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ABSTRACT 

Microbes are the most common form of life on Earth and play a crucial role in biogeochemical processes 

that sustain all forms of life. Similar to every other habitat on Earth, microbes occupy almost every part of 

the human body and play an important role in health and disease. Our understanding of the ecology and 

evolution of microbes has been significantly changed due to the recent revolution in DNA sequencing 

technology and the rise of ‘omics data, which has transformed microbiology to a data-rich science. But new 

challenges are arising as computational tools and training that enable effective utilization of ‘omics data are 

lacking. Here I present my efforts to solve bottlenecks in the analysis of microbial ‘omics, and to empower 

microbiologists engaged in ‘omics data science. 

My work in developing computational tools has been driven by specific questions in microbial ecology. By 

utilizing high resolution ‘omics analysis approaches, I illuminated the evolutionary journey of cryptic 

microbial residents of the human oral cavity, with a focus on members of the candidate division TM7. My 

analysis revealed that TM7s split into groups of tongue specialists and dental plaque specialists, indicating 

that oral TM7s are “picky” regarding their desired habitat within the mouth. While plaque specialists 

associated with TM7 from environmental samples from an evolutionary and functional perspectives, tongue 

specialists associated with TM7 from animal gut. These findings indicate an ecological resemblance 

between the plaque environment and non-host environments such as soil and sediment from a microbial 

point of view, suggesting that the plaque environment may have served as a stepping stone for 

environmental microbes to adapt to host environments for some clades of human associated microbes. 

Additionally, I revealed that prophages are widespread amongst oral-associated TM7, while absent from 

environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host 

environment, perhaps by facilitating horizontal gene transfer. An in-depth description of my findings from 

the oral cavity is followed by a discussion of novel tools along with examples of their applications, and a 

discussion of good practices for scalable, high resolution exploration of 'omics data.
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CHAPTER 1 INTRODUCTION 

1.1 Diversity, abundance, and importance of microbial life 

They are hard to notice and easy to ignore as we go about our daily lives, and yet microbes are everywhere, 

and are not only the most common form of life on Earth (Whitman, Coleman, and Wiebe 1998), but also 

perform biogeochemical processes essential in recycling molecules and making them available to sustain 

all forms of life on Earth (Falkowski, Fenchel, and Delong 2008; Planavsky et al. 2014). Microbes are 

profoundly abundant and occupy every niche on Earth, from soil (Torsvik, Øvreås, and Thingstad 2002; 

Delmont et al. 2015) to oceans (Béjà et al. 2002; Delmont et al. 2018), and as far as we can tell, also within 

and on top of every plant (Hardoim et al. 2015; Vorholt 2012; Reinhold-Hurek et al. 2015) and animal 

(Amato et al. 2019; Reveillaud et al. 2019; Dudek et al. 2017; Dewhirst et al. 2012; Bahrndorff et al. 2016).  

1.2 The human oral microbiome 

Similar to every habitat on Earth, we are also colonized by microbes, that form the human microbiome, and 

that are abundantly found across our body (Turnbaugh et al. 2007); and each person is estimated to contain 

as many microbial cells as human cells (Sender, Fuchs, and Milo 2016). Microbial community structure and 

its variations have been associated with health and disease (Martinez-Guryn, Leone, and Chang 2019), 

hence our understanding of the composition and distribution of microbes across body sites is highly 

important from a medical perspective. The oral cavity is amongst the richest reservoirs of microbes in the 

human body, and is approximated to harbor more than 600 microbial species (Dewhirst et al. 2010) that 

are found in high densities (Sender, Fuchs, and Milo 2016) across anatomically diverse sites within the 

mouth (Welch, Dewhirst, and Borisy 2019), and play an important role both in oral and non-oral diseases 

(Wade 2013). 
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1.3 Opportunities and challenges in sequencing-enabled study of microbial life 

The recent revolution in the field of microbiome has been largely driven by the emergence of new DNA 

sequencing technologies that allow access to large-scale genomic information. Studies utilizing the 

accessibility of sequencing data are producing deep insights into naturally occurring microbial populations, 

and are changing our understanding of the Tree of Life (Brown et al. 2015; Spang et al. 2015), transform 

our view of microbes performing key biogeochemical processes (Koch, van Kessel, and Lücker 2019; 

Delmont et al. 2018), leading to discovery of novel biosynthetic pathways (Libis et al. 2019) and novel 

antibiotics (Hover et al. 2018), and much more (Quince et al. 2017). 

As microbiology is transforming into a data-rich science, microbiologists are faced with new challenges 

(Kyrpides, Eloe-Fadrosh, and Ivanova 2016). The complexity of the data requires novel algorithmic 

solutions, and a myriad of computational tools developed by the scientific community strive to address this 

need (List of Bioinformatics Software - omicX), but there are no established standards to guide researchers 

toward the appropriate tools for their specific needs (Quince et al. 2017). On the other hand, heavy reliance 

on standard workflows with rigid analysis steps, limits the creative exploration of researchers and prevents 

the utilization of the full potential of data. Moreover, as the field evolves, the requirement to integrate multiple 

sources of information, such as genomics, transcriptomics, proteomics and other ‘omics data in a multi-

’omics approach increases, but tools that allow such integration are lacking (Kyrpides, Eloe-Fadrosh, and 

Ivanova 2016). Proper training that would enable microbiologists to take advantage of the surge in ‘omics 

data, and the infrastructure to support efficient use of data are lacking as well (Kyrpides, Eloe-Fadrosh, and 

Ivanova 2016). Efforts are being made by the scientific community to put forth standards of analysis 

(Bowers et al. 2017), but awareness of these guidelines amongst researchers and reviewers of studies that 

heavily rely on ‘omics approaches is still lacking (Shaiber and Eren 2019). Improper analysis due to the 

complexity of the data could yield false conclusions (Koutsovoulos et al. 2016), and errors propagate as 

erroneous data are deposited to public databases (Shaiber and Eren 2019; Chen et al. 2019c). Sequencing 

technologies continue to evolve at a rapid pace with long read (van der Helm et al. 2017; Bertrand et al. 

2019), droplet microfluidics (Zilionis et al. 2017), and Hi-C technologies (Belton et al. 2012), to name a few, 

suggesting that these challenges are likely to persist. 
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1.4 Anvi’o - an integrated analysis and visualization platform for ‘omics data 

Throughout my graduate studies I addressed these challenges primarily by taking a leading role in the 

development of anvi’o. Anvi’o is open source software with more than 65,000 lines of code for the analysis 

and visualization of ‘omics data (Eren et al. 2015). The latest version of anvi’o (v6 ‘’esther”) includes 125 

programs that each perform a unique task, and an object-oriented design, allows for these programs to be 

extended, as well as combined together. To execute this modularity, anvi’o relies on a collection of 

databases that are created, modified, merged, split, and queried through the various atomic programs 

(Figure 1). The anvi’o databases allow researchers to combine information from various ‘omics data-types, 

including genomes, metagenomes, and meta-transcriptomes, and apply a variety of ‘omics analysis 

approaches, including various metagenomic, pagenomic, meta-pan-genomic, and phylogenomic 

approaches (Yeoman et al. 2019; Eren et al. 2015; Delmont et al. 2019, 2018; Reveillaud et al. 2019; 

Delmont and Eren 2018). Along with the flexibility in the design of each analysis, offered by this design, the 

anvi’o databases generated per project can be shared as stand-alone files in addition to standard summary 

tables and plots. Sharing an anvi’o database allows other scientists to easily reproduce results, and 

moreover, to explore novel questions by utilizing the anvi’o interactive interface. 
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Figure 1: The anvi’o programs, databases and concepts form an interconnected network. This screenshot 
taken from http://merenlab.org/software/anvio/network/ presents how atomic anvi’o programs interact with 
anvi’o databases and relate to concepts in microbial ‘omics. On the top right is the anvi’o symbol for anvi’o 
v6 ‘esther’ (https://github.com/merenlab/anvio/releases/tag/v6). 

The interactive interface is perhaps what distinguishes anvi’o more than anything when comparing to other 

‘omics analysis tools. The complexity of ‘omics data often means that relying on summary statistics or on a 

single type of visualization is not sufficient. But most workflows available for the analysis of ‘omics data 

produce static figures and summary tables, and each researcher is required to “dig” into the data within 

these tables. Due to the magnitude and complexity of these datasets, independent exploration requires 

high proficiency in computational approaches of data science, which is not necessarily an expertise held 

by every microbiologist. Anvi’o circumvents this predicament by allowing users to manually explore their 

data using an interactive interface that allows switching between a variety of visualization strategies 

seamlessly. 

Although, the flexibility and breadth of the analyses offered by anvi’o provide a steep learning curve for a 

novice user. To help microbiologists take advantage of the variety of offered functionalities, anvi’o tutorials 
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include more than 115,000 words in total, of which I personally contributed more than 10,000 words spread 

across four tutorials (http://merenlab.org/2018/07/09/anvio-snakemake-workflows/; 

http://merenlab.org/2016/11/08/pangenomics-v2/; http://merenlab.org/2019/03/14/ncbi-genome-download-

magic/; http://merenlab.org/2019/10/17/export-locus/). In addition, I have composed and taught a workshop 

to graduate students interested in learning approaches to the analysis of microbial ‘omics data using anvi’o 

(for which material is provided at http://merenlab.org/2018/09/09/microbial-omics-workshop/) and I am 

actively engaged with the community of anvi’o users through github (https://github.com/merenlab/anvio), 

Slack (https://anvio.slack.com/), and Google Group (anvio@googlegroups.com). 

In summary, anvi’o offers flexible and interactive analysis of ‘omics data that empowers microbiologists to 

take an active role in data analysis and utilize the depth of knowledge offered by complex ‘omics data. By 

contributing to the development of anvi’o and providing training to members of the scientific community I 

strived to empower scientists engaged in data-rich microbiology. 

1.5 The anvi’o workflows - increasing the accessibility of large-scale and reproducible analyses using anvi’o 

The flexibility offered by the atomic programs included in anvi’o comes with a price. Typical analysis steps 

become very numerous and grow in proportion to the number of samples/genomes that are being analyzed. 

Identifying this bottleneck, I implemented the anvi’o workflows, a collection of commonly-used analysis 

strategies for microbial ‘omics. The anvi’o workflows rely on the Snakemake workflow management system 

(Köster and Rahmann 2012), which offers easy deployment to any computing system, automatic 

parallelization of independent analysis steps, and the ability to seamlessly resume interrupted workflows 

without repeating steps that were previously completed. Extensive documentation, helpful error messages, 

draft configuration files that can be edited by users to suit their analysis needs, and the reliance on 

Snakemake allow users with minimal knowledge of command line tools to perform analyses at scale. The 

anvi’o workflows are similar to other existing tools in many ways (Dean et al. 2018; Clarke et al. 2019; 

Uritskiy, DiRuggiero, and Taylor 2018; Kieser et al. 2019), but instead of offering static figures and tables, 

anvi’o workflows produce the aforementioned anvi’o databases and hence allow scientists to reach the 

initial steps of interactive exploration of ‘omics data in a streamlined manner. 
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1.6 High resolution microbial ‘omics at scale to study questions in microbial ecology 

My efforts in developing computational tools were strongly driven by my focus on specific questions in 

microbial ecology. The following chapters expand on applications of these tools to study specific 

ecosystems, as well as include an in-depth description of the anvi’o workflows. Chapter 2 describes the 

application of high resolution microbial ‘omics to investigate the ecology, evolution, and mobilome of poorly 

understood, yet prevalent members of the oral microbiome. In particular  in this study we reveal dental-

plaque specialists and tongue specialists amongst oral-associated TM7, and show that while plaque 

specialists are functionally and phylogenetically associated with environmental TM7, tongue-specialists are 

associated with other host-associated TM7 from animal gut, suggesting that at least for TM7, plaque 

resembles non-host environments. Chapter 3 expands on the functionality and design of anvi’o workflows. 

Chapter 4 includes descriptions of applications of anvi’o workflows in a variety of contexts, including the 

reanalysis of previously published data to highlight limitations and offer solutions for metagenomics 

analyses, as well as the analysis of newly generated data that led to the identification of a Wolbachia 

plasmid that could provide exciting possibilities for genomic engineering with potential application in the 

population control of mosquitoes that carry and transmit dengue, West Nile, and Zika viruses. 

Overall, this work provides insights into the genomes, ecology, evolution and mobilome of cryptic microbes 

in the context of multiple ecosystems, including the human oral cavity, human blood samples, and insect 

ovaries, and includes a discussion of novel tools and good practices for high resolution exploration of large 

scale 'omics data. 
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2.1 Abstract  

Microbial residents of the human oral cavity have long been a major focus of microbiology due to their 

influence on host health and their intriguing patterns of site specificity amidst the lack of dispersal limitation. 

Yet, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among 

the taxa that belong to recently discovered branches of microbial life. Here we used daily tongue and dental 

plaque metagenomes from multiple individuals and reconstructed 790 non-redundant genomes, 43 of which 

resolved to TM7 that formed six monophyletic clades distinctly associated either with plaque or with tongue. 

Both pangenomic and phylogenomic analyses grouped tongue-specific TM7 clades with other host-

associated TM7 genomes. In contrast, plaque-specific TM7 grouped together with environmental TM7 

genomes. Besides offering deeper insights into the ecology, evolution, and the mobilome of cryptic 

members of the oral microbiome, our study reveals an intriguing resemblance between dental plaque and 

non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a 

stepping stone for environmental microbes to adapt to host environments for some clades of human 

associated microbes. Additionally, we identify that prophages are widespread amongst oral-associated 

TM7, while absent from environmental TM7, suggesting that prophages may play a role in adaptation of 

TM7 to the host environment. 

2.2 Introduction 

Since the inception of microbiology as a new discipline following Antoni van Leeuwenhoek’s historical 

observation of the animalcules (Lane, 2015), the human mouth has remained a major focus among 

microbiologists. The oral cavity is a rich environment with multiple distinct niches in a relatively small space 

partially due to (1) its diverse anatomy with hard and soft tissue structures (German and Palmer, 2006), (2) 

the differential influence of the host immunity throughout the oral tissue types (Moutsopoulos and Konkel, 

2018), (3) its constant exposure to exogenous factors. Microbial residents of the oral cavity complement 

their environment with their own sophisticated lifestyles. Oral microbes form complex communities that 

show remarkable patterns of horizontal and vertical transmission across humans and animals (Ferretti et 

al., 2018; Song et al., 2013), temporal dynamism (Caporaso et al., 2011; Hall et al., 2017; Mark Welch et 
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al., 2014), spatial organization (Mark Welch et al., 2016), and site-specificity (Dewhirst et al., 2010; Eren et 

al., 2014; Mark Welch et al., 2019), where they influence the host health (Lamont et al., 2018) and the 

ecology of the gastrointestinal tract (Schmidt et al., 2019). Altogether, the oral cavity offers a powerful 

environment to study ecology and evolution of microbial systems. 

One of the fundamental pursuits of microbiology is to understand the determinants of microbial colonization 

and niche partitioning that govern the distribution of microbes in their natural habitats. Despite the low 

dispersal limitation in the human oral cavity that ensures everything to be everywhere, extensive site-

specificity among oral microbes has been observed since the earliest studies that used microscopy and 

cultivation (Socransky and Manganiello, 1971), DNA-DNA hybridization (Mager et al., 2003) and cloning 

(Aas et al., 2005) strategies. Factors influencing microbial site-specificity include (1) the nature of the 

underlying substrate (permanent teeth vs. mucosal surfaces), (2) keratinization and other features of the 

surface topography, (3) proximity to sources of saliva, gingival crevicular fluid, and oxygen, (4) and ability 

of microbes to adhere both to the substrate and to one another (Gibbons and Houte, 1975; Simón-Soro et 

al., 2013; Socransky and Manganiello, 1971), overall creating a fascinating ecological environment to study 

microbial colonization. 

Our understanding of the ecology of oral microbes leapfrogged thanks to the Human Microbiome Project 

(HMP) (Human Microbiome Project Consortium, 2012), which generated extensive sequencing data from 

more than 200 healthy individuals and 9 oral sites. Studies focused on the HMP data confirmed major 

taxonomic differences between microbial communities associated with dental plaque and mucosal sites in 

the mouth (Lloyd-Price et al., 2017; Segata et al., 2012). Recruiting metagenomic short reads using single-

copy core genes, Donati et al. demonstrated that while some members of the genus Neisseria were 

predominantly found in tongue dorsum samples, others were predominant in plaque samples (Donati et al., 

2016), and Eren et al. revealed that even populations of the same species that differed by as little as one 

nucleotide in 16S rRNA gene amplicons could show extensive site specificity (Eren et al., 2014). Strong 

associations between oral sites and their microbial residents even at the finest levels of resolution raise 

questions regarding the drivers of such exclusiveness (Mark Welch et al., 2019). However, identifying 

genetic or functional determinants of site-specificity require insights into microbial pangenomes. 
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The human oral cavity is one of the most well characterized microbial habitats of the human body. The 

Human Oral Microbiome Database (HOMD) (Chen et al., 2010) describes more than 750 oral phylotypes 

based on full-length 16S rRNA gene sequences, 70% of which have cultured representatives, enabling 

genome-resolved analyses that cover a considerable fraction of oral metagenomes (Nayfach et al., 2016). 

Yet, one-third of the known oral taxa are missing or poorly represented in culture collections and genomic 

databases, and include some that are common in the oral cavity (Vartoukian et al., 2016), including 

members of the Candidate Phyla Radiation (CPR) (Brown et al., 2015), such as Saccharibacteria (TM7), 

Absconditabacteria (SR1), and Gracilibacteria (GN02). CPR bacteria form distinct branches in the Tree of 

Life both based on their phylogenetic origins (Hug et al., 2016) and functional makeup (Méheust et al., 

2019); they lack many biological pathways that are considered essential (Brown et al., 2015) and have 

been shown to rely on epibiotic lifestyles (Bor et al., 2019), with a complex and poorly understood 

relationship with a microbial host (Bor et al., 2018). Their unique lifestyle (He et al., 2015), diversity and 

prevalence in the oral cavity (Camanocha and Dewhirst, 2014), association with distinct oral sites (Bor et 

al., 2019), and potential role in disease (Abusleme et al., 2013; Brinig et al., 2003) make them important 

clades to characterize for a fuller understanding of the ecology of the oral cavity. 

Successful efforts targeting these enigmatic members of the oral microbiome produced the first genomic 

evidence to better understand their functional potential and ecology. The first genomes for oral TM7 

emerged from single-amplified genomics studies (Marcy et al., 2007) and were followed by He et al.'s 

pioneering work that brought the first TM7 population into culture (He et al., 2015), establishing a deeper 

understanding of its relationship with an Actinomyces host. Additional recent cultivation efforts are proving 

successful in providing access to a wider variety of oral TM7 (Collins et al., 2019; Cross et al., 2019; 

Murugkar et al., 2019). Recent genome-resolved and single-amplified genomics studies have also 

produced genomes for oral GN02 and SR1 (Campbell et al., 2013; Espinoza et al., 2018), and recently the 

first targeted isolation of oral SR1 strains has been reported, but genomes were not produced (Cross et al., 

2019). Despite the promise of these studies, our understanding of the ecology and evolution of these 

fastidious oral clades is incomplete. 
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Here we investigated phylogenetic and functional markers of niche partitioning of enigmatic members of 

the oral cavity, with a focus on members of the candidate phylum TM7. We used a metagenomic assembly 

and binning approach to recover metagenome-assembled genomes (MAGs) from the supragingival plaque 

and tongue dorsum of healthy individuals. Our genomes represented prevalent and abundant lineages that 

lack genomic representation in the HOMD and National Center for Biotechnology Information (NCBI) 

genomic databases, including members of the CPR. Using a multi-omics approach we show that oral TM7 

species are split into plaque and tongue specialists, and that plaque TM7 phylogenetically and functionally 

associate with environmental TM7, while tongue TM7 associate with TM7 from animal guts. To assess the 

generality of our results we carried out read recruitment from approximately 200 tongue and 200 plaque 

Human Microbiome Project (HMP) samples; results confirm that the genomes we identified are prevalent, 

abundant, and site-specific. In order to associate MAGs with 16S rRNA sequences and hence associate 

MAGs with phylotypes previously identified based on 16S rRNA, we used long-read sequencing (nanopore 

sequencing). Our findings suggest that at least for TM7, dental plaque resembles non-host habitats, while 

tongue- and gut-associated TM7s are more strongly shaped by the host. In addition, our results shed light 

on other understudied members of the oral cavity, and allow for better genomic insight into prevalent, yet 

poorly understood members of the oral microbiome. 

2.3 Results and Discussion 

To create a genomic collection of oral microbes, we sampled supragingival plaque and tongue dorsum of 

seven individuals on four to six consecutive days. Shotgun metagenomic sequencing of the resulting 71 

samples yielded 1.7 billion high-quality short-reads (Supplementary table 1a at 

doi:10.6084/m9.figshare.11634321). We independently co-assembled plaque and tongue samples from 

each individual to improve our ability to detect rare organisms and to minimize errors associated with single-

assemblies (Chen et al. 2019c). The resulting 14 co-assemblies (7 people x 2 sites) contained 267,456 

contigs longer than 2,500 nts that described approximately 1,163 million nucleotides and 1,554,807 genes 

(Supplementary table 1b at doi:10.6084/m9.figshare.11634321). To reconstruct genomes from these 

metagenomes we used a combination of automatic and manual binning strategies that resulted in 2,463 

genome bins. Independent assembly and binning of metagenomes from similar habitats can result in the 
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recovery of multiple near-identical genomes (Raveh-Sadka et al. 2015; Delmont et al. 2018). To increase 

the accuracy of downstream analyses we employed only the 857 of 2,463 bins that were 0.5 Mbp or larger 

(Supplementary table 2g at doi:10.6084/m9.figshare.11634321), then removed redundancy by selecting a 

single representative for each set of genomes that shared an ANI > 99.8% (see Methods). This resulted in 

a final collection of 790 non-redundant genomes (Supplementary tables 2a-b, 3a-e at 

doi:10.6084/m9.figshare.11634321). 

Automatic binning approaches can yield composite genomes that suffer from contamination, influencing 

downstream ecological and evolutionary insights (Shaiber and Eren 2019), even when single-copy core 

genes suggest the absence of an apparent contamination (Chen et al. 2019c). To minimize potential errors, 

we used anvi’o to manually inspect, and when necessary, further refine key genomes in our study by (1) 

visualizing the change in GC-content and gene taxonomy of each contig, (2) performing ad hoc searches 

of sequences in public databases, and (3) ensuring the agreement across all contigs with respect to 

sequence composition signal and differential coverage, the coverage of contigs by reads recruited from our 

metagenomes as well as metagenomes from other studies. In order to improve accuracy of genome 

assembly via analysis of differential coverage (Quince et al. 2017), we sampled each subject on at least 4 

separate days. Our reproducible workflow includes each genome bin for interactive inspection (see 

Methods). 

After removal of human host DNA-contamination, which accounted for 5%-45% of the reads per sample, 

competitive read recruitment revealed that the final list of genomes recruited 47% of the reads from our 

metagenomes, with a range of 10%-74% per sample. Confidently assessing the origins of the remaining 

short reads is difficult as many factors can explain unaccounted short reads including but not limited to the 

missing genomic context due to (1) host eukaryotic contamination, (2) poor assembly of strain mixtures, (3) 

incomplete metagenome-assembled genomes, and (4) mobile genetic elements such as viruses and 

plasmids that are often difficult to bin. A major driver of the variability we observed in the percentage of 

reads recruited by our MAGs across samples was the assembly quality, as we found a significant correlation 

(R2: 0.67, p-value: 2e-18) between the percent of reads recruited by the assembled contigs and MAGs for 

each metagenome (Supplementary table 1a at doi:10.6084/m9.figshare.11634321, Figure 8). The 



 13 

collection of 790 genomes recruited a significantly larger fraction of the reads in plaque metagenomes 

(51.6%) than in tongue metagenomes (38.3%) (z-score: 3.73, p-value: 0.0002), which may be partially due 

to the fact that a larger number of our genomes were derived from plaque samples (463 vs 327) 

(Supplementary table 2b at doi:10.6084/m9.figshare.11634321). Overall, despite variation between 

samples, our analysis shows that MAGs encompassed most of the microbial genomic content estimated to 

be included in each assembly, and represent a large (near 50%) portion of the reads after removal of human 

DNA. 

2.3.1 Metagenome-assembled genomes reveal new lineages including members of the Candidate Phyla 

Radiation 

In order to assess how taxons represented by our MAGs are distributed relative to known oral taxons, we 

performed a phylogenomic analysis using our genomes as well as the 1,332 genomes from the HOMD 

(accessed on August 1st 2018) (Supplementary table 6b at doi:10.6084/m9.figshare.11634321). Our strict 

criteria of inclusion of genomes with at least 18 of the 37 ribosomal proteins that we used for phylogenomics 

removed 539 genomes from the analysis, including 492 low completion (<70%) MAGs, 23 high completion 

(>=70%) MAGs, and 24 genomes from the HOMD. The 275 MAGs that passed this quality-control threshold 

covered much of the diversity at the abundant genera of the samples we collected, as evident by a 

comparison to taxonomic composition estimates using 16S rRNA amplicon data and metagenomic short-

reads (Supplementary tables 2e-f, 4a-h, and 5a-j at doi:10.6084/m9.figshare.11634321, Supplementary 

Information file). 

Some lineages contained members exclusively from our collection and not in the HOMD (Figure 2), 

including 51 genomes that we identified as members of the CPR, which formed a distinct branch, as 

expected (Figure 2). Our MAGs also included novel genomes from non-CPR lineages not represented in 

the HOMD (Figure 2). While some of these deeply branching MAGs clearly represent novel genomes, it is 

conceivable that others could be due to MAG contamination in which ribosomal proteins from distant 

populations were mixed together. To guard against this possibility we carried out three rounds of manual 
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refinement that benchmarked our genomes against multiple genomic and metagenomic resources (see 

Methods). 

A large fraction of the CPR genomes in our collection belonged to the phylum Ca. Saccharibacteria (TM7; 

43). The rest were affiliated with the phyla Ca. Absconditabacteria (SR1; 5) and Ca. Gracilibacteria (GN02; 

3). 
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Figure 2: MAGs cover most of the abundant genera of the oral microbiome as well as represent lineages 
absent in public genomic databases. The dendrogram in the middle of the figure organizes 227 MAGs, 
1582 genomes from the HOMD, and a single archeon, which was used to root the tree, according to their 
phylogenomic organization based on our collection of ribosomal proteins. The bars in the innermost circular 
layer represent the length of each genome. The second layer shows the phylum affiliation of each genome. 
The third layer shows the 10 most abundant genera in our samples as estimated by KrakenUniq. The fourth 
layer shows the affiliation of genomes as either MAGs from our study (blue) or genomes from HOMD (grey). 
The outermost layer marks novel genomes of lineages that lack representation in HOMD and NCBI. The 
lowest taxonomic level that could be assigned using CheckM and sequence search (see Methods) is listed 
for each novel lineage. 
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2.3.2 TM7 phylogenomic clades correspond to site of recovery 

Our collection included 43 non-redundant TM7 MAGs (Supplementary table 2b at 

doi:10.6084/m9.figshare.11634321), presenting an opportunity to investigate associations between their 

lifestyles (i.e., cosmopolitan or site-specific) and their ancestral relationships. For this, we first examined 

the biogeography of TM7 populations by estimating their relative abundance in each of the 71 

metagenomes through metagenomic read recruitment (Figure 3a, Supplementary tables 7a-c at 

doi:10.6084/m9.figshare.11634321). We defined a given TM7 population as detected in one of the 71 

samples if at least 50% of the nucleotides of the genome were covered by at least one short read. We 

detected 42 of the 43 TM7 populations either only in plaque or only in tongue samples, but never in both 

(Figure 3a, Figure 9, Figure 10). The exception was T_C_M_Bin_00022, which we detected in 4/6 tongue 

samples and 6/6 plaque samples from participant C_M, but not in any other participant (Figure 2a). 

Interestingly, patterns of single nucleotide variations (SNVs) in samples of individual C_M suggest the 

existence of mixed sub-populations represented by T_C_M_Bin_00022 in tongue, while in plaque samples 

it appears monoclonal. To compare the variability of T_C_M_Bin_00022 we considered the 22,507 (of total 

476,713) nucleotide positions at which both plaque and tongue samples had coverage of at least 20x, and 

found no variability in plaque samples, while there were 449 nucleotide positions (2%) in tongue samples 

that included variability, and where the ratio between the two competing nucleotides was at least 0.1 

(median ratio 0.38), demonstrating intra-population diversity in tongue samples (Supplementary table 7t at 

doi:10.6084/m9.figshare.11634321). Other than this seemingly “cosmopolitan” population that was present 

in both tongue and plaque metagenomes, all TM7 genomes in our collection appeared to be specialists for 

plaque or tongue habitats. 



 17 

 

Figure 3: Detection of TM7 genomes across oral metagenomes and their phylogeny.(A) Most TM7 
populations are exclusively detected in either tongue or plaque samples in our dataset. For each of the 43 
MAGs (on the x-axis) the green and blue bars represent the portion of plaque and tongue samples, 
respectively, in which it is detected (detection > 0.5). (B) Phylogenetic organization of TM7 genomes reveals 
niche-associated oral clades. The phylogenetic tree at the top of the panel includes the 52 oral TM7 as well 
as 5 genomes of Firmicutes that root the tree. The layers below the tree describe (top to bottom): “Oral site” 
- the oral site to which each of our MAGs corresponded, where blue marks tongue dorsum, green marks 
supragingival plaque and a green-blue combination marks the “cosmopolitan” TM7; “Study” - the study 
associated with each genome: our MAGs (purple), Espinoza et al. 2019 (teal), Marcy et al. 2007 (blue), He 
et al. 2015 (red), and Cross et al. 2019 (orange). A red circle appears on the dendrogram and indicates the 
junction that separates the majority of plaque specialists from tongue specialists, and bootstrap values 
appear above branches that separate major clusters. † Refined versions of genomes, which we previously 
published (Shaiber and Eren 2019). ‡ Genomes from IMG that we refined in this study, but for which 
accession numbers for refined versions are available in Cross et al. 2019.  

We then sought to investigate whether the ancestral relationships among TM7 genomes could explain their 

intriguing site-specificity. For this, we combined our 43 MAGs with 9 human oral TM7 genomes from the 

literature. In addition to 3 single amplified genomes that we downloaded from the Integrated Microbial 

Genomes and Microbiomes database (IMG/M) (Chen et al. 2019a) and refined (see Methods) and a MAG 

from Marcy et al. (Marcy et al. 2007), we included 4 MAGs from Espinoza et al. (Espinoza et al. 2018) after 
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manually refining composite TM7 genomes (Shaiber and Eren 2019), and the first cultivated strain of TM7, 

TM7x (He et al. 2015) (Supplementary table 7d at doi:10.6084/m9.figshare.11634321). The phylogenomic 

analysis of these 52 genomes separated tongue and plaque-associated genomes into distinct branches, 

where we could identify a single node on the tree that separated 41 of the 42 plaque associated genomes, 

suggesting that the site-specificity of TM7 is an ancestral trait. Another observation emerging from this 

analysis was that TM7x, which was cultivated from a saliva sample, clustered together with plaque-

associated genomes, suggesting that its niche is most likely dental plaque rather than tongue (Figure 10). 

2.3.3 TM7s found in plaque and tongue share exclusive ancestry with environment- and host-associated 

TM7s 

Previous studies have shown that the human associated members of TM7 are polyphyletic, and cluster 

together with TM7 genomes of environmental origin (Camanocha and Dewhirst 2014; McLean et al. 2018). 

Taking advantage of the large number of genomes we have reconstructed, we revisited this observation by 

performing a phylogenomic analysis using all publicly available TM7 genomes in the NCBI’s GenBank 

database as of 1/16/2019 (Figure 4). We identified six monophyletic human oral clades that were associated 

either with tongue (T1, T2) or plaque (P1, P2, P3, P4) (Figure 4). Using a pair-wise comparison of the 

average nucleotide identity (ANI) of oral TM7 genomes, we further identified sub-clades corresponding to 

genus and species level groups within the six monophyletic clades, including 12 species of TM7 

represented each by at least 2 genomes in our collection (Figure 4, Supplementary tables 7f-h at 

doi:10.6084/m9.figshare.11634321, Supplementary Information). We then used a combination of long-read 

sequencing along with the phylogenetic analysis to compare our clades to the 6 previously described TM7 

oral groups (G1-G6) based on 16S rRNA gene amplicons (Camanocha and Dewhirst 2014). We determined 

that our monophyletic clades T1, T2, and P4 correspond to G3, G6, and G5, respectively (Supplementary 

table 7e,i at doi:10.6084/m9.figshare.11634321). In contrast, clades P1, P2, and P3 all correspond to group 

G1, showing that G1 is likely composed of at least 3 distinct monophyletic oral clades. We have not 

recovered any MAGs for TM7 groups G2 and G4, which have been previously shown to have low 

prevalence as compared to other TM7 groups (B. Bor et al. 2019). 
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While tongue clades T1 and T2 clustered with genomes recovered from animal gut and together formed a 

deep monophyletic branch of an exclusively host-associated superclade shaded blue in Figure 4, plaque 

clades were interspersed with genomes from environmental sources (Figure 4). The exceptions to this clear 

distinction between plaque and tongue clades were T_C_M_Bin_00022, a cosmopolitan oral population 

that clustered within the clade T2, and the plaque-associated P_C_M_MAG_00010 (the only member of 

the clade P4) which was placed as a far outlier to all other oral TM7 and clustered together with genomes 

from animal gut (baboon feces). Animal-gut-associated genomes that grouped within the host-associated 

superclade were recovered predominantly from sheep and cow rumen samples, but also included genomes 

from termite gut, mouse colon, and elephant feces, suggesting an ancient association for members of the 

host-associated superclade and their host habitats (Figure 4, Supplementary table 7e at 

doi:10.6084/m9.figshare.11634321). Similarly, the inclusion of genomes recovered from dolphin dental 

plaque together with human-plaque-associated TM7 suggests an ancient association for plaque-specialists 

with the dental plaque environment. The phylogenetic clustering of tongue-associated TM7 genomes with 

TM7 genomes from animal gut, to the exclusion of environmental TM7, suggests that tongue and gut share 

a higher degree of ancestral relationship compared to those that are associated with plaque and with 

environments outside of a host. We know from previous studies that even though microbial community 

structures and membership in the human oral cavity and gut microbiomes are different, the ‘community 

types’ observed at these habitats are predictive of each other (Ding and Schloss, 2014), suggesting a level 

of continuity for host influences at these distinct sites that shape microbial community succession. Ancestral 

similarity between tongue- and gut-associated TM7s compared to those associated with non-host 

environments suggests that the host factors that influence microbial community succession may also have 

played a key role in the differentiation of host-associated and non-host-associated branches of TM7. We 

also know from previous studies that overall microbial community profiles in dental plaque dramatically 

differs from mucosal sites in the mouth with little overlap in membership (Eren et al., 2014; Segata et al., 

2012). The strong ancestral associations between TM7 clades of plaque and non-host environments, as 

well as the depletion of plaque specialists from the host-associated superclade, suggest that from a 

microbial point of view, at least in the context of TM7, dental plaque resembles a non-host environment. 
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What led to the divergence of TM7 populations? Since TM7 have highly reduced genomes and have been 

found to be epibionts of other bacteria, primarily Actinobacteria (Bor et al., 2019; Kantor et al., 2013), one 

reasonable hypothesis is that the bacterial hosts of each TM7 clade are the drivers of the link between TM7 

ecology and evolution. Such an hypothesis would imply that the similarity between tongue TM7 and gut 

TM7 is driven by the colonization of the gut and tongue environments by closely related bacterial hosts that 

provide a niche for TM7. Furthermore, it would imply the exclusion of such suitable hosts from the plaque 

environment, and vice versa, it would imply that plaque-specialist TM7 are dependent on bacterial hosts 

that are absent from the tongue and gut environments. In this context, it is notable that human oral 

Actinomyces species show strong site-specificity and little overlap in membership of dental plaque vs. 

tongue dorsum inhabitants (Mark Welch et al. 2019) and that Actinobacteria are rare in the human gut 

(Segata et al., 2012). An alternative hypothesis is that the mechanisms by which TM7 adapt to distinct 

habitats and distinct bacterial hosts are shaped by independent evolutionary events. While the existence 

of suitable bacterial hosts is likely an important factor, under this hypothesis, TM7 may acquire “local” 

bacterial hosts as they adapt to new environments. Our data are not suitable to evaluate either of these 

hypotheses. Yet given the ancestral similarity between dental plaque TM7 and TM7 from soils and 

sediments, it is conceivable to hypothesize that the dental plaque environment was able to support 

environmental TM7, while tongue and gut environments forced a distinct evolutionary path as suggested 

by the nested monophyletic superclade that is exclusively associated with host habitats. This depiction of 

TM7 evolution raises another question about the nature of dental plaque as a host habitat: why is dental 

plaque not as different from soil and sediment as tongue or gut? It is possible that fixed hard substrate of 

dental plaque renders it more similar to soils and sediments than to the constantly shedding epithelial 

surfaces of tongue and gut habitats from a microbial point of view. Whether dental plaque may have served 

as a stepping stone for environmental microbes by offering them a relatively safe harbor on the human 

body for host adaptation for some clades of human associated microbes is an intriguing question that 

warrants further study. 

In summary, our data reveal the existence of at least 6 monophyletic oral TM7 clades with clear 

biogeography within the oral cavity, and a strong divide between the evolutionary history of host-associated 
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and non-host-associated TM7 genomes. Additionally, our analysis reveals 12 species of TM7 that are 

represented by multiple genomes in our collection and lays the groundwork for definition of taxonomic 

groups within this candidate phylum. The phylogenomic organization of genomes corresponds to their niche 

(tongue/plaque) in our dataset, suggesting a link between environmental distribution of these genomes and 

their evolutionary history in the context of ribosomal proteins. 

 

Figure 4: Phylogenetic analysis of human oral TM7 with all TM7 genomes on the NCBI’s GenBank shows 
association of plaque TM7 with environmental genomes, and tongue TM7 with TM7 from animal stool. The 
phylogenetic tree at the top of the figure was computed using ribosomal proteins and includes 5 Firmicutes 
as an outgroup. Regions of the tree that are associated with either plaque or tongue clades from Figure 3 
are marked with green or blue shaded backgrounds respectively. Bootstrap support values are shown next 
to branches separating major clusters of oral clades. Subclades are marked with rectangles below the 
branches they represent. The layers below the tree provide additional information for each genome. From 
top to bottom: Clade: the clade association is shown for each cluster of oral genomes. Oral Site: the oral 
site with which the genome is associated is shown for our MAGs in accordance with Figure 3. Source: the 
source of the genome, where red: human oral, brown: animal gut, cyan: dolphin oral, black: environmental 
samples. Reference: the genomes from this study in blue, and genomes from Parks et al. in grey (Parks et 
al. 2017). The majority of the rest of the genomes originate from various publications from the Banfield Lab 
at UC Berkeley. The insert at the top right of the figure shows boxplots for ANI results for genomes in each 
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Figure 4 (continued): subclades against all other genomes. Data points represent the ANI score for 
comparisons in which the alignment coverage was at least 25%. Within-subclade comparisons appear in 
green and between-subclades comparisons appear in red. 

In summary, our analysis reveals 12 species of Saccharibacteria that are represented by multiple genomes 

in our collection and lays the groundwork for definition of taxonomic groups within this candidate phylum. 

The phylogenomic organization of genomes corresponds to their niche (tongue/plaque) in our dataset, 

suggesting a link between environmental distribution of these genomes and their evolutionary history in the 

context of ribosomal proteins. But the samples we used to generate our 43 Saccharibacteria MAGs 

represent only 7 individuals. We next sought to identify whether these patterns were representative of the 

distribution of TM7 among a wider cohort of healthy individuals. 

2.3.4 Prevalence of TM7 across individuals is associated with TM7 clades, linking TM7 ecology and 

evolution 

To assess the occurrence of these oral TM7 populations in a larger cohort of healthy individuals, we used 

a metagenomic short-read recruitment strategy to characterize the distribution of 52 oral TM7 genomes 

within 413 HMP oral metagenomes (with 30,005,746,488 pairs of reads) that included 196 samples from 

supragingival plaque and 217 tongue dorsum samples and were sampled from 131 individuals 

(Supplementary tables 7j-k at doi:10.6084/m9.figshare.11634321). We conservatively defined a genome to 

be present in a metagenome only if at least 50% of it was covered by at least one short read (see Methods). 

In addition to oral genomes, we also included three circular TM7 MAGs that were reconstructed from 

environmental samples and manually curated to circularity (Albertsen et al. 2013; Kantor et al. 2013; Brown 

et al. 2015). As expected, these 3 environmentally derived genomes (RAAC3, GWC2, and S_aal) were not 

detected in any oral metagenome (Figure 5, Supplementary tables 7l-n at 

doi:10.6084/m9.figshare.11634321). The occurrence pattern of TM7 genomes across the HMP individuals 

matched their occurrence in our seven participants, where all populations except the two genomes of sub-

clade T2_b (T_C_M_Bin_00022, and TM7_MAG_III_B_1) were strongly associated with either tongue or 

plaque (Figure 5). Members of sub-clade T2_b indeed appeared to be cosmopolitan and were detected in 

both plaque and tongue samples (Figure 5). The most prevalent tongue-associated genome and plaque-

associated genome were detected in samples from 45% and 50% of the HMP individuals, respectively 
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(Figure 5). In contrast, TM7x, the first cultured strain of TM7, was detected in only 5% of the HMP 

individuals. While the majority of the samples in the HMP dataset were taken from the tongue dorsum and 

supragingival plaque, there are additional oral sample types. Our analysis of these additional sample types 

suggested that certain TM7 populations have a preferential association with oral sites other than the tongue 

and supragingival plaque (Supplementary table 7o at doi:10.6084/m9.figshare.11634321, Supplementary 

Information file). Of particular notice, the single MAG of clade P4 (group G5), which was previously 

suggested to associate with periodontitis (Abusleme et al. 2013) appeared to associate with subgingival 

plaque, but occurred similarly in subgingival plaque metagenomes of patients with periodontitis and healthy 

individuals (Supplementary table 7p-s at doi:10.6084/m9.figshare.11634321). These results confirm that 

the exclusive association of most TM7 oral populations with either plaque or tongue is a general feature 

and not restricted to the participants of our study and reveal prevalent and abundant tongue and plaque 

specialists. 
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Figure 5: Detection and coverage of TM7 populations in the HMP plaque and tongue samples reveals 
abundant populations and niche specificity. The tree at the top of the figure and the two layers of information 
below it are identical to the one in Figure 3. Barplots below the tree show the portion of plaque (green) and 
tongue (blue) HMP samples in which each TM7 was detected, using a detection threshold of 0.5. Boxplots 
at the bottom of the figure show the normalized coverages of each TM7 in plaque (green) and tongue (blue) 
HMP samples in which it was detected. 

2.3.5 TM7 pangenome reveals functional markers of niche specificity 

We next sought to identify functional markers for the niche association of the plaque and tongue specialists. 

We utilized a pangenomic approach to identify functional determinants of niche specificity and investigate 

the functional differences between members of the various TM7 clades and subclades. Our analysis 

organized the total 40,832 genes across 55 genomes into 9,117 gene-clusters (GCs), 4,045 of which were 

non-singletons (i.e., occurred in at least 2 genomes) and included up to 162 homologous genes from the 

collection of 55 TM7 genomes described above (Figure 6, Supplementary tables 8a-b at 
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doi:10.6084/m9.figshare.11634321). The gene-clusters can themselves be clustered into groups that show 

similar distribution across genomes. By computing the hierarchical clustering of GCs based on their 

presence or absence in genomes we identified a collection of 205 core GCs that are found in nearly all 

genomes, as well as clusters of accessory GCs, many of which were exclusively associated with oral 

habitats or phylogenomic clades (Figure 6), confirming that the agreement between phylogenomics and 

ecology of these genomes was also represented by differentially occurring GCs. The proportion of genes 

with functional hits varied dramatically between the core and accessory TM7 genes. While more than 90% 

of core gene-clusters had functional annotations, COGs only annotated 29% of singletons, and 22% to 88% 

of non-singleton accessory gene-clusters (Supplementary table 8c at doi:10.6084/m9.figshare.11634321), 

revealing a vast number of unknown genes. 

Whereas phylogenomics infers associations among genomes based on ancestral relationships, 

pangenomics reveals associations based on gene content (Dutilh et al. 2004), which can emphasize 

ecological similarities between genomes (Delmont and Eren 2018), primarily due to the fact that non-

singleton accessory genes are the only drivers of hierarchical clustering based on gene content. The 

hierarchical clustering of TM7 genomes based on GCs predominantly matched their phylogenomic 

organization (Figure 12); however, it recapitulated their niche-association better than phylogenomics 

(Figure 12). Specifically, the plaque-associated genome P_C_M_MAG_00010 of the clade P4 (group ‘G5’), 

which is a distant outlier to all other oral TM7 according to phylogeny (Figure 3b), was placed together with 

all other plaque-associated TM7 (Figure 12). The data underlying this placement can be seen in the 

enrichment of P_C_M_MAG_00010 with GCs that belong to the 'Extended Core 2' cluster, generally 

characteristic of plaque TM7 and absent from tongue-associated TM7 such as clades T1 and T2 (Figure 6, 

Supplementary table 8c at doi:10.6084/m9.figshare.11634321). This enrichment appears to be responsible 

for the placement of P_C_M_MAG_00010 together with the other plaque-associated genomes and 

environmental genomes in Figure 12. In summary, these results show that the occurrence pattern of gene-

clusters groups together phylogenetically-distinct clades of plaque-associated TM7s. 
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Figure 6: Pangenome of TM7 - Accessory gene-clusters include clade-specific and niche-specific markers. 
The dendrogram in the center of the figure organizes the 4,045 gene-clusters that occurred in more than 
one genome according to their frequency of occurrence in the 55 TM7 genomes. The 55 inner layers 
correspond to the 55 genomes, where our MAGs that associated with tongue and plaque are blue, and 
green, respectively; and previously published oral and environmental genomes are in black and brown, 
respectively. The colored regions in these 55 layers correspond to the presence of a gene-cluster in the 
corresponding genome. The circular layers of genomes are ordered according to their phylogenetic 
organization. The outermost circular layer highlights clusters of GCs that correspond to the core or to group-
specific GCs. On the top right, the phylogenetic tree is shown and below it, the three top horizontal layers 
represent sub-clade, clade, and oral-site associations of genomes. The next three layers include statistics 
of coverage for each genome in the HMP oral metagenomes and show (from top to bottom) 1) the maximum 
interquartile mean coverage 2) occurrence in tongue samples 3) occurrence in supragingival plaque 
samples. The last two horizontal layers show the number of singleton GCs and the length for each genome. 
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The large number of TM7 genomes we recovered affords the opportunity to investigate key functional 

properties shared by all TM7s by examining the functions encoded by core GCs. As expected, the TM7 

core GCs included many genes involved in translation, replication, and housekeeping (Supplementary table 

8d at doi:10.6084/m9.figshare.11634321). The core GCs also included genes involved in amino-acid 

transport. Since TM7 lack the genes to produce their own amino acids (ref), these genes likely play an 

important role in scavenging amino acids from the environment or from the bacterial host. The core GCs 

also included several genes with potential roles in binding to the host, including components of a type IV 

pilus system that was identified in all genomes. Oral-associated TM7 have been shown to have a parasitic 

lifestyle in which they attach to the surface of their bacterial host (He et al. 2015; Cross et al. 2019), but the 

mechanism utilized for this attachment is unknown. Type IV pilus systems have been found to be enriched 

in CPR genomes as compared to other bacteria (Méheust et al. 2019) and were also specifically noted in 

TM7 genomes (Marcy et al. 2007). Type IV pilus systems are involved in many functions, including 

adherence (Craig, Forest, and Maier 2019), and could potentially be utilized by TM7 to attach to the bacterial 

host. Most of the components of the type IV pilus system we detected in the TM7 genomes occurred in a 

single operon with conserved gene synteny (Figure 7a). Additional copies of some of the type IV pilus 

proteins appear in various loci of the genome (Supplementary table 8a at 

doi:10.6084/m9.figshare.11634321). We found that while the cytosolic components of the type IV pilus 

system (PilT, PilB, PilC, PilM) were highly conserved across all genomes, components involved in the 

alignment of the system in the peptidoglycan (PilN) and the major and minor pilin proteins (PilE, and PilV) 

appeared in clade or sub-clade -specific gene-clusters and were completely absent from all genomes of 

clade T1 and from the single genome of clade P4 (Figure 7a, Supplementary table 8d at 

doi:10.6084/m9.figshare.11634321). Variability in PilV has been shown in the past to confer binding 

specificity (Ishiwa and Komano 2003) and in the case of TM7, the clade-specific nature of PilV and PilE 

sequences could be driven by host-specificity. While T1 genomes were lacking the components of the pilus 

system with known adhesive roles, they were highly enriched in proteins with a Leucine-rich repeat (LRR) 

(COG4886), which are often found in membrane bound proteins that are involved in adherence (Bella et al. 

2008). 104 of the 207 proteins that were annotated with an LRR belonged to a single gene-cluster 

(GC_00000003) which was exclusively associated with T1 genomes, and each T1 genome had a total of 
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12-24 LRR proteins (COG4886) (Supplementary table 8a at doi:10.6084/m9.figshare.11634321). In 

summary, our analyses suggest that the diversity of pilin proteins could be driven by the host-specificity of 

TM7 species, and that TM7 species that lack pilin proteins could rely on alternative mechanisms such as 

LRR proteins for adherence. 

Additional proteins that we identified to have a potential role in host attachment included proteins with a 

LysM repeat, which is a motif found in a wide range of proteins that are involved in binding to peptidoglycans 

(Buist et al. 2008). So far, the identified hosts of TM7 are all Gram-positive bacteria, and hence 

peptidoglycan binding could be a mechanism in which TM7 attach to their hosts. We found 33 GCs 

associated each with one of four COG functions that included LysM repeats and comprised a total of 169 

genes (91 with COG0739, 6 with COG0741, 71 with COG1388, 1 with COG1652). We identified a Murein 

DD-endopeptidase MepM with a LysM domain (COG0739) in most genomes within a conserved operon, 

which included components of a Type IV Secretion system including VirB4 and VirB6 (Supplementary table 

8a at doi:10.6084/m9.figshare.11634321). Similarly to what we observed for the type IV pilus system, the 

cytosolic component, Virb4, was highly conserved across all genomes, while the membrane bound Virb6 

varied and appeared to be clade (and even sub-clade) -specific. This secretion system is also associated 

with motility in gram-positive bacteria (Marcy et al. 2007), and could potentially be used by TM7 for motion, 

and/or translocation from one host to another. We detected an additional protein with a LysM repeat 

(COG1388) in nearly all genomes. While in most genomes this proteins was flanked by genes involved in 

cell division, in the genomes of Clade T1_b, this locus included an insertion of 1-3 copies of a Leucine-rich 

repeat (LRR) protein, which as we mentioned above, also has a potential role in adherence. Overall, 

proteins with a LysM domain are common amongst oral TM7 and could provide another mechanism for 

attachment to the host surface. 

The occurrences of functions across phylogenetic clades could reveal lifestyle differences that are not 

necessarily highlighted by the occurrences of gene-clusters. Since gene-clusters in a pangenome describe 

genes that are highly conserved in sequence space, identical functions can occur in distinct gene-clusters, 

rendering it difficult to describe core and accessory functions in a pangenome based on core and accessory 

gene-clusters. Here we developed a statistical approach that allows the identification of core and accessory 
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functions, and reveals enriched functions in any given subset of genomes in a pangenome (i.e., a 

phylogenomic clade). In this approach a logistic regression (binomial GLM) is fit to the occurrence of each 

COG function, using the clade affiliation as the explanatory variable. As this test is performed independently 

for each function, we computed q-values from p-values to account for multiple tests. We considered a 

function to be enriched if the q-value was below 0.05, hence setting the expected proportions of false 

discovery at 0.05. More information regarding this approach is available at 

http://merenlab.org/2016/11/08/pangenomics-v2/#making-sense-of-functions-in-your-pangenome. 

Of the 972 unique functions, we identified 320 (34%) as the functional core, which included genes 

predominantly identified in all genomes, and 300 that were significantly enriched in specific clades (Figure 

13 here and supplementary table 8q-r at doi:10.6084/m9.figshare.11634321). While there was a wide 

overlap between core functions and core GCs, 131 core functions occurred in clade-specific GCs, of these, 

21 were exclusively associated with one GC from the ‘Extended Core 1’ cluster and one GC from the ‘T1’ 

cluster, further showing the uniqueness of clade T1 amongst the oral TM7 genomes. (Figure 13, 

supplementary table 8a at doi:10.6084/m9.figshare.11634321). Other cases also revealed functions that 

may have undergone selective pressure in a clade-specific manner. For example, a single copy of an RTX 

toxin-related Ca2+-binding protein, was highly conserved in nearly all genomes (gene-cluster 

GC_00000221), but appeared to have a slightly different variant in genomes P1_c (GC_00001826), and 

T2 (GC_00001332). Our examination of the top 100 most enriched functions revealed many membrane 

associated genes, including, but not limited to functions that were highlighted above by our examination of 

GCs (Supplementary table 8f at doi:10.6084/m9.figshare.11634321). For example, tongue and plaque 

clades appeared to be differentially enriched for transporters of ions and metals. Genes involved in 

respiration as well as genes involved in translation and stress-response were also differentially enriched for 

tongue and plaque clades. Overall, our analysis of the functional composition of oral TM7 shows that along 

with differences in accessory functions, sequence divergence of particular core genes distinguishes various 

clades, and in particular highlights members of clade T1 as outliers amongst the TM7 oral clades, matching 

their deep phylogenetic position. In addition, we identified functions that characterize tongue and plaque 
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clades and could provide targets for future endeavors to understand the unique biological features of 

members of each clade. 

Overall, our data show that both accessory functions and core functions distinguish plaque and tongue 

specialists. While the core genome includes many functions common to all bacteria, it also includes many 

functions that are known to be enriched in CPR genomes. In particular, our data reveals proteins with 

potential roles in adherence, and suggests that while cytosolic components are highly conserved, 

extracellular proteins appear to be clade-specific, suggesting that interaction with the host and with the 

environment are important drivers in differentiating between TM7 oral clades. In addition, plaque-specialists 

that are phylogenetically distinct are functionally related and group together with environmental genomes 

based on GCs, while tongue-specialists group together with TM7 from animal gut. While members of clade 

T1 appear as outliers that differ both in functional composition and in the sequence divergence of many 

core functions as compared to other oral TM7, the functional composition of members of clade T2, which 

includes the cosmopolitan T2_b genomes, appears to represent an intermediate between the strictly host-

associated group and the plaque/environmental group. 
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Figure 7: TM7 type IV pilus operon and TM7 prophages. A) Type IV pilus operon is highly conserved in 
TM7 genomes, but missing many components in genomes of the tongue-associated clade T1. Type IV pili 
operons from 52 of the 55 TM7 that included pilC are aligned according to pilC (yellow). Genomes are 
organized according to their phylogenetic organization shown in Figure 6. The top 10 functions identified in 
these operons appear with color filling, while the rest of the functions appear in grey. B) Some phage groups 
span phylogenetic clades, while other phage groups associate with specific clades. At the top of the panel 
the two prophages of phage group pg08 are compared and on the bottom of the panel the two prophages 
of the phage group pg02 are compared. White arrows signify genes as identified by Prodigal. Homologous 
genes, identified as belonging to the same gene-cluster, are connected by colored areas. A function name 
assigned by KEGG, COG or Pfam functional annotation source appears for genes for which it was available. 
On the left the phylogenetic clade of the TM7 host of each prophage is listed next to the host genome name. 
The genome-wide average nucleotide identity (gANI) appears for each pair of the host genomes, where C/I 
stands for alignment coverage / alignment identity. 

2.3.6 Mobile elements and prophages in TM7 genomes 

Little evidence for phage association with members of the CPR has been found so far (Chen, et al. 2019b). 

Dudek et al. recovered a phage associated with a TM7 genome from a dolphin plaque metagenome (Dudek 

et al. 2017) and Paez-Espino et al. identified phages with a predicted SR1 host (Paez-Espino et al. 2016) 
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in human oral metagenomes. A smaller genome size has been shown to correlate with the lack of lysogenic 

phages (Touchon, Bernheim, and Rocha 2016), and a lack of prophages in CPR genomes would fit this 

trend. To evaluate whether oral TM7 were indeed devoid of integrated prophages, we used an automatic 

approach based on VirSorter (Roux et al. 2015) and the recently published “inovirus detector” (Roux et al. 

2019), along with a manual approach (see Supplementary Information), to identify 9 “phage groups” each 

composed of closely related prophages that were recovered from multiple TM7 genomes spanning all oral 

clades (Supplementary table 8g at doi:10.6084/m9.figshare.11634321). We did not identify any prophages 

in the three environmental genomes. Phage groups generally associated with closely related hosts but were 

not restricted to hosts of the same TM7 species, or even the same oral clades (Figure 7b, Supplementary 

table 8g at doi:10.6084/m9.figshare.11634321). A blast search of prophage nucleotide sequences against 

the NCBI’s nr nucleotide collection returned no significant hits, confirming the novelty of these phage 

sequences. Using CRISPRCasFinder (Couvin et al. 2018) we identified CRISPR spacers targeting 

prophages of two “phage groups” in closely related hosts, validating the association of these prophages 

with their corresponding hosts. We identified CRISPR spacers and CRISPR related proteins in genomes 

representing clades P1, P2, P3, P4, and T2, but not in T1 nor in the three environmental genomes. The 

lack of CRISPR systems in the environmental TM7, despite their close affiliation with plaque TM7, raises 

the question whether these systems were recently acquired by oral clades. To investigate this hypothesis, 

we blasted cas9 proteins from 6 genomes representing all 5 CRISPR-containing clades, and found that 

these best matched cas9 protein from a variety of oral TM7 and a variety of Firmicutes, but no environmental 

TM7 nor any other CPR (Supplementary table 8p at doi:10.6084/m9.figshare.11634321). These results 

suggest that cas9 proteins might have been acquired by oral TM7 from Firmicutes. While some TM7 clades 

appear to lack CRISPR systems, we identified restriction modification (RM) systems in genomes 

representing all oral clades, including clade T1, as well as in the environmental genomes GWC2 and 

RAAC3 (Supplementary table 8a at doi:10.6084/m9.figshare.11634321). These RM systems could serve 

as alternative measures against foreign DNA for TM7 that lack CRISPR systems. Overall our data show 

that prophages are common amongst oral TM7, and appear to be a unique feature of oral TM7, while absent 

from environmental TM7. In addition, CRISPR systems appear to be common amongst specific clades of 

oral TM7, but not a common feature of all TM7. While additional analyses that include a larger collection of 
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environmental genomes will be required to verify this observation, a specific association of prophages with 

host-associated TM7 suggests that prophages may have played an important role in the adaptation of TM7 

to the host environment, perhaps by facilitating horizontal gene transfer. 

In search of other mobile genetic elements, we identified transposases in 18 TM7 genomes representing 

all oral clades and environmental genomes (Supplementary table 8n at 

doi:10.6084/m9.figshare.11634321). The varying location of the highly conserved transposases we 

identified in genomes of sub-clade T1_a suggests recent mobility, and that at least some of these elements 

are indeed active transposons (Supplementary tables 8a,o at doi:10.6084/m9.figshare.11634321). Blast 

search of genes annotated as transposases revealed that while the majority appear to be strongly 

associated with members of the CPR, two transposases had more close hits from non-CPR bacteria. 

2.3.7 Additional members of the CPR are prevalent in the oral cavity, including a tongue-associated SR1 

In addition to TM7, other members of the CPR have been commonly found in the human oral cavity, 

specifically members of the candidate phyla SR1 and GN02 (Camanocha and Dewhirst 2014). Using full 

length 16S rRNA, Camanocha and Dewhirst identified three clones corresponding to SR1 (HOT-345, HOT-

874, and HOT-875) and three that corresponded to GN02 (HOT-871, HOT-872, and HOT-873) in the 

human oral cavity, of which, genomes have been previously published for all of these except SR1 HOT-

875 (Camanocha and Dewhirst 2014; Campbell et al. 2013). While none of the GN02 and SR1 MAGs in 

our collection included 16S rRNA, which would allow a direct match to the Human Oral Taxon (HOT) 

designation, using a pangenomic analysis along with ANI statistics we were able to match MAGs to 

genomes representing HOT-871, HOT-873, HOT-345, and HOT-874 (Figure 14, Figure 17, Supplementary 

tables 9a-h at doi:10.6084/m9.figshare.11634321). Only a single tongue-associated SR1 

(T_B_F_MAG_00004) did not match any previously published genome, and could potentially represent 

HOT-875, since it is the only known oral SR1 that currently lacks genomic representation. A recent study 

presented the successful isolation of an SR1 HOT-875, but a genome has not been sequenced (Cross et 

al. 2019). 



 34 

In order to investigate the niche association of these CPR genomes, we mapped the short reads from the 

HMP metagenomes. While SR1 HOT-874 and HOT-345 were enriched in plaque samples, 

T_B_F_MAG_00004 was highly enriched in tongue samples, as it was detected in 37% of tongue samples 

(9% of plaque samples), and was highly abundant in some samples, recruiting 0.09% on average and up 

to 2.09% of the reads in tongue samples (Figure 15, Figure 16, Supplementary tables 9l-n at 

doi:10.6084/m9.figshare.11634321). Oral GN02 were all associated with plaque, and nearly absent from 

tongue samples (Figure 17, Figure 18, Supplementary tables 9i-l at doi:10.6084/m9.figshare.11634321). 

Our ANI analysis suggests that HOT-871 and HOT-872 represent the same genus as genomes from both 

of these lineages match with ANI>85% (alignment coverage>30%), while HOT-873 represents a separate 

genus and likely a separate family or order, as suggested by Camanocha & Dewhirst (Camanocha and 

Dewhirst 2014) (Supplementary tables 9e-f at doi:10.6084/m9.figshare.11634321). Overall our GN02 and 

SR1 MAGs extend the collection of genomes available for these under-studied members of the oral 

microbiome, and our analysis demonstrates their niche partitioning and reveals the prevalence of a tongue-

associated SR1. 

2.3.8 Novel non-CPR lineages represent prevalent members of the oral microbiome  

Our collection included 34 MAGs that based on phylogenomics and blast sequence search represent 11 

lineages with no representation on NCBI (from here on referred to as “novel MAGs”), and appear to include 

two unnamed species of the genus Prevotella, single unnamed species of the genera Mogibacterium, 

Propionibacterium, Leptotrichia, and Capnocytophaga each, as well as an unnamed genus in the family 

Flavobacteriaceae, an unnamed family within the class Clostridia, and unnamed families (and potentially 

unnamed orders) within the classes Bacteroidia and Mollicutes (Figure 2, Supplementary table 10a-d at 

doi:10.6084/m9.figshare.11634321, Supplementary Information file). Populations represented by these 

novel MAGs were absent from skin and gut samples, and in fact of our 790 MAGs, we found only two MAGs 

that were consistently detected in gut samples. Both of these MAGs belong to the species Dialister invisus, 

which were previously found to be the only abundant gut-associated microbes that were detected with 

considerable abundance in the oral cavity (Franzosa et al. 2014, Eren et al. 2014). 
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The oral microbiome is highly represented in genomic databases (Vartoukian et al. 2016; Nayfach et al. 

2016), hence we next sought to check if the lack of genomic representation for these novel MAGs is due to 

low prevalence. We mapped short reads from the HMP metagenomes to these MAGs to estimate their 

prevalence and abundance across oral sites. Overall, these novel genomes presented strong tropism for 

either tongue or plaque, with the exception of three populations that appear to consistently recruit reads 

from both plaque and tongue samples, represented by the Flavobacteriaceae MAGs, T_A_M_MAG_00009 

(Clostridiales), and three Capnocytophaga MAGs (Figure 20). While we found some populations to be rare, 

which could explain their lack of genomic representation in databases, other populations were extremely 

prevalent (Figure 21, Figure 22, Figure 23 Supplementary table 10e-h at 

doi:10.6084/m9.figshare.11634321). In addition to their high prevalence, some of these novel MAGs were 

highly abundant. P_B_M_MAG_00008 (Capnocytophaga) recruited on average 1% of the reads of plaque 

samples and two of the Propionibacterium MAGs recruited up to 18% of the reads of a single plaque 

metagenome, and on average 0.7% for plaque metagenomes (Supplementary table 10h at 

doi:10.6084/m9.figshare.11634321). 

The most prevalent novel MAGs were five closely related MAGs of the family Flavobacteriaceae, which we 

detected in approximately 98.5% and 80% of HMP plaque and tongue samples, respectively, and reached 

high relative abundance, recruiting up to 2.98% of the reads of a single metagenome, and on average 

0.19%, 0.62% of tongue, and plaque samples respectively (Supplementary tables 10e,g at 

doi:10.6084/m9.figshare.11634321). ANI comparison of these MAGs to each other and to representatives 

of all Flavobacteriaceae species on RefSeq suggested they represent a single new species in an unnamed 

genus, as within group ANI was >93.8% (with >80% alignment coverage), while they had no significant 

alignment with any other Flavobacteriaceae genome (Supplementary table 10i-j at 

doi:10.6084/m9.figshare.11634321). A phylogenomic analysis placed these MAGs in a subgroup of 

Flavobacteriaceae together with Cloacibacterium, Chryseobacterium, Bergeyella, Riemerella, Cruoricaptor, 

Elithabetkingia, and Soonwooa (Figure 23). While all five Flavobacteriaceae MAGs had high sequence 

similarity, both ANI results and the phylogenetic analysis clustered these genomes according to the site of 

recovery, suggesting the existence of a plaque and tongue-specific sub-population. Three of our 
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Flavobacteriaceae genomes were highly complete according to estimation by SCGs and were of length 

1.7-1.8Mbp, considerably shorter than other Flavobacteriaceae genomes, as well as other commonly found 

oral microbes. The short length of these genomes as compared to other Flavobacteriaceae suggests a 

recent genomic reduction and possibly strong host-association. A strong host-association could lead to 

many auxotrophies and could explain why this species has never been isolated despite being an abundant 

and ubiquitous member of the oral microbiome. The recovery of novel genomes for these prevalent 

members of the oral microbiome could help shed light on their role and could assist future cultivation efforts. 

2.4 Conclusions 

Using genome resolved metagenomics, we have recovered much of the known diversity of the human oral 

cavity using samples from only 7 individuals, providing genomes for prevalent, yet uncultivated members 

of the microbiome, and highlighting phylogenetic and functional markers of niche partitioning of the cryptic 

candidate phylum TM7. Our findings group TM7 from the supragingival plaque with environmental TM7, 

both functionally and phylogenetically, while tongue-associated TM7 group together with lineages 

associated with animal gut, suggesting that at least for TM7, the supragingival plaque resembles non-host 

environments, while the tongue and gut TM7s are more strongly shaped by the host. Drivers of 

differentiation between the various microbial niches within the oral cavity are largely unknown, and could 

be revealed by applying similar approaches to study additional members of the oral microbiome. 

2.5 Material and methods 

Metagenomic assembly 

Short reads from 71 metagenomes were quality filtered using the illumina-utils library (Eren et al. 2013) 

with the ‘iu-filter-quality-minoche’ program using default parameters, which removes noisy reads using the 

method described in (Minoche, Dohm, and Himmelbauer 2011). We then used MEGAHIT (D. Li et al. 2015) 

v1.0.6 to co-assemble the set of all quality filtered metagenomes originating from one oral site (either plaque 
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or tongue) of one donor, for a total of 14 co-assemblies. We used anvi-display-contigs-stats to get a 

summary of contigs statistics for each co-assembly. 

To process assembly FASTA files we used the anvi’o contigs workflow which includes the following steps: 

we simplified the names of contigs in each one of the 14 assembly products using anvi’o (Eren et al. 2015) 

v5.5, and then used ‘anvi-gen-contigs-database’ to generate a contigs database in order to annotate the 

contigs. Briefly, anvi’o used Prodigal (Hyatt et al. 2010) v2.60 to find open reading frames. Centrifuge (Kim 

et al. 2016) was used to annotate genes with taxonomy. ‘anvi-run-ncbi-cogs’ was used to annotate genes 

with COG functions (Tatusov et al. 2000). ‘anvi-run-hmms’ was used to identify single copy core genes 

(SCGs) using a collection of built-in HMM profiles. 

Metagenomic read recruitment, and initial automatic binning 

In our metagenomic workflow we used Bowtie2 v2.3.4.3 (Langmead and Salzberg 2012) to recruit short 

reads from the set of metagenomes used for co-assembly to the assembly product; samtools (H. Li et al. 

2009) was used to sort the output sam files into bam files; anvi’o was used to profile the bam files and 

compute coverage and detection statistics, and merge the profiles of each metagenomic sets. We then 

used CONCOCT (Alneberg et al. 2013) to create a preliminary collection of genomic bins. In short, 

CONCOCT uses coverage and composition to bin contigs together. We then used the anvi’o interactive 

interface to manually refine, using the method described below, the bins created by CONCOCT. Finally, 

we retained all MAGs of length greater than 0.5Mbp, and redundancy in SCGs below 10% for the rest of 

the analysis. 

Sequence search 

We used the NCBI nucleotide collection to search for nucleotide sequences, and the NCBI non-redundant 

protein sequences database to search for protein sequences. For 16S rRNA sequences, we used the online 

blast tool on the HOMD website (http://www.homd.org/?name=RNAblast&link=upload), where we used the 

16S rRNA RefSeq Version 15.2 (starts at position 28) with default settings. 
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Manual bin refinement 

We used the anvi’o interactive interface to refine our MAGs, as well as TM7 we downloaded from the IMG, 

which as previously reported (J. S. McLean et al. 2018), include contamination. Our refinement approach 

utilized the different clustering organizations available on the anvi’o interactive interface, which rely on 

sequence composition and differential coverage across multiple metagenomes. Our refinement was also 

assisted by the taxonomic assignments of contigs assigned based on Centrifuge annotation of genes. In 

cases in which we could not confidently distinguish contamination based on the clustering organizations, 

we used blast of specific sequences to assist us in making refinement decisions. 

Refinement of our MAGs included between two to three rounds of refinement per MAG: 1) Refinement 

using the coverage information in the 4-6 samples used to assemble each MAG 2) Refinement of 63 MAGs 

which we identified as contaminated based on their coverage across our full collection of 71 metagenomes, 

and then used this coverage profile for refinement 3) Refinement of CPR MAGs and novel MAGs based on 

their coverage patterns in the HMP samples. 

Refinement of TM7 genomes downloaded from IMG was done using coverage of their contigs across the 

HMP samples. 

Naming scheme of MAGs 

Names of the final MAGs included the prefix “ORAL”, followed by a single letter to specify the type of 

samples used for the assembly of the MAG (“P” or “T” for plaque or tongue), followed by the ID of the 

individual (for example “C_M”, which stands for “couple ‘C’, male”), followed by either “Bin” or “MAG” if the 

MAG had completion below or above 70% as estimated using the Campbell et al. collection of single copy 

core genes (SCGs) (Campbell et al. 2013), and followed by a number, where for each co-assembly the 

MAGs had a series of numbers from “00001” to the maximum number of MAGs that were retained from 

that co-assembly. 
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Removing redundancy and analysis of the non-redundant collection of MAGs 

In order to identify near-identical MAGs, NUCmer (Delcher et al. 2002) was used to calculate the average 

nucleotide identity (ANI) between each pair of MAGs that were estimated by CheckM to belong to the same 

phylum. MAGs that had no phylum designation from CheckM were assigned phylum affiliation using 

phylogenomics (see below) and blast of protein sequences against the NCBI’s non-redundant database. 

We determined that a pair of MAGs are redundant if their ANI was 99.8% with the alignment length covering 

at least 50% of the shorter of the two genomes. For each group of redundant genomes, the genome with 

the highest ‘completion minus redundancy’ was chosen as the representative of the group, where 

completion and redundancy were calculated by anvi’o based on single-copy core genes. If multiple 

redundant genomes had the same ‘completion minus redundancy’ then the longest genome was chosen. 

We merged the sequences of the collection of non-redundant bins into one FASTA file, and processed this 

FASTA file using the anvi’o contigs workflow as mentioned above. We then also used this FASTA file to 

recruit reads from all 71 metagenomes, and used the anvi’o metagenomics workflow as mentioned above 

to generate a merged profile database. We used anvi-split to generate a profile database and contigs 

database for each MAG, followed by ‘anvi-interactive’ and inkscape in order to generate PNG images for 

all MAGs with contigs organized using a combined metric of differential coverage and sequence 

composition, and data points showing interquartile values of the mean coverage of contigs. We used these 

images to identify MAGs that required additional refinement. 

Read recruitment from public metagenomes 

We used ‘anvi-run-workflow’ with the ‘metagenomics’ workflow to recruit reads from oral samples of the 

Human Microbiome Project (HMP) (Human Microbiome Project Consortium 2012). The metagenomics 

workflow of ‘anvi-run-workflow’ uses Snakemake (Köster and Rahmann 2012) to execute the steps 

described above for our metagenomic read recruitment analysis. We used the same approach to also 

recruit reads from previously published metagenomes from periodontitis patients (Califf et al. 2017) to the 



 40 

TM7 pangenome. The raw metagenomes of Califf et al. were obtained directly from the authors since the 

FASTQ files published by Califf et al. included only a single read for each pair of raw reads. 

Quantifying human contamination in metagenomes 

We ran the aforementioned metagenomics workflow using anvi-run-workflow and used the human genome 

build 38 (GRCh38) from NCBI to quantify the number of reads matching the human genome in each sample. 

We estimated the number of reads that originate from microbes (or “non-human” reads) in each sample as 

the total number of reads minus the number of reads that mapped to the human genome. 

Relative abundance estimations of MAGs 

For each MAG we used the number of reads that mapped to it, divided by the total number of non-human 

reads as the unnormalized abundance. All unmapped reads were counted as an UNKNOWN bin. In order 

to account for different genome lengths, which is expected to impact the number of reads expected from 

each population at a given true abundance, we divided each normalized abundance by the genome length. 

Since the genome length is unknown for the UNKNOWN bin, as it represents an agglomeration of whole 

genomes and portion of genomes that we did not recover, we used an arbitrary choice of 2Mbp as the 

normalization factor. The choice of this arbitrary factor changes the overall estimation of the portion of 

unknown reads, but not the observed trends. 

Taxonomic profiles of metagenomes based on short reads 

We used KrakenUniq (Florian P. Breitwieser and Salzberg 2018) to generate taxonomic profiles for all 

metagenomes. Briefly, KrakenUniq uses counts of unique k-mers to estimate the relative abundance of 

taxa in a sample, based on short-reads. 

Phylogenomic analyses 
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For phylogenomic analysis we used our collection of 37 ribosomal proteins, which are in the overlap of the 

bacterial and archaeal single copy core gene collections created by Campbell et al. (Campbell et al. 2013) 

and Rinke et al. (Rinke et al. 2013): Ribosom_S12_S23, Ribosomal_L1, Ribosomal_L10, Ribosomal_L11, 

Ribosomal_L11_N, Ribosomal_L13, Ribosomal_L14, Ribosomal_L16, Ribosomal_L18e, Ribosomal_L18p, 

Ribosomal_L19, Ribosomal_L2, Ribosomal_L21p, Ribosomal_L22, Ribosomal_L23, Ribosomal_L29, 

Ribosomal_L2_C, Ribosomal_L3, Ribosomal_L32p, Ribosomal_L4, Ribosomal_L5, Ribosomal_L5_C, 

Ribosomal_L6, Ribosomal_S11, Ribosomal_S13, Ribosomal_S15, Ribosomal_S17, Ribosomal_S19, 

Ribosomal_S2, Ribosomal_S3_C, Ribosomal_S4, Ribosomal_S5, Ribosomal_S5_C, Ribosomal_S6, 

Ribosomal_S7, Ribosomal_S8, Ribosomal_S9. To compute phylogenetic trees based on these ribosomal 

proteins, we used ‘anvi-run-workflow’ with the ‘phylogenomics’ workflow. The phylogenomics workflow 

included running ‘anvi-get-sequences-for-hmm-hits’ to export a FASTA file with the concatenated and 

aligned ribosomal proteins with the following parameters: ‘--align-with famsa’ to perform alignment of protein 

sequences using FAMSA (Deorowicz, Debudaj-Grabysz, and Gudyś 2016); ‘--concatenate-genes’ to 

concatenate the sequences of the various ribosomal proteins; ‘--return-best-hit’ to instruct the program to 

return only the best hit in case that a single HMM profile had two hits in one genome; `--get-aa-sequences’ 

to output amino-acid sequences; ‘--hmm-sources Campbell_et_al’ to use the Campbell_et_al HMM source 

(Campbell et al. 2013) to search for genes. For Figure 2 we also included the parameter ‘--max-num-genes-

missing-from-bin 19’ to only include genomes that contain at least 18 of the 37 ribosomal proteins. For the 

rest of the phylogenomics analyses we used ‘--min-num-bins-gene-occurs’ to ensure that only ribosomal 

proteins that occur in at least 50% of the genomes are used for the analysis. The resulting alignments were 

trimmed using trimAl (Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009) with the setting ‘-gt 0.5’ to 

remove all positions that were gaps in more than 50% of sequences, and a maximum likelihood 

phylogenetic tree was computed using IQ-TREE (Nguyen et al. 2015) with the ‘WAG’ general matrix model 

(Whelan and Goldman 2001). Phylogeny of CPR genomes was computed with only 36 of the 37, excluding 

Ribosomal_L32p since it was absent from all TM7 genomes. In order to root phylogenetic trees we used 

an outlier genome in each analysis: for Figure 2 we used a genome of the archeal Methanobrevibacter 

oralis, and for all other phylogenomic analyses we used a collection of five members of the Firmicutes: 

Acidaminococcus intestini, Eubacterium rectale, Staphylococcus aureus, Streptococcus pneumoniae, 
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Veillonella parvula. To remove the Firmicutes from the trees in Figure 6, Figure 14, Figure 17we used the 

python package ete3 version 3.1.1 (Huerta-Cepas, Serra, and Bork 2016). 

Processing publicly available genomes 

To process FASTA files, we used ‘anvi-run-workflow’ with the ‘contigs’ workflow, which includes the steps 

of the anvi’o contigs workflow as described above. In order to generate the data in supplementary table 8a 

(at doi:10.6084/m9.figshare.11634321), our workflow also included running ‘anvi-run-pfams’ to annotate 

functions with Pfams (El-Gebali et al. 2019), and we used ‘anvi-get-sequences-for-gene-calls’ to get all 

protein sequences and used GhostKoala (https://www.kegg.jp/ghostkoala/) to annotate genes with KEGG 

functions (Kanehisa, Sato, and Morishima 2016). 

Assessing the occurrence of populations in metagenomes 

We used anvi-mcg-classifier with the settings ‘--get-samples-stats-only’, ‘--alpha 0.1’, which determines a 

threshold of 0.6 detection value for to determine occurrence, ‘--zeros-are-outliers’, which considers 

positions with zero coverage as outlier coverage values when computing the non-outlier mean coverage. 

We used the anvi-mcg-classifier output to determine the occurrence of TM7 populations in our collection of 

71 metagenomes. In order to account for the different number of reads per sample when comparing non-

outlier mean coverage values, we normalized these values. To compute the normalization factor, we first 

divided the number of reads in each sample by the maximum number of reads in the biggest sample (so 

that the normalization factor would be ≤ 1 for all samples). We then divided the non-outlier mean coverage 

values in each sample by the normalization factor. 

Pangenomic analyses 
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We used ‘anvi-run-workflow’ with the ‘pangenomics’ workflow to compute the pangenome. In this workflow, 

we used ‘anvi-gen-genome-storage’ to generate a genomes storage database. ‘Anvi-pan-genome’ accepts 

the genomes storage as input and uses BLAST (Altschul et al. 1990) to get similarity scores for all protein 

sequences of each pair of genes. Similarity scores are then used to form clusters of genes using the Markov 

Cluster algorithm (MCL) (Enright, Van Dongen, and Ouzounis 2002) using the default parameters of anvi-

pan-genome (minbit of 0.5, and MCL inflation of 2). We used ‘anvi-script-add-default-collection’ to add a 

collection that includes all GCs, and then used ‘anvi-summarize’ to create a summary table. For the TM7 

pangenome in Figure 6, when running ‘anvi-summarize’, we used the collection of GCs that we created by 

manual selections in the interactive interface. For visualization of pangenomes, we created a second 

pangenomic database using ‘--min-occurrence 2’ to exclude singleton GCs (GCs that occur only in a single 

genome), and used ‘anvi-display-pan’ to run the anvi’o interactive interface. 

Average nucleotide identity (ANI) 

We used anvi-compute-ani with the settings ‘--method ANIm’, in order to perform alignment using MUMmer 

(NUCmer) (cite), and ‘--min-alignment-fraction 0.25’ to only keep scores if the alignment fraction covers at 

least 25% percent of both genomes. For the ANI data presented in Figure 6, we first computed ANI without 

the flag ‘--min-alignment-fraction’ to get all alignment statistics, and then we imported ANI values only for 

pairs of genomes with alignment coverage of at least 25%. 

Extraction of 16S rRNA sequences 

To export all 16S rRNA sequences from contigs databases we used ‘anvi-get-sequences-for-hmm-hits’ with 

parameters ‘--hmm-sources Ribosomal_RNAs’ and `--no-wrap’. 

Analysis of nanopore sequences 

In order to filter human contamination, we mapped long read sequences to the human genome using 

minimap2 (H. Li 2018). The remaining contigs were used to generate anvi’o contigs databases as described 
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above. Sequences of 16S rRNA were extracted and blasted against HOMD, and the results were used to 

assign group affiliation to TM7 genomes as described below. 

Group affiliation of TM7 based on 16S rRNA 

We exported ribosomal RNA sequences from all TM7 genomes, including ones downloaded from NCBI. 

We then blasted 16S rRNA sequences against the eHOMD as explained above. For each genome, we 

identified the group affiliation (G-1, G-2, etc.) of the closest hit on HOMD. In addition, we blasted nanopore 

reads that matched to TM7 against the collection of oral TM7 genomes. We used blast hits to associate 

TM7 MAGs with a 16S rRNA group affiliation. The 16S rRNA group affiliations are summarized in 

Supplementary table 7i for oral genomes, and in Supplementary table 7e at 

doi:10.6084/m9.figshare.11634321 for the all TM7 downloaded from NCBI. 

Functional enrichment analysis 

We used ‘anvi-get-enriched-functions-per-pan-group’ to find enriched functions per TM7 clade. This 

program fits a logistic regression (binomial GLM) to the occurrence of each COG function across genomes, 

using clade affiliation as the explanatory variable. It tests for equality of proportions across clade affiliation 

using a Rao score test, which gives a test statistic (“enrichment score”) and p-value. q-values are estimated 

from p-values using the R package “qvalue” (Storey, Taylor, and Siegmund 2004). We considered a 

function to be enriched if the q-value was below 0.05; this controls the expected proportion of false positives 

at 0.05. More details on how to use this method are provided here: 

http://merenlab.org/2016/11/08/pangenomics-v2/#making-sense-of-functions-in-your-pangenome. 

Identifying prophages in TM7 genomes 

We used Virsorter (Roux et al. 2015) and the “Inovirus detector” (Roux et al. 2019) to identify contigs that 

include phage sequences. Contigs predicted as viral were manually inspected, and all contigs which gene 
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content was also consistent with a plasmid or another mobile genetic element, i.e. did not include either a 

viral hallmark gene or capsid-related gene(s) were excluded. 

We further examined all remaining contigs to verify their placement in the prospective genomes, using the 

data in Supplementary table 8a at doi:10.6084/m9.figshare.11634321, as well as blast searches of protein 

sequences (see the notes in Supplementary table 8g at doi:10.6084/m9.figshare.11634321 for more 

details). We used functional annotations to identify additional contigs containing phage-related functions 

that were not identified by VirSorter/Inovirus detector. In addition, we identified additional phages by 

searching for contigs with many homologs (according to GC occurrence) to the identified phages. We 

repeated this process recursively and identified 11 more contigs that contain partial or complete prophages. 

To identify start and end positions of prophages, we relied on identifying genes that appear to be TM7 

genes as per their association with GCs. When possible, we used closely related TM7 genomes that lacked 

the prophage genes, to identify the position of the genes flanking the prophage, and hence confirming the 

insertion position of the prophage. 

Identifying CRISPRs 

We used the web service CRISPRCasFinder at https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index 

(Couvin et al. 2018) to search for CRISPR spacers in the 55 TM7 genomes. Along with a summary of the 

results, the web application allows the direct download of a FASTA file of all high confidence spacers 

(evidence level 3 or 4 as defined by Couvin et al). We used the FASTA file of high confidence spacers to 

blast spacer sequences against the TM7 genomes. 

Statistics and visualization 

We used ggplot2 version 3.2.1 to generate boxplots and barplots of abundances, as well as barplots of 

occurrences across metagenomes. To compare the number of reads recruited by our MAGs from our 
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plaque and tongue metagenomes, we ran a two-sided Z-test, using the Python package statsmodels 

(Seabold and Perktold 2010). 

Access to previously published sequences 

We downloaded all oral genomes from the HOMD FTP site 

(ftp://ftp.homd.org/HOMD_annotated_genomes/, and ftp://ftp.homd.org/NCBI_annotated_genomes/). 

Notice that while the TM7 genomes we downloaded from IMG had no accessions associated with them at 

the time we accessed them on the IMG, there have since then been refined versions of these genomes 

published and accession numbers for these refined genomes are available in Cross et al. 2019. 

We used ncbi-genome-download (https://github.com/kblin/ncbi-genome-download) to download genomes 

from GenBank. We used anvi-script-process-genbank-metadata to process the metadata produced by ncbi-

genome-download, and generate input files that we then used to run the contigs workflow of anvi-run-

workflow. TM7 genomes from GenBank were downloaded on 1/16/2019; GN02 and SR1 on 12/17/2018; 

Flavobacteriaceae on 9/20/2019; Clostridiales on 9/25/2019; 
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2.6 Supplementary Material 

2.6.1 Supplementary Figures 

 

Figure 8: The percent of reads that map to MAGs is correlated with the quality of the assembly. The percent 
of reads that mapped to the non-redundant collection of MAGs out of the total number of reads, excluding 
reads that mapped to the human genome is presented for each of the 71 metagenomes as a function of 
the percent of reads that mapped to all contigs in the assembly. Blue curve represents a linear regression 
model with the grey shaded area marking the 95% confidence intervals. R-squared value and p-value for 
the linear regression appear above the curve. 
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Figure 9: Normalized relative abundances of TM7 population per individual for the participants of our study. 
For those cases in which multiple closely related populations were recovered from multiple participants, 
each population is detected only in the participant from which it was recovered. The exceptions are when 
a closely related population exists, but assembly or binning failed to recover this population. In those cases 
of assembly/binning failure, each of the closely related population is recovered with similar abundance 

 

Figure 10: Normalized relative abundances of each of our 43 TM7 MAGs in the 71 metagenomes. The 
shape and fill color of each dot is according to the sample type (tongue/plaque), while the stroke color is 
according to the participant ID from which the sample was taken. 
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Figure 11: GC clusters represent clade-specific GCs. Data points represent the portion of the GCs of a GC 
bin that occur in each genome and colored according to clade designations of genomes. 

 

Figure 12: Organization of TM7 genomes according to the occurrence of gene-clusters clusters oral 
genomes according to oral site affiliation. The dendrogram at the top represents the phylogenetic 
organization based on ribosomal proteins, while the dendrogram on the bottom represents the hierarchical 
organization of genomes based on the gene-cluster frequency of occurrence across genomes using 
euclidean distance and ward ordination. The information at the center of the figure shows the site affiliation 
of each oral TM7 in accordance with Figure 5. Branches that appear in bold black color represent 
environmental and plaque-associated genomes that are phylogenetically-distinct, but that are grouped 
together based on their gene content, and nested together with plaque-associated genomes. 
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Figure 13: Functional core includes mostly core GCs, but also many clade specific GCs. Each of the 970 
functions are organized in the tree in the center of the figure according to their occurrence in the 55 
genomes (using Euclidean distance and Ward’s method) . The first 55 layers correspond to the TM7 
genomes, where layers corresponding to tongue MAGs are blue, plaque MAGs are green, and previously 
published genomes are black. Bars in these 55 layers represent the presence of a function in the genome. 
The layers are ordered using the phylogenetic tree from Figure 3b. The next layer includes a stacked bar 
representing the portion of GC bin affiliation of each gene associated with a function. The red arc in the 
outermost layer marks the functions that were defined as part of the core for this TM7 pangenome. Notice 
that while the majority of the core functions are associated with core GCs, there are many that are 
associated with clade-specific GCs. 
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Figure 14: pangenomic analysis of SR1 genomes. The dendrogram at the center of the figure organizes 
gene-clusters according to their occurrence across the 14 SR1 genomes. The circular layers correspond to 
the 14 SR1 genomes and are ordered according to their phylogenetic organization. In these circular layers, 
colored sections mark the presence of gene-clusters in the corresponding genome. On the top right, the 
phylogenetic tree is shown and below it, the four horizontal layers correspond to (top to bottom) 1) Human 
Oral Taxon designation according to 16S rRNA sequences 2) Sample type (environmental: black, plaque: 
dark green, saliva: light green, canine supragingival plaque: brown, tongue: blue, dolphin gingival sulcus: 
cyan) 3) Number of singleton gene-clusters 4) Total length of the genome. 
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Figure 15: Detection of SR1 populations in the HMP plaque and tongue samples reveals prevalent 
populations and niche specificity. Barplots showing the portion of plaque (green) and tongue (blue) HMP 
samples in which each SR1 was detected, using a detection threshold of 0.5. 

 

Figure 16: Normalized coverage of SR1 populations in HMP oral samples according to sample type. 
Boxplots showing the normalized coverages of each SR1 in plaque (green) and tongue (blue) HMP. For 
each genome, data is only shown for samples in which it was detected, according to the same criteria of 
detection used in Figure 15. 
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Figure 17: pangenomic analysis of GN02 genomes. The dendrogram at the center of the figure organizes 
gene-clusters according to their occurrence across the 25 SR1 genomes. The circular layers correspond to 
the 25 SR1 genomes and are ordered according to their phylogenetic organization. In these circular layers, 
colored sections mark the presence of gene-clusters in the corresponding genome. On the top right, the 
phylogenetic tree is shown and below it, the four horizontal layers correspond to (top to bottom) 1) Human 
Oral Taxon designation according to 16S rRNA sequences 2) Sample type (environmental: black, plaque: 
dark green, saliva: light green, canine supragingival plaque: brown, tongue: blue, dolphin gingival sulcus: 
cyan) 3) Number of singleton gene-clusters 4) Total length of the genome. 
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Figure 18: Detection of GN02 populations in the HMP plaque and tongue samples reveals the plaque 
specificity of oral members of this candidate phylum. Barplots showing the portion of plaque (green) and 
tongue (blue) HMP samples in which each GN02 was detected, using a detection threshold of 0.5. 

 

Figure 19: Normalized coverage of GN02 populations in HMP oral samples according to sample type. 
Boxplots showing the normalized coverages of each GN02 in plaque (green) and tongue (blue) HMP. For 
each genome, data is only shown for samples in which it was detected, according to the same criteria of 
detection used in Figure 18. 

 

Figure 20: Presence of the novel populations in HMP tongue and plauqe samples. Barplots of the portion 
of plaque (green) and tongue (blue) samples in which each of the novel genomes occur. The presence of 
a population in a sample was determined according to a threshold of 0.5 detection value. 
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Figure 21: Presence of the novel populations in HMP oral samples by sample type. Barplots of the portion 
of samples in which each of the novel genomes occur, plotted by sample type for all 9 HMP sample types 
in which at least one novel population was detected. The presence of a population in a sample was 
determined according to a threshold of 0.5 detection value. 

 

Figure 22: Normalized coverage of the novel populations in HMP oral samples according to sample type. 
Boxplots of the normalized coverage of the novel population. Color of data-points are according to the 
sample type. For each genome, data points are only shown for samples in which the genome was detected, 
according to the same detection threshold used in Figure 21. 
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Figure 23: Phylogenomic analysis of Flavobacteriaceae genomes indicates oral MAGs represent an 
unnamed species in an unnamed genus within Flavobacteriaceae. Below the dendrogram, layers include 
the name and length of each genome. The 5 novel Flavobacteriaceae MAGs are indicated with red color 
and the Prevotella genome that was used to root the tree is indicated with blue color. 

2.7 Supplementary information 

2.7.1 Comparison of taxonomic composition using three methods  

In order to investigate how the recovery of MAGs spans taxonomic units, we compared the estimation of 

taxonomic composition (at the genus level) of samples based on our MAGs with two other methods, 

KrakenUniq (F. P. Breitwieser, Baker, and Salzberg 2018), which utilizes short-reads, and hence 

circumvents potential challenges due to assembly and binning, and Minimum Entropy Decomposition 

(Eren, Morrison, et al. 2015) combined with GAST-based (Huse et al. 2008) taxonomic assignment of 16S 

rRNA amplicon sequence variants. While KrakenUniq lists 441 genera with above zero abundance in at 

least one sample (Supplementary table 4f at doi:10.6084/m9.figshare.11634321), GAST identified 40 

(Supplementary table 5e at doi:10.6084/m9.figshare.11634321) and our genomes represented 37 distinct 

genera (Supplementary table 2f at doi:10.6084/m9.figshare.11634321). We included the 15 most abundant 

genera according to each method, which amounted to a list of 19 genera, and to which we added TM7, in 

a comparison of relative abundance estimations by the three methods. Overall, the three methods 

presented similar trends for most of these 20 taxa, but also revealed further discrepancies (Figure 24, 
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Figure 25, Figure 26). While 16S rRNA amplicons allow the taxonomic assignment of each sequenced 

amplicon (to various levels of resolution), it suffers from primer biases for specific taxa (Eloe-Fadrosh et al. 

2016). While the study of metagenomes does not suffer from these primer biases, the ability to assign 

taxonomy to every sequenced read is limited by the reference database, leaving many reads either 

unidentified, or worse, wrongly classified (Escobar-Zepeda et al. 2018). While MAGs allow a confident 

taxonomic assignment (to known taxa), normalizing coverages to estimate relative abundance is 

challenging, especially when it is required to account for many unassigned reads. In addition, the 

occurrence of populations that undergo genomic reorganizations, and the occurrence of populations with 

large within-population variability, limits the ability to assemble short reads into large contigs and hence our 

ability to generate high quality MAGs. In conclusion, we could examine trends of particular taxons as these 

are revealed by a particular method, but none of these methods is likely to inform us of actual relative 

abundances. With these limitations in mind, our data shows that while the abundance profiles at the genus 

level are similar for the majority of the abundant genera, there are specific taxa for which there are major 

differences, such as Actinomyces, Rothia, and Fusobacterium (Figure 24, Figure 25, Figure 26). 

To process the amplicon sequencing data mentioned above, we used the Oligotyping (Eren, Murat Eren, 

et al. 2013) command o-pad-with-gaps to pad sequences with gaps and eliminate length variation. We used 

Minimum Entropy Decomposition (MED) (Eren, Morrison, et al. 2015) to identify amplicon sequence 

variants (ASVs) across samples and determine microbial community structure, and we used Global 

Alignment for Sequence Taxonomy (GAST) (Huse et al. 2008) to assign taxonomic affiliation to each ASV. 

We selected the genera used for the comparison of the relative abundance estimation between the three 

methods (MAGs, KrakenUniq, and 16SrRNA) by identifying the 15 most abundant genera according to 

each method and then merging these to a list of a total of 20 genera: Actinomyces, Aggregatibacter, 

Campylobacter, Capnocytophaga, Corynebacterium, Derxia, Fusobacterium, Gemella, Genus, 

Granulicatella, Haemophilus, Leptotrichia, Neisseria, Porphyromonas, Prevotella, Pseudomonas, Rothia, 

Streptococcus, Streptomyces, TM7, Veillonella. We considered TM7 as a “genus” for the sake of this 

analysis, despite the fact that it includes multiple genera. Of these “top genera”, Derxia was completely 

absent from both KrakenUniq and MAGs, and  Gemella and Granulicatella were completely absent from 
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KrakenUniq. On the other hand, Pseudomonas, and Streptomyces appear in the top 15 abundant genera 

of the KrakenUniq results but were completely absent from the MAGs and 16S rRNA ASVs. Lastly, TM7 

was completely absent from the 16S rRNA ASVs, despite being amongst the top abundant genera 

according to MAGs. We used ggplot2 (Wickham 2016) to generate relative abundance plots per sample 

per method. The tables used to generate relative abundance plots based on MAGs, KrakenUniq and 16S 

rRNA are available in Supplementary tables 2f, 4f, and 5e at doi:10.6084/m9.figshare.11634321, 

respectively. Tables with relative abundance for various taxonomic levels for MAGs, KrakenUniq and 16S 

rRNA are available in Supplementary tables 2e, 4a-e, and 5a-d at doi:10.6084/m9.figshare.11634321, 

respectively. 

 

Figure 24: Taxonomic profiles using 16S rRNA gene amplicon sequence variants (ASVs) produced by MED 
with taxonomic assignment from GAST. 
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Figure 25: Taxonomic profiles based on metagenomic short reads using KrakenUniq. 
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Figure 26: Taxonomic profiles based on coverages of MAGs. 

2.7.2 Phylogenomic analysis of MAGs and HOMD genomes 

P_C_M_Bin_00033 presents such an example of a deeply branching genome. In fact this genome is placed 

in phylogeny as a deep branch within Tannerella (of phylum bacteroidetes), but CheckM assigned this 

genome to the genus Granulicatella of phylum Firmicutes. This is likely due to a composition of at least two 

genomes that contribute SCGs to this genome. We also identified such issues with a certain genome from 

HOMD, “Capnocytophaga_sp__003”, which has an atypical genome length greater than 6Mbp, and indeed 

seems composite as it forms an unusually deep branch within Capnocytophaga, and in fact CheckM failed 

to assign any phylum affiliation to this genome. 

2.7.3 Aveage Nucleotide Identity (ANI) of oral TM7 

Each of the monophyletic clades that we identified include diverse sub-clades as evident by multiple sub 

clusters within each clade (Figure 4), hence we sought to search for genomic identity boundaries that could 
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allow the definition of distinct species within these clades. To examine whether phylogenetic clusters within 

the clades we identified correspond to species of TM7, we computed the average nucleotide identity (ANI) 

between each pair of genomes. Multiple studies have suggested a 95% cutoff using ANI to determine 

bacterial species (Jain et al. 2018; Konstantinidis and Tiedje 2005). Our analysis revealed 12 sub-clades 

that included at least 2 genomes each and separated according to a within-group alignment coverage of 

>25% and identity >90% (Figure 4, Supplementary tables 7f, 7g, 7h, and 7i at 

doi:10.6084/m9.figshare.11634321). We hypothesize that each of these represent a separate species, 

despite the slightly lower than the aforementioned 95% identity cutoff. Genomes of sub-clades T2_a and 

T2_b aligned between each other with alignment coverage of 50%-70% and identity of 85%-88%, 

suggesting that these two represent two species of the same genus (Figure 4, Supplementary table 7h at 

doi:10.6084/m9.figshare.11634321). There were only two other cases in which outgroup members had 

alignment coverage above 25%. P_C_M_Bin_00016 had 30% alignment coverage and 83% identity to 

P_B_M_MAG_00013 (P1_a), suggesting that it could belong to the same genus as the genomes of sub-

clade P1_a. Similarly, P_C_M_Bin_00022 appears to be a single representative amongst our genomes of 

a species that belongs to the same genus as P2_b, as it aligned with ~50% coverage and ~85% identity 

with all four members of P2_b (including TM7x). Since we found no other significant alignment between 

members of distinct sub-clades, these TM7 genomes potentially represent at least 11 distinct genera. 

2.7.4 Occurrence of TM7 across additional oral sample types, other than supragingival plaque and tongue 

dorsum, and including samples from patients with periodontitis 

In order to examine the occurrence of the TM7 populations across the oral cavity, we used 68 HMP samples 

with a total of 7 additional sample types (Supplementary table 7j at doi:10.6084/m9.figshare.11634321), as 

well as 24 subgingival samples from 9 patients with periodontitis. The number of reads per sample was 

comparable across sample types with the exception of saliva samples, which had a lower number of reads 

per sample by an order of magnitude as compared to other sample types (Figure 27). TM7 populations 

were detected in all sample types except for the single hard palate sample (Figure 28, Supplementary table 

4o at doi:10.6084/m9.figshare.11634321). While presence of populations in the subgingival plaque mostly 

matched with their presence in supragingival plaque, some populations were found in a larger portion of 
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the 10 subgingival plaque samples as compared to supragingival plaque (Figure 28). Moreover, we found 

that occurrence in subgingival plaque did not imply occurrence in supragingival plaque. For example, from 

the 5 individuals for which P_C_M_Bin_00016 (clade P1) was detected in the subgingival plaque, we only 

detected this population in the supragingival plaque of one individual. P_C_M_MAG_00010 (sub-clade 

P4_a) also appeared to be enriched in subgingival plaque vs. supragingival plaque. This genome belongs 

to group ‘G5’, which has been previously suggested to be enriched in patients with periodontitis based on 

studies of 16S rRNA amplicons (Abusleme et al. 2013). Our analysis of subgingival samples from patients 

with periodontitis revealed a similar occurrence as compared to the 10 subgingival plaque samples of the 

8 healthy HMP individuals (Figure 30, Figure 31, Supplementary table 7p-s at 

doi:10.6084/m9.figshare.11634321). In Palatine tonsils and throat samples we detected only tongue-

associated TM7, while in Keratinized gingiva samples only members of clade T2, and sub-clade P1_c were 

detected. T_C_M_Bin_00011 (sub-clade T2_c) appeared more prevalent and abundant in keratinized 

gingiva samples than in tongue samples, and T_B_F_Bin_00010 (clade T2) was more abundant in buccal 

mucosa samples than in tongue samples (Figure 29, Supplementary table 4o at 

doi:10.6084/m9.figshare.11634321). Due to the low number of HMP samples per sample type (other than 

tongue dorsum and supragingival plaque) further investigation would be required in order to confidently 

determine whether such associations exist. 

The pair-end reads of the 24 subgingival plaque samples from patients with periodontitis from the study by 

Cliff et al. (Califf et al. 2017) were received directly from the authors, since the samples that were deposited 

on MG-RAST with the original Califf et al. publication included only one of the pairs of reads. Raw 

sequences were analyzed and the occurrence of TM7 MAGs in these samples were assessed as described 

in the Methods section. 
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Figure 27: Number of reads per metagenome. Each data point represents the number of reads in a single 
sample for the 9 sample types. 

 

 

Figure 28: Occurrence of TM7 across oral sample types. For each of the 55 genomes (on the x-axis) the 
colored bars represent the portion of samples per sample type, in which it is detected (detection > 0.5). 
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Figure 29: Coverage of TM7 across oral sample types. Boxplots of the normalized coverages of each TM7 
across samples. Data points are colored according to sample type. 

 

Figure 30: Occurrence of TM7 in subgingival plaque samples of healthy individuals and individuals with 
periodontitis is mostly matching. Bars indicate the portions of subgingival plaque samples from healthy 
individuals (green) and individuals with periodontitis in which each of the 55 TM7 are detected. 

 

Figure 31: Coverage of TM7s in subgingival plaque. Boxplots of the normalized mean coverage of TM7 in 
samples of healthy individuals (green) and individuals with periodontitis (red). 

2.7.5 Mobile elements and prophages in TM7 genomes 

In order to systematically search TM7 genomes for evidence of prophages we used VirSorter (Roux et al. 

2015) and the “inovirus detector” (Roux et al. 2019) to automatically detect contigs that potentially include 

prophages in the TM7 genomes and detected 47 contigs with potential prophages (Supplementary table 

8g at doi:10.6084/m9.figshare.11634321). We extended this list to a total of 58 contigs by manually 
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identifying additional contigs using functional annotations as markers for phages, and by searching for 

contigs with GCs that associate with the contigs detected by VirSorter/”inovirus detector” (Supplementary 

table 8g at doi:10.6084/m9.figshare.11634321). We manually examined these contigs, and identified 36 

contigs that include partial or complete prophages, which we manually curated to determine the likely start 

and end nucleotide positions of the prophages (Supplementary table 8g at 

doi:10.6084/m9.figshare.11634321). In order to search for conserved sequences amongst these phages, 

we employed a pangenomic approach. Our pangenomic analysis revealed contigs that likely represent 

different fragments of the same prophage (Figure 33), we merged these contigs, and removed 9 contigs 

that were mostly composed of singleton gene-clusters to generate a second pangenomic analysis with a 

refined collection of 25 prophages (Figure 32). Clustering this refined collection of prophages according to 

the occurrence of gene-clusters revealed 9 “phage groups” of closely related prophages present in two or 

more TM7 genomes (Figure 32).  

Functional annotation is lacking for most virus genes, and the sequence diversity amongst the viral proteins 

is high, as is demonstrated in the lack of shared GCs across phages in Figure 32. Hence, it is challenging 

to find suitable targets for phylogenetic analysis of phages. In an effort to study the phylogenetic 

relationships of the phages we used two hallmark genes of (pro)phages: (1) integrase, and (2) terminase 

to compute phylogenies. We performed a phylogenetic analysis using the 13 integrases we identified in our 

collection of prophages (Figure 33). Our results reveal cases in which phages that associate with highly 

divergent hosts rely on similar integrases, while phages that otherwise appear to be closely related (i.e. 

belong to the same “phage group”) often rely on divergent integrases (Figure 33). The phylogenetic tree 

we computed using the 10 tail terminase large subunit identified in the prophages showed a better overall 

concordance with the organization according to GCs (Figure 32, Figure 35). Genomes of phage groups 

“pg02”, “pg07”, and “pg08” had high within-group identity of the terminase large subunit, but “pg01”, which 

also shows large variability in the pagenomic analysis (Figure 32) included prophages with divergent 

terminase large subunit, despite the fact that their hosts belonged to the same species (P1_a). While it 

appears that distantly related phages, infecting distantly related hosts, can use very similar integrases 

(Figure 35), our data does not include an case in which distantly related phages harbor similar terminases 
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(Figure 36). To examine the novelty of these prophages we searched for similar nucleotide sequences 

using Blast against the NCBI’s nr nucleotide collection, but this search had no results, emphasizing the 

novelty of these sequences. 

 

 

Figure 32: Pangenomic analysis of TM7 prophages reveals 9 “phage groups” of closely related phages. 
The dendrogram at the center of the figure represents the hierarchical clustering, using euclidean distance 
and Ward’s method, based on the frequency of occurrence of 143 GCs, each containing at least two 
homologous genes from at least two prophage sequences. The 22 inner circular layers represent prophage 
sequences, where each data point marks the presence or absence of a protein that belongs to the 
corresponding GC. Colors of these 22 layers are according to their “phage group” affiliation. The two 
outermost circular layers represent the combined homogeneity index for each GC, and the GCs that were 
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Figure 32 (continued): annotated with a COG function (green). A low homogeneity index signifies higher 
sequence diversity amongst the proteins that comprise a GC. The dendrogram at the top right represents 
the hierarchical clustering of the prophage sequences according to the GC frequency of occurrence using 
Euclidean distance and Ward’s method. The first horizontal layer below the dendrogram marks the two 
prophages that include a TM7 core protein. The next two layers show the clade affiliation of the TM7 
genomes, and the “phage group” affiliation. The lowest three horizontal layers show the number of 
singletons, number of genes per kbp, and the total length for each prophage sequence. 

The recovery of multiple closely related phages from TM7 genomes, as well as the presence of host (TM7) 

genes on the same contigs that contain the phage genes provide strong evidence for the association of 

these phages with the TM7 genomes. To further enforce this association, we used CRISPRCasFinder 

(Couvin et al. 2018) to search the TM7 genomes for CRISPR spacers and survey existing spacers for ones 

that match our collection of prophages. CRISPRCasFinder identified 66 CRISPR arrays, of which 14 had 

evidence level 3 or 4 as defined by Couvin et al. (Couvin et al. 2018) (Supplementary table 8l at 

doi:10.6084/m9.figshare.11634321), and originated from 12 genomes spanning clades P1, P2, P3, P4, and 

T2, but not T1 nor any of the environmental genomes. We blasted the set of 14 CRISPR arrays against the 

TM7 genomes and found a total of 9 spacers with blast hits that were not self-hits (i.e. not a blast match of 

the spacer to itself), which included 7 spacers with a single external match (i.e. a match outside of the 

genome where the spacer was found), 1 spacer with two external matches, and 1 spacer with 2 external 

matches and one internal match, showing that this spacer was self targeting (Supplementary table 8m at 

doi:10.6084/m9.figshare.11634321). 5 of these 9 spacers had hits to pg01 prophages, and revealed that 

this family of prophages targets a wide variety of TM7 species within the ‘G1’ oral caldes P1, P2, and P3 

(Supplementary table 8m at doi:10.6084/m9.figshare.11634321). Another spacer matched a pg06 

prophage. While we found pg06 prophages in genomes of sub-clades P2_a and P2_c, this spacer was 

found in a P3_a genome. An additional spacer from a P3_a genome matched a prophage from a P1_a 

genome suggesting the existence of multiple phage groups that target a variety of ‘G1’ oral genomes. Two 

additional spacers had hits across G1 genomes, but these matched sequences that we did not identify as 

prophages and were composed of singleton GCs with no functional annotation, deeming it hard to 

determine whether these are prophages or other mobile genetic elements. As mentioned above, we found 

a spacer from P_A_F_Bin_00032 to be self-targeting. Despite being potentially detrimental and confer 

autoimmunity, self-targeting spacers are fairly common (Stern et al. 2010). In this case, the spacer matched 

3 of the 4 genes in our dataset that comprise GC_00002421 in P2_a genomes. This GC had no COG 
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function, but was recognized to have a ‘PEGA domain’ by Pfam, which is found in surface layer proteins. 

While this GC was unique to members of P2_a, it seems that this protein is conserved and represents a 

core function in the TM7 pangenome, since a protein with this annotation was found in nearly all genomes, 

and almost always flanked by a “Sortase (surface protein transpeptidase)”. The apparent viability of the 

P_A_F_Bin_00032 population as evident by the recovery of the genome, despite the CRISPR self-targeting 

of a core function might suggest that this core function is not strictly required for the survival of TM7 in the 

oral cavity. 

In contrast to the oral clades P1, P2, P3, P4, and T2, we found no evidence for CRISPR-cas systems in T1 

genomes nor in the three environmental genomes. The CRISPRCasFinder output included contigs from T1 

genomes, but these only had evidence level 1 or 2, suggesting that they could be spurious identifications 

(Supplementary table 8l at doi:10.6084/m9.figshare.11634321). Indeed, many of these appeared to fall 

within genes that belong to a single GC, suggesting that something about the sequence of these specific 

genes confuses the CRISPRCasFinder algorithm. There was only one contig from one of the three 

environmental genomes (GWC2) that was included in the output of CRISPRCasFinder, but it had evidence 

level 1, and the identification fell within a TM7 core protein, and hence is likely an erroneous identification. 

In accordance with the lack of CRISPR arrays, we did not find any of the CRISPR associated proteins in 

the environmental genomes nor in genomes of clade T1, but we did find these proteins in genomes of the 

oral clades P1, P2, P3, P4, and T2. We find the lack of prophages and the lack of CRISPRs in environmental 

genomes to be highly interesting, since these fall within the G1 group to which the P1, P2, and P3 clades 

belong, which could imply that these CRISPR-cas systems are unique to oral-associated (or more generally 

to animal-associated) TM7, but an analysis of a wider variety of environmental TM7 would be required to 

test this hypothesis. To search for the potential source for CRISPR proteins in oral TM7, we blasted cas9 

proteins from 6 genomes representing all 5 CRISPR-containing clades, and representing the three GCs 

annotated as cas9 proteins, against the NCBI’s nr protein sequences. All 6 cas9 proteins were matching 

the same collection of proteins from oral TM7, but no environmental TM7. The top non- TM7 matches were 

of Firmicutes (Bacilli and Clostridia), suggesting that these proteins were once horizontally transfered from 

Firmicutes to oral-associated TM7. Future investigations could include a phylogenetic analysis of CRISPR 
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associated proteins of TM7 along with ones from other CPR and non-CPR (including human-associated) 

genomes to further shed light on the source of CRISPR systems in TM7 genomes, and whether these are 

unique to mammalian-associated TM7. 

While T1 and environmental genomes lacked CRISPR-cas systems, they could alternatively rely on 

restriction modification systems to defend against phages. Based on COG annotations, we identified Type 

I and/or Type II restriction-modification systems in 34 TM7 genomes spanning all identified oral clades and 

two of the three environmental genomes, GWC2 and RAAC3. In addition to lacking CRISPR-cas systems, 

,members of clade T1 were also lacking a protein annotated with the COG function “Phage shock protein 

PspC (stress-responsive transcriptional regulator)”, which was found in nearly all genomes from all other 

oral clades and in two of the three environmental genomes. 

In addition to prophages, we identified other mobile genetic elements in many TM7 genomes. 33 genes 

coding for various transposases were detected in 18 genomes, covering all oral clades and the three 

environmental TM7. These genes comprised a total of 22 GCs, and up to four transposases per genome 

(Supplementary table 8n at doi:10.6084/m9.figshare.11634321). The transposases were predominantly 

associated with GCs unique to specific lineages. 19 of the 22 GCs were singletons (i.e. identified in a single 

genome), the three other GCs, GC_00003909, GC_00002371, and GC_00001084 were identified in two, 

three and seven genomes, respectively.  GC_00001084 was annotated as an “ISXO2-like transposase 

domain” by Pfam and was identified in most P3_a and three P1_b genomes. GC_00002371 was identified 

in 3 (out of 5) T1_a genomes and was annotated with the COG function “Transposase InsO and inactivated 

derivatives”. While the transposases in T1_a genomes were highly conserved in protein sequences, they 

occurred in differing positions within the genomes (Supplementary table 8a at 

doi:10.6084/m9.figshare.11634321), suggesting recent mobility of these elements. GC_00003909 was 

detected in the two P1_c genomes with the COG function “Transposase and inactivated derivatives, IS30 

family”. In both P1_c genomes, this transposase occurred in the same exact position within the genome, 

suggesting that this might represent an inactive transposon. 
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In order to examine the potential origin of the TM7 transposases, we searched for similar sequences in 

NCBI’s non-redundant protein sequence database (Supplementary table 8o at 

doi:10.6084/m9.figshare.11634321). The vast majority matched best to transposases from other TM7 

genomes or other CPR genomes, including many genomes recovered from environmental samples. For 

example, the single transposase from T_C_M_MAG_00008 had best matches to other oral TM7, but also 

matched many other CPR, including CPR MAGs recovered by Probst et al. from an aquifer (Probst et al. 

2018). In contrast, T_C_M_Bin_00011 included what appears to be only the N-terminal region of an IS30-

family transposase which matched best to transposases from a Streptococcus agalactiae genome (89% 

coverage and 52% identity in protein sequence). Examination of the contig on which this transposase was 

detected showed that it is not likely to be explained by a binnig error, as this transposase was flanked by 

many core proteins of TM7 on one side, but on the other side, it was flanked by three short proteins that 

belonged to singleton GCs (i.e. with no homologs in the TM7 pangenome) and no functional annotation 

(gene ids 21837-21839 in Supplementary table 8a at doi:10.6084/m9.figshare.11634321). A blast search 

of protein sequences matched these three proteins with a surprisingly high identity (94%-100%) to genes 

from other oral bacteria representing various phyla, including Firmicutes, Fusobacteria, and Proteobacteria. 

The presence of a partial transposase next to genetic elements that appear to be widely shared between 

oral microbes could reflect a mechanism for horizontal gene transfer between TM7 and non-CPR oral 

microbes, but requires further validation. In summary, these results suggest that the transposases carried 

by oral TM7 genomes are predominantly anciently associated with CPR genomes, but also include 

transposases that were likely transferred to oral TM7 from other mammalian-associated bacteria more 

recently, and could potentially be used to incorporate proteins that are widely shared by oral bacteria. 
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Figure 33: Pangenomic analysis of a potential prophages includes multiple contigs that likely represent 
fragments of the same prophage. The gene content of each prophage is represented by an individual layer, 
and the 9 main groups of TM7-associated prophages are highlighted in different colors across layers. 
Layers that are in black color are ones that consisted mostly of singletons and were hence excluded from 
subsequent analysis. On the top right of the figure, the color bars in the top horizontal layer highlight pairs 
of contigs that belong to the same genome and that we identified as fragments of the same prophage and 
merged for the subsequent pangenomic analysis (Figure 32). In next horizontal layer, each genome for 
which we identified multiple prophage contigs is associated with a unique color, so that contigs that are in 
the same genome can be identified. 
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Figure 34: phylogeny of phages based on integrases. The dendrogram at the top of the figure represents 
the maximum likelihood phylogenetic tree of the prophages based on protein sequences of integrases. The 
names of genomes in which the phage was identified appear below the dendrogram, and a suffix of “_1” 
and “_2” marks the two prophages that were identified in T_C_F_MAG_00008. “GC”: marks the integrases 
that were in non-singleton GCs. “Clade”: the clade or subclade (if one exists) association of the host of each 
prophage. “Phage group”: phage group designation. “Same genome”: highlights two prophages from 
T_C_F_MAG_00008. “Type of phage”: either inovirus (green) or caudovirales (pink). 
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Figure 35: Phylogeny of phages based on terminases. The dendrogram at the top of the figure represents 
the maximum likelihood phylogenetic tree of the prophages based on protein sequences of terminase large 
subunit. The names of genomes in which the phage was identified appear below the dendrogram. “Gene 
cluster id”: marks the integrases that were in non-singleton GCs. “Clade”: the clade or subclade (if one 
exists) association of the host of each prophage. “Phage group”: phage group designation. “Same genome”: 
highlights two prophages from T_C_F_MAG_00008. 

2.7.6 Novel non-CPR MAGs 

Our collection of MAGs included 43 genomes with no closely related genome in HOMD (Figure 2, 

Supplementary table 10a at doi:10.6084/m9.figshare.11634321). In order to test the novelty of these 

genomes, we blasted the protein sequences of the ribosomal proteins of these populations against the 

NCBI non redundant protein sequences database. In conjunction with the phylogenetic analysis (Figure 2), 

blast results confirmed that 34 of these genomes represent 11 lineages with no representation on NCBI 

(from here on referred to as “novel MAGs”), while the additional 9 genomes belong to two lineages from 

the family Eubacteriaceae and matched genomes of Stomatobaculum longum and Lachnospiraceae 

bacterium oral taxon 096 on the NCBI, which were absent from the HOMD at the time that we downloaded 
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the HOMD genomes, but have since then been added (Supplementary tables 10b, 10c at 

doi:10.6084/m9.figshare.11634321). 

2.7.7 A novel MAG for a member of the Mollicutes 

Members of the Mollicutes, a class of bacteria that lack cell wall (Davis et al. 2013) are known to be 

commonly found in the human oral cavity. In particular, Mycoplasma are highly ubiquitous members of the 

oral microbiome (Dewhirst et al. 2010) and include some pathogens. Studies based on 16S rRNA amplicons 

identified two taxons, HMT-504 and HMT-906, as potential members of the Mollicutes on a deep 

phylogenetic branch between other known Mollicutes and members of the class Erysipelotrichia (Dewhirst 

et al. 2010). T_C_F_MAG_00011 has no closely related genome on GenBank (Supplementary table 10c 

at doi:10.6084/m9.figshare.11634321) and our phylogenomic analysis with representatives of all taxa under 

the classes Mollictutes and Erysipelotrichia as available on GenBank on 12/24/2018. (Figure 36) placing it 

deeply branching between these two classes, suggesting it could represent either HMT-504 or HMT-906. 

Notice that we excluded two GenBank genomes annotated as Erysipelotrichia (GCF.900120365.1, 

GCF.000178255.1) from our analysis, since our preliminary phylogenetic analysis showed these are likely 

not members of Erysipelotrichia. The closest genomes to T_C_F_MAG_00011 on were members of the 

genus acholeplasma, including many plant pathogens, but also including a horse oral pathogen (Atobe, 

Watabe, and Ogata 1983). Our analysis using the HMP metagenomes showed that T_C_F_MAG_00011 

is associated with the tongue and occurs in 20% of HMP individuals for which tongue samples are available 

(Figure 20, Supplementary table 10c at doi:10.6084/m9.figshare.11634321). 
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Figure 36: Phylogeny based on ribosomal proteins places T_C_F_MAG_00011 closest to genomes of 
Acholeplasmatales. Phylogenetic tree of T_C_F_MAG_00011 (blue) together with RefSeq genomes of 
class Erysipelotrichia (green), phylum Tenericutes, including class Mollicutes, and within it orders 
Entomoplasmatales and Mycoplasmatales (grey), and Acholeplasmatales (brown), along with five other 
Firmicutes, representing classes Bacilli, Clostridiales, and Negativicutes as outliers to root the phylogeny 
(purple). Two genomes wrongly annotated as Erysipelotrichia appear in red color. 

2.7.8 Novel Clostridiales MAGs represent prevalent tongue-associated populations 

We recovered 5 Clostridiales MAGs for which we could not assign a family designation (Figure 37). 3 MAGs 

were closely related and seem to represent a prevalent tongue-associated species, and were detected in 

>50% of HMP tongue metagenomes (Figure 20). We detected an additional population 

(T_A_M_MAG_00009) in 30% of tongue samples and 20% of plaque samples, while T_C_M_MAG_00006 

was detected only in seven HMP tongue samples (3%), and were each distant phylogenetically from any 

other genome on our phylogenomic analysis using all Clostridiales genomes from (Supplementary tables 

10e-h at doi:10.6084/m9.figshare.11634321). 
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Figure 37: Phylogenomic analysis of Clostridiales genomes from NCBI with our Clostridiales MAGs. A 
maximum likelihood phylogenetic tree was computed based on our collection of ribosomal proteins using 
representative genomes for all taxa of order Clostridiales in RefSeq. Our MAGs are highlighted with purple 
color. The tree was rooted using a Prevotella genome. 

2.7.9 Novel Bacteroidia MAGs include a tongue-specialist and a subgingival plaque specialist 

One of our Bacteroidia MAGs (P-A-M_MAG_00010) matched a genome recently recovered from a 

metagenomic sample of periodontal pockets of a patient with periodontitis (McLean et al. 2015)) and seems 

to represent the same species. Mclean et al. named this population Candidatus Bacteroides 

periocalifornicus (CBP), an odd choice given the fact that phylogenomic analyses show that it is not a 

member of the genus bacteroides (McLean et al. 2015). Torres et al. (Torres et al. 2019) showed that this 

CBP is enriched in subgingival plaque samples as compared to supragingival plaque samples, which our 

analysis also confirms (Figure 21, Figure 22), an expected result as both analyses relied on the same HMP 

samples. Two closely related Bacteroidia (T_B_M_MAG_00007, T_C_F_MAG_00010) were prevalent in 

tongue samples, and detected in 40% of HMP tongue samples (Figure 20, Supplementary table 10f at 
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doi:10.6084/m9.figshare.11634321). CBP was the closest relative to these MAGs, but with an average of 

76% identity of the amino-acid sequences of ribosomal proteins, suggesting that these two lineages are 

distant and potentially represent distinct genera or families within Bacteroidia. 
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Summary. Affordable high-throughput sequencing strategies and rapidly emerging new ‘omics approaches 

revolutionize microbiology and offer unprecedented access to the ecology and evolution of naturally 

occurring microbial life. However, accelerated progress in microbiology amidst this data revolution requires 

the empowerment of microbiologists with software tools that enable integrated analyses of complex ‘omics 

data. Anvi’o is an open-source, community-driven analysis and visualization platform that empowers 

microbiologists to work with multiple ‘omics strategies, perform exploratory data analyses, and visualize 

large datasets interactively. Yet, implementing an ‘omics workflow in anvi’o starting from raw sequencing 

data requires the orchestration of a large number of atomic computational tasks, which can be discouraging. 

Here we implement an easy-to-use and extensible workflow management strategy for anvi’o to lower 

barriers for complex ‘omics analyses. Availability. The URL http://github.com/merenlab/anvio serves the 

codebase for the anvi’o snakemake workflows and the URL http://merenlab.org/anvio-workflows serves a 

comprehensive user tutorial. 
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3.1 Introduction 

Advances in molecular approaches and sequencing chemistry have turned every corner of biology into a 

‘data-enabled’ discipline, including microbiology, the study of the most diverse and numerous forms of life 

(Whitman, Coleman, and Wiebe 1998) that makes our planet continue to tick (Falkowski, Fenchel, and 

Delong 2008). New data emerging form increasingly popular ‘omics data generation approaches (i.e., 

metagenomics, metatranscriptomics, metaproteomics, etc) offer new insights into the ecology and evolution 

of microbes through new ‘omics strategies (i.e., genome-resolved metagenomics, pangenomics, 

phylogenomics, etc).  

We previously have introduced anvi’o (Eren et al. 2015), a comprehensive software platform that affords 

in-depth analyses of ‘omics data (Delmont et al. 2018; Reveillaud et al. 2019; Yeoman et al. 2019) through 

interactive visualization strategies and extensive online tutorials. As of today, anvi’o comprises more than 

hundred programs, each of which performs individual tasks that can be flexibly combined to build complex 

analytical workflows (represented as a network at http://merenlab.org/nt). However, preparing raw 

sequencing data for exploratory analyses in anvi’o typically require many atomic steps of computation that 

dramatically increase with number of samples (i.e., quality filtering, assembly of short reads, read 

recruitment, etc). For instance, our recent genome-resolved metagenomics survey of 7 genomes in the 

context of 88 metagenomes resolved to more than 3,000 atomic steps of computation (Shaiber and Eren 

2019),  which demonstrates that even a relatively simple ‘omics analysis can become intractable for those 

who do not have substantial training in bioinformatics. 

3.2 The anvi’o workflows 

Here we present the anvi’o workflows, a collection of commonly-used bioinformatics strategies for microbial 

‘omics. The anvi’o workflows rely on Snakemake (Köster and Rahmann 2012), which offers easy 

deployment to any computer system, automatic parallelization of independent analysis steps, and the ability 

to resume an interrupted workflow without repeating steps that were successfully executed. In many ways 

the anvi’o workflows are comparable to previous studies that offered means to streamline ‘omics analyses 
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(Dean et al. 2018; Uritskiy, DiRuggiero, and Taylor 2018; Arkin et al. 2018; Clarke et al. 2019; Stewart et 

al. 2019; Murovec, Deutsch, and Stres 2019; P.-E. Li et al. 2017; Kieser et al. 2019; Naccache et al. 2014), 

but instead of static figures and tables, our workflows yield data products for the anvi’o ecosystem, enabling 

interactive exploration of the initial analyses. 

The URL http://merenlab.org/anvio-workflows serves an online user tutorial. 

3.3 General design 

The main entrance point of the anvi’o workflows is the command line program anvi-run-workflow, which 

distributes within the codebase of anvi’o v5 or later and currently gives access to four workflows: contigs, 

metagenomics, pangenomics, and phylogenomics. These workflow management system is a collection of 

Python modules designed with object oriented principles in mind and use multiple inheritance models to 

extend any workflow with another, whether they are ‘built-in’ workflows described here, or ‘external’ 

workflows that can be implemented and specified by users. The anvi’o workflows dynamically generate 

template JSON configuration files with default options for users to edit, processes user-provided 

configuration files, sanity checks the input data, and imports Snakemake (Köster and Rahmann 2012) 

Python modules to resolve task dependencies and task scheduling within the boundaries of user-defined 

computational resources. A detailed description of each workflow is provided below. 

3.4 Contigs workflow 

The contigs workflow includes steps for annotating FASTA files using the anvi’o contigs database. The only 

mandatory step includes running anvi-run-contigs-database, which includes running prodigal (Hyatt et al. 

2010) for gene calling amongst other steps described in Eren et al. (Eren et al. 2015). Optional steps include 

identifying single copy core genes (SCGs), functional annotation, taxonomy assignment and more 

(supplementary text 01). To enable handling FASTA files, the contigs workflow is inherited by all other built-

in workflows. 
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3.5 Metagenomics workflow 

Metagenomes are rich with information and highly complex, and as such their analysis could take many 

forms. Accordingly, the metagenomics workflow, includes two modes: 1. Assembly-based analysis (“default 

mode”) 2. Reference/s-based analysis (“references mode”). At the core of both modes is the generation 

and annotation of an anvi’o profile database that can be used to explore metagenomic data using the anvi’o 

interactive interface. The entry point to the default mode is a collection of FASTQ files of pair-end reads, 

and the output is an annotated merged profile database that is ready for manual binning and curation. This 

workflows includes all steps from quality filtering, assembly, automatic binning, mapping, taxonomic 

profiles, and more (supplementary text 02). Along with assembly and binning, metagenomes are often used 

to explore occurence of individual genes or whole genomes across metagenomes (Delmont and Eren 

2017). The “references mode” is intended for this purpose, and takes a collection of FASTQ files and a 

collection of FASTA files as input. With the exception of the assembly steps, all other steps are performed 

as described for the “default mode”. 

3.6 Phylogenomics workflow 

Phylogenomics is a widely used approach to study the evolutionary relationships of organisms using 

genomic sequences. The contigs workflow is used to perform any required steps such as generating contigs 

databases and identifying SCGs, which are then exported as amino-acid sequences, concatenated, 

aligned, and trimmed prior to the calculation of a maximum likelihood phylogenetic tree (see supplementary 

text 03 for more details). 

3.7 Pangenomics workflow 

A pangenomic analysis includes the comparison of the set of genes encoded in a collection of genomes.  

Running a pangenomic analysis using anvi’o is simple and includes two steps, assuming contigs databases 

have been generated (see supplementary text 04). By inheriting the contigs and phylogenomics workflow, 

anvi-run-workflow can take a list of FASTA files as input, and generate a pangenomic database, ready for 
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visualization in the interactive interface, and would optionally include functional annotation, average 

nucleotide identity (ANI), and a phylogenetic tree. 

3.8 Conclusion 

The anvi’o workflows streamline the analysis of microbial ‘omics data. The utilization of the Snakemake 

workflow management system along with an easy-to-use interface allows for scientists with minimal 

computational expertise to process large ‘omics datasets, and thus enjoy the wide range of visualization 

and analysis approaches that anvi’o offers. More information, including   examples for common use cases, 

and answers to frequently asked questions is available on the tutorial at: 

http://merenlab.org/2018/07/09/anvio-snakemake-workflows/. 
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3.9 Supplementary text 01 - contigs workflow 

The contigs workflow includes the mandatory step of generating an anvi’o contigs database using anvi-

gen-contigs-database, which computes and stores tetra-nucleotide frequencies and GC-content of contigs, 

and uses Prodigal (Hyatt et al. 2010) to identify and store information regarding open reading frames. 

Optional steps of the workflow include ‘anvi-script-reformat-fasta’, which is run prior to generating a contigs 

database, in order to reformat FASTA and simplify the names of contigs and/or remove short contigs; ‘anvi-

run-hmms’, which by default runs built-in HMM profiles, for the identification of single-copy core genes 

(SCGs) and ribosomal RNAs, but also allows users to provide custom HMM profiles; Centrifuge (Kim et al. 

2016) to annotate genes with taxonomy; functional annotation using one or more of the following: ‘anvi-run-
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ncbi-cogs’, ‘anvi-run-pfams’, or  eggNOG-mapper (Huerta-Cepas et al. 2017); ‘anvi_run_scg_taxonomy’ to 

annotate SCGs with taxonomy. Along with the config file, the contigs workflow requires a “fasta.txt” input, 

which is a TAB-delimited file to specify paths to the relevant input file. In addition to performing all the 

aforementioned steps, the contigs workflow could be easily utilized to work with genomes available on the 

NCBI’s genomic databases in conjunction with ‘ncbi-genome-download’ (https://github.com/kblin/ncbi-

genome-download) as is described here: http://merenlab.org/2019/03/14/ncbi-genome-download-magic/. 

3.10 Supplementary text 02 - metagenomics workflow 

Mandatory steps of the “default mode” of the metagenomics workflow include running assembly with 

MEGAHIT (D. Li et al. 2015), IDBA-UD (Peng et al. 2012), or metaSPAdes (Nurk et al. 2017); resulting 

FASTA files are processed using the aforementioned contigs workflow; short reads are mapped to the 

assembly using Bowtie2 (Langmead and Salzberg 2012); SAM files are converted to BAM files using 

SAMtools (H. Li et al. 2009); BAM files are sorted and indexed using ‘anvi-init-bam’, and together with the 

contigs databases are used to generate profile databases for each metagenome using ‘anvi-profile’ (Eren 

et al. 2015). Individual profile databases are merged using ‘anvi-merge’. Optional steps include quality 

filtering using ‘iu-filter-quality-minoche’ and generation of a tabular summary of quality filtering results; the 

execution of one or more automatic binning algorithms using anvi-cluster-contigs, which currently clusters 

contigs using CONCOCT (Alneberg et al. 2013), METABAT2 (Kang et al. 2019), MAXBIN2 (Wu, Simmons, 

and Singer 2016), and/or BINSANITY (Graham, Heidelberg, and Tully 2017), and refines clustering results 

using DAS Tool (Sieber et al. 2018); taxonomic profiles of metagenomes created using KrakenUniq 

(Breitwieser, Baker, and Salzberg 2018) and imported into the profile databases; removal of short reads 

based on mapping using Bowtie2 to one or more reference FASTA files, which for example, could be used 

to remove human contamination from gut metagenomes by mapping to the human genome; summarizing 

profile databases using ‘anvi-summarize’; and splitting self-contained profile and contigs databases using 

‘anvi-split’. 
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3.11 Supplementary text 03 - phylogenomics workflow 

The phylogenomics workflow (which is extensively discussed here: http://merenlab.org/2018/07/09/anvio-

snakemake-workflows/#phylogenomics-workflow) accepts three kinds of input: 

1. An Internal genomes file 

2. External genomes file 

3. A “fasta.txt” file (same as for the contigs workflow) 

The format of internal and external genomes files is described here: 

http://merenlab.org/2016/11/08/pangenomics-v2/#generating-an-anvio-genomes-storage. The contigs 

workflow is then used to perform any required steps, so that protein sequences of user-specified SCGs 

could be extracted from contigs databases using ‘anvi-get-sequnces-for-hmm-hits’, which aligns the protein 

sequences with either FAMSA (Deorowicz, Debudaj-Grabysz, and Gudyś 2016) or MUSCLE (Edgar 2004). 

Protein alignment is trimmed using trimAl (Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009), and a 

maximum likelihood phylogenetic tree is computed using IQ-TREE (Nguyen et al. 2015). When inherited 

by the pangenomics workflow (see below), the phylogeny could alternatively be computed using sequences 

exported using ‘anvi-get-sequences-for-gene-clusters’, which exports and aligned protein sequences using 

qualifying criteria that allow the identification of single copy core gene-clusters that are suitable for 

phylogenomics (See http://merenlab.org/2016/11/08/pangenomics-v2/#scrutinizing-phylogenomics). 

3.12 Supplementary text 04 - pangenomics workflow 

The anvi’o pangenomic workflow includes two steps: generating a genomes storage using ‘anvi-gen-

genomes-storage’, and generating a pangenomic database using ‘anvi-pan-genome’, assuming the 

existence of ‘external genomes’ or ‘internal genomes’ as the entry point 

(http://merenlab.org/2016/11/08/pangenomics-v2/). The pangenomic workflow of ‘anvi-run-workflow’ allows 

the option of providing a collection of FASTA files as input (“fasta.txt”) in addition to internal and external 

genomes files. If a collection of FASTA files were provided, then the inherited contigs workflow is executed 
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with all the user-specified steps to generate annotated contigs databases, and an external genomes file will 

also be automatically produced. The phylogenomics workflow is inherited as well, and computed 

phylogenetic trees are automatically imported into the pangenomic database, and subsequently included 

in the interactive interface. Genome similarity is optionally computed using ‘anvi-compute-genome-

similarity’, which currently includes sequence similarity calculations using PYANI (Pritchard et al. 2016), 

fastANI (Jain et al. 2018), or sourmash (Brown and Irber 2016). Genome similarity scores are then imported 

into the pangenomic database and presented in the interactive interface. 
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CHAPTER 4 EXAMPLES OF APPLICATIONS OF ANVI’O WORKFLOWS 

Our motivation in developing the anvi’o workflows was originally driven by the need to perform metagenomic 

read recruitment studies, and the realization that performing such analyses at scale and with minimal effort, 

is an important need in the scientific community. We have expanded the workflow to cover additional 

common analysis types such as phylogenomics and pangenomics. By streamlining preprocessing steps, 

the anvi’o workflows allow researchers to easily utilize the anvi’o interactive interface for the exploratory 

investigation required to make sense of complex sequencing data. The following sections provide 

descriptions of applications of the anvi’o workflows to address various questions in microbial ecology, with 

a focus on genome resolved metagenomics, and thus demonstrate the utility of this tool to promote 

reproducibility and accessibility of microbial ‘omics analysis at scale. Section 4.1 expands on the refinement 

of metagenome assembled genomes (MAGs) of cryptic members of the oral cavity, and demonstrates the 

importance of adhering to MAG quality guidelines set by the scientific community. Section 4.2 provides an 

example of the dangers in heavy reliance on MAG quality metrics with no manual exploration of ‘omics 

data. While sections 4.1 and 4.2 serve as warnings against the misleading potential of poorly constructed 

MAGs, in section 4.3 we demonstrate the advantage of generating MAGs versus studying raw assemblies 

of metagenomes by expanding on the recovery of a Candidatus Parcubacteria genome from blood samples 

of pregnant women. Finally, section 4.4 includes an additional application of anvi’o workflows to study 

metagenomes of mosquito overies, and the discovery of a putative plasmid in the widespread arthropod 

parasite wolbachia. 

4.1 Composite Metagenome-Assembled Genomes Reduce the Quality of Public Genome Repositories 

Work published in mBio (Shaiber and Eren 2019) 

In their recent study, Espinoza et al. employ genome-resolved metagenomics to study supragingival plaque 

metagenomes of 88 individuals (1). The 34 metagenome-assembled genomes (MAGs) that the authors 

report include those that resolve to clades that have largely evaded cultivation efforts, such as 

Gracilibacteria (formerly GN02) and Saccharibacteria (formerly TM7) of the recently described Candidate 
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Phyla Radiation (2). Generating new genomic insights into the understudied members of the human oral 

cavity is of critical importance for a comprehensive understanding of the microbial ecology and functioning 

of this biome, and we acknowledge the contribution of the authors on this front. However, the redundant 

occurrence of bacterial single-copy core genes suggest that more than half of the MAGs Espinoza et al. 

report are composite genomes that do not meet the recent quality guidelines suggested by the community 

(3). Composite genomes that aggregate sequences originating from multiple distinct populations can yield 

misleading insights when treated and reported as single genomes (4). 

To briefly demonstrate their composite nature, we refined some of the key Espinoza et al. MAGs through a 

previously described approach (5) and the data the authors kindly provided (1). We found that MAG IV.A, 

MAG IV.B, and MAG III.A described multiple discrete populations with distinct distribution patterns across 

individuals (Figure 38). A phylogenomic analysis of refined MAG IV.A genomes resolved to the candidate 

phylum Absconditabacteria (formerly SR1), and not to Gracilibacteria as reported by Espinoza et al. (Figure 

38D). A pangenomic analysis of the original and refined MAG III.A genomes with other publicly available 

Saccharibacteria genomes showed 7-fold increase in the number of single-copy core genes (Figure 38E). 

These findings demonstrate the potential implications of composite MAGs in comparative genomics studies 

where single-copy core genes are commonly used to infer diversity, phylogeny, and taxonomy (6). 

Composite MAGs can also lead to inaccurate ecological insights through inflated abundance and 

prevalence estimates. For instance, the original MAG III.A recruited a total of 1,849,593 reads from 

Espinoza et al. metagenomes, however, the most abundant refined III.A genome (MAG III.A.2, Figure 38C), 

recruited only 629,291 reads. 
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Figure 38: Refinement of three composite genome bins. (A-C) The top-left corners of these panels display 
the original name of a given Espinoza et al. MAG (see Table 1 in the original study) and its estimated 
completion and redundancy (C/R) based on a bacterial single-copy core gene collection (7). Each 
concentric circle represents one of the 88 metagenomes in the original study, dendrograms show 
hierarchical clustering of contigs based on sequence composition and differential mean coverage across 
metagenomes (using Euclidean distance and Ward’s method), and each data point represents the read 
recruitment statistic of a given contig in a given metagenome. Arcs at the outmost layers mark contigs that 
belong to a refined bin along with their new completion and redundancy estimates (C/R). (D) The 
phylogenomic tree organizes genomes based on 37 concatenated ribosomal proteins. Coloring of genome 
names match their taxonomy on NCBI, and branch colors match the consensus taxonomy of genomes they 
represent. Espinoza et al. reported MAG IV.A as Gracilibacteria (hence the red color), however this 
phylogenomic analysis places refined MAGs under Absconditabacteria. (E) Pangenomic analysis of 
Espinoza et al. Saccharibacteria MAG III.A before (left) and after (right) refinement together with the 
Saccharibacteria genomes from panel D. Pangenomes describe 575 and 497 gene clusters, respectively, 
where each concentric circle represents a genome and bars correspond to the number of genes a given 
genome contributing to a given gene cluster (the maximum value is set to 2 for readability). Outermost 
layers mark single-copy core gene clusters to which every genome contributes precisely a single gene. We 
used Bowtie2 (8) to recruit reads from metagenomes, and anvi’o (9) to visualize and refine Espinoza et al. 
MAGs. FAMSA (10) aligned anvi’o-reported ribosomal protein amino acid sequences, trimAl (11) curated 
them, and IQ-TREE (12) computed the tree for the phylogenomic analysis. Anvi’o used DIAMOND (13) and 
MCL (14) algorithms to determine pangenomes. A reproducible bioinformatics workflow and FASTA files 
for refined MAGs are available at http://merenlab.org/data/refining-espinoza-mags. 
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Co-assembly of a large number of metagenomes that contain very closely related populations often hinders 

confident assignments of shared contigs into individual bins. Nevertheless, even when proper refinement 

is not possible, reporting composite MAGs as single genomes should be avoided. As of today, highly 

composite Espinoza et al. MAGs (Figure 38 in this letter and Table 1 in Espinoza et al.) are available as 

single genomes in public databases of the National Center for Biotechnology Information (NCBI). 

The rapidly increasing number of MAGs in public databases already competes with the total number of 

microbial isolate genomes (3), and increasingly frequent studies that report large collections of MAGs offer 

a glimpse of the future (15–17). Despite their growing availability, metagenomes are inherently complex 

and demand researchers to orchestrate an intricate combination of rapidly evolving computational tools and 

approaches with many alternatives to reconstruct, characterize, and finalize MAGs. We must continue to 

champion studies such as the one by Espinoza et al. for their contribution to our collective effort to shed 

light on the darker branches of the ever-growing Tree of Life. At the same time, editors and reviewers of 

genome-resolved metagenomics studies should properly scrutinize the quality and accuracy of MAGs prior 

to their publication. A systematic failure at this will reduce the quality of public genome repositories while 

yielding adverse effects such as misleading insights into novel microbial groups and reduced trust among 

scientists in findings that emerge from genome-resolved metagenomics. 

4.2 Standard Quality Measures For Metagenome Assembled Genomes Can Fail To Properly Predict the 

Quality of MAGs 

Work described in preprint at bioRxiv (Chen et al. 2019c) 

Recent studies employing single-assembly strategies and automatic binning are generating hundreds of 

thousands of metagenome-assembled genomes (MAGs), while heavily relying on metrics of MAG quality 

that are primarily based on occurrence of single copy core genes (SCGs), without the manual verification 

of MAG quality. (Almeida et al. 2019; Nayfach et al. 2019; Pasolli et al. 2019). While such studies expose 

previously unknown branches of the Tree of Life (Leviatan and Segal 2019), occurrence of SCGs might not 

be sufficient to support claims of MAG quality, and low quality MAGs could yield false conclusions (Shaiber 
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and Eren 2019). Pasolli et al. suggest that the MAGs they have reconstructed using this approach were 

comparable in  quality to genomes of isolates or MAGs that are refined through manual processes (Pasolli 

et al. 2019). To highlight the potential pitfalls of automatic binning with no manual refinement, and in 

particular, the shortcomings of heavily relying on occurrence of SCGs to infer MAG quality, we examined 

one of the MAGs published by Pasolli et al. (Pasolli et al. 2019) (hereafter referred to as Pasolli MAG), that 

resolves to the candidate phylum TM7, a member of a poorly understood branch of the Tree of Life (Brown 

et al. 2015), that contains commonly found members of the oral microbiome (B. Bor et al. 2019). 

Our recent publication with Chen and colleagues (Chen et al. 2019c) includes a description of the 

application of the anvi’o workflows to recruit reads from 481 Human Microbiome Project (HMP) oral 

samples, including the HMP sample that was originally used by Pasolli et al. to assemble and bin Pasolli 

MAG. Following read recruitment, we utilized the anvi’o interactive interface to identify contigs in Pasolli 

MAG that are contamination, originating from non-TM7 genomes, based on coverage patterns of contigs in 

Pasolli MAG. Using sequence search against the National Center for Biotechnology Information (NCBI) 

genomic databases, we further showed that the contaminating contigs primarily originated from Veillonella, 

and that these contaminating contigs were transparent to the quality measures applied by Pasolli et al. due 

to lack of SCGs. This work demonstrates that lack of SCGs does not imply lack of contamination in a MAG, 

and that heavily relying on SCGs to estimate MAG quality could lead to erroneous insight. 

4.3 Binning Contigs Into Metagenome Assembled Genomes Can greatly improve data interpretation 

Work described in preprint at bioRxiv (Chen et al. 2019c) 

Analysis of shotgun metagenomes could take many forms, and common applications include assembly of 

short reads into contigs followed by either an analysis of these contigs as independent units, or binning of 

contigs into metagenome-assembled genomes (MAGs) (Quince et al. 2017). While analysis of contigs 

without binning could be appealing as an approach to circumvent challenges presented by the process of 

binning MAGs (Quince et al. 2017), claims made based on analysis of contigs that are not binned according 

to genomic affiliations may lead to erroneous conclusions. 
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In addition to the example mentioned in section 4.2, in Chen et al. 2019 (Chen et al. 2019c) we discuss a 

case study in which we demonstrate the contrast between a contigs-centric analysis (i.e. without binning) 

and genome-resolved analysis (i.e. with binning of contigs into MAGs) by reanalyzing the data of Kowarsky 

et al. (Kowarsky et al. 2017). In order to explore microbial diversity in blood samples, Kowarsky et al. 

(Kowarsky et al. 2017) performed shotgun sequencing of circulating cell-free DNA from more than 1000 

samples. Kowarsky et al. identify a total  of 3,761 novel contigs that do not match any known bacteria or 

virus in public databases with sequence homology, and by assigning taxonomy independently to each of 

these contigs, they conclude that these represent at least 1000 novel taxa of the human microbiome that 

represent both bacteria and viruses. Using a genome-resolved approach, we showed that a single 

Parcubateria genome is the only dominant bacterial source for novel contigs, contrasting with Kowarsky et 

al.’s finding (Chen et al. 2019c). In our re-analysis of the Kowarsky et al. samples we utilized the anvi’o 

workflows to streamline read recruitment of the Kowarsky et al. cell free DNA metagenomes to the novel 

contigs as well as non-novel contigs published in the original Kowarsky et al. study. The read recruitment 

analysis allowed us to utilize coverage patterns, along with sequence composition when clustering contigs 

in order to identify genomic bins confidently (Quince et al. 2017). Due to the low coverage of contigs in 

these metagenomes, we used differential detection, rather than the more common differential coverage of 

contigs in order to cluster contigs (see the reproducible workflow at 

http://merenlab.org/data/parcubacterium-in-hbcfdna/ for full details). 

In summary, our reanalysis of the Kowarsky et al. samples, contrasts with their suggestion of more than 

1,000 novel species  found in blood samples, and instead suggests that a single Parcubacteria population 

is the only dominant source for novel bacterial contigs in these blood samples. 

4.4 A genome resolved metagenomics strategy to explore the intra-species diversity and mobilome of 

Wolbachia 

Work published in Nature Communications (Reveillaud et al. 2019) 
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Wolbachia are intracellular bacteria that are common parasites of nematodes and arthropods, including 

mosquitoes that are vectors that transmit diseases such as dengue, West Nile, and Zika viruses (Taylor, 

Bordenstein, and Slatko 2018; LePage and Bordenstein 2013; Stouthamer, Breeuwer, and Hurst 1999). 

New promising vector control strategies have been developed using Wolbachia due to their natural ability, 

through the temperate bacteriophage WO, to modify their mosquito host reproductive behavior (Bourtzis et 

al. 2014; Mains et al. 2016; O’Neill et al. 2018). But a lack of isolates provides challenges in studying the 

Wolbachia genome, and most prior metagenomic studies of Wolbachia relied on pooled samples of 

laboratory grown insects due to the low infection rate (Klasson et al. 2008; Iturbe-Ormaetxe et al. 2011). 

Studying pooled samples from multiple individuals can obscure variability across populations of Wolbachia. 

In Reveillaud et al. (Reveillaud et al. 2019) we used samples from ovaries of individual wild mosquitoes 

captured in France to overcome previous limitations, and along with discovering viral genes missing in 

previously published Wolbachia genomes, we identified a putative plasmid (pWCP). Al preprocessing steps 

required for the genomic binning of Wolbachia MAGs, including assembly and read recruitment were 

executed using the anvi’o workflows. We further utilized the anvi’o workflows to assess the occurrence of 

pWCP across published metagenomes, and showed that it was widespread and found in samples from 

Turkey, Algeria and Tunisia. 

The discovery of a Wolbachia plasmid provides exciting avenues for future genome-editing strategies of 

Wolbachia, which has been recalcitrant to genetic modification to this date. Successful genomic 

manipulation of Wolbachia could enhance the ability to utilize Wolbachia for vector control. 

4.5 Discussion 

The anvi’o interactive interface allows the visualization of complex ‘omics data needed for exploratory and 

effective data mining. By solving a major bottleneck in preprocessing steps required prior to visualization, 

the anvi’o workflows empower microbiologists by promoting microbial ‘omics analyses at scale, and make 

it so that, pending on accessibility to appropriate computing infrastructure (Kyrpides, Eloe-Fadrosh, and 

Ivanova 2016), human involvement required for analyzing thousands of samples is as minimal as that 

required for analyzing a few samples. Utilization of the same data in multiple studies is crucial not only in 
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order to verify findings, but also since the complex nature of sequencing data guarantees that a single study 

will not be sufficient to extract the entire value out of the data (Kyrpides, Eloe-Fadrosh, and Ivanova 2016). 

Promoting reproducibility and reuse of data in microbiology will accelerate discovery even further in this 

fast evolving field. Indeed, our reanalysis of Espinoza et al., Pasolli et al., and Kowarsky et al. datasets was 

only possible due to the minimal effort required to process their data, along with the immediate insight 

provided by exploring these data in the anvi’o interactive interface. 

But these advantages are not exclusive to reanalysis projects, by utilizing the anvi’o workflows in studying 

insect ovary metagenomes our time and effort remained invested in novel exploration of the newly 

generated data, rather than on the execution of the initial steps of analysis which are largely repetitive and 

standard. Automated processing of samples at scale also lowers the bar for additional exploratory work. 

For example, the assessment of the occurrence of TM7 populations in multiple datasets, including HMP 

oral samples, and samples from patients with periodontitis, which is discussed in Chapter 1, was made 

easy due to utilization of the anvi’o workflows. 

Our work demonstrates that utilization of the anvi’o workflows streamlines the path from raw sequences to 

interactive visualization that allows high resolution exploratory investigations of ‘omics data, and thus 

promoting reproducibility, and the democratization of data analysis in modern, data-rich microbiology. 
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CHAPTER 5 CONCLUSIONS 

Microbes are abundant, and are abundantly involved in processes of ecological importance (Cavicchioli et 

al. 2019), and of medical and biotechnological importance (Quince et al. 2017). Advances in sequence 

technology have significantly enhanced our understanding of microbial ecology and evolution (Quince et 

al. 2017), and have transformed microbiology into a data-rich science (Kyrpides, Eloe-Fadrosh, and Ivanova 

2016). But this transformation provides new challenges to microbiologists, and solutions that allow high 

resolution exploratory investigations of ‘omics data at scale, along with computational training for 

microbiologists are lacking. The work presented here summarizes my efforts throughout my graduate 

studies to address these challenges. While focusing on specific questions in microbial ecology, I made 

efforts to streamline the analysis of microbial ‘omics data and solve bottlenecks by striving to develop 

computational tools that are well-designed, and provide adequate documentation and tutorials to allow for 

1) extensibility 2) the accessibility of these tools to people with minimal computational training. 

Through my investigations of the oral microbiome, I have expanded our genomic insight into understudied 

members of the oral cavity. My work revealed plaque-associated TM7 to be much more similar to 

environmental TM7, rather than to tongue and gut-associated TM7. These findings suggest that at least for 

TM7 the plaque environment is similar to non-host environments. Applying the approaches presented here 

to study other taxa could reveal whether plaque resembles non-host environments for other members of 

the oral microbiome, and could shed light on the adaptation process of environmentally-derived microbes 

to the host environment. 
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