reference/s-based analysis (“references mode”). At the core of both modes is the generation
and annotation of an anvi’o profile database that can be used to explore metagenomic data using the anvi'o
interactive interface. The entry point to the default mode is a collection of FASTQ files of pair-end reads,
and the output is an annotated merged profile database that is ready for manual binning and curation. This
workflows includes all steps from quality filtering, assembly, automatic binning, mapping, taxonomic
profiles, and more (supplementary text 02). Along with assembly and binning, metagenomes are often used
to explore occurence of individual genes or whole genomes across metagenomes (Delmont and Eren
2017). The “references mode” is intended for this purpose, and takes a collection of FASTQ files and a
collection of FASTA files as input. With the exception of the assembly steps, all other steps are performed

as described for the “default mode”.

3.6 Phylogenomics workflow

Phylogenomics is a widely used approach to study the evolutionary relationships of organisms using
genomic sequences. The contigs workflow is used to perform any required steps such as generating contigs
databases and identifying SCGs, which are then exported as amino-acid sequences, concatenated,
aligned, and trimmed prior to the calculation of a maximum likelihood phylogenetic tree (see supplementary

text 03 for more details).

3.7 Pangenomics workflow

A pangenomic analysis includes the comparison of the set of genes encoded in a collection of genomes.
Running a pangenomic analysis using anvi’o is simple and includes two steps, assuming contigs databases
have been generated (see supplementary text 04). By inheriting the contigs and phylogenomics workflow,

anvi-run-workflow can take a list of FASTA files as input, and generate a pangenomic database, ready for
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visualization in the interactive interface, and would optionally include functional annotation, average

nucleotide identity (ANI), and a phylogenetic tree.

3.8 Conclusion

The anvi'o workflows streamline the analysis of microbial ‘omics data. The utilization of the Snakemake
workflow management system along with an easy-to-use interface allows for scientists with minimal
computational expertise to process large ‘omics datasets, and thus enjoy the wide range of visualization
and analysis approaches that anvi'o offers. More information, including examples for common use cases,
and answers to frequently asked questions is available on the tutorial at:

http://merenlab.org/2018/07/09/anvio-snakemake-workflows/.
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3.9 Supplementary text 01 - contigs workflow

The contigs workflow includes the mandatory step of generating an anvi'o contigs database using anvi-
gen-contigs-database, which computes and stores tetra-nucleotide frequencies and GC-content of contigs,
and uses Prodigal (Hyatt et al. 2010) to identify and store information regarding open reading frames.
Optional steps of the workflow include ‘anvi-script-reformat-fasta’, which is run prior to generating a contigs
database, in order to reformat FASTA and simplify the names of contigs and/or remove short contigs; ‘anvi-
run-hmms’, which by default runs built-in HMM profiles, for the identification of single-copy core genes
(SCGs) and ribosomal RNAs, but also allows users to provide custom HMM profiles; Centrifuge (Kim et al.

2016) to annotate genes with taxonomy; functional annotation using one or more of the following: ‘anvi-run-
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ncbi-cogs’, ‘anvi-run-pfams’, or eggNOG-mapper (Huerta-Cepas et al. 2017); ‘anvi_run_scg_taxonomy’ to
annotate SCGs with taxonomy. Along with the config file, the contigs workflow requires a “fasta.txt” input,
which is a TAB-delimited file to specify paths to the relevant input file. In addition to performing all the
aforementioned steps, the contigs workflow could be easily utilized to work with genomes available on the
NCBI's genomic databases in conjunction with ‘ncbi-genome-download’ (https://github.com/kblin/ncbi-

genome-download) as is described here: http://merenlab.org/2019/03/14/ncbi-genome-download-magic/.

3.10 Supplementary text 02 - metagenomics workflow

Mandatory steps of the “default mode” of the metagenomics workflow include running assembly with
MEGAHIT (D. Li et al. 2015), IDBA-UD (Peng et al. 2012), or metaSPAdes (Nurk et al. 2017); resulting
FASTA files are processed using the aforementioned contigs workflow; short reads are mapped to the
assembly using Bowtie2 (Langmead and Salzberg 2012); SAM files are converted to BAM files using
SAMtools (H. Li et al. 2009); BAM files are sorted and indexed using ‘anvi-init-bam’, and together with the
contigs databases are used to generate profile databases for each metagenome using ‘anvi-profile’ (Eren
et al. 2015). Individual profile databases are merged using ‘anvi-merge’. Optional steps include quality
filtering using ‘iu-filter-quality-minoche’ and generation of a tabular summary of quality filtering results; the
execution of one or more automatic binning algorithms using anvi-cluster-contigs, which currently clusters
contigs using CONCOCT (Alneberg et al. 2013), METABAT2 (Kang et al. 2019), MAXBIN2 (Wu, Simmons,
and Singer 2016), and/or BINSANITY (Graham, Heidelberg, and Tully 2017), and refines clustering results
using DAS Tool (Sieber et al. 2018); taxonomic profiles of metagenomes created using KrakenUniq
(Breitwieser, Baker, and Salzberg 2018) and imported into the profile databases; removal of short reads
based on mapping using Bowtie2 to one or more reference FASTA files, which for example, could be used
to remove human contamination from gut metagenomes by mapping to the human genome; summarizing
profile databases using ‘anvi-summarize’; and splitting self-contained profile and contigs databases using

‘anvi-split’.
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3.11 Supplementary text 03 - phylogenomics workflow

The phylogenomics workflow (which is extensively discussed here: http://merenlab.org/2018/07/09/anvio-

snakemake-workflows/#phylogenomics-workflow) accepts three kinds of input:

1. An Internal genomes file
2. External genomes file

3. A “fasta.txt” file (same as for the contigs workflow)

The format of internal and external genomes files is described here:
http://merenlab.org/2016/11/08/pangenomics-v2/#generating-an-anvio-genomes-storage. The contigs
workflow is then used to perform any required steps, so that protein sequences of user-specified SCGs
could be extracted from contigs databases using ‘anvi-get-sequnces-for-hmme-hits’, which aligns the protein
sequences with either FAMSA (Deorowicz, Debudaj-Grabysz, and Gudys 2016) or MUSCLE (Edgar 2004).
Protein alignment is trimmed using trimAl (Capella-Gutiérrez, Silla-Martinez, and Gabaldon 2009), and a
maximum likelihood phylogenetic tree is computed using IQ-TREE (Nguyen et al. 2015). When inherited
by the pangenomics workflow (see below), the phylogeny could alternatively be computed using sequences
exported using ‘anvi-get-sequences-for-gene-clusters’, which exports and aligned protein sequences using
qualifying criteria that allow the identification of single copy core gene-clusters that are suitable for

phylogenomics (See http://merenlab.org/2016/11/08/pangenomics-v2/#scrutinizing-phylogenomics).

3.12 Supplementary text 04 - pangenomics workflow

The anvi'o pangenomic workflow includes two steps: generating a genomes storage using ‘anvi-gen-
genomes-storage’, and generating a pangenomic database using ‘anvi-pan-genome’, assuming the
existence  of  ‘external genomes’ or ‘internal genomes’ as the  entry point
(http://merenlab.org/2016/11/08/pangenomics-v2/). The pangenomic workflow of ‘anvi-run-workflow’ allows
the option of providing a collection of FASTA files as input (“fasta.txt”) in addition to internal and external

genomes files. If a collection of FASTA files were provided, then the inherited contigs workflow is executed
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with all the user-specified steps to generate annotated contigs databases, and an external genomes file will
also be automatically produced. The phylogenomics workflow is inherited as well, and computed
phylogenetic trees are automatically imported into the pangenomic database, and subsequently included
in the interactive interface. Genome similarity is optionally computed using ‘anvi-compute-genome-
similarity’, which currently includes sequence similarity calculations using PYANI (Pritchard et al. 2016),
fastANI (Jain et al. 2018), or sourmash (Brown and Irber 2016). Genome similarity scores are then imported

into the pangenomic database and presented in the interactive interface.
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CHAPTER 4 EXAMPLES OF APPLICATIONS OF ANVI'O WORKFLOWS

Our motivation in developing the anvi’o workflows was originally driven by the need to perform metagenomic
read recruitment studies, and the realization that performing such analyses at scale and with minimal effort,
is an important need in the scientific community. We have expanded the workflow to cover additional
common analysis types such as phylogenomics and pangenomics. By streamlining preprocessing steps,
the anvi'o workflows allow researchers to easily utilize the anvi'o interactive interface for the exploratory
investigation required to make sense of complex sequencing data. The following sections provide
descriptions of applications of the anvi'o workflows to address various questions in microbial ecology, with
a focus on genome resolved metagenomics, and thus demonstrate the utility of this tool to promote
reproducibility and accessibility of microbial ‘omics analysis at scale. Section 4.1 expands on the refinement
of metagenome assembled genomes (MAGSs) of cryptic members of the oral cavity, and demonstrates the
importance of adhering to MAG quality guidelines set by the scientific community. Section 4.2 provides an
example of the dangers in heavy reliance on MAG quality metrics with no manual exploration of ‘omics
data. While sections 4.1 and 4.2 serve as warnings against the misleading potential of poorly constructed
MAGSs, in section 4.3 we demonstrate the advantage of generating MAGs versus studying raw assemblies
of metagenomes by expanding on the recovery of a Candidatus Parcubacteria genome from blood samples
of pregnant women. Finally, section 4.4 includes an additional application of anvi'c workflows to study
metagenomes of mosquito overies, and the discovery of a putative plasmid in the widespread arthropod

parasite wolbachia.

4.1 Composite Metagenome-Assembled Genomes Reduce the Quality of Public Genome Repositories

Work published in mBio (Shaiber and Eren 2019)

In their recent study, Espinoza et al. employ genome-resolved metagenomics to study supragingival plaque
metagenomes of 88 individuals (1). The 34 metagenome-assembled genomes (MAGs) that the authors
report include those that resolve to clades that have largely evaded cultivation efforts, such as

Gracilibacteria (formerly GNO2) and Saccharibacteria (formerly TM7) of the recently described Candidate
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Phyla Radiation (2). Generating new genomic insights into the understudied members of the human oral
cavity is of critical importance for a comprehensive understanding of the microbial ecology and functioning
of this biome, and we acknowledge the contribution of the authors on this front. However, the redundant
occurrence of bacterial single-copy core genes suggest that more than half of the MAGs Espinoza et al.
report are composite genomes that do not meet the recent quality guidelines suggested by the community
(3). Composite genomes that aggregate sequences originating from multiple distinct populations can yield

misleading insights when treated and reported as single genomes (4).

To briefly demonstrate their composite nature, we refined some of the key Espinoza et al. MAGs through a
previously described approach (5) and the data the authors kindly provided (1). We found that MAG IV.A,
MAG IV.B, and MAG llI.A described multiple discrete populations with distinct distribution patterns across
individuals (Figure 38). A phylogenomic analysis of refined MAG IV.A genomes resolved to the candidate
phylum Absconditabacteria (formerly SR1), and not to Gracilibacteria as reported by Espinoza et al. (Figure
38D). A pangenomic analysis of the original and refined MAG Ill.A genomes with other publicly available
Saccharibacteria genomes showed 7-fold increase in the number of single-copy core genes (Figure 38E).
These findings demonstrate the potential implications of composite MAGs in comparative genomics studies
where single-copy core genes are commonly used to infer diversity, phylogeny, and taxonomy (6).
Composite MAGs can also lead to inaccurate ecological insights through inflated abundance and
prevalence estimates. For instance, the original MAG IIlLA recruited a total of 1,849,593 reads from
Espinoza et al. metagenomes, however, the most abundant refined Ill.A genome (MAG Ill.A.2, Figure 38C),

recruited only 629,291 reads.
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Figure 38: Refinement of three composite genome bins. (A-C) The top-left corners of these panels display
the original name of a given Espinoza et al. MAG (see Table 1 in the original study) and its estimated
completion and redundancy (C/R) based on a bacterial single-copy core gene collection (7). Each
concentric circle represents one of the 88 metagenomes in the original study, dendrograms show
hierarchical clustering of contigs based on sequence composition and differential mean coverage across
metagenomes (using Euclidean distance and Ward’s method), and each data point represents the read
recruitment statistic of a given contig in a given metagenome. Arcs at the outmost layers mark contigs that
belong to a refined bin along with their new completion and redundancy estimates (C/R). (D) The
phylogenomic tree organizes genomes based on 37 concatenated ribosomal proteins. Coloring of genome
names match their taxonomy on NCBI, and branch colors match the consensus taxonomy of genomes they
represent. Espinoza et al. reported MAG IV.A as Gracilibacteria (hence the red color), however this
phylogenomic analysis places refined MAGs under Absconditabacteria. (E) Pangenomic analysis of
Espinoza et al. Saccharibacteria MAG IIl.A before (left) and after (right) refinement together with the
Saccharibacteria genomes from panel D. Pangenomes describe 575 and 497 gene clusters, respectively,
where each concentric circle represents a genome and bars correspond to the number of genes a given
genome contributing to a given gene cluster (the maximum value is set to 2 for readability). Outermost
layers mark single-copy core gene clusters to which every genome contributes precisely a single gene. We
used Bowtie2 (8) to recruit reads from metagenomes, and anvi'o (9) to visualize and refine Espinoza et al.
MAGs. FAMSA (10) aligned anvi'o-reported ribosomal protein amino acid sequences, trimAl (11) curated
them, and IQ-TREE (12) computed the tree for the phylogenomic analysis. Anvi'o used DIAMOND (13) and
MCL (14) algorithms to determine pangenomes. A reproducible bioinformatics workflow and FASTA files
for refined MAGs are available at http://merenlab.org/data/refining-espinoza-mags.
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Co-assembly of a large number of metagenomes that contain very closely related populations often hinders
confident assignments of shared contigs into individual bins. Nevertheless, even when proper refinement
is not possible, reporting composite MAGs as single genomes should be avoided. As of today, highly
composite Espinoza et al. MAGs (Figure 38 in this letter and Table 1 in Espinoza et al.) are available as

single genomes in public databases of the National Center for Biotechnology Information (NCBI).

The rapidly increasing number of MAGs in public databases already competes with the total number of
microbial isolate genomes (3), and increasingly frequent studies that report large collections of MAGs offer
a glimpse of the future (15-17). Despite their growing availability, metagenomes are inherently complex
and demand researchers to orchestrate an intricate combination of rapidly evolving computational tools and
approaches with many alternatives to reconstruct, characterize, and finalize MAGs. We must continue to
champion studies such as the one by Espinoza et al. for their contribution to our collective effort to shed
light on the darker branches of the ever-growing Tree of Life. At the same time, editors and reviewers of
genome-resolved metagenomics studies should properly scrutinize the quality and accuracy of MAGs prior
to their publication. A systematic failure at this will reduce the quality of public genome repositories while
yielding adverse effects such as misleading insights into novel microbial groups and reduced trust among

scientists in findings that emerge from genome-resolved metagenomics.

4.2 Standard Quality Measures For Metagenome Assembled Genomes Can Fail To Properly Predict the

Quality of MAGs

Work described in preprint at bioRxiv (Chen et al. 2019c)

Recent studies employing single-assembly strategies and automatic binning are generating hundreds of
thousands of metagenome-assembled genomes (MAGs), while heavily relying on metrics of MAG quality
that are primarily based on occurrence of single copy core genes (SCGs), without the manual verification
of MAG quality. (Almeida et al. 2019; Nayfach et al. 2019; Pasolli et al. 2019). While such studies expose
previously unknown branches of the Tree of Life (Leviatan and Segal 2019), occurrence of SCGs might not

be sufficient to support claims of MAG quality, and low quality MAGs could yield false conclusions (Shaiber
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and Eren 2019). Pasolli et al. suggest that the MAGs they have reconstructed using this approach were
comparable in quality to genomes of isolates or MAGs that are refined through manual processes (Pasolli
et al. 2019). To highlight the potential pitfalls of automatic binning with no manual refinement, and in
particular, the shortcomings of heavily relying on occurrence of SCGs to infer MAG quality, we examined
one of the MAGs published by Pasolli et al. (Pasolli et al. 2019) (hereafter referred to as Pasolli MAG), that
resolves to the candidate phylum TM7, a member of a poorly understood branch of the Tree of Life (Brown

et al. 2015), that contains commonly found members of the oral microbiome (B. Bor et al. 2019).

Our recent publication with Chen and colleagues (Chen et al. 2019c) includes a description of the
application of the anvi'o workflows to recruit reads from 481 Human Microbiome Project (HMP) oral
samples, including the HMP sample that was originally used by Pasolli et al. to assemble and bin Pasolli
MAG. Following read recruitment, we utilized the anvi’o interactive interface to identify contigs in Pasolli
MAG that are contamination, originating from non-TM7 genomes, based on coverage patterns of contigs in
Pasolli MAG. Using sequence search against the National Center for Biotechnology Information (NCBI)
genomic databases, we further showed that the contaminating contigs primarily originated from Veillonella,
and that these contaminating contigs were transparent to the quality measures applied by Pasolli et al. due
to lack of SCGs. This work demonstrates that lack of SCGs does not imply lack of contamination in a MAG,

and that heavily relying on SCGs to estimate MAG quality could lead to erroneous insight.

4.3 Binning Contigs Into Metagenome Assembled Genomes Can greatly improve data interpretation

Work described in preprint at bioRxiv (Chen et al. 2019c)

Analysis of shotgun metagenomes could take many forms, and common applications include assembly of
short reads into contigs followed by either an analysis of these contigs as independent units, or binning of
contigs into metagenome-assembled genomes (MAGs) (Quince et al. 2017). While analysis of contigs
without binning could be appealing as an approach to circumvent challenges presented by the process of
binning MAGs (Quince et al. 2017), claims made based on analysis of contigs that are not binned according

to genomic affiliations may lead to erroneous conclusions.
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In addition to the example mentioned in section 4.2, in Chen et al. 2019 (Chen et al. 2019c) we discuss a
case study in which we demonstrate the contrast between a contigs-centric analysis (i.e. without binning)
and genome-resolved analysis (i.e. with binning of contigs into MAGs) by reanalyzing the data of Kowarsky
et al. (Kowarsky et al. 2017). In order to explore microbial diversity in blood samples, Kowarsky et al.
(Kowarsky et al. 2017) performed shotgun sequencing of circulating cell-free DNA from more than 1000
samples. Kowarsky et al. identify a total of 3,761 novel contigs that do not match any known bacteria or
virus in public databases with sequence homology, and by assigning taxonomy independently to each of
these contigs, they conclude that these represent at least 1000 novel taxa of the human microbiome that
represent both bacteria and viruses. Using a genome-resolved approach, we showed that a single
Parcubateria genome is the only dominant bacterial source for novel contigs, contrasting with Kowarsky et
al.’s finding (Chen et al. 2019c). In our re-analysis of the Kowarsky et al. samples we utilized the anvi'o
workflows to streamline read recruitment of the Kowarsky et al. cell free DNA metagenomes to the novel
contigs as well as non-novel contigs published in the original Kowarsky et al. study. The read recruitment
analysis allowed us to utilize coverage patterns, along with sequence composition when clustering contigs
in order to identify genomic bins confidently (Quince et al. 2017). Due to the low coverage of contigs in
these metagenomes, we used differential detection, rather than the more common differential coverage of
contigs in order to cluster contigs (see the reproducible workflow at

http://merenlab.org/data/parcubacterium-in-hbcfdna/ for full details).

In summary, our reanalysis of the Kowarsky et al. samples, contrasts with their suggestion of more than
1,000 novel species found in blood samples, and instead suggests that a single Parcubacteria population

is the only dominant source for novel bacterial contigs in these blood samples.

4.4 A genome resolved metagenomics strategy to explore the intra-species diversity and mobilome of

Wolbachia

Work published in Nature Communications (Reveillaud et al. 2019)
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Wolbachia are intracellular bacteria that are common parasites of nematodes and arthropods, including
mosquitoes that are vectors that transmit diseases such as dengue, West Nile, and Zika viruses (Taylor,
Bordenstein, and Slatko 2018; LePage and Bordenstein 2013; Stouthamer, Breeuwer, and Hurst 1999).
New promising vector control strategies have been developed using Wolbachia due to their natural ability,
through the temperate bacteriophage WO, to modify their mosquito host reproductive behavior (Bourtzis et
al. 2014; Mains et al. 2016; O’Neill et al. 2018). But a lack of isolates provides challenges in studying the
Wolbachia genome, and most prior metagenomic studies of Wolbachia relied on pooled samples of
laboratory grown insects due to the low infection rate (Klasson et al. 2008; Iturbe-Ormaetxe et al. 2011).
Studying pooled samples from multiple individuals can obscure variability across populations of Wolbachia.
In Reveillaud et al. (Reveillaud et al. 2019) we used samples from ovaries of individual wild mosquitoes
captured in France to overcome previous limitations, and along with discovering viral genes missing in
previously published Wolbachia genomes, we identified a putative plasmid (pWCP). Al preprocessing steps
required for the genomic binning of Wolbachia MAGs, including assembly and read recruitment were
executed using the anvi'o workflows. We further utilized the anvi'o workflows to assess the occurrence of
pWCP across published metagenomes, and showed that it was widespread and found in samples from

Turkey, Algeria and Tunisia.

The discovery of a Wolbachia plasmid provides exciting avenues for future genome-editing strategies of
Wolbachia, which has been recalcitrant to genetic modification to this date. Successful genomic

manipulation of Wolbachia could enhance the ability to utilize Wolbachia for vector control.

4.5 Discussion

The anvi'o interactive interface allows the visualization of complex ‘omics data needed for exploratory and
effective data mining. By solving a major bottleneck in preprocessing steps required prior to visualization,
the anvi'o workflows empower microbiologists by promoting microbial ‘omics analyses at scale, and make
it so that, pending on accessibility to appropriate computing infrastructure (Kyrpides, Eloe-Fadrosh, and
Ivanova 2016), human involvement required for analyzing thousands of samples is as minimal as that

required for analyzing a few samples. Utilization of the same data in multiple studies is crucial not only in
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order to verify findings, but also since the complex nature of sequencing data guarantees that a single study
will not be sufficient to extract the entire value out of the data (Kyrpides, Eloe-Fadrosh, and lvanova 2016).
Promoting reproducibility and reuse of data in microbiology will accelerate discovery even further in this
fast evolving field. Indeed, our reanalysis of Espinoza et al., Pasolli et al., and Kowarsky et al. datasets was
only possible due to the minimal effort required to process their data, along with the immediate insight

provided by exploring these data in the anvi'o interactive interface.

But these advantages are not exclusive to reanalysis projects, by utilizing the anvi’o workflows in studying
insect ovary metagenomes our time and effort remained invested in novel exploration of the newly
generated data, rather than on the execution of the initial steps of analysis which are largely repetitive and
standard. Automated processing of samples at scale also lowers the bar for additional exploratory work.
For example, the assessment of the occurrence of TM7 populations in multiple datasets, including HMP
oral samples, and samples from patients with periodontitis, which is discussed in Chapter 1, was made

easy due to utilization of the anvi’'o workflows.

Our work demonstrates that utilization of the anvi'o workflows streamlines the path from raw sequences to
interactive visualization that allows high resolution exploratory investigations of ‘omics data, and thus

promoting reproducibility, and the democratization of data analysis in modern, data-rich microbiology.
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CHAPTER 5 CONCLUSIONS

Microbes are abundant, and are abundantly involved in processes of ecological importance (Cavicchioli et
al. 2019), and of medical and biotechnological importance (Quince et al. 2017). Advances in sequence
technology have significantly enhanced our understanding of microbial ecology and evolution (Quince et
al. 2017), and have transformed microbiology into a data-rich science (Kyrpides, Eloe-Fadrosh, and lvanova
2016). But this transformation provides new challenges to microbiologists, and solutions that allow high
resolution exploratory investigations of ‘omics data at scale, along with computational training for
microbiologists are lacking. The work presented here summarizes my efforts throughout my graduate
studies to address these challenges. While focusing on specific questions in microbial ecology, | made
efforts to streamline the analysis of microbial ‘omics data and solve bottlenecks by striving to develop
computational tools that are well-designed, and provide adequate documentation and tutorials to allow for

1) extensibility 2) the accessibility of these tools to people with minimal computational training.

Through my investigations of the oral microbiome, | have expanded our genomic insight into understudied
members of the oral cavity. My work revealed plaque-associated TM7 to be much more similar to
environmental TM7, rather than to tongue and gut-associated TM7. These findings suggest that at least for
TM7 the plaque environment is similar to non-host environments. Applying the approaches presented here
to study other taxa could reveal whether plaque resembles non-host environments for other members of
the oral microbiome, and could shed light on the adaptation process of environmentally-derived microbes

to the host environment.
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