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2.1 a) Local displacement represents the movement of a point on the ice surface as
a result of ice melting at that particular point. It is a function only of local ice
characteristics at that point. For both local and hydrostatic displacements the
positive direction is defined as upwards. b) Rigid body displacement represents
the motion of a floe as a whole in an effort to maintain hydrostatic balance
because melting removes mass above or below sea level. Melting above sea level
induces an upward motion of the floe, whereas melting below sea level induces a
downward motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Hypsographic curves showing the percentage of the sea ice surface that is lower
than a particular elevation. Pond coverage on highly permeable sea ice can be
inferred from here as the intersection of sea level (horizontal blue line) with the
hypsographic curve. a) A hypsographic curve measured by Landy et al. (2014)
on June 25th of 2011 (solid black line), and a hypsographic curve measured dur-
ing SHEBA along a 100m long “topography profile 1” on July 10th 1998 (black
dashed line). The vertical dashed lines represent the pond coverage, assuming
that ice is permeable. The red line represents a fit to the part of the hypsographic
curve above sea level with a tangent function, Eq. (2.35). b) Adjusted hypso-
graphic curves for different initial pond coverage, and the same ice thickness. c)
Adjusted hypsographic curves for the same initial pond coverage and different ice
thickness. d) Hypsographic curves for different shape parameters, p1 and p2, de-
fined and discussed in appendix A, Eq. (2.35). Parameter p1 controls the amount
of curvature, while p2 controls the position of the inflection point of the tangent
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Explanation of different models of pond growth. Models evolve a hypsographic
curve, s(xh), above sea level to find the pond coverage evolution. Evolution of
the hypsographic curve below sea level is not relevant for pond growth and, apart
from the 1d model, is not captured well in these models. a) Freeboard sinking
shifts the entire hypsographic curve downward following a displacement of dsfs.
b) Enhanced melting acts on a constant ice fraction, δ, and there is no freeboard
sinking. The hypsographic curve changes only between xh = x and xh = x+δ, and

remains unchanged otherwise. After a time ∆t =
s(x+δ)
dsem/dt

pond coverage grows by

δ. The 0d model, Eq. (2.25), assumes that the total pond evolution is the sum of
pond evolution due to such enhanced melting and freeboard sinking (panel a). c)
The 1d model prescribes a melt rate at each point on the hypsographic curve as a
function of height above sea level, dsdt (s). d) A simplified model that assumes both
freeboard sinking and enhanced melting (appendix B). Enhanced melting occurs
only below height ∆s. After some time, the fraction of ice affected by enhanced
melting, δ, becomes constant, meaning that a constant fraction model (panel b)
and a constant height model are equivalent if δ and ∆s are related appropriately. 21
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2.4 a) A comparison between pond evolution in the 0d model and the 1d model. The
black curve represents the 0d model. The blue, green, and red curves represent
the 1d model for different functions k(s) shown in panel b). These different
functions were chosen such that the integral parameter 〈Sem〉 (Eq. (2.24)) is
the same as for the 0d model. The yellow curve represents the 1d model where
enhanced melting acts on a constant fraction of bare ice, δ, chosen according to
Eq. (2.21). The magenta curve represents the 1d model with pond albedo varying
with depth. There is significant agreement between all of the curves, suggesting
that the simplifications made in the simple model were justified. Since including
variable pond albedo does not change the pond evolution significantly, this detail
can be neglected when estimating the pond coverage on permeable ice. b) The
blue, green, and red lines represent functions k(s)− 1 used to run the 1d model. 27

2.5 A comparison between measurements of pond fraction made during SHEBA along
the albedo line (red line), along a topography profile (blue dots), and our model
(black line). The blue dots have been shifted downward by 0.05 to make a more
obvious comparison between albedo line and topography profile trends. The black
dashed line is the contribution to our model from freeboard sinking and the black
dotted line is the contribution from enhanced melting. Ponds grow almost entirely
due to enhanced melting as a result of the steep topography of multiyear ice. . . 29

2.6 Numerical solutions to Eq. (2.25) with parameters varied around the defaults
described in the text. a) Varying initial pond coverage. Solid lines represent
solutions using full time-varying fluxes, while dashed lines represent solutions
using time-averaged fluxes. The two solutions are very similar, so we subsequently
use only the time-averaged fluxes. b) Varying ice thickness. Ponds grow slower
on thicker floes. c) Varying pond and bare ice albedo. Different colors represent
different bare ice albedos, and full, dotted, and dashed lines represent different
pond albedos. A change in bare ice albedo has a much larger effect on pond
fraction than the same change in pond albedo. d) Varying the ∆s and k. For
k = 0.8, the ponds shrink. However, pond evolution for k < 1 is not represented
well in our model, so this curve serves only as an illustration. . . . . . . . . . . . 33

2.7 Exploring the effects of sea ice roughness. a) Pond evolution due to pure free-
board sinking for hypsographic curves with different shape parameters p1 and

p2. The x-axis shows non-dimensional time t̂ =
t(Sbi+Smp+Sbot)

1−xi . Color repre-
sents normalized roughness, σ̂, with blue colors corresponding to small σ̂ and red
colors corresponding to large σ̂. Thick red solid line represents pond evolution
on the measured first year ice hypsographic curve, and the thick red dashed line
represents pond evolution on the measured multiyear ice hypsographic curve. All
else equal, rougher ice has a larger pond fraction. b) Pond evolution due to pure
enhanced melting for hypsographic curves with different shapes. The x-axis shows
non-dimensional time t̂ = tSem

1−xi . Cartoon examples of hypsographic curves and
their approximate positions along the σ̂-axis are also shown. . . . . . . . . . . . 37
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2.8 a) Dependence of growth rate on pond coverage for different modes of pond

growth. The y-axis shows the growth rate, dx
dt , for each of the growth modes

calculated using the default parameters and xi = 0. Pond growth rate for bare
ice melting (blue line) first increases up to a certain pond coverage and then
decreases. Ponded ice melting (green line) increases with pond coverage from
dx
dt = 0 at x = 0 to very high values at high pond coverage. The ice bottom
melting rate (red line) gradually increases with pond coverage. The vertical
enhanced melting rate (cyan line) decreases with pond coverage. The black line
represents a realistic combination of the four growth modes, and shows that pond
growth is dominated by enhanced melting early in the season, and by freeboard
sinking late in the season. The dashed magenta line represents lateral melting
estimated using parameters described in section 2.7.1. b) Solutions to Eq. (2.25)
when only one of the growth modes is active. The x-axis shows the normalized
time, where 0 corresponds to the beginning of the melt and 1 to entire floe being
flooded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9 In this figure we have evolved an ensemble of 105 floes with varying initial pond
coverage according to Eq. (2.25) when only one of the growth modes is active.
Red curves represent the initial pond fraction distribution, blue curves represent
the pond fraction distribution after a time, t, while the green curves represent
the pond fraction distribution after 2t. A time used in panel a is t = 1

2
1−xi
Sbi

,

in panel b it is t = 1
6

1−xi
Smp

, and in panels c through f it is t = 1
4

1−xi
S , where

xi is the mean pond fraction of the initial distribution and S is an appropriate
strength. We show how different growth modes have different effects on the
pond fraction distribution. a) Bare ice melting first narrows the distribution, and
then widens it. b) Ponded ice melting widens the distribution. c) Bottom ice
melting narrows the distribution, while the mean of the distribution increases at
an increasing rate. d) Enhanced melting narrows the distribution, while the mean
of the distribution increases at a decreasing rate. e) Using realistic parameters,
the pond distribution slowly narrows and accelerates. f) Due to lateral melting,
pond coverage distribution does not change width, and the growth is linear. . . 44

2.10 The red curve is the results of Skyllingstad et al. (2009). The black curve is the
solution to Eq. (2.33) with F lat = KlatFmp. The pond albedo and the shortwave,
longwave, sensible, and latent heat fluxes used to find Fmp are the same as used
in Skyllingstad et al. (2009) and Klat = 1.5. A nearly perfect agreement between
the two curves suggests that a single non-dimensional constant, Klat, is enough
to describe pond growth by lateral melting, and the complicated physics of lateral
melting are important only in determining the value of Klat. . . . . . . . . . . . 49
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2.11 Determining the effective strengths, S∗ ≡ f(σ̂, t̂)S. Points represent estimates
of the correction f(σ̂, t̂) for each of the curves in Fig. 2.7 evaluated at different

times t̂ ≡ St
1−xi . The function f(σ̂, t̂) is evaluated as f(σ̂, t̂) ≡ 2(〈x(t)〉−xi)/(St).

Different colors correspond to different times with black corresponding to early
in the season and magenta to late in the season. Non-dimensional roughness,
σ̂, is shown on the x-axis. a) ffs(σ̂, t̂) evaluated for the freeboard sinking curves
in Fig. 2.7a. There is no obvious dependence on t̂. Freeboard sinking becomes
completely suppressed as roughness tends to zero. The dashed red line represents
the fit to these estimates of the form ffs(σ̂, t̂) = aσ̂2. b) fem(σ̂, t̂) evaluated for
the enhanced melting curves in Fig. 2.7b. There is a clear dependence on t̂.
Enhanced melting proceeds even as roughness tends to zero. Red dashed lines
are fits to these data of the form fem(σ̂, t̂) = 1 + c(t̂)σ̂, where c(t̂) ≡ 2√

t̂
− 3

2 . . . 61

3.1 a) A photograph of melt ponds taken on August 7, 1998 during the SHEBA
mission. b) A binarized version of the same image. c) A void model with a
typical circle radius of r0 = 1.8 m, and a coverage fraction of ρ = 0.31. . . . . . 67

3.2 a) An example of the two-point correlation function, C(l), for melt ponds shown
on a semi-log plot. Dashed black lines represent fits to a small length scale
exponential and a large length scale exponential. The inset shows C(l) before
and after a fit to the large length scale exponential has been subtracted. b) A
comparison between the two-point correlation function for ponds from 1998 and
2005 (circles), and the void model (dashed line). Ponds on all dates show a similar
scale matched by the void model using r0 = 1.8 m. c) A comparison between the
cluster correlation function, g(l), for August 7, 1998 (red circles), August 14, 2005
(yellow circles), and the void model using the same r0 as in panel b (black dashed
lines). Both model lines use ρ = 0.31, and the difference between them is due only
to differing simulated image sizes. The image size for 1998 is indicated by a red
arrow and the image size for 2005 is indicated by a yellow arrow. The fact that
the exponential cutoff is set by the image size indicates that the ponds are roughly
at the percolation threshold. The inset shows an independent estimation of the
percolation threshold. Red points show the probability of finding a spanning
cluster in the void model implemented on a grid the same size and resolution as
the SHEBA images. The probability of finding a spanning cluster increases from
0 to 1 between ρ = 0.28 and ρ = 0.31. . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 a) A comparison between the fractal dimension of pond boundaries for different
dates after pond drainage from 1998 (red curves), 2005 (yellow curve), and the
void model with r0 and ρ the same as in Fig 2 (black dashed curve). Examples
of ponds (below the curve) and voids (above the curve) of various sizes are also
shown. b) Size distribution for ponds on August 7, 1998 (red dots), ponds on
August 14, 2005 (yellow dots), and the void model (black dashed line). . . . . . 73
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3.S1 A diagram explaining how we find the perimeter. a) Blue squares represent
individual pond pixels. The perimeter is estimated as the sum of all boundary
pixel edges. b) Finding the perimeter of a circle as in panel a), we inaccurately
estimate it to be the perimeter of a square surrounding the circle. Estimating
the perimeter in this way is equally inaccurate regardless of how fine the image
resolution is. c) The problem is partially corrected if we take into account the
relative positions of the nearest neighbor boundary pixels. If two nearest neighbor
pixels are located diagonally, we add the distance between them to the total
perimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.S2 Dependence of correlation functions on model parameters r0 and ρ. In each plot,
red dots represent data for August 7th,1998. a) Two-point correlation function
for different values of r0 at ρ = 0.3. b) Two-point correlation function for different
values of ρ at r0 = 1.8m. c) Cluster correlation function for different values of r0
at ρ = 0.3. d) Cluster correlation function for different values of ρ at r0 = 1.8m. 79

3.S3 An explanation for the fitting procedure to determine the fractal dimension curve.
a) The black dots represent area and perimeter of individual ponds. The yellow
dots represent a moving average of the perimeter. The red line is a fit of the
mean area-perimeter data to a function f(log(A)) defined in Eq. (3.S2). b)
Fractal dimension, D, as a function of size, determined as a derivative of the red
line in panel a with respect to logA. Fitting parameters defined in Eq. 3.S1 are
also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.S4 Examples of melt ponds that appear to violate the assumption of random place-
ment. a) “Banded” melt ponds with clear spacings between melt pond bands.
b) A low pond coverage region of the ice with small melt ponds that seem to
be located non-randomly. c) A long melt pond located along a ridge. d) “Tiger
stripe” melt ponds with clear ordering. . . . . . . . . . . . . . . . . . . . . . . 84

3.S5 a) A fit of Eq. 3.S4 (black dashed line) to the cluster correlation function of
ponds on August 7, 1998 (red dots). We set ρ equal to the mean pond coverage
on August 7, and we treat l0 and ξ as fitting parameters. b) Number of images
that fall into each bin of pond coverage fraction for August 7, 1998 (red bars)
and August 14, 1998 (yellow bars). Vertical black dashed lines represent mean
coverage fraction on the two dates, while the vertical red dashed lines represent
the estimated coverage fraction of the percolation threshold for each date. All of
the pond coverage fractions were estimated using the machine learning threshold
pt = 0.5. c) Estimated correlation length scaled by the image size, ξ/L, as
a function of the appropriately scaled distance from the percolation threshold,
(ρ− ρc)(L/l0)3/4, for the void model (black dots), August 7, 1998 (red dots) and
August 14, 2005 (yellow dots). Values for the percolation threshold used were 0.3
for the void model, 0.33 for 1998 ponds, and 0.39 for 2005 ponds. Also shown is
Eq. 3.S5 (blue dashed line), consistent with theoretical considerations. . . . . . 86
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3.S6 a) Circle centers are placed randomly on a plane (black dots). We segment the
plane into regions, each region being a set of points closest to a circle center.
These regions are polygons and define a natural “grid” for the void model. Sides
of the polygons are bonds of the grid (black lines), and corners of the polygons are
nodes of the grid (red dots). b) Bonds are removed if they pass through a circle.
Removed bonds are shown as black dashed lines. The remaining bonds (solid
black lines) all lie within voids and connected bonds correspond to connected
voids. c) Each void can be partitioned into a sum of contributions from bonds.
We can do this in the following way. Every node (red dots) is associated with
three circle centers and, correspondingly, three bonds (solid pale blue lines). If
all three of these bonds belong to a void, we draw three lines from a node towards
its corresponding circle centers. If two bonds belong to a void, but one intersects
a circle, we draw two lines from a node - one along the missing bond and one
towards a circle center not associated with the missing bond. Finally, if a node
only has one bond that belongs to a void, we draw no lines. Lines drawn in
this way (white dashed lines) segment a void in a unique way, with each segment
associated with only one bond. Contributions to area and perimeter segments
vary significantly, but have a typical scale. d) For large enough voids, variability
in area and perimeter of segments associated with each bond tends to average
out, making both the total area and perimeter proportional to the number of
bonds in a void. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.S7 Geometric statistics of ponds before drainage: a) A comparison between a two-
point correlation function for ponds before drainage (blue lines) and ponds after
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microphysical parameters such as the shape parameter for the temperature pro-
file, c∗, the reference temperature, θ0, and the depth at which the freshwater
plugs form, z∗. Values of 10% and 50% are not estimates of real uncertainties,
but were chosen simply to demonstrate the sensitivity to model parameters. We
note that the slight increase in the upper boundary of the light shaded region dur-
ing stage II simply corresponds to increased uncertainty during that time, and
no actual pond coverage trajectory increases during stage II. b) Distribution of
pond coverage across the Arctic for different years derived from MODIS satellite
data (Rösel et al., 2015a). The frequency of observations declines rapidly be-
tween 0.3 < p < 0.4 and very few observations show p > 0.4, consistent with our
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ABSTRACT

As Arctic sea ice starts to melt in the summer, melt ponds form on its surface and, in a

matter of days, cover large portions of the ice. Due to their low reflectivity, melt ponds

greatly accelerate ice melt. Despite their importance, they are poorly understood due the

many processes that control their evolution, which operate on widely separated length-scales.

In this thesis, we use idealized models of melt ponds with a goal to provide a fundamental

understanding of their evolution.

First, we study the case of late-summer ponds that exist on highly permeable first-year

sea ice. Assuming that ice is fully permeable, we show that pond coverage evolution can be

approximately determined by solving two uncoupled ordinary differential equations (ODEs)

in which the rate of change of pond coverage fraction is a function of itself, of the initial

ice surface hypsographic curve, and of average melt rates of different regions of the ice. In

this way, we show that it is possible to greatly reduce the complexity of pond evolution

on permeable ice and to summarize all of the environmental conditions with only a few

aggregate parameters.

Second, we show that melt pond geometry on both first and multi-year ice can be ac-

curately captured by a simple geometric model where ponds are represented as voids that

surround randomly sized and placed circles that represent snow dunes. There are only two

model parameters: the characteristic circle radius and the pond coverage fraction. We set

these parameters by matching two correlation functions, which determine the typical pond

size and their connectedness, between the model and aerial photographs of melt ponds.

With parameters calibrated in this way, we reproduce the previously-observed pond size

distribution and fractal dimension as a function of pond size over the entire observational

range of more than 6 orders of magnitude. Surprisingly, by further studying the correlation

functions, we find that late-summer ponds are organized close to the critical percolation

threshold. Moreover, we find that ponds from different years and documented at different
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locations have very similar typical sizes.

Third, we explain the observation we made previously that the ponds are organized

close to the percolation threshold. We show that, since ponds drain through large holes,

the percolation threshold is an upper bound on pond coverage following pond drainage.

Furthermore, because of the universality of systems close to the percolation threshold, we

show that the pond fraction as a function of the number of open holes follows a universal

curve. This curve governs pond evolution during and after pond drainage, which allows us to

formulate an equation for pond coverage evolution that captures the dependence on physical

properties of the ice and is supported by observations.

Finally, we generalize the void model we developed earlier and show that it accurately

captures the pre-melt distribution of snow-depth. We find that the snow depth is distributed

according to a Gamma distribution which can be fully characterized by the mean and the

variance of snow depth. This allows us to derive an analytical formula for pond evolution

during early summer when ice is impermeable.

By combining all of our results, we find that nearly the entire pond evolution since the

onset of melt can be captured with computationally inexpensive analytical models that do

not sacrifice accuracy and reveal relationships between pond evolution and measurable ice

parameters that would not be captured using more complex models. These findings have

significant potential to improve our parameterizations of sea ice albedo in large-scale climate

models, thereby advancing our ability to predict the fate of Arctic sea ice.

This work was led, performed, and written by Predrag Popović under supervision of

Dorian Abbot and Mary Silber.
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CHAPTER 1

INTRODUCTION

Covering a vast area of nearly 15 million square kilometers in the far north, sea ice is a

major component of the Arctic climate system (Perovich and Richter-Menge, 2009), part

of the environment of one of the largest biomes on the Earth (Grebmeier et al., 1995),

and a major obstacle for maritime trade between North America, Europe, and Asia. For

these reasons, much effort has been put into predicting when the Arctic ocean will become

ice-free in the summer due to the effects of man-made climate change (Serreze et al., 2007;

Wang and Overland, 2009). This has proven to be an exceedingly difficult problem, as sea

ice is controlled by processes that operate on scales ranging from less than a millimeter to

hundreds of kilometers (Holland and Curry, 1999). As our best climate models can currently

only have a resolution on the order of ten kilometers, many relevant smaller scale processes

have to be parameterized, which relies on our physical understanding of them.

An important small-scale phenomenon that controls the rate of sea ice loss is the forma-

tion of meter-scale melt ponds on the ice surface during the summer months (Holland et al.,

2012). Ponds form as the snow atop sea ice begins to melt. Unlike the surrounding bare ice

that reflects the majority of sunlight, melt ponds absorb most of it thereby accelerating ice

melt (Perovich, 1996). Pond evolution is highly non-linear and is controlled by the structure

of the underlying ice.

Depending on ice permeability, pond evolution on first-year ice typically progresses in

four stages (Landy et al., 2014; Polashenski et al., 2012). During the initial stage, fresh

meltwater seeps into brine channels and pores within the ice. Because the ice interior is colder

than the freezing point of fresh water, meltwater freezes and the ice becomes impermeable

(Polashenski et al., 2017). During this period, usually called stage I of pond evolution,

pond coverage grows quickly and within several days ponds can expand to cover a majority

of the ice surface. As the ice warms, some of the pathways through the ice to the ocean
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reopen. As above-freezing water pours through these newly opened channels, it melts them,

expanding them into large holes. During this time, called stage II of pond evolution, ponds

drain and pond coverage drops to its minimum. By the end of stage II, the ice becomes fully

permeable, and the remaining ponds correspond to those regions of sea ice that are below

sea level. While the ice is permeable (stage III of pond evolution), ponds remain at sea level

and pond coverage grows slowly. This slow pond growth happens because ice thins, forcing

more of the ice surface below sea level, and because ponds erode their side-walls by lateral

melt. Finally, during stage IV, ponds either refreeze or the ice breaks up.

In addition to a complicated time-evolution, melt ponds also have a complex spatial

structure. Previous studies have characterized some statistical properties of pond patterns.

Perovich et al. (2002) showed that ponds follow a power law size distribution. Hohenegger

et al. (2012) estimated the fractal dimension, D, of pond boundaries. They found that the

fractal dimension transitions from D ≈ 1 for small ponds to D ≈ 2 for large ponds. All of

these considerations highlight the complex nature of melt ponds.

Because the development of melt ponds is a multi-scale phenomenon, it is difficult to

model. Most models of melt ponds so far have tried to capture as many details about physical

processes as possible, while parameterizing those processes that cannot be captured due to

resolution or computational constraints (Flocco and Feltham, 2007; Scott and Feltham,

2010; Skyllingstad et al., 2015; Taylor and Feltham, 2004). These models can accurately

capture the large-scale distribution of melt ponds across the Arctic basin. However, the many

assumptions these models make reduce their ability to provide a fundamental understanding

and produce reliable predictions of melt ponds in a changing climate.

The goal of this thesis is to take an alternative approach to modeling melt ponds using

reduced complexity models to provide a basic understanding of melt pond evolution. We will

show that nearly the entire pond evolution as well as the pond geometry can be represented

by simple models that sacrifice little accuracy, are highly computationally efficient, and make
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clear the connections with measurable properties of ice. The thesis is organized as follows.

In Chapter 2, originally published as Popović and Abbot (2017), we consider the evo-

lution of pond coverage fraction for stage III ponds, assuming that ice is fully permeable

and hydrostatically balanced. Under these assumptions, the pond coverage fraction does

not depend on the details of the topography, but is determined only by the fraction of the

surface below the sea level. This fraction can be captured statistically by a quantile func-

tion of the surface height distribution (hypsographic curve) whose form stays approximately

constant for different ice surfaces. We show that the effects of ice thinning, lateral melting,

and ice topography on pond coverage evolution can be captured in a simple way under the

permeability assumption. In particular, we find that pond evolution can be approximately

calculated by solving two uncoupled ODEs whose form depends only on the initial hypso-

graphic curve and four parameters that determine the average rates of pond bottom melting,

bare ice melting, ice bottom melting, and lateral melting.

In Chapter 3, originally published as Popović et al. (2018), we explain the observations

that the pond size distribution is approximately a power law and that the fractal dimension

of the pond boundaries transitions from D ≈ 1 to D ≈ 2. We develop a simple geometric

model where ponds are represented as voids that surround randomly sized and placed circles

which represent snow dunes. The model has only two parameters, the typical circle size and

the fraction of the surface covered by voids. We choose these two parameters by comparing

two types of correlation functions, which measure typical pond size and pond connectedness,

between the model and aerial photographs of melt ponds taken during two separate missions

to the Arctic. We show that, after this calibration, the pond size distribution and the fractal

dimension are reproduced highly accurately over the entire observational range of more than

6 orders of magnitude. Furthermore, by studying the correlation functions, we find two

surprising observations: 1) ponds are organized close to the percolation threshold, and 2)

ponds from different years and different locations have a very similar typical size.
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In Chapter 4 (manuscript currently in review as Popović et al. (2019b)) we explain the

observation we made in Chapter 3 that ponds seem to be organized close to the percolation

threshold. We show that drainage through large holes during stage II necessarily constrains

the ponds to exist below the percolation threshold. We develop a model where holes open

at random locations and drain ponds that overlay a randomly generated topography. We

show that above the percolation threshold, a single hole can drain vast portions of the

surface, whereas below the threshold, new holes lead to minimal additional drainage. This

model exhibits universality and is independent of details such as the underlying topography.

This allows us to analytically derive a universal function that determines pond fraction as

a function of the number of open holes. Using this function, and extending our model

to include ice melting and maintaining hydrostatic balance, we find an analytical formula

for pond coverage evolution during stage II that connects pond coverage evolution and the

measurable properties of ice. Additionally assuming that there is no lateral melt and that

ice was relatively flat at the beginning of the drainage stage, we show that a similar function

can also be used to estimate pond evolution during stage III. We find that observations are

consistent with all of our results.

In Chapter 5 (manuscript currently in review as Popović et al. (2019a)) we generalize the

void model developed in Chapter 3 to a continuous surface by replacing circles with mounds

of Gaussian shape. We then show that the pre-melt snow depth distribution determined

from LiDAR measurements is closely matched by the height distribution of this synthetic

topography and well-fit by a Gamma distribution. This means that the snow depth distribu-

tion can be fully characterized by only the mean and the variance of snow depth. It further

allows us to formulate analytical equations for pond evolution during stage I. This shows

that nearly the entire pond evolution can be accurately represented using simple models,

thereby showing great potential for improving albedo parameterizations in future models of

sea ice.
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Finally, in Chapter 6, we summarize our results and conclude.

Some of the notation is inconsistent between different chapters. We chose to keep this

notation in order to maintain consistency with the published papers. Each chapter will

contain a table summarizing all of the variables used in that chapter.

1.1 Review of previous work

Most of the previous work on melt pond modeling involves models with many degrees of

freedom that attempt to include as much realism as possible. Here we will review an example

of such a model in some detail to give the reader a sense of the strengths and weaknesses of

this approach.

As an example, we will consider the model of Scott and Feltham (2010). This model is a

cellular automaton that updates, at each time-step, the ice, snow, and meltwater content of

each grid-point. Here, grid-points represent 5m× 5m rectangular columns of ice, which can

either be bare or covered with snow or meltwater. The model domain is a 200m×200m square.

Each column evolves thermodynamically independently of other columns and communicates

with them via the transport of meltwater. To calculate the thermodynamic evolution of a

column, it is further divided into 20 vertical grid-points. Then, a sophisticated heat transport

model is used to calculate albedo, melt rates, and the snow saturation. This model includes

mushy layer equations for sea ice, heat diffusion in snow, parameterization of turbulent

heat flux in melt ponds, and a radiative transfer model. This allows for some realistic

features to appear such as an ice crust on top of melt ponds that affects the albedo. Water

that is generated by melting is drained vertically to the ocean and transported horizontally

according to Darcy’s law. Ice floes are kept in hydrostatic balance throughout the simulation.

The model was initiated by randomly generating a bottom and a surface ice topography and

a snow topography with the mean, standard deviation, and horizontal correlation length

taken from field measurements and was forced by heat fluxes derived from meteorological
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measurements.

The main advantage of this model is that it allowed for many of the observed features to

emerge from first principles. For example, the model reproduced the observation that first-

year ice had larger and shallower ponds than multi-year ice, it captured the timescale of pond

coverage variation, and it captured the general trends in area-averaged albedo, although it

somewhat overestimated the albedo relative to measurements. Moreover, including many

physical processes allows one to perform sensitivity analyses to understand how each pro-

cess affects pond evolution. A sophisticated model such as this one represents an idealized

experiment of melt pond evolution.

By far, the main disadvantage of this model is its computational complexity. For example,

the researchers report that simulating a 90-day pond evolution took over a week to complete.

Tied to this computational complexity are the simplifying assumptions made in order to be

able to complete the model runs in a reasonable amount of time. For example, the 5m

horizontal resolution is relatively coarse since ponds exist on scales of several tens of meters,

so a typical pond is only several grid-points wide. This coarse resolution requires some

processes to be parameterized and it is not clear how well these parameterizations apply. An

example of this is the fact that horizontal transport of water is modeled by Darcy’s law with

a fixed permeability, which neglects the possibility that water is transported by channels. In

addition to such parameterizations, the realism of the model is eroded somewhat by the fact

that some parameters are poorly constrained by measurements. For example, measurements

show that the vertical permeability can vary by several orders of magnitude, while the

horizontal permeability is very poorly constrained by measurements and, therefore, has to

be guessed.

There are a number of examples of the similar flavor. As some examples we mention

the models of Flocco and Feltham (2007); Lüthje et al. (2006); Scagliarini et al. (2018);

Skyllingstad and Paulson (2007); Skyllingstad et al. (2009, 2015). Each of these models is
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either a 2 or 3 dimensional representation of melt ponds evolving on an ice surface and each

tries to incorporate as much realism as possible within the computational bounds. As melt

pond evolution is a difficult real-world problem, each of these models has to sacrifice some

processes, and each one does this based on the particular priorities and questions the model

is trying to answer. In general, their strength is their sophistication and their weakness is

their complexity.
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CHAPTER 2

A SIMPLE MODEL FOR THE EVOLUTION OF MELT POND

COVERAGE ON PERMEABLE ARCTIC SEA ICE1

2.1 Introduction

Over the past forty years, Arctic summer sea ice extent has reduced by 50 percent, making

it one of the most sensitive indicators of man-made climate change (Perovich and Richter-

Menge, 2009; Serreze and Stroeve, 2015; Stroeve et al., 2007). This rapid decrease is at

least partially due to the ice-albedo feedback (Perovich et al., 2007; Screen and Simmonds,

2010; Zhang et al., 2008). Moreover, if the ice-albedo feedback is strong enough it could

lead to instabilities and abrupt changes in ice coverage in the future (Abbot et al., 2011;

Eisenman and Wettlaufer, 2009; Holland et al., 2006; North, 1984). The albedo of ice is

significantly reduced by the presence of melt ponds on its surface (Eicken et al., 2004;

Perovich and Polashenski, 2012; Yackel et al., 2000). Therefore, understanding the evolution

of melt ponds is essential for understanding the ice-albedo feedback, and consequently, the

evolution of Arctic sea ice cover in a warming world. This means that accurate melt pond

parameterizations must be incorporated into Global Climate Models (GCMs) to improve

their sea ice forecasts (Flocco et al., 2010; Holland et al., 2012; Pedersen et al., 2009). The

main difficulties with including accurate melt pond parameterizations in large scale models

are that pond evolution is nonlinear and that it is the result of a variety of different physical

processes operating on a range of length and time scales. For these reasons, it is important

to understand the mechanisms that drive the evolution of melt ponds.

Typically, the evolution of pond coverage on first-year ice proceeds in fairly consistent

stages (Landy et al., 2014; Perovich et al., 2003; Polashenski et al., 2012; Webster et al.,

1. This chapter was originally published as Popović and Abbot (2017). It is nearly identical to the original
apart from minor changes made mainly to fit the formatting requirements of the thesis and to respond to
the comments made by the thesis committee.
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2015). First the ponds grow quickly while the ice is impermeable. Next they drain quickly

and pond coverage shrinks as the ice transitions from impermeable to permeable. Then the

ponds grow slowly while the ice is permeable and pond water remains at sea level. Finally, the

ponds either refreeze or the floe breaks up. The stage when ice is highly permeable is typically

the longest, often longer than the first two stages combined. This stage is particularly suitable

to model, since the ponds can be assumed to be at sea level and hydraulically connected to

the ocean. On multiyear ice, ponds also experience a growth and a drainage stage, but often

do not drain to sea level. On some occasions, however, ponds on multiyear ice can drain to

sea level as well.

In this Chapter we will present a simple “0d” model for the evolution of melt pond

coverage on sea ice floes. We will assume that ice is permeable, ponds are at sea level

and hydraulically connected to the ocean, the whole ice floe is in hydrostatic balance, and

different points on the ice surface may melt at different rates. The purpose of our model

is: (1) to clarify the roles in the evolution of pond coverage played by energy fluxes, the ice

thickness, bulk ice density, ice roughness, and initial pond coverage, (2) to provide a simple,

yet accurate, way to estimate the pond coverage as a function of time, (3) to understand

the behavior of melt ponds under general environmental conditions, and (4) to investigate

different types of qualitative behavior that can arise from differential melting and maintaining

hydrostatic balance.

Skyllingstad et al. (2009) also describe pond growth on permeable ice, but include only

pond growth by lateral melt of pond walls. This contrasts with our model, which includes

includes pond growth by vertical changes of the topography. Our models are different,

but complementary, and we will draw parallels between our two models when discussing

the possibility of lateral melt. Aside from Skyllingstad et al. (2009), previous melt pond

modeling efforts include works by Taylor and Feltham (2004), Lüthje et al. (2006), Scott

and Feltham (2010), and Flocco and Feltham (2007), who all created comprehensive models
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that allowed for more realistic representations of physical processes such as heat and salt

balance, and meltwater routing and drainage. The advantage of our model is its simplicity,

which makes it possible to clarify the roles of each of the physical parameters involved.

This Chapter is organized in the following way. In section 2.2 we build a simple model

for the evolution of pond coverage. In section 2.3, we compare the model to observations. In

section 2.4 we discuss realistic values of physical parameters and solve the model numerically.

In section 2.5 we assess the impacts of sea ice roughness and develop a simple parameteri-

zation to estimate mean pond coverage after a certain amount of time without solving the

model. In section 2.6 we analyze the model analytically to gain a better understanding of

the factors influencing pond evolution. In section 2.7 we discuss lateral melt and internal

melt combined with effect of density variations. Finally in section 2.8 we summarize our

results and conclude. In appendices A, B, C, and D we discuss some of the more technical

aspects of our model.

2.2 Building the simple 0d model

In this section, we build the model for the evolution of melt pond coverage, and then solve it

using realistic physical parameters. Before we proceed to build the quantitative model, we

will first state the assumptions, and discuss the physical mechanisms driving pond evolution.

2.2.1 Assumptions of the model

Our model focuses on the stage of pond evolution when ice is highly permeable and all the

meltwater created can be quickly removed to the ocean. The beginning of this stage can be

identified as the point in time when the meltwater on the ice surface has drained to sea level,

such that the remaining ponds correspond to places on the ice surface that are below sea

level. We will assume that from this point on, the ponds are hydraulically connected with

the ocean, and the only way for pond coverage to increase is for the points on the ice surface
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which were above sea level to sink or melt below sea level. In reality, ponds can also grow

through horizontal melting of their sidewalls. As some observations suggest that this type

of growth is small at least on first year ice (Landy et al., 2014; Polashenski et al., 2012),

we neglect it (see section 2.7.1 for further discussion). Furthermore, we will assume that all

the melt occurs at the surface or the bottom of the ice. We thereby neglect the possibility

of internal melt. We will also assume that ice has a uniform bulk density throughout the

vertical column, and we discuss the effects of vertical non-uniformity in bulk density together

with effects of internal melt in subsection 2.7.2. Finally, we will assume that the entire ice

floe is in hydrostatic balance, rigid, and cannot tilt.

The main goal of our model is to determine the fraction of the ice surface above sea level

that falls below sea level after some time. Therefore, we focus on the vertical displacements of

points on the surface of the ice in response to melt. To this end, we define the ice topography,

s(~r), as the elevation of the ice surface above sea level at the point ~r, and we define melt

ponds as those regions where s(~r) < 0. There are two main reasons why the topography

might change in response to ice melt:

1. First, the topography at a point ~r at the surface changes when ice at that point melts

(Fig. 2.1a). Here, the rate of change of topography at a point depends only on local

characteristics of that particular point. For this reason, we will call this type of motion

“local.” Points on the surface that melt locally move “downwards,” i.e. to lower

elevations above sea level.

2. Second, in order to maintain hydrostatic balance, the entire ice surface can shift up

or down in response to mass being removed above or below sea level. Since we are

assuming that the entire ice floe is in hydrostatic balance, melting any region of ice

moves the entire floe as a rigid body (Fig. 2.1b). For this reason, we will call this type

of motion the “rigid body” motion. Melting above sea level induces an upward rigid

body motion, whereas melting below sea level induces a downward rigid body motion.
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Figure 2.1: a) Local displacement represents the movement of a point on the ice surface as a
result of ice melting at that particular point. It is a function only of local ice characteristics
at that point. For both local and hydrostatic displacements the positive direction is defined
as upwards. b) Rigid body displacement represents the motion of a floe as a whole in an
effort to maintain hydrostatic balance because melting removes mass above or below sea
level. Melting above sea level induces an upward motion of the floe, whereas melting below
sea level induces a downward motion.

An ice floe is not a rigid body, but up to its flexural wavelength we can approximate

it as such. As field studies did not record significant flexure of ice in the presence of

melt ponds (Chris Polashenski, pers. comm.), the flexural wavelength is likely larger

than the typical scale of melt ponds (roughly 10m), and the rigid body approximation

is likely good.

At each point on the ice surface the change in elevation above sea level can be calculated as

the sum of these two contributions.

In our model, ponds grow in two ways, “freeboard sinking” and “enhanced melting”:
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1. Freeboard sinking represents the average change in freeboard height (average height

above sea level of bare ice). In this way the topography of ice above sea level remains

unchanged. Freeboard sinking should not be confused with rigid body motion: the

average freeboard height always decreases as a response to ice thinning, whereas the

rigid body motion can point both upward and downward depending on whether mass

is lost above or below sea level. Both rigid body motion and average local melting

contribute to freeboard sinking.

2. Enhanced melting represents the change in the shape of the topography without chang-

ing its average height. Ponds can grow in this way if some regions melt faster than

average. Therefore, a positive deviation in the local melt rate can grow ponds. Con-

versely, a negative deviation in the local melt rate can slow down or even reverse pond

growth. Pond growth only occurs due to topography changes near sea level. Therefore,

deviations from the mean melt rate for points high above the sea level do not influence

pond evolution since these points are correlated with points close to sea level only

through hydrostatic adjustment, which is determined by the average melt rates rather

than the deviations from the average.

2.2.2 Equation for the evolution of topography

We now proceed to build the quantitative model of pond evolution. Following the above

ideas, we divide the total rate of change of vertical position of the point ~r on the surface

of the ice, dsdt (~r), into a contribution from rigid body motion,
dsrigid body

dt , and a contribution

from local melting, dsloc
dt (~r),

ds

dt
(~r) =

dsrigid body

dt
+
dsloc

dt
(~r) . (2.1)

Ice above sea level must hydrostatically balance ice below sea level. We can write this
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hydrostatic balance as

mabove s. l. =
ρw − ρi

ρi
mbelow s. l. , (2.2)

where mabove s. l., and mbelow s. l. represent the mass of ice above and below sea level, and

ρw, and ρi represent the densities of sea water and pure ice. Throughout the Chapter we

use ρw = 1025 kg m−3 and ρi = 916 kg m−3.

The mass above and below sea level can change either because the ice melts or because

the floe moves as a rigid body, changing the proportion of ice above and below sea level.

Therefore, differentiating Eq. (2.2) and splitting into melt and rigid body contributions, we

find

dmmelt
above s. l. + dm

rigid body
above s. l. =

ρw − ρi

ρw

[
dmmelt

below s. l. + dm
rigid body
below s. l.

]
, (2.3)

where dm
melt/rigid body
above/below s. l.

represent changes in mass above and below sea level due to either

ice melting or the entire floe floating up or down.

The mass melted above and below sea level after some time dt is

dmmelt
above s. l. = −Abi

Fbi

l
dt ,

dmmelt
below s. l. = −Amp

Fmp

l
dt− AFbot

l
dt ,

(2.4)

where l = 334 kJ kg−1 is the latent heat of melting, Fbi is the total energy flux used for

melting bare ice averaged over all bare ice, Fmp is the total energy flux used for melting

ponded ice averaged over ponded ice, Fbot is the total energy flux used for melting the ice

bottom averaged over the ice bottom, Abi, Amp, and A are the area of bare ice, the area of

melt ponds, and the area of the entire floe.

Since floating up or down does not change the total mass of the ice, mass changes above

and below sea level due to rigid body motion are equal with an opposite sign, dm
rigid body
above s. l. =

−dmrigid body
below s. l.. We can express dmrigid body in terms of rigid body displacement of the floe
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as

dm
rigid body
above s. l. = ρbAbidsrigid body ,

dm
rigid body
below s. l. = −ρbAbidsrigid body ,

(2.5)

where ρb is the bulk ice density. This is the density of sea ice once all the brine has drained

and is always less than ρi. We assume it to be uniform throughout the vertical ice column,

but discuss the effects of vertical variations in ρb in section 2.7.2.

Substituting Eqs. (2.4) and (2.5) into Eq. (2.3), solving for dsrigid body, and differentiat-

ing with respect to time, we find the rate of change of surface topography due to rigid body

motion to be

dsrigid body

dt
=
[ ρi

ρw

Fbi

lρb

]
−
[ρw − ρi

ρw

Amp

Abi

Fmp

lρb

]
−
[ρw − ρi

ρw

A

Abi

Fbot

lρb

]
. (2.6)

The three terms in large square brackets correspond to topography change due to bare ice

melting, ponded ice melting, and ice bottom melting. Rigid body motion depends only on

spatially averaged energy fluxes, which in turn depend on parameters such as the average

insolation on the floe, the average albedo, and the average longwave, sensible, latent and

bottom heat fluxes. If bare and ponded ice melt only from energy absorbed by the upper

surface of the ice, the fluxes Fbi, and Fmp can also be written in terms of albedo as:

Fbi = (1− αbi)Fsol + Fr ,

Fmp = (1− αmp)Fsol + Fr ,

(2.7)

where αbi and αmp are the average albedos of bare and ponded ice, Fsol is the solar flux,

and Fr is equal to the sum of net longwave, net sensible, and net latent heat fluxes. This

parameterization neglects light transmission, and assumes that all of the energy is deposited

in the surface. Much of the variation in albedo of ponded ice is due to the fact that the pond
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bottom is partially transparent, and energy is deposited in the ocean instead of directly in

the ice, from where it is eventually used to melt the ice bottom. However, this does not

make much difference in our model since the energy deposited in the ocean is likely used for

melting ice below sea level anyway.

Local displacement, dsloc, quantifies how much the ice surface topography changes as a

result of local melt. We can determine the local melt rate from Fsurf(~r), the flux of energy

used for melting the ice surface at a point ~r

dsloc

dt
(~r) = −Fsurf(~r)

lρb
, (2.8)

where the positive direction is defined as upwards. The local flux depends on parameters

such as the local albedo, the local insolation, the local longwave, sensible and latent heat

fluxes, and the angle between ice and incoming radiation at that point.

The flux Fsurf(~r) averaged over all the points on the surface of the ice above sea level

equals Fbi

〈Fsurf(~r)〉 = Fbi , (2.9)

where 〈...〉 represents averaging over all the points on bare ice. For this reason, we will

parameterize the rate of local melting as

dsloc

dt
(~r) = −k(~r)

Fbi

lρb
, (2.10)

where k(~r) is a non-dimensional number that quantifies the deviation of the melt rate at

the point ~r from the mean melt rate of the bare ice surface, which depends on the detailed

conditions of ice and its environment. The parameter k could be either greater than or less

than one. Here we will take k to be constant in time, but in reality it need not be. Finally,

according to Eq. (2.1) we add Eq. (2.6) and Eq. (2.10) to get the equation for the evolution
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of the bare ice topography. We express this in terms of melt pond fraction, x ≡ Amp
A

ds

dt
(~r) = −

[
(k(~r)− 1)

Fbi

lρb

]
−

−
[
ρw − ρi
ρw

1

lρb

(
Fbi +

x

1− x
Fmp +

1

1− x
Fbot

)]
.

(2.11)

Here, we split the equation into two terms, enclosed by the square brackets. The first term

represents the local deviation from the average surface melt rate, which changes the general

shape of the topography while preserving its average height above sea level. We identify

this term with enhanced melting. The second term represents a global shift of the average

elevation above sea level due to freeboard sinking.

In this way, the topographic evolution equation can be split into two terms: enhanced

melting, and freeboard sinking:

ds

dt
=
dsem

dt
+
dsfs

dt
, (2.12)

where dsem
dt , and dsfs

dt are contributions from enhanced melting, and freeboard sinking, and

correspond to the first and second term of Eq. (2.11).

2.2.3 Model for the evolution of pond coverage

We now need to relate the vertical displacements near the sea level to the change in area

of the melt ponds. To this end we define the hypsographic curve, s(xh), which relates the

elevation above sea level, s, to the percent of ice surface below that elevation, xh (Fig. 2.2).

Such curves have been measured and reported on several occasions (e.g. Fig. 8 of Eicken

et al. (2004), or Fig. 8 of Landy et al. (2014)). If the ice is highly permeable, the melt pond

fraction, x, can be inferred from a hypsographic curve as the intersection of sea level with

the curve. Since ponds are hydraulically connected with the ocean, the average freeboard

height of bare ice, h, depends on the pond fraction. The average freeboard height, h, can be
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expressed in terms of the ice thickness H and the pond fraction as

h =
ρw − ρi
ρw

H

1− x
. (2.13)

Here, the average freeboard height is defined as the elevation of the ice surface above sea

level averaged over bare ice. For two ice floes of the same thickness, the one with higher pond

coverage will also need to have a higher average freeboard in order to maintain hydrostatic

balance.

The above sea level part of every measured hypsographic curve we tested can be fit

relatively well with a tangent function (Fig. 2.2a, red line). We will assume that this fit

holds for a wide range of different sea ice floes, and use it to initialize our model with different

physical parameters. We give the exact form of this function in appendix A (Eq. 2.35). To

get a hypsographic curve for a particular initial pond fraction, xi, and ice thickness, H, we

set it to zero at the initial pond coverage, s(xh = xi) = 0, and rescale it vertically to get

a freeboard that hydrostatically balances the floe. The topography below sea level is not

important for the evolution of pond coverage if the pond coverage grows, and we replace it

with a straight line.

We show several curves for different initial ice thickness and initial pond coverage in Fig.

2.2b and Fig. 2.2c. We note that the initial pond fraction, xi, corresponds to the pond

fraction when ice first becomes permeable. Once we choose xi and H, the tangent function

Eq. (2.35) has only two unconstrained parameters, p1 and p2, that determine the exact

shape of the curve. Knowing additional physical parameters, such as ice roughness, we can

constrain additional parameters of this curve. Throughout this Chapter we will mostly use

p1 and p2 that fit the measurements of the hypsographic curve made by Landy et al. (2014)

for June 25th of 2011 or the measurements made during the SHEBA (Surface Heat Budget

of the Arctic Ocean) mission (Uttal et al., 2002) along the topography profile “1” on July

10th 1998. However, when examining the effects of sea ice roughness, we will vary these
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Figure 2.2: Hypsographic curves showing the percentage of the sea ice surface that is lower
than a particular elevation. Pond coverage on highly permeable sea ice can be inferred from
here as the intersection of sea level (horizontal blue line) with the hypsographic curve. a) A
hypsographic curve measured by Landy et al. (2014) on June 25th of 2011 (solid black line),
and a hypsographic curve measured during SHEBA along a 100m long “topography profile 1”
on July 10th 1998 (black dashed line). The vertical dashed lines represent the pond coverage,
assuming that ice is permeable. The red line represents a fit to the part of the hypsographic
curve above sea level with a tangent function, Eq. (2.35). b) Adjusted hypsographic curves
for different initial pond coverage, and the same ice thickness. c) Adjusted hypsographic
curves for the same initial pond coverage and different ice thickness. d) Hypsographic curves
for different shape parameters, p1 and p2, defined and discussed in appendix A, Eq. (2.35).
Parameter p1 controls the amount of curvature, while p2 controls the position of the inflection
point of the tangent function.
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parameters to get curves of different shape. Several examples of hypsographic with different

p1 and p2 are shown in Fig. 2.2d.

In the case of pure freeboard sinking the overall shape of the hypsographic curve does

not change as the ice melts. Instead the whole curve is shifted following a displacement of

dsfs (Fig. 2.3a). We can calculate the resulting change in pond coverage as

dx

dt
=
dxh
ds

(x)
dsfs

dt
, (2.14)

where dsfs is the vertical displacement of the bare ice topography due to freeboard sinking

(as determined by the second term in Eq. (2.11)), and dxh
ds (x) is the change in pond fraction

for a vertical shift of the ice surface of dsfs when the pond fraction is equal to x. It is equal

to the reciprocal of the derivative of the hypsographic curve, s(xh), evaluated at xh = x.

Substituting dsfs
dt from Eq. (2.11) we find

dx

dt
=
dx̂h
dŝ

(x)
[
Sbi + Smp

x̂

1̂− x
+ Sbot

1

1̂− x

]
, (2.15)

where x̂ ≡ x
xi

, and 1̂− x ≡ 1−x
1−xi are the pond and bare ice fractions normalized by the

initial pond and bare ice fractions, dx̂hdŝ (x) ≡ h
1−xi

dxh
ds (x) is the non-dimensional slope of the

hypsographic curve, and we have defined the strengths of pond growth by freeboard sinking

due to melting bare, ponded, and ice bottom, Sbi, Smp, and Sbot as

Sbi ≡
(1− xi)2Fbi

Hlρb
,

Smp ≡
(1− xi)xiFmp

Hlρb
,

Sbot ≡
(1− xi)Fbot

Hlρb
.

(2.16)

The non-dimensional factors x̂, 1̂− x, and dx̂h
dŝ (x) are chosen to be of the order unity, so that

Sbi, Smp, and Sbot control the strengths of pond growth by melting bare ice, melting ponded
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Figure 2.3: Explanation of different models of pond growth. Models evolve a hypsographic
curve, s(xh), above sea level to find the pond coverage evolution. Evolution of the hypso-
graphic curve below sea level is not relevant for pond growth and, apart from the 1d model,
is not captured well in these models. a) Freeboard sinking shifts the entire hypsographic
curve downward following a displacement of dsfs. b) Enhanced melting acts on a constant
ice fraction, δ, and there is no freeboard sinking. The hypsographic curve changes only be-

tween xh = x and xh = x+ δ, and remains unchanged otherwise. After a time ∆t =
s(x+δ)
dsem/dt

pond coverage grows by δ. The 0d model, Eq. (2.25), assumes that the total pond evolution
is the sum of pond evolution due to such enhanced melting and freeboard sinking (panel a).
c) The 1d model prescribes a melt rate at each point on the hypsographic curve as a function

of height above sea level, dsdt (s). d) A simplified model that assumes both freeboard sinking
and enhanced melting (appendix B). Enhanced melting occurs only below height ∆s. After
some time, the fraction of ice affected by enhanced melting, δ, becomes constant, meaning
that a constant fraction model (panel b) and a constant height model are equivalent if δ and
∆s are related appropriately.
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ice, and melting ice bottom. The reciprocals of the strengths represent the timescales of the

growth modes.

The set of parameters needed to describe pure freeboard sinking can be further reduced

by rewriting Eq. (2.15) as

dx

dt
=
dx̂h
dŝ

(x)
[
S1

x̂

1̂− x
+ S2

1

1̂− x

]
, (2.17)

where S1 ≡ Smp − xiSbi/(1 − xi) and S1 ≡ Sbot + Sbi/(1 − xi) represent a minimal set of

parameters needed to describe pure freeboard sinking. However, these parameters do not

have a clear physical interpretation, and we will henceforth focus only on Sbi, Smp, and Sbot.

Next we need to consider the contribution from enhanced melting. Before doing so we

need to make some assumptions about the nature of enhanced melt. There are multiple

physical processes that can cause the melt rate to deviate from the mean. One process that

stands out as being particularly important is albedo decrease due to ice wetting: ice close

to sea level will likely be wet and therefore have a lower albedo compared to ice higher up.

The deviation from the mean melt rate in this case depends primarily on the height above

sea level. Another potential contribution to height-dependent enhanced melt may effectively

come from random fluctuations in the melt rate around the average: ice near the sea level

has a higher probability of falling below sea level due to random fluctuations than ice higher

up. After falling below sea level, ice becomes ponded, melts faster, and is unable to return

to its previous position. Other processes, such as lateral melt, may not depend on height

above sea level, but for now we neglect this possibility (see section 2.7.1 for discussion).

Because of the processes described above, we will assume that the deviation from the

mean melt rate, k(~r) − 1, depends only on height above sea level, s. In this scenario, we

need to consider enhanced melting together with freeboard sinking, as freeboard sinking

constantly supplies new ice to low elevations to be affected by enhanced melting. Effects

of enhanced melting and freeboard sinking can be approximately separated if, instead of
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height-dependence, enhanced melting is constrained to act on a fixed fraction of bare ice.

In this case, a constant fraction of bare ice that would experience enhanced melting would

evolve, at least approximately, independently of freeboard sinking.

Therefore, we will consider two cases of enhanced melting. Firstly, we will consider a

height-dependent enhanced melting. In particular, we will assume that k(0 < s < ∆s) ≡ k

and k(s > ∆s) ≡ 1, where ∆s is a height above which there is no enhanced melting and

below which enhanced melting is constant k > 1. This is the case we ultimately wish to

describe. We describe a potential model for pond growth under this assumption in appendix

B and Fig. 2.3d. However, from a practical viewpoint, it is simpler to consider enhanced

melting which acts upon a fixed fraction of bare ice. In this case, we will assume that

k(x < xh < x + δ) ≡ k and k(xh > x + δ) ≡ 1, where δ is a fraction of ice affected by

enhanced melting (Fig. 2.3b). In appendix B, we show that, if δ is appropriately chosen, a

height-dependent model and a fixed fraction model become equivalent. Therefore, we will

first solve a model assuming a fixed δ and no freeboard sinking, and then relate it to a fixed

∆s model by choosing the appropriate δ.

We note that the assumption that k(~r) = 1 high above the sea level and k(~r) > 1 near

the sea level is strictly not true since averaged over all of bare ice k(~r) needs to equal one.

However, it is approximately true if ∆s or δ are small, such that the area where k(~r) 6= 1

is small compared to the total area of bare ice. Also, we have assumed k(~r) = 1 high above

the sea level without loss of generality, since deviations from the mean melt rate high above

the sea level are not important, as only ice close to sea level may become ponded.

Now we proceed to consider the case of “pure enhanced melting” that assumes a fixed

fraction of the ice, δ, melts, and there is no freeboard sinking (Fig. 2.3b). If there is no

topographic variation above sea level, and the entire ice floe above sea level has the same

height, h, the pond coverage would grow by δ after a time ∆t = h
dsem/dt

, where dsem/dt is

the rate of change of topography due to enhanced melting as determined by the first term
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of Eq. (2.11). Therefore, the pond growth rate in this case would be ∆x
∆t = δ

h
dsem
dt . If there

is non-negligible topography above sea level described by the hypsographic curve, the time

∆t it takes for pond coverage to grow by δ, would be ∆t =
s(xh=x+δ)
dsem/dt

. Here, s(xh = x+ δ)

is the original hypsographic curve evaluated at xh = x + δ. We will assume this expression

generally holds for enhanced melting. Thus, we arrive at the expression for pond growth due

to pure enhanced melting with fixed δ

dx

dt
=

δ

s(x+ δ)

dsem

dt
. (2.18)

If δ is small compared to the variation in the hypsographic curve, we can substitute s(x +

δ) with s(x). This is only not justified near the beginning of the melt, when s(x) ≈ 0.

Substituting dsem
dt from Eq. (2.11) we find

dx

dt
= Sem

1

ŝ(x+ δ)
, (2.19)

where ŝ(x) ≡ s(x)
h is the non-dimensional hypsographic curve, and the strength of the en-

hanced melting, Sem, is defined as

Sem ≡
ρw

ρw − ρi

(1− xi)δ(k − 1)Fbi

Hlρb
. (2.20)

Ultimately, however, our goal was to describe the height-dependent enhanced melting. In

appendix B, we showed that such a model can be approximated with a fixed fraction model,

if we appropriately relate δ and ∆s. Here we simply state the result

δ =
ρw

ρw − ρi

2∆s(1− xi)2

3H(1 + dsem
dsfs

)
. (2.21)

Here, dsem
dsfs

represents the ratio of the topographic rate of change due to enhanced melting
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to freeboard sinking and is given by

dsem

dsfs
=

ρw
ρw − ρi

|Fbi|(k − 1)

|Fbi|+
xi

1−xi |Fmp|+ 1
1−xi |Fbot|

, (2.22)

where |F | are the representative values of energy fluxes, e.g. their time-averages. Therefore,

the strength of height-dependent enhanced melting becomes

Sem =
( ρw

ρw − ρi

)2 2∆s(1− xi)3(k − 1)Fbi

3H2lρb(1 + dsem
dsfs

)
. (2.23)

We have made a number of assumptions in deriving the expression for enhanced melting.

Below we compare this model to a more complicated “1d” model and show that all these

assumptions are justified. We also show that if the function describing the local melt rate,

k(s), has a non-trivial dependence on height above sea level, parameter Sem is better replaced

with a parameter

〈Sem〉 ≡
( ρw

ρw − ρi

)2 2(1− xi)3Fbi

3H2lρb

∫ ∞
0

k(s)− 1

1 + dsem
dsfs

(s)
ds (2.24)

In this way, we have separated the effects of freeboard sinking and enhanced melting.

Finally, we will assume that contributions from freeboard sinking and enhanced melting can

be added independently. Therefore, we solve Eq. (2.15) for pure freeboard sinking, and Eq.

(2.19) for enhanced melting independently, and add them together to get the full evolution

of pond coverage, x(t):

x(t) = xfs(t) + xem(t)− xi , (2.25)

where xfs(t), and xem(t) are solutions to Eq. (2.15), and Eq. (2.19), both forced using the

same parameters, and initialized with the same initial pond fraction xi. This concludes the

0d model.

Equation (2.25) represents a sum of solutions to two simple ordinary differential equa-
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tions, in which the rate of change of pond fraction depends on the pond fraction. Here, we

have reduced the number of parameters from the original ten (H, xi, ρb, Fbot, Fsol, Fr, αbi,

αmp, k, and ∆s) to four (Sbi, Smp, Sbot, and Sem). The strengths of freeboard sinking,

Sbi, Smp, and Sbot, depend only on the parameters that are available in GCM simulations,

and are relatively easily measured in observational studies. The enhanced melting strength,

Sem, however, also depends on the difficult-to-measure parameters k and ∆s that describe

the melt rate near the sea level, and may also have contributions from processes that are

not height dependent. Furthermore, as we discuss below, ice roughness can also play an

important role in pond evolution. With reliable constraints on these parameters, our model

would be a useful parameterization in GCMs for pond growth after ice becomes permeable.

2.2.4 Testing the model

In order to test the assumptions we made to simplify the model, we have developed a “1d”

model in which we explicitly determine pond evolution when both freeboard sinking and

enhanced melting are happening simultaneously. Apart from resolving the melt rates in one

dimension, the underlying assumptions for the 1d model are essentially the same as for the

simple model.

In the 1d model, we evolve the hypsographic curve by prescribing a melt rate, dsloc,

to each point on the hypsographic curve depending on the height above sea level (Fig.

2.3c). The hypsographic curve high above sea level melts at a uniform rate, whereas the

hypsographic curve slightly above sea level melts at an enhanced rate. Parts of the curve

below sea level melt at a uniform rate determined by the flux used for melting ponded ice,

Fmp. Finally, hydrostatic adjustment is calculated by finding the ice thickness directly at

each time step, and placing the floe in hydrostatic balance. The evolution of pond coverage

obtained from this model is shown in Fig. 2.4a. The comparison with the simple 0d model is

excellent with a maximum deviation in pond coverage fraction of around 0.05. We note for
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Figure 2.4: a) A comparison between pond evolution in the 0d model and the 1d model.
The black curve represents the 0d model. The blue, green, and red curves represent the 1d
model for different functions k(s) shown in panel b). These different functions were chosen
such that the integral parameter 〈Sem〉 (Eq. (2.24)) is the same as for the 0d model. The
yellow curve represents the 1d model where enhanced melting acts on a constant fraction of
bare ice, δ, chosen according to Eq. (2.21). The magenta curve represents the 1d model with
pond albedo varying with depth. There is significant agreement between all of the curves,
suggesting that the simplifications made in the simple model were justified. Since including
variable pond albedo does not change the pond evolution significantly, this detail can be
neglected when estimating the pond coverage on permeable ice. b) The blue, green, and red
lines represent functions k(s)− 1 used to run the 1d model.
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each parameter that enters the 0d model there exists a corresponding parameter that enters

the 1d model, so the agreement between the 0d and the 1d model is achieved without any

tuning.

The 1d model allows us some freedom to test the detailed assumptions of the 0d model.

First, we can test how the functional form of k(s) affects the pond evolution (Fig. 2.4b). The

functions k(s) were chosen such that they all have the same integral parameter 〈Sem〉 defined

in Eq. (2.24). Figure 2.4a shows that in each of these cases the evolution of pond coverage

proceeds nearly identically. Second, we can test the difference between an assumption that

enhanced melting acts below a constant height ∆s and an assumption that enhanced melting

acts on a constant fraction of ice, δ. The yellow line in Fig. 2.4a shows that if δ and ∆s

are chosen according to Eq. (2.21), both assumptions yield very similar results. Finally, we

can test the effects of varying pond albedo. In reality pond albedo decreases as the ponds

deepen. We assume a dependence of pond albedo on pond depth reported in Table VII of

Morassutti and LeDrew (1996) for mean broadband albedo. The magenta line in Fig. 2.4a

shows that allowing for pond albedo to vary has a negligible effect on pond evolution.

We should note that, when both freeboard sinking and enhanced melting occur simul-

taneously, the agreement between the 0d model and the 1d model becomes poor if the

hypsographic curve is convex (e.g. Fig. 2.2d, blue curve), and the 0d model should be used

with care. Happily, the measured hypsographic curves are mostly concave for pond coverage

fractions at which pond evolution typically occurs, in which case the agreement between the

two models is excellent.

2.3 A 0d model can approximate observations well using realistic

parameters

In Fig. 2.5, we compare the results from our model to observations made on a 200m long

albedo line during SHEBA (red line). An albedo line is a transect along which various
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Figure 2.5: A comparison between measurements of pond fraction made during SHEBA
along the albedo line (red line), along a topography profile (blue dots), and our model
(black line). The blue dots have been shifted downward by 0.05 to make a more obvious
comparison between albedo line and topography profile trends. The black dashed line is the
contribution to our model from freeboard sinking and the black dotted line is the contribution
from enhanced melting. Ponds grow almost entirely due to enhanced melting as a result of
the steep topography of multiyear ice.
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measurements including albedo are made in regular intervals of length. Ice along the albedo

line was level multiyear ice, but the ponds drained to sea level after some time which makes

them amenable to our model (Perovich et al., 2003). The pond coverage along the albedo

line dropped to a minimum around the end of June. Therefore, we choose to model only

the period after July 1st. In order to keep the albedo line pristine and not to interfere with

the development of melt ponds, no holes were drilled through the ice along the albedo line

in order to make ice thickness measurements. However, relatively close to the albedo line,

topography measurements were made along a level multiyear ice profile roughly every ten

days. After approximately July 10th, ponds along the topography profile also drained to

sea level. We show the topography profile pond coverage in blue dots (we have artificially

subtracted 0.05 from the pond coverage to facilitate comparison with the pond coverage along

the albedo line). The pond coverage along the topography profile and along the albedo line

follow roughly the same trend, suggesting that the physical parameters driving the pond

evolution in the two places are likely similar. Based on the average freeboard height, we

estimate the ice thickness on July 10th to be roughly 1.4m along the topography profile,

meaning that on July 1st, ice thickness was around 1.6m. Therefore, we assume the same

thickness for the ice along the albedo line, and use a hypsographic curve corresponding to the

one measured along the topography profile on July 10th (Fig. 2.2a, dashed line). In order

to run our model, we use the melt rates of bare ice, ponded ice, and ice bottom measured

directly using ablation stakes during SHEBA (Perovich et al., 2003). We choose a realistic

ρb = 850 kg m−3 (Timco and Frederking, 1996). We have no way of directly constraining

the parameters ∆s and k that control the strength of enhanced melting. Therefore, we treat

Sem as a fitting parameter. Choosing Sem = 0.22 month−1 fits the observations well by eye.

This value can be obtained using ∆s = 15 cm and k = 1.7 which likely fall at the upper end

of the range of reasonable values for these constants based on measurements of ice albedo

as a function of height above sea level (see section 2.4 for details about this estimate). Such
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a high value of Sem can possibly be explained by a significant contribution from lateral

melting that is not height-dependent and, thus, does not enter our estimates of ∆s and k

based purely on albedo height-dependence.

The full black line in Fig. 2.5 represents a solution to the full Eq. (2.25). The agreement

between model and observation is good, with a maximum discrepancy of 3% pond coverage

at the end of the melt season. In particular, both the model and observed pond coverage

grow by about 25% over a period of about 40 days after which the pond growth slows

down. Even though we had some freedom to tune the model parameters, this comparison

shows that our model is consistent with observations using realistic physical parameters.

The dashed black line represents the contribution to pond growth due to freeboard sinking,

whereas the dotted line corresponds to enhanced melting. Almost all pond growth in this

case is due to enhanced melting. This is due to ice topography. On multiyear ice, meltwater

typically collects in depressions formed by ponds in previous years. The topography created

in this way is highly bimodal, and, after drainage, ponds typically have steep walls. Bare ice

topography, on the other hand, is relatively smooth, preventing new pond formation. This is

apparent in the hypsographic curve we used. Such a topography inhibits freeboard sinking,

and pond coverage grows mostly by enhanced melting acting near the pond sidewalls, growing

the existing ponds. In addition to height-dependent enhanced melting we introduced in the

previous section, in this case there is likely a significant contribution from lateral melting as

well. This contribution helps explain the high value of Sem we had to choose to get a close

agreement between our model and observations. First year ice topography, on the other

hand, permits ample pond growth through freeboard sinking. Observations suggest that on

first year ice ponds grow primarily due to freeboard sinking (Landy et al., 2014; Polashenski

et al., 2012).
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2.4 Numerical solutions

We now solve Eq. (2.25) numerically to gain intuition about the behavior of our model. We

use a set of realistic parameters we will henceforth refer to as the “default parameters.”

For shortwave, longwave, latent, and sensible heat fluxes, we use values inferred by

Skyllingstad et al. (2009) using hourly measurements from the SHEBA mission. We use

the bottom heat flux inferred from measurements of ice bottom ablation during the SHEBA

mission (Perovich et al., 2003). The albedo of bare ice can vary between 0.5 and 0.7 (Hane-

siak et al., 2001), while the albedo of melt ponds can vary between 0.1 and 0.6, depending

on pond depth and conditions of ice at the pond bottom (Morassutti and LeDrew, 1996;

Perovich, 1996; Perovich et al., 1998). Here we prescribe a default bare ice albedo of 0.55,

and a default pond albedo of 0.2. We use a realistic bulk ice density of ρb = 850 kg m−3

(Timco and Frederking, 1996). We use an initial ice thickness of 1.5 m, and use the first year

ice topography measured by Landy et al. (2014) adjusted for the prescribed ice thickness

and initial pond fraction (usually xi = 0.2). We will assume enhanced melting is entirely

due the albedo dependence on height above sea level. Some preliminary results based on

field measurements of bare ice albedo on first year ice suggest that albedo changes from

around 0.3 near sea level to around 0.55 at a height of around 10 cm above sea level, after

which the correlation between albedo and surface elevation tapers off (Chris Polashenski,

pers. comm.). Using such an albedo and the average values of shortwave, longwave, latent,

and sensible heat fluxes, we can estimate the rate of melt as a function of height above sea

level, k(s) =
F (s)

Fbi
. Using Eq. (2.24), we can then find the integral parameter 〈Sem〉. We

choose ∆s = 6 cm and k = 1.7 to correspond to the same integral parameter. We should

note that there is significant scatter in the data, and measurements correspond to only one

study. Therefore, this is a rough estimate of enhanced melting, but it is likely of the correct

order of magnitude.

Figure 2.6a shows the solution to Eq. (2.25) for different initial conditions. We can
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Figure 2.6: Numerical solutions to Eq. (2.25) with parameters varied around the defaults
described in the text. a) Varying initial pond coverage. Solid lines represent solutions using
full time-varying fluxes, while dashed lines represent solutions using time-averaged fluxes.
The two solutions are very similar, so we subsequently use only the time-averaged fluxes.
b) Varying ice thickness. Ponds grow slower on thicker floes. c) Varying pond and bare ice
albedo. Different colors represent different bare ice albedos, and full, dotted, and dashed
lines represent different pond albedos. A change in bare ice albedo has a much larger effect
on pond fraction than the same change in pond albedo. d) Varying the ∆s and k. For
k = 0.8, the ponds shrink. However, pond evolution for k < 1 is not represented well in our
model, so this curve serves only as an illustration.
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see that ponds grow more rapidly when the initial pond coverage is lower, and the pond

evolution curves cluster together as time progresses. This is because lower initial pond

coverage corresponds to lower initial freeboard height, making the pond growth more rapid.

The dashed line corresponds to the solution using the fluxes time-averaged over the 30 day

run. The solutions using the averaged fluxes are very similar to the ones using time-varying

fluxes, meaning that daily, and even monthly variations in the forcing have little effect on

pond growth. This insensitivity to short time scale variations in the forcing means that pond

coverage evolution may be faithfully represented in the large scale models, as it would not be

affected by the coarse time scales of those models. Henceforth, we will use the time-averaged

fluxes.

A larger ice thickness means a higher freeboard. For this reason, ponds grow more slowly

on thicker ice. Because the pond growth rate is inversely proportional to ice thickness, pond

coverage is more sensitive to variations in ice thickness when the ice is thin (Fig. 2.6b). In

Fig. 2.6b we see that a 0.5 m difference in the initial ice thickness (between a floe 1.5m and

a floe 2m thick) can mean a 20% difference in pond coverage at the end of the melt season.

Figure 2.6c shows the dependence of pond coverage on albedo. A variation of 0.1 in bare

ice albedo has a much larger effect on pond evolution than the same change in pond albedo.

The reason is that melting ponded ice only affects pond coverage through downward rigid

body motion of the floe, whereas melting bare ice grows the ponds through both enhanced

melting and freeboard sinking. Furthermore, when pond coverage is low, rigid body motion

due to ponded ice melting is less efficient than that due to bare ice melting because it is

proportional to melt pond fraction.

The parameters controlling the strength of enhanced melting are the least constrained

parameters in our model. In Fig. 2.6d we show the dependence of pond evolution on the

height below which enhanced melting is active, ∆s. Exploring a range of realistic values for

∆s, 0 < ∆s < 15 cm, we find that the pond fraction at the end of the melt season can vary by
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about 30%. This difference would be larger if we chose a smaller ice thickness. The effects of

changing k are relatively small, so long as k is large enough (not shown). For example, using

current parameters, pond coverage evolution becomes fairly insensitive to k when k > 1.5.

Smaller values of k, however, can significantly impact pond evolution. If k is enough smaller

than 1, Sem can become negative, and the pond coverage can stop growing. In this case,

ice near the sea level melts slowly enough such that an upward rigid body movement due

to melting ice high above sea level pushes the ice near sea level upwards, preventing pond

coverage growth. The evolution of such a pond coverage cannot be represented well in our

model since the equation for enhanced melting becomes invalid in this case, and the blue

curve in Fig. 2.6d serves therefore simply as an illustration.

2.5 Pond evolution is slower on smoother ice

The evolution of pond coverage in our model depends on the detailed shape of the hyp-

sographic curve which is not captured by the strengths of freeboard sinking and enhanced

melting. As we show below, pond coverage is sensitive to such details, and in particular to

ice roughness. Below we will introduce the “effective strengths”, S∗, which approximately

capture the effects of roughness and allow us to estimate mean pond coverage after a pe-

riod of time. Using effective strengths, we will demonstrate how multiyear ice topography

suppresses pond growth by freeboard sinking, while first year ice topography permits it.

In the tangent function parameterization, Eq. (2.35), the exact shape of the hypsographic

curve is determined by parameters p1 and p2. Here, we will not discuss these parameters

individually, but will rather focus on often measured bare ice roughness, σ, defined as the

standard deviation of surface elevation of ice above sea level:

σ ≡

(∫ 1
xi
s2(xh)dxh

1− xi
− h2

)1
2

. (2.26)
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We will use the non-dimensional form of bare ice roughness, defined as σ̂ ≡ σ
h . Typically, a

concave hypsographic curve (e.g. Fig. 2.2d, red curve) will have a small σ̂, whereas a convex

hypsographic curve (e.g. Fig. 2.2d, blue curve) will have a high σ̂.

During the permeable stage, all else equal, ponds will grow more rapidly on rougher ice,

since a larger fraction of ice is close to sea level. This is not true on impermeable ice, as

meltwater filling deep topographic lows on rough ice will cover a smaller area relative to the

same amount of meltwater filling shallow topographic lows on smooth ice. For this reason,

the initial pond coverage will likely be smaller on rougher ice due to a smaller pond coverage

during the impermeable stage.

Figures 2.7 show the pond coverage evolution due to pure freeboard sinking (Fig. 2.7a)

and pure enhanced melting (Fig. 2.7c) for hypsographic curves with different parameters

p1 and p2 and all other parameters kept constant. For each choice of p1 and p2, we find

the normalized bare ice roughness, σ̂, represented by the color of the curves. Blue colors

correspond to low roughness and red colors to high roughness. Pond evolution on measured

topographies (Fig. 2.2a) is also shown. We can see that although roughness does not fully

determine the pond evolution, it is a viable proxy for how pond coverage will evolve, with

high roughness curves typically having a higher average pond coverage.

We wish to quantify the effect of roughness by its impact on the mean pond coverage.

In particular, we hope to find the “effective strengths”, S∗(σ̂), which include the roughness

effects and allow us to easily estimate the average pond coverage after some time t

〈x(t)〉 ≈ 1

2
S∗t+ xi , (2.27)

where 〈x(t)〉 ≡
∫ t

0 x(t)dt
t . Effective strengths are proportional to strengths of freeboard sinking

and enhanced melting we derived in section 2.2.3. In general they themselves may depend

on time, and are time-independent only if pond coverage evolution is linear, x(t) = St+ xi,

in which case S∗ = S, where S is either Sfs ≡ (Sbi + Smp + Sbot) in the case of freeboard
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Figure 2.7: Exploring the effects of sea ice roughness. a) Pond evolution due to pure freeboard
sinking for hypsographic curves with different shape parameters p1 and p2. The x-axis shows

non-dimensional time t̂ =
t(Sbi+Smp+Sbot)

1−xi . Color represents normalized roughness, σ̂, with
blue colors corresponding to small σ̂ and red colors corresponding to large σ̂. Thick red solid
line represents pond evolution on the measured first year ice hypsographic curve, and the
thick red dashed line represents pond evolution on the measured multiyear ice hypsographic
curve. All else equal, rougher ice has a larger pond fraction. b) Pond evolution due to
pure enhanced melting for hypsographic curves with different shapes. The x-axis shows non-
dimensional time t̂ = tSem

1−xi . Cartoon examples of hypsographic curves and their approximate
positions along the σ̂-axis are also shown.
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sinking or Sem in case of enhanced melting.

In appendix C, we describe the procedure to estimate the effective strengths as functions

of non-dimensional roughness and time. Here, we only state the result

S∗fs ≈
[
1.3σ̂2

] (
Sbi + Smp + Sbot

)
,

S∗em ≈

[
1 +

(
2√
t̂em

− 3

2

)
σ̂

]
Sem ,

(2.28)

where S∗fs is the effective strength of freeboard sinking, S∗em is the effective strength of

enhanced melting, and t̂em ≡ Semt
1−xi is the non-dimensional time of pond evolution due to

enhanced melting. The terms in square brackets represent the corrections due to roughness.

If both freeboard sinking and enhanced melting occur simultaneously the total effective

strength is the sum of these two, S∗ = S∗fs +S∗em. Knowing the effective strengths, allows us

estimate the mean pond coverage after a period of time without having to run the model.

Roughness has a different effect on freeboard sinking and enhanced melting. Freeboard

sinking is roughly independent of time and proportional to the square of non-dimensional

roughness. Therefore, it is very sensitive to variations in roughness: doubling the ice rough-

ness roughly quadruples the mean pond coverage due to freeboard sinking after some time.

Enhanced melting depends roughly linearly on roughness. However, as roughness tends to

zero, the effective strength remains non-zero, S∗em(σ̂ → 0) → Sem. Therefore, ponds on

smooth ice grow primarily due to enhanced melting. Effective strength also depends on the

non-dimensional time, t̂, and is higher and more sensitive to variations in roughness early in

the melt season.

Multiyear ice topography shown in Fig. 2.2a, dashed line, has σ̂ ≈ 0.25 and is significantly

smoother than first year ice topography shown in Fig. 2.2a, solid line, which has σ̂ ≈ 0.55.

From Eq. (2.28) it follows that freeboard sinking on multiyear ice is roughly 5 times less

efficient in growing the ponds than on first year ice.
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2.6 Analyzing the 0d model yields useful insight into factors

influencing the pond evolution

Extracting the dependence of a desired property on physical parameters and understanding

its scaling is the main strength of our model. These types of relationships would be difficult

to obtain in a more complex model.

The parameters S∗bi, S
∗
mp, S∗bot, and S∗em control the mean rates of pond growth by

melting different regions of ice. Roughly, they represent the amount of pond growth per unit

time by freeboard sinking due to melting bare ice; freeboard sinking due to melting ponded

ice; freeboard sinking due to melting ice bottom; and enhanced melting. Knowing these

parameters allows us to estimate mean pond coverage after a period of time with significant

accuracy without having to run any numerical models. Moreover, analyzing them can yield

useful insight into the behavior of melt ponds under general circumstances.

We can estimate the change in magnitude of the strength of each of the growth modes

when a physical parameters p changes by ∆p as

∆S∗i =
∂S∗i
∂p

∆p , (2.29)

where ∆S∗i is the change in magnitude of the effective strength of the ith growth mode. This

equation holds so long as the change in the physical parameter is not too large. A change

in pond growth rate can then be estimated as ∆S∗ =
∑
i ∆S∗i . Then, using Eq. (2.27), we

can roughly estimate a change in mean pond fraction, ∆〈x〉, after some time, ∆t, following

a change in physical parameter, p, as ∆〈x〉 ≈ 1
2∆S∗∆t. This provides a means to estimate

changes in mean pond coverage under different environmental conditions.
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2.6.1 Ponds are more sensitive to changes in bare ice albedo than changes

in pond albedo

We will illustrate the use of effective strengths using an example where we vary the ice and

pond albedos. If the bare ice albedo changes by ∆αbi, the change in growth rate would be

roughly

∆S∗ = −

S∗bi +

ρw−ρi
ρw

(dsem/dsfs)
2 + (k − 1)

(1 + dsem
dsfs

)(k − 1)
S∗em

 Fsol

Fbi
∆αbi ≈ −0.9

1

month
∆αbi . (2.30)

On the other hand, if the melt pond albedo changes by ∆αmp, the change in growth rate

would be roughly

∆S∗ = −

S∗mp +
(ρw − ρi)xi(dsem/dsfs)

2Fmp

ρw(1 + dsem
dsfs

)(k − 1)(1− xi)Fbi

S∗em

 Fsol

Fmp
∆αmp ≈ −0.2

1

month
∆αmp .

(2.31)

It follows from these estimates that after a month the mean pond fraction would differ by

roughly 4.5% for a bare ice albedo difference of 0.1, and by around 1% for a pond albedo

difference of 0.1. Therefore, variation in pond albedo affects pond evolution roughly five times

less than variation in bare ice albedo. This explains our observation from Fig. 2.6c that pond

evolution is much more sensitive to variations in bare ice albedo than to variations in pond

albedo. In this way, we also extract the dependence of sensitivity on physical parameters.

A major difference between the two sensitivities is their dependence on the initial pond

coverage: the sensitivity to pond albedo is proportional to xi, whereas the sensitivity to

bare ice albedo is proportional to 1 − xi. In the above example we used xi = 0.2, which

explains most of the large difference between the two sensitivities. If the pond coverage

were higher, variations in the pond albedo could become more important than variations in

bare ice albedo. For example, assuming no enhanced melting, the sensitivity to pond albedo

would become greater than the sensitivity to bare ice albedo at 50% pond coverage.
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2.6.2 Under global warming, pond feedback could lead to significant ice

thinning

We now use the effective strengths to roughly estimate the impact of global warming on the

pond coverage. At high latitudes, feedbacks due to changes in albedo, the atmospheric lapse

rate, and clouds can amplify the forcing due to global warming (Holland and Bitz, 2003).

For this reason forcing at high latitudes is generally larger than direct radiative forcing due

to an increase in CO2 concentration. In a global warming scenario, the pond growth rate

would increase because the ice melts faster, but also because ice at the beginning of the

melt would be thinner. We can emulate a global warming scenario by increasing the flux

Fr by a certain amount, ∆Fr, and by assuming that the initial ice thickness decreases by

∆H ≡ ∂H
∂Fr

∆Fr, where ∂H
∂Fr

is the ice thinning per 1 Wm−2 of warming. Therefore, we split

the change in pond growth rate due to global warming, ∆S∗, into a contribution from direct

forcing, ∆S∗F , and a contribution from ice thinning, ∆S∗H . Using the above formalism, we

find

∆S∗F ≡
∑
i

∂S∗i
∂Fr

∆Fr =

 S∗bi

Fbi
+
S∗mp

Fmp
+

ρw−ρi
ρw

(dsem/dsfs)
2 + (k − 1)(1− xi)

(1 + dsem
dsfs

)(k − 1)(1− xi)
S∗em

Fbi

∆Fr

≈ 0.5%

W/m2 ×month
∆Fr ,

∆S∗H ≡
∑
i

∂S∗i
∂H

∂H

∂Fr
∆Fr = −

(
S∗bi + S∗mp + S∗bot + 2S∗em

) 1

H

∂H

∂Fr
∆Fr

≈ 1.9%

W/m2 ×month
∆Fr ,

∆S∗ ≡ ∆S∗F + ∆S∗H ≈
2.4%

W/m2 ×month
∆Fr .

(2.32)

The numbers in Eq. (2.32) were obtained using the default values of the parameters, and

∂H
∂Fr

= −0.05 m3 W−1 roughly estimated using the Eisenman and Wettlaufer (2009) model.
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This means that global warming would increase mean pond coverage by roughly 1.2% per

1 Wm−2 of warming after a month’s growth. Nearly half of this increase in the mean pond

coverage comes from an increase in the strength of enhanced melting due to ice thinning.

Simulating a 30 day melt numerically using our model predicts an increase in mean pond

coverage with forcing at a rate of 1.5% per 1 Wm−2 of warming for small forcing (∆Fr ≈ 0),

which confirms the approximate validity of our linearization. For larger forcing, the sensi-

tivity of pond coverage to forcing increases because the ice thins. Our linearized estimate,

Eq. (2.32), also gives the dependence of the sensitivity on physical parameters. In a likely

scenario where the forcing is around 10 Wm−2, our estimate predicts that after a month

mean pond coverage would increase by around 15%, which corresponds to around 12 cm of

ice thinning solely due to the pond feedback. Ice thinning after a month directly due to

forcing would be only around 9 cm, meaning that the pond feedback must be taken into

account to understand ice thinning under global warming. Increased forcing could also lead

to changes in initial pond coverage, changes in ice roughness or changes in ∆s or k. We

ignored these feedbacks, as we have no way of reliably estimating ∂p
∂Fr

for these parameters.

2.6.3 Different growth modes yield different pond evolution

Each of the four growth modes has different effects on the pond coverage. We will now look

in detail at each of the growth modes, their effect on the pond evolution, and their scaling

with physical parameters. Figure 2.8 shows the dependence of growth rate on pond fraction

and solutions to Eq. (2.25) when only one of the strengths is non-zero, assuming a first year

ice topography. Figure 2.9 shows the evolution of pond coverage distribution when only one

of the strengths is non-zero.

All modes of growth depend in the same way on the bulk ice density, ρb. Each of the

strengths is inversely proportional to ρb, meaning that ponds grow faster on ice with a lower

bulk density. The effect is, however, modest: within a reasonable range of 916 kg m−3 >
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Figure 2.8: a) Dependence of growth rate on pond coverage for different modes of pond

growth. The y-axis shows the growth rate, dx
dt , for each of the growth modes calculated

using the default parameters and xi = 0. Pond growth rate for bare ice melting (blue line)
first increases up to a certain pond coverage and then decreases. Ponded ice melting (green

line) increases with pond coverage from dx
dt = 0 at x = 0 to very high values at high pond

coverage. The ice bottom melting rate (red line) gradually increases with pond coverage.
The vertical enhanced melting rate (cyan line) decreases with pond coverage. The black line
represents a realistic combination of the four growth modes, and shows that pond growth
is dominated by enhanced melting early in the season, and by freeboard sinking late in
the season. The dashed magenta line represents lateral melting estimated using parameters
described in section 2.7.1. b) Solutions to Eq. (2.25) when only one of the growth modes is
active. The x-axis shows the normalized time, where 0 corresponds to the beginning of the
melt and 1 to entire floe being flooded.
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Figure 2.9: In this figure we have evolved an ensemble of 105 floes with varying initial
pond coverage according to Eq. (2.25) when only one of the growth modes is active. Red
curves represent the initial pond fraction distribution, blue curves represent the pond fraction
distribution after a time, t, while the green curves represent the pond fraction distribution
after 2t. A time used in panel a is t = 1

2
1−xi
Sbi

, in panel b it is t = 1
6

1−xi
Smp

, and in panels c

through f it is t = 1
4

1−xi
S , where xi is the mean pond fraction of the initial distribution and

S is an appropriate strength. We show how different growth modes have different effects on
the pond fraction distribution. a) Bare ice melting first narrows the distribution, and then
widens it. b) Ponded ice melting widens the distribution. c) Bottom ice melting narrows the
distribution, while the mean of the distribution increases at an increasing rate. d) Enhanced
melting narrows the distribution, while the mean of the distribution increases at a decreasing
rate. e) Using realistic parameters, the pond distribution slowly narrows and accelerates. f)
Due to lateral melting, pond coverage distribution does not change width, and the growth
is linear.
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ρb > 750 kg m−3, pond growth rate can vary by at most 20%.

We will first discuss freeboard sinking. Common to all modes of freeboard sinking is the

dependence on ice thickness. Each freeboard sinking growth mode is inversely proportional

to the ice thickness, S∗fs ∝
1
H , meaning that, all else equal, ponds grow proportionally slower

on thicker ice.

Although ice roughness may have a different effect on each of the individual modes of

freeboard sinking, for simplicity we will assume that they are all affected by roughness in the

same way, as parameterized in Eq. (2.28). In that case, each of these strengths is roughly

proportional to the square of the non-dimensional ice roughness, S∗fs ∝ σ̂2, meaning that

pond growth due to freeboard sinking is suppressed on smooth ice.

We will now focus on individual components of freeboard sinking. The parameter S∗bi

controls pond growth by freeboard sinking due to melting bare ice. On first year ice, owing to

the shape of the hypsographic curve, the pond growth rate by bare ice melting increases up

to a certain pond coverage and decreases afterwards (Fig. 2.8, blue line). S∗bi is proportional

to the flux Fbi, and depends on the initial pond coverage as S∗bi ∝ (1− xi)2. The quadratic

dependence on initial bare ice fraction means that ponds on floes with less initial pond

coverage grow faster. It also means that floes that start off less ponded can at some point

become more ponded than floes that start off more heavily ponded. We can see this in Fig.

2.9a, where the pond coverage distribution narrows up to a certain point, after which it

starts to widen again because floes with lower xi overtake the floes with higher xi. Using

the default values of physical parameters of Fbi = 85 Wm−2, H = 1.5 m, xi = 0.2, and

σ̂ = 0.55, we get S∗bi ≈ 0.13 month−1.

The parameter S∗mp controls pond growth by freeboard sinking due to melting ponded

ice. The pond growth rate increases with pond fraction from 0 at x = 0 to very high values

at high pond coverage, and can be the dominant mode of pond growth if the pond coverage

is high enough (Fig. 2.8, green line). For this reason, giving a representative number to
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pond growth rate, such as Smp, is only meaningful if the melt season is short enough such

that pond coverage during that period does not change substantially. The dependence on

initial pond coverage is S∗mp ∝ xi(1 − xi). For this reason the pond coverage distribution

widens over time when S∗mp is dominant (Fig. 2.9b). Using Fmp = 171 Wm−2 and other

parameters the same as above, we get S∗mp ≈ 0.07 month−1. Although in this case, melting

ponded ice affects pond evolution less than bare ice melting, it can become stronger if the

pond coverage is higher. For example, S∗mp and S∗bi are roughly the same at x = 0.35, while

at x = 0.5, S∗mp is roughly twice as large as S∗bi.

The parameter S∗bot controls pond growth by freeboard sinking due to melting of the ice

bottom. The pond growth rate due to bottom melting increases with increasing melt pond

fraction, although more gradually than in the ponded ice melting case (Fig. 2.8, red line).

Since the growth rate is proportional to the bare ice fraction, S∗bot ∝ (1 − xi), the pond

coverage distribution gets concentrated over time (Fig. 2.9c). Using Fbot = 20 Wm−2 and

other parameters the same as above, we get S∗bot ≈ 0.04 month−1. The contribution from

ice bottom melting becomes larger than the contribution from bare ice melting only at high

x.

Now, we will turn to enhanced melting. The parameter S∗em controls pond growth by en-

hanced melting, and is the least constrained in our model due to the many poorly-constrained

physical processes that potentially contribute to it. Here we will only consider enhanced

melting due to height-dependent processes (Eq. (2.23)) and leave lateral melting for the

discussion (subsection 2.7.1).

Because the growth rate by enhanced melting is inversely proportional to the hypso-

graphic curve, pond growth by enhanced melting is very fast at the beginning of the melt,

and decelerates afterwards (Fig. 2.8, cyan line). The enhanced melting strength is inversely

proportional to the square of the ice thickness, S∗em ∝ 1
H2 , meaning that it is significantly

more sensitive to variations in thickness than freeboard sinking. On the other hand it is sig-
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nificantly less sensitive to variations in ice roughness, Eq. (2.28). Even on perfectly smooth

ice, σ̂ = 0, ponds will grow due to enhanced melting. In that case, however, lateral melt,

rather than height-dependent enhanced melting may dominate.

The strength of enhanced melting is proportional to the height below which enhanced

melting is operational, S∗em ∝ ∆s. If we take ice wetting as a physical example, this means

that enhanced melting is sensitive to microphysical processes that determine how high above

sea level the ice will be wet. The dependence on the parameter k depends on its magnitude.

It appears in S∗em in the term k−1
dsem/dsfs+1

. The term dsem/dsfs is proportional to k − 1.

Therefore, if dsem/dsfs � 1, enhanced melting is proportional to k − 1. On the other hand,

if dsem/dsfs � 1, enhanced melting becomes independent of k. Using default parameters,

we find this transition happens at around k ≈ 1.2. In the example of ice wetting, this means

that enhanced melting is sensitive to albedo variations near sea level when ice near sea level

has a similar albedo to the rest of the floe. On the other hand, if the albedo near sea level

is significantly lower than the average, pond growth is insensitive to variations in properties

of ice near sea level.

Enhanced melting is proportional to the cube of the bare ice fraction, S∗em ∝ (1 − xi)3,

making it very sensitive to variations in initial pond coverage. For this reason, the pond

coverage distribution gets quickly concentrated (Fig. 2.9d), and it is possible for initially

less ponded floes to overtake initially more ponded floes. If we assume ice wetting is the

only physical process responsible for enhanced melting, we can place a rough estimate on

S∗sm. Taking k = 1.7, ∆s = 0.06 m, and t = 30 days, we get for default parameters

S∗em ≈ 0.31 month−1. This suggests that the contribution to mean pond coverage from

enhanced melting is slightly larger than the contribution from freeboard sinking after 30 days

of melt.

The black line in Fig. 2.8 shows the total pond evolution using the default physical pa-

rameters. The pond growth rate when both freeboard sinking and enhanced melting occur
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is not simply a sum of the growth rates of the four modes since the equations for freeboard

sinking and enhanced melting are solved separate of each other. Therefore, the dependence

of growth rate on pond coverage (Fig. 2.8a, black line) was obtained by finding the deriva-

tive of the pond evolution curve. The pond growth rate first decreases with pond fraction

indicating that enhanced melting dominates early in the season and then increases indicat-

ing that freeboard sinking dominates later in the season. The pond coverage distribution

using realistic parameters narrows with time (Fig. 2.9e). Since each growth mode affects

the pond coverage distribution in a distinct way, fitting both the evolution of the mean and

the standard deviation of the pond coverage distribution in observational data could add

constraints on the relevant strengths. Using the above values of strengths, we find that after

a month of growth bare ice melting contributes to roughly 25% of mean pond coverage,

ponded ice melting contributes to around 13%, ice bottom melting contributes to around

7%, and enhanced melting contributes to roughly 55%.

2.7 Discussion

2.7.1 Lateral melting of pond walls by pond water

In our model, we focused on vertical changes in topography, and neglected pond growth by

lateral melting of pond sidewalls by pond water. We will now briefly discuss this second

possibility.

This type of melt was the main focus of Skyllingstad et al. (2009), who carefully calcu-

lated the lateral melt rates of pond sidewalls by pond water. The red line in Fig. 2.10 shows

their results. The rate of change of pond fraction due to a lateral melt flux F lat is

dxlat

dt
=
P

A

F lat

lρb
, (2.33)

where P is the total perimeter of the ponds and A is the area of the floe. If F lat is constant
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Figure 2.10: The red curve is the results of Skyllingstad et al. (2009). The black curve is the
solution to Eq. (2.33) with F lat = KlatFmp. The pond albedo and the shortwave, longwave,
sensible, and latent heat fluxes used to find Fmp are the same as used in Skyllingstad et al.
(2009) and Klat = 1.5. A nearly perfect agreement between the two curves suggests that a
single non-dimensional constant, Klat, is enough to describe pond growth by lateral melting,
and the complicated physics of lateral melting are important only in determining the value
of Klat.
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and the dependence of P on pond fraction is weak, pond growth is linear, which explains

the roughly linear pond coverage evolution in Skyllingstad et al. (2009). In Fig. 2.10,

black line, we solve Eq. (2.33) assuming a lateral melt flux proportional to the ponded ice

melting flux, F lat = KlatFmp, where Klat is a constant. We use the same energy fluxes

used by Skyllingstad et al. (2009), and estimate P
A ≈ 0.1 m−1 from the aerial photographs

taken during SHEBA. A nearly perfect match is obtained with Klat = 1.5 with pond coverage

deviation of less than 1%. Therefore, a single constant that relates the rate of melt of ponded

ice to the rate of melt of pond walls, Klat, is enough to capture the effects of lateral melting

on pond growth, at least as parameterized in Skyllingstad et al. (2009). This suggests

that the complicated physics of lateral melting can, to a large extent, be ignored. More

work would, however, be needed to determine to what degree Klat varies under different

circumstances.

If we ignore the topographic variation above sea level, pond growth due to enhanced

melting also becomes linear (Eq. (2.19)). Therefore, lateral melting can approximately

be considered a contribution to enhanced melting, Sem, although it scales differently with

physical parameters than the height-dependent enhanced melting, Eq. (2.23). It is important

to note that in this model lateral melt does not depend on ice thickness, H, or on initial pond

coverage, xi, although, in reality, it may depend on these to some degree. For this reason,

the pond coverage distribution width does not change in time, while the mean increases

linearly (Fig. 2.9f).

It is not simple to understand the contribution of lateral melting to pond growth when

both lateral and vertical melting occur simultaneously. Each point along the pond boundary

can either expand by lateral melting or by vertical melting, but not by both. This is because

when a point along the pond boundary melts laterally, it creates a completely vertical slope

at that point. Therefore a small vertical shift will not grow the ponds, and a large vertical

shift will outgrow the lateral expansion. Therefore, if pond growth due to vertical melting
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is strong, the contribution from lateral melting will be small. This is consistent with obser-

vations of Polashenski et al. (2012) and Landy et al. (2014) who found that on first year

ice the contribution from lateral melting is small. On the other hand, steep topography on

level multiyear ice inhibits pond expansion through vertical motion and could lead to lateral

melting being the dominant mode of growth. This is consistent with our findings of a large

contribution from enhanced melting to pond growth on multiyear ice during SHEBA (Fig.

2.5).

2.7.2 Effects of density variations and internal melt

So far, we have assumed that all the melt occurs either on the top or the bottom surface of

the ice. However, some of the melt can happen internally, in the bulk of the ice. Internal

melt occurs when trapped brine pockets with high salt content expand and dilute in order

to reach a thermodynamic equilibrium with the surrounding ice. This phenomenon has been

reported to occur both above and below sea level. Internal melt leads to a reduction in bulk

ice density, ρb, which in turn affects pond evolution. Accounting for internal melt correctly

can be quite challenging as it requires detailed knowledge of the vertical structure of internal

melt and bulk density. Nevertheless, we find that although the effects of internal melt and

density variation may be significant when considered individually, if considered together,

they are likely small.

If internal melt is uniform throughout the vertical ice column, the only effect is a gradual

reduction in ρb over the course of the melt season, slightly increasing the pond growth

rate. If, on the other hand, internal melt has a vertical structure, it will create a vertically

non-uniform bulk ice density which can have more complicated effects on pond evolution.

Variations in bulk density and internal melt affect pond evolution in the following ways: 1)

mass transported across sea level due to rigid body movement depends on the bulk density

at sea level, 2) the volume of ice removed by local melt depends on the bulk ice density at
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the surface, 3) freeboard height depends on average bulk densities above and below sea level,

and 4) internal melt induces rigid body motion by melting mass above and below sea level,

without changing the ice surface. We outline the procedure to include these effects in the

pond evolution model in appendix D. The resulting equation for pond coverage evolution has

the same form as Eq. (2.25), with only the strengths modified. Here, we only qualitatively

discuss our findings. Pond evolution is most sensitive to

1. The difference between the internal melt rate above and below sea level, easl − ebsl,

creating a rigid body motion. Here, easl/bsl is the energy density used for internal

melting, averaged over all ice above or below sea level. More internal melt above

(below) the sea level will create an upward (downward) rigid body motion of the floe,

slowing down (speeding up) pond growth.

2. The difference between the bulk ice density at the surface and the bulk ice density at

sea level, ρb(h)− ρb(0), changing the ratio of topographic change due to local melt to

rigid body motion. Using default parameters, rigid body motion is upwards, slowing

down pond growth. Therefore, a lower (higher) bulk ice density at the surface relative

to sea level increases (decreases) the rate of local melt relative to rigid body motion,

speeding up (slowing down) pond growth.

If considered as independent processes, vertical variations in bulk ice density and inter-

nal melt can significantly alter the rate of pond growth. For example, assuming ρb(0) =

850 kg m−3, ρb(h) = 750 kg m−3, and no internal melt, leads to a roughly 60% increase in

the pond growth rate. However, these processes depend on each other and have the opposite

effects on pond evolution. For example a high rate of internal melt above sea level, slowing

down pond growth, will lower the bulk ice density above sea level, speeding up pond growth.

Density and internal melt can be related via a differential equation,
∂ρb(z)
∂t = −e(z)l −

∂ρb(z)
∂z

dsrigid body
dt , where z is a vertical coordinate within the ice column. Assuming vertically

uniform rates of internal melt above and below sea level, an approximate long-time solution to
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this equation yields a vertically uniform bulk density below sea level, and a linearly decreasing

bulk density above sea level. This also defines a long-time relationship between the vertical

profiles of internal melt and bulk ice density, easl− ebsl = l
h
dsrigid body

dt (ρb(0)− ρb(h)). Using

densities from the example in the paragraph above, and the rate of internal melt obtained

in this way, leads to a roughly 10% increase in pond growth rate, significantly less than 60%

we found when considering only the effects of vertical density structure.

Thus, after a time long enough for the ice density profile to reach a steady-state with

respect to the internal melt, the effects of vertically non-uniform internal melt and density

always significantly compensate each other as illustrated in the example above. For this

reason, we believe that including a vertical structure of density or internal melt in the simple

model of pond evolution model is most likely unnecessary for the purpose of making a first-

order estimate of pond coverage growth rate.

2.7.3 Under certain conditions, ponds can stop growing

Here, we will entertain the possibility of pond growth by vertical motion of the topography

stopping entirely for a period of time. This is an example of a possible transient effect of

internal melting, which, although interesting, seems unlikely.

If there is enough mass removed above sea level to induce an upward rigid body motion

that is able to compensate for the effects of local melting near the sea level, points near

the sea level would move upwards, ds
dt > 0, and pond growth would stop. This could, for

example, occur if there is strong internal melting above sea level. After a time, however,

high internal melt above sea level would lower the bulk ice density at the surface thereby

increasing the rate of local melt, and reinitializing pond growth.

We will use an equation for ds
dt that includes the effects of vertically non-uniform internal

melt and bulk ice density we derive in appendix D, Eq.(2.42). Requiring that ds
dt (x) > 0 for
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any x, we find the condition for pond growth stopping as

k <
ρb(h)

ρb(0)

ρi

ρw

(
1 +

h

Fbi

(
easl − ebsl

ρasl

ρbsl

))
− ρw − ρi

ρw

Fbot

Fbi
, (2.34)

where ρasl/bsl is the average bulk density above and below sea level. Using the values of

internal melt and bulk densities from the previous chapter and taking
ρasl
ρbsl
≈ 1, we find that

in order for ponds to stop growing, k has to be less than 0.85. This is unlikely as ice near

the sea level likely melts faster than ice higher up. Nevertheless, if internal melt has not had

enough time to adjust densities above and below sea level, it is possible that pond growth

could be stopped for a time by the action of internal melt above sea level. For example,

assuming the same internal melt as in the previous example but a uniform bulk ice density

(ρb(h) = ρb(0)), pond growth would be stopped at k = 1. In this case it is likely that growth

by lateral melt would take over, as Eq. (2.34) ensures only that pond growth by vertical

motions is prevented.

2.8 Conclusions

We presented a simple analytical model for melt pond evolution on permeable Arctic sea ice.

The model is represented by two ordinary differential equations in which the rate of change

of pond coverage depends on pond coverage. The model is governed by four parameters,

Sbi, Smp, Sbot, and Sem, that control the rate of pond growth by bare ice melting, ponded

ice melting, ice bottom melting, and enhanced melting. Using this model we are able to

reproduce observations well.

Our main finding is that we can estimate the mean pond coverage as a function of time

without running the model by using “effective strengths:” S∗bi, S
∗
mp, S∗bot, and S∗em. Here

all the physical parameters combine in a known way which permits understanding of the

behavior of pond coverage under general conditions. The most important conclusions we
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draw from analyzing the effective strengths are:

1. Ponds grow slower on smoother ice, with freeboard sinking roughly proportional to the

square of the bare ice roughness and enhanced melting increasing roughly linearly with

roughness.

2. Ponds respond to both freeboard sinking and enhanced melting on first year ice and

almost entirely to enhanced melting on multiyear ice.

3. The pond growth rate is more sensitive to changes in bare sea ice albedo than changes

in pond albedo unless the ice is already mostly covered in ponds.

4. Under a global warming scenario, the pond feedback could lead to a reduction in annual

minimum ice thickness of the same order of magnitude as the thickness reduction due

to direct forcing.

5. The dependence of ice albedo on height above sea level is likely a significant control

on pond evolution on multiyear ice, so that ignoring it, thereby neglecting enhanced

melting, could lead to an order of magnitude decrease in the pond growth rate on

multiyear ice.

6. The pond coverage distribution over an ensemble of floes likely narrows over time.

7. Pond evolution is insensitive to small time scale variations in the forcing.

8. If freeboard sinking is suppressed by topography, lateral melting likely plays an impor-

tant role, making it a significant factor on multiyear ice.

9. The complicated physics of lateral melting can be summarized by a single non-dimensional

constant Klat that relates the lateral melt flux to the flux used for melting the pond

bottom.
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10. The vertical structure of density and internal melt can likely be ignored for the purpose

of making a first-order estimate of pond coverage growth rate.

As melt pond coverage is one of the key controls on summer Arctic sea ice albedo,

some representation of it in GCMs is necessary for predicting the future of sea ice and its

impact on global climate. With the exception of enhanced melting, our model depends

only on parameters that are either available in large scale models or that can be reasonably

estimated. Therefore, if stricter constraints can be placed on the strength of enhanced

melting, our model may present an accurate and computationally low-cost representation

of sea level melt ponds that could be used in GCMs. A major limitation of our model is

our lack of complete understanding of enhanced melting. Thus, to improve it, further field

studies about melt processes near the pond boundaries, such as lateral melting or the melting

due to a lower ice albedo near the pond boundaries, are needed. Moreover, processes that

determine ice topography at the beginning of stage III should also be addressed. We discuss

this somewhat in Chapter 4.
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2.9 Appendix A

A good fit to measured hypsographic curves is a tangent function (Fig. 2.2):

s(xh) = a
[

tan
( π

2m
p1
(
(xh − xi)− p2(1− xi)

))
+ tan

( π

2m
p1p2(1− xi)

)]
m ≡ max

(
p2(1− xi), (1− xi)− p2(1− xi)

) (2.35)

Although this function has a cumbersome form, the parameters involved have a clear in-

terpretation. The requirement that the initial pond fraction is at xh = xi is automatically

satisfied as this is a zero of the function Eq. (2.35). The parameter a is determined by

the requirement of hydrostatic balance, 〈s(xh)〉 = h. Therefore, after specifying the initial

pond fraction, xi, and the initial ice thickness H, the only two unconstrained parameters

are p1 and p2. Parameter 0 < p1 < 1 determines the level of “variability” of the curve: if

p1 is close to 0, s(xh) is roughly linear, whereas if p1 is close to 1, s(xh) is highly curved.

Parameter p2 determines the position of the inflection point of the tangent function relative

to xi. Therefore p2 < 0 means that the inflection point is to the left of xi, and s(xh) is fully

convex. For p2 > 1, the inflection point is to the right of xh = 1, and s(xh) is fully concave.

If 0 < p2 < 1, s(xh) transitions from concave to convex at xh = xi+p2(1−xi). We note that

the non-dimensional bare ice roughness, σ̂, for a hypsographic curve defined in this way does

not depend on ice thickness or initial pond coverage, but only on parameters p1 and p2. For

the hypsographic curve measured by Landy et al. (2014) for June 25th of 2011, the values

of the shape parameters are p1 ≈ 0.8 and p2 ≈ 0.4, whereas for the hypsographic curve

measured during SHEBA (Fig 2.2a, dashed line) the parameters are p1 ≈ 0.9 and p2 ≈ 0.5.

2.10 Appendix B

In order to make a connection between a model where a constant fraction of bare ice, δ, is

affected by enhanced melting, and a model where ice below a fixed elevation, ∆s, is affected,
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we need to estimate how δ scales with ∆s. It is important to make this connection since

several physical mechanisms that significantly affect the melt rate depend on the elevation

of ice above sea level. To do this, we will use an alternative model where we assume both

freeboard sinking and enhanced melting occur simultaneously, and enhanced melting only

affects ice below ∆s (Fig. 2.3d). We define xs to be the fraction of ice below ∆s, x to be

the fraction of the ice below sea level, and δ ≡ xs − x to be the difference between the two.

xs evolves only due to freeboard sinking, whereas x evolves due to both freeboard sinking

and enhanced melting. The equations for the evolution of xs and x are

dxs
dt

=
dxh
ds
|xs
dsfs

dt
dx

dt
=
dx

ds

[dsfs

dt
+
dsem

dt

]
.

(2.36)

Here, dsfs
dt and dsem

dt are determined by Eq. (2.11). Since freeboard sinking does not change

the shape of the topography and xs evolves only due to freeboard sinking, dxhds |xs is simply

the inverse slope of the original hypsographic curve evaluated at xs. On the other hand,

the hypsographic curve near sea level is affected by enhanced melting, and therefore changes

shape over time. For this reason, dxds , which relates the change in pond fraction, dx, to the

vertical change in the hypsographic curve at sea level, ds, changes with time. Nevertheless,

if ∆s is small enough, we can approximate the hypsographic curve between x and xs to be

a straight line, meaning that dx
ds ≈

xs−x
∆s = δ

∆s . This approximation closes our alternative

model. This model provides a similar level of agreement with the 1d model as the 0d model

Eq. (2.25), but is more complicated to analyze. For this reason, we focus on Eq. (2.25)

to analyze pond evolution, and use Eq. (2.36) only in what follows. We note that if the

hypsographic curve is convex, Eq. (2.36) agrees better with the 1d model than Eq. (2.25).

This configuration is, however, unrealistic.

Using dx
ds = δ

∆s , and subtracting dx
dt from dxs

dt in Eq. (2.36), we get an equation for
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evolution of δ:

dδ

dt
=
dxh
ds
|(x+δ)

dsfs

dt
− δ

∆s

[dsfs

dt
+
dsem

dt

]
. (2.37)

Since dsfs
dt + dsem

dt is larger than dsfs
dt , δ decreases until it reaches a constant value after some

time. Therefore, a constant ∆s model and a constant δ model become equivalent after some

time. Therefore, finding the value of δ for which dδ
dt = 0, represents a natural way to relate

the two models.

The values of dsfs
dt , dsem

dt , and dxh
ds |(x+δ) themselves depend on pond fraction, x (Eq.

(2.11)). Furthermore, dsfs
dt and dsem

dt depend on the energy fluxes used for melting the ice,

which may fluctuate in time. For these reasons, δ is never fully constant. To deal with

this this, we estimate the magnitudes of dsfs
dt , dsem

dt , and dxh
ds |(x+δ) by substituting x → xi,

dxh
ds |(x+δ) →

1−xi
h , and energy fluxes, F , with their representative values, |F |, e.g. their

time-averages. We then find the magnitude of δ as

δ = C
ρw

ρw − ρi

∆s(1− xi)2

H

1
dsem
dsfs

+ 1
, (2.38)

where C is a non-dimensional number that does not depend on physical parameters, there

to compensate for the crude approximations of using only the initial pond fraction and the

average slope of the hypsographic curve. Comparing to 1d model, we find C ≈ 2
3 . The term

dsem
dsfs

is the ratio of magnitudes of dsem
dt and dsfs

dt , and is given by

dsem

dsfs
=

ρw
ρw − ρi

|Fbi|(k − 1)

|Fbi|+
xi

1−xi |Fmp|+ 1
1−xi |Fbot|

. (2.39)

Using δ defined in this way in the 0d model, Eq. (2.25), provides excellent agreement with

Eq. (2.36) and the 1d model run with constant ∆s. We note that this agreement is reached in

the long-time limit, and for times shorter than roughly ∆s
(dsem/dt+dsfs/dt)

some disagreement

can persist. Although the magnitude of the disagreement depends on the shape of the
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hypsographic curve, it is typically not very large, and the 0d model provides a reasonable

estimate of pond evolution even for short times.

2.11 Appendix C

Here we describe the procedure we used to estimate the effective strengths, Eq. (2.28). We

write the effective strengths as

S∗ = f(σ̂, t̂)S , (2.40)

where f(σ̂, t̂) is a non-dimensional function of non-dimensional roughness σ̂ and non-dimensional

time t̂ ≡ St
1−xi , and S is either Sfs ≡ (Sbi + Smp + Sbot) in the case of freeboard sinking

or Sem in case of enhanced melting. The non-dimensional time, t̂, defined in the above way

measures how far the melt season has progressed, with t̂ = 0 corresponding to the beginning

of pond growth and t̂ = 1 roughly corresponding to the end of pond growth with entire floe

flooded. The function f(σ̂, t̂) measures how much the mean pond coverage deviates from a

mean coverage of linearly evolving ponds. For a linear pond evolution, x(t) = St + xi, the

function f(σ̂, t̂) = 1.

We separately consider freeboard sinking and enhanced melting. For all the curves in

Figs. 2.7a and b, we find f(σ̂, t̂) at several different times t̂ as f(σ̂, t̂) = 2
〈x(t)〉−xi

St . We show

the results in Figs. 2.11a and b, where f are plotted as functions of roughness and different

colors correspond to different times t̂. For any given time, the scatter comes from the fact

that the hypsographic curve is not fully determined by roughness.

In the case of freeboard sinking, ffs does not depend much on t̂. A quadratic ffs(σ̂, t̂) =

cσ̂2 fits the scatter data well. Based on best fit estimates, we find c ≈ 1.3 (Fig. 2.11a, red

dashed line).

In the case of enhanced melting, fem depends strongly on time t̂. We choose to param-

eterize fem with a linear function of the form fem(σ̂, t̂) = 1 + c(t̂)σ̂. We can approximate
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Figure 2.11: Determining the effective strengths, S∗ ≡ f(σ̂, t̂)S. Points represent estimates
of the correction f(σ̂, t̂) for each of the curves in Fig. 2.7 evaluated at different times

t̂ ≡ St
1−xi . The function f(σ̂, t̂) is evaluated as f(σ̂, t̂) ≡ 2(〈x(t)〉 − xi)/(St). Different colors

correspond to different times with black corresponding to early in the season and magenta
to late in the season. Non-dimensional roughness, σ̂, is shown on the x-axis. a) ffs(σ̂, t̂)
evaluated for the freeboard sinking curves in Fig. 2.7a. There is no obvious dependence
on t̂. Freeboard sinking becomes completely suppressed as roughness tends to zero. The
dashed red line represents the fit to these estimates of the form ffs(σ̂, t̂) = aσ̂2. b) fem(σ̂, t̂)
evaluated for the enhanced melting curves in Fig. 2.7b. There is a clear dependence on t̂.
Enhanced melting proceeds even as roughness tends to zero. Red dashed lines are fits to
these data of the form fem(σ̂, t̂) = 1 + c(t̂)σ̂, where c(t̂) ≡ 2√

t̂
− 3

2 .
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c(t̂) by exactly solving the equation for enhanced melting, Eq. (2.19), for a linear hypso-

graphic curve, s(xh) ∝ (xh − xi). Finding the roughness and 〈x(t)〉 in this case, we find

c(t̂) ≈
( 2√

t̂
− 3

2

)
. Red dashed lines in Fig. 2.7d show fem parameterized in this way.

2.12 Appendix D

Here, we outline the procedure to include the effects of vertically non-uniform internal melt

and bulk ice density. We assume that the bulk ice density, ρb, and the energy density used

for melting the ice internally, e, have a vertical structure, ρb(z) and e(z), where z is positive

upwards, z = 0 corresponds to sea level, and z = h corresponds to ice surface.

Mass transported across sea level depends on the bulk density at the sea level, the rate

of local melting depends on the bulk ice density at the surface, and the freeboard height

depends on the average densities above and below sea level, ρasl/bsl. Internal melt above

and below sea level creates a rigid body motion. This is summarized as

dmrigid body = ρb(0)Abidsrigid body ,

dmmelt
above s. l. = −Abi

Fbi

l
dt− Abih

easl

l
dt ,

dmmelt
below s. l. = −Amp

Fmp

l
dt− AFbot

l
dt− AHd

ebsl

l
dt ,

h =
ρw − ρi
ρw

H

1− x
1

1−∆ρb
ρi
ρw

,

dsloc

dt
(~r) = −k(~r)

Fbi

lρb(h)
,

(2.41)

where Hd is the ice draft depth defined as the volume of ice below sea level divided by the

area of the ice floe, easl/bsl is the energy density used for internal melting averaged over

all ice above or below sea level, and ∆ρb ≡
ρbsl−ρasl
ρbsl

is the relative difference in mean bulk

density above and below sea level.

With these changes, we can find the equation for pond coverage evolution straightfor-
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wardly, by repeating all of the steps from section 2.2. We first derive the equation for the

vertical motion of points near the sea level

ds

dt
= −

[
(k − 1)

Fbi

lρb(h)

]
−

−
[

1

lρb(0)

(
Fbi(

ρb(0)

ρb(h)
− ρi
ρw

) +
(ρw − ρi)x

ρw(1− x)
Fmp +

ρw − ρi

ρw(1− x)
Fbot +

ρi
ρw
hebsl(∆e−∆ρb)

)]
,

(2.42)

where ∆e ≡ ebsl−easl
ebsl

is the relative difference in average energy density used for internal

melting below and above sea level. The two terms in square brackets correspond to enhanced

melting and freeboard sinking. Then we repeat the procedure to relate Eq. (2.42) to the

change in pond coverage. The resulting equation has the same form as Eq. (2.25), with only

the strengths modified

Sint =
(1− xi) ρiρw ebsl(∆e−∆ρb)

lρb(0)
,

Sbi =
(1− xi)2(1−∆ρb

ρi
ρw

)(1 +
ρw(ρb(0)−ρb(h))
ρb(h)(ρw−ρi)

)

Hlρb(0)
Fbi ,

Smp =
(1− xi)xi(1−∆ρb

ρi
ρw

)

Hlρb(0)
Fmp ,

Sbot =
(1− xi)(1−∆ρb

ρi
ρw

)

Hlρb(0)
Fbot ,

Sem =
( ρw

ρw − ρi

)2 2∆s(1− xi)3(k − 1)(1−∆ρb
ρi
ρw

)2

3H2lρb(0)(1 + dsem
dsfs

)
Fbi .

(2.43)

Here, the strength of internal melting, Sint should be included in the equation for freeboard

sinking. The term dsem
dsfs

is given by the ratio of the two terms in Eq. 2.42. The equation for

pond growth, Eq. (2.25), using the above strengths, Eq. (2.43), should also be supplemented
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with an equation for evolution of bulk density

∂ρb(z)

∂t
= −e(z)

l
− ∂ρb(z)

∂z

dsrigid body

dt
. (2.44)
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Table 2.1: A table of parameters used in this Chapter
Parameter Meaning

t, t̂ Time and non-dimensional time, t̂ = St
1−xi .

s(~r) Surface elevation above sea level at point ~r.

s(xh), ŝ(xh), dŝ
dx̂h

Hypsographic curve, non-dimensional hypsographic curve, ŝ(xh) = s(xh)
h , and

its non-dimensional derivative, dŝ
dx̂h

= 1−xi
h

ds
dxh

.

dsrigid body, dsloc(~r) Change in surface elevation due to rigid body motion and due to local melting
at point ~r.

dsfs, dsem, dsem/dsfs Change in surface elevation due to freeboard sinking, due to enhanced melting,
and the magnitude of their ratio.

dm
melt/rigid body
above/below s. l. Change in mass above and below sea level due to ice melting or rigid body

motion.

x, x̂, 1̂− x Pond fraction, normalized pond fraction x̂ = x
xi

, and normalized bare ice

fraction, 1̂− x = 1−x
1−xi

xi Initial pond fraction.
xh Fraction of ice below an elevation given by the hypsographic curve.
xs Fraction of ice below ∆s.
xfs(t), xem(t), xlat(t) Pond coverage evolution due to freeboard sinking, enhanced melting, and lat-

eral melting.
A, Abi, Amp Areas of the floe, bare ice, and melt ponds
P Total perimeter of the ponds.
ρw, ρi, ρb Densities of salt water, pure ice, and bulk ice once all the brine has drained.
l Latent heat of melting.
H, h Initial thickness of the ice and average initial freeboard height.
σ, σ̂ Bare ice roughness and non-dimensional bare ice roughness, σ̂ = σ

h .
p1, p2 Shape parameters of the hypsographic curve that control the “amount of vari-

ability” of the curve and the location of the inflection point.
k(~r) Ratio of the melt rate at point ~r to the average rate of bare ice melting.
∆s Height above sea level below which there is enhanced melting.
δ Fraction of the ice affected by enhanced melting.
αbi, αmp Albedos of bare ice and melt ponds.
Fsol, Fr Solar energy flux and the sum of longwave, latent, and sensible heat fluxes.

F bi, Fmp, F bot, F lat Fluxes of energy used for melting bare ice, ponded ice, ice bottom, and lat-
eral melting averaged over bare ice, ponded ice, ice bottom, and the pond
perimeter.

|F | Representative values of fluxes, e.g. their time-averages.
Klat Constant relating the flux of energy used for melting ponded ice to the flux of

energy used for lateral melting.
Sbi, Smp, Sbot, Sem Strengths of bare ice melting, ponded ice melting, ice bottom melting, and

enhanced melting.
S∗bi, S

∗
mp, S∗bot, S

∗
em Effective strengths of bare ice melting, ponded ice melting, ice bottom melting,

and enhanced melting, that take into account the effects of bare ice roughness.
S∗fs Effective strength of freeboard sinking, S∗fs = S∗bi + S∗mp + S∗bot.

S∗ Total effective strength, S∗ = S∗bi + S∗mp + S∗bot + S∗em.
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CHAPTER 3

SIMPLE RULES GOVERN THE PATTERNS OF ARCTIC SEA

ICE MELT PONDS1

3.1 Introduction

Arctic sea ice plays a major role in Arctic climate (Perovich and Richter-Menge, 2009),

ecology (Grebmeier et al., 1995), and economy. Sea ice’s recent rapid decline is a hallmark

of climate change (Serreze et al., 2007) that global climate models have systematically

underestimated (Stroeve et al., 2007). This is believed to be largely due to small-scale

processes that cannot be captured accurately by large-scale models (Holland and Curry,

1999). One such process is the formation of melt ponds on the ice surface during the summer

(Holland et al., 2012). Melt ponds absorb significantly more sunlight than the surrounding

ice, making ponded ice melt faster, creating a positive feedback (Morassutti and LeDrew,

1996; Perovich, 1996). The central importance of melt ponds was demonstrated by Schröder

et al. (2014), who showed that the September sea ice minimum extent can be accurately

predicted solely based on spring melt pond fraction. Current models of melt ponds include

comprehensive representations of many physical processes and are capable of reproducing

Arctic-scale spatial distributions of pond coverage (Flocco and Feltham, 2007; Lüthje et al.,

2006; Skyllingstad et al., 2009; Taylor and Feltham, 2004). However, their complexity and

numerous assumptions reduce their ability to provide a fundamental understanding of pond

evolution, and call into question their applicability in a changing climate.

Ponds typically evolve through several stages that are controlled by ice permeability

(Landy et al., 2014; Polashenski et al., 2012). Early in the season (typically late spring and

early summer), ice is impermeable so that melt ponds can exist above sea level and cover a

1. This chapter was originally published as Popović et al. (2018). It is nearly identical to the original
apart from minor changes made mainly to fit the formatting requirements of the thesis and to respond to
the comments made by the thesis committee.
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Figure 3.1: a) A photograph of melt ponds taken on August 7, 1998 during the SHEBA
mission. b) A binarized version of the same image. c) A void model with a typical circle
radius of r0 = 1.8 m, and a coverage fraction of ρ = 0.31.

large portion of the ice. Later in the season, as ice permeability increases, the ponds drain to

the ocean so that remaining ponds correspond to regions of sea ice that are below sea level.

After drainage, ponds have a typical length-scale of several meters, likely determined by the

scale of winter snow dunes (Petrich et al., 2012), and are often connected by channels that

form during drainage. This post-drainage stage is typically the longest part of melt pond

evolution. An aerial photograph of drained melt ponds is shown in Figure 3.1a.

Melt pond geometry has been shown to control the strength of lateral melting of ice

by pond water (Skyllingstad and Paulson, 2007), to impact the pattern of floe breakup

(Arntsen et al., 2015), and to set the landscape of available light for the organisms living

beneath the ice (Frey et al., 2011). Several critical observations have previously been made

about pond geometry. Hohenegger et al. (2012) showed that the fractal dimension, D, of

late-summer melt ponds, which characterizes their area-perimeter relationship (P ∝ AD/2),

transitions from D ≈ 1 for small ponds to D ≈ 2 for large ponds. The size (area) distribution

of melt ponds has also been shown to be a power law (Perovich et al., 2002). Several models

reproduce these observations. For example, Bowen et al. (2017) qualitatively reproduced

the fractal transition by representing ponds as an intersection of a flat plane with a certain

type of randomly generated surface. Ma et al. (2014) showed that both the power law size

distribution and the fractal transition are captured by ponds represented as spin-clusters
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in a random-field Ising model. However, neither of these works attempted to explain the

origin of this behavior or the reason for its ubiquity, nor has made detailed comparison

with observations. In this Chapter we will explain both the observation of fractal transition

and of power-law size distribution using a simple geometric model without invoking any

assumptions about the dynamics that govern the melt pond evolution, and will confirm the

model’s validity by comparing it in detail with observations from two different missions.

3.2 The void model

Our model is a representation of post-drainage melt ponds. It consists of randomly placing

circles of varying size on a plane and allowing them to overlap. The area covered by circles

in our model represents ice, while melt ponds are represented by the voids left between the

circles (Figure 3.1c). Similar models are sometimes used to study transport properties in

inhomogeneous materials, and are known as “Swiss cheese” models (Halperin et al., 1985).

Physically, the circles can be thought of as regions where snow dunes used to be in the

winter, and melt ponds fill in the space around them. Circle centers are placed with equal

probability throughout the domain. Individual circles have radii, r, randomly drawn from

an exponential probability distribution p(r) = 1
r0
e−r/r0 , where r0 is the mean circle radius

and defines the physical scale for the model. We chose this probability distribution mainly

due to its simple form, but all of our main conclusions are robust to using other distributions

(see Supplementary section 3.S4). After choosing r0, the model is fully specified by choosing

the fraction of the surface covered by voids, ρ. To compare our model with melt pond data,

we analyzed hundreds of photographs of sea ice taken during helicopter flights on multiple

dates during the SHEBA (Surface heat budget of the Arctic Ocean) (Uttal et al., 2002)

mission of 1998 and the HOTRAX (Healy-Oden Trans-Arctic Expedition) (Darby et al.,

2005) mission of 2005, and separated them into ice and pond categories using a machine

learning algorithm (Figures 3.1a and b, Supplementary section 3.S1). In order to facilitate

68



Figure 3.2: a) An example of the two-point correlation function, C(l), for melt ponds shown
on a semi-log plot. Dashed black lines represent fits to a small length scale exponential and a
large length scale exponential. The inset shows C(l) before and after a fit to the large length
scale exponential has been subtracted. b) A comparison between the two-point correlation
function for ponds from 1998 and 2005 (circles), and the void model (dashed line). Ponds on
all dates show a similar scale matched by the void model using r0 = 1.8 m. c) A comparison
between the cluster correlation function, g(l), for August 7, 1998 (red circles), August 14,
2005 (yellow circles), and the void model using the same r0 as in panel b (black dashed
lines). Both model lines use ρ = 0.31, and the difference between them is due only to
differing simulated image sizes. The image size for 1998 is indicated by a red arrow and the
image size for 2005 is indicated by a yellow arrow. The fact that the exponential cutoff is
set by the image size indicates that the ponds are roughly at the percolation threshold. The
inset shows an independent estimation of the percolation threshold. Red points show the
probability of finding a spanning cluster in the void model implemented on a grid the same
size and resolution as the SHEBA images. The probability of finding a spanning cluster
increases from 0 to 1 between ρ = 0.28 and ρ = 0.31.

comparison with pond images, we implemented the void model on a grid with the same

resolution and size as the pond images.

3.3 Calibrating the model parameters

We begin the comparison by choosing the model parameters, r0 and ρ. To this end, we

define two functions - the two-point correlation function, C(l), and a cluster correlation

function, g(l), and compare them for pond images and the model. A two-point correlation

function measures the probability that two points separated by a distance l are both located

on some pond, while a cluster correlation function measures the probability that they are
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both located on the same pond. We first estimate r0 using C(l), because we can define it to

be largely insensitive to changes in ρ (see below). Once we have calibrated r0 by matching

C(l), we can choose ρ using g(l).

For two points, x and y, separated by a distance l, the two-point correlation function

can be defined as:

C(l) =
〈z(x)z(y)〉 − ρ2

ρ(1− ρ)
, (3.1)

where z(x) = 1 if a point x is located on a pond, and z(x) = 0 otherwise, and 〈...〉 represents

averaging over different points and over different images. Subtracting ρ2 and dividing by

ρ(1 − ρ) constrains C(l) to vary between 1 and 0, and makes it insensitive to changes in ρ

(see Supplementary section 3.S2). The two-point correlation function determines a typical

length scale of variability in melt pond coverage.

Plotting C(l) for melt ponds on a semi-log plot reveals that it is approximately a sum of

two exponentials (Figure 3.2a). Therefore, there are two characteristic length scales in melt

pond images - a small length scale comparable to the size of individual ponds and a large

length scale that is comparable to the size of the image. The large length scale corresponds

to variability of pond fraction due to large-scale ice features such as ridges or rafted ice floes.

To focus on melt pond features, we have removed the contribution to C(l) from large scale

ice features by subtracting a fit to an exponential of C(l) for l > 25 m. We varied this

threshold, but found little difference in the results. After subtracting the fit, we normalized

the remainder so that C(0) = 1 (inset of Figure 3.2a). We show the resulting functions for

all of the available dates and compare them to the void model in Figure 3.2b. Ponds of all

dates show similar C(l) dropping by a factor of e after roughly 3.3m. We found that this is

well reproduced by the void model using r0 = 1.8 m (see Supplementary section 3.S2). The

fact that the void model reproduces the shape of the two-point correlation function suggests

that our assumption of randomly placing the circles is reasonable.

Next, we determine ρ. With this parameter, we wish to capture the pond geometric

70



features such as the pond size distribution and the fractal dimension, rather than simply the

pond coverage. For this reason, we do not set ρ equal to the pond coverage fraction of melt

pond images, but instead we use the cluster correlation function to determine ρ. Essentially,

the cluster correlation function, g(l), measures the probability that two points separated by

a distance l belong to the same finite pond. However, there are some technical subtleties in

how we define g(l), and we give a precise definition in Supplementary section 3.S2.

In the model, in the limit of infinite domain size, there exists a well-defined coverage

fraction, ρc, the “percolation threshold,” above which infinite clusters exist, and below which

there is a maximum cluster size. The cluster correlation function in the void model sensitively

depends on the deviation of the pond fraction from this percolation threshold, |ρ − ρc|

(see Supplementary section 3.S2). Below and above the percolation threshold, the cluster

correlation function is greater than zero up to a certain distance, after which it exponentially

decreases. As the coverage fraction approaches the percolation threshold, this cutoff length

grows, and sufficiently close to the threshold, it is set by the image size. The location of the

exponential cutoff quantifies the typical size of the largest finite connected pond cluster. We

discuss the functional form of g(l) in detail in Supplementary section 3.S6.

Narrow connections between ponds are often missed by the image processing algorithm

so that for many dates g(l) depends on the artificial threshold parameter used in the machine

learning algorithm to separate ice from ponds (see Supplementary section 3.S1, for details).

The only dates after pond drainage for which g(l) is stable against changes in this threshold

are August 7 of 1998 and August 14 of 2005. In Figure 3.2c, we compare the cluster corre-

lation function for the void model and data on those dates. Remarkably, the pond clusters

for both dates appear to be organized very near the percolation threshold, as indicated by

the fact that the length scale of exponential cutoff in g(l) is set by the image size. In Figure

3.2c we use ρ = 0.31 to match the pond data, and the difference between g(l) for the ponds

from 1998 and ponds from 2005 is solely due to a different image size. In fact, using any ρ
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from a range 0.28 < ρ < 0.31 provides an equally good fit to the data, which indicates that

within this entire range the size of the largest pond is determined by the image size. We note

that in real pond images, there exist large-scale features such as ridges, cracks, or ice floes

that may also limit the size of the largest connected pond. However, since these features are

often of size that exceeds the image size as evidenced by the large length scale comparable

to image size derived from C(l), the exponential cutoff in g(l) for real images is likely still

determined by the size of the image.

To independently confirm that ponds are well-described by the void model near the

percolation threshold, we ran the void model, 50 times at multiple values of ρ, and found

the probability of forming a cluster that spans at least one dimension of the image (inset of

Figure 3.2c). We found that this probability increases from 0 to 1 between ρ = 0.28 and

ρ = 0.31, which closely matches the range of coverage fractions that fit the pond g(l). We

note that although we chose ρ to match the cluster structure between the model and the

data, the value we found agrees reasonably well with the pond coverage fraction on those

dates (30% ± 5% on August 7 of 1998, and around 40% ± 5% on August 14 of 2005). We

discuss the relationship between the pond coverage fraction and pond geometry in detail in

Supplementary section 3.S6.

It is remarkable that the properties of ponds from 1998 and 2005, which likely developed

under very different environmental conditions, are so similar: the correlation functions for

both years are well-fit by the void model using the same r0 and ρ. This is particularly

surprising since sea ice during the 1998 mission had a large proportion of multiyear ice,

whereas ice during the 2005 mission was predominantly first-year ice.

3.4 Fractal dimension and size distribution in model and data

Having chosen r0 and ρ, we can proceed to explain the observations of pond fractal dimension

and size distribution. Following Hohenegger et al. Hohenegger et al. (2012), we define
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Figure 3.3: a) A comparison between the fractal dimension of pond boundaries for different
dates after pond drainage from 1998 (red curves), 2005 (yellow curve), and the void model
with r0 and ρ the same as in Fig 2 (black dashed curve). Examples of ponds (below the
curve) and voids (above the curve) of various sizes are also shown. b) Size distribution for
ponds on August 7, 1998 (red dots), ponds on August 14, 2005 (yellow dots), and the void
model (black dashed line).

the fractal dimension of the pond boundary as the exponent that relates the area and the

perimeter of the pond, P ∝ AD/2. The fractal dimension can vary between the fundamental

limits of D = 1 for regular shapes such as circles to D = 2 for space-filling or linear shapes.

We find D as a function of A by fitting a curve to the area-perimeter data. We explain the

details of this fitting procedure in the Supplementary section 3.S3.

In Figure 3.3a we find D as a function of A for pond data on all dates from the summer

of 1998 after pond drainage (red curves) and 2005 (yellow curve). Our results are consistent

with Hohenegger et al. (2012), with the pond fractal dimension transitioning from D ≈ 1

to D ≈ 2 at Ac ≈ 100 m2, and a transition range spanning roughly 2 orders of magnitude.

Without any tuning other than choosing r0 and ρ using the correlation functions, the void

model is able to match the observed transition in pond fractal dimension nearly perfectly

(Figure 3.3a, black dashed curve).

In the Supplementary section 3.S7, we give an argument that a transition from D < 2 to

D ≈ 2 is a generic consequence of individual objects connecting and, therefore, cannot be

used as strong support for any particular physical model of melt ponds. On the other hand,

matching the fractal transition scale and the transition range are non-trivial, and cannot
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be reproduced by an arbitrary model of randomly connecting objects (see Supplementary

section 3.S9). At small sizes, the void model predicts a dimension slightly larger than 1,

likely corresponding to the fact that small voids are not necessarily simple smooth shapes.

It is possible that small-scale physical processes in real ponds, such as erosion of pond walls,

are responsible for smoothing small ponds into more circular shapes with D ≈ 1.

Finally, we compare the pond size distribution with the void model in Figure 3.3b. Again

as a result of sensitivity to the threshold parameter in the machine learning algorithm, we

only use pond data for August 7th of 1998 and August 14th of 2005. At scales larger than

roughly 10 m2 the pond size distribution follows an approximate power law, in agreement

with previous findings. The power law behavior is particularly clear for ponds from 1998,

and the power law exponent (approximately 1.8) is slightly larger than previously found

(Perovich et al., 2002). Using the same r0 and ρ as before, the void model reproduces the

pond size distribution over the entire range of observations, more than 6 orders of magnitude.

This matching is highly robust: the void model matches the pond size distribution even at

the smallest scales regardless of details such as the circle radius distribution or the shape of

the objects placed randomly (see Supplementary section 3.S4).

3.5 Conclusions

We have shown that a simple model of voids surrounding overlapping circles captures key

geometric patterns of Arctic melt ponds with high fidelity and robustness, with only two

parameters that can be chosen naturally by comparing the model and the data. Our model

is purely geometric, and can therefore be used as a benchmark against which to test any

physical model. This work shows that much of melt pond geometry can be understood

simply by assuming that melt ponds are placed randomly and have a typical size. Even

though many models will reproduce the same universal features, our model is special in that

it captures quantitative details of melt pond geometry beyond what an arbitrary model of
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connecting objects is capable of doing. Our work raises two critical questions about melt

pond physics that must be answered. First, why does the pond scale appear to be so robust

for ponds evolving under differing environmental conditions, and, second, why do ponds

seem to be organized near the percolation threshold? The answer to the second question

is particularly interesting, as points to self-organized critical behavior in melt ponds, and

suggests that the pond coverage fraction is more constrained than previously thought. We

address this question in Chapter 4. Answering these questions may yield deeper insight into

melt pond physics and allow for a better representation of this important process in global

climate models.

3.6 Supplementary Information

3.S1 Image analysis

We used airborne photographs taken during the SHEBA mission of 1998 and the HOTRAX

mission of 2005 (Figure 3.3a). During SHEBA, sea ice was regularly photographed from a

helicopter, and the SHEBA photographs are available on eight dates spanning the entire melt

season of 1998. Six of those eight dates were after pond drainage. Helicopter photographs

from the HOTRAX mission that have unfrozen ponds on unbroken ice floes are only available

for August 14th of 2005. SHEBA images have dimensions of 819 m by 1228 m, with a

resolution of roughly 0.2 m per pixel. HOTRAX images have dimensions of 427 m by 284 m,

with a resolution of 0.14 m per pixel and are higher quality than SHEBA images. For each

available date, we only used images that have few cracks in the ice and little crushed ice that

might be mistaken for melt ponds by the image classifying algorithm. We also manually

removed the regions of open ocean before running the algorithm. Finally, we separated ice

from ponds using an open access machine learning software “ilastik” (http://ilastik.org/).

For most dates we analyzed more than 105 individual ponds.

75



We trained the machine learning algorithm “ilastik” using information from images about

color, intensity, color gradient, and texture, which are available as options in the software’s

user interface. The output of the algorithm is a probability matrix characterizing the like-

lihood that each pixel is ice or pond. To identify ponds, we chose a threshold probability,

pt (usually 0.5), and classified each pixel as a melt pond if the algorithm found it to have

a higher probability than pt. To make sure melt pond features we wish to describe are ro-

bust, we varied the threshold probability. We found that some characteristics of binarized

images depend on pt. For example, pond coverage fraction varies by as much as 10% be-

tween pt = 0.1 and pt = 0.9. For this reason, in the main text and the remainder of the

Supplementary Material, when referring to the mean pond coverage fraction on particular

dates, we also give a range of coverage fractions that can be obtained by changing pt. Fur-

thermore, we found that for many dates the cluster correlation function, g(l), and the pond

size distribution are sensitive to this parameter. Therefore, we only considered g(l) and the

pond size distribution on dates for which ponds could be clearly distinguished so that these

statistics were insensitive to changes in pt. This was true only for June 22 and August 7

of 1998 and August 14 of 2005. As June 22 is before complete pond drainage, in the main

text we report g(l) and the pond size distribution only for August 7 of 1998 and August 14

of 2005. This sensitivity of g(l) and the size distribution to pt is likely due to the fact that

these statistics rely on accurately identifying the narrow connections between the ponds.

Images from 2005 were high enough quality, and August 7 of 1998 had ponds that were dark

enough to be easily distinguished from ice. However, we acknowledge the possibility that

the perceived similarity in the cluster correlation function for the two dates may be due to

this early selection bias.

The size of melt ponds can be accurately estimated by summing all the areas of individual

pixels within a pond. Estimating the pond perimeter is slightly more challenging (Figure

3.S1). Summing the lengths of all pixel edges on the pond boundary gives an inaccurate
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Figure 3.S1: A diagram explaining how we find the perimeter. a) Blue squares represent
individual pond pixels. The perimeter is estimated as the sum of all boundary pixel edges.
b) Finding the perimeter of a circle as in panel a), we inaccurately estimate it to be the
perimeter of a square surrounding the circle. Estimating the perimeter in this way is equally
inaccurate regardless of how fine the image resolution is. c) The problem is partially corrected
if we take into account the relative positions of the nearest neighbor boundary pixels. If two
nearest neighbor pixels are located diagonally, we add the distance between them to the total
perimeter.

estimate of the perimeter, because pixels are located on a grid, and cannot take into account

the curvature of the boundary. For example, if we try to estimate the perimeter of a circle

by summing the lengths of all pixel edges on its boundary, we will get the perimeter of a

square enclosing that circle (Figure 3.S1b). We partially correct for this by considering the

nearest neighbor pixels on the boundary: if the nearest neighbors are positioned diagonally,

we add a distance between them to the total perimeter (Figure 3.S1c). Even with this

correction, there is still a small systematic error in the estimate. This, however, did not

affect our estimates of the pond statistics: different methods used for finding the perimeter

simply introduced a constant bias in the perimeter of the ponds, and therefore did not change

our estimates of the fractal dimension. Some objects in nature (a notable example is the

coast of Britain (Mandelbrot, 1967)) suffer from a fundamental difficulty in determining the

perimeter, because the length of the perimeter depends on the length of the measuring stick.

In our case this is not a problem, because small ponds are regular shapes (D1 ≈ 1) and we

can resolve them easily in our images.
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3.S2 Correlation functions

In this section, we will first give a precise definition of the cluster correlation function, g(l),

and then we will explore how the two correlation functions, C(l) and g(l), depend on the

model parameters r0 and ρ.

We define the cluster correlation function, g(l), as the probability that two points sepa-

rated by a distance l belong to the same non-spanning pond given that one of the points is

already located on a non-spanning pond. For both model and data, “spanning ponds” are

those ponds that span at least one dimension of the image. In order to obtain a good fit to

the data, it is necessary to exclude spanning clusters from the computation of g(l). This is

reasonable since in the pond images, ponds are constrained by large scale features, such as

floe edges or ridges, which make the void model inapplicable above a certain pond size (see

also Supplementary section 3.S5). In the void model, above the percolation threshold, there

is typically one spanning pond, while in the pond images spanning ponds typically do not

exist.

We found the parameters r0 and ρ approximately by running the model at multiple

values of of these parameters, and among these runs choosing the one for which the two-

point correlation function, C(l), and the cluster correlation function, g(l), best agree with

the correlation functions of ponds. Because r0 is the only length scale in the model (apart

from the image size), all of the characteristic lengths must scale with r0. In Figs. 3.S2a

and c, we show how C(l) and g(l) depend on r0. We can see that the decay rate of C(l)

for the model is proportional to r0, and the model and data agree well for r0 = 1.8m. At

small l, g(l) is also scaled by r0, but at large l, it is insensitive to changes in r0 because the

cutoff length is set by the image size. In Fig. 3.S2b and d, we show how C(l) and g(l) vary

with ρ at fixed r0. The two-point correlation function is largely insensitive to changes in

ρ: C(l) decreases slightly with decreasing ρ, but this effect only becomes noticeable at low

coverage fraction, ρ ≈ 0.1, beyond the range of coverage fractions we are considering in this
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Figure 3.S2: Dependence of correlation functions on model parameters r0 and ρ. In each
plot, red dots represent data for August 7th,1998. a) Two-point correlation function for
different values of r0 at ρ = 0.3. b) Two-point correlation function for different values of ρ
at r0 = 1.8m. c) Cluster correlation function for different values of r0 at ρ = 0.3. d) Cluster
correlation function for different values of ρ at r0 = 1.8m.
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Figure 3.S3: An explanation for the fitting procedure to determine the fractal dimension
curve. a) The black dots represent area and perimeter of individual ponds. The yellow dots
represent a moving average of the perimeter. The red line is a fit of the mean area-perimeter
data to a function f(log(A)) defined in Eq. (3.S2). b) Fractal dimension, D, as a function
of size, determined as a derivative of the red line in panel a with respect to logA. Fitting
parameters defined in Eq. 3.S1 are also shown.

Chapter. On the other hand, g(l) depends sensitively on ρ. The cutoff length of the cluster

correlation function reaches its maximum close to the percolation threshold (ρ ≈ 0.3), and

decreases sharply when ρ deviates from this threshold. Because we excluded the spanning

clusters from calculations of g(l), the cluster correlation function has the same shape both

above and below the percolation threshold.

3.S3 Estimating the fractal dimension

The fractal dimension may be obtained from the derivative of the pond perimeter with respect

to pond area in log-log space, D = 2d logP
d logA . In order to estimate the fractal dimension, we

first find the moving average of the perimeter of all the ponds that fall into a certain log-area

bin, 〈P 〉, as a function of logA. A log-area bin of width ∆ centered on A is defined as a range

from A/∆ to A∆. Log-binning defines a set of points (logA, log 〈P 〉). Direct differencing of
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these data gives noisy results. Instead, we first fit a function to the (logA, log 〈P 〉) points,

and then take its derivative. Anticipating that the fractal dimension will change from a low

to a high value, we choose to represent it with an error function of log-area

D(A) =
D2 −D1

2
erf log (A/Ac)

1/w +
D2 +D1

2
, (3.S1)

where D1, D2, logAc, and w are fitting parameters and represent the lower fractal dimension,

the upper fractal dimension, the center of the fractal transition in log-area, and the width

of the fractal transition. Assuming this form of D(A), the fitting function is given by the

integral of Eq. 3.S1 (Figure 3.S3a):

f(x) =
D2 −D1

4

(
(x− logAc) erf

x− logAc
w

+
w√
π
e
− (x−logAc)2

w2 +
D2 +D1

D2 −D1
x

)
+ C ,

(3.S2)

where C is a constant of integration, which we regard as another fitting parameter. The

fractal dimension is then found as

D = 2
df(log(A))

d logA
, (3.S3)

and is given by Eq. 3.S1 (Figure 3.S3b). We found that this method of estimating D

is in good agreement with other similar methods, such as fitting a function to directly

differenced data or smoothing out the directly differenced data. Log-binning the data before

any additional processing was important for two reasons: 1) it smooths the data, and 2)

it assigns equal weights to large and small ponds during fitting. This latter property is

especially important since there are several orders of magnitude more small ponds than

large ponds, and a fit to data that was not log-binned would be determined nearly entirely

by small ponds.
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3.S4 Robustness of the void model

The void model reproduced the pond data highly robustly, regardless of details such as the

distribution of circle radii, p(r), or the exact shape of the objects placed. In addition to an

exponential distribution of circle radii, we tested the model using other distributions, such

as Gaussian, Rayleigh, and Gamma distributions, and found that the correlation functions,

fractal dimension, and size distribution are insensitive to these details. Even in the limit of

no variation in the circle radius, all of the characteristics can be reasonably well reproduced,

although the agreement with the data is affected somewhat. Real melt ponds are often

strongly anisotropic (compare Figures 3.1b and c). We tested the effect of anisotropy in our

model by placing randomly sized ellipses with a fixed ratio of semi-major to semi-minor axis

instead of circles. The ellipses had a preferred orientation and we changed the degree to which

they align with this preferred orientation. None of these changes altered the main conclusions

of our model: matching the correlation functions led to matching fractal dimension curves

and size distributions for the broad range of ellipse parameters used in the simulations.

Some quantities were slightly affected. For example anisotropy decreased the value of the

percolation threshold by several percent.

In addition to the void model, we also explored its negative: a model where ponds

are represented by overlapping circles. The circle model can also reproduce most of the

observations, but the results are less robust and quantitatively less accurate. For example,

matching the two correlation functions does not reproduce the center of the fractal transition.

It is possible to remedy this by placing ellipses instead of circles or changing the circle radii

distribution, but in this case the range of the transition is affected by the ratio of the

semi-major to semi-minor axis if we place ellipses, or the particular form of the circle radii

distribution. The circle model also suffers other drawbacks compared to the void model:

it reproduces the pond size distribution over only 4, rather than more than 6, orders of

magnitude and only for large ponds, it does not match the cluster correlation function
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as well, and it matches the observations at a ρ significantly higher than the actual pond

coverage (actual pond coverage fractions for August 7th of 1998 and August 14th of 2005

were 0.3 ± 0.05 and 0.4 ± 0.05, close to the void model ρ ≈ 0.3, and significantly less than

the circle model ρ ≈ 0.7 ). The fact that the circle model captures the pond size distribution

only for large ponds is due to the fact that beyond the typical circle size, the shape of the

connecting clusters is roughly independent of the detailed shape of the connecting objects.

Therefore, the fact that the void model captures the measured pond size distribution over

the entire observational range suggests that it captures the essential elements of melt pond

geometry even at the small scale. For all of the reasons above, we believe the void model is

a better description of melt ponds than the circle model.

The exponent of 1.8 we found for the pond size distribution is slightly less than 2.05,

which is predicted for the universality class of percolation models. This is likely due to finite

size effects, as the image size is less than two orders of magnitude larger than the length

scale determined by the two point correlation function. To support this hypothesis, we ran

a “site percolation” model for different lattice sizes. In this model, each grid point on a

lattice is occupied with a certain probability, and two occupied nearest neighbor sites are

considered connected. We found that the cluster size distribution of site percolation on a

100x100 lattice decays with an exponent close to 1.8, while the exponent approaches 2.05

for large lattices.

3.S5 Limitations of the void model

When calibrating the circle scale using the two-point correlation function, we had to remove

a long length-scale exponential from the correlation function. This indicates a limitation of

our model: it is unable to represent pond variability on an arbitrarily large scale, because in

real ice there exist large features, such as ridges, cracks, or floe edges, that are not represented

in the model. One result of this limitation is that the void model predicts infinite ponds,
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Figure 3.S4: Examples of melt ponds that appear to violate the assumption of random
placement. a) “Banded” melt ponds with clear spacings between melt pond bands. b) A low
pond coverage region of the ice with small melt ponds that seem to be located non-randomly.
c) A long melt pond located along a ridge. d) “Tiger stripe” melt ponds with clear ordering.
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which are unrealistic, and which we had to remove from the analysis in order to obtain a

good match between the model and the data (see the definition of the cluster correlation

function in section 3.S2). The limit of applicability of our model can be estimated from the

long length exponential of the two-point correlation function to be several hundred meters.

One of the key assumptions of our model is the random placement of circles on a plane;

however, real melt ponds sometimes violate this assumption. Examples of ponds that are not

randomly placed are shown in Figure 3.S4. The fact that our model is able to reproduce pond

statistics suggests that these types of ponds were not very prevalent in our data. However,

it may happen that under different conditions, non-random ponds might become significant.

3.S6 Relationship between pond geometry and coverage fraction

The parameter ρ in the void model controls both the connectedness of the voids and the void

coverage fraction. A priori, there is no reason to believe that such a link between coverage

fraction and geometry exists in real melt ponds. For example, ponds may be connected by

narrow channels, thereby increasing the typical pond size while leaving the coverage fraction

virtually unchanged. On the other hand, pond growth by lateral melting would likely increase

the coverage fraction without changing the connections between ponds much. In section 3.3,

we chose ρ in the void model such that it reproduces the geometry of melt ponds, and did not

consider the pond coverage fraction and whether it is related to geometry. For this reason,

in this section we will show that this relationship also exists in real melt ponds. To avoid

confusion, in this section we will call ρm the coverage fraction in the model, and ρp the pond

coverage fraction.

The key to understanding pond connectedness is the cluster correlation function, g(l).

We can guess the functional form of g(l) for the void model solely from considering its

asymptotics. Properties of g(l) to note are:

1. At small separation, l, two points located on a pond will most likely belong to the
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Figure 3.S5: a) A fit of Eq. 3.S4 (black dashed line) to the cluster correlation function
of ponds on August 7, 1998 (red dots). We set ρ equal to the mean pond coverage on
August 7, and we treat l0 and ξ as fitting parameters. b) Number of images that fall
into each bin of pond coverage fraction for August 7, 1998 (red bars) and August 14, 1998
(yellow bars). Vertical black dashed lines represent mean coverage fraction on the two
dates, while the vertical red dashed lines represent the estimated coverage fraction of the
percolation threshold for each date. All of the pond coverage fractions were estimated using
the machine learning threshold pt = 0.5. c) Estimated correlation length scaled by the image
size, ξ/L, as a function of the appropriately scaled distance from the percolation threshold,

(ρ−ρc)(L/l0)3/4, for the void model (black dots), August 7, 1998 (red dots) and August 14,
2005 (yellow dots). Values for the percolation threshold used were 0.3 for the void model,
0.33 for 1998 ponds, and 0.39 for 2005 ponds. Also shown is Eq. 3.S5 (blue dashed line),
consistent with theoretical considerations.
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same pond. So, g(l) should be the same as the two-point correlation function up to

normalization by the coverage fraction. Therefore, g(l) ≈ (e−l/l0(1−ρ)+ρ) for l� l0,

where e−l/l0 is the two-point correlation function for randomly placed objects.

2. At separations on the order of or larger than the correlation length, ξ, g(l) should

decay to zero exponentially. So, g(l) ≈ e−l/ξ for l > ξ.

3. At intermediate separations, l0 � l� ξ, percolation theory predicts a power law decay

with a universal exponent, g(l) ∝ l−5/24 (Aharony and Stauffer, 2003; Essam, 1980).

A function consistent with these asymptotics is:

g(l) =
(
e−l/l0(1− ρ) + ρ

)( l0 + l

l0

)−5/24

e−l/ξ . (3.S4)

In Figure 3.S5a, we show that this equation and g(l) for ponds on August 7th, 1998 agree

nearly perfectly. Equally good fits can be obtained for 2005 ponds and for the void model.

The link between coverage fraction and geometry in the void model is reflected in the fact

that the correlation length, ξ, that measures the size of the largest voids, is a function of the

coverage fraction, ρm. Near the percolation threshold, ρc, percolation theory predicts this

dependence to be of the form ξ = ξ∞f
(
L
ξ∞

)
(Aharony and Stauffer, 2003; Essam, 1980;

Goldenfeld, 1992), where L is the image size, ξ∞ is the correlation length on an infinite

image, and f(x) is a universal function that scales as f(x) ∝ x for x→ 0, and f(x)→ 1 for

x→∞. The correlation length on an infinite image, ξ∞, is given by ξ∞ = A±l0|ρm−ρc|−4/3

(Aharony and Stauffer, 2003; Essam, 1980), where ± stands for ρm > ρc and ρm < ρc, and

A± are non-dimensional numbers with A−/A+ = 2 (Delfino et al., 2010). To obtain the

correct units, the correlation length must be proportional to the fundamental length scale,

l0, that can be estimated from a fit to Eq. 3.S4. A non-dimensional correlation length,
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ξ̂ ≡ ξ/L, consistent with these asymptotics is

ξ̂ = ξ̂∞
(

1− e
− B
ξ̂∞
)

, (3.S5)

where B is a non-dimensional number, and ξ̂∞ = ξ∞/L. Here, we wish to test whether

there is such a relationship between pond coverage, ρp, and the correlation length in real

melt pond images.

In Figure 3.S5b, we show the distribution of pond coverage fraction for images taken on

August 7th, 1998 and August 14th, 2005, estimated using the threshold pt = 0.5, used by

the machine learning algorithm to identify the melt ponds. We can use the fact that there

is substantial spread around the mean pond coverage to test the relationship between ξ and

ρp. We split the entire range of pond fractions into bins and find g(l) only for images with

ρp that falls into a certain bin. We then use Eq. 3.S4 to fit g(l) for each of the coverage

bins. When fitting, we set the parameter ρ = ρp, and treat l0 and ξ as fitting parameters.

We also perform the same procedure to the void model with different ρm.

In Figure 3.S5c, we compare the model, the data, and Eq. 3.S5. The void model conforms

to Eq. 3.S5 except sufficiently far from the percolation threshold where the theoretical

prediction for ξ∞ is no longer valid. Melt ponds on both August 7th, 1998, and August

14th, 2005 also seem to follow the same trend. These data indicate that the pond coverage

fraction controls the pond geometry in a similar way as in the void model. However, we

cannot simply relate ρm in the void model to the pond coverage fraction, because the values

of the percolation threshold differ between the two dates and the model. To obtain a match

in Figure 3.S5c, we used ρc = 0.3 for the void model, ρc = 0.33 for 1998 ponds, and ρc = 0.39

for 2005 ponds. In Figure 3.S5b we indicated these values and compared them to the mean

pond coverage fraction. For both dates, the percolation threshold used in Figure 3.S5c is

very close to the mean coverage fraction, indicating again that the ponds are organized near

the percolation threshold.

88



Mean pond coverage fraction, and its effect on sea ice albedo, is often the main quan-

tity of interest in the large scale models. Here we showed that the mean ρp is very close

to the percolation threshold, meaning that ρp may be more constrained than previously

thought. Understanding what physically sets the percolation threshold may be crucial to

understanding the evolution of melt ponds and representing them in large scale models.

3.S7 A fractal transition is a general consequence of connecting objects

The void model is not the only model able to produce a transition in fractal dimension from

D < 2 to D = 2. As described above, its negative, a model of overlapping circles, produces a

transition from D = 1 to D = 2. Many other models, such as a model of random topography

(Bowen et al., 2017) or the Ising model (Ma et al., 2014), also reproduce the same feature.

Here we give a qualitative argument for why this is a general feature of connecting objects.

To understand why the transition happens in the void model, we will first show that

voids may be seen as a collection of connecting objects of a typical size, and then we will

argue that for such systems the upper fractal dimension should be D ≈ 2. We will neglect

the variation in the circle size, but a similar argument applies even in the presence of this

variation.

If all the circles have the same size, the void model may be mapped onto a random

network of nodes and bonds in the following simple way (Kerstein, 1983). We first segment

the entire plane into regions, such that all of the points within a given region are closest

to one of the circle centers (Figure 3.S6a). The regions obtained in this way are polygons

(known as the Voronoi polygons), and the procedure of segmenting the plane is known as the

Voronoi tessellation. Boundaries of these polygons define a network of nodes (the corners of

the polygons) and bonds (sides of the polygons). We consider two nodes to be connected

if a bond between them does not pass through any of the circles (Figure 3.S6b). It was

shown (Kerstein, 1983) that if the circles have a constant radius, nodes that are connected
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Figure 3.S6: a) Circle centers are placed randomly on a plane (black dots). We segment the
plane into regions, each region being a set of points closest to a circle center. These regions
are polygons and define a natural “grid” for the void model. Sides of the polygons are bonds
of the grid (black lines), and corners of the polygons are nodes of the grid (red dots). b)
Bonds are removed if they pass through a circle. Removed bonds are shown as black dashed
lines. The remaining bonds (solid black lines) all lie within voids and connected bonds
correspond to connected voids. c) Each void can be partitioned into a sum of contributions
from bonds. We can do this in the following way. Every node (red dots) is associated with
three circle centers and, correspondingly, three bonds (solid pale blue lines). If all three of
these bonds belong to a void, we draw three lines from a node towards its corresponding
circle centers. If two bonds belong to a void, but one intersects a circle, we draw two lines
from a node - one along the missing bond and one towards a circle center not associated
with the missing bond. Finally, if a node only has one bond that belongs to a void, we draw
no lines. Lines drawn in this way (white dashed lines) segment a void in a unique way, with
each segment associated with only one bond. Contributions to area and perimeter segments
vary significantly, but have a typical scale. d) For large enough voids, variability in area
and perimeter of segments associated with each bond tends to average out, making both the
total area and perimeter proportional to the number of bonds in a void.
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are located within connected voids. This establishes a mapping from the void model to

the network. We can then segment each void into pieces and assign each piece to a bond

of the network (Figure 3.S6c). In this way, each bond carries some fraction of the total

area and perimeter of the void. Although there is significant variation in how much area

and perimeter each individual bond contributes, there is a typical scale above which bond

contributions generally do not exist. Therefore, we can imagine that for large enough voids,

these variations will average out and each bond will contribute some average amount to the

total area and perimeter of the void (Figure 3.S6d). Variation in the area and perimeter

of such large voids will be mainly due to differing numbers of bonds, rather than variation

in contributions from individual bonds. Therefore, both the area and perimeter of the void

will be proportional to N , the number of bonds in a void, P ∝ N and A ∝ N , implying

P ∝ A and a dimension of D = 2. For small voids consisting of just a single bond, area

and perimeter will vary due to variation in exact placement of the surrounding circles, and

will therefore have a dimension generally less than 2. The beginning of the fractal transition

will occur roughly at an area where a two-bond void is as likely as a single-bond void of the

same size. The fractal transition will end at a scale where there are enough bonds so that

variations due to individual bonds become negligible.

3.S8 Ponds before drainage

We have excluded ponds before drainage from our analysis. This is partly because we do not

have reliable data on them: there are only two dates during the SHEBA mission that show

ponding before complete drainage, June 15 and June 22. June 15 is the very beginning of

the melt season showing only minor pond coverage, while on June 22 only some of the ponds

were undrained, making the data inconclusive. We identified June 22 as partially drained

by the fact that certain parts of the ice had a low pond coverage while other, often nearby,

parts of the ice had a high pond coverage. Nevertheless, we can proceed to calculate the
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Figure 3.S7: Geometric statistics of ponds before drainage: a) A comparison between a two-
point correlation function for ponds before drainage (blue lines) and ponds after drainage
(red dashed lines). b) A comparison between a cluster correlation function for June 22
(blue circles), August 7 (red circles), and a void model (black dashed lines). c) Pond size
distribution for June 22 (blue circles), August 7 (red circles), and a void model (black dashed
line). d) Fractal dimension curves for ponds before drainage (blue lines) and after drainage
(red lines). Lines end at the maximum pond size found at that date. Examples of a drained
and undrained pond are also shown.
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geometric properties for these dates as well. The two point correlation function shows that

both of these dates have roughly the same scale as ponds after drainage, consistent with

pre-melt snow dunes setting the pond scale (Figure 3.S7a). The cluster correlation function

and the pond size distribution for ponds on June 15th depend on the threshold parameter,

pt, used by the machine learning algorithm to classify the melt ponds, described in section

3.S1. For this reason, these quantities can only be reliably calculated for June 22 (Figures

3.S7b and 3.S7c). Both the correlation function and the size distribution for June 22nd can

be fit using ρ = 0.35, slightly higher than for August 7, and above the percolation threshold.

Finally, we find the fractal dimension, D, as a function of pond size (Figure 3.S7d). We do

this for both June 15 and June 22, although results for June 15 are inconclusive since there

are not many large ponds, so the estimate for the upper fractal dimension has a large error.

The upper fractal dimension for both pre-drainage dates is below D = 2, in contradiction

with the void model. This suggests a qualitative change in the pond morphology before and

after drainage. Because of this mismatch and a lack of reliable data, we chose not to apply

the void model to pre-drainage ponds.

3.S9 Many models of melt pond geometry

Many models other than the void model are capable of reproducing the geometric features

we studied in this Chapter. These models include a model of overlapping circles, a model of

random topography (Bowen et al., 2017), and several models with coarsening dynamics such

as the quenched Ising model (Ma et al., 2014; Sicilia et al., 2007). We show examples of large

melt ponds derived from these models in Figure 3.S8. All of these models share a common

key feature - they represent melt ponds as objects of a typical scale connecting randomly.

Any model with such a feature should be able to reproduce the correlation functions, the

fractal transition and the size distribution of melt ponds. As we commented in section

3.S4, the basic reason for this is that at scales larger than the typical size of the connecting
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Figure 3.S8: Examples of large ponds in different models. a) A real melt pond. b) A void
model. c) A circle model. d) A random topography model. e) A quenched Ising model.
f) A model of coarsening due to repeated dilations of a binary image with random initial
conditions.
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objects, the shape of the clusters is largely independent of the shape of the objects. These

models, however, cannot necessarily reproduce all of these pond geometric properties without

separately tuning parameters each time. For example, in the complement of the void model,

a model of overlapping circles, matching the correlation functions does not yield a correct

scale for the fractal transition. The void model is special in that it can robustly match so

many pond features with only two parameters that can be independently determined from

the data. Moreover, the fact that the void model can reproduce the pond size distribution

over the entire observational range suggests that it robustly captures the essence of pond

geometry even at the small scale.
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CHAPTER 4

CRITICAL PERCOLATION THRESHOLD RESTRICTS

LATE-SUMMER ARCTIC SEA ICE MELT POND COVERAGE1

4.1 Introduction

Arctic sea ice covers a vast area of nearly 15 million square kilometers at its peak annual

extent. It sculpts the Arctic environment, supports its ecosystem, and presents a significant

obstacle to trade (Perovich and Richter-Menge, 2009). In recent years, sea ice has been

rapidly disappearing at a rate underestimated by most climate models (Stroeve et al., 2007).

These climate models cannot resolve processes on scales smaller than tens of kilometers,

and the disagreement with observations is largely attributed to such unresolved processes

(Holland and Curry, 1999). A notable example of a small-scale process contributing to

the uncertainty of the large-scale predictions is meter-sized melt ponds that form on the ice

surface during summer (Fig. 4.1a). Melt ponds absorb roughly twice as much solar radiation

as surrounding bare ice, which significantly accelerates ice melt (Perovich, 1996). Several

works have shown the crucial role ponds play in predicting the state of sea ice (Holland et al.,

2012; Schröder et al., 2014). Currently, the most common tactic for modeling melt ponds

is to try to represent as many of the physical processes that contribute to pond evolution

as realistically and as comprehensively as possible (Flocco and Feltham, 2007; Lüthje et al.,

2006; Skyllingstad et al., 2009, 2015). Although such models capture many properties of melt

pond evolution, it is unclear how assumptions and details of these complex models might

change in a warmer climate. This suggests an opportunity for modeling based on universal

properties of sea ice that will likely remain unchanged in a warmer climate.

1. This chapter corresponds to Popović et al. (2019b) that, at the time of writing, was under review in
JGR: Oceans. It is nearly identical to the manuscript submitted to JGR: Oceans apart from minor changes
made mainly to fit the formatting requirements of the thesis and to respond to the comments made by the
thesis committee.
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Figure 4.1: a) A photograph of melt ponds taken during the 2005 HOTRAX (Healy-Oden
Trans-Arctic Expedition) (Darby et al., 2005) mission. b) A sketch of the hole drainage
model. The model begins with an ice surface, a large fraction of which is flooded. A hole
opens at a random location on the ice and starts draining the ponds that are connected to
it. As the drainage progresses, some regions of the ice become disconnected from the hole
and can no longer drain through it. Drainage stops when either the hole is exposed to the
atmosphere or when the water level of the pond connected to the hole reaches sea level. c) An
example of randomly generated “snow dune” topography. Red colors stand for topographic
highs while blue colors stand for topographic lows. The upper bound on the scale bar, here
set to 1, is arbitrary. This panel is taken from Chapter 5. d) Ponds after drainage on the
topography in panel c) through the hole marked with a red dot. Different colors correspond
to distinct ponds.
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Melt ponds develop in several stages that depend on the microstructure of the underlying

ice (Landy et al., 2014; Polashenski et al., 2017, 2012). As sea ice forms from freezing salty

water, brine pockets and channels fill the ice interior (Cole and Shapiro, 1998; Golden et al.,

2007; Perovich and Gow, 1996). When the summer melt season begins, fresh water from

melting snow penetrates into the cold ice interior through these brine structures, freezes, and

thereby plugs the pathways connecting the ice surface to the ocean. The lack of pathways

to the ocean allows water to collect in ponds at the top of the ice (Polashenski et al., 2017).

Since the ice is relatively flat, ponds grow rapidly during this time, and sometimes end up

covering the majority of the ice surface at their peak. This rapid growth stage is usually

known as “stage I” of pond evolution. Later, as ice warms, some of the frozen freshwater

plugs melt, once again opening the pathways to the ocean and draining the ponds. As

relatively warm pond water flows through these channels, it can expand them into large

holes that can drain very large areas in a matter of hours (Polashenski et al., 2012). More

such holes open with time, and, over the course of several days, pond coverage falls to its

minimum. The period during which ponds that are above sea level drain to reduce their

hydraulic head is known as “stage II” of pond evolution. Afterwards, the remaining ponds

correspond to those regions of ice surface that are below sea level. From this point, pond

coverage slowly grows as the ice thins and more of the ice surface falls below sea level. This

is known as “stage III” of pond evolution. Observations show that during stage II, meltwater

is mainly drained through large holes, while during stage III it is mostly drained through

microscopic pathways in the ice (Polashenski et al., 2012).

In Chapter 3, we analyzed photographs of melt ponds and showed that the post-drainage

melt pond geometry can be accurately described by a purely geometrical model where ponds

are represented as voids that surround randomly sized and placed circles, which can be loosely

interpreted as snow dunes. Surprisingly, we found that in order to match various statistics

derived from images of late-summer ponds, the fraction of the surface covered by voids had to

98



be tuned to a special value: the percolation threshold. The concept of a percolation threshold

coverage fraction, pc, was developed in physics and applied to modeling diverse phenomena

ranging from electrical transport in disordered media to turbulence (Isichenko, 1992). In

the idealized setting of an infinite plane covered randomly by objects that can overlap to

form larger clusters, the percolation threshold is the coverage fraction below which only finite

connected clusters can exist and above which an infinite cluster that spans the domain forms.

Exactly at pc, connected clusters of all sizes exist, and the system becomes scale-invariant.

Close to this threshold, percolation models exhibit universality (Goldenfeld, 1992) which

means that much of the system behavior does not depend on details such as, for example,

the shape of connecting objects. Generally speaking, universality is often observed near the

critical point of continuous phase transitions. Thus, for example, universality allows both

the magnetic phase transition and the phase transition of fluids near the critical point to be

accurately described by the idealized Ising model (Goldenfeld, 1992; Nishimori and Ortiz,

2010).

Our observation that late-summer ponds seem to be organized close to the percolation

threshold presents a puzzle and suggests that there is a mechanism driving the ponds to this

threshold. Here, we show that drainage through large holes can account for this observation.

Specifically, we develop an idealized model of pond drainage through large holes to show how

this mechanism drives melt pond evolution to lie below the percolation threshold. We then

use this model to formulate a pond fraction evolution equation that reveals the connections

between the pond evolution and measurable physical parameters. Even though our hole

drainage model explicitly represents the drainage stage (stage II), we show that it can also

be used to understand elements of pond evolution during stage III. By clarifying the relation

of pond coverage to the percolation threshold, we place melt pond formation within the

broader context of critical phenomena and phase transitions.

Our approach to modeling melt ponds here is very different from using a typical pond-
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resolving model. Such models solve pond and ice evolution on a grid, often in 3 dimensions,

parameterizing the sub-grid scale processes that cannot be explicitly resolved. For example,

in a recent attempt, Skyllingstad et al. (2015) solved a 3d model of pond evolution coupled

with ice thermal evolution, assuming that ponds drain through the bulk of the ice, and allow-

ing the possibility for an impermeable ice layer to form. Their model physics allowed for all

stages of pond evolution to emerge naturally as the ice permeability evolves, but, to match

the measured pond evolution, the ice permeability had to be tuned several orders of mag-

nitude below the typically observed values. In this Chapter, for the first time, we explicitly

model pond drainage through large holes and, as a result, we are able to match the observa-

tions using realistic physical parameters. Moreover, we use an explicitly solvable model that

exhibits universality, which makes it numerically inexpensive and easily interpreted.

This Chapter is organized as follows: First we formulate a model of drainage through large

holes. Next, we use this model to explain why the ponds organize around the percolation

threshold. After this, we show that the drainage process is in fact universal. In the two

following sections, we use universality to formulate an equation for pond coverage evolution

that approximately solves the hole model. Next, we show that our results are consistent

with observations. Then, we discuss the dependence of pond coverage evolution on physical

parameters and the challenges of pond modeling and, finally, we conclude with a summary of

our results. All of the parameters used in the Chapter are summarized in a table in appendix

4.10. We summarize technical details required to reproduce the results of this Chapter in

the Supporting Information (SI).

4.2 The hole model

To investigate pond drainage through macroscopic holes, we created a simple model of pond

drainage, sketched in Fig. 4.1b and explained in detail in SI section 4.S1. We discuss the

physics of hole formation later, in section 4.5. To mimic the conditions at the end of stage
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I of pond evolution, we start with a random synthetic two-dimensional ice surface, a large

fraction of which is covered by water. We are assuming that variations in ice topography

are initially much smaller than freeboard height (mean height above sea level), such that

no regions of the ice are initially below sea level. Such a configuration is consistent with

conditions on undeformed first-year ice. The ice topography can change over the course

of the melt season, as preferential melting of ponded ice alters the topography. A hole

opens at a random location on the ice surface and drains water from all of the ponds it is

connected to. As drainage through this hole progresses, some parts of the surface can become

disconnected from the hole and can no longer drain through it. Drainage stops when either

the hole is exposed to the atmosphere or when the pond connected to the hole reaches sea

level. As water is lost from the ice surface, the ice floats up to maintain hydrostatic balance.

Hydrostatic balance depends on ice thickness, which can decrease over time. Since ponded

ice melts faster than bare ice, we evolve the topography by preferentially melting ponded

regions. We are assuming that this melt occurs much slower than drainage through a hole.

We are also assuming that the topography only changes due to albedo differences between

bare and ponded ice so that channels that connect ponds cannot form as the ponds drain.

Later, more holes open on the ice surface and the process continues until all the ponds are

at sea level.

In practice, we implemented our model on a square grid, typically 500× 500 grid points

in size, with boundaries that we regard as rigid walls over which ponds cannot spill. We

initiated the model by randomly generating a topography according to one of the schemes

described in SI section 4.S3 and setting an initial water level, typically so that 100% of the

surface is water-covered. During each simulation run, we tracked the ice height above sea

level and the water level at each grid point as well as a global variable, θ, loosely interpreted

as ice temperature. θ increases at a fixed rate and determines where the holes open - to each

grid point, we assign a critical value, θ0, drawn independently from a normal distribution,
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so that a hole opens at that grid point when θ > θ0. Ice thickness, which controls the height

of the freeboard, decreases at a constant rate dH/dt, which we take to be an independent

model parameter, separate from the surface melt rate. We consider both simulations with

dH/dt = 0 and with |dH/dt| > 0. We simulate pond and ice evolution iteratively - 1) first, we

update θ to find grid points where the new holes open, 2) then we drain the ponds through

these holes by incrementally decreasing the water level, at each step updating the ponds

connected to the holes until either the holes emerge above the pond surface or ponds fall to

sea level, 3) next, we update the surface topography by preferentially melting ponded regions,

and 4) finally, we update ice thickness and impose hydrostatic balance. We repeat these steps

until θ is high enough so that all grid points have a hole in them. We describe this model in

more detail and carefully consider all of the model assumptions in SI sections 4.S1 and 4.S2.

Code for this model is available at https://github.com/PedjaPopovic/hole-model.

Ice topography determines how the ponds will drain. As we will show, the effects of

topography on pond coverage can be summarized with only a few parameters. Importantly,

though, for our analysis to apply, ice topography has to be well-described by a single length

scale, l0, defined, for example, as the autocorrelation length. In the case of melt ponds, l0

would be determined by the typical size of snow dunes. By only considering single-scaled

topographies, we are restricting our analysis to flat regions of the ice away from large-scale

features such as the ridges. As we mentioned in the introduction, an especially important

property of the surface is its percolation threshold, pc. We estimate pc for a given topography

as the coverage fraction at which a connected “pond” that spans the domain first appears as

we incrementally raise the “water level” (a horizontal plane that cuts through the topography,

see SI section 4.S3 for details). Motivated by the void model described in Chapter 3 where

ponds surround circular “snow dunes,” in Chapter 5 we developed a “snow dune” model of

the ice topography generated by summing randomly placed mounds of Gaussian form, each

with a randomly chosen horizontal scale and a height proportional to that scale. There,
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we showed that this topography reproduces the statistical properties of the pre-melt snow

surface highly accurately. An example of this surface is shown in Fig. 4.1c and a typical

configuration of ponds after drainage through one hole on this surface is shown in Fig. 4.1d.

However, our analysis applies to any random surface with a single characteristic scale, and

we also show the results for other topography types. We discuss all of these topographies in

SI section 4.S3.

4.3 The origin of the percolation threshold in melt ponds

Figure 4.2a shows the pond coverage fraction, p, as a function of the number of open holes,

N , in the hole model if we assume ice does not melt. Figure 4.2a provides insight into

the mechanism for pond coverage being organized close to the percolation threshold, pc.

Specifically, we can see that the first several holes drain the entire ice surface from p = 1 to

p ≈ pc, while it takes on the order of 105 more holes to drain the rest of the surface. In these

simulations, the total number of pixels was N0 ≈ 2.5×105, so to fully drain the surface, a hole

needed to exist on nearly every pixel. This resembles the opening of microscopic pathways

in real ice, and explains why the transition from stage II to stage III is also marked with

a transition from drainage through large holes to drainage through microscopic pathways.

This result was robust - we ran multiple simulations on three kinds of topographies and in

each case the first several holes were able to drain ponds to below pc, while the remainder

of the drainage curves were robust against the randomness in our model.

We can now understand why the initial drainage is so abrupt and leads to pond coverage

close to the percolation threshold. If pond coverage is above the threshold, then a large

fraction of the surface is connected and a single hole can drain a vast area. On the other

hand, if pond coverage is below the threshold, then ponds become disconnected and holes

can drain ponds only incrementally. To explain why ponds remain close to the percolation

threshold as more holes open, we need to include the fact that ponded ice melts faster than
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bare ice. In this case, the topographic variations that determine the pond patterns amplify

over time, so that percolation pond patterns can be preserved if ponded ice melts sufficiently

fast compared to bare ice.

The percolation threshold is a statistical property of the ice surface. As such, it does not

depend on many of the details of the topography. Importantly, it does not typically depend

on dimensional properties such as the mean height or roughness (standard deviation), but

rather on generic statistical properties of the surface (Weinrib, 1982). For example, any

surface that has a height distribution with a point of symmetry (e.g., a Gaussian), will have

pc = 0.5 (Zallen and Scher, 1971). Non-symmetric surfaces have a pc that deviates from

0.5, but our experiments on non-symmetric “snow dune” and Rayleigh topographies suggest

that these deviations are typically not very large (see SI section 4.S3). This means that the

percolation threshold for real ice can likely be accurately estimated using an appropriate

statistical model of ice topography. We note that if channels that connect ponds form in a

significant number as the ponds drain, statistical properties of the topography may change

over the course of pond drainage, thereby lowering the value of the percolation threshold.

4.4 Universality of drainage through holes

The curves for drainage on different topographies shown in Fig. 4.2a all appear different.

However, by rescaling p and N , we can collapse these curves onto a single universal curve

(Fig. 4.2b). The appropriate rescaling is

p → Π ≡ p

pc
(4.1)

N → η ≡ cN
l20
L2

, (4.2)

where L is the size of the domain and c is a non-dimensional number of order unity that,

like pc, depends on the type of the topography but not on its dimensional properties such
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Figure 4.2: a) Semi-log plot of pond coverage fraction as a function of the number of open
holes for three different topography types and no ice melt. Percolation thresholds for each
of the three topographies are shown as horizontal dashed lines. The vertical dashed line
marks the total number of pixels in these simulations. The simulations start at N = 0
and p = 1 which cannot be shown due to the logarithmic scale, so, for visual clarity, we
artificially place the origin at N = 0.1. b) A plot of rescaled pond coverage, Π ≡ p/pc, as
a function of rescaled number of holes, η ≡ cNl20/L

2 for the three surfaces in panel a. The
horizontal dashed line marks the percolation threshold, Π = 1. Following initial drainage
above the percolation threshold, all three curves fall approximately on a universal function,
g(η), marked with a dashed blue line. c) Rescaled pond coverage, Π, as a function of rescaled
number of holes, η, now with preferential ponded ice melt, for different rates of ponded ice
melt relative to bare ice melt, dhdiff/dt. Ice thinning rate is kept at 0, i.e., dH/dt = 0. The
horizontal dashed line has the same meaning as in panel b.
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as mean height or roughness. Below we show that c can be defined using a theoretical

curve that arises from the general percolation theory. A factor L2/l20 in the parameter η is

approximately the number of ponds of size l0 within the domain of size L. Therefore, the

parameter η represents, approximately, the number of open holes per pond of size l0. As we

can see in Fig. 4.2b, the surface is significantly drained when η is of the order one, meaning

that it takes about one hole per pond to drain the surface. After this rescaling, drainage on

all surfaces follows a universal law

Π = g(η) . (4.3)

Pond coverage in our model falls on this universal curve after the first several holes have

drained the ponds to the percolation threshold. For a general discussion on universality see

Goldenfeld (1992).

The universality of the curve g(η) is a consequence of the universality of the percolation

model near pc. In SI section 4.S6, we use this fact to motivate the form of g(η). In particular,

we define a correlation function for ponds, G(l), as the probability that two randomly chosen

points on the surface, separated by a distance l, are both located on the same pond. With

this definition, the integral of G(l) is proportional to the fraction of the surface connected to

a randomly located hole, and, so, can be related to an average decrease in pond coverage per

hole. The universality of pond drainage then arises from the fact that, close to the percolation

threshold, G(l) has the same form for all models within the percolation universality class.

In SI section 4.S6, we use this line of reasoning to show that g is approximately a solution

to an ordinary differential equation

dg

dη
= −g2(1− g)−19/18 . (4.4)

This reasoning only holds near pc, so, when Π deviates significantly from 1, the universality

breaks down, which we can see in the hole model with the slight deviation among the curves
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at low pond coverage in Fig. 4.2b. We use Eq. 4.4 to specify the constant c in the parameter

η. We chose c so that the simulated curves Π = g(η) best correspond to Eq. 4.4. All tested

topographies yielded a similar scaling factor, c, so this constant had only a small effect in

our simulations (see SI section 4.S3).

Since g(η) does not depend on model details, a solution for one model will apply to all

models within the same universality class. Therefore, it is likely that solving for g using Eq.

4.4 will apply well to real sea ice, so long as real ice topography does not qualitatively differ

from our synthetic surfaces. This is supported by the results of Chapter 5, where we showed

that pre-melt ice topography on undeformed ice is very accurately described by the synthetic

“snow dune” surface we considered here. We note, however, that if ice topography changes

significantly during drainage, e.g. due to the formation of channels that connect ponds, real

ice may fall out of the percolation universality class, so more study is needed to ensure that

our results apply to real ice. As a final remark, we note that the function g(η) may in fact

describe diverse physical phenomena, some of which may be seemingly very different from

pond drainage on sea ice.

Identifying the function g(η) is a central result of this Chapter. In the rest of the Chapter

we will be concerned with using this function to understand pond evolution and its connection

to measurable parameters.

4.5 Pond evolution during stage II

So far, we have neglected the preferential melt of ponded ice. In this section, we will include

this effect and we will derive an equation for pond coverage time-evolution, p(t), during pond

drainage. Figure 4.2c shows rescaled pond coverage as a function of the rescaled number of

holes for different rates of ponded ice melt relative to bare ice melt, dhdiff
dt ≡ |

dhpi
dt | − |

dhbi
dt |,

where
dhpi
dt and dhbi

dt are ponded and bare ice melt rates and |...| is the absolute value. We

are still neglecting the thinning of the ice, assuming that dH
dt = 0. We can see that, in this
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case, pond coverage still follows the same curve p = pcg(η) up to a point, p = pmin, when it

stops changing as more holes open. As we hinted at before, the greater dhdiff
dt is, the higher

this pond coverage will be, and, if dhdiff
dt is large enough, the pond coverage will get pinned

to the percolation threshold.

The pond coverage eventually stops changing because, after a certain amount of time,

the base of the ponds melts below sea level so that new holes that open cannot drain the

ponds fully. In this way, the pond patterns become “memorized.” This happens when ice

melts through the thickness of the post-drainage freeboard, h. We can express h and dhdiff
dt

in terms of physical parameters to find the time, Tm, to memorize the pond patterns

h = ρw−ρi
ρw

H
1−pmin

, (4.5)

dhdiff
dt = ∆αFsol

lm
, (4.6)

Tm ≈ h
dhdiff/dt

= lm
∆αFsol

ρw−ρi
ρw

H
1−pmin

, (4.7)

where H is the post-drainage ice thickness, pmin is the post-drainage pond coverage, Fsol is

the solar radiation flux, ∆α is the albedo difference between ponded and bare ice, lm is the

latent heat of melting in Jm−3, and ρw and ρi are the densities of water and ice. Equation

4.5 comes from hydrostatic balance of the ice floe, taking into account the fact that after

drainage, only the non-ponded ice that covers a fraction 1− pmin of the total area is above

sea level and can balance the buoyancy of the submerged ice. Equation 4.6 follows from the

assumption that bare and ponded ice melt differently only due to their albedo difference.

Based on the above, if we know the number of holes that have opened by time t, we can

estimate the pond coverage evolution, as p(t) ≈ pcg(η(t)) for t < Tm and p(t) = pmin ≡

pcg(η(Tm)) for t > Tm. To do this, we must model the hole opening dynamics in some way.

The formation of holes depends on ice microphysics, and is not very well understood. For

this reason, we will first describe the hole opening process in a general way, making few
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Figure 4.3: a) Post-drainage pond coverage, pmin, found using our full 2d model against the
coverage estimated using Eq. 4.13. Each point is a separate simulation with different rates
of ponded ice melt and hole opening timescales. The red dashed line marks the 1:1 ratio. b)
Pond coverage evolution using the full 2d model (blue line) and estimated using Eqs. 4.12
and 4.14 (red dashed line). Time of memorization, Tm, percolation threshold, pc, and the
post-drainage pond coverage, pmin, are marked with dashed and dotted black lines. Times
earlier than Tm correspond to stage II of pond evolution, while later times correspond to
stage III.

assumptions. Afterwards, we will test concrete assumptions within this framework to make

estimates of the pond coverage evolution.

Holes form mainly as enlarged brine channels (Polashenski et al., 2012). Such brine

channels are tubes, roughly a centimeter in diameter, that run through the entire thickness

of the ice (Cole and Shapiro, 1998). Not all brine channels span the entire depth of the ice

(Lake and Lewis, 1970), so, likely, only some can become enlarged into holes. Polashenski

et al. (2012) showed that, depending on the channel radius, ice temperature, salinity, and

other bulk properties, a channel can either close or enlarge when meltwater flows through

it. In the beginning all the channels are closed, but as the ice warms, some of them start

to open. Polashenski et al. (2017) suggested that as the ice temperature passes through a
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particular threshold, some channels begin to open, while above a certain temperature nearly

all channels become open.

Based on the above, we choose to model the evolution of the number of holes as

N(t) = N0F
( t−t0
Th

)
, (4.8)

t0 ∼ −ThF
−1( 1

N0
) , (4.9)

where N0 is the total number of brine channels that can possibly become holes, F is the

fraction of those channels that become holes by time t, and can be seen as a cumulative

distribution of some underlying probability density function f , and Th and t0 are the width

and the center of this distribution. The parameter t0 can be interpreted as the time between

when the first hole opens and when a fraction of holes, F (0), open. Equation 4.9 then follows

by noting that time t = 0 corresponds to the opening of the first hole, so that N(t = 0) = 1.

This relationship is approximate because the timing of opening the first hole is intrinsically

stochastic. So, each independent model run will have a slightly different t0 even if all large-

scale parameters are the same (see SI section 4.S9). Nevertheless Eq. 4.9 shows that, to

first order, t0 is not an independent parameter. Currently, we are only assuming that the

distribution F has a well-defined width, controlled by a unique hole opening timescale, Th.

Thus, we are assuming that a significant fraction of holes open within time Th, and that

within several Th almost all of the brine channels open. From Eq. 4.8, we can see that

under these relatively broad assumptions, ice microphysics contributes to pond evolution by

changing the hole timescale, Th, number of channels, N0, and the distribution F .

The hole opening timescale, Th, depends on specific mechanisms that control the forma-

tion of holes and is, therefore, more difficult to relate to measurable parameters than the

memorization timescale (Eq. 4.7). Polashenski et al. (2017) suggested that a significant

fraction of holes open up when the ice interior warms by some amount ∆θ ∼ 1◦C beyond

the temperature at which the first hole opens. This suggests a way to relate Th to physical
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parameters in a way that is consistent with observations, but we note that a better under-

standing of hole formation physics is needed to make this estimate more realistic. Therefore,

we estimate

Th ≈ ∆θ
dθ/dt

, (4.10)

dθ
dt ≈

θ2
0

ρiγS

(
c∗k θ0

H2 + (1− αp)Fsolκe
−κz∗

)
, (4.11)

where dθ/dt is the warming rate of the ice interior, S is the ice salinity, θ0 is a reference

temperature in degrees Celsius at which the holes tend to start opening, γ is a constant that

relates the ice heat capacity to the salinity, k is the thermal conductivity of the ice, αp is the

albedo of ponded ice, κ is the extinction coefficient from Beer’s law, z∗ is the depth within

the ice at which we are estimating the warming rate, and c∗ is a constant that accounts

for the shape of the vertical temperature profile. Equation 4.11 is an order-of-magnitude

estimate of the ice warming rate in terms of measurable parameters that we derive in SI

section 4.S7 following Bitz and Lipscomb (1999). We note, however, that Th can change by

a factor of several by changing the under-constrained properties such as the depth at which

the freshwater plugs form or the reference temperature, θ0.

With a model for hole opening, we can estimate the pond evolution, p(t), and pond coverage

after drainage, pmin, by combining Eqs. 4.3 and 4.8

p(t) ≈ pcg

(
cN0

l20
L2F

(
t−t0
Th

))
, t < Tm (4.12)

p(t) ≈ pmin ≡ p(Tm) , t > Tm . (4.13)

These equations can be solved once we assume a concrete distribution F . As a default, we

used a cumulative normal distribution F throughout this Chapter. In SI section 4.S9, we

explored other distributions and showed that, due to the fact that N0 is very large, pond

evolution only depends on the tail of F . Since Tm depends on pmin through Eq. 4.7, Eqs.
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4.7 and 4.13 have to be solved simultaneously for pmin and Tm. To test the above relations,

we compared pmin found using Eq. 4.13 against our full 2d hole model (see SI section 4.S4

for details). Figure 4.3a shows that the simulations and the estimates agree well, confirming

that the above equations do in fact approximately solve the full hole model. In SI section

4.S8, we use Eqs. 4.7 and 4.9 - 4.13 to explore how the pond coverage depends on physical

parameters.

4.6 Pond evolution during stage III

We have shown that the universal function g(η) can be used to solve our hole model, providing

a formula for pond coverage evolution during stage II. In our model so far, we have neglected

ice thinning, and so were unable to explicitly model stage III of pond evolution. Here we

will extend our analysis to this stage as well. We will show that the same function g(η) also

governs the evolution of pond coverage during stage III under certain assumptions.

We start by explaining the relationship between pond behavior during stage II and stage

III (see Fig. 4.4). To this end, we have to make several assumptions. In particular, we will

assume that ponds are approximately level during stage II, that bare ice melts at a spatially

uniform rate, that pond coverage only decreases during stage II and only increases during

stage III, and that there is no lateral melt during stage III. If ponds during stage II are

approximately level, ice at the pond boundaries has approximately the same height, and is

thus, approximately, a level-set of the ice topography. As the ponds drain and the water

level decreases during stage II, ice at the pond boundaries quickly becomes pond-free and,

assuming that bare ice melts at a spatially uniform rate, remains approximately level for the

remainder of stage II. During stage III, ponds are drained to sea level nearly completely, so

pond boundaries are again level-sets of the ice topography and the pond coverage is equal

to the fraction of the ice surface below sea level. If there is no lateral melting of pond

walls, pond growth during stage III is entirely due to ice thinning and consequent freeboard

112



Figure 4.4: A schematic of pond evolution under the assumptions stated in section 4.6. Stage
II begins at time t = 0, with a high pond coverage and ice surface above sea level. At a time
tII during stage II, water level decreases and pond coverage evolves according to Eq. 4.12.
We assume that the ponds are approximately level so their boundaries define a level-set of
the topography. Ponded ice may melt in a complicated way, but we assume that bare ice
melts spatially uniformly, so the topography left in the wake of the decreasing water level
remains unchanged. When ponds reach sea level, stage II ends and stage III begins. During
stage III, ponds are defined by the intersection of sea level and the ice topography, and
are thus also level-sets of the topography. The above-sea-level topography at the beginning
of stage III determines pond evolution during stage III if there is no lateral melt of pond
walls. As the ice thins, sea level intersects this topography at different levels. Since this
topography has not changed since the last time it was ponded during stage II, there exists
a time t during stage III for which the horizontal distribution of ponds is the same as it was
at a time tII during stage II. In this sense, ponds retrace their history. For visual clarity, we
have not shown ice thinning during stage II, but it is assumed that ice thins throughout its
evolution.
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sinking, which leads to more of the ice surface falling below sea level. Thus, the above-

sea-level topography, which consists only of bare ice, does not change until it is submerged.

This means that pond coverage at any time during stage III is uniquely determined by

the above-sea-level topography at the beginning of stage III, which is unchanged since it

was last ponded during stage II, and the current ice thickness, H(t), which determines the

freeboard height. Therein lies the connection between stage II and stage III ponds - both

are approximately level-sets of the same topography created in the wake of decreasing water

level during stage II. In this sense ponds during stage III approximately retrace their history

- for every water level during stage II there exists a corresponding ice thickness during stage

III so that ponds are approximately the same. Using this idea, we can estimate the pond

evolution during stage III.

In order for ponds to retrace their history, the assumptions we stated at the beginning

of the previous paragraph have to hold. These assumptions are likely satisfied in reality, at

least approximately. In our hole model, ponds are certainly not exactly level during stage II,

since this would prevent them from becoming disconnected. Nevertheless, this assumption

likely holds well enough so that ponds approximately retrace their history, as we show below

by directly simulating stages II and III in our model. Note that we only had to assume that

bare ice melts spatially uniformly, and made no assumptions about ponded ice - whichever

way the ponded ice melts, the topography set during stage II will be re-submerged during

stage III, and ponds will retrace their history. However, a spatially non-uniform melt rate

of ponded ice may affect the mapping between stage II and stage III ponds, so, to construct

this mapping explicitly, below we will consider only the case where ponded ice does melt

uniformly in both time and space.

Now, we can proceed to explicitly relate stage II and stage III pond coverage. Consider

a time tII since the beginning of stage II at which the pond coverage is pII(tII). If the ice

is flat compared to freeboard thickness at the beginning of stage II and ponded ice melts
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uniformly, the depth of topographic depressions created by preferential ponded ice melting

by time tII is approximately δh(tII) ≈
dhdiff

dt tII. Thus, ice that was ponded at tII will have

carved depressions of at least δh by the beginning of stage III. On the other hand, since

pond coverage only decreases during stage II, any non-ponded location at tII will have carved

depressions less than δh deep by the beginning of stage III. During stage III, depressions of

depth δh will be below sea level when the freeboard height, h, is less than δh. So, if the

ponds retrace their history, we can use the relationship h(t) = δh(tII), to find the time tII

at which the pond coverage was the same as it is at time t during stage III. Thus, we find

tII(t) ≈
h(t)

dhdiff/dt
.

Note that tII has the same form as the memorization timescale, Tm, given by Eq. 4.7 -

both are a ratio of a freeboard thickness, h, and a differential melt rate, dhdiff/dt, the only

difference being that Eq. 4.7 is estimated using h at the end of stage II and tII is estimated

using h at some time, t, during stage III. So, we can use Tm(t) calculated by Eq. 4.7 using

the values for ice thickness and pond coverage at time t, and define tII(t) = Tm(t). We thus

relate stage II and III pond coverage as p(t) = pII(Tm(t)). Therefore, using Eq. 4.12, the

pond evolution during stage III can be approximately captured as

p(t) ≈ pcg
(
cN0

l20
L2F

(
Tm(t)−t0

Th

))
, (4.14)

Tm(t) ≈ h(t)
dhdiff/dt

= lm
∆αFsol

ρw−ρi
ρw

H(t)
1−p(t) . (4.15)

This equation is applicable after complete pond drainage to sea level. In SI section 4.S4,

we note that the transition between stage II to stage III can be approximated as the time

at which p(t) estimated using Eq. 4.14 exceeds p(t) estimated using Eq. 4.12 (i.e., when

t > Tm(t)). After choosing F , Eqs. 4.12 and 4.14 together describe the pond evolution after

the beginning of pond drainage below the percolation threshold.

We test these equations against our full 2d hole model that includes ice thinning and

assumes a constant thinning rate, dH/dt, in Fig. 4.3b (see SI section 4.S4 for more details).
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We can see that the two agree well most of the time, suggesting that our assumption about

ponds retracing their history is justified in our model. Since g ≤ 1, Eqs. 4.12 and 4.14 predict

that pc is an upper bound on pond coverage during stages II and III. This is approximately

obeyed in the full hole model where the pond coverage during stage II quickly falls below the

percolation threshold after the first several holes, and where the ice quickly floods during

stage III after pond coverage reaches pc. The rapid flooding after the pond coverage reaches

pc during stage III in the model is due to the fact that we assumed the ice was very flat

at the beginning of stage II. In reality, this assumption may not strictly hold, but we still

expect the percolation threshold to be an approximate upper bound after which flooding,

and subsequent ice disintegration, follows more rapidly than before.

4.7 Comparison with observations

We can now proceed to compare our model predictions to observations. We describe the

details of these comparisons in SI section 4.S5. Polashenski et al. (2012) collected extensive

field data on pond coverage and ice properties during the summer of 2009 near Barrow

Alaska. Using their measurements and Eqs. 4.7 and 4.9 - 4.11, we were able to estimate

all of the parameters that enter Eqs. 4.12 and 4.14. Figure 4.5a shows the measured pond

coverage, along with our predictions and an estimated margin of error due to uncertainty in

the physical parameters that enter the pond evolution equations, while Table 4.1 summarizes

our estimates of the timescales Tm and Th, the minimum pond coverage, pmin, and the

percolation threshold, pc, as well as their margin of error. Since so many physical parameters

contribute to pond evolution, even modest uncertainty in measurements leads to relatively

large uncertainty in pond coverage. In fact, we find that to match the pond coverage evolution

to within 10% all of the physical parameters would have to be known to within about 1%.

Equation 4.12 predicts that ponds drain instantly to the percolation threshold as soon as the

first hole opens. The measurements, on the other hand, show a more gradual decline in pond
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Table 4.1: Estimates of the timescales Tm and Th, the minimum pond coverage, pmin, and
the percolation threshold, pc, found using Eqs. 4.7, 4.10, 4.11, and 4.13. The range repre-
sents the minimum and maximum estimate over an ensemble of pond coverage evolutions
corresponding to the dark shaded region in Fig. 4.5a, while the best fit estimates correspond
to the least-squares best-fit pond evolution curve over this ensemble shown as the black
dashed line in Fig. 4.5a.

Tm Th pmin pc
Best fit 4.4 days 2.0 days 0.1 0.36
Range (2.3, 9.2) days (1.0,6.6) days (0.0,0.3) (0.2,0.5)

coverage towards the percolation threshold, likely due to the fact that real holes take time

to grow and cannot drain ponds instantly. Nevertheless, we can see that observations are

consistent with our predictions below the percolation threshold, and our equations capture

the pattern of pond coverage variability over time. We can see that within the limited range

of reasonable physical parameters, we are able to choose a combination that predicts a pond

evolution that accurately matches observations below p ≈ 0.36.

As we discussed before, our model predicts an approximate upper bound on pond coverage

during stages II and III. In particular, we showed that after the beginning of stage II, ponds

quickly drain to pc, while at the end of stage III, the entire floe quickly floods when pond

coverage exceeds pc. This means that ponds likely spend little time at coverage higher than

the percolation threshold. Moreover, this approximate upper bound may also be present

during stage I. If during stage I there exist large flaws in the ice such as cracks, holes, or even

the floe edge, that can quickly drain large volumes of water, the percolation threshold would

also represent an upper limit on pond coverage during this stage. If such flaws exist, the pond

coverage would in fact be bounded throughout the entire melt season. In Fig. 4.5b, we show

the pond coverage distribution across the entire Arctic estimated from MODIS (Moderate

Resolution Imaging Spectroradiometer) satellite data (Rösel et al., 2015b). The frequency of

pond coverage observations is relatively high for p < 0.3 and declines rapidly for higher pond

coverage values. Moreover, the pond coverage very rarely exceeds 0.4, consistent with our

prediction that an upper bound on pond coverage exists. Values between 0.3 and 0.4 are also
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Figure 4.5: a) The green line represents time evolution of pond coverage measured by Po-
lashenski et al. (2012) near Barrow, Alaska in the summer of 2009. The red dashed line and
the dark shaded region are the mean and one-standard-deviation uncertainty of an ensem-
ble of pond coverage evolutions found using Eqs. 4.12 and 4.14. For each pond evolution
within the ensemble, every physical parameter that enters the pond evolution equations was
selected randomly from a normal distribution with a mean estimated using measurements
by Polashenski et al. (2012) and a standard deviation equal to 10% of the mean. The black
dashed line is the least-squares best fit prediction using parameters that are within the 10%
measurement error. The light shaded region is the one-standard-deviation uncertainty region
assuming a 10% measurement error for all the parameters directly measured by Polashenski
et al. (2012) and a 50% uncertainty for under-constrained microphysical parameters such as
the shape parameter for the temperature profile, c∗, the reference temperature, θ0, and the
depth at which the freshwater plugs form, z∗. Values of 10% and 50% are not estimates of
real uncertainties, but were chosen simply to demonstrate the sensitivity to model param-
eters. We note that the slight increase in the upper boundary of the light shaded region
during stage II simply corresponds to increased uncertainty during that time, and no actual
pond coverage trajectory increases during stage II. b) Distribution of pond coverage across
the Arctic for different years derived from MODIS satellite data (Rösel et al., 2015a). The
frequency of observations declines rapidly between 0.3 < p < 0.4 and very few observations
show p > 0.4, consistent with our predictions. The light shaded region shows the likely
values for the percolation threshold estimated by Popović et al. (2018). c) Observations
of pond coverage evolution made along a transect during the 1998 SHEBA mission. The
data are taken from Perovich et al. (2003). Horizontal and vertical lines mark the estimated
minimum pond coverage, pmin, percolation threshold, pc, and the timing of the transition
between stages II and III.
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consistent with Chapter 3 where we estimated pc directly from pond photographs, and found

it to be roughly between 0.3 and 0.4. We note that these values for the percolation threshold

are about 0.1 lower than pc predicted by the “snow dune” topography, developed in Chapter

5 (and described in SI section 4.S3), that accurately matches the pre-melt ice topography

and predicts a pc between 0.4 and 0.5. This decrease could be due to processes such as

the formation of connecting channels between ponds during pond drainage that change the

topography and increase the efficiency of drainage.

In the previous section and in Fig. 4.3b, we showed that our model predicts that the pond

coverage will approach pc in the late stages of pond evolution, after which the ice rapidly

floods, presumably leading to disintegration. This late-season approach to pc and subsequent

rapid flooding may in fact account for the observations we made in Chapter 3 that late

summer ponds are organized close to the percolation threshold. Furthermore, observations

made during the 1998 SHEBA (Surface heat budget of the Arctic Ocean) mission, reported

in Perovich et al. (2003), and shown in Fig. 4.5c, showed stage III pond evolution that

strongly resembles our model prediction that pond growth slows down as it approaches pc.

There, starting from a minimum, the pond coverage increased over a period of roughly 40

days approaching a point (p ≈ 0.37) after which it approximately stopped changing for

the remainder of the field experiment (compare Figs. 4.3b and 4.5c). Again, this value

of p ≈ 0.37 is a plausible percolation threshold according to Chapter 3 and our previous

discussion in this section.

4.8 Discussion

We now discuss how pond coverage in our model depends on physical parameters, how our

model might be incorporated into a large-scale sea ice scheme, and the challenges of pond

modeling. In the previous sections, we have related the pond evolution to parameters pc, H,

αi, αp, Fsol, S, ∆θ, θ0, z∗, N0, L, and l0, all of which can be estimated by measurements, at
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least in principle. However, not all of these parameters are easily estimated in a large-scale

model and the qualitative dependence on some of them may not be appropriately captured

in our parameterization due to the fact that we do not yet understand hole formation physics

well enough.

The timescale Tm depends only on parameters that are available in large-scale models

(H, ∆α, and Fsol). On the other hand, the hole opening timescale, Th, depends on hole

formation physics and is, thus, much more difficult to estimate. In our parameterization,

Th is both a function of parameters available in large-scale models (H, S, αp, and Fsol) and

those that can only be loosely constrained by field observations (∆θ, θ0, and z∗). In addition

to this, Th in our parameterization depends on salinity, S, and reference temperature, θ0, in

a qualitatively counter-intuitive way (see SI section 4.S8). Namely, in our parameterization

of Th, we directly related the fraction of open holes to the ice interior temperature following

the suggestion of Polashenski et al. (2017). This led to Th being higher at higher S and

θ0, since these conditions imply a lower ice warming rate. This is counter-intuitive because

higher salinity and reference temperature also imply a higher brine volume fraction which,

in reality, likely increases the hole formation rate, lowering Th. For this reason, we believe

that the assumption of using the ice temperature to diagnose hole opening may need to be

reconsidered. Another parameter such as, for example, ice porosity, may be better suited to

diagnose when holes in the ice begin to form.

The dependence of pond coverage on most of the physical parameters in our model is

qualitatively robust. An exception to this is the ice thickness. We find that the effect of

thickness, H, depends qualitatively on the details of hole formation physics. Increasing H has

two effects - 1) it raises the freeboard, increasing Tm, and 2) it slows down the warming of the

ice interior, increasing Th. Therefore, the way in which H affects pond coverage qualitatively

depends on whether the effect on Tm or Th dominates. In SI section 4.S8, we show how a

minor change in the assumptions about the hole formation physics may completely change
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the effect of ice thickness. We note that Skyllingstad et al. (2015), who ran pond-resolving

simulations that include pond drainage, did not find a systematic relationship between pond

fraction and the initial ice thickness, consistent with our discussion here. Establishing the

correct relationship between ice thickness and pond coverage may be important for estimating

the strength of the ice-albedo feedback under global warming. To that end, our model could

be used to test hypotheses about hole formation physics by making predictions about the

relationship between pond coverage and physical parameters that can be tested against field

data that exploit the natural variability in environmental conditions across the Arctic.

We believe that the dependence of pond coverage on all other physical parameters pre-

dicted by our model is qualitatively correct, even if it may be somewhat quantitatively

inaccurate because of poor understanding of hole formation physics. In Fig. 4.S4 of SI

section 4.S8, we specifically look at the minimum pond coverage, pmin. There, we show that

pmin increases with the domain size, L, percolation threshold, pc, ice albedo, αi, temperature

range for hole opening, ∆θ, and the depth at which ice plugs tend to form, z∗. We show

that it decreases with typical pond size, l0, and pond albedo, αp. Finally, we show that it

only weakly depends on the solar flux Fsol and brine channel density, n0. We note that prior

to this investigation, it was not recognized that geometric parameters L, l0, and pc can have

any effect on pond coverage.

In addition to the uncertainties we discussed above, our model predicts that accurately

estimating pond coverage evolution is a fundamentally difficult problem, regardless of how

well we understand the ice and pond physics. Namely, our model predicts that pond coverage

is highly sensitive to physical parameters, so even small errors in measurements or natural

variability can lead to large variations in predicted pond coverage. In particular, as we have

noted in the previous section, to be able to predict pond coverage to within several percent in

our model, all of the physical parameters need to be known to within about 1%. Moreover,

even if all of the bulk parameters are perfectly known, we still cannot perfectly constrain
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the pond evolution. Since the timing of the opening of the first drainage hole is intrinsically

stochastic (see Eq. 4.9 and SI section 4.S9), pond coverage will fluctuate from one situation to

another even if all of the bulk parameters are identical. In our simulations this stochasticity

in the timing of the first hole contributed to about 5% variability in minimum pond coverage,

pmin.

Ice albedo is a critical parameter in large-scale models that controls the thermal evolution

of the sea ice cover. Since melt pond coverage is a primary control on albedo, Eqs. 4.12 and

4.14 can be straightforwardly used as a physically sound and computationally inexpensive

parameterization of the albedo evolution during stages II and III of pond evolution. In

addition, these equations can be supplemented with a similarly inexpensive equation for

stage I developed in Chapter 5. However, our discussion above clearly highlights two issues

relevant for employing our model in a large-scale scheme - 1) ice microphysics that governs

hole formation needs to be better understood, and 2) pond coverage possesses a built-in

sensitivity to environmental conditions and stochasticity that greatly amplify any uncertainty

that may exist in measurements. We emphasize that these challenges are not an artifact of

our hole model - any model of melt ponds will need to address hole formation physics to

accurately capture the dependence on physical parameters, and any model will likely face a

similar sensitivity to physical parameters which simply stems from the fact that there are

many parameters that control pond evolution. Our work here reveals that the natural way

to parameterize pond coverage is through the number of drainage holes per characteristic

area of the surface, η. Thus, if any model were able to track η directly rather than break

it down into a multitude of environmental parameters, uncertainty in estimates of pond

coverage would greatly reduce. If such a reduction is not feasible, the low computational

cost of our model could be exploited to assign a distribution of pond coverage at each grid

point of a large-scale model rather than to provide a single pond evolution trajectory. In

addition to these issues that are likely a generic feature of melt pond physics, some of
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the simplifying assumptions are specific to our model, such as, for example, neglecting the

formation of connecting channels between ponds or assuming that drainage through holes is

instantaneous. These assumptions may also need to be further examined to make sure our

model can be used as a reliable albedo parameterization.

4.9 Conclusions

This Chapter revolves around the observation that the percolation threshold is of special

significance for melt ponds. We showed that this stems from the fact that ponds typically

drain through large holes, making drainage easy above the threshold and difficult below. In

this way the percolation threshold represents an approximate upper bound on pond coverage

throughout most of, or, in some cases, the entire summer. The fact that pond coverage

often lingers around the percolation threshold leads to universality that greatly simplifies

this otherwise complex problem, and allows us to write a simple formula that describes

pond evolution throughout most of the melt season. It also makes it possible to connect

pond evolution with measurable parameters. Observations are consistent with all of our

predictions. The formula for pond coverage we provided requires very little computational

power. Therefore, it holds promise as a physical, accurate, and computationally inexpensive

parameterization of pond coverage in large scale models. Finally, our work connects melt

ponds with the broader field of critical phenomena and our results regarding the universality

of drainage may be applicable to other systems whose evolution is governed by a critical

point of a phase transition.
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4.10 Appendix: Table of parameters used

Table 4.2: A table of parameters used in this Chapter, their default values we used to compare
our predicted pond coverage evolution to measurements, and plausible ranges where we were
able to estimate them. We also give the references we used to estimate the parameter ranges.
The values of parameters presented here are consistent with but not identical to those used
in Chapter 2.

Name Unit Default
value

Plausible
range

Source

t Time day (0,30)
p Pond coverage None (0,1)
pc Percolation threshold None 0.35 (0.3,0.5) (Isichenko, 1992; Popović

et al., 2018), this work
pmin Minimum pond coverage None (0,pc)

Π Renormalized pond coverage None (0,1)
l0 Typical pond length-scale m 5.5 (5.2,5.8) (Popović et al., 2019a)
L Drainage basin size km 1.5 (Polashenski et al., 2012)
n0 Density of brine channels m−2 100 (60,120) (Golden, 2001)
N0 Number of brine channels None 2.25× 108 Inferred from n0 and L
N Number of open holes None (1,N0)
η Renormalized number of open holes None this work
c Numerical drainage constant None 3 (3,4.1) this work

ρi Density of ice kg m−3 900

ρw Density of seawater kg m−3 1000

lm Latent heat of melting kJ kg−1 334

γ Constant relating heat capacity to
salinity

kJ kg−1ppt−1◦C 18 (Bitz and Lipscomb,
1999; Ono, 1967)

k Thermal conductivity W m−1◦C−1 1.8 (1.3,2.0) (Bitz and Lipscomb,
1999; Untersteiner, 1964)

κ Extinction coefficient m−1 1.5 (Bitz and Lipscomb,
1999; Untersteiner, 1961)

H Ice thickness m 1.2 (0.5,3)
h Post-drainage freeboard thickness m 0.1 (0.05,0.3)
Fsol Time-averaged solar flux W m−2 254 (140,350) (Polashenski et al., 2012)
∆α Albedo difference between pond and

ice
None 0.4 (0.3,0.5) (Perovich, 1996; Po-

lashenski et al., 2012)
αp Pond albedo None 0.25 (0.2,0.3) (Perovich, 1996)
S Ice salinity ppt 3 (Polashenski et al., 2012)
θ0 Reference ice interior temperature ◦C -1.2 (Polashenski et al., 2017)
∆θ Temperature range for hole opening ◦C 0.7 (Polashenski et al., 2017)
c∗ Temperature profile effect on heat

diffusion
None 2 (1,10) this work

z∗ Depth at which ice plugs form m 0.6 (Polashenski et al., 2017)
t0 Center of the hole opening distribu-

tion
day 13.4 this work

Tm Memorization timescale day 4.4 this work
Th Hole opening timescale day 2.0 this work
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4.11 Supporting Information

4.S1 Details of the hole model

We implemented our model on a grid, typically 500× 500 grid points in size. For each grid

point, x, we tracked two fields - ice surface height, h(x), and water level, w(x). Points where

w(x) > h(x) were defined as ponds. We assumed that each connected pond has the same

water level, but different ponds can have different water levels. For convenience, we defined

w to be equal to ice height for non-ponded grid points, w(x) = h(x). We define the sea level

to be the origin of the vertical axis, so that w(x) = 0 signifies that ponds are at sea level.

We initialized the model by generating a random surface, h(x), according to a topographic

model (see section 4.S3), and setting an initial water level. Typically, we completely covered

the surface with water by prescribing a water level equal to the maximum ice height. In this

way, the pond coverage fraction at the beginning of a typical simulation was equal to 1. We

also prescribed an initial ice thickness, H, assumed to be uniform in our model, and shifted

w and h by an equal and constant amount to enforce hydrostatic balance. For a water level

field as defined above, with w(x) = h(x) for non-ponded regions, the hydrostatic balance

constraint is simply

〈w(x)〉 =
ρw − ρi
ρw

H , (4.S1)

where 〈...〉 stands for the average over all grid points, and ρw and ρi are water and ice

densities. Before running the model, we scaled the ice surface height field to have a standard

deviation of at most 2% of ice thickness, H. This ensured that suddenly removing all the

water from the ice surface would leave no depressions below sea level after hydrostatic balance

is enforced.

We considered each grid point to be a potential hole, and to each one, we ascribed

a “critical temperature,” θc(x), above which it opens. These critical temperatures were

independently drawn from a prescribed probability distribution, fθ. As a default, we used a
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normal fθ. The mean and variance of this distribution are arbitrary, so we set the mean to 0

and variance to 1. We kept track of the “bulk ice temperature,” θ. All the grid points that

had a critical temperature below the current bulk ice temperature were considered open. We

set the initial ice temperature to be below the critical temperature of all grid points. We

note that the “critical temperature,” θc(x) and the “bulk ice temperature,” θ, are simply a

way to diagnose where the holes open in our model and need not be related to actual ice

temperature.

A model step consisted of several sub-steps:

1. First, we increase the bulk ice temperature, θ, by a fixed amount, dθ, and open holes at

locations where the new bulk temperature exceeds the critical temperature. Multiple

holes can open at each step. The amount, dθ, by which temperature increases within

a given interval of time, dt, depends on the pre-defined hole opening timescale, Th.

This timescale is defined such that the bulk temperature increases by one standard

deviation of the prescribed critical temperature distribution, fθ, during Th. Since we

set the standard deviation of fθ to 1, this means that we choose dθ = dt
Th

.

2. Next, we drain the ponds through these newly opened holes. We simulate the drainage

iteratively. We first check which holes are active, i.e., are ponded (w(x) > h(x)) and

are above sea level (w(x) > 0). Next, we find the ponds connected to these active

holes. Then, we decrease the water level for each of these ponds by a small amount.

This changes the pond coverage slightly, and we find the new ponds as regions with

w(x) > h(x), and enforce w(x) = h(x) otherwise. Again, we identify holes that are

still active, find ponds connected to these holes, and repeat the drainage process until

all the holes become inactive. A hole becomes inactive when either a hole’s pond water

level reaches the ice height at the location of the hole, w(x) = h(x), or when pond

water level reaches sea level, w(x) = 0.

3. Once drainage through all of the newly opened holes finishes, we preferentially melt
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ponded ice. We do this by decreasing ice surface height, h, in ponded regions while

leaving it unchanged in bare ice regions. The amount by which the ponded ice melts

depends on the prescribed melt rate, dhdiff/dt. We can neglect the melting of bare

ice since it is only the relative melt that changes the topography and affects pond

evolution. This is justified because we treat ice thinning independently from surface

melt, by prescribing a separate parameter, dH/dt, that we can change irrespective of

dhdiff/dt, as we explain below.

4. Finally, we enforce Eq. 4.S1 to maintain hydrostatic balance. We do this by shifting

the entire ice surface by some amount. Water level is also shifted by the same amount

except for ponds at sea level that contain a hole and are maintained at sea level. By

returning ice to hydrostatic balance, we effectively adjust the sea level relative to mean

ice height.

After adjusting the hydrostatic balance a model step is complete. Then the whole process

repeats until all the ponds are at sea level. In the original version of the model, we neglected

ice thinning, but when studying stage III of pond evolution, we also thinned the ice using a

prescribed rate, dH/dt, before enforcing hydrostatic balance. In the simulations that include

ice thinning, we treat the ice thinning rate as an independent parameter from the surface

melt rate, so that dhdiff/dt controls topography evolution while dH/dt controls ice thickness

evolution, and we do not prescribe pond and bare ice melt rates individually. We also tested

versions of the model where not every grid point contains a hole, and where more than one

hole can form at each grid point. These modifications did not affect our conclusions in any

noticeable way.

In summary, Table 4.S1 shows variables and parameters that enter our model.
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Table 4.S1: A table of variables and parameters of the hole model.
Variable Name

x Coordinate
h(x) Ice height above sea level
w(x) Water level
θ Bulk ice temperature

θc(x) Critical temperature of individual brine
channels

fθ Critical temperature distribution
dhdiff/dt Melt rate of ponded ice relative to bare

ice
Th Hole opening timescale
H Ice thickness

dH/dt Ice thinning rate

4.S2 Model assumptions

Our model was aimed at explaining the observation that ponds organize around the per-

colation threshold and exploring the implications of that observation. As such, the model

contained only the sufficient elements to explain the organization around the percolation

threshold, and we have made several simplifying assumptions. All of these assumptions are

likely well-justified for undeformed first-year ice, and our model seems to be a good first-

order representation of pond evolution after the beginning of drainage. However, in some

cases the assumptions we made may not hold. We now discuss violations of our assumptions

and how some of them might be accounted for in a future version of the model.

1. First, by separating pond drainage from the melting and hole opening steps, we have

effectively assumed that drainage happens instantaneously. This assumption is sup-

ported by observations that find that large ponds can be drained in a matter of hours

(Polashenski et al., 2012), whereas melting through the thickness of the freeboard oc-

curs on the timescale of several days. One reason why this assumption may not hold

is that it takes time for brine channels to enlarge to macroscopic sizes. Although there

are no measurements of the hole enlargement process, a simple model by Polashenski
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et al. (2012) suggests that this may occur on timescales of roughly a day, compara-

ble to the timescale of melt. Another reason is that ponds are partially replenished

by additional meltwater flowing into them. The rate of drainage depends primarily

on the hole radius, the hydraulic head and the number of holes draining a particular

pond, while the rate of replenishing scales with the ice melt rate and the area of the

pond. So, large ponds replenish water more easily and it may be necessary to wait

until several holes open and grow to a certain size before such ponds can actually start

draining. For this reason, our assumption of quick drainage may be invalid especially

at the beginning of stage II when ponds cover a large area. We tested our model

including a non-negligible time to drain ponds, Td. In this case we did not separate

the drainage and melting steps, but rather melted the ice and adjusted the hydrostatic

balance after each increment of drainage, and we assumed that each pond requires Td

time to drain. Our simulations included drainage timescales of up to 60% of the hole

opening timescale, Th, and up to 30% of the memorization timescale, Tm. We found

that simulations with long drainage timescales deviated somewhat from the univer-

sal function, g(η), with the post-drainage pond coverage deviating up to 10% from

the instantaneous drainage predictions. Therefore, although this effect is likely not of

primary importance, it may not be negligible during the initial drainage period.

2. Second, we assumed that ice is very flat at the beginning of stage II. The topography

of undeformed first-year ice that underlies the snow cover at the beginning of stage I

is likely very flat. However, it is questionable whether first year ice at the beginning of

stage II can also be considered to be flat since different rates of melt of ponded ice, bare

ice, and snow during stage I may act to amplify topography variations. Non-negligible

variations in the topography will change the time it takes for different regions of ice

to fall below sea level. For this reason, it may be necessary to include the effects of

non-negligible initial topography variance in order to get accurate estimates of pond
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evolution.

3. Third, we assumed that none of the physical parameters change with time, which

may not be correct. In particular, the two timescales, Tm, and, Th, both depend on

parameters such as the solar flux or ice thickness that are not constant. Furthermore,

the warming rate of the ice interior that enters the hole opening timescale depends on

the temperature of the ice, and so changes as the ice warms. Short-time fluctuations,

such as variation due to daily changes in solar flux, likely do not contribute significantly

to pond evolution. However, longer time variation in these parameters likely affect pond

evolution quantitatively, although qualitative conclusions likely remain the same. Time

variability can be simply added to our model. In this case, instead of using Eqs. 4.12

and 4.14, pond coverage evolution would be found by solving a differential equation

dΠ

dt
=

dg

dη

(∂η
∂t

+
∑
i

∂η

∂Pi

∂Pi
∂t

)
, (4.S2)

where Pi stand for all the parameters that change with time. The term dg/dη is the

derivative of the universal function with respect to its argument and is approximately

given by Eq. 4.4.

4. Next, we assumed that water flowing towards the holes does not change the ice to-

pography. Faster flowing water will exchange heat with the underlying ice at a higher

rate. This will then lead to the formation of channels near the drainage holes that focus

water and enhance melting. These channels have been observed in the field near large

holes (Landy et al., 2014; Polashenski et al., 2012). They have the potential to impact

the pond evolution by allowing a single hole to drain larger portions of the ice. To

assess the effect of channel formation, we added a crude channel formation scheme to

our model. To allow for channel formation, we increased the melt rate along the medial

line of ponds while they were draining. To include some elements of realism, we made
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this increase in melt rate inversely proportional to the distance from the hole, inversely

proportional to the local width of the pond in the transverse direction of the medial

line, and proportional to the volume of water flowing through the hole, assuming that

the water volume is equally partitioned between each hole that drains a particular

pond. Such a setup led to the formation of channels between ponds with the most

intense channeling occurring during initial drainage since the highest water volume is

drained at that time. These assumptions are not highly realistic but we believe they

are sufficient for this initial test. We ran several such simulations changing the inten-

sity of melt along the medial line. We found that for a high enough channeling rate, a

single hole may be enough to drain the entire surface. However, for any intermediate

value, we found that the curve g(η) remains approximately the same, and the effect of

channel formation can be summarized by simply adjusting the values of pc and c. In

particular, the highest channeling rate we tested that did not immediately drain the

whole surface reduced pc on a “diffusion” topography from pc = 0.5 to pc ≈ 0.27 and

c from c ≈ 4.1 to c ≈ 1.4. This suggests that Eqs. 4.12 and 4.14 may still be used in

the presence of channel formation, but the values of pc and c may depend on channel

formation physics. The fact that the effect of channel formation can be summarized

by simply adjusting the values of pc and c in our scheme is likely due to the fact that

most channeling occurs after drainage through the first several holes, so the topography

remains relatively unchanged as more holes open. This likely also occurs in the field,

but in a scenario where the surface is modified throughout pond drainage, the values

of pc and c may need to be made time-dependent as well. Exploring this hypothesis is

beyond the scope of this Chapter. We note that in Chapter 3 we estimated that the

percolation threshold for late-summer ponds photographed during the 1998 SHEBA

mission was around 0.3, while it was around 0.4 for ponds photographed during the

2005 HOTRAX mission. This is in contrast with the “snow dune” topography which
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accurately describes the pre-melt surface conditions on first-year ice and predicts a

percolation threshold of roughly between 0.4 and 0.5, with values between 0.45 and

0.5 being more likely based on the LiDAR measurements of the pre-melt snow topog-

raphy (see Chapter 5). Therefore, it is possible that channel formation by water flow

decreases the percolation threshold of the pre-melt snow topography by an amount on

the order of 0.1 to 0.2.

5. We also assumed that at the beginning of stage II, ice is completely covered by water.

This assumption is unrealistic as ice is typically incompletely covered at peak coverage.

However, this assumption does not change any of the conclusions we made about pond

evolution. As long as the pond coverage fraction at the beginning of the drainage

stage is above the percolation threshold, pond evolution will progress identically after

drainage below the percolation threshold following the opening of the first several

holes. The only effect of this assumption is that non-uniform melt rates before the

beginning of drainage may amplify the topography variations as already discussed in

item 2 above.

6. Next, we assumed that drainage happens entirely through large holes and not through

the bulk of the ice. This is in contrast with all previous melt pond models that modeled

melt ponds as a balance between meltwater production and drainage through the bulk

of the ice (see, e.g., Lüthje et al., 2006; Skyllingstad et al., 2015). Polashenski et al.

(2012) observed that during stage II, water is almost entirely drained through large

holes. Furthermore, Eicken et al. (2004) found that early in the melt season, ice

permeability is negligible. However, Polashenski et al. (2017) found that very large

brine channels may not close fully, and there may be some leftover bulk permeability

of the ice. A significant amount of drainage through the bulk of the ice during stage

II could in principle qualitatively alter the conclusions of our model. In particular,

since the percolation threshold does not control bulk drainage, pc would no longer be
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a significant coverage fraction and the universal curve g(η) would no longer control

pond evolution. However, since direct observations we made in Chapter 3 show that

ponds seem to be organized around the percolation threshold, bulk ice drainage likely

has only a small effect.

7. We assumed that ice is a rigid plate that cannot elastically flex as the ponds drain. This

implies that hydrostatic balance is a global condition that determines the height of the

freeboard, rather than being determined by local mass-balance. Equation 4.5 follows

from this assumption. This assumption is well-justified if the flexural wavelength of

the ice is significantly larger than the typical length-scale of variability of mass-loading,

which, on flat ice, is set by the snow dune length-scale. This is condition likely satisfied

on flat ice as ice flexure following pond drainage has not been observed in field. The

rigid-plate approximation is also employed in all current melt pond models.

8. When simulating stage III, we assumed that ponds grow entirely due to ice thinning and

we have neglected lateral melting. This assumption seems justified at least on first-year

ice, as observations show that freeboard sinking due to ice thinning is the dominant

mode of pond evolution during stage III (Landy et al., 2014; Polashenski et al., 2012),

although some models suggest lateral melting may be important (Scagliarini et al.,

2018). Lateral melt would increase pond coverage during stage III, and could be

included in our model by adding a lateral melt contribution as described in Chapter 2.

9. We assumed that ice represents a rigid barrier for water flowing horizontally. This is

generally true, although water may be able to flow between disconnected ponds if they

are only separated by a narrow strip of ice. This was demonstrated by Eicken et al.

(2002) who showed that tracers released in disconnected ponds can actually get mixed.

However, this likely has only a small effect on the bulk water flow. We note that while

ice is mainly impermeable to horizontal flow of water, snow is not, so our “snow dune”
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topography is actually meant to represent ice topography left after snow has melted

away.

4.S3 Synthetic topographies

To test our model, we used several types of synthetic topographies. Each of these topogra-

phies had different statistical characteristics such as the surface height distribution and the

percolation threshold which allowed us to test the generality of our results. Importantly,

each of these topographies was well-described by a single characteristic length-scale, which

is necessary in order for the universal function g to describe the drainage well.

Our default was the “snow dune” topography (Fig. 4.S1a). Ponds that form on this

surface are shown in Fig. 4.S1d. This topography is a generalization of the void model

described in Chapter 3, and ponds that form on this topography therefore reproduce the

pond geometry well. In Chapter 5, we also showed that this topography reproduces the

measured snow topography on undeformed ice highly accurately. We note that even though

this topography was meant to describe the properties of the pre-melt snow surface, here we

will consider it as a representation of impermeable ice. We generate this topography as a sum

of Nm mounds placed randomly on an initially flat surface. These mounds have a Gaussian

shape, h(x) = hme
− (x−x0)2

2r2 , and a horizontal scale, r, randomly chosen from an exponential

probability distribution, fr, with a typical scale r0 , fr(r) = 1
r0
e−r/r0 , equivalent to the

distribution of circle radii in the void model of Chapter 3. To prevent having unrealistically

narrow and high mounds, we prescribed the height of each mound, hm, to be proportional to

its horizontal scale. Optionally, the mounds may also be elongated along a certain axis and

the axes may be preferentially aligned to simulate anisotropy in the snow dunes. Including

anisotropy did not change any of the conclusions of our model. The “snow dune” surface

has a height distribution that is well-fit with a gamma distribution (see Chapter 5 for more

details). Parameters of the surface height distribution depend on the density of mounds
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placed, ρ ≡ Nm
r2
0
L2 , where Nm is the number of mounds placed within the domain of size L.

When few mounds are placed, such that ρ� 1, the height distribution is highly right-skewed,

while when many mounds are placed, such that ρ� 1, the height distribution converges to a

Gaussian. For this reason the percolation threshold also depends on the density of mounds.

Specifically, when ρ is large, pc = 0.5 due to the symmetric height distribution. When the

height distribution significantly deviates from a Gaussian, pc < 0.5. In Chapter 5, we find

that the “snow dune” topography with approximately 0.2 < ρ < 0.5 reproduces the LiDAR

measurements of snow on first-year ice. Using ρ in this range, we find that the percolation

threshold of a realistic “snow dune” topography lies approximately between 0.4 and 0.5.

In addition to the “snow dune” topography, we also used two other types of topographies.

The first type we called the “diffusion” topography (Fig. 4.S1b). Ponds that form on

this surface are shown in Fig. 4.S1e. This topography is generated by first independently

assigning a height to each grid point at random, and then letting this configuration diffuse for

some time. Thus, to generate this topography, we numerically solve the diffusion equation.

Diffusion smooths out variability in height up to a certain length scale that depends on the

time allowed for diffusion. This length scale then determines the length scale l0. To obtain

the desired l0, we set the diffusion coefficient to 1 and tune the time for diffusion. This

surface has a Gaussian height distribution. Due to this fact, the percolation threshold is

pc = 0.5. We note that a similar type of topography has been previously used to model melt

pond geometry (Bowen et al., 2018).

We called the other type of topography we used to test our model the “Rayleigh” to-

pography (Fig. 4.S1c). Ponds that form on this surface are shown in Fig. 4.S1f. This

topography is made by generating two “diffusion” topographies, h1(x) and h2(x), with the

same length-scale but initialized with a different random configuration, and then taking the

square root of the sum of their squares, h(x) =
√
h2

1(x) + h2
2(x). This surface has a non-

symmetric Rayleigh height distribution (hence the name). The percolation threshold on this
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Figure 4.S1: a-c: Examples of different types of topographies we used. Red colors indicate
highs of the topography, while blue colors indicate lows of the topography. a) A “snow dune”
topography. b) A “diffusion” topography. c) A “Rayleigh” topography. d-f: Examples of
ponds on different topographies. d) Ponds on a “snow dune” topography. e) Ponds on a
“diffusion” topography. f) Ponds on a “Rayleigh” topography. g) A binarized image of a
real melt pond photograph taken on August 14th during the HOTRAX mission.

surface is pc ≈ 0.4. A percolation threshold that deviates from 0.5 is the main reason we

tested this surface. “Diffusion” and “Rayleigh” surfaces generated as above have no obvious

relation to any physical feature in sea ice, but are useful in order to test the universality of

drainage.

When generating each of the topographies above, for convenience, we assumed periodic

boundary conditions. To estimate pc for each synthetic topography, we cut the topography

with a horizontal plane and shifted it up or down, tracking the connected clusters of the

surface that lay below this plane. We found a position of the plane at which a cluster that

spans the domain first appears, and estimated pc as the fraction of the surface below the

plane at this level. A constant c in the parameter η = cNl20/L
2 is a property of a topography

type in a similar way as pc. In section 4.S6, we show that this constant can be related to
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other properties of the surface such as the percolation threshold and the amplitude of the

cluster correlation length near the percolation threshold. However, here we determined c

empirically by finding a value for which curves Π = g(η) on synthetic topographies best fit

g(η) estimated analytically using Eq. 4.4 according to the least-squares metric. Similar to

pc, a constant c for “snow dune” topographies could in principle depend on the density of

mounds, ρ. However, we found that c ≈ 3 for all tested densities of mounds. We found that

for the “diffusion” surface c ≈ 4.1 and c ≈ 3 for the “Rayleigh” surface.

4.S4 Comparing the full 2d model to the estimate

In Fig. 4.3, we compared the full 2d hole model to Eqs. 4.12 to 4.14. To make this

comparison, we needed to specify the hole opening distribution, F , the universal function g,

and the parameters Th, Tm, t0, l0, L, N0, c and pc in Eqs. 4.12 to 4.14. Here, we describe in

detail how we related the parameters inputed in the full 2d model to parameters that enter

Eqs. 4.12 to 4.14. Note that the parameters of the 2d hole model are not related to Eqs.

4.12 to 4.14 via Eqs. 4.5 to 4.11 that describe how measurable physical parameters enter the

pond evolution equations since not all of these physical parameters are prescribed in the 2d

model (see Table 4.S1 for the list of parameters directly prescribed in the 2d model).

1. We derived the hole opening distribution, F , as the cumulative distribution of the

distribution of critical temperatures, fθ, defined in the full 2d model. This relationship

is correct because we used a constant rate of bulk ice temperature increase in the 2d

model. Since, as a default, we used a normal fθ, the default F was a cumulative normal

distribution.

2. The universal function, g, is simply the solution to Eq. 4.4.

3. The hole opening timescale, Th, was directly prescribed in the full 2d model as the time

for the bulk ice temperature to increase by one standard deviation of the distribution
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fθ. Therefore, we used this timescale in Eqs. 4.12 to 4.14 as well.

4. The memorization timescale, Tm, was not prescribed directly in the 2d model, so we

had to derive it in order to use it in Eqs. 4.12 to 4.14. To find Tm in simulations

with dH/dt = 0, we used ice thickness, H, and the preferential ponded ice melt rate,

dhdiff/dt, prescribed in the full 2d model to simultaneously solve for pmin and Tm using

Eqs. 4.7 and 4.13.

5. The center of the hole distribution, t0, fluctuates slightly for each run of the 2d model.

For this reason in Eqs. 4.12 to 4.14, we did not use the approximate relation for t0

defined in Eq. 4.9. Instead, we explicitly recorded the timing of the center of the hole

distribution relative to the timing of the first hole for each run of the 2d model and

used that number in the corresponding estimate. Using Eq. 4.9 to find t0 also gives

relatively good results, but there are noticeable deviations between the estimate and

the actual model solution.

6. For the typical pond size, l0, we used the length at which the autocorrelation function

for a configuration of ponds in the 2d model drops by a factor of e.

7. Domain size, L, is simply the number of grid points on the side of the domain in the

full 2d model.

8. Potential number of holes, N0, in simulations where each grid point represents a po-

tential hole was equal to the total number of grid points, N0 = L2. In simulations

where there can be more than one hole per grid point, N0 is correspondingly larger.

9. Parameters c and pc are properties of the topography type, so in the estimates, we used

the parameters of the corresponding topographies we used in the full 2d simulations.

As we described in section 4.S3, for each topography type, we determined c by least-

squares fitting the drainage curves to Eq. 4.4, and we estimated pc as the fraction of
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the surface below a level plane that cuts through the topography such that a connected

level set that spans the domain first appears.

Relating the parameters as described above, we were able to uniquely compare estimates

using Eqs. 4.12 and 4.13 to the full 2d hole model for stage II in the absence of ice thinning.

This comparison was shown in Fig. 4.3a. In Fig. 4.3b, we included ice thinning in the full

2d model to simulate stage III. There, we prescribed a constant ice thinning rate, dH/dt,

and the initial ice thickness, H0, such that ice thickness evolves as

H(t) = H0 −
dH

dt
t . (4.S3)

When making the estimate with ice thinning included, most of the parameters that enter

Eqs. 4.12 to 4.14 can be related to the 2d model parameters in the same way as described

above, with the most notable difference being the memorization timescale, Tm. Equation 4.7

defines Tm, as the time for ponded ice to melt below sea level in terms of ice thickness and

pond coverage. Since Tm is the time it takes for ponded ice to melt through the thickness of

post-drainage freeboard, the thickness and the pond coverage that enter Eq. 4.7 represent

the post-drainage parameters. Therefore, to get Tm, we need to solve Eqs. 4.7 and 4.13, and

Eq. 4.S3 simultaneously for post-drainage coverage, pmin, memorization timescale Tm, and

post-drainage thickness, H(Tm).

In addition to predicting the time at which pond bottoms fall below sea level, Tm es-

timated as above also coincides fairly accurately with the time at which the water level

throughout the domain reaches sea level. This is because, if pond bottoms lay below sea

level, ponds do not become disconnected as the drainage progresses, so a single hole can

drain an entire pond, making the drainage highly efficient after Tm. Note that this is only

true because, in our model, ice at the beginning of stage II is flat compared to the freeboard

thickness, so that pond bottoms are also flat and all of ponded ice falls below sea level at
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roughly the same time. If this were not the case, it could happen that drainage through a

hole splits a pond into disconnected parts thereby leaving a part undrained, even if the pond

bottom was initially below sea level. The fact that drainage through holes becomes efficient

once pond bottoms fall below sea level means that Eq. 4.12 is approximately valid up to

Tm, and that Eq. 4.14 is approximately valid after Tm. Tm estimated in this way is also a

crossover time when p(t) estimated using Eq. 4.12 becomes less than p(t) estimated using

Eq. 4.14. Like Eq. 4.13, Eq. 4.14 cannot be solved directly since there the pond coverage

p(t) depends on Tm(t), which in turn depends on p(t) through Eq. 4.15. Therefore, to solve

for pond coverage evolution during stage III, we have to simultaneously solve for p(t) and

Tm(t) using Eqs. 4.14 and 4.15 where H(t) is given by Eq. 4.S3.

4.S5 Satellite and field data analysis

In section 4.7 we used field measurements and satellite data to constrain our model and to

test its predictions. In this section we describe these measurements and discuss how we used

them to estimate parameters that enter our model.

Estimating parameters based on field measurements

Polashenski et al. (2012) collected extensive field data aimed at understanding the formation

and evolution of melt ponds. The experiment was performed on land-fast first-year ice near

Barrow, Alaska and was repeated during the summers of 2008, 2009, and 2010, with the

most extensive studies done during 2009. Measurements of pond coverage shown in Fig.

4.5a were made along a 200 m-long transect every few days during 2009. Additionally,

they made measurements including ice thickness, temperature and salinity, ice and pond

albedo, meltwater production and drainage, and ice and snow topography. Based on their

measurements and data collected during other studies, we were able to estimate most of the

parameters that enter the pond evolution equation. These values are reported as default
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values in Table 4.2 along with a plausible range when it was possible to estimate that.

We estimated the linear size of the drainage basin, L, based on the remark of Polashenski

et al. (2012) that the drainage basin where the measurements were made is 1.3 km×1.7 km

in size. Therefore, we used L ≈ 1.5 km. We estimated Tm using Eq. 4.7 coupled with their

measurements of ice thickness (H ≈ 1.2 m), pond and ice albedo (αp ≈ 0.25, αi ≈ 0.6), and

measurements of solar flux from the nearby weather station (Fsol ≈ 254 W m−2 average flux

during field experiment). We estimated the total number of potential holes, N0, based on

measurements of Golden (2001) who found that the density of brine channels was between

60 and 120 per m2 in their measurements. We thus used N0 ≈ L2100 m−2. We note

that depending on the conditions during ice growth, the density of brine channels may

vary substantially (Wakatsuchi and Saito, 1985). Nevertheless, as we show in section 4.S8,

pond coverage depends only weakly on brine channel density, so even an order of magnitude

difference in brine channel density leads to only several percent change in pond coverage.

Polashenski et al. (2012) did not estimate the pond size l0. However, based on the results

of Chapter 5, the pond size seems to be constant between different years with l0 ≈ 5.5 m. In

Chapter 3, we estimated the percolation threshold for late-summer ponds for two different

years and found it to be around 0.3 and 0.4 for these years. Our simulations on the “snow

dune” topography predict 0.4 < pc < 0.5. Based on these estimates and simulations we

determine that the percolation threshold likely lays somewhere between 0.3 and 0.5. The

constant c had only a small effect in our simulations so we chose c = 3, consistent with the

snow dune topography. We estimated the center of the hole distribution, t0, based on Eq.

4.9 and we found t0 ≈ 13.4 days.

Finally, we estimated Th using Eqs. 4.10 and 4.11. This estimate is approximate for

two reasons - 1) we are uncertain about the mechanism that drives hole opening and 2)

even if the mechanism is correct, some of the parameters that enter Eqs. 4.10 and 4.11 are

difficult to estimate. In addition to measurements of thickness, albedo and solar flux, we

141



used a measurement by Polashenski et al. (2012) of ice salinity, S = 3 ppt. The extinction

coefficient, κ, is relatively well-documented and we used κ = 1.5 m−1 (Untersteiner, 1961).

Ice conductivity, k, can vary because ice and brine have different conductivities. Using

the same conductivity parameterization as in Polashenski et al. (2012), and assuming a

brine volume fraction between 0 and 0.5, we found that conductivity can vary between 1.3

and 2 W m−1◦C−1. We used k = 1.8 W m−1◦C−1 which corresponds to a brine volume

fraction of 0.1. Estimating parameters θ0, ∆θ, c∗, and z∗ is difficult. To estimate the

reference temperature, θ0, and the temperature range, ∆θ, we used observations made by

Polashenski et al. (2017). They noted that holes tend to begin to open when ice interior

temperature reaches roughly −1.6◦C and open completely when ice temperature reaches

around −0.9◦C. Therefore, we chose the temperature range to be ∆θ = 0.7◦C. Based

on these observations and our solutions to the full heat equation, we chose the reference

temperature to be θ0 = −1.2◦C, and we used the shape parameter, c∗ = 2 (see section

4.S7). Polashenski et al. (2017) found that freshwater plugs do not form at a single depth

within the ice, but rather throughout a range of depths. Nevertheless, we used a single z∗

for simplicity. Polashenski et al. (2017) took photographs that show that freshwater plugs

tend not to form in the upper 0.6 m of the ice, and we estimated roughly z∗ = 0.6 m for this

reason. Future models will need to include the fact that tracking a single layer within the

ice is insufficient to capture the process of hole formation.

Comparing the estimated pond coverage to Polashenski et al. (2012)

With the physical parameters estimated above, we were able to find all of the parameters

that enter Eqs. 4.12 to 4.14 using Eqs. 4.7 and 4.9-4.11. We used these solutions to compare

our estimate to pond coverage evolution observed by Polashenski et al. (2012) in Fig 4.5a.

Parameters θ0, ∆θ, c∗, and z∗ clearly have larger uncertainty than other parameters that can

be directly measured. Therefore, to find the wider error bars in Fig 4.5a (light shaded region),
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we assumed a 50% error in the parameters θ0, ∆θ, c∗, and z∗, and used a 10% measurement

error for all other parameters. For narrower error bars in Fig 4.5a (dark shaded region)

we used the 10% measurement error for all parameters. These measurement errors are not

representative of real uncertainties, and we chose them mainly for demonstrative purposes.

In fact, these errors are likely still underestimated. For this reason, our estimates of pond

coverage are uncertain and all we can say is that they are at least consistent with our model.

MODIS satellite data

A dataset of pond coverage fraction estimates based on satellite measurements is available

for download at https://cera-www.dkrz.de/WDCC/ui/cerasearch/. In this dataset, pond

fraction is estimated using an artificial neural network that takes as input the reflectances

from three channels of the visible spectrum of the MODIS instrument aboard the Earth

Observation Satellite TERRA (Rösel et al., 2015b). The observations are available every 8

days, have a spatial resolution of 12.5km, and cover the entire Arctic. To make Fig. 4.5b, we

collected estimated pond fractions for all grid-cells at all times during a particular year for

which there were measurements available. We only considered measurements that showed

a non-zero pond coverage. We then summarized these data as probability distributions for

several different years. Due to the relatively coarse resolution of the measurements, the

estimated maximum pond coverage is likely somewhat underestimated.

4.S6 Deriving the universal drainage curve

Here, we will motivate a form of the universal function g(η), highlighting the origin of its

universality. The goal is to estimate the change in pond coverage fraction after a hole opens

at a random location on the ice surface. We are assuming that the first several holes have

already driven the ponds to the percolation threshold.

We introduce the cluster correlation function, G(l), as the probability that, given a
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randomly chosen point on a pond, another point of distance l away will belong to the same

pond. Equivalently, G(l) can be viewed as the average fraction of a circle of radius l that

belongs to the same pond as a point chosen randomly on any ponded location. Therefore,

a quantity G(l)2πldl is an average area of a ring of radius l and thickness dl connected to

a hole opened randomly at some ponded location, and an integral of G over the entire 2d

domain gives the average area of a pond connected to such a hole. We need to multiply this

integral by the pond coverage fraction, p, to account for the fact that in our model holes

can open anywhere on a surface, not just within ponds. Therefore the mean fraction of the

surface connected to a randomly placed hole is

∆p = p
2π
∫∞

0 G(l)ldl

L2
. (4.S4)

Equation 4.S4 would represent the average change in coverage fraction after opening a

hole, if that hole drained the entire pond it was connected to. However, a hole can only

drain a fraction of an entire pond. Let us denote that fraction as fdrain. The fraction of

the pond drained depends on the relative size of the pond to the autocorrelation length, l0.

Namely, when a pond has a size comparable to l0, a hole can drain a significant fraction of

that pond. On the other hand, when a pond is very large compared to l0, a small amount of

drainage would quickly lead to the formation of disconnected regions, and a hole would be

unable to drain a significant fraction of the pond. We can describe a typical linear size of the

largest ponds using a “cluster correlation length,” ξ, defined roughly as the linear extent of

the largest connected pond or, equivalently, as the length beyond which G(l) rapidly falls to

0. Therefore, a fraction fdrain can be viewed as a function of l0/ξ such that fdrain(l0/ξ)→ 0

when l0/ξ → 0 and fdrain(l0/ξ)→ 1 when l0/ξ →∞. The correlation length, ξ, depends on

the deviation of pond coverage from the percolation threshold since connected ponds become

ever larger as the pond coverage approaches pc. Thus, close to the percolation threshold,

ponds are large and l0/ξ � 1, so, based on a general Taylor expansion and the above limiting
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behavior, we have

fdrain

(
l0
ξ

)
≈ a

l0
ξ

+ ... for

(
1− p

pc

)
� 1 , (4.S5)

where a is some constant. We note that this expansion hides an implicit assumption that

fdrain(l0/ξ) is analytic in the limit l0/ξ → 0 and that a is non-zero. In principle, a form

fdrain(l0/ξ) ∝ (l0/ξ)
α as l0/ξ → 0 for any α > 0 would also be possible. So, we can justify

the above expansion only a posteriori, by showing that our theoretical prediction matches

the full 2d simulations well. Based on the entire discussion above we can now estimate the

pond fraction drained after opening a hole as

dp

dN
= −p

2π
∫∞

0 G(l)ldl

L2
fdrain

(
l0
ξ

)
. (4.S6)

Each term on the right-hand side is a function of pond coverage, so this equation defines a

curve of pond coverage as a function of the number of open holes.

To close Eq. 4.S6, we need to estimate the integral
∫∞

0 G(l)ldl and express ξ in terms of

p. General percolation theory shows that in the limit of infinite domain size, L→∞, close

to the percolation threshold, (1− p/pc)� 1, and at distances larger than the characteristic

scale, l� l0, G(l) and ξ behave as

G(l) = p

(
l

l0

)−5/24

e−l/ξ , (4.S7)

ξ = Al0

(
1− p

pc

)−4/3

, (4.S8)

for any model within the percolation universality class (Isichenko, 1992). Here, 5/24 and 4/3

are universal exponents that come from percolation theory, and A is a non-universal order

one constant. At distances smaller than l0, G(l) depends on the shape of individual ponds,

and, thus, on the details of the topography, but is nevertheless constrained to go to 1 as
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Figure 4.S2: a) Comparing g(η) estimated by running a single 2d simulation on a synthetic
“snow dune” topography with no melt (black line) with a solution of Eq. 4.S6 using the full
expressions Eqs. 4.S11 to 4.S13 (solid red line) and a solution to universal Eq. 4.S10 that
assumes asymptotic forms of G(l) and ξ, Eqs. 4.S7 and 4.S8 (dashed red line).

l → 0. The facts that 1) both the full G(l) and its asymptotic form, Eq. 4.S7, have finite

integrals as l→ 0, and 2) that G(l) is significantly above 0 for l < ξ, mean that, if ξ is large

compared to l0, the contribution of short lengths, l � l0, to the integral
∫∞

0 G(l)ldl can be

ignored for both the full G(l) and its asymptotic form, so we can use the asymptotic form,

Eq. 4.S7, to perform the integration. If the domain size is not infinite, the size of the largest

connected ponds is limited by L, and, therefore, ξ will not diverge as predicted by Eq. 4.S8,

but will instead be limited by the domain size. Based on the above discussion, we can use

G(l) and ξ given by Eqs. 4.S7 and 4.S8 to close the pond drainage equation, Eq. 4.S6, when

l0 � ξ � L. Moreover, to ensure that we can use Eqs. 4.S7 and 4.S8 with Eq. 4.S6 we

additionally have to assume that the hole opening process does not disrupt the geometry

of the ponds, so that G and ξ have the same form as more and more holes open. Again,
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the assumption of pond geometry remaining unchanged can only be justified a posteriori, by

direct comparison with full 2d simulations.

We now show that pond drainage is universal in the limit l0 � ξ � L, i.e., when the

pond coverage is neither too close nor too far from the percolation threshold. In that case,

we can use the asymptotic forms of ξ and G(l) and the asymptotic expansion Eq. 4.S5 for

fdrain. We can explicitly perform the integral of G over l to get

dp

dN
= −C

l20
L2
p2
(

1− p

pc

)−19/18

, (4.S9)

where C = 2πΓ(43
24)aA19/24 is a numerical constant that depends on A, a, and constants of

integration. Defining Π ≡ p
pc

and η ≡ c
l20
L2N , where c ≡ pcC, we recover Eq. 4.4

dΠ

dη
= −Π2(1− Π)−19/18 . (4.S10)

The appropriate boundary condition for this equation is that ponds are at the percolation

threshold when only a finite number of holes are open, Π(η = 0) = 1, where we used the

fact that η = 0 if the domain is infinite and N is finite. We can see that Eq. 4.S10 defines

a universal function Π = g(η), since there are no non-universal factors that enter it. From

the above derivation, we see that the universality of g(η) comes from the universality of the

percolation theory in the limit l0 � ξ � L. This derivation also clarifies that the factor

c that enters η depends on the type of topography because it is a combination of factors

a, A, and pc which all potentially depend on the details of the topography. A solution to

Eq. 4.S10 is shown with a red dashed line in Fig. 4.S2. It agrees well with the simulations

apart from at low pond coverage and at pond coverage close to the percolation threshold.

Discrepancy between this solution and the simulations near pc is due to the fact that in this

region ξ ∼ L, and the universality breaks down. We find that this region of disagreement

shrinks as we increase our domain size L.
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We will now show that we can closely match the simulated g(η) also in the regime p→ pc

if we use G(l) that is valid for all l (including l < l0) and ξ that takes into account the effect

of domain size. The matching in this case, however, will not be universal.

As we have discussed above, Eqs. 4.S7 and 4.S8 are asymptotic limits only valid at large

separations, l (so that l � l0), and when the pond coverage is neither too close nor too far

from pc (so that l0 � ξ � L). In the Supplementary Information of Chapter 3, we have

shown that the G(l) and ξ that fit the measured pond statistics at all lengths, l, and finite

domain size, L, are

G(l) =
(
e−l/l0(1− p) + p

)(
1 +

l

l0

)−5/24

e−l/ξ , (4.S11)

ξ = ξ∞
(

1− e−BL/ξ∞
)

, (4.S12)

ξ∞ = Al0

(
1− p

pc

)−4/3

, (4.S13)

where ξ∞ is the cluster correlation length if the domain size were infinite and has the same

form as Eq. 4.S8, and B is a non-universal order one constant. These equations respect

the limits for l � l0 and L → ∞, and also ensure that G(l → 0) → 1 and that ξ ∝ L

when ξ∞ → ∞. However, the particular form of these functions is arbitrary, and we chose

them due to their simplicity and the fact that they match the measured G(l) and ξ highly

accurately outside the scaling limit (see SI of Chapter 3). Even though these equations

describe G(l) and ξ well for all l and L, they only hold close to the percolation threshold,

i.e., when ξ � l0, so we still expect deviations from them when p� pc (i.e., when ξ ∼ l0).

Finally, we show the solution to Eq. 4.S6 using the full Eqs. 4.S11 to 4.S13. To be able

to evaluate dp/dN in this case, we also need to assume a concrete fdrain consistent with

the asymptotic behavior given in Eq. 4.S5 and the fact that we require fdrain(l0/ξ) → 1

when l0/ξ → ∞. To this end, we choose fdrain = 1 − e−l0/ξ. This arbitrary choice works

well because of universality in the scaling limit that we discussed above. With this form
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of fdrain, we can use Eqs. 4.S11 to 4.S13 to solve Eq. 4.S6 and get a function p = p(N).

This solution in coordinates p/pc and Nl20/L
2 is shown as a solid red line in Fig. 4.S2. We

can see that the agreement with the curve arising from a 2d simulation is excellent apart

from a small discrepancy at small pond coverage. This discrepancy is due to the breakdown

of Eqs. 4.S11 to 4.S13 far from pc, due to our ad-hoc choice of fdrain, and due to the fact

that opening many holes likely does not leave pond geometry completely unchanged. How-

ever, even though we were able to obtain a good match with simulations, this solution is

not universal under the rescaling p → Π and N → η. Namely, changing the non-universal

constants A and B or fdrain changes the form of the solution in Π and η coordinates, so, to

get a good match, we had to tune A and B specifically. This again highlights the fact that

the universality occurs in the limit l0 � ξ � L, i.e., when ponds are much larger then the

characteristic scale of the topography (set e.g. by the size of snow dunes), and still smaller

than the size of the domain (set e.g. by the ice floe size).

4.S7 The heat equation

In Eqs. 4.10 and 4.11, we noted that the order of magnitude of the hole opening timescale, Th,

can be estimated based on physical properties of ice if we assume that internal temperature

at some depth within the ice is the relevant parameter that determines when holes start to

open. In this section, following Bitz and Lipscomb (1999), we will briefly explain how we

arrived at this estimate.

Energy supplied to a unit mass of salty ice partly goes into warming the ice and partly

into melting the ice around brine pockets to dilute the brine and bring it into equilibrium

with the surrounding ice. Ono (1967) showed that the heat capacity of a unit mass of ice of
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salinity S and temperature θ in degrees Celsius can be expressed as

c(θ, S) = c0 +
γS

θ2
, (4.S14)

where c0 = 2.11 kJ kg−1◦C−1 is the heat capacity of fresh ice and γ = 18 kJ kg−1ppt−1◦C

is a constant. Equation 4.S14 neglects the typically small contribution from the fact that

water in brine pockets has a different heat capacity than ice. This equation shows that the

heat capacity increases with temperature and diverges when the temperature approaches

the melting point of fresh ice. During the summer, ice is in the process of melting, so the

ice interior is only several degrees below zero. With typical salinities of 3 ppt or 4 ppt for

first year ice, the salinity term in the heat capacity during summer is roughly an order of

magnitude larger than c0, so c(θ, S) ≈ γS
θ2 .

The ice interior warms because of heat diffusion and because sunlight penetrates beneath

the ice surface. This can be expressed with a partial differential equation that determines

the warming rate at depth z within the ice

ρic(θ, S)
∂θ

∂t
=

∂

∂z
k
∂θ

∂z
+ κF0e

−κz , (4.S15)

where ρi is the density of ice, k is the thermal conductivity of the ice, κ is the extinction

coefficient from Beer’s law, and F0 is the radiative flux that penetrates the upper surface

of the ice. The first term on the right hand side represents the contribution from heat

diffusion while the second term is the contribution from direct solar heating at a depth

z. Thermal conductivity, k, may in principle depend on depth because brine and ice have

different thermal conductivities. This dependence is, however, typically weak. Equation

4.S15 should be supplied with a boundary condition that ice is at its salinity-dependent

melting temperature at the top and bottom surface. Furthermore, a temperature at the

initial time should also be specified. We solve this equation in Fig. 4.S3 assuming a uniform
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salinity profile throughout the ice column and ice bottom temperature fixed at -1.7◦C.

As we have suggested in section 4.5, our strategy is to estimate Th by estimating the

warming rate dθ
dt at some depth, z∗, within the ice where ice plugs tend to form. In general,

the warming rate in Eq. 4.S15 cannot be simply characterized as it depends on the full verti-

cal profiles of temperature and salinity and their history. Nevertheless, we can approximate

it as

dθ

dt
≈

θ2
0

ρiγS

(
c∗k

θ0

H2
+ (1− αp)Fsolκe

−κz∗
)

. (4.S16)

Here, we have assumed that the fresh ice heat capacity, c0, is negligible, so that c(θ, S) ≈
γS
θ2 . We have also assumed that thermal conductivity, k, does not depend on brine volume

fraction, and we have estimated the amount of radiation that penetrates the upper surface

as F0 ≈ (1 − αp)Fsol, where αp is the pond albedo and Fsol is the solar radiative flux. We

only consider pond albedo because we are only interested in holes that open beneath ponds.

A constant c∗ accounts for the shape of the temperature profile, while θ0 and z∗ are the

reference temperature and depth at which we are estimating the warming rate.

To be able to estimate the hole opening timescale, Th, using Eq. 4.S16, we need to

relate the parameters of that equation to physically meaningful quantities. We can define

Th as the time it takes for ice at a particular depth to warm from a temperature, θmin, at

which only a small fraction of the brine channels can become holes, to a temperature, θmax,

at which a significant fraction of the brine channels become holes (see Fig. 4.S3b). We

denote the difference θmax − θmin as ∆θ. We thus consider Th, θmin, θmax, and ∆θ to be

measurable, physically meaningful quantities. We can approximate θ0 in Eq. 4.S16 to be

the middle of the range between θmax and θmin, θ0 ≈ θmin+θmax
2 . We consider z∗ to have

physical significance as the depth at which ice plugs form, and can thus be estimated using

measurements. Finally, the parameter c∗ takes into account the shape of the temperature

profile within the ice column. As such, it depends on a multitude of factors such as the

boundary conditions, the salinity profile, or the depth at which we are estimating dθ
dt . To
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Figure 4.S3: a) Black lines represent represent the vertical temperature profiles within the
ice at different times obtained by solving Eq. 4.S15. Curves to the left correspond to earlier
times. Colored horizontal lines represent different choices of z∗ that are shown in panels b
and c. b) Time evolution of ice temperature at a fixed depth. Different colors stand for
different depths, z∗, shown in panel a. Horizontal dashed lines represent the temperature
at which the holes tend to start opening, θmin, and the temperature at which a significant
fraction of brine channels are open, θmax. The temperature range, ∆θ, is also marked.
Vertical dashed lines represent times at which the temperature at depth z∗ = 0.6 m crosses
θmin and θmax, which defines the hole opening timescale, Th. A reference temperature, θ0,
estimated as the middle of the range between θmin and θmax is also marked with a horizontal
dashed line. c) Dependence of the warming rate on current ice temperature. Different colors
stand for different depths, z∗, marked in panel a. Black dashed curves show estimates using
Eq. 4.S16 with c∗ = 2 and treating θ0 as a variable. Horizontal solid colored lines show
dθ/dt estimated as ∆θ/Th, where Th is found numerically as in panel b. Horizontal colored
dotted lines show dθ/dt estimated using Eq. 4.S16 with c∗ = 2 and a reference temperature
θ0 = 0.5(θmax + θmin).
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keep matters simple, we choose c∗ = 2, corresponding to a quadratic temperature profile

with the top and bottom ice temperatures fixed at 0◦C.

To determine how reliable the approximations we made above are, we solved the full

heat equation, Eq. 4.S15, varying the equation parameters. In Fig. 4.S3c, we show dθ
dt (θ)

found by solving Eq. 4.S15 numerically, and compare it to dθ
dt (θ0) estimated using Eq. 4.S16

treating θ0 as a variable (compare colored and dashed lines in Fig. 4.S3c). We can see that

in all cases, the estimate and the numerical simulations behave qualitatively in the same way

and are of similar magnitude (within around 20% of each other). In Fig. 4.S3c, we also show

∆θ
Th

, where we estimate Th by solving Eq. 4.S15 numerically and compare it to dθ
dt estimated

using Eq. 4.S16 with θ0 = θmin+θmax
2 . Again, we find that our approximations are of the

same order of magnitude as the simulations (in this case within 10% of each other), which

implies that Th can be reasonably estimated using Eq. 4.S16.

For each particular numerical solution of Eq. 4.S15, we can improve the match between

the simulations and estimates by tuning c∗ or changing the definition of θ0. Depending on

the depth, boundary conditions, shape of the salinity profile, and the strength of direct solar

heating, we find that c∗ can be anything between roughly 1 and 10, while θ0 can be modified

to θ0 = (1 − r)θmax + rθmin, with the numerical factor r anywhere between 0.4 and 0.5.

Nevertheless, using c∗ = 2 and θ0 = θmin+θmax
2 , as we did above, and varying the parameters

of the numerical simulation, we find that dθ
dt (θ0) estimated using Eq. 4.S16 and treating θ0

as variable is always of the same order of magnitude as dθ
dt (θ) estimated using Eq. 4.S15 for

all θ0 and θ, while dθ
dt estimated at θ0 = θmin+θmax

2 using Eq. 4.S16 is always of the same

order of magnitude as ∆θ
Th

, with Th estimated by solving Eq. 4.S15 numerically. This means

that Eq. 4.S16 with c∗ = 2 and r = 0.5 is a reasonable first-order approximation to the full

heat equation under any configuration, with errors in estimated dθ
dt likely being on the order

of 10-20% of the full solution based on the results in Fig. 4.S3c.
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Finally, using Eq. 4.S16, we can estimate the hole opening timescale, Th as

Th =
∆θ

dθ/dt
, (4.S17)

with dθ
dt estimated using Eq. 4.S16. In addition to the fact that this estimate may disagree

with the full solution to the heat equation as we have discussed above, there are several

additional reasons why it is uncertain - 1) it is difficult to precisely define and determine

parameters θmax, θmin, and z∗ from measurements, 2) it is unclear whether these param-

eters themselves depend on physical properties such as ice salinity or thickness, and, most

importantly, 3) it is unclear whether the ice interior temperature is in fact a good indicator

of when holes start to open. In particular, the assumption that ice interior temperature is

a good indicator of hole opening leads to some counter-intuitive conclusions that we discuss

in section 4.S8 and section 4.8. Namely, it predicts that holes open more slowly when ice is

more saline or when it is closer to its melting point, since in these cases dθ
dt is lower due to a

higher higher heat capacity stemming from a higher brine volume fraction. This is counter-

intuitive because it implies that it is more difficult to create holes when ice is more porous

and when more heat is expended into melting the ice pores. For these reasons, improving our

understanding of hole formation physics is crucial for understanding melt pond evolution.

4.S8 Dependence of pond coverage on physical parameters

In this section, we will discuss how pond coverage depends on the measurable properties

of the ice in our model. In particular, we will focus on the pond coverage minimum, pmin,

found using Eqs. 4.7, 4.9-4.11, and 4.13. In the entire discussion below, we will use the

cumulative normal hole opening distribution, F , and the set of default parameters defined

in Table 4.2.

As a summary of our previous results, here we recapitulate how the minimum pond

154



Figure 4.S4: Post-drainage pond coverage, pmin, as a function of physical parameters using
Eqs. 4.7, 4.9-4.11, and 4.13. In each panel, we are varying one parameter and assuming
all other parameters are the defaults specified in Table 4.2. We are assuming a cumulative
normal hole opening distribution, F . Different colors in all panels except e and l stand for
different values of the depth at which ice plugs tend to form, z∗. a) Pond coverage as a
function of the basin length-scale, L. Here, we are keeping the density of brine channels,
n0 = N0/L

2, constant. b) Pond coverage as a function of the typical pond length-scale,
l0. c) Pond coverage as a function of the percolation threshold, pc. d) Pond coverage as a
function of the brine channel density, n0 = N0/L

2. e) Pond coverage as a function of ice
thickness, H. The red curve assumes that ice plugs form at a constant depth z∗ = 0.6 m.
The black dashed curve assumes that ice plugs always form in the middle of the ice. f) Pond
coverage as a function of ice salinity, S. g) Pond coverage as a function of solar flux, Fsol.
h) Pond coverage as a function of pond albedo, αp. i) Pond coverage as a function of bare
ice albedo, αi. j) Pond coverage as a function of the reference temperature, θ0. k) Pond
coverage as a function of the temperature range, ∆θ. l) Pond coverage as a function of the
depth where ice plugs form, z∗.
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coverage, pmin, relates to physical parameters. After some manipulation of Eqs. 4.5 to 4.13,

we find

pmin = pcg
(
η0F (τm − τ0)

)
, (4.S18)

η0 ≡ cn0l
2
0 , τm ≡

Tm

Th
, τ0 ≡ −F−1( 1

n0L2

)
(4.S19)

τm ≈
lm

(αi − αp)Fsol

ρw − ρi
ρw

H

1− pmin︸ ︷︷ ︸
Tm

θ2
0

(
c∗k θ0

H2 + (1− αp)Fsolκe
−κz∗

)
∆θρiγS︸ ︷︷ ︸

1/Th

(4.S20)

where αi is the ice albedo, n0 ≡
N2

0
L2 is the density of brine channels, and we have introduced

the non-dimensional parameters η0, the number of brine channels per characteristic area

of the surface, τm, the time for ponds to melt through the freeboard relative to the hole

opening timescale, Th, and τ0, the time between the first hole and the center of the hole

distribution, F , relative to Th. Equation 4.S20, relates the non-dimensional timescale τm to

measurable parameters using Eqs. 4.5, 4.10 and 4.11. Note that τm depends on pmin through

the “memorization” timescale, Tm, so Eqs. 4.S18 and 4.S20 have to be solved simultaneously

for pmin and τm.

The minimum pond coverage, pmin, is small when the differential melt is weak or when

the drainage is efficient. A larger τm means that ponds melt quickly relative to the timescale

of hole opening, so pmin decreases with τm. In particular, in terms of Tm and Th, when Tm

is large, melt is weak, so pmin decreases with Tm, and when Th is large, holes open slowly,

so pmin increases with Th. More brine channels per characteristic area increase the drainage

efficiency, so pmin decreases with η0. A wider time separation between the initial hole and

the center of the hole opening distribution means that ponds will spend more time in the

tail of the distribution with few holes opening, decreasing the drainage efficiency, so pmin

increases with τ0. We now discuss the dependence of pmin on each of the physical parameters
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that enter η0, τm, and τ0. We show these relationships in Fig. 4.S4, and we discuss each of

the panels in the list below.

1. In Fig. 4.S4a, we show that post-drainage pond coverage increases with size of the

drainage basin, L. This is because a larger basin makes it more likely for the first

hole to open somewhere within the domain, initiating the drainage stage earlier, and

increasing τ0.

2. In Fig. 4.S4b, we show that minimum pond coverage decreases with the typical pond

size, l0. Physically, this is because larger ponds make it easier to drain the surface.

Recall that it takes about one hole per pond of size l0 to significantly drain the surface.

Therefore, complete drainage can be achieved with fewer open holes if the individual

ponds are larger.

3. Figure 4.S4c shows that minimum pond coverage increases with the percolation thresh-

old, pc. Pond coverage throughout its evolution from the end of the initial phase above

the percolation threshold is approximately proportional to pc. It is not exactly pro-

portional since τm also depends on pc, making the dependence of pmin on pc slightly

non-linear.

4. Figure 4.S4d shows the dependence of pmin on the brine channel density, n0. We

can see that this dependence is relatively weak - the range of n0 measured by Golden

(2001), from about 60 m−2 to about 120 m−2, leads to only around 1% change in

pond coverage. Even an order of magnitude change in n0 would lead to less than a

10% change in pond coverage. Increasing n0 leads to two competing effects. On the

one hand, a higher n0 increases η0 by increasing number of potential holes, while on

the other hand, it also increases τ0 by increasing the time before a significant fraction

of holes open. These two effects largely cancel each other. As we show in section 4.S9,

if the hole opening distribution, F , has an exponential tail, F (x) ∝ e−|x|, the two
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effects exactly cancel. Since in our case F (x) ∝ e−x
2

in the tail, some dependence on

n0 is retained, but the dependence remains weak.

5. In Fig. 4.S4e, we show the dependence of pmin on ice thickness, H. Ice thickness

enters the non-dimensional parameter τm by increasing both the memorization and

the hole opening timescale, Tm and Th. In particular, larger H means that, on the

one hand, ponds need to carve deeper depressions, thereby increasing Tm, while on the

other hand, ice also warms more slowly, thereby increasing Th. Because H affects Th,

the effect of ice thickness depends on hole formation physics. In Fig. 4.S4e we show

two scenarios. The red line shows a case where ice plugs form at a constant depth,

z∗ = 0.6 m. We can see that in this case pond coverage peaks at an ice thickness around

0.5 m after which it decreases to 0 with increasing thickness. The black dashed line

shows a case where ice plugs always form in the middle of the ice. The dependence on

ice thickness in this case is qualitatively different than the fixed depth scenario. After

peaking at H ≈ 0.25 m, pond coverage drops to its minimum at H ≈ 1.5 m, after

which it keeps increasing with increasing H. The complicated manner in which pond

coverage depends on H in both of these scenarios reflects two competing effects. So,

depending on whether the effect on Tm or Th is stronger, pond coverage either increases

(if the effect on Th dominates) or decreases (if the effect on Tm dominates) with H. We

note that Skyllingstad et al. (2015) found that there was no clear relationship between

ice thickness and post-drainage pond coverage in their detailed 3-dimensional model

of ice and ponds.

6. In Fig. 4.S4f, we show that in our model pmin increases with ice salinity, S. In our

model, this is because saltier ice warms more slowly since a large fraction of energy

is deposited in melting ice around brine pockets rather than going to warming the

ice. This dependence is somewhat counterintuitive since a higher salt content means

a larger brine volume fraction and therefore a larger potential for hole formation. For

158



this reason it may be an artifact of our assumption that holes open when a certain

temperature is reached. We note that Skyllingstad et al. (2015) did not find a significant

relationship between salt content and minimum pond fraction in their model.

7. Figure 4.S4g shows that pmin depends only weakly on solar flux, Fsol. This weak

dependence is explained by the two competing effects that nearly cancel each other.

Namely, more solar radiation allows ponds to preferentially melt ice faster, decreasing

Tm, while also warming the ice interior faster, thereby decreasing Th.

8. In Fig. 4.S4h, we show how post-drainage pond coverage depends on pond albedo,

αp. More reflective ponds prevent ice beneath ponds from warming quickly, increasing

Th, and also lead to a smaller contrast between bare ice and ponds, ∆α, increasing

Tm as well. However, the effect on Tm dominates and pond coverage decreases with

increasing αp.

9. In Fig. 4.S4i, we show how post-drainage pond coverage depends on ice albedo, αi.

More reflective ice leads to a larger contrast between bare ice and ponds, decreasing

Tm, which leads to a higher pond coverage.

10. In Fig. 4.S4j, we show how pmin depends on the reference temperature, θ0. This

reference temperature is approximately the temperature at which holes tend to become

open, and it is difficult to define more precisely without further investigation into the

hole opening process. We can see that increasing θ0 leads to a rapid increase in pond

coverage in our model. As we have discussed in section 4.S7, the reference temperature

affects the hole opening timescale by changing the warming rate. Namely, close to the

melting point of the ice, heat capacity increases, rapidly decreasing the warming rate

and increasing Th (see Fig. 4.S3c). Apart from increasing heat capacity, the warming

rate also decreases since heat diffusion weakens when ice is warmer. As with salinity,

this may be seen as counterintuitive since warmer ice contains a high brine volume

159



fraction which would be expected to aid the formation of holes.

11. In Fig. 4.S4k, we show that pmin increases with the temperature range, ∆θ. This is

due to the fact that it takes a longer time to warm a larger amount, increasing Th.

12. In Fig. 4.S4l, we show that pmin increases with the depth at which ice plugs form, z∗.

As less sunlight can penetrate deeper within the ice, ice warms slower, increasing Th.

A caveat here is that we have assumed that the rate of heat diffusion does not change

with depth. As heat diffusion is likely strong near the bottom of the ice, this relation

likely holds so long as the depth is not close to the ice bottom.

We believe that the assumptions we have made lead to dependencies on L, l0, pc, n0, Fsol, αp,

αi, ∆θ, and z∗ that are qualitatively correct. Despite this, it is difficult to make quantitative

claims since some of these parameters, such as ∆θ and z∗, are hard to constrain. In most

panels of Fig. 4.S4 we showed that pond coverage varies appreciably by changing the under-

constrained parameter z∗, highlighting the quantitative uncertainty. We note that prior to

this investigation, it was not recognized that geometric parameters L, l0, and pc can have any

effect on pond coverage. The dependence on parameters H, S, and θ0 seems problematic.

Namely, as we have shown, the dependence on H is highly sensitive to hole formation physics.

The dependence on S and θ0 is somewhat counter-intuitive, indicating that the assumption

that temperature determines the onset of hole formation needs to be examined in more

detail. The above analysis shows that, as we have already stressed several times, we need

to improve our understanding of hole formation physics in order to understand how pond

coverage depends on physical parameters.

Finally, we note that it is somewhat puzzling that the post-drainage coverage fraction,

pmin, is neither 0 nor pc in a typical realistic situation. Namely, the function g(η) behaves as

g(η)→ 0 for η � 1 and g(η)→ 1 for η � 1, so there is only a limited range of η for which

pmin 6= 0 and pmin 6= pc. The parameter η falls within this range only when Tm ∼ Th, so a
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question then arises of why the time to melt through the thickness of the ice freeboard and

the time for a significant number of holes to open are comparable. Partly, it must be because

both phenomena are related to ice melt, but nevertheless, the two timescales fundamentally

depend on different properties of the ice. Moreover, since there are many physical parameters

that determine the value of η, its value should wildly fluctuate from one set of environmental

parameters to another, making the outcome η � 1 or η � 1 likely. Therefore, the fact that

we typically observe pmin 6= 0 and pmin 6= pc perhaps indicates that some of the physical

parameters that control pond evolution are in fact not independent as we have assumed.

4.S9 The hole opening distribution

In section 4.5, we introduced a hole opening distribution, F ( t−t0Th
), as a cumulative of some

arbitrary probability density function, f( t−t0Th
). Here, we will describe some ways that this

distribution affects pond evolution.

First, we discuss how a time distribution, f , can be related to a measurable distribution

of brine channel properties, fθ. In general, we may assume that there exists some underlying

probability distribution, fθ(
θ−θ0
∆θ ), that describes the fraction of the holes that open when

the ice interior temperature (or some other bulk ice property) increases from θ to θ + dθ.

Such a distribution could in principle be measured in the field or modeled in some way. It

is related to the time distribution, f , as

f

(
t− t0
Th

)
= fθ

(
θ − θ0

∆θ

)
dθ

dt
. (4.S21)

This equation is valid even when the ice warming rate is not constant and provides a basis

to relate the hole opening distribution that enters Eqs. 4.12 and 4.14 to measurable sea ice

properties.

Next, we discuss the variability of the distribution center, t0. In section 4.5, we remarked
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that the center of the hole opening distribution, t0, is approximately (see Eq. 4.9)

t0 ≈ −ThF
−1
(

1

N0

)
. (4.S22)

We argued that, because the timing of the opening of the first hole fluctuates, the time

until a given fraction of holes, F (0), opens also fluctuates, and, consequently, so does t0.

Here we will discuss the probability distribution of t0 over an ensemble of runs. Let us

assume that the first hole opens at some temperature θi. t0 is then the time it takes for

ice to warm from θi to θ0. There are N0 holes and each one opens at a different critical

temperature independently drawn from a distribution fθ. Thus, θi is a minimum of a set of

N0 independent random variables drawn from a distribution fθ. Therefore, the probability

of finding some θi, and a corresponding t0, is governed by extreme value statistics (see, e.g.,

Coles (2001) for an introduction to extreme value statistics).

In general, depending on the tail of an underlying distribution, we expect the probability

of finding some minimum value from a large sample of independent random variables to fall

into one of three universal distributions. In our case, we expect that fθ has a relatively

well-defined width. A distribution with a well-defined width will likely have an exponential

tail, and such distributions have extreme value statistics described by a Gumbel distribution

fGumbel(x) =
1

β
e
−(x−µβ +e

−x−µ
β )

, (4.S23)

where µ is the mode of the distribution and β is the scale. Therefore, we can expect that, for

each run, t0 is drawn from this distribution with a mode that is close to our approximation

in Eq. 4.S22. Exactly how parameters µ and β depend on N0 and Th depends on the choice

of F . Note that this distribution determines the probability of finding t0 on an ensemble of

runs, in contrast with the distributions f and fθ that determine the probability of opening

a brine channel within a single run. Because of this intrinsic variability, even runs with
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identical bulk parameters can end up with different pond coverage. In our simulations this

variability accounted for about 5% of the variability in the minimum pond coverage, pmin.

Finally, we show that it is mainly the tail of the hole opening distribution, F , that controls

pond evolution. We do not know F for real ice, and it can in principle have any shape as

long as it is a function monotonically increasing from 0 to 1. The universal function, g(η),

behaves as g(η) → 1 for η → 0 and g(η) → 0 for η → ∞. In particular, g falls below 0.1

for η ∼ 10. Therefore, when η exceeds a value of around 10, g falls to approximately zero,

and further increase in η does not affect pond evolution. Recall that η = η0F ( t−t0Th
), where

η0 ≡ c
l20
L2N0. If, we assume reasonable parameter values c ∼ 3, l0 ∼ 5 m (see Chapter 5),

and N0
L2 ∼ 100 m−2 (Golden, 2001), we get an order of magnitude estimate η0 ∼ 10000.

Therefore, η ∼ 10 when F ∼ 0.001 and pond evolution only occurs in the tail of the

distribution F . Thus, due to the large density of brine channels, the exact shape of F does

not matter apart from determining the weight of the distribution that falls in the tail. We

discuss this in more detail below.

Let us look at some particular examples of F to see exactly how it affects pond evolution.

As a first example, let us assume that the probability density function, f , falls off exponen-

tially, f(x) ∝ ex for x � −1. In this case, F (x) = Aex for x � −1 and F−1(y) = ln y/A

for 0 < y � 1, where A is a normalizing constant that also takes into account the rest

of the distribution that does not fall in the tail. If we use the approximate relationship

t0 ≈ −ThF
−1(1/N0) (see Eq. 4.S22), we find

η(t) ≈ c
l20
L2
N0Ae

t/Th−lnAN0 = c
l20
L2
et/Th , (4.S24)

for t � Th lnAN0. Therefore, if the tail of the hole opening distribution is exponential,

pond evolution is independent of the brine channel density, N0/L
2. Pond evolution is also

independent of the shape of the distribution beyond the tail as seen from the fact that the

normalizing constant, A, does not appear in the equation for η. If we recall that pond
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coverage during stage II is p = pcg(η(t)) and note that g is approximately logarithmic in η

within the region where pond coverage varies from pc to 0, we see that pond coverage falls

approximately linearly with time.

As a second example, we consider f consistent with a normal distribution, f(x) ∝ e−x
2
,

which we used in section 4.7 to compare to observations. In this case, F (x) = Ae−x
2

for

x� −1 and F−1(y) = −
√

lnA/y for 0 < y � 1, with A being a normalizing constant that

accounts for the distribution beyond the tail. Following similar logic as above, we can derive

η(t) ≈ c
l20
L2
e−(t/Th)2+2t

√
lnAN0/Th . (4.S25)

Here, we see that due to the term
√

lnAN0, dependence on N0 and A is not lost. We note

two facts about this dependence - 1) pond evolution depends not on the density of brine

channels but explicitly on the number of brine channels within a drainage basin, and 2) the

shape of the distribution beyond the tail only acts to modify the effective number of brine

channels through AN0. This unexpected dependence on the total number of brine channels

is a consequence of the fact that stage II begins when the first hole opens rather than when a

certain fraction of holes open. We discussed this in section 4.S8. We add that the dependence

on N0 and A is relatively weak - a 10-fold change in the effective number of brine channels

leads to only around a 10% change in
√

lnAN0, and a correspondingly small change in the

rate of change of pond coverage. As noted in Golden (2001), typical brine channel densities

are between 60 m−2 and 120 m−2, so the uncertainty in the number of channels is likely not

a significant source of error so long as we can reliably estimate the size of the drainage basin,

L. We also believe that the discussion above partially explains why our rather ad-hoc choice

of F as a cumulative normal distribution gave good agreement with observations. Namely,

even if the majority of this distribution is not normal, the prediction about pond evolution

will be accurate so long as the actual hole opening distribution falls off as e−x
2
.

For the more general case of F = Ae−|x|
a

in the tail, we can follow similar logic to find
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that as the power a increases, the dependence on N0 and A becomes stronger. Pond coverage

depends most strongly on N0 when the distribution F has a sharp cutoff.
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CHAPTER 5

SNOW TOPOGRAPHY ON UNDEFORMED ARCTIC SEA ICE

CAPTURED BY AN IDEALIZED “SNOW DUNE” MODEL1

5.1 Introduction

As a hallmark of climate change and a major component of the Arctic environment, Arctic sea

ice retreat has garnered much scientific and media attention (Perovich and Richter-Menge,

2009; Stroeve et al., 2007). Predicting the rate of sea ice loss is a challenge. The difficulty

lies in the fact that sea ice evolution is controlled by many processes that operate on scales

ranging from sub-millimeter to tens of kilometers (Holland and Curry, 1999). Possibly the

most notable among these processes is the interaction of ice with fluxes of energy coming

from the environment mediated by detailed conditions on the ice surface. The presence of

snow, water, or dirt on the ice surface can drastically change the rate of absorption of solar

radiation or the rate of thermal conduction during winter growth (Perovich, 1996). Finding

ways to reduce the complexity of modeling ice surface conditions is of great importance

for accurately determining the ice energy balance in large-scale models and, therefore, for

improving our understanding of the future of sea ice in a changing climate.

Snow insulates the ice (Sturm et al., 2002; Yen, 1981), reflects sunlight (Perovich, 1996),

and provides a source of fresh water that collects into melt ponds (Polashenski et al., 2017).

The net effect of each of these processes depends on the spatial distribution of the snow

cover. First, ice covered with patchy snow will, on average, grow faster than if the same

amount of snow were spread uniformly, since uniform cover insulates the ice more thoroughly

(Sturm et al., 2002). Second, uniform snow cover also protects the underlying ice more from

1. This chapter corresponds to Popović et al. (2019a) that, at the time of writing, was under review in
JGR: Oceans. It is nearly identical to the manuscript submitted to JGR: Oceans apart from minor changes
made mainly to fit the formatting requirements of the thesis and to respond to the comments made by the
thesis committee.
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solar radiation than a patchy layer, since even a thin layer of snow can increase albedo

significantly (Perovich, 1996). Finally, as snow starts to melt, melt ponds first appear in the

regions where there is the least snow (Petrich et al., 2012). For this reason, patchy snow

cover leads to melt ponds covering the ice surface sooner, melting more ice. In summary,

patchy snow cover will lead to both more ice growth during winter as well as to more ice

melt during summer.

Liston et al. (2018) modeled snow on flat ice using a simple statistical approach. They

represented the snow surface by smoothing and rescaling an initially random height field to

match the measured mean snow depth, its variance, and the horizontal correlation length.

Their approach is likely sufficient for many practical applications where snow topography

needs to be included. However, it produces some essentially unphysical predictions, such

as negative snow depths in cases when snow depth standard deviation is comparable to

the mean. Here, we adopt a somewhat similar approach that is physically consistent and

reproduces the measurements with high accuracy.

Snow often exists in meter-scale dunes which are the most prominent features of the

snow cover (Filhol and Sturm, 2015). In Chapter 3, we considered a simple geometric “void

model” which represented these snow dunes as circles, and compared it to aerial photographs

of melt ponds. These circles had varying size and were placed on a surface randomly and

independently of each other, while melt ponds were represented as voids between these

circles. Our model was able to reproduce the geometric statistics of melt ponds, such as

their size distribution and the fractal dimension as a function of pond size, over the entire

observational range of more than 6 orders of magnitude in pond area.

In this Chapter, we generalize the two-dimensional discontinuous “void model” to a

continuous synthetic “snow dune” topography that has a vertical component. We represent

snow dunes as mounds of Gaussian form that have a randomly chosen horizontal scale, a

height proportional to that scale, and that are placed randomly on the surface. The surface
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topography is the sum of many such mounds. Like the “void model,” this topography

accurately describes the horizontal melt pond features, which we take as indirect evidence

that it accurately describes the horizontal snow features. We corroborate this by showing

that our model fits both LiDAR scans of the pre-melt snow topography and melt pond data

using the same typical horizontal mound scale. The fact that the horizontal scale is so similar

is somewhat surprising since the two datasets were recoded in different years, different times

of year, and different ice types.

The novel prediction of our continuous topography is a vertical snow-depth distribution.

By comparing moments of our model distribution to LiDAR measurements of snow-depth,

we show that our model height distribution is indistinguishable from the measurements for

two occasions when the underlying ice was very flat. The one LiDAR measurement that

a slightly deformed ice showed subtle deviation from our model. Thus, we conclude that

our model is a highly accurate representation of snow on undeformed ice, while it becomes

increasingly inaccurate on deformed ice. The close agreement between snow topography and

our model is the main result of this Chapter. Since our model has only three parameters that

are uniquely determined by the mean, variance, and the correlation length of snow depth, it

follows that it is only necessary to measure these three quantities to completely characterize

the statistics of snow cover on flat, undeformed ice.

After showing the agreement between our model and snow measurements, we consider

some applications of our model. First, we consider how spatial variability in snow affects the

heat conduction through the ice during winter ice growth. Sturm et al. (2002) conducted

measurements of snow conductivity, ks, on deformed multi-year ice, and found that ks in-

ferred from ice growth is ∼ 2.4 times higher than ks inferred from direct measurements.

They found that about 40% of the increase can be explained by snow and ice geometry and

that horizontal heat transport, typically neglected in large-scale models, likely contributes

significantly. To understand whether these conclusions also hold for undeformed ice, we solve
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a 3-dimensional heat equation within the ice assuming that the snow cover is well-described

by our “snow dune” model. We develop a simple analytic equation to determine the heat

flux conducted through the ice given a set of physical parameters. Contrary to Sturm et al.

(2002) for deformed ice, we find that on undeformed ice horizontal heat transport is likely

negligible. Moreover, we find a smaller increase in heat conduction than Sturm et al. (2002).

Next, we consider the effect of snow topography on early melt pond development. Using

the fact that our model height distribution is well-fit with a gamma distribution, we write

an analytic evolution equation for melt pond coverage during an early stage when ice is

impermeable. This equation for melt pond evolution enables us to understand how early-

stage melt pond growth depends on measurable environmental parameters. Moreover, it

allows us to derive a simple condition that distinguishes whether ice will remain pond-free

throughout the summer based on snow depth, variance, density and melt rate.

This Chapter is organized so that the new results are presented sections 5.2 to 5.8, while

confirming previous results about melt ponds on our topography and mathematical details

are left for the Supplementary Information (SI). In section 5.2, we describe our model of the

“snow dune” topography. Next, in section 5.3 we describe the analytical properties of our

model such as the dependence of moments and the correlation function on model parameters.

Then, in section 5.4, we compare our model with the measured snow topography. In section

5.5, we apply our “snow dune” model to determine the conductive heat flux through the ice.

Next, in section 5.6, we use our model to investigate melt pond evolution on flat impermeable

ice. Finally, in section 5.7, we discuss the implications of our results for large-scale studies

and in section and 5.8, we conclude. In SI section 5.S1, we confirm that the synthetic

“snow dune” topography predicts ponds that accurately reproduce the geometric statistics

of real ponds during late summer. We proove the mathematical results in the subsequent SI

sections.
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Figure 5.1: a) A realization of the “void model.” Figure is taken from Chapter 3. b)
Synthetic “snow dune” topography. Red colors indicate topographic highs, while blue colors
indicate topographic lows. The upper bound on the scale bar, here set to 1, is arbitrary. c)
Ponds on a “snow dune” topography. d) A binarized image of a real melt pond photograph
taken on August 14th during the HOTRAX mission.

5.2 The synthetic “snow dune” topography

In this section we will describe our synthetic “snow dune” topography. The entire discussion

later in this Chapter will hinge on this model.

In Chapter 3, we developed a simple geometric model where snow dunes were represented

by overlapping circles of varying size placed randomly and independently of each other

on the ice surface, while melt ponds were represented as voids between these circles. We

then compared the statistical properties associated with this simple geometric model with

observations of late-summer melt ponds. We found a remarkable agreement between various

statistics of real and model melt ponds: by tuning only two model parameters, the model

matched the measured pond area distribution, the pond fractal dimension as a function of
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pond area, and two correlation functions that describe pond size and connectedness, over

the entire observational range of nearly 7 orders of magnitude in pond area. A realization

of this model is shown in Fig. 5.1a.

Motivated by the remarkable success of the “void model” in capturing the conditions on

the ice surface, we set about to generalize it to a 3-dimensional “snow dune” topography

and test the extent to which it can be used as a model of the ice surface. We will show

that, in addition to reproducing melt pond features, the “snow dune” model also matches

the observed snow-depth distribution.

To generalize the “void model” to a continuous topography, we replace circles with

mounds that have a vertical profile. The mounds have a Gaussian shape

h(x) = hme
−(x−x0)2/2r2

, (5.1)

where h(x) is the height of the mound at a point x on the surface, x0 is the location of the

center of the mound, r is the horizontal scale, and hm is the maximum height of the mound.

Mounds are placed randomly, i.e., x0 can be anywhere on the surface with equal probability.

The horizontal scale, r, is randomly chosen from an exponential probability distribution, fr

fr(r) =
1

r0
e−r/r0 , (5.2)

where r0 is the typical scale of the mounds. This distribution is the same as the distribution

of circle radii in the “void model” of Chapter 3. To prevent having unrealistically narrow

and high mounds, we prescribed the height of each mound, hm, to be proportional to its

horizontal scale, hm = hm,0r/r0, where hm,0 is the typical mound height. Optionally, the

mounds also may be elongated along a certain axis and the axes may be preferentially aligned

to simulate anisotropy in the snow dunes. Including anisotropy did not make any significant

changes to the conclusions we make based on the model. The topography is then a sum of

171



N such mounds placed on an initially flat surface

hSD(x) =
N∑
i=1

hm,0
ri
r0
e−(x−x0i

)2/2r2
i , (5.3)

where hSD(x) is the height of the “snow dune” topography at location x. A realization of

this topography is shown in Fig. 5.1b. Code to generate it is available at https://github.

com/PedjaPopovic/Snow-dune-topography. Ponds that form on this surface after cutting

it with a horizontal plane are shown in Fig. 5.1c. This is shown alongside a realization of

the “void model” (Fig. 5.1a) and a binarized image of real melt ponds (Fig. 5.1d).

There are three parameters in this model. These are the typical horizontal mound scale,

r0, the density of mounds, ρ, placed within the domain of size L, ρ ≡ N
r2
0
L2 , and the typical

mound height, hm,0. The first two of these parameters, r0 and ρ, also enter the “void model.”

5.3 Statistics of the synthetic “snow dune” topography

Here, we describe the statistics of the “snow dune” model that we will use later. In particular,

we first show how the mean, variance, and correlation length depend on model parameters.

We then derive the all of the moments of the topography. Finally, we compare the height

distribution of the “snow dune” topography with a gamma distribution. We derive all of

the results in this section in SI section 5.S2. All of these results follow directly from the

definition of the “snow dune” model we described in section 5.2.

First, we find that the mean, 〈hSD〉, and variance, σ2(hSD) = 〈(hSD)2〉 − 〈hSD〉2, of the

topography depend on the typical mound height, hm,0, and the density of mounds, ρ, as

〈hSD〉 = 12πhm,0ρ , σ2(hSD) = 24πh2
m,0ρ . (5.4)

In fact, we can explicitly find every moment of the topography,
〈
(hSD)n

〉
, by knowing the

172



previous moments and using the recursion formula (see SI section 5.S2 for derivation)

〈
(hSD)n

〉
= 2πρ

n∑
j=1

(
n− 1

n− j

)
(j + 2)!

j
h
j
m,0

〈
(hSD)n−j

〉
. (5.5)

Equations 5.4 can be easily obtained using this formula.

Next, we define the height correlation function, Ch(l), as

Ch(l) ≡ 〈hSD(x)hSD(x + l)〉 − 〈hSD〉2

σ2(hSD)
, (5.6)

where l is a horizontal displacement of the topography. The correlation function quantifies

how much the surface height at x is correlated with the surface height at x+ l. If the surface

is isotropic, Ch only depends on the magnitude of the displacement vector, l. We can then

define the correlation length, l0, as the distance at which Ch falls by a factor of e. Beyond

l0, features on the topography can be considered approximately uncorrelated. Using these

definitions, we find that Ch and l0 depend on the horizontal mound scale, r0, of an isotropic

“snow dune” model as (see SI section 5.S2 for derivation)

Ch(l) =
1

24

∫ ∞
0

z4e−z−l
2/(2r0z)

2
dz , (5.7)

l0 = r0ξ0 , (5.8)

where ξ0 ≈ 9.3689... is a number that can be estimated to arbitrary precision by invert-

ing Ch(l0) = 1/e using Eq. 5.7. The mean, variance, and the correlation length are all

measurable properties of real topographies. This means that computing these quantities

from measurements lets us unambiguously choose the model parameters. Introducing slight

changes in the model, for example adding anisotropy, would change the numerical pre-factors

in these equations.

Since we can find all of the moments of the “snow dune” topography using Eq. 5.5, we
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Figure 5.2: Dots represent the height distribution of the “snow dune” topography for different
densities of mounds, ρ. Solid lines represent fits using a gamma distribution. Units of snow
depth here are arbitrary. Note that the LiDAR measurements we consider in section 5.4
range from ρ ≈ 0.2 to ρ ≈ 0.5, a much smaller range than we inspected here.
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can fully determine its height distribution. However, it is impractical to do this, and, for

practical purposes, we now show that the height distribution of the “snow dune” topography

is well-fit with a gamma distribution. The two distributions are not the same, as can be

seen by comparing their moments. However, they are qualitatively very similar, and the

differences between them arise from arbitrary choices in our model such as the exponential

distribution of radii of the snow dunes, Eq. 5.2, and the linear relationship between the

mound radius and height. We describe the relationship between the height distribution of

the “snow dune” topography and the gamma distribution in detail in SI section 5.S2.

In Fig. 5.2, we show height distributions for synthetic topographies with varying spatial

densities of mounds, ρ, with the variance, σ2(hSD), kept fixed. We can see that varying

ρ changes the shape of the distribution and that a gamma distribution can fit the height

distribution well for all choices of ρ. To quantify the quality of the fit, we use the Kolmogorov-

Smirnov (KS) statistic, i.e., the maximum distance between the empirical and theoretical

cumulative distributions. The fit is typically considered good if this statistic is below 0.05.

We find that for all choices of ρ, the maximum distance between the cumulative “snow dune”

height distribution and the best-fit gamma distribution is below 0.05, and ranges between

0.03 for ρ = 0.01 to 0.006 for ρ = 1, generally decreasing for increasing ρ.

A gamma distribution has the form

fΓ(h) =
1

Γ(k)hk0
hk−1e−h/h0 , (5.9)

where h0 is a scale parameter, k is a shape parameter, and Γ(x) is a gamma function. The

two parameters of the gamma distribution, h0 and k, are related in a simple way to the

mean and variance of the distribution, 〈h〉 and σ2(h)

k =
〈h〉2

σ2(h)
, h0 =

σ2(h)

〈h〉
. (5.10)
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Both of these parameters are therefore uniquely determined by the typical height and density

of mounds through Eqs. 5.4. In particular, we find that the scale parameter, h0, scales

linearly with the typical height of mounds, while the shape parameter, k, scales linearly with

the density of mounds,

h0 = 2hm,0 , k = 6πρ . (5.11)

5.4 Measured snow topography

The synthetic “snow dune” topography is meant to represent the height of snow relative

to the flat underlying ice. Therefore, the height distribution of the “snow dune” topography

should correspond to the pre-melt snow-depth distribution. Here, we will compare the statis-

tics of the synthetic “snow dune” topography to detailed LiDAR measurements of pre-melt

snow topography made by Polashenski et al. (2012).

During their field expedition, Polashenski et al. (2012) performed detailed LiDAR scans

of the surface topography within a 100m×200m region on multiple dates in 2009 and 2010.

During 2009, Polashenski et al. (2012) monitored two locations separated by about 1 km

from each other, one in the north (2009N) and one in the south (2009S). In 2010 they

monitored only one location. In Fig. 5.3a we show an example of such a measurement,

which shows the height of snow before the start of the melt season, and compare it to a

randomly generated “snow dune” topography (Fig. 5.3b). Assuming that the underlying

ice is flat and the pre-melt ice is fully covered with snow, the LiDAR-estimated height in

Fig. 5.3a represents the snow depth plus some reference height. Therefore, to compare

with the “snow dune” topography, we estimated the snow depth from these LiDAR scans

by subtracting the minimum LiDAR elevation from the rest of the scan. We show the snow-

depth distribution for the three LiDAR scans in Fig. 5.3c and we show the moments of

these distributions in Fig. 5.3d. We estimate the height correlation function for these three

measurements in Fig. 5.4. The data from Polashenski et al. (2012) are freely available at
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Figure 5.3: a) LiDAR measurement of the pre-melt snow topography by Polashenski et al.
(2012) in early June of 2010. b) A realization of synthetic “snow dune” topography. The
density of mounds was chosen such that the height distribution of the synthetic topography
corresponds well to the measured snow-depth distribution. Mounds are slightly elongated
to simulate anisotropy in the actual snow (we used a ratio of semi-major to semi-minor axis
equal to 2). c) Dots represent snow-depth distribution estimated using LiDAR measurements
for two different years. Solid lines are gamma distributions with parameters estimated based
on the mean and variance of the measurements. Dashed lines are the corresponding “snow
dune” topography height distributions, and are nearly indistinguishable from the solid lines.
d) Moments of the height distribution. The horizontal axis is the moment order, n, while the
vertical axis is the n-th root of the n-th moment. Dots represent moments of the measured
snow topography. The thick dashed lines represent the mean moments across an ensemble
of 50 randomly-generated “snow dune” topographies on the domain of the same size as the
measurements. The colored shadings represent one standard deviation from the mean on
that ensemble.
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Table 5.1: Statistics of the LiDAR measurements and model parameters inferred from them.
The KS statistic was calculated with respect to the gamma distribution.

〈h〉 σ(h) l0 hm,0 ρ r0 h0 k KS
2009N 15.2 cm 7.8 cm 5.5 m 2.0 cm 0.20 0.59 m 4.0 cm 3.8 0.03
2009S 13.4 cm 5.4 cm 5.2 m 1.1 cm 0.33 0.56 m 2.2 cm 6.2 0.01
2010 13.4 cm 4.3 cm 5.8 m 0.7 cm 0.53 0.61 m 1.4 cm 9.9 0.03

http://chrispolashenski.com/data.php.

To see whether the snow-depth distribution of these measurements conforms to the pre-

dictions of our model and a gamma distribution, we inferred parameters hm,0 and ρ using

Eqs. 5.4 and parameters of the gamma distribution, k and h0, using Eqs. 5.10 based only on

measured mean snow depth and snow depth variance. We show the statistics of measured

topographies along with model and gamma distribution parameters in Table 5.1. The solid

lines in Fig. 5.3c show a gamma distribution with parameters chosen in this way, while the

dashed lines show a height distribution of the synthetic “snow dune” topography. We can

see that in all cases, the measured snow-depth distribution agrees well with our model and a

gamma distribution, with a Kolmogorov-Smirnov (KS) statistic remaining at or below 0.03

in all cases.

We can gain a better understanding of both the measured and the synthetic snow-depth

distributions by looking at their moments. Higher order moments describe a more and more

detailed structure of the probability distribution. This is precisely why we can use these

higher order moments to distinguish between similar, but subtly different distributions. In

Fig. 5.3d, we compare moments of the measured snow topography and randomly-generated

“snow dune” topographies. Higher order moments depend on the domain size, resolution,

and the particular realization of the topography. For this reason, to get the moments of

the simulated “snow dune” topographies, we created an ensemble of 50 randomly-generated

topographies with the same resolution and domain size as the measurements. For each

realization, we then found the root-moments, 〈hn〉1/n. Dashed lines in Fig. 5.3d show the

mean and one standard deviation of the root-moments over this 50-member ensemble. We
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used the model parameters shown in Table 5.1.

For the 2010 and 2009S measurements, all of the measured moments fall squarely within

the range of values obtained with an ensemble of simulated “snow dune” topographies. In

fact, we tested the first 150 moments for these two measurements, and found that this

agreement holds throughout. This means that realizations of the “snow dune” topography

that have exactly the same height distribution as the measurements are common. We can

therefore conclude that the snow-depth distribution for 2010 and 2009S measurements is

indistinguishable from the “snow dune” height distribution! This agreement is, however,

not observed for 2009N measurements - moments of measured snow-depth distribution are

consistently higher than those of the simulations and no randomly generated “snow dune”

topography has high order moments that match the measurements. This difference is subtle

which is why we could not observe it using the KS statistic, and for most practical uses

that require only a snow-depth distribution it is likely not very important. Nevertheless,

it constitutes a real observable difference between our model and the 2009N measurements,

and shows that there exist features in real data that our model cannot predict. We return

to explaining this difference below.

Next, we describe the height correlation function, Ch(l), for measurements and the model.

We find the LiDAR Ch(l) using Eq. 5.6. Due to prevailing winds, snow on sea ice often

shows a strong preferential orientation, with snow dunes elongated along the direction of

the wind (Petrich et al., 2012). We observe this in the measured Ch(l), which we find to

depend on the direction of the displacement vector, l. Such anisotropy can be included in

our model by elongating the mounds along a particular axis, as we did in Fig. 5.3b for visual

comparison. However, to keep our discussion as simple as possible, we chose to keep our

model isotropic. Thus, to obtain a measured correlation function that depends only on the

magnitude of l, we average the measured Ch(l) over all directions of l. Then, we find the

correlation length, l0, the distance at which the measured Ch(l) falls off by a factor of e,
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Figure 5.4: a) Height correlation functions. Dots represent measurements, and the solid
lines represent predictions for the “snow dune” model using Eq. 5.7. Correlation functions
for 2010 and 2009S measurements (yellow and green dots) were calculated from raw data.
Correlation function for the 2009N measurement was corrected by removing a long-decay
exponential. The raw 2009N data are shown in panel b. b) Correction for the 2009N
correlation function. Dots represent Ch calculated with raw data on a semi-log plot. The
two black dashed lines are exponential fits to the short-decay and long-decay portions of
Ch. Inset shows Ch before (red dots) and after (red dashed line) removing the long-decay
exponential on a linear plot.
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and relate it to the model parameter r0 according to Eq. 5.8 (see Table 5.1). We show the

measured and the theoretical Ch(l) calculated according to Eq. 5.7 in Fig. 5.4.

Again, we find that 2010 and 2009S measurements agree very well with model predictions

(Fig. 5.4a). However, 2009N again shows a disagreement with the model. The height

correlation function calculated from raw 2009N data is shown in Fig. 5.4b. It first decays

quickly, and then the decay slows down, with features on the surface remaining correlated

across the domain. By plotting Ch on a semi-log plot, we find that it is approximately a sum

of two exponentials - one with a short decay-length and another with a long decay-length

comparable to the domain size. We get good agreement with the model after removing this

long decay exponential. To do this, we fit an exponential function to Ch for l > 20m. We

then subtract this exponential from the whole Ch and rescale so that Ch(0) = 1. The result

is a corrected correlation function, shown as the red dots in Fig. 5.4a and the dashed line in

the inset of 5.4b. The result of this correction does not depend strongly on the choice of the

cutoff length for the exponential fit so long as this length is large enough. The correlation

length, l0, and the model parameter r0 reported in Table 5.1 correspond to this corrected

correlation function.

In Chapter 3 and SI section 5.S1, we calculated similar correlation functions for melt pond

images taken during 1998 and 2005. There, we similarly observed correlation functions with

two decay lengths - one comparable to the size of melt ponds, and another comparable to

the size of the images. In Chapter 3, we attributed the long-decay length to differences in ice

properties between different ice floes and large-scale deformation features such as ridges. A

match between the model and the data could only be achieved after removing this long-decay

length by a procedure analogous to the one we described above.

Here, we again suggest that the long-decay length comes from variability in the under-

lying properties of the ice. In fact, we believe that all of the differences between 2009N

measurements and the model can be explained by this variability in the underlying ice prop-
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erties. Polashenski et al. (2012) note that 2009N site had ice that finger-rafted early in the

growth season and contained some lightly rubbled ice, while the 2009S site had very flat ice.

They did not comment on ice conditions during 2010 measurements. To test whether our

model is consistent with variable ice properties across the domain, we created a “snow dune”

topography where one half of the domain had higher hm,0 and ρ than the other half, but

together both parts had the same mean and variance as the measured 2009N topography.

In this experiment, the model correlation function obtained a long decay length comparable

to the domain size. Moreover, we found that we can choose the parameters in the first

half of the domain such that all of the moments of the model height distribution match the

moments of the 2009N data. Therefore, our model is consistent with the 2009N data if we

assume that 2009N data contains regions with different underlying ice properties. We note

that even though there exists an observable difference between the snow-depth distribution

of 2009N and our model, it is very small and would likely not significantly change the ice

evolution in a large scale model. Nevertheless, it hints that highly deformed ice may in fact

significantly deviate from our model.

In SI section 5.S1, we compare melt ponds on the synthetic “snow dune” topography

with melt pond data derived from images taken during 1998 and 2005. These images cover a

much larger area than the LiDAR scans we considered here. Each melt pond image covers an

area of roughly 1 km2 as opposed to 0.02 km2 covered by the LiDAR scans. As in Chapter

3, we find an agreement between the observed and model melt ponds. To match the melt

pond statistics, we had to choose r0 ≈ 0.6 m in the model for both 1998 and 2005 ponds, in

close agreement with r0 we find here from the height correlation functions of the pre-melt

height topographies (see Table 5.1). In all three measurements of the LiDAR topography,

we found r0 within at most several cm from r0 = 0.6 m. We take this as evidence that melt

ponds are controlled by the pre-melt snow topography and that the “snow dune” model may

be meaningfully extended to at least the kilometer scale.
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We will make several final notes to end this section. First, we note that since r0 ≈ 0.6 m

in observations for four different years and multiple locations and ice types, the horizontal

scale of the snow features seems to be a robust property of the snow cover. For this reason,

future models that require a representation of snow may be able to keep the correlation

length l0 ≈ 5.6m fixed, and only keep track of mean snow depth and variance in order to

represent snow in a principled way. Second, we note that distributions other than a gamma

distribution that have been used to model the snow-depth, such as normal (Liston et al.,

2018) or lognormal (Landy et al., 2014), can also often fit the measurements well. For

example, a lognormal distribution passes the KS test for all three LiDAR measurements,

while a normal distribution passes the KS test for 2010 measurements. However, these

distributions cannot qualitatively capture the height distribution of the synthetic “snow

dune” topography for all values of the density of mounds, ρ, while a gamma distribution

can. For small ρ (large ratio of standard deviation to mean), a normal distribution predicts a

significant fraction of negative observations, while a lognormal distribution predicts a heavy

tail at large h. Since the “snow dune” model so closely reproduces both the LiDAR and melt

pond measurements, we believe that a distribution that is qualitatively consistent with the

predictions of the “snow dune” model is a more justified model for a snow-depth distribution

that would fit the measurements over a wider parameter range.

5.5 Heat transport through the ice

In this section we will consider the application of our model to heat conduction through the

ice. Sturm et al. (2002) conducted measurements on deformed multi-year ice, and concluded

that the conductivity of snow inferred from large-scale ice growth is roughly 2.4 times higher

than the conductivity of snow measured on-site. They ascribed a significant portion of this

difference to spatial variability of snow depth and also suggested that a significant fraction

of heat is transported horizontally. Motivated by their study, here we investigate the extent
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to which these conclusions also apply to undeformed ice. We consider a full 3-dimensional

model of heat conduction to determine how much heat is extracted through undeformed ice

with variable snow cover.

To model heat conduction, we assume that ice is a block of uniform thickness, H, that

ice and snow have fixed conductivities, ki and ks, that the snow cover is well-described

by our “snow dune” model, that the temperature at the ice-ocean interface is fixed at the

freezing point of salt water, Tf , that the temperature of the snow surface is fixed at the

temperature of the atmosphere, Ta, and that the temperature field within the ice and snow

is in a steady state. Additionally, we assume that the temperature profile in the snow is

linear (but not necessarily in the ice). This assumption is reasonable, since snow cover is

typically thin compared to its horizontal correlation length. Finally, we impose periodic

boundary conditions in the horizontal directions.

In SI section 5.S3, we develop relations for the mean conductive heat flux through the

ice, Fc, under the assumptions above. In particular, starting from Laplace’s equation for

heat conduction and using the fact that our “snow dune” model is fully characterized by the

mean, variance and the correlation length of the snow surface, we show that Fc must be of

the form

Fc = F0Φ
(
η,Σ,Λ

)
, (5.12)

F0 ≡ ki
Tf − Ta
H

, η ≡ ki
ks

〈h〉
H

, Σ ≡ σ(h)

〈h〉
, Λ ≡ l0

H
, (5.13)

where Φ is a non-dimensional flux given a non-dimensional snow depth, η, a non-dimensional

snow roughness, Σ, and a non-dimensional correlation length, Λ. The dimensional quantity

F0 is the heat flux conducted through the ice with no snow on top, so the function Φ ≤ 1

represents the fraction of this flux that is conducted when snow is present. After showing

this, in SI section 5.S3, we show that the heat conduction problem can be explicitly solved
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if Λ → ∞ (when heat transport is purely vertical), and when Λ → 0 (when the horizontal

heat transport dominates). Knowing these two limits, we then numerically solve the heat

conduction problem for various combinations of the parameters η, Σ, and Λ and show that

the function Φ is approximately equal to

Φ
(
η,Σ,Λ

)
≈ Φv +

Φh − Φv
(1 + cΛ)2

, (5.14)

Φv ≡
∫ ∞

0

f̃Γ(z,Σ)

1 + zη
dz (purely vertical heat transport) , (5.15)

Φh ≡
1

1 + η(1− Σ2)
(dominant horizontal heat transport) , (5.16)

where c ≈ 0.83 is a numerical constant, Φv is the non-dimensional flux if vertical heat trans-

port dominates, and Φh is the non-dimensional flux if horizontal heat transport dominates.

Φh is an upper bound on heat flux given parameters η and Σ. The gamma distribution f̃Γ

in Eq. 5.15 is normalized to have a mean equal to 1, and is consequently only a function

of Σ with the parameters k = Σ−2 and h0 = Σ2. Equation 5.16 is only valid for Σ < 1. If

Σ > 1, we have that Φh = 1 so that, if Λ → 0, the heat is conducted as if there were no

snow on top of the ice, F = F0.

To quantify how much ice growth is due to snow-depth variability, we also consider the

non-dimensional flux assuming a uniform snow cover, Φu ≡ 1
1+η . The fraction of ice growth

that can be attributed to snow-depth variability can then be estimated as Φ−Φu
Φ . We show

the estimated values of all of the non-dimensional parameters discussed above for the three

LiDAR measurements we considered in the previous section in Table 5.2.

From Eq. 5.14, we can see that the contribution of horizontal heat transport to total

heat transport is proportional to (1 + cΛ)−2. As we discussed in the previous section, the

correlation length for all datasets we considered is around l0 ≈ 5.6 m and is likely on the same

order throughout the Arctic. This means that for a realistically ice thickness of around 1 m,

Λ ≈ 5. This implies that horizontal heat transport contributes less than 5% of the maximum
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Table 5.2: Non-dimensional parameters of the snow surface for the LiDAR measurements
of Polashenski et al. (2012) assuming an ice thickness of H = 1 m, conductivity of fresh ice
ki = 2.034 Wm−1K−1 (Untersteiner, 1964), snow conductivity estimated by Sturm et al.
(2002), ks = 0.14 Wm−1K−1, and duration of stage I of pond evolution T = 5 days.

η Σ Λ Φu Φv Φh Φ (Φ− Φu)/Φ ω
2009N 2.2 0.5 5.5 0.31 0.35 0.38 0.35 0.11 1.7
2009S 1.9 0.4 5.24 0.34 0.37 0.39 0.37 0.07 1.7
2010 1.9 0.3 5.75 0.34 0.36 0.37 0.36 0.04 1.5

possible contribution, Φh − Φv. This is very small - as we can see from Table 5.2, the total

non-dimensional flux, Φ, is equal to Φv to two significant digits for all measurements. Even

for exceedingly thick ice of 2 m thickness, and snow with significant variability, as in the

2009N measurements, horizontal heat transport still contributes less than 1% of total ice

growth. Therefore, horizontal heat transport can most likely be ignored on flat undeformed

ice. This is in contrast with Sturm et al. (2002) who found a significant fraction of heat is

transported horizontally in regions of deformed ice. For this reason, it may be necessary to

include non-uniform ice thickness to appropriately capture heat transport on deformed ice.

Even though horizontal heat transport may be neglected on undeformed ice, snow vari-

ability may still noticeably contribute to conductive heat flux. In Table 5.2, we show the

fraction, (Φ − Φu)/Φ, of heat transport that is due to snow-depth variability. We see that

snow-depth variability contributes between 4% for 2010 measurements that have the least

snow-depth variability and 11% for 2009N measurements that have the most snow-depth

variability, with the effect generally increasing with η and Σ. Although this is not large, it is

comparable to the effect of melt ponds during summer - for example, if 15% of ice of albedo

0.6 is covered by ponds of albedo 0.25, ice will melt on average 10% faster than if there were

no ponds. Therefore, the effect of snow variability on first-year ice during winter may be

enough to partially compensate the effect of melt ponds during summer. Again, this effect

is smaller than on deformed ice, where Sturm et al. (2002) found that about a quarter of ice

growth is due to variable snow and ice geometry.
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5.6 Melt pond evolution during early melt season

During the early melt season, ice is largely impermeable and ponds can quickly flood vast

areas of the ice surface. This is known as stage I of pond evolution and is typically followed

by stages II and III which correspond to pond drainage and subsequent slow pond growth

on highly permeable ice (Landy et al., 2014; Polashenski et al., 2012). In this section, we

will discuss equations for pond evolution during stage I when ice can be considered to be

impermeable, which we derive in SI section 5.S4. These equations follow from the fact that

the pre-melt snow distribution on flat ice is well-described by our “snow dune” topography.

5.6.1 Analytic model for pond evolution during stage I

Since water can flow relatively freely through permeable snow, during stage I of pond evolu-

tion there likely exists a common water table for the entire ice floe, and ponds are the regions

where surface topography lies below it. Therefore, to model stage I of pond evolution, we

will assume that snow is fully permeable and that snow below the water level is completely

saturated with water, that underlying ice is impermeable and initially flat, that the pre-melt

snow topography is well-described by our “snow dune” model, and that no meltwater is lost

from the domain (we will reconsider this assumption in the next subsection). The ice and

snow topography can change by melting, thereby creating meltwater. We will thus assume

that snow, bare ice, ponded ice, and ponded snow (water-covered snow) melt at different

rates but that these rates are constant in space and time and independent of factors such as

snow or pond depth. Finally, we will assume that both snow and ice melt only at the surface

and that ice cannot melt until snow has melted away.

In SI section 5.S4, we develop equations for the time-evolution of pond coverage, p, and

water level, w, during stage I under the assumptions above. We do this by tracking the

volume of water produced by melting. We use the fact that, if no water is lost from the

domain, the water level can only increase, so that ponds only encounter bare snow topography
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Figure 5.5: a-d: Pond coverage evolution during stage I found using Eqs. 5.17 and 5.18 for
a variety of model parameters. In each panel, we change one parameter, while we keep the
others fixed at default values ḣs = 4 cm day−1, rs = 0.4, σ(h) = 0.05 m, and k = 4. a)
Pond coverage evolution for different snow melt rates, ḣs. b) Pond coverage evolution for
different snow to ice density ratios, rs. c) Pond coverage evolution on topographies with
different snow-depth standard deviations, σ(h). d) Pond coverage evolution on topographies
with different shape parameters, k. e) Comparing pond evolution during stage I calculated
using Eqs. 5.17 to 5.19 (dashed blue and yellow lines) with observations of Polashenski
et al. (2012) (red line). The dashed blue line represents pond evolution estimated using Eqs.
5.17 and 5.18 that assumes no drainage during stage I. Dashed yellow line represents pond
evolution estimated using Eq. 5.19, which assumes a constant drainage rate beyond the
percolation threshold of pc = 0.35. Topography used to calculate stage I evolution has the
same mean and variance as the actual measured pre-melt snow topography obtained with
LiDAR measurements.
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that melts at a uniform rate and is, therefore, unaltered throughout the melt season. This

means that we can use our pre-melt topography to accurately describe the ponded fraction of

the surface. It also means that regions of bare ice (ice with no snow and no water on top) do

not exist. We greatly simplify the problem by neglecting terms that are proportional to the

density difference between water and ice, which are, in addition to being small, only relevant

at very high pond coverage. Using this strategy, we show that pond coverage evolution is

approximately the solution to the simple system of ordinary differential equations

ẇ ≈ − rirs(1−p)
1−rs(1−p) ḣs , (5.17)

ṗ = fΓ(w − ḣst)
(
ẇ − ḣs

)
, (5.18)

where ẋ ≡ dx
dt is a shorthand notation for the rate of change of quantity x, w is the water

level, p is the pond coverage faction, ri ≡ ρi
ρw

is the ratio of ice density to meltwater density,

rs ≡ ρs
ρi

is the ratio of snow density to pure ice density, ḣs is the melt rate of bare snow,

assumed to be constant in space and time, and fΓ(w−ḣst) is the gamma distribution given by

Eq. 5.9 and evaluated at w− ḣst. The parameters of the gamma distribution are determined

from the mean and variance of the pre-melt snow topography according to Eq. 5.10. The

initial conditions for Eqs. 5.17 and 5.18 are no ponds at the initial time, p(t = 0) = 0, and a

water level of zero, w(t = 0) = 0. Note that ḣs < 0, so ẇ > 0 and ṗ > 0. Even though Eqs.

5.17 and 5.18 are approximate, they are a very accurate approximation to the full 2d model

defined by the assumptions above at low pond coverage and only deviate slightly from the

full model at high pond coverage (see SI section 5.S4). In SI section 5.S4, we also derive a

second-order approximation that becomes nearly indistinguishable from the full 2d model

for any pond coverage.

We can see from Eqs. 5.17 and 5.18 that, since ice and water density are fixed, stage I

pond coverage evolution depends mainly on the density of snow through rs, the melt rate of

bare snow, ḣs, and the mean and variance of the initial snow-depth distribution through fΓ.
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Note that melt rates of bare ice, ponded ice, and ponded snow do not enter this first-order

approximation for pond evolution. In Figs. 5.5a-d, we change each of the parameters that

enter Eqs. 5.17 and 5.18 to see how they affect stage I pond evolution. We note that in Figs.

5.5a-d, we parameterized fΓ with its standard deviation, σ(h), and its shape parameter, k,

since σ(h) strongly affects pond coverage evolution, while k affects it only weakly. Within a

reasonable range of parameters, pond evolution during stage I is most sensitive to the rate of

snow melt (Fig. 5.5a) and the standard deviation of the initial snow-depth distribution (Fig.

5.5c). In fact, as we explain in SI section 5.S4, increasing the snow melt rate by some factor

leads to the same pond coverage evolution as decreasing the volume of snow by the same

factor. Snow density and the shape of the initial snow-depth distribution parameterized by

k and assuming that σ(h) is fixed, do not matter as much (Figs. 5.5b and d).

5.6.2 Meltwater drainage during stage I

One important factor we have neglected is the potential for limited drainage during stage I.

Even though ice is typically impermeable during this stage, outflow pathways such as cracks

in the ice, seal breathing holes, or the floe edge can exist (Eicken et al., 2002; Fetterer and

Untersteiner, 1998; Holt and Digby, 1985; Polashenski et al., 2012). In Chapter 4, we explain

that if pond coverage is low, and the underlying surface is impermeable, such isolated flaws in

the ice should not significantly affect the pond coverage. However, if pond coverage is above

a special value called the percolation threshold, pc, there can be significant pond drainage

through these flaws. In fact, if the drainage rate is great enough, the pond coverage would

be limited to below pc. For example, unless ice deformation prevents water from flowing into

the ocean, the floe edge will limit pond growth to below pc. In Chapters 3 and 4, we estimate

pc to be between 0.3 and 0.4 for Arctic sea ice. Below, we show that including drainage is

necessary to accurately reproduce the evolution of pond coverage throughout stage I.

Including drainage in our model leads to some inconsistencies with the assumptions

190



under which we derived Eqs. 5.17 and 5.18. First, drainage opens the possibility for the

water level to decrease, ẇ < 0, potentially exposing bare ice and topography that was altered

by different melt rates of different regions of ice. These effects were not taken into account

when deriving Eqs. 5.17 and 5.18, and, therefore, we can keep these equations only if the

drainage is not too great. In fact, Eqs. 5.17 and 5.18 remain valid when ẇ − ḣs > 0 (the

altered topography remains submerged) and while w > 0 (there are no regions of bare ice).

Second, the percolation threshold only affects the pond coverage in the way we discussed

above if the underlying surface is impermeable. In our case, the surface is a combination

of impermeable ice and permeable snow. Since the pond coverage will likely exceed the

percolation threshold before all the snow melts, there likely exists a complicated transition

period between a surface that is a mix of permeable snow and impermeable ice and a fully

impermeable ice surface. Moreover, when drainage is great enough so that the percolation

threshold limits pond growth, the water level in different ponds needs to be at least slightly

different, in contrast with the assumption of a common water table we made in the previous

subsection. Here, we simply ignore these complications and assume that Eqs. 5.17 and 5.18

are approximately valid even when pond drainage occurs and that drainage is only activated

if pond coverage exceeds the percolation threshold. We leave a detailed analysis of pond

drainage during stage I for another study.

If we assume ẇ − ḣs > 0 and w > 0, we can straightforwardly include drainage in pond

evolution (Eqs. 5.17 and 5.18) by simply altering the water balance equation. We derive this

in SI section 5.S4. For example, if ponds drain at a rate of Q cm per day, Eq. 5.18 remains

the same and 5.17 is modified to

ẇ = −rirs(1− p)ḣs +Q

1− rs(1− p)
. (5.19)

To account for the fact that we expect little drainage to occur below the percolation threshold,

we can make Q a function of p. The simplest representation would be to include Q(p) =
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Q0H(p − pc), where H is the Heaviside function, equal to 0 or 1 depending on whether its

argument is less or greater than 0, and Q0 is a constant that sets the maximum drainage

rate. Using this function yields the yellow line in Fig. 5.5e. If ẇ− ḣs < 0, Eq. 5.18 predicts

the pond coverage to decrease, ṗ < 0. So, if ẇ < ḣs, we expect the pond coverage to remain

fixed at the percolation threshold, p = pc.

In Fig. 5.5e we compare stage I pond evolution predicted by our model with the mea-

surements of stage I pond coverage evolution by Polashenski et al. (2012). Since accurate

measurements of pre-melt topography are available for that time and location (Fig. 5.3), we

can choose the parameters of the gamma distribution highly accurately. The density of snow

and the snow melt rate are uncertain. We choose the density of snow to be ρs = 350 kg m−3,

and the albedo of melting snow to be αs = 0.7, consistent with observations of Polashenski

et al. (2012). We take the solar flux to be Fsol = 254 W m−2, which Polashenski et al. (2012)

report as the average flux of solar energy for the duration of the experiment. We treat the

sum of longwave, sensible, and latent heat fluxes, Fr, as a tuning parameter. The value we

choose, Fr = −25 W m−2, is typical of the region and season, and is therefore consistent

with the measurements. The blue line in Fig. 5.5e shows the stage I pond evolution pre-

dicted by Eqs. 5.17 and 5.18, while the red line represents the measurements of Polashenski

et al. (2012). The two curves agree up to the point when pond coverage reaches p ≈ 0.35,

a plausible value for the percolation threshold. Thus, the measurements are consistent with

drainage being activated beyond the percolation threshold. To match pond evolution beyond

p = 0.35 we used Eq. 5.19, and tuned the drainage rate, Q0, to 1.9 cm day−1 (yellow line),

a rate consistent with observations of Polashenski et al. (2012). We can see that Eq. 5.19 is

consistent with the observations, although this matching cannot be fully confirmed due to

uncertainty in the parameters.
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Figure 5.6: The horizontal axis shows the non-dimensional snow roughness, σ(h)/〈h〉, while
the vertical axis shows the non-dimensional water level, ω, described in the text. The
white-colored region represents ice that remains pond-free throughout the summer, while
the dark-blue region represents ice that develops pond coverage that exceeds the percolation
threshold by the end of stage I. The light-blue region represents ice that has some ponds by
the end of stage I, but the pond coverage does not exceed the percolation threshold.

193



5.6.3 A condition for pond development

Pond coverage reaches its peak by the end of stage I. Afterwards, ponds drain, and, by

the end of the drainage stage, the remaining ponds correspond to regions of ice that are

below sea level. Observations show that ponds that remain after drainage are a subset of

ponds that exist during peak pond coverage (Landy et al., 2014; Polashenski et al., 2012).

Therefore, if ponds do not develop during stage I, they will likely never develop. Since the

pre-melt snow-depth distribution controls pond evolution during stage I, it, therefore, also

has a disproportionate effect on later pond evolution. If the snow-depth is highly variable,

ponds will develop sooner than if the snow cover is uniform. If the snow cover is relatively

uniform and stage I does not last long enough, the ice may remain pond-free throughout

the summer. Here, we will show how we can use the model we developed above to derive a

simple criterion for whether ice will develop ponds or not.

We start with Eqs. 5.17 and 5.18. If we assume that pond coverage stays low throughout

stage I, we can set p ≈ 0 in Eq. 5.17, and integrate it directly to get the water level at time t

during stage I, w(t) ≈ − rirs
1−rs ḣst. We can then non-dimensionalize Eq. 5.18 by introducing

non-dimensional parameters Σ and ω to get

dp

dω
= f̃Γ(ω,Σ) , (5.20)

Σ ≡ σ(h)

〈h〉
, ω ≡ −1− rs(1− ri)

1− rs
ḣst

〈h〉
, (5.21)

Here, Σ is the non-dimensional roughness as in section 5.5 and ω can be interpreted as a

non-dimensional water level. As in Eq. 5.15 of section 5.5, f̃Γ(ω,Σ), is a gamma distribution

with a mean equal to 1, so that it only depends on Σ, with parameters k = Σ−2 and h0 = Σ2,

and evaluated at ω. Thus, from Eq. 5.20, we get a simple relation

p = FΓ(ω,Σ) , (5.22)
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where FΓ(ω,Σ) is a cumulative gamma distribution with a mean equal to 1, FΓ(ω,Σ) ≡∫ ω
0 f̃Γ(z,Σ)dz. Therefore, if pond coverage is low, it depends only on ω and Σ and we can

express it simply in terms of the cumulative gamma distribution.

Let us now assume that stage I lasts for some time, T , on the order of 5 days. If the

ponds do not develop within that time, the ice will remain pond-free throughout the summer.

We can set some threshold, p∗, say p∗ = 0.01, and consider ice to be pond-free if the pond

coverage is below p∗. We can then find the boundary in ω-Σ space, ω∗(Σ), such that if

ω < ω∗, ice remains pond-free at the end of stage I. According to Eq. 5.22, this boundary is

given by

ω∗(Σ) = F−1
Γ (p∗,Σ) , (5.23)

where F−1
Γ is an inverse of the cumulative gamma distribution (gamma percentile function)

with a mean equal to 1, k = Σ−2, and h0 = Σ2, evaluated at p∗. Equation 5.23 gives a

universal criterion that ice remains pond-free. If ω, calculated given the snow melt rate,

density, depth, roughness, and the duration of stage I, exceeds ω∗, ice will develop at least

some ponds. The boundary, ω∗(Σ), is largely insensitive to the choice of the threshold

coverage, p∗, so long as p∗ is much smaller than 1.

In the case when ice develops some ponds, we can also ask how developed those ponds

will be. In particular, we can assume that ponds are fully developed if the pond coverage

exceeds the percolation threshold by the end of stage I. Beyond the percolation threshold,

pond drainage likely starts to play an important role, and the post-stage I evolution of

fully-developed ponds likely proceeds in a fairly typical manner. Therefore, there likely exist

three typical trajectories for pond evolution during summer - pond-free, fully-developed, and

intermediate. To see whether the ponds will develop fully, we can again use Eq. 5.23 but

use p∗ = pc ≈ 0.35. Using Eq. 5.23 with p∗ = 0.35 is approximate since the pond coverage

is no longer small, but it is still reasonably accurate.

In Fig. 5.6, we show the conditions for these three regimes of pond development. We can

195



see that when ω > 1, ponds always fully develop since, in this case, the water level by the

end of stage I exceeds the height of snow even when the snow cover is uniform. Otherwise,

if ω < 1, ponds develop more easily when the snow-depth has more variability. We can

estimate ω and Σ for the measurements of Polashenski et al. (2012). We use T = 5 days,

snow depth mean and variance estimated from the LiDAR measurements, and the same

snow melt rate density as in the previous subsection. We show Σ and ω estimated in this

way in Table 5.2. We can see that ω > 1 in all cases so that we expect that ponds develop

fully. In the study of Polashenski et al. (2012) this indeed happened. In order for ice to

have remained pond-free, stage I would have had to have lasted less than 1.5 days in 2010,

which had the most uniform snow, and less than 0.5 days for 2009N, which had the most

variable snow. We note that persistently pond-free ice has been frequently observed in the

Arctic (Perovich et al., 2002), while Antarctic sea ice only rarely develops ponds. It would be

interesting to see where these pond-free ice floes fall within our pond-development diagram.

5.7 Discussion

Here, we will briefly discuss how our results can be applied to large-scale studies.

1. We believe that large-scale models should use a gamma distribution for snow depth on

undeformed ice. Even though other distributions, such as normal or lognormal, may

still work well enough, adopting a gamma distribution is a more principled approach

that likely works over a wider range of parameters. Therefore mean and variance of

snow depth are enough to characterize the whole distribution according to Eqs. 5.10.

Since the correlation length appears to be stable across the Arctic, our “snow dune”

model with a horizontal scale parameter r0 = 0.6 m (l0 = 5.6 m) may be used to study

horizontal snow distribution.

2. When modeling heat conduction through undeformed ice, it is likely safe to neglect
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horizontal heat transport. On deformed ice, the situation may be more complicated

and further study is required.

3. To parameterize ice albedo during summer, Eqs. 5.17 and 5.18 may be used for pond

evolution during stage I. Without knowing the outflow rate, Q, a reasonable approach

would be to cap pond coverage to below the percolation threshold of 0.3 to 0.4. Equa-

tions 5.17 and 5.18 can be combined with similar approaches, such as the model of

Popović et al. (2019b) described in Chapter 4 for stages II and III, or the model of

Popović and Abbot (2017) described in Chapter 2 for stage III, to yield an analytic

and accurate model of pond evolution throughout the entire melt season.

4. To estimate whether ice will remain pond-free throughout the summer, Eq. 5.23 may

be used. We were not able to test this criterion against real data appropriately, as in all

three cases we considered, the ponds have fully developed. So, it would be interesting

to see whether this criterion can explain the observations of pond-free ice in the Arctic

and the Antarctic. The non-dimensional water level, ω, in Eq. 5.23 depends on the

duration of stage I. So, to be able to use this equation in large scale-studies, it will be

necessary to relate the duration of stage I to parameters that are available on the large

scale, such as energy fluxes, thickness, or the salinity of ice.

5.8 Conclusions

Snow cover greatly impacts sea ice evolution. It insulates the ice during the winter, reflects

sunlight during the summer, and controls melt pond evolution. In this Chapter, we presented

an idealized geometric model of “snow dune” topography that is capable of capturing key

statistical properties of the snow cover on undeformed first-year sea ice. The main conclusion

of this Chapter is that our “snow dune” model is a very accurate representation of the 3-

dimensional snow distribution on flat, undeformed ice.
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By comparing the moments of the height and snow-depth distributions, we showed that

the height distribution of our model is statistically indistinguishable from the snow-depth

distribution measured in detailed LiDAR scans on flat undeformed ice. We also compared

the correlation functions for the model and the measurements to show that the horizontal

statistics of snow are also well-captured by our model. In addition to this, our model captures

melt pond geometry derived from helicopter images that span areas of 1 km2 with the same

model parameters as the LiDAR scans. This suggests that our model likely captures the

horizontal properties of snow on such large scales. We note that in all cases we tested, the

correlation length of horizontal features (either snow or melt pond), was around l0 ≈ 5.6 m,

suggesting that this property is highly constrained in the Arctic. Since our model is fully

defined by only three parameters, it follows that it is enough to know the mean snow depth,

its variance, and the horizontal correlation length to fully characterize the statistics of snow

on undeformed ice. On ice that was slightly deformed we showed that the measured snow-

depth distribution contains subtle differences from the model and that there exist long-range

correlations in the horizontal, inconsistent with our model.

After comparing our “snow dune” model to measurements, we considered its application

to heat conduction through the ice and to the development of melt ponds. We solved a

3-dimensional heat conduction equation assuming the ice is flat and snow cover that is well-

described by our model. We developed simple formulas that solve the conductive heat flux

problem for any configuration of snow consistent with our model. Using these formulas, we

showed that, in any realistic scenario, horizontal heat transport may be neglected on flat,

undeformed ice (although this may not be the case for deformed ice). We then also used

our model to develop a simple model for melt pond evolution during early stages of pond

development when ice can be considered impermeable. We find that pond coverage evolution

can be estimated using a system of two coupled ordinary differential equations that closely

approximate an equivalent 2d model, but are much simpler to solve. They reveal connections
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with measurable environmental parameters. For example, we show that doubling the amount

of solar radiation has approximately the same effect on pond growth rate as halving the snow

depth. We also show that they are consistent with observations. Using these equations, we

develop a criterion in terms of non-dimensional properties of the ice surface for whether ice

will develop ponds or remain pond-free during summer.

In this Chapter, we demonstrated that nearly all of the details of ice surface conditions

can be summarized by only a few parameters if one is interested in bulk properties such as

the total heat conducted or the mean melt pond coverage. Of the three parameters that

define our model, only two can be expected to change from situation to situation, as the

correlation length is likely stable, as discussed above. This means that future GCMs may

need to only keep track of the total amount of snow and the snow depth variance in order

to be able to represent the snow surface in a principled way. Our results, therefore, uncover

an important property of sea ice snow cover that may improve the realism of sea ice models

without adding to their complexity.

5.9 Supplementary Information

5.S1 Melt pond geometry

In this section we confirm that the melt pond features on the synthetic “snow dune” topog-

raphy reproduce the Arctic sea ice melt pond statistics with as much accuracy as the “void

model” of Chapter 3. We do this by comparing melt ponds on the synthetic “snow dune”

topography to the ponds from the same dataset used by Chapter 3. Figure 5.S1 shows the

comparison between the model and the data is nearly identical to that of Chapter 3 - the

only difference is that the model curves now represent the synthetic “snow dune” topography

instead of the “void model.”

In Chapter 3, we compared the statistics of the “void model” to the statistics of real
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Figure 5.S1: A comparison of geometric properties of ponds photographed on different dates
during the 1998 SHEBA and the 2005 HOTRAX missions with the geometry of ponds on
the synthetic “snow dune” topography. The synthetic “snow dune” topography has a mean
horizontal scale of mounds of r0 = 0.6 m and the pond coverage fraction is set close to
the percolation threshold. a) Two-point correlation function. Dots represent measurements,
while the black dashed line represents synthetic topography. b) Cluster correlation function.
Dots represent measurements, while the black dashed line represents synthetic topography.
The two dashed black lines differ only in the domain size, with the domain sizes corresponding
to the image sizes of the SHEBA and HOTRAX images. c) Fractal dimension of pond
boundary as a function of pond area. Red and yellow lines are measurements, while the
black dashed line represents ponds on synthetic topography. d) Pond area distribution on a
log-log plot. Red and yellow dots are measurements, while the black dots represent ponds
on synthetic topography
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ponds derived from photographs taken during the 1998 SHEBA (Surface heat budget of the

Arctic Ocean) (Uttal et al., 2002) mission and the 2005 HOTRAX (Healy-Oden Trans-Arctic

Expedition) (Darby et al., 2005) missions. We compared four statistical features between

the model and the data: the two-point correlation function, C(l), the cluster correlation

function, G(l), the fractal dimension of the pond boundary, D(A), as a function of pond

area, A, and the pond area distribution, f(A). Here we will use the same dataset and the

same statistics to validate the synthetic “snow dune” topography. Below we explain each of

these statistics and the method we used to obtain them only briefly, and we point the reader

to Chapter 3 for details.

We form ponds on the synthetic “snow dune” topography by intersecting the surface

with a flat plane (a “water table”) and assuming ponds are regions of the surface below

this plane. In this way, the pond coverage fraction can be changed independently of the

surface parameters by simply raising and lowering the water table. This is in contrast with

the “void model,” where the density of circles placed controls the fraction of the surface

covered by ponds, somewhat complicating the analogy between the two models. This will,

however, not be a problem as pond statistics turn out to depend only on typical radius, r0,

and the deviation of pond coverage from the percolation threshold, pc, in both the “void

model” and the “snow dune” model. We explain the meaning of the percolation threshold

below. Therefore, to compare the “snow dune” model with real ponds, we will use two of

the statistics (e.g. C(l) and G(l)) to calibrate r0 and p− pc in the model, and use the other

two statistics to confirm that the model reproduces the data with the same parameters.

A two-point correlation function, C(l), is defined via the probability, P (l), that, given

a randomly chosen point on a pond, a point distance l away is also located on a pond.

Precisely, the two point correlation function is given as

C(l) =
P (l)− p

1− p
. (5.S1)

201



This function is mostly sensitive to the horizontal scale of the mounds, r0, and can be

used to calibrate this parameter. The two-point correlation function for pond photographs

is approximately a sum of two exponentials, similar to the height correlation function we

discussed in section 5.4. The exponential with a short decay scale most likely corresponds to

melt ponds, while the exponential with a long decay scale likely corresponds to large-scale

features such as ridges and floe edges. To be able to compare the model to data, we have

to remove the long-decay exponential in the same way as we did in section 5.4 (see also

Chapter 3 for details). After removing the long-decay exponential, and choosing r0 = 0.6 m,

we get a good agreement for C(l) between the model and the data (Fig. 5.S1a). Note that

r0 = 0.6 m is very close to r0 we recovered from the LiDAR scans in section 5.4 (see Table

5.2).

A cluster correlation function, G(l), is defined as the probability that, given a randomly

chosen point on a non-spanning pond, a randomly chosen point a distance l away from this

point is located on the same pond. A non-spanning pond is a pond that does not span the

entire domain. This function is sensitive to the size of the largest non-spanning clusters,

and therefore, to the pond coverage fraction, p. As the pond coverage fraction is increased,

the largest connected cluster grows. At first it does not span the domain but after the pond

coverage exceeds a special value called the percolation threshold, pc, the largest cluster begins

spanning the domain and therefore does not enter into the calculation of G(l) anymore. It

turns out thatG(l) depends on the deviation of pond coverage from the percolation threshold,

p− pc. For this reason, it can be used to calibrate p− pc. In the void model, the percolation

threshold is fixed, pc ≈ 0.33, while in the “snow dune” model, pc depends on the density

of mounds, ρ. So, we fix ρ = 0.2 and then we find p for which G(l) for the model matches

G(l) for the data. Finding the pond coverage at which spanning ponds first appear, we find

that the percolation threshold for ρ = 0.2 is approximately pc ≈ 0.44. We find that for

p− pc ≈ 0.015, G(l) for model and data agree well (Fig. 5.S1b). So, the pond coverage that
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reproduces G(l) for the data is close to, but slightly above the percolation threshold. The

fact that ponds seem to be organized near the percolation threshold is in agreement with

observations of Chapter 3 and theoretical considerations of Chapter 4.

Having calibrated r0 and p−pc, we proceed to test whether D(A) and f(A) agree between

the model and data using the same parameters of the surface. Following Hohenegger et al.

(2012) and using a method described in Chapter 3, we determined the fractal dimension of

the pond boundary as the exponent, D, that relates the pond area, A, to its perimeter, P ,

P ∝ AD/2. We treat D as a function of pond area. In Fig. 5.S1c, we show that the fractal

dimension for synthetic ponds reproduces the fractal dimension of real ponds. Finally, we

look at the pond area distribution, f(A). Again, using the parameters chosen by calibrating

the model with the correlation functions, we find that the area distribution for real and

synthetic ponds agree over the entire observational range (Fig. 5.S1d).

We also tested the model for different values of ρ and varying the anisotropy of mounds.

We found that, as long as p − pc is the same, agreement between the data and the model

remains. We take the accurate agreement between the “snow dune” model and the melt pond

data along with the fact that the parameter r0 is very similar for melt pond images and the

LiDAR scans of the snow surface to be evidence that the horizontal characteristics of snow

are well-represented in our model even on large scales. Melt pond photographs are taken at

the end of summer, whereas ponds forming with a common water table on a snow-covered

surface would be consistent with ponds during early summer. However, since ponded ice

melts faster than bare ice and snow melts slower than bare ice, it is likely that the initial

snow topography is approximately preserved throughout the melt season. Nevertheless, this

difference in timing likely contributes to the fact that we estimated the percolation threshold

for real ponds to be between 0.3 and 0.4 (see Chapter 3), while the “snow dune” topography

predicts pc between 0.4 and 0.5 for different values of ρ. A lower percolation threshold for

real ponds could be due to the fact that ponds form channels as they drain during the later
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stages (Landy et al., 2014; Polashenski et al., 2012), thereby increasing the connectivity and

lowering pc.

5.S2 Detailed statistics of the synthetic “snow dune” topography

In this section, we first prove Eqs. 5.4, 5.5, and 5.7 that we showed in section 5.3. Then we

discuss the relation between the height distribution of the “snow dune” topography and the

gamma distribution.

Proof of Eqs. 5.4 and 5.5

Here we derive the recursion relation, Eq. 5.5, for the moments of the synthetic “snow

dune” topography. Equations 5.4 for the mean and the variance are then a corollary of

this result. This proof has two steps. The first is to show where the recursion relation

comes from, and the second is to find the moments of individual mounds. The first step will

turn out to be universal, while the second will contain elements that depend on the details

of the model. Throughout the derivation, we will use the notation 〈 ... 〉 for the mean of

some function of topography. This mean can equally be interpreted as the mean over the

domain or, since we are assuming that the domain is infinite, as the mean with respect to

the probability distributions of radii, ri, and locations, x0,i, of individual mounds. In this

section, we will only take ensemble averages to derive the theoretical moments of the “snow

dune” height distribution, whereas in the main text we took spatial averages to empirically

find the moments of computer-generated synthetic topographies.

First, we show where the recursion relation, Eq. 5.5, comes from. The “snow dune”

topography is a sum of individual mounds

hSD(x) =
N∑
i=1

hi(x) , (5.S2)
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where hi(x) is the height of the i-th mound hi(x) ≡ hm,0
ri
r0
e−(x−x0,i)

2/2r2
i . Therefore, the

n-th power of the topography is

hnSD(x) =
N∑

i1...in=1

hi1(x) ... hin(x) , (5.S3)

The n-th moment of the topography can then be found as 〈hnSD〉. However, before we can find

the mean of the above sum, we need to rearrange it into a different form. Since the mounds

are sized and placed independently, we can use the identity 〈hi(x)hj(x)〉 = 〈hi(x)〉〈hj(x)〉

for i 6= j, with 〈 ... 〉 being the ensemble average over all possible locations and radii of

mounds hi and hj . So, in the sum above (Eq. 5.S3), we need to distinguish between the

terms where i = j and the terms where i 6= j. To this end, we can first split the sum into a

term where all n indexes are equal and a term where at least one of the n indexes is different

from the others. We thus get

N∑
i1...in

hi1 ... hin =
N∑
i=1

hni +

N∑′

i;i1...in−1

hihi1 ... hin−1
, (5.S4)

where the prime on the second sum on the right hand side means that at least one of

i1 ... in−1 is not equal to the first index, i. It is now straightforward to take the average

of the first term where all the terms are equal, but the average of the second term is still

problematic. Since the second sum has at least one index different from from the first index

i, we can further split it into a sum that has exactly one index different from i and a sum

where there are at least two indexes different from i

N∑′

i,i1...in−1

hihi1 ... hin−1
= (n− 1)

N∑
i;j 6=i

hn−1
i hj +

N∑′′

i;i1...in−1

hihi1 ... hin−1
, (5.S5)

where now
∑′′

means that there are at least two terms among i1 ... in−1 not equal to i.
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The first sum above has exactly one term, j, not equal to i, and the factor (n−1) comes from

the fact that j can correspond to any of the i1 ... in−1 terms in the sum
∑′

hihi1 ... hin−1
.

The idea is then to continue splitting the primed sum in this way until we end up with a

sum where all the indexes are different. We do this as follows. After s steps, we end up with

a primed sum that has at least s terms among i1 ... in−1 not equal to i. We then split this

sum to get a sum where exactly s terms are not equal to i and a sum where at least s + 1

terms are not equal to i

N∑(s)

i,i1...in−1

hihi1 ... hin−1
=

(
n− 1

s

) N∑
i,j1 6=i,...js 6=i

hn−si hj1 ...hjs +

N∑(s+1)

i,i1...in−1

hihi1 ... hin−1
.

(5.S6)

Therefore, we end up with one term where none of j1 ... js are equal to i (note that there

is no condition on whether or not the indexes j1 ... js are equal to each other). The factor(n−1
s

)
comes from the number of ways that we can choose s indexes j1 ... js from the set

i1 ... in−1. Finally, after n − 1 steps, we arrive at the end of this process. The final term

is thus a sum where none of j1 ... jn−1 are equal to the first term, i. At this step, we can

proceed to take the average, 〈hnSD〉. Using the fact that in each sum, the first term, i, is

different than all the other terms, we get

〈
hnSD

〉
=

N∑
i=1

〈
hni
〉

+ ...+

(
n− 1

s

) N∑
i=1

〈
hn−si

〉〈 N∑
j1...js 6=i

hj1 ...hjs

〉
+

... +
N∑
i=1

〈
hi
〉〈 N∑

j1...jn−1 6=i
hj1 ...hjn−1

〉
.

(5.S7)

First, we can note here that terms 〈hn−si 〉 are equal for all i, since all mounds are drawn

from the same distribution. So, the terms
∑N
i=1〈h

n−s
i 〉 can really be replaced with N〈hn−s1 〉

(where h1 represents the first mound). Next, note that terms 〈
∑
hj1 ...hjs〉 are really just the

s-th moment of hSD, 〈
∑
hj1 ...hjs〉 = 〈hsSD〉. This is true even though the indexes j1 ... js
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are required to be different than i since, if the domain size is infinite, the number of mounds,

N , also tends to infinity, and any mean of the topography is the same whether we remove

one mound or not. Making a substitution j ≡ n− s, we finally get the recurrence relation

〈
hnSD

〉
= N

n∑
j=1

(
n− 1

n− j

)〈
h
j
1

〉〈
h
n−j
SD

〉
. (5.S8)

To complete the proof, we only need to find the moments of individual mounds, 〈h1(x)j〉.

For some quantity g that depends on radius r and position x0 the ensemble mean is given

by

〈g〉 =

∫
g(r,x0)fr(r)fx0(x0)drd2x0 , (5.S9)

where fr(r) is the exponential distribution of radii given by Eq. 5.2 and fx0(x0) is the

uniform distribution of positions that is uniform over the domain, fx0(x0) ≡ 1/L2, where L

is the domain size. We have that the j-th power of an individual mound is

h1(x)j = h
j
m,0

(r1
r0

)j
e−j(x−x0,1)2/2r2

1 . (5.S10)

The j-th moment of an individual mound is then

〈
h
j
1

〉
=

∫
fr(r1)fx0(x0,1)h

j
m,0

(r1
r0

)j
e−j(x−x0,1)2/2r2

1dr1d2x0,1 . (5.S11)

Assuming that L→∞, we can first evaluate the integral over x0,1

∫
fx0(x0,1)e−j(x−x0,1)2/2r2

1d2x0,1 =
1

L2

2πr2
1

j
. (5.S12)

The term
2πr2

1
j is simply the volume of a 2d Gaussian mound with a unit height and variance
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r2
1/j. Next, we can evaluate the integral over r1. We get

〈
h
j
1

〉
=

2πh
j
m,0

j

1

L2

∫ ∞
0

r
j+2
1

r
j+1
0

e−r1/r0dr1 =
2πh

j
m,0

j

r2
0

L2

∫ ∞
0

z2+je−zdz =
2πh

j
m,0

j

r2
0

L2
Γ(3+j) ,

(5.S13)

where Γ(n) is a gamma function. Using Γ(n) = (n− 1)! for integer n, we find

〈
h
j
1

〉
= 2πh

j
m,0

r2
0

L2

(2 + j)!

j
. (5.S14)

Moments of the individual mounds in Eq. 5.S8 are always multiplied by the number of

mounds, N , and this product yields N〈hj1〉 = 2πρh
j
m,0

(2+j)!
j . Finally, returning to Eq. 5.S8,

we retrieve Eq. 5.5

〈
hnSD

〉
= 2πρ

n∑
j=1

(
n− 1

n− j

)
(2 + j)!

j
h
j
m,0

〈
h
n−j
SD

〉
. (5.S15)

Equations 5.4 are simple consequences of the relations we derived here. In particular,

the mean of the topography is

〈
hSD

〉
= N〈h1〉 = 12πρhm,0 . (5.S16)

The variance is defined as σ(hSD)2 ≡ 〈h2
SD〉 − 〈hSD〉2. Using the recursion relation to find

〈h2
SD〉 and the relation for the mean we just derived, we get

σ(h2
SD)2 = 24πρh2

m,0 . (5.S17)

Proof of Eq. 5.7

Here we derive Eq. 5.7 for the height correlation function of the synthetic “snow dune”

topography. This proof follows very similar steps as the proof for the variance of the topog-
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raphy shown in the previous section. For this reason, we will only outline the proof and skip

some of the details.

We start with the definition of the height correlation function given by Eq. 5.6

Ch(l) ≡ 〈hSD(x)hSD(x + l)〉 − 〈hSD〉2

σ2(hSD)
. (5.S18)

Using the fact that hi and hj are independent for i 6= j, we can write the term 〈hSD(x)hSD(x+

l)〉 as a sum

〈hSD(x)hSD(x + l)〉 =
N∑

i,j=1

〈hi(x)hj(x + l)〉 =
N∑
i=1

〈hi(x)hi(x + l)〉+
N∑
i6=j
〈hi(x)〉〈hj(x + l)〉 ,

(5.S19)

Then, since the averages do not depend on which mound we are considering, and since

N � 1, we have

〈hSD(x)hSD(x + l)〉 = N〈h1(x)h1(x + l)〉+N(N − 1)〈h1〉2 ≈ N〈h1(x)h1(x + l)〉+ 〈hSD〉2 ,

(5.S20)

where we have used N(N − 1) ≈ N2 and N2〈h1〉2 = 〈hSD〉2 from the previous subsection.

We, therefore, only need to find the term 〈h1(x)h1(x + l)〉. Proceeding in the same way as

in the previous subsection, we have

〈h1(x)h1(x + l)〉 =

∫
fr(r1)fx0(x0,1)h2

m,0

(r1
r0

)2
e−((x−x0,1)2+(x+l−x0,1)2)/2r2

1dr1d2x0,1 .

(5.S21)

Reducing this integral into a manageable form involves similar steps as in the previous

subsection - first perform an integration over x0,1 and then change from integration over r1

to integration over z = r1/r0. We skip the detailed steps and simply show the result of these
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manipulations

〈h1(x)h1(x + l)〉 = πh2
m,0

r2
0

L2

∫ ∞
0

z4e−z−l
2/(2r0z)

2
dz . (5.S22)

Returning this into Eq. 5.S20 and Eq. 5.S18, and using the formula for the variance derived

in the previous subsection, we retrieve Eq. 5.7 for the autocorrelation function.

Relationship between the “snow dune” topography and the gamma distribu-

tion

We will now use the results from the previous section to explore the relationship between the

height distribution of the synthetic “snow dune” topography and the gamma distribution.

We will show that the two distributions are not the same but are qualitatively similar.

The gamma distribution has moments

〈
hn
〉

Γ = hn0
Γ(m+ k)

Γ(k)
= hn0k(k + 1)...(k + n− 1) , (5.S23)

where 〈...〉Γ is the mean with respect to the gamma distribution that has a scale parameter h0

and a shape parameter k. We can rewrite this in a form in which we can directly compare the

moments of the gamma distribution with the moments of the of the synthetic “snow dune”

height distribution. In particular, we use the observation that 〈hn〉Γ = h0(k+n−1)〈hn−1〉Γ

to write a recursion formula for the moments of the gamma distribution

〈
hn
〉

Γ = k

n∑
j=1

(
n− 1

n− j

)
h
j
0Γ(j)

〈
hn−j

〉
Γ . (5.S24)

Comparing this equation with the recursion formula for the moments of the “snow dune”

topography, Eq. 5.S8, we can see that they have exactly the same form. In particular, in

both cases 〈hn〉 =
∑
j aj
(n−1
n−j
)
〈hn−j〉, for some coefficients aj . The only difference is in
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the coefficients aj - for the “snow dune” topography, aj = N〈hj1〉, whereas for the gamma

distribution aj = kh
j
0Γ(j). Expressing the moments of individual mounds, 〈hj1〉 using Eq.

5.S14, and identifying ρ = k/(6π) and hm,0 = h0/2 (Eqs. 5.11), we find that for the

“snow dune” topography aj = N〈hj1〉 = kh
j
0

Γ(3+j)
3j2j

. Therefore the coefficients aj in both

distributions depend in the same way on parameters k and h0, and are only different in the

numerical constants. Moreover, “snow dune” topography and gamma distribution have the

same coefficients a1 and a2 by construction.

The similarity between the two distributions is not unexpected - the gamma distribution

is observed when the quantity of interest is a sum of k exponentially distributed, independent

random variables,
∑k
i=1 hi. This means that the gamma distribution will necessarily have

an expansion of the form Eq. 5.S8, which was derived only under the assumption that the

quantity we are interested in is a sum of independent random variables. In this recursion

relation for the gamma distribution, the moments of individual terms, 〈hj1〉, are estimated

with respect to the exponential distribution, 〈hj1〉Exp = h
j
0Γ(j). Therefore, the difference

between the two distributions comes only from the fact that the height of individual mounds

in the “snow dune” model is not exponentially distributed and therefore the moments 〈hj1〉

differ from those that enter the gamma distribution. The moments of individual mounds

are, however, affected by arbitrary choices in our model such as the distribution of radii of

individual mounds, and are therefore not robust.

5.S3 Ice heat conduction

In this section, we will derive Eqs. 5.12 to 5.16 for the heat flux conducted through the ice

under snow cover that is well-described with our “snow dune” model. We will also consider

heat conduction for arbitrary parameters η, Σ, and Λ
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Non-dimensional heat equation

First, we show that the conductive heat flux must be of the form stated in Eq. 5.12,

Fc = F0Φ(η,Σ,Λ).

As we stated in the main text, we are assuming that ice is a block of uniform thickness, H,

that ice and snow have fixed conductivities, ki and ks, that the snow cover is well-described

with our “snow dune” model, that the temperature at the ice-ocean interface is fixed at the

freezing point of salt water, Tf , that the temperature of the snow surface is fixed at the

temperature of the atmosphere, Ta, and that the temperature field, T , within the ice and

snow is in a steady state. Finally, we assume periodic boundary conditions in the horizontal.

We define the ice-ocean interface to be the plane z = −H, and the snow-ice interface to be

the plane z = 0. These assumptions are described by the following set of equations

∇2T = 0 , T
(
z = −H

)
= Tf , (5.S25)

T
(
z = hSD(x, y)

)
= Ta , ki

∂T

∂z

(
z = 0−

)
= ks

∂T

∂z

(
z = 0+) , (5.S26)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian, x and y are the horizontal coordinates, z is

the vertical coordinate, and hSD(x, y) is the snow depth. The last equation represents the

condition that the heat flux is continuous across the snow-ice interface.

At this point we make another simplifying assumption that we stated in the main text -

we assume that, within snow, heat is transported purely vertically so that, at steady state,

the temperature profile is linear, T (z > 0) = Ta +
( z
hSD(x,y)

− 1
)(
Ta− T (z = 0)

)
. With this

simplification, we only need to solve the heat equation within the rectangular ice domain.

In this case, the upper-surface boundary condition becomes ki
∂T
∂z (z = 0) = ks

Ta−T (z=0)
hSD(x,y)

.

Next, we non-dimensionalize the variables in the above equations as

θ ≡
T − Tf
Ta − Tf

, x̃ ≡ x

l0
, ỹ ≡ y

l0
, z̃ ≡ z

H
, h̃ ≡ hSD

〈hSD〉
. (5.S27)
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In terms of these non-dimensional variables and non-dimensional parameters, η = ki
ks
〈h〉
H ,

Σ =
σ(h)
〈h〉 , and, Λ = l0

H , introduced in Eq. 5.13, we can rewrite the heat equation as

1

Λ2

(∂2θ

∂x̃2
+
∂2θ

∂ỹ2

)
+
∂2θ

∂z̃2
= 0 , θ

(
z̃ = −1

)
= 0 ,

∂θ

∂z̃

(
z̃ = 0

)
=

1− θ(z̃ = 0)

ηh̃
.

(5.S28)

Therefore, the non-dimensional temperature, θ, can only depend on η, Λ, and the parameters

that determine the non-dimensional snow surface, h̃. If the snow surface is well-described

by our “snow dune” model, the statistics of the non-dimensional snow topography, h̃, can

only depend on Σ, since the mean is fixed to 1 and the typical dune radius, r0, is fixed by

rescaling the horizontal coordinates, x and y, by l0. So, if our “snow dune” model applies,

the spatially averaged statistics of θ can only depend on η, Λ, and Σ.

Heat flux through any surface characterized by a normal vector, n, within the ice can be

calculated as Fn = ki∇T ·n. In particular, flux through the snow-ice interface is ki∂T/∂z(z =

0). In terms of non-dimensional temperature, the flux is then F0∂θ/∂z̃(z̃ = 0), where

F0 ≡ ki
Tf−Ta
H , as in Eq. 5.13. The mean flux through the snow-ice interface is then

Fc = F0

〈∂θ
∂z̃

(z̃ = 0)
〉

, (5.S29)

where 〈...〉 stands for averaging along the horizontal. Since 〈∂θ/∂z̃(z̃ = 0)〉 can only depend

on η, Λ, and Σ, we have

Fc = F0Φ
(
η,Σ,Λ

)
, (5.S30)

and we recover Eq. 5.12.

Limiting behavior

We now solve the non-dimensional heat equation for the limits Σ→ 0, Λ→∞, and Λ→ 0.

These limits yield non-dimensional heat flux assuming a uniform snow cover, Φu, a purely
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vertical heat transport, Φv, and a dominantly horizontal heat transport, Φh.

1. In the limit of Σ → 0, the snow cover is uniform and h̃ = 1 everywhere. In this case,

heat conduction is purely vertical and the temperature profile is linear, θ = θ0(z̃ + 1),

where θ0 is the non-dimensional temperature at the snow-ice interface and we used

the bottom boundary condition, θ(z̃ = −1) = 0. We obtain θ0 from the top boundary

condition, θ0 = 1−θ0
η , and thus find θ0 = 1

1+η . With that, the non-dimensional flux

through the ice under a uniform snow cover is Φu = dθ
dz̃ = θ0. We thus have

Φu =
1

1 + η
. (5.S31)

2. In the limit Λ → ∞, the horizontal extent of the snow features is much larger than

the thickness of the ice. So, heat will again be transported vertically, but the temper-

ature profile within the ice will be set by the local snow height. In other words, the

temperature profile will be θ = θ0
(
x̃, ỹ
)
(z̃ + 1), where θ0

(
x̃, ỹ
)

is the non-dimensional

temperature at the snow-ice interface at the point x̃, ỹ. As in the previous case, we

find θ0
(
x̃, ỹ
)

from the top boundary condition at x̃, ỹ, θ0
(
x̃, ỹ
)

= 1
1+ηh̃(x̃,ỹ)

. Since the

local flux is dθ
dz̃ = θ0

(
x̃, ỹ
)
, we find

Φv =
〈dθ

dz̃
(z̃ = 0)

〉
=
〈 1

1 + ηh̃

〉
=

∫ ∞
0

fΓ(h̃)

1 + ηh̃
dh̃ , (5.S32)

where we used the fact that the height distribution of our “snow dune” topography is

well-described with a gamma distribution. Since the non-dimensional snow topography,

h̃, has a mean equal to 1 and a standard deviation equal to Σ, the parameters of this

gamma distribution are, according to Eq. 5.10, k = Σ−2 and h0 = Σ2. Thus, we

recover Eq. 5.15 for the purely vertical heat transport.

3. In the limit Λ → 0, the horizontal extent of the snow features is much smaller than
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the thickness of the ice. In this case, temperature must be uniform in the horizontal,

i.e. θ = θ(z̃). In the vertical, the temperature profile must again be linear, since

the mean heat flux across any horizontal plane within the ice must be constant if the

temperature is in a steady state. Thus, again, the temperature must be of the form

θ = θ0(z̃ + 1). However, in this case, the snow depth is variable, and, if θ0 is constant

in the horizontal, the top boundary condition cannot be met at every point along the

snow-ice interface. However, we can still determine θ0 by requiring that the total flux

conducted across the snow-ice interface remains constant. At each point along the

snow-ice interface, the local non-dimensional flux through the snow is 1−θ0

ηh̃(x̃,ỹ)
. So, the

mean non-dimensional flux through the upper boundary is 1−θ0
η

〈 1
h̃

〉
. On the other

hand, using θ = θ0(z̃ + 1), this flux must be equal to dθ
dz̃ = θ0. Thus, equating the two

fluxes, θ0 = 1−θ0
η

〈 1
h̃

〉
, we find θ0 =

〈h̃−1〉
〈h̃−1〉+1

. Thus, the non-dimensional flux in the

limit Λ→ 0 is

Φh =

〈
h̃−1

〉〈
h̃−1

〉
+ 1

. (5.S33)

If the snow-depth distribution is well-described with a gamma distribution with a shape

parameter k, the average 〈h̃−1〉 is equal to k−1
k for k ≥ 1. Since, in our case, k = Σ−2,

we have

Φh =
1

1 + η(1− Σ2)
, (5.S34)

and we recover Eq. 5.16. For k ≤ 1, 〈h̃−1〉 is infinite, and Eq. 5.S34 is no longer valid.

Nevertheless, Eq. 5.S33 is still valid and implies that Φh = 1 for k > 1, meaning that

the heat flux is the same as if there were no snow on top of the ice. Clearly, for Λ = 0,

we could not satisfy the upper boundary condition at every point along the interface.

Nevertheless, for any small but non-zero Λ, a boundary layer of thickness on the order

Λ develops within the ice and near the snow-ice interface. Within this boundary layer,

vertical heat transport dominates, and the temperature varies along the horizontal to
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match the upper boundary condition at every point.

Finite Λ

Finally, we derive Eq. 5.14 for the non-dimensional flux Φ assuming an arbitrary Λ. To

understand how the heat transport changes as we increase Λ from 0 to ∞, we numerically

solved the non-dimensional heat conduction problem, Eqs. 5.S28, on a 50x50x20 grid using

a finite volume method. We set the typical mound radius, r0, to be 1 grid point so that the

total domain is roughly 5 correlation lengths wide. For each set of parameters η and Σ, we

sweeped the parameter Λ from Λ = 0.01 to Λ = 5. Moreover, for each combination of η,

Σ, and Λ we solved the heat conduction problem for 100 random realizations of the “snow

dune” topography. For each of these realization, we calculated the mean heat flux across

the domain and then found the mean flux across these 100 realizations. We chose to do

this rather than to increase the grid size since our numerical scheme becomes increasingly

inefficient for even modest increases in grid size.

The numerical scheme is especially inefficient at small Λ. This is a problem, since, for

small Λ, high vertical resolution is required to resolve the boundary layer near the snow-ice

interface we discussed in the previous subsection. We did not attempt to resolve this issue

in a principled way, and simply carried out our low-resolution estimates. However, to ensure

discrepancies at small Λ between the numerical results and the theoretical prediction given

by Eq. 5.S34 are due to low resolution, we carried out one trial run at Λ = 0.01 (with

η = 1 and Σ = 0.75) where we kept the snow topography fixed with a horizontal resolution

of 25x25 and progressively increased the vertical resolution from 25 to 800 grid points. We

found that with the vertical resolution of 25 grid points, the flux from numerical calculations

was around 0.94Φh, and became closer and closer to Φh with increasing resolution. At a

resolution of 800 vertical grid points the numerical flux was around 0.993Φh found using Eq.

5.S33.
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Figure 5.S2: a) The ratio ϕ = Φ−Φv
Φh−Φv

as a function of the non-dimensional parameter, Λ.

Each dot represents the average ϕ across an ensemble of 100 runs with different random
realizations of the “snow dune” topography and the same values of non-dimensional param-
eters. Since the simulated ratio ϕ does not tend to 1 (see the inset) as Λ tends to 0 due to
low resolution of our simulations, the simulations are normalized so that ϕ(Λ = 0) = 1. The
solid red curve represents the function (1 + cΛ)−2 with c ≈ 0.83. Inset shows the simulation
results before normalizing to ϕ(Λ = 0) = 1. b) The fraction of the flux due to snow-depth

variability, Φ−Φu
Φ as a function of non-dimensional snow roughness Σ. The flux Φ is cal-

culated using Eq. 5.S35 and Φu is calculated using Eq. 5.S31. Different colors stand for
different non-dimensional depth, η. Thick colored lines represent the heat flux with purely
vertical heat transport (Λ → ∞), while the colored shadings represent the flux attainable
when the horizontal heat diffusion is included (Λ < ∞). Thin dashed lines represent the
heat flux for Λ equal to 8, 2, 0.5, 0.125, and 0. The stars represent the fraction of the flux
due to snow variability under the measured LiDAR topographies of Polashenski et al. (2012)
with parameters given in Table 5.2.
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Since we know that in the limit Λ→ 0 the non-dimensional flux must approach Φh and

that in the limit Λ → ∞, it must approach Φv, we consider the ratio ϕ ≡ Φ−Φv
Φh−Φv

, where Φ

is the numerical flux, calculated at finite Λ. This ratio must decrease from 1 at Λ = 0 to

0 for large Λ. We plot this ratio in Fig. 5.S2a. The simulated ϕ, however, does not reach

1 at small Λ (see inset of Fig. 5.S2a). In our single trial where we progressively increased

the vertical resolution, this ratio was roughly 0.73 at a resolution of 25 vertical grid points,

consistent with ϕ in the inset of Fig. 5.S2 we obtained in our low resolution runs. The ratio

increased with increasing resolution, reaching roughly 0.97 at a resolution of 800 vertical

grid points, thus consistent with Eqs. 5.S32 and 5.S34 being valid. For this reason, we

believe that our ensemble runs are at odds with predictions mainly due to low resolution of

our simulations. Thus, we normalized the simulation results so that ϕ(Λ = 0) = 1. This is

shown in Fig. 5.S2a. We can see that in this case, the simulation results for both values

of the parameters η and Σ roughly fall on the same curve that is well-fit with a function

(1 + cΛ)−2 where c ≈ 0.83. With this, we get

Φ
(
η,Σ,Λ

)
= Φv +

Φh − Φv
(1 + cΛ)2

, (5.S35)

and we recover Eq. 5.14.

Exploring the parameter space

Even though the horizontal heat transport does not contribute significantly to heat conduc-

tion on flat ice, it may still be of interest to understand how it might contribute in principle.

Here, we use Eq. 5.S35 to briefly explore how the heat flux behaves when changing param-

eters η, Σ, and Λ. We will focus our discussion on the fraction of the heat flux that is due

to snow-depth variability, Φ−Φu
Φ , where we find Φ using Eq. 5.S35 and we find Φu using Eq.

5.S31.
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Our main results here are summarized in Fig. 5.S2b. We find that the amount of flux

that can be attributed to snow-depth variability strongly increases with the snow roughness,

Σ, and also increases with the non-dimensional snow depth, η. We find that it is roughly

proportional to Σ2, although this dependence is highly approximate. The sensitivity to other

parameters also increases with Σ. The effect of horizontal heat transport may be be large

in principle: e.g. decreasing Λ from ∼ 10 to 0.1 would roughly double the effect of snow

variability on ice with the same η and Σ as 2009N LiDAR measurements. This is even more

pronounced at larger Σ and smaller η. As we have discussed in the previously, for Σ ≥ 1,

there exists a possibility that snow is not registered at all if Λ is small enough. This occurs

because, if Σ ≥ 1 a certain fraction of the ice is snow-free, so that if horizontal heat transport

is efficient enough, all of the heat is exported through these regions.

5.S4 Deriving stage I pond evolution

In this section, we derive Eqs. 5.17 to 5.19 for pond evolution during stage I. We also develop

a higher order approximation for pond coverage evolution and we test these approximations

against a 2d model of pond evolution. We use the notation ẋ ≡ dx
dt for the rate of change of

a quantity x, as in section 5.6.

Proof of Eqs. 5.17 and 5.18

As we stated in section 5.6, we are assuming that snow is fully permeable, that there exists a

common water table below which the snow is completely saturated with water, that underly-

ing ice is impermeable and initially flat, that the initial snow topography is well-described by

our “snow dune” topography, that no meltwater is lost from the domain, that snow, bare ice,

ponded ice, and ponded snow (water-covered snow) melt at different rates that are constant

in space and time, and that both snow and ice melt only at the surface.

We denote the ice and snow topography as h(x), which represents the vertical coordinate
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of snow, or ice if there is no snow on top. Because we have assumed that snow is permeable,

there exists a common water level, w, such that all points with h(x) < w are ponded. Since

we have assumed that the underlying ice is initially flat, there also exists an initial common

ice level, which we can define as h = 0, such that all points with h(x) < 0 have no snow on

top of ice. Because of this assumption, the depth of snow in snow-covered regions, h(x) > 0,

is given by h(x). Since we have assumed that meltwater cannot be lost during stage I, pond

coverage can only grow during this stage. We can see from the assumptions above that there

can be no regions of bare ice (ice that is snow-free and pond-free). Therefore, it is enough

to consider the melt of bare snow, ponded snow, and ponded ice.

Since we have defined snow-free ice regions to be h(x) < 0 and pond regions to be

h(x) < w, where w is the height of the water table, we have

pi =

∫ 0

−∞
f(h, t)dh , (5.S36)

p =

∫ w

−∞
f(h, t)dh , (5.S37)

where pi is the ice fraction, p is the pond fraction, and f(h, t) is the surface height distribution

that, due to different regions melting at different rates, depends on time, t. Since, under our

assumptions, there are no regions of bare ice, bare snow fraction can be found as 1− p and

ponded snow fraction as p− pi.

By knowing the melt rates of different regions of the ice, we can find the rate of change

of the distribution f . Let us, for the moment, assume that the ice melt rate ḣ is an arbitrary

function of height, ḣ = ḣ(h). We are interested in finding the the quantity f(h, t+dt)dh, i.e.,

the fraction of the ice surface with a height between h and h+ dh at a time t+ dt. To first

order in dt, the surface with a height h at time t+dt used to be at a height h− ḣ(h)dt, while

the surface at with a height h+dh at time t+dt used to be at a height h+dh− ḣ(h+dh)dt,

220



where we are assuming a sign convention ḣ < 0. So, we have

f(h, t+ dt)dh = f(h− ḣdt, t)dh2 , (5.S38)

for some height range dh2 that may be different than the range dh because the melt rate

ḣ(h) may be different than the melt rate ḣ(h + dh). In particular, dh2 is the difference

between the heights h+ dh− ḣ(h+ dh)dt and h− ḣ(h)dt, so to first order in dt, we have

dh2 = dh(1− dt
dḣ

dh
) . (5.S39)

Combining Eqs. 5.S38 and 5.S39, we find

f(h, t+ dt) = f(h− ḣdt, t)(1− dt
dḣ

dh
) . (5.S40)

Expanding this equation to first order in dt, we find the conservation law for the height

probability distribution

∂f

∂t
= −∂(fḣ)

∂h
. (5.S41)

Note that, because ice is melting (ḣ < 0), it is the melt rate slightly above h that enters

the conservation law, Eq. 5.S41. This distinction will be important when considering the

rates of change of coverage fractions due to the discontinuous change in melt rates when the

surface type changes.

We can now express the rate of change of the pond coverage fraction as

ṗ =
d

dt

∫ w

−∞
f(h, t)dh = f(w, t)

(
ẇ − ḣs

)
, (5.S42)

where we have used Eqs. 5.S37 and 5.S41 and the fact that, since w > 0, the melt rate

slightly above the water level, w, is the snow melt rate, ḣ(w + dh) = ḣs. Since, under our
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assumptions, all non-ponded regions melt at the same constant rate, the height distribution

for h > w does not change shape and is simply shifted downwards as the time progresses,

and we can express f(w, t) = f(w − ḣst). At time t = 0, this distribution is well-described

by the gamma distribution, so we find

ṗ = fΓ(w − ḣst)
(
ẇ − ḣs

)
. (5.S43)

Therefore, to close this equation, we only need to express ẇ.

The water level can be expressed in terms of the water volume, Vw. Because snow is

porous, some fraction of the water is stored in the saturated snow. We consider all snow

below w to be saturated and all of the pores to be filled with water. For this reason, 1 m3

of saturated snow will contain 1− rs meters cubed of water, where rs = ρs
ρi

. The volume of

water can then be expressed as

Vw = Vpi + Vps + Vbs , (5.S44)

where Vpi, Vps, and Vbs are the volumes of water contained in regions of ponded ice, ponded

snow, and bare snow. A small element of area, ∆A, of each of these categories then contains

the following amounts of water

∆Vpi = (w − h(x))∆A , (5.S45)

∆Vps =
(

(w − h(x)) + h(x)(1− rs)
)

∆A = (w − rsh(x))∆A , (5.S46)

∆Vbs = w(1− rs)∆A . (5.S47)
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We can then find the total volumes of water in these regions as

Vpi = Apiw − A
∫ 0

−∞
f(h, t)hdh , (5.S48)

Vps = Apsw − Ars
∫ w

0
f(h, t)hdh , (5.S49)

Vbs = Absw(1− rs) , (5.S50)

where A is the total area of the domain, and Api, Aps, and Abs are areas of ponded ice,

ponded snow, and bare snow. After some rearrangement, this finally yields the volume of

water as

Vw

A
= w(1− rs(1− p))− h̄(−∞, 0)− rsh̄(0, w) , (5.S51)

where we have introduced a shorthand notation, h̄(a, b) ≡
∫ b
a f(h, t)hdh. To find the rate of

change of w, we need to find the rates of change of h̄. In general, we have

˙̄h(a, b) = bḃf(b, t)− aȧf(a, t) +

∫ b

a
ḟ(h, t)hdh . (5.S52)

Applying this rule along with Eq. 5.S41, applying partial integration once, and using Eqs.

5.S36, 5.S37, and 5.S42, we get

˙̄h(−∞, 0) = ḣpipi , (5.S53)

˙̄h(0, w) = wṗ+ ḣps(p− pi) , (5.S54)

where ḣpi and ḣps are melt rates of ponded ice and ponded snow. Therefore, we find the rate

of change of water volume expressed in terms of the rate of change of water level, coverage

fractions and melt rates of different regions of the ice as

V̇w

A
= ẇ(1− rs(1− p))− ḣpipi − rsḣps(p− pi) . (5.S55)
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On the other hand, we can express the meltwater production rate using the rates of melt of

different regions of the ice

V̇w

A
= − 1

ρw

(
ρsḣs(1− p) + ρsḣps(p− pi) + ρipiḣpi

)
. (5.S56)

Finally, using Eqs. 5.S55 and 5.S56, we can express the rate of change of the water level as

ẇ = −
rirs(1− p)ḣs − (1− ri)

[
rspḣps + pi(ḣpi − rsḣps)

]
1− rs(1− p)

. (5.S57)

This, together with Eq. 5.S43, represents a solution to pond coverage evolution that makes

no approximations under the assumptions stated at the beginning of this section. However,

this system of equations is not closed since it still depends on the fraction of ponded ice, pi.

So to have a complete solution, Eqs. 5.S43 and 5.S57 would have to be supplemented with

an equation for the evolution of pi, which could be achieved by evolving the distribution

f(h, t) according to Eq. 5.S41. This would, however, complicate matters significantly, and

we will now show how this can be avoided with an approximation which detracts very little

from the accuracy of the solution.

Firstly, note that, since ice and water have similar densities, ri = 0.9 ≈ 1, making the

second term in Eq. 5.S57, proportional to (1−ri), small compared to the first term. Secondly,

the first term is proportional to (1 − p) while the second term is proportional to p which

means that during initial pond growth, the significance of the second term is additionally

diminished. Therefore, the second term only becomes important when p ∼ 1, which is rarely

observed in real ponds. By simply neglecting the second term, we get Eqs. 5.17 and 5.18

discussed in section 5.6

ẇ ≈ − rirs(1−p)
1−rs(1−p) ḣs , (5.S58)

ṗ = fΓ(w − ḣst)
(
ẇ − ḣs

)
, (5.S59)
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We show in section 5.S4 that this approximation is very good at the beginning of the melt

season and shows a slight deviation when the pond coverage becomes high enough (Fig.

5.S3).

Including pond drainage

We now note how to include limited drainage during stage I to get Eq. 5.19. If drainage of

Q cm per day occurs, this will modify the water balance equation, Eq. 5.S56. Simply adding

a term −Q to V̇w
A in Eq. 5.S56 and following through the same steps as before yields the

correct equation. In this case, the water level equation after neglecting the term proportional

to pi becomes

ẇ = −rirs(1− p)ḣs +Q

1− rs(1− p)
, (5.S60)

as discussed in section 5.6. Q can be made a function of pond coverage, such that ponds

only drain above the percolation threshold. As was also discussed in section 5.6, drainage

makes it possible for the water level to decrease. This can lead to exposing regions of bare

ice and topography that was altered by differential melting, which makes it impossible to

use the height distribution fΓ. To avoid this, it is sufficient that ẇ− ḣs > 0 and that w > 0.

Invariants of Eqs. 5.17 and 5.18

Finally, we will explain the remark we made in section 5.6 that the pond evolution is un-

changed by increasing the snow melt rate and the volume of snow by the same factor. That

is to say, Eqs. 5.17 and 5.18 are invariant under ḣs → aḣs and h(x) → ah(x). First, we

note that the rate of change of water level, ẇ, is proportional to the snow melt rate, ḣs, so

that ẇ → aẇ when ḣs → aḣs, assuming that the pond coverage does not change. From here

and using Eq. 5.S43, it follows that ṗ→ afΓ
(
a(w− ḣst)

)(
ẇ− ḣs

)
when ḣs → aḣs. Second,

from the definition of the Gamma distribution (Eq. 5.9), we can see that when the scale, h0,
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transforms as h0 → ah0, the gamma distribution transforms as fΓ(x) → 1
afΓ(x/a). Equa-

tion 5.10 relates h0 to the mean and the variance of the surface height as h0 = σ2(h)/〈h〉,

from which it follows that changing the surface height as h(x)→ ah(x) leads to h0 → ah0.

Combining the transformation properties of the gamma distribution under h(x) → ah(x)

and the transformation properties of the water level under ḣs → aḣs, we find that the pond

coverage evolution described by ṗ is unchanged.

Second-order approximation

The approximation we made to get Eq. 5.S58 can be improved by noting that the term

proportional to pi in Eq. 5.S57 is a difference between melt rates of different types of

ponded surface, ḣpi− rsḣps. Expressing this difference in terms of heat fluxes, we can see it

is equal to (αps − αpi)
Fsol
lmρi

, where αps and αpi are the albedos of ponded snow and ponded

ice. Therefore, if ponded snow and ponded ice have similar albedos, this difference is small.

For this reason, it is justified to neglect the term proportional to pi in Eq. 5.S57. Under this

approximation, we get a closed system of equations

ẇ = −
rirs(1− p)ḣs − (1− ri)rspḣps

1− rs(1− p)
, (5.S61)

ṗ = fΓ(w − ḣst)
(
ẇ − ḣs

)
. (5.S62)

In the next subsection, we show that these equations are nearly indistinguishable from the

full 2d model. Equations 5.S61 and 5.S62 are as simple to solve as Eqs. 5.S58 and 5.S59, but

we chose to focus on Eqs. 5.S58 and 5.S59 in section 5.6 since they highlight the dominant

role of snow melt rate. We can add drainage in this apporximation in the same way as in

the previous subsection

ẇ = −
rirs(1− p)ḣs − (1− ri)rspḣps +Q

1− rs(1− p)
, (5.S63)
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Including additional details is also possible within this framework. For example, if melt

rates change with time all of the derived evolution equations can still be used, except that

the term ḣst entering fΓ in Eq. 5.S43 should be replaced with 〈ḣs〉t, where 〈ḣs〉 means mean

snow melt rate up to time t.

Testing the analytic model

The assumptions stated at the beginning define a model that can be solved numerically

on the full 2d topography with all of the details of the topography included. In this case,

we initiate the model by generating a “snow dune” topography with a desired mean and

variance. Then, at each time step, we find the water level, use it to find regions of ponded

ice and ponded snow, update the topography by melting different regions of the surface at

their prescribed rates, find the volume of water generated, and, finally, update the water

level again. We show the results of these simulations as colored lines in Fig. 5.S3.

In Figs. 5.S3, we compare the simple estimate, Eqs. 5.S58 and 5.S59 (red dashed lines),

and the second order estimate, Eqs 5.S61 and 5.S62 (red dotted lines), with the solutions to

the full 2d model (colored lines). We can see that the simple estimate is a good approximation

to the full 2d model in the beginning and shows slight discrepancy at large p, as expected.

We can also see that the second-order approximation is nearly indistinguishable from the

full 2d solutions.
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Figure 5.S3: Pond coverage evolution during stage I for a variety of model parameters. The
solid lines are solutions to the full stage I 2d model on a “snow dune” topography for different
model parameters, the red dashed lines are solutions to Eqs. 5.S58 and 5.S59, while the red
dotted lines are solutions to Eqs. 5.S61 and 5.S62. As in Fig. 5.5, in each panel, we change
one parameter, while we keep the others fixed at default values ḣs = 4 cm day−1, rs = 0.4,
σ(h) = 0.05 m, and k = 4 a) Pond coverage evolution for different snow melt rates, ḣs.
b) Pond coverage evolution for different snow to ice density ratios, rs. c) Pond coverage
evolution on topographies with different snow-depth standard deviations, σ(h). d) Pond
coverage evolution on topographies with different shape parameters, k.
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CHAPTER 6

CONCLUSIONS

In this thesis, we studied Arctic sea ice melt ponds using idealized models with the goals of

providing a deeper understanding into melt pond evolution, providing accurate and compu-

tationally inexpensive methods for making estimates about melt pond coverage, and making

robust predictions under varying environmental conditions. We showed that pond coverage

evolution as well as pond geometry throughout the majority of the melt season can be under-

stood using these simple models without sacrificing the accuracy or realism of significantly

more complicated higher-dimensional models. However, more work is still needed in order

to provide a fully unified picture of melt pond evolution. For example, understanding the

hole formation physics, the formation of connecting channels between ponds during stage II,

and lateral and enhanced melt during stage III is necessary to fully connect different pond

evolution stages and accurately relate pond evolution to physical parameters. Under global

warming many parameters that control pond evolution, such as ice thickness or radiative

fluxes, will likely change. Thus, it is important to correctly understand the relationship

between ponds and these parameters in order to correctly capture the ice albedo feedback

under a warming scenario. It may be possible to exploit the natural spatial and temporal

variability in these parameters across the Arctic to validate and improve the predictions of

our models.

Chapters of this thesis correspond to papers published over a period of more than five

years. As such, the assumptions and parameter values used in different chapters are slightly

different. Nevertheless, the conclusions of all the chapters are consistent with each other. In

particular, the results of Chapters 4 and 5 follow directly from the findings of Chapter 3.

Chapter 2 explores stage III of pond evolution which is revisited in Chapter 4. Nevertheless,

the conclusions of these two chapters do not overlap much since Chapter 2 addresses the ef-

fects of enhanced and lateral melt, whereas Chapter 4 addresses the processes that determine
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the ice topography which controls pond evolution during stage III and its relation to stage

II of pond evolution. Below, we summarize the main conclusions of each of the chapters.

In Chapter 2, we studied the late-summer pond coverage evolution, assuming that ice is

fully permeable. Our findings include:

• Pond coverage evolution can be estimated by solving two uncoupled ODEs that are

controlled by the initial hypsographic curve and four parameters that govern the rates

of melt of ponded ice, bare ice, ice bottom, and enhanced melting near the pond edge.

• Under a global warming scenario, ice loss due to pond feedback is likely comparable

to ice loss due to direct forcing.

• Pond growth is more sensitive to changes in bare ice albedo than to pond albedo.

• If freeboard sinking is suppressed by topography, as is likely the case on multi-year ice,

enhanced melting near the pond edge becomes the dominant mode of pond growth. In

this case, pond evolution likely depends strongly on the dependence of ice albedo on

height above sea level.

• The complicated physics of lateral melting can be summarized by a single non-dimensional

constant that relates the lateral melt flux to the flux used for melting the pond bottoms.

In Chapter 3, we studied melt pond geometry. By analyzing hundreds of thousands of

ponds derived from aerial photographs of sea ice taken during the SHEBA and HOTRAX

missions, we found that:

• Pond geometry can be captured with a simple model that represents ponds as voids

that surround randomly sized and placed circles that represent snow dunes. Pond size

distribution, fractal dimension as a function of pond size, the two-point correlation

function, and the cluster correlation function can all be accurately reproduced over the
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entire observational range of more than 6 orders of magnitude by tuning only the two

parameters of this model: the typical circle radius and the pond coverage fraction.

• Late summer ponds are organized close to the critical threshold of the percolation

transition.

• For both study years, pond length-scale as measured by the two-point correlation

function is remarkably constant.

In Chapter 4, we explained the observation made in Chapter 3 that late-summer ponds

are organized close to the percolation threshold. Using a model where holes open at random

locations and drain ponds that exist on a randomly generated ice topography, we show that:

• The percolation threshold of 0.3-0.5 is an upper bound on pond coverage following

pond drainage.

• Pond drainage is universal in that it does not depend on the details of the underlying

topography, but rather only on several aggregate parameters. A universal curve, that

can be analytically calculated, determines the pond fraction when a certain number of

holes is open on the surface.

• The universal curve determines pond evolution with time during stage II when ice melt

is included. All of the parameters of the equation can be related to measurable ice

properties.

• Assuming that ponds are approximately level during stage II, that pond coverage

only decreases during stage II and only increases during stage III, and that lateral or

enhanced melt does not occur, the same universal curve governs pond evolution during

stage III.

• Pond coverage is highly sensitive to physical properties of ice - even a 1% measurement

error in physical parameters may lead to a 10% error in pond coverage. The most
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uncertain parameter that enters the formula for pond evolution is the timescale of hole

opening. Therefore, to gain a better understanding of pond evolution, the the hole

formation physics must be better understood.

In Chapter 5, we generalized the void model of Chapter 3. We created a continuous

“snow dune” topography by representing snow dunes as Gaussian mounds. We found that:

• The pre-melt snow depth distribution on undeformed ice as measured by detailed

LiDAR scans is nearly indistinguishable from the synthetic “snow dune” topography

height distribution that is well-fit with a Gamma distribution. Horizontal statistics of

the snow topography on undeformed ice is also well-captured by the synthetic “snow

dune” topography. This agreement becomes worse when ice is deformed.

• This synthetic surface is fully characterized by 3 parameters - mean snow depth, snow

roughness, and the the horizontal correlation length. Therefore, knowing these three

parameters is enough to fully characterize the snow surface on undeformed ice.

• The synthetic “snow dune” model allows the conductive heat flux through the ice under

a realistic snow cover to be approximated analytically.

• The fact that the snow-depth distribution is well-fit with a Gamma distribution allows

pond coverage evolution during stage I to be analytically calculated. This analytic

model yields a simple criterion for whether ponds will develop in the summer or not.

This work shows that Arctic sea ice melt ponds can be described accurately and ana-

lytically. This will allow melt ponds to be examined more rigorously and understood more

deeply. In this way, better parameterizations of sea ice albedo in large-scale climate models

may be developed which, in turn, may lead to improving sea ice predictions. Finally, our

model developed in Chapter 4 represents a novel mechanism for organization towards the

percolation threshold, that, due to its universality, may have application to a broader range

of natural phenomena.
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Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J., Merkouriadi, I., and Haapala, J.
(2018). A distributed snow-evolution model for sea-ice applications (snowmodel). Journal
of Geophysical Research: Oceans, 123(5):3786–3810.
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