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2-RDM CASCI and CASSCF, CASCI and CASSCF, and pair 2-RDM CASCI
and CASSCF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The energies of p-benzyne using the variational 2-RDM method and the pair
2-RDM method both with CASCI and CASSCF. . . . . . . . . . . . . . . . . . 43

3.3 The occupation numbers of p-benzyne using the variational 2-RDM method and
the pair 2-RDM method both with CASCI and CASSCF. . . . . . . . . . . . . . 43

3.4 The occupation numbers of Bis-Cobalt complex using pair 2-RDM CASCI and
CASSCF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 The occupation numbers of FeMOCO using pair 2-RDM CASCI and CASSCF in
[30,30] and [80,80] active spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 The first 8 occupation numbers of F2, N2, and CO are presented at 0.0 fs where
they have their time-independent Hartree-Fock values and at 2.0 fs after evolu-
tion of the Liouville equation in the presence of environmental noise. When the
Lindbladian matrix 1C is selected to be Hermitian, the occupation numbers re-
main between 0 and 1. In contrast, when the Lindbladian matrix 1C is selected
to be non-Hermitian, the highest occupation numbers increase in value to violate
the Pauli exclusion principle dramatically by 2 fs. . . . . . . . . . . . . . . . . . 70

viii



ACKNOWLEDGMENTS

First, I’d like to thank David Mazziotti for his mentorship and encouragement throughout

this degree, none of this work would have been possible without his help and support. I

would also like to thank all of the other members of the Mazziotti group that I had the

chance to work with: Shrikant, Eric, Andrew, Nick, Chad, Charles, Romit, Erica, Valentine,

Manas, Anthony, Ali, Scott, Simon, Nik, LeeAnn, Shiva, Shayan, Claire, Alison, Lexie, and

Olivia.

I’d like to thank my other committee members, Prof. Stuart Rice and Prof. David

Schuster, for scientific discussions and career advice over the past few years. I would also

like to thank the many people in the Chemistry Department and the James Franck Institute

who hold this place together and make it such a great place to work, including Vera, Melinda,

Maria, Brenda, Elizabeth, and John.

A big thank you to the many wonderful friends I’ve made here who have been incredibly

supportive and have made this whole experience a lot of fun: Memo, Ali, Cat, Elle, Anthony,

Maggie, Kelliann, Ziwei, Yining, Jaehyeok, Dan, Darren, Tim, Olivia, Chi-Jui, Donghyuk,

Huw, Vera, Jeronimo, and Aixa.

And finally a thank you to my family, Renee, John, and Rowan, whose support and

encouragement made this degree possible.

ix



ABSTRACT

Studying electronic behaviour, whether it’s electronic structure or dynamics, is crucial to

better understanding many physical and chemical phenomena. While traditional wavefunc-

tion methods have been successful for a variety of systems, the computational cost can be

prohibitive. A different approach is to use the reduced density matrix (RDM) perspective,

which allows for a decrease in computational cost without sacrificing accuracy. Here, the

RDM perspective is used to consider two different problems: reducing the computational

cost of the variational 2-electron reduced density matrix method and generalizing the treat-

ment of open quantum systems to treat systems of multiple fermions. To approach the first

problem, I will outline several approximations to the Schödinger equation, with a particular

focus on the variational 2-RDM method constrained to the pair space. I will then present

results using this method with orbital localization to recover size extensivity in molecular

and polymer chains. Finally, I will use this method in conjunction with the complete active

space self-consistent field method to analyze strong correlation in systems up to 80 electrons

in 80 orbitals. For the second problem, I derive constraints on the Lindbladian matrices

to generalize the Lindblad treatment of Markovian open quantum systems to treat systems

of multiple fermions. I then generalize the Lindblad theory to treat non-Markovian open

quantum systems, and introduce further constraints to generalize this method to treat sys-

tems of multiple fermions. Both of these projects take steps towards more efficient and more

accurate use of reduced density matrix mechanics to treat problems in electronic structure

and dynamics.
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CHAPTER 1

INTRODUCTION

1.1 Wavefunction Methods

The state of a quantum system can be found through the time-independent, non-relativistic

Schrödinger equation,

ĤΨn = EnΨn, (1.1)

where Ĥ is the Hamiltonian, En are the stationary-state energies, and Ψn are the wave

functions[1]. While the N -electron wavefunction contains all the elctronic structure infor-

mation, the electronic Schrödinger equation can only be solved for one-electron systems. For

an arbitrary N -electron system, approximation methods must be used to obtain energy and

state solutions. One common assumption that will be invoked throughout this thesis is the

Born-Oppenheimer approximation, which allows us to ignore nuclear motion and just focus

on the electronic chemistry[1].

The simplest approximation is the Hartree-Fock method which allows treatment of multi-

ple electrons through use of a mean field approximation. This implies that each electron only

feels the repulsion from the mean field of the other electrons. The Hartree-Fock wavefunction

can be represented as a single Slater determinant,

|ΨHF 〉 =
1√
N !

det




χ1(1) . . . χN (1)

...
...

χ1(N) . . . χN (N)




(1.2)

where N is the number of particles and {χi} are a set of orthonormal spin molecular orbitals.

This wavefunction preserves the desired antisymmetry property and represents the ground

state where all electrons are arranged in the lowest energy configuration. Due to the aver-

age method of treating electron-electron interactions, Hartree-Fock theory does not capture

1



electronic correlation and therefore always underestimates the electronic energies. Despite

neglecting electron correlation, it does manage to capture roughly 99% of the energy for a

wide variety of systems while scaling computationally as r3, where r is the size of the orbital

basis.

Another approach for solving the Schödinger equation is the full configuration interaction

(FCI) method[1]. This method uses wavefunctions that are sums of all Slater determinants,

which implies they consist of contributions from all possible configurations of N electrons.

While this method provides accurate results, it scales as rN where r is the size of the orbital

basis and N is the number of electrons. This exponential scaling restricts its use to small

molecule applications. Another flavour of configuration interaction calculation is the doubly-

occupied configuration interaction, or DOCI, method. While similar to the full configuration

interaction, instead of including all possible configurations the doubly-occupied configuration

interaction method only includes configurations where sets of two electrons behave as pairs[2].

Electrons can be paired in a variety of ways with the most common choice being by spin.

In this framework, only Slater determinants which represent simultaneous excitations of

both the α and β electrons are included. While this method still scales exponentially, it

does significantly decrease the complexity of the full configuration interaction calculation by

reducing the number of basis orbitals from r to r
2 .

Since these configuration interaction methods are successful for small systems, approxi-

mations to make them applicable to larger systems are desirable. One such approximation

is to consider only a subset of all the possible electrons and orbitals, referred to as active

space methods[3]. The fully occupied molecular orbitals that are not in the valence shell are

treated as the core space, while the empty orbitals that are higher in energy are treated as the

virtual space. The valence shell and low lying unoccupied orbitals make up the active space,

as shown in Fig. 1.1 (a). With this division of orbitals the number of orbitals and electrons

considered can be significantly smaller often allowing for a full or doubly-occupied configu-

2



a)
Virtual

Active

Core

b)

c)

Figure 1.1: a) An example of an active space where the core orbitals are filled, the active
space is highlighted in green, and the virtual space is empty, b) a full configuration expansion
of the two electrons in four spin orbitals, and c) a doubly-occupied configuration interaction
expansion of the two electrons in four spin orbitals.

ration interaction calculation in the active space. This method is referred to as a complete

active space configuration interaction, or CASCI, method and is depicted in Fig. 1.1 b) and

Fig. 1.1 c) for the full and doubly-occupied configuration interaction expansions respectively.

This type of division of active space can also be applied to self-consistent field methods

which generally consist of a full or doubly-occupied configuration interaction calculation in

the active space performed iteratively with orbital rotations to help minimize the energy.

The combination of the complete active space configuration interaction method with these

orbital rotations is referred to as a complete active space self-consistent field, or CASSCF,

method.

It should be noted that for a complete active space calculation, the number of variables

required is given by,

NCAS =
2S + 1

r + 1

(
r + 1
N
2 − S

)(
r + 1

N
2 + S + 1

)
, (1.3)

where S is the total spin, r is the number of orbitals, and N is the number of electrons[3]. The

equation also holds true for full or doubly-occupied configuration interaction; the number or

orbitals and electrons are just considered from the entire space instead of being restricted to

the active space.

3



1.2 Reduced Density Matrix Methods

The Schödinger equation in Eq. 1.1 can also be written from a density matrix perspective,

ĤNDn = En
NDn, (1.4)

where NDn is the N -particle density matrix given by,

NDn = Ψn(1, .., N)Ψ∗n(1, .., N). (1.5)

The full density matrix provides a different framework from the wavefunction approach,

however it doesn’t provide a computational benefit. Since electrons interact pairwise, in-

tegrating out all but two electrons from the N -particle density matrix gives the 2-electron

reduced density matrix,

2Dn(12; 12) =

∫
Ψn(1, 2, .., N)Ψ∗n(1, 2, .., N)d3..dN, (1.6)

which is a much smaller object than the full wavefunction. This object represents the

probability distribution of two electrons interacting in a field of N − 2 electrons[4–9]. Using

the 2-RDM in conjunction with the Schrödinger equation in Eq. 1.4, the energy can be

expressed as,

E = Tr(2K2D), (1.7)

where 2K is the reduced Hamiltonian.

These two expressions can also be presented in second quantization notation to give the

2-RDM as,

2D
ij
kl = 〈Ψ|â†i â

†
j âlâk|Ψ〉, (1.8)

where â† and â are the creation and annihilation operators respectively and the indices i, j,

4



k, and l denote the spin orbitals. The energy can then be expressed as,

E =
∑

ijkl

2K
ij
kl
2D

ij
kl, (1.9)

where 2K
ij
kl is the two-electron Hamiltonian given by,

2K
ij
kl =

4

N − 1
1Ki

k ∧ δ
j
l +2 V

ij
kl , (1.10)

in which, 1Ki
k and 2V

ij
kl are one- and two-electron matrices and ∧ is the Grassmann wedge

product [4–13].

Using reduced density matrices compared to wavefunctions saves computational cost;

however, care must be taken that the RDMs always represent physical N -electron wavefunc-

tions. To ensure that this is the case, N -representability conditions must be invoked[4, 6,

14–16]. For the case of the 2-RDM, some approximate N -representability conditions are[14,

17–19]:

2D
i,j
k,l � 0 (1.11)

2Q
i,j
k,l � 0 (1.12)

2G
i,j
k,l � 0, (1.13)

where 2D, 2Q, and 2G are the two-particle, two-hole, and particle-hole density matrices

respectively,

2D
i,j
k,l = 〈Ψ|a†ia

†
jalak|Ψ〉 (1.14)

2Q
i,j
k,l = 〈Ψ|aiaja†l a

†
k|Ψ〉 (1.15)

2G
i,j
k,l = 〈Ψ|a†iaja

†
l ak|Ψ〉. (1.16)

5



Restrictions such as symmetry can produce blocking of the elements which is useful for

minimizing computational cost[20].

1.3 Variational 2-RDM

The energy in Eq. 1.7 can be variationally minimized as a functional of the 2-RDM con-

strained by the matrix inequalities in Eq. 1.13 through use of a boundary-point semidefinite

programming algorithm[5, 21–23]. With use of the approximate N -representability con-

ditions, the computational scaling is r6 which has allowed for its use in many electronic

calculations[24–30].

1.4 Variational Pair 2-RDM

Active space calculations with the variational 2-RDM method have shown to be effective

at calculating strong correlation in a variety of large molecules[27]. Generally as the active

space is increased, electronic behaviour emerges that is more in agreement with experimental

results. Due to this trend, it is desirable to try to minimize the cost of the variational 2-

RDM method in hopes of being able to consider the electronic structure of larger molecules

or in larger active spaces. One method of reducing this cost is to invoke the variational

2-RDM method in the DOCI space, which will be referred to as the pair 2-RDM method.

In the pair space 2D, 2Q, and 2G take on a special blocked form depicted in Fig. 1.2. This

blocking decreases the computational cost since 2D, 2Q, and 2G all go from 4 indices to 2

indices. Due to this simplification of the N -representability constraints in the pair space,

the computational cost of the variational 2-RDM method is decreased from r6 to r3.

The major drawback of restricting the variational 2-RDM method, or many other com-

putational methods, to the pair space is that the approximation is not invariant to unitary

orbital transformations. This implies that great care needs to be taken while selecting or-
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. . .







Figure 1.2: Block structure in the pair space for 2D, 2Q, and 2G. For all three RDMs, the
large green block represents an r by r block where r is the size of the orbital basis. For 2D
and 2D, there are

(r
2

)
small blue blocks of size 1 by 1. For 2G, there are

(r
2

)
small blue block

of size 2 by 2.

bitals to obtain accurate results. One approach that we consider in Chapter 2 of this thesis

is the use of localized orbitals in the variational pair 2-RDM method. While this method has

its benefits, including recovery of approximate size extensivity, it proved to be challenging

to implement for larger systems.

A second approach outlined in Chapter 3 was the use of complete active space self-

consistent field with the variational pair 2-RDM method. This method shows promise as

it can capture strong correlation in a variety of larger systems, including the nitrogenase

cofactor, FeMoco in an [80,80] active space. This [80,80] active space calculation would

require 1044 variables using a traditional wavefunction method but was calculated using

roughly 107 variables with the complete active space self-consistent field variational pair

2-RDM method.

These two different variational pair 2-RDM methods show promise for capturing strong

correlation in larger molecular systems at a reduced cost. Future work will need to be

dedicated towards testing the scope of these two approaches as well as applying these methods
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to a variety of chemical systems.
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CHAPTER 2

PAIR 2-ELECTRON REDUCED DENSITY MATRIX THEORY

USING LOCALIZED ORBITALS

Reprint with permission from K. Head-Marsden and D.A. Mazziotti, Journal of Physical

Chemistry, 147, 084101 (2017). Copyright 2017 American Institute of Physics.

2.1 Introduction

Full configuration interaction (FCI) is an exact method to calculate energies in a finite or-

bital basis set; however, it is computationally expensive and therefore only applicable to

very small molecules[1]. Over the years, many approximations have been placed on the FCI

calculation to reduce the computational cost to treat larger systems. One approximation is

the doubly occupied configuration interaction (DOCI) method, where the FCI calculation is

restricted to doubly occupied determinants[2]. Despite this restriction, however, the DOCI

method still scales exponentially with system size. Further restriction of the wavefunction

can be pursued to achieve non-exponential scaling; examples of methods include antisym-

metrized geminal power (AGP) wavefunctions[3–11], antisymmetrized strongly orthogonal

geminal product (ASGP) wavefunctions[12–16], and perfect pairing valence bond theory

(ppVB) [17–19]. While all of these methods are less general than the DOCI method, they

have polynomial scaling and can therefore be used to treat larger systems. Recent methods,

such as antisymmetric product of one-reference-orbital geminals (AP1roG) of Ayers, Van

Neck, and their collaborators and pair coupled cluster doubles (pCCD) of Scuseria and his

collaborators, have used a product ansatz to reproduce the DOCI wavefunction accurately

for repulsive Coulombic systems with O(N3) computational cost for its solution where r is

the number of orbitals[20–30].

A different approach to reducing the scaling of FCI to polynomial is to apply variational
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two-electron reduced-density-matrix (2-RDM) theory[31–52] in the pairing space[53, 54]. In

the variational 2-RDM method, the energy is expressed as a linear function of the 2-RDM.

To ensure that the 2-RDM represents an N -electron density matrix, however, we impose N -

representability conditions[3, 46–48]. While the complete set of N -representability conditions

has non-polynomial scaling, an approximate set of N -representability conditions such as

the 2-positivity (DQG) constraints[34, 35, 37, 46] or the 2-positivity and T2 constraints

(DQGT)[36, 38, 44] can be applied at polynomial cost. In the pairing space the variational

calculation of the 2-RDM subject to the 2-positivity conditions yields a lower bound to

the pair FCI (DOCI) energy at a mean-field-like computational scaling of O(r2) and O(r3)

in memory and floating-point operations, respectively, using the DQG constraints[53] and a

scaling ofO(r3) andO(r4) in memory and floating-point operations, respectively, using DQG

and T2 constraints. The variational 2-RDM method in the pairing space has connections

to parametrization of the 2-RDM, based on N -representability conditions, to approximate

pairing wavefunctions like AGP, ASGP, and DOCI in the context of geminal and natural-

orbital functional theories[10–13, 15, 55, 56].

One of the major drawbacks of the pairing approximation is that it is not invariant to

unitary transformations of the orbitals, which makes orbital choice important for accurate

results. Iterative optimization of the orbitals, however, is computationally expensive, sig-

nificantly limiting the advantage of using the pair 2-RDM method in contrast to the full

variational 2-RDM method without the pairing approximation. Here we develop and imple-

ment a pair 2-RDM method in which the optimized orbitals are approximated by localized

molecular orbitals (LMOs)[57–60]. The localized molecular orbitals allow for a non-iterative

variational solution of the pair 2-RDM by semidefinite programming[31, 49–52]. Like the

variational 2-RDM method, the pair 2-RDM method with LMOs has the ability to treat

quantum molecular systems with significant multi-reference electron correlation. The pair

2-RDM has the flexibility to describe the spectrum of one-electron RDM occupation numbers
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from a quantum state that is invariant to time-reversal symmetry.

In molecular systems the optimal orbitals in the pairing approximation tend to be highly

localized in position space. Canonical molecular orbitals (CMOs) from Hartree-Fock theory

are often highly delocalized making them a poor approximation to the optimal orbitals. Fur-

thermore, a pair 2-RDM calculation with CMOs is not a size-extensive method; a method

is size-extensive if its energy scales linearly with system size. However, localizing these or-

bitals to produce LMOs numerically recovers the size-extensive property at a much lower

computational cost than computing the optimal pair orbitals iteratively. While size ex-

tensivity is observed numerically in all of the calculations performed, the property may

be theoretically approximate because of the approximate nature of the orbital localization

and the N -representability conditions[61]. Calculations with pCCD have also shown good

results with localized orbitals[26]. The use of localized orbitals is applicable to any pair

theory including the parametrization of the wavefunction like pCC and AP1roG[20–30] as

well as parametrizations of the 2-RDM to approximate pair wavefunctions in geminal and

natural-orbital functional theories[10–12, 55, 56, 62, 63].

The pair 2-RDM theory combined with LMOs gives us a low-cost, approximately size-

extensive method that allows for the study of many physical and chemical systems including

systems with significant multi-reference correlation. In Section 2.2 we present the framework

for the pair 2-RDM theory with the LMOs, and in section 2.3 we explore applications to

hydrogen chains, acene chains and cadmium telluride polymer chains.

2.2 Theory

The variational 2-RDM theory, the pairing approximation and the issue of orbital non-

invariance are discussed in Secs. 2.2.1, 2.2.2, and 2.2.3 respectively.
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2.2.1 Variational 2-RDM Theory

The 2-RDM represents the probability distribution of two electrons in the field of (N − 2)

electrons, and in a finite orbital basis set its matrix elements can be expressed as [3, 31,

64–68],

2D
ij
kl = 〈Ψ|â†i â

†
j âlâk|Ψ〉, (2.1)

where the indices i, j, k, and l denote the spin orbitals and â† and â are the creation and

annihilation operators respectively. The energy of an N -electron system can be written as[3,

31, 64–70],

E =
∑

ijkl

2K
ij
kl
2D

ij
kl, (2.2)

where 2K
ij
kl is the two-electron Hamiltonian given by,

2K
ij
kl =

4

N − 1
1Ki

k ∧ δ
j
l +2 V

ij
kl , (2.3)

in which, 1Ki
k and 2V

ij
kl are one- and two-electron matrices containing the one- and two-

electron integrals and ∧ is the Grassmann wedge product [68, 71]. Because not every two-

electron density matrix represents an N -electron quantum system, the ground-state energy

of a many-electron atom or molecule cannot be variationally optimized with respect to the

2-RDM without explicit constraints on the 2-RDM. The conditions that ensure that the

2-RDM corresponds to a physical N -electron wavefunction are known as N -representability

conditions[3, 31, 34, 45–48, 64–70, 72, 73].

A necessary, albeit not sufficient, set of N -representability conditions on the 2-RDM are
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the 2-positivity conditions, also known as the DQG conditions [45, 46, 72]:

2D � 0 (2.4)

2Q � 0 (2.5)

2G � 0, (2.6)

where 2D, 2Q, and 2G are the two-particle, two-hole, and particle-hole density matrices

respectively whose matrix elements are defined by Eq. (2.1) and

2Q
ij
kl = 〈Ψ|âiâj â†l â

†
k|Ψ〉 (2.7)

2G
ij
kl = 〈Ψ|â†i âj â

†
l âk|Ψ〉. (2.8)

Additional N -representability conditions can be added, such as the T2 constraint[36, 45, 47,

74],

T2 =3 E +3 F � 0, (2.9)

where

3E
qrs
ijk = 〈Ψ|â†qârâ†sâkâ†j âi|Ψ〉 (2.10)

3F
qrs
ijk = 〈Ψ|âqâ†râsâ†kâj â

†
i |Ψ〉. (2.11)

The general constraint of M � 0 means that the matrix M is constrained to be positive

semidefinite. A matrix is positive semidefinite if and only if its eigenvalues are nonnegative.

Rearranging the creation and annihilation operators generates linear mappings between the

D, Q, and G metric matrices. The ground-state energy can be minimized with respect to the

2-RDM subject to these conditions[43, 44] by a family of optimization known as semidefinite
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programming[31, 49–52].

2.2.2 Pairing Approximation

We invoke pairing of the orbitals such that instead of considering r independent orbitals, we

consider r/2 pairs of orbitals. Both orbitals in the pair are occupied or unoccupied for all

determinants contributing to the wavefunction. We pair the orbitals by spin 〈Ŝz〉, which is

the most common choice[30, 53]. Pairing the orbitals in configuration interaction still scales

exponentially with system size; however, pairing in the variational 2-RDM theory[31–44,

46–52] generates calculations with polynomial scaling.

To understand the scaling of the method, consider the reduced density matrices in the

natural-orbital basis set[3, 53, 54]. Because the natural orbitals are the eigenfunctions of the

1-RDM, contraction of the 2D to the 1D produces a diagonal matrix whose elements are

〈â†iαâiα〉. (2.12)

The β spin block of the 1-RDM, which is identical to the α spin block by the pairing

approximation, need not be stored.

The structure of the 2-RDM is a block diagonal matrix with one r × r block with r-

choose-two 1×1 blocks given by




〈â†iαâ
†
iβ âiβ âiα〉 . . . 〈â†iαâ

†
iβ âkβ âkα〉

...
. . .

...

〈â†kαâ
†
kβ âiβ âiα〉 . . . 〈â†kαâ

†
kβ âkβ âkα〉



, (2.13)

and (
〈â†iαâ

†
jβ âjβ âiα〉

)
, (2.14)

respectively[3]. By particle-hole symmetry, the structure of the 2Q and 1Q matrices can be
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defined analogously. The structure of the 2G matrix is a block diagonal matrix with one

r × r block and r-choose-two 2×2 blocks given by




〈â†iαâiαâ
†
iαâiα〉 . . . 〈â†iαâiαâ

†
kαâkα〉

...
. . .

...

〈â†kαâkαâ
†
iαâiα〉 . . . 〈â†kαâkαâ

†
kαâkα〉



, (2.15)

and 

〈â†iαâjβ â

†
jβ âiα〉 〈â

†
iαâjβ â

†
iβ âjα〉

〈â†jαâiβ â
†
jβ âiα〉 〈â

†
jαâiβ â

†
iβ âjα〉


 , (2.16)

respectively.

The structure of the T2 matrix is a block diagonal matrix consisting of r r× r blocks and

r 2×2 blocks which are obtainable from the sum of corresponding blocks of the 3E and 3F

matrices. The r r × r blocks and the r 2×2 blocks of the 3E matrix are given by




〈â†iαâiαâ
†
mβ âmβ â

†
iαâiα〉 . . . 〈â†iαâiαâ

†
mβ âmβ â

†
kαâkα〉

...
. . .

...

〈â†kαâkαâ
†
mβ âmβ â

†
iαâiα〉 . . . 〈â†kαâkαâ

†
mβ âmβ â

†
kαâkα〉



, (2.17)

and 

〈â†iαâjβ â

†
mαâmαâ

†
jβ âiα〉 〈â

†
iαâjβ â

†
mαâmαâ

†
iβ âjα〉

〈â†jαâiβ â
†
mαâmαâ

†
jβ âiα〉 〈â

†
jαâiβ â

†
mαâmαâ

†
iβ âjα〉


 , (2.18)

respectively, where m ranges from 1 to r. Analogous blocks from pairing are definable for

the 3F matrix.

The pairing subspace has a significant effect on the structure of the 2-RDM, making it

a sparse block diagonal matrix[3, 53]. With just the DQG constraints, each r × r block has

a storage scaling of r2 with a computational (floating-point) scaling of r3 while the set of

1×1 blocks has a scaling in storage and floating-point operations of r2. In the full CI space,
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the scaling of the variational 2-RDM method with the D, Q, and G conditions[31–44] is r6

in terms of floating-point operations, and hence, the pairing space reduces this cost to r3.

Using DQG conditions as well as the T2 constraints increases the computational cost to r4

and r3 in floating-point operations and storage, respectively.

Despite the reduction in computational cost, the pair 2-RDM has the flexibility to de-

scribe the spectra of one-electron RDM occupation numbers from all quantum states that

are invariant to time-reversal symmetry. The pair 2-RDM is more general than the 2-RDM

from the antisymmetrized geminal power (AGP) approximation, which Coleman [3, 10, 11]

showed to be sufficiently flexible to parameterize any 1-RDM whose eigenvalues (natural

occupations) are pairwise degenerate. Smith [10, 11, 75] showed that any quantum state

that is invariant to time-reversal symmetry has a 1-RDM with pairwise degenerate eigenval-

ues. Consequently, the pair 2-RDM method has the potential to describe quantum states

with highly fractional occupation numbers, representing significant multi-reference electron

correlation.

2.2.3 Orbital Non-Invariance

The pairing method is not invariant to orbital transformation, which means the choice of

orbitals is important. In the pair 2-RDM method, because the 1-RDM is diagonal, the

orbitals chosen for the basis set become the natural orbitals. One simple choice is the

canonical molecular orbitals (CMOs) from Hartree-Fock theory which are delocalized in

space. Although this is an accurate model for some molecular systems, it is insufficient

for many others. Because the natural orbitals are generally highly localized, a delocalized

basis is not the best approximation. One strategy previously used is to optimize the orbitals

with respect to the ground-state energy [53]. This process improves the accuracy of the

computation, producing localized orbitals, but it comes with the additional costs of orbital

optimizations and electron repulsion integral transformations.
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A second strategy that we adopt is to localize the CMOs to obtain localized molecular

orbitals (LMOs). There are many different schemes for such localization including fourth

moment, Edmiston-Ruedenberg, Foster-Boys, and Pipek-Mezey [57–60]. The Foster-Boys

method localizes orbitals by minimizing an objective function,

LFB =
∑

i

〈φi|[r− 〈φi|r|φi〉]2|φi〉 (2.19)

which measures the spatial dispersion of the orbitals[57, 58, 76]. In this work, we use

primarily the Pipek-Mezey method which localizes the orbitals by maximizing the Mulliken

charge of each orbital,

LPM =
∑

i

∑

A

[〈φi|PA|φi〉]2, (2.20)

where the indices i and A represent orbitals and atoms, respectively[60, 77].

2.3 Applications

In this section we will discuss our computational methodology followed by applications to

hydrogen chains, acene chains and cadmium telluride polymer chains in Secs. 2.3.1, 2.3.2,

2.3.3, and 2.3.4 respectively.

2.3.1 Computational Methodology

Localized orbitals were generated by NWCHEM[78], while canonical orbitals and electron in-

tegrals were generated by GAMESS[79] for all molecules. Semidefinite programming (SDP)

was used to minimize the energy as a function of the 2-RDM constrained by linear ma-

trix inequalities [49, 80] by employing a boundary-point algorithm developed by Mazziotti

for 2-RDM methods. [50, 52] The STO-6G basis set was used for the acene and hydrogen

chains[81], unless otherwise specified, while the 3-21G basis set was used for the cadmium
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Table 2.1: The FCI correlation energy along with the pair 2-RDM calculated correlation
energies and % recovery for hydrogen chains of lengths four to twelve using both CMOs and
LMOs.

Chain FCI Correlation CMOs LMOs
Length Energy (a.u.)

Cor. Energy (a.u) % Recovery Cor. Energy (a.u) % Recovery
4 -0.16788561 -0.06641161 39.56 -0.14662668 87.34
6 -0.24680914 -0.06146402 24.90 -0.20296733 82.24
8 -0.32536318 -0.05551949 17.06 -0.25555734 78.55
10 -0.40380709 -0.05275382 13.06 -0.31176026 77.21
12 -0.48222454 -0.04997869 10.36 -0.36517032 75.73

telluride polymer chains[82].

2.3.2 Hydrogen Chains

The pair 2-RDM method was used to calculate the correlation energy of hydrogen chains

of varying lengths. The calculation was performed using the Hartree-Fock CMOs as well as

using the Pipek-Mezey LMOs and the results are presented in comparison to the correlation

energy from FCI in Fig. 2.1. It should be noted that the comparison between using DQG

and DQGT conditions for both CMOs and LMOs is also presented in Fig. 2.1. As observed

with the FCI, the correlation energy from the pair 2-RDM method with LMOs increases

linearly with chain length; in contrast, the pair 2-RDM method with CMOs captures much

less correlation energy and the amount correlation energy slightly decreases with increasing

chain length. The Foster-Boys LMOs and the Pipek-Mezey LMOs give identical results for

the hydrogen chains. The calculations with DQG constraints produce very similar results to

the calculations with DQGT conditions and will therefore be used for the rest of this paper.

Similar trends are observed for hydrogen chains through H50 in Fig. 2.2.

Table 2.1 shows the results for hydrogen chains of twelve units or shorter compared to the

FCI correlation energy and the percentage of FCI correlation energy recovered. The energy

of H8, with an H-H bond distance of 1.5Å was calculated using the cc-pVDZ basis set[83] and
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Figure 2.1: Calculated correlation energy of hydrogen chains using pair 2-RDM with CMOs
and DQG conditions (green circles), pair 2-RDM with CMOs and DQGT conditions (green
diamonds), pair 2-RDM with LMOs and DQG conditions (red circles), pair 2-RDM with
LMOs and DQGT conditions (red diamonds), and FCI (blue circles).

Pipek-Mezey localization. The localized results show roughly a 97% recovery of the energy

from optimized orbitals[53]. Lastly, a dissociation curve was created for H6 using the 6-31G

basis set[84]. The dissociation curve compares the Hartree-Fock energy to the energies from

pair 2-RDM theory, using CMOs and LMOs, to the FCI energy, as shown in Fig. 2.3. It

should be noted that in the limit of greater separation, the pair 2-RDM theory with CMOs

follows the trend of the Hartree-Fock energy while the pair 2-RDM theory with LMOs follows

the FCI energy. The non-parallelity error of a dissociation curve is the difference between

the largest and the smallest deviations of the calculated curve from the exact curve. In these

results, the errors of the Hartree-Fock method, pair 2-RDM theory with CMOs, and pair

2-RDM theory with LMOs relative to the FCI curve are 0.3756 a.u., 0.2765 a.u., and 0.0691

a.u. respectively.
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2.3.3 Acene Chains

The pair 2-RDM method with CMOs and Pipek-Mezey LMOs was also applied to a series

of acene chains, the longest being octacene as shown in Fig. 2.4. Acene chains have many
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Figure 2.4: Octacene where carbon atoms are grey and hydrogen are white, image produced
with Jmol[85].

different useful applications, including tetracene and pentacene in light-emitting diodes and

field-effect transistors[86, 87] For napthalene to octacene, the comparison between the cor-

relation energies using CMOs and LMOs is presented in Fig. 2.5. It should be noted that in
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Figure 2.5: Pair 2-RDM method calculations of correlation energy in acene chains using
CMOs (green) and LMOs (red).

the case of the CMOs, the correlation energy is actually tending towards zero as the chain

length increases.
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2.3.4 Cadmium Telluride Polymers

Cadmium telluride polymers were first synthesized by Talapin and co-workers to serve as

inorganic linkers which enhance the conductivity between nanoparticles in nanocrystalline

arrays[88]. Using the geometry of the base unit obtained from crystal structures, [88] we

applied the pair 2-RDM method to cadmium telluride polymer chains ranging from one unit

to four units, where the longest chain is shown in Fig. 2.6. The correlation energy was

calculated using both CMOs and LMOs and the results are shown in Table 2.2. The pair

2-RDM theory with LMOs recovers one-and-a-half orders of magnitude more correlation

energy than the pair theory with CMOs.

Figure 2.6: Cd4Te8 where cadmium atoms are beige and telluride are brown, image produced
with Jmol[85].

Table 2.2: The calculated correlation energy using the pair 2-RDM method with both CMOs
and LMOs for cadmium telluride polymer chains of varying lengths.

Chain CMOs Corr. LMOs Corr.
Length Energy (a.u.) Energy (a.u.)

1 -0.02834903 -0.03173513
2 -0.04965044 -0.06020495
3 -0.07781730 -0.09026143
4 -0.07158556 -0.12465561
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2.4 Discussion and Conclusions

In this paper we introduce a pair 2-RDM method using localized molecular orbitals. Local-

ized orbitals were chosen over both optimized orbitals and canonical orbitals due to their de-

creased cost and increased accuracy respectively. Optimized orbitals are calculated through

an iterative process and are therefore computationally expensive. By using localized or-

bitals as an approximation to the optimized orbitals, we can perform a single variational

2-RDM calculation which significantly lowers computational cost. Moreover, the result from

the calculation of H8 shows that localized orbitals yield energies similar to those from the

more expensive full orbital optimization. While canonical orbitals have the same compu-

tational cost as localized orbitals, they sacrifice both (i) accuracy and (ii) size-extensivity.

Applications of the pair 2-RDM theory with localized molecular orbitals were also made to

hydrogen chains, acenes, and cadmium telluride polymers. Each of these calculations showed

that the pair 2-RDM theory with localized orbitals recovers non-trivial electron correlation

in an approximately size-extensive fashion.

FCI in the pairing subspace is an accurate method, but its computations scale exponen-

tially. There are many other methods which further approximate the pair FCI wavefunction

including AGP[3–9, 89], ASGP[12–16], and ppVB[17–19], but they do not approach the ac-

curacy of FCI in the pairing space (DOCI). More recently developed methods, including

AP1roG and pCCD, scale polynomially and are in good agreement with the DOCI results.

[20–28, 30, 90] The pair 2-RDM method is distinct from the wavefunction methods in that

its basic variable is the 2-RDM constrained by N -representability conditions.

The pair 2-RDM theory also has significant connections to parameterizations of the 2-

RDM to approximate AGP, ASGP,and DOCI wavefunctions in geminal and natural-orbital

functional theories[10–13, 15, 55, 56]. In the context of geminal functional theory, Mazziotti

formulated the 1-electron RDM (or natural-orbital) functional theory as a parameteriza-

tion of the2-RDM[10] rather than a parameterization of the wavefunction or N -electron
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density matrix as in earlier theories based on Levy[91] or Valone[92] constrained search.

The advantage of this formulation is that the parameterization can incorporate the ensem-

ble[3, 45, 46] or pure[44] N -representability conditions of the 2-RDM. Mazziotti developed

a 1-RDM (geminal) functional that recovers the AGP energy and 1-RDM[11]. Piris and col-

laborators developed a 1-RDM (natural-orbital) functional that recovers the ASGP energy

and 1-RDM[55], and recently, Piris[63] as well as Gebauer, Cohen, and Car[56] presented

natural-orbital parameterizations of the 2-RDM whose energies approach the accuracy of

DOCI. While the natural-orbital (geminal) functional theories and the pair 2-RDM both

employ N -representability conditions, they differ in that the functional theories parameter-

ize the 2-RDM in terms of the natural orbitals and their occupations (as well as phase factors

in the case of geminal functional theory), whereas pair 2-RDM directly employs the 2-RDM

restricted to the pairing space.

The accurate O(r3) approximation of FCI in the pairing space by the pair 2-RDM meth-

ods with localized molecular orbitals presents new possibilities for the description of strong

correlation phenomena. Potential applications include the description of both the structure

and the dynamics of large molecular systems. The use of localized molecular orbitals is

applicable to any pair-type theory whether based on the wavefunction or the 2-RDM.
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CHAPTER 3

ACTIVE SPACE PAIR 2-ELECTRON REDUCED DENSITY

MATRIX THEORY FOR STRONG CORRELATION

This chapter is reprinted from a paper submitted for publication by K. Head-Marsden and

D. A. Mazziotti (2019).

3.1 Introduction

Recent work uses active space selection in conjunction with the variational 2-RDM method

to capture strong electron correlation in a variety of molecules of chemical interest[1–3].

An active space is a set of orbitals within the molecule that are correlated. Increasing

the size of the active space alters the amount of electron correlation that can be captured

with larger active spaces producing more accurate results. Because the variational 2-RDM

method with the 2-positive N -representability conditions[1, 4–24] scales as O(r6a) where ra

is the number of active orbitals, it can treat much larger active spaces than conventional

configuration interaction, which scales exponentially with ra. Here we combine the recently

developed pair variational 2-RDM method[25–30] with active space methods, both complete

active space configuration interaction (CASCI) and complete active space self consistent

field (CASSCF), to generate an O(r3a) method that can efficiently treat strong correlation in

molecules with potentially very large active spaces.

The pair space restricts the wavefunction to include only doubly-occupied determinants;

however, in traditional wavefunction methods this approximation alone still scales expo-

nentially with system size[31, 32]. While the variational 2-RDM method reduces the com-

putational scaling to polynomial, there are also several wavefunction approximations for

decreasing the doubly occupied configuration interaction scaling to polynomial such as an-

tisymmetric product of one-reference-orbital geminals (AP1roG) and pair coupled cluster
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doubles (pCCD)[33–43]. Moreover, some work has examined active space calculations in

spaces of different seniority for small molecules[44].

In this paper the variational 2-RDM theory with a complete active space self-consistent

field (CASSCF) method is utilized where the active and inactive orbitals are iteratively

rotated to decrease the energy. We benchmark this method using the dissociation of a

nitrogen dimer and a p-benzyne diradical. We then apply it to two larger systems: a recently

synthesized bis-cobalt complex and a recently studied iron complex, FeMoco[2].

3.2 Variational Pair 2-RDM Theory

The energy of an N -electron system can be expressed as[4, 45–52],

E =
∑

ijkl

2K
ij
kl
2D

ij
kl, (3.1)

where 2K
ij
kl is the two-electron Hamiltonian given by,

2K
ij
kl =

4

N − 1
1Ki

k ∧ δ
j
l +2 V

ij
kl , (3.2)

in which, 1Ki
k and 2V

ij
kl are one- and two-electron matrices containing the one- and two-

electron integrals and ∧ is the Grassmann wedge product[50, 53]. The 2-RDM can be

expressed as[4, 45–50],

2D
ij
kl = 〈Ψ|â†i â

†
j âlâk|Ψ〉, (3.3)

where â† and â are the creation and annihilation operators respectively and the indices i, j,

k, and l denote the spin orbitals.

Variational calculation of the 2-RDM in the pair space requires approximateN -representability
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constraints on the 2-RDM[4, 7, 17–19, 45–52, 54–56]:

2D � 0 (3.4)

2Q � 0 (3.5)

2G � 0, (3.6)

where 2D, 2Q, and 2G are the two-particle, two-hole, and particle-hole density matrices

respectively whose matrix elements are defined by Eq. (3.3) and

2Q
ij
kl = 〈Ψ|âiâj â†l â

†
k|Ψ〉 (3.7)

2G
ij
kl = 〈Ψ|â†i âj â

†
l âk|Ψ〉. (3.8)

In the pair approximation, these matrices factorize into a series of smaller blocks. For the

2-particle and 2-hole RDMs, these blocks consist of one r × r block and r-choose-two 1×1

blocks; for example, for 2D they are given by [27, 46]:




〈â†iαâ
†
iβ âiβ âiα〉 . . . 〈â†iαâ

†
iβ âkβ âkα〉

...
. . .

...

〈â†kαâ
†
kβ âiβ âiα〉 . . . 〈â†kαâ

†
kβ âkβ âkα〉



, (3.9)

and (
〈â†iαâ

†
jβ âjβ âiα〉

)
. (3.10)

The blocked structure of the particle-hole RDM is similar but slightly more complex in
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structure with one r × r block and r-choose-two 2×2 blocks given by[27]




〈â†iαâiαâ
†
iαâiα〉 . . . 〈â†iαâiαâ

†
kαâkα〉

...
. . .

...

〈â†kαâkαâ
†
iαâiα〉 . . . 〈â†kαâkαâ

†
kαâkα〉



, (3.11)

and 

〈â†iαâjβ â

†
jβ âiα〉 〈â

†
iαâjβ â

†
iβ âjα〉

〈â†jαâiβ â
†
jβ âiα〉 〈â

†
jαâiβ â

†
iβ âjα〉


 . (3.12)

The ground-state energy can be minimized with respect to the 2-RDM subject to these N -

representability constraints by semidefinite programming[1, 4, 16, 20–23]. With the block

diagonal forms of 2D, 2Q, and 2G, the scaling of the variational pair 2-RDM method is

O(r3).

Here, we use the pair theory within the context of an active space calculation. Performing

a calculation in an active space consists of choosing N electrons in r orbitals to correlate

while treating the remainder of the electrons and orbitals at a mean-field level of theory[57].

We consider two primary active space methods within the variational pair 2-RDM frame-

work. First, we consider a method equivalent to both complete active space configuration

interaction (CASCI), where the active space is computed with respect to the Hartree-Fock

canonical molecular orbitals. Second, we explore a method equivalent to the complete ac-

tive space self consistent field (CASSCF) method[58], where active and inactive orbitals are

iteratively rotated through a self-consistent field method. We use the second-order orbital

optimization method described in Ref. [59].

3.3 Applications

In this section we will discuss our computational methodology followed by applications to

the dissociation of a nitrogen dimer, a p-benzyne diradical, a newly synthesized Bis-Cobalt
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complex and FeMoco in Secs. 3.3.1,3.3.2, 3.3.3, 3.3.4, and 3.3.5 respectively.

3.3.1 Computational Methodology

We have implemented the active-space pair variational 2-RDM method in the Maple Quan-

tum Chemistry Toolbox, an add-on package for electronic structure in the computer algebra

system Maple[60, 61]. A cc-pvdz basis set is used for nitrogen and the p-benzyne diradical

calculations with [10,8] and [6,6] active spaces respectively[62]. A 6-31g basis set is used for

the Bis-Cobalt complex calculations in a [12,10] active space[63]. Finally, a sto-3g basis set

is employed for the FeMoco calculations in both [30,30] and [80,80] active spaces[64–66].

3.3.2 Nitrogen Dissociation

The nitrogen dimer is a known example of fractional occupations as it dissociates. In Fig. 3.1

we compare the Hartree-Fock method, the variational 2-RDM CASCI and CASSCF methods,

the CASCI and CASSCF methods, and the pair 2-RDM CASCI and CASSCF methods. For

the same methods, the occupation numbers of the N2 dimer at 1.2 Å and 2.0 Å are shown

in Table 3.1.

Figure 3.1 shows that the energy recovered by the pair methods is less than that recovered

by the variational method, but that the trends are similar. Orbital rotations in the pair

CASSCF slightly decrease the energy as compared to the pair CASCI. As the two nitrogen

atoms are separated, Table 3.1 shows an increase in partial occupations for all methods.

3.3.3 p-Benzyne Diradical

The variational 2-RDM CASCI and CASSCF methods and the pair variational 2-RDM

CASCI and CASSCF methods are used to calculate the energies for the p-benzyne diradical

as shown in Table 3.2. The occupation numbers using the same four methods are also

presented in Table 3.3 and in the plots of Fig. 3.2.
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(light green triangles), pair 2-RDM CASSCF (green squares), CASCI (orange triangles),
CASSCF (red squares), variational 2-RDM CASCI (light blue triangles), and variational
2-RDM CASSCF (blue squares).

Table 3.1: The occupation numbers of N2 at 1.2 Å and 2.0 Å separation using variational
2-RDM CASCI and CASSCF, CASCI and CASSCF, and pair 2-RDM CASCI and CASSCF.

Sep. Variational 2-RDM Active Space Pair 2-RDM
(Å ) CASCI CASSCF CASCI CASSCF CASCI CASSCF
1.2 1.9937 1.9852 1.9952 1.9953 1.9997 1.9975

1.9828 1.9835 1.9927 1.9886 1.9894 1.9890
1.9876 1.9760 1.9882 1.9743 1.9970 1.9928
1.9183 1.9104 1.9269 1.9215 1.9361 1.9195
1.9183 1.9104 1.9269 1.9215 1.9361 1.9195
0.0942 0.1015 0.0810 0.0855 0.0700 0.0867
0.0942 0.1015 0.0810 0.0855 0.0700 0.0867
0.0111 0.0315 0.0080 0.0278 0.0017 0.0082

2.0 1.9887 1.9875 1.9982 1.9985 1.9989 1.9988
1.9850 1.9860 1.9953 1.9953 1.9970 1.9966
1.7140 1.7042 1.6740 1.6585 1.7796 1.7834
1.3573 1.3480 1.3303 1.3158 1.3466 1.3343
1.3573 1.3480 1.3303 1.3158 1.3466 1.3343
0.6513 0.6605 0.6713 0.6857 0.6546 0.6672
0.6513 0.6605 0.6713 0.6857 0.6546 0.6672
0.2951 0.3055 0.3293 0.3448 0.2221 0.2182
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Table 3.2: The energies of p-benzyne using the variational 2-RDM method and the pair
2-RDM method both with CASCI and CASSCF.

Variational 2-RDM Pair 2-RDM
CASCI CASSCF CASCI CASSCF

Total Energy -229.3952 -229.4357 -229.3737 -229.4116
Correlation Energy -0.1242 -0.1647 -0.1027 -0.1406

Table 3.3: The occupation numbers of p-benzyne using the variational 2-RDM method and
the pair 2-RDM method both with CASCI and CASSCF.

Variational 2-RDM Pair 2-RDM
CASCI CASSCF CASCI CASSCF
1.9380 1.9287 1.9652 1.9602
1.9264 1.9172 1.9439 1.9418
1.5641 1.4179 1.4258 1.2553
0.4365 0.5827 0.5745 0.7452
0.0747 0.0841 0.0633 0.0680
0.0603 0.0693 0.0273 0.0295

a) b)

Figure 3.2: Molecular orbital occupations line plot for the p-benzyne diradical using a) the
variational 2-RDM CASSCF method and b) the pair 2-RDM CASSCF method.

Table 3.2 shows that while more energy is recovered using the full variational method, a

significant portion is recovered by the pair approximation with CASCI and CASSCF. Both

Table 3.3 and Fig. 3.2 show fractional occupations, and therefore strong electron correlation,

of the molecular orbitals of the p-benzyne diradical both in the full and pair spaces.
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3.3.4 Cobalt Complex

Next, we consider a Bis-Cobalt complex, shown in Fig. 3.3, that has recently been synthesized

and studied[67]. Recent work has considered the effects of different linker molecules between

the Cobalt centers for tuning the amount of electron correlation for a variety of potential

applications[67].

Figure 3.3: Bis-Cobalt complex where Carbon atoms are shown in grey, Hydrogen in white,
Cobalt in pink, Sulfur in yellow, and Nitrogren in blue[60].

The occupation numbers using pair 2-RDM CASCI and pair 2-RDM CASSCF are shown

in Table 3.4 The two half-occupied molecular orbitals, which as the highest occupied natural

orbital (HONO) and lowest unoccupied natural orbital (LUNO) in the closed-shell descrip-

tion of the ground state, are shown using pair 2-RDM CASCI and pair 2-RDM CASSCF

in Fig. 3.4. The correlation energy recovered is -0.2081 a.u. and -0.3839 a.u. for the pair

2-RDM CASCI and CASSCF calculations respectively. The energy recovered by the pair

theory with SCF rotations is 6 mHartrees less than that recovered by the full variational

method with similar rotations.
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Table 3.4: The occupation numbers of Bis-Cobalt complex using pair 2-RDM CASCI and
CASSCF.

Pair 2-RDM
Molecular Orbital CASCI CASSCF

219 2.0000 2.0000
220 2.0000 2.0000
221 2.0000 1.9991
222 2.0000 1.9543
223 1.9999 1.9534
224 1.0634 1.0000
225 0.9366 0.9999
226 0.0000 0.0457
227 0.0000 0.0369
228 0.0000 0.0108

a) b)

Figure 3.4: Bis-cobalt complex molecular orbital densities using pair 2-RDM CASSCF for
molecular orbital a) HONO and b) LUNO.

3.3.5 FeMoco

Finally, we consider the modified FeMoco molecule, where the base chemical formula is

MoFe7S9C, as shown in Fig. 3.5[2]. FeMoco is the active catalytic site in the reduction of

nitrogen gas to ammonia during the process of nitrogen fixation[2].

The occupation numbers using the pair 2-RDM CASCI and CASSCF methods in both

[30,30] and [80,80] active spaces are shown in Table 3.5; for the pair 2-RDM CASSCF calcu-

lations we also show the occupations in the plots in Fig. 3.6. While the [30,30] calculations

capture fractional occupation, they predict numerous half-filled orbitals. When the active
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Figure 3.5: Modified FeMoco molecule where Molybdenum is shown in cyan, Sulfur in yellow,
Iron in brown, Oxygen in red, Nitrogen in blue, Carbon in grey, and Hydrogen in white[60].

space is increased to [80,80], there is a much greater spread of fractional occupations. It

should be noted that the [80,80] calculation is using approximately 107 variables, while a

traditional wavefunction calculation in the same space would take 1044 variables.

a) b)

Figure 3.6: Molecular orbital occupations line plot for FeMoco using the pair 2-RDM method
with CASSCF in a a) [30,30] active space and b) [80,80] active space.
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Table 3.5: The occupation numbers of FeMOCO using pair 2-RDM CASCI and CASSCF in
[30,30] and [80,80] active spaces.

Variational 2-RDM Pair 2-RDM
[30,30] [80,80]

Molecular Orbital CASCI CASSCF CASCI CASSCF
203 1.9992 1.9811 1.9892 1.9813
204 1.9939 1.7353 1.9778 1.9592
205 1.9837 1.0650 1.8134 1.9450
206 1.9727 1.0120 1.1128 1.9097
207 1.9675 1.0120 1.0657 1.7841
208 1.8081 1.0109 1.0306 1.1594
209 1.0225 0.9880 1.0176 0.8104
210 0.9708 0.9880 0.9999 0.7698
211 0.1561 0.9756 0.9824 0.5806
212 0.0608 0.9056 0.9452 0.4562
213 0.0308 0.7526 0.9441 0.2597
214 0.0256 0.7468 0.1014 0.1895
215 0.0048 0.4162 0.0244 0.1289
216 0.0041 0.2356 0.0123 0.0720
217 0.0004 0.1613 0.0123 0.0402
218 0.0001 0.0316 0.0116 0.0068

3.4 Discussion and Conclusions

Active space variational calculations of the 2-RDM are performed where the active orbitals

are correlated within the pair approximation. The pair approximation, which consists of

only considering r/2 pairs of orbitals in the wavefunction, greatly simplifies the structure of

the 2-RDM. By invoking this approximation, the computational cost of the variational cal-

culation of the 2-RDM constrained to the 2-positive (DQG) approximate N -representability

conditions is reduced to O(r3). Both CASCI and CASSCF calculations are considered in the

treatment of N2, a p-benzyne diradical, a Bis-Cobalt complex, and the nitrogenase cofactor,

FeMoco. In each of these four systems, fractional occupation is observered, indicating the

detection of strong electronic correlation. Due to the reduced computational cost and abil-

ity to capture strong correlation, the active-space pair 2-RDM methods show promise for

studying a wide variety of large molecular systems of chemical and biological interest.
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CHAPTER 4

OPEN QUANTUM SYSTEMS

4.1 1-RDM Methods

There are many physical and chemical systems whose behaviour is dominated by the influence

of the environment. While the 2-RDM can still be of use, electron-electron interactions

are generally less important in these situations and the 1-electron reduced density matrix

becomes a powerful tool,

1Dn =

∫
Ψn(1, .., N)Ψ∗n(1, .., N)d2..dN. (4.1)

The 1-RDM represents the probability distribution of 1-electron in the field of N -1 electrons.

The N -representability conditions are implied from the 2-positivity conditions discussed in

Chapter 1[1–3]. They are Hermiticity, normalization to N particles, and the two matrix

inequalities:

1Di
k � 0 (4.2)

1Qik � 0. (4.3)

For systems of fermions, the above two inequalities also imply that the sum of the one-particle

and one-hole RDMs must always satisfy,

1 = 1D + 1Q, (4.4)

where 1 is the identity matrix. This is equivalent to the Pauli exclusion principle which

means that for systems of fermions, fermionic statistics are implied by the N -representability

conditions.

56



The 1-RDM will be the primary object used in future chapters for studying the dynamics

of open quantum systems, where the environment has a greater influence over the electronic

behaviour than the electron-electron interactions.

4.2 Open Quantum Systems

Treating molecules as isolated is a common assumption when calculating electronic be-

haviour; however, in reality most systems do not exist in a vacuum but in some sort of

environment. Systems which are interacting with their surroundings are referred to as open

quantum systems, as shown in Fig. 4.1 where energy, heat, or information can be exchanged

between the system and the bath. Mathematically, the system is defined as Hs⊗Ib and the

bath Hb ⊗ Is[4, 5], where Hs is the system Hamiltonian and Hb is the bath Hamiltonian

and Is and Ib are the identity operators for the system and bath respectively.

Hs ⊗ Ib

Hb ⊗ Is

Figure 4.1: Open quantum system interacting with its surroundings.

The interaction between the system and the bath can vary in complexity depending on

a number of factors, including relative relaxation times and coupling strength. If the system

is weakly coupled to the bath and has a much slower relaxation time then it can be assumed
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that the system is Markovian as depicted in Fig. 4.2.

Hs ⊗ Ib

Hb ⊗ Is

Figure 4.2: Markovian open quantum system interacting with its surroundings.

In Markovian open quantum systems, the bath behaves as a sink for the system. Energy

or information that is lost from the system to the bath is not recovered; once lost it will

never play a roll in future dynamics. Markovian processes are often referred to as memory-

less processes[4, 5]. Extensive work has been done on these systems as the Markovian

approximation holds true in a vast number of physical and chemical systems of interest[4,

6–9].

4.3 Lindblad’s Equation

One of the most widely used methods of treating open system dynamics in the Markovian

regime is the Lindblad equation[4, 10, 11],

dDs(t)

dt
= −i[H,Ds(t)] +

∑

k

CkDs(t)C
†
k −

1

2
{CkC†k, Ds(t)}, (4.5)
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where Ds is the system density matrix, H is the system Hamiltonian, and {Ck} are the set

of Lindbladian operators for k channels[10]. The choice of Ck generally come from physical

arguments in the weak coupling limit.

One of the major benefits of the Lindblad equation is that due to its derivation from Kraus

maps, it maintains the positivity of the density matrix for all times[10, 12]. However, it has

been shown that care needs to be taken when using the Lindblad equation in conjunction with

the 1-electron RDM for systems of multiple fermions[13]. While the positivity is maintained,

there is nothing in the Lindblad equation that guarantees fermionic statistics. Depending

on the choice of Ck, it is possible to observe unphysical results in the form of multiple

fermions piling into the lowest energy state, thus violating N -representability and the Pauli

exclusion principle. Chapter 5 addresses a method of constraining the Lindbladian matrices

to generalize the Lindblad equation to treat systems of multiple fermions.

4.4 Non-Markovian Open Quantum Systems

If the coupling between the system and bath is strong, the bath is sufficiently complex, or the

system relaxation time is much faster than that of the bath, the Markovian approximation

breaks down. In this regime, energy or information lost from the system to the bath may

return to the system at a later time. This implies that the system has memory of its past and

instead of purely dissipative dynamics, a back-flow of energy or information can be observed

as depicted in Fig. 4.3. This type of behaviour is a signature of non-Markovian dynamics[4,

5].

The introduction of memory makes the dynamics of these systems much more challenging

to treat. There are currently a variety of approaches being developed and used to treat this

problem including hierarchical equations of motion methods[14, 15], quantum jump meth-

ods[16], quantum trajectory methods[17–19], master equation methods[20–23], and many

more[24]. The master equation methods are particularly appealing as they treat the reduced
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Hs ⊗ Ib

Hb ⊗ Is

Figure 4.3: Non-Markovian open quantum system interacting with its surroundings.

density matrix directly.

Many of the current methods of treating non-Markovian dynamics do not inherently

preserve the positivity of the density matrix. For instance perturbative techniques often

violate the positivity of the density matrix in the strong coupling limit of system-bath inter-

actions[4, 25]. The positivity is crucial for the N -representability of the density matrix, and

therefore losing this property implies unphysical behaviour. Since Lindblad’s equation pre-

serves positivity by construction, Chapter 6 outlines our method of generalizing the Lindblad

equation to capture non-Markovian dynamics without sacrificing the guaranteed positivity.

This method takes an ensemble average of Lindbladian trajectories from numerous points

in the system’s history to capture memory effects while maintaining positivity. Chapter 7

outlines a method of generalizing the constraints from the Markovian Lindblad equation to

ensure fermionic statistics in the ensemble of Lindbladian trajectories, or ELT, framework.

While the ELT method and constraints have generalized the Lindblad equation to treat

systems of multiple fermions in both the Markovian and non-Markovian regime, there is still

plenty of work that remains. One major area for improvement is in choosing the statistical
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weights in the ELT method. Currently, only small, exactly solvable systems have been

studied so numerical optimization is sufficient. However, to consider larger systems, a more

general method of choosing weights needs to be developed.
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CHAPTER 5

SATISFYING FERMIONIC STATISTICS IN THE MODELING

OF OPEN TIME-DEPENDENT QUANTUM SYSTEMS WITH

ONE-ELECTRON REDUCED DENSITY MATRICES

Reprint with permission from K. Head-Marsden and D. A. Mazziotti, Journal of Physical

Chemistry, 142 051102 (2015). Copyright 2015 American Institute of Physics.

5.1 Introduction

Open time-dependent quantum systems are important to understanding a range of chemical

phenomena from molecules in solvent or protein environments to materials embedded in

a larger-scale structure [1–3]. The influence of the environment on a system’s energy can

be as significant or even more significant than the influence of electron correlation. The

evolution of the closed quantum system is governed by the quantum Liouville equation,

also known as the von Neumann equation [4, 5]. For an open quantum system Lindblad

derived the most general modification of the quantum Liouville equation in the Markovian

approximation that models environmental effects while preserving the non-negativity of the

probability distribution (or more specifically, the positive semidefiniteness of the system’s

density matrix) [6–9].

While Lindblad’s operator is correct for N -electron density matrices, the operator has

been observed to cause significant violation of the Pauli exclusion principle in the time evo-

lution of the 1-electron reduced density matrix (1-RDM) [10]. As discussed in Refs. [10–12],

the preservation of the fermionic statistics of the 1-RDM in an open, time-dependent system,

even with an interaction-free Hamiltonian, is a non-trivial problem. Despite previous diffi-

culties the generalization of the Lindblad operator to preserve fermionic statistics is critical

to the accurate treatment of environmental effects in the time evolution of effective one-
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electron theories such as the time-dependent Hartree-Fock and density functional theories.

Constraining the 1-RDM to obey the Pauli exclusion principle, which requires the eigenval-

ues of the 1-RDM to lie between 0 and 1, is equivalent to constraining the 1-RDM to be

ensemble N-representable, that is representable by at least one ensemble N -electron density

matrix [13, 14]. In this Communication we derive the necessary and sufficient constraints

on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains

ensemble N -representable throughout its time evolution, which is equivalent to its obeying

the Pauli exclusion principle for all time. The theory is illustrated by considering the relax-

ation of an excitation in several molecules, F2, N2, CO, and BeH2, subject to environmental

noise.

5.2 Theory

5.2.1 Fermion Conditions on Lindbladian Matrices

An open, time-dependent quantum system of N -electrons can be described by the time

dependent N -electron density matrix D governed by the quantum Liouville equation [4]

dD

dt
= −i[H,D] + L(D,C) (5.1)

with a Lindblad terms L(D,C) added to account for the interaction of the N -electron system

with its environment [6]

L(D,C) = CDC† − 1

2
{C†C,D}. (5.2)

Importantly, the Lindblad term treats the interaction of the system with the environment

while keeping the N -electron density matrix positive semidefinite at each time, that is

D � 0. (5.3)
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A matrix is positive semidefinite if and only if all of its eigenvalues are nonnegative. Collec-

tively, this semidefinite constraint on the matrix and additional constraints that the matrix

be (i) Hermitian, (ii) normalized, and (iii) antisymmetric in the exchange of its particles

ensure that it is an N -particle density matrix with fermion statistics [13].

Although the above formalism is exact, it is often computationally expensive to propagate

the N -electron density matrix as a function of time with the Liouville equation. One mean-

field-like approximation is to replace (i) the N -electron Hamiltonian with its explicit two

body electron-electron interactions by an interaction-free Hamiltonian and (ii) theN -electron

density matrix with its explicit treatment of electron correlation by a 1-RDM. The simplest

derivation of this approximation is to generalize the one-electron Liouville equation

d 1D

dt
= −i[1H,1D] + L(1D,1C), (5.4)

where 1D is the 1-RDM, 1H is the one-body interaction-free Hamiltonian, and 1C is the

one-body Lindblad matrix. If we set Tr(1D) = N , then Eq. (5.4) can describe not only

a one-electron system with N = 1 but also an ensemble of N non-interacting one-electron

systems when N > 1. As in the N -electron case, the structure of the Lindblad term in

Eq. (5.2) ensures that the 1-RDM remains positive semidefinite for all time.

Unlike the N -electron density matrix, however the 1-RDM has additional constraints to

ensure that it represents an ensemble N -electron density matrix, known as N-representability

conditions [13, 15]. In addition to the non-negativity of the 1-RDM, it is also necessary for the

one-hole RDM 1Q to be positive semidefinite. Therefore, in addition to being (i) Hermitian

and (ii) normalized to N , the 1-RDM must also satisfy two linear matrix inequalities

1D � 0 (5.5)

1Q � 0. (5.6)
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Coleman showed that these conditions on the 1-RDM are necessary and sufficient ensemble

N -representability conditions [13]. Furthermore, they are equivalent to the well-known Pauli

principle that the occupation numbers of the 1-RDM must lie between zero and one.

While the Lindblad term by construction is known to keep the 1-RDM positive semidefi-

nite for all time [6–9], it is necessary to explore the effect of the Lindblad term on the requisite

positive semidefiniteness of the one-hole RDM. To address this question, we substitute the

expression for the one-particle RDM in terms of the one-hole RDM

1D =1 I −1 Q (5.7)

into the Liouville equation with the Lindblad term in Eq. (5.4). Because the one-particle

identity matrix 1I is time-independent and commutes with the Hamiltonian, the non-dissipative

portion of Eq. (5.4) simplifies forthwith, and we obtain

d 1Q

dt
= −i[1H,1Q] + L(1I −1 Q,C). (5.8)

Now we consider the Lindblad term as a functional of 1I −1 Q,

L(1I −1 Q,1C) = −L(1Q,1C) + [1C,1C†]. (5.9)

From Eq. (5.9) it can be seen that to obtain an equation analogous to Eq. (5.4) for the one-

hole RDM, an added restriction must be imposed on the Lindbladian matrix 1C. Specifically,

for the 1-hole RDM to evolve according to the Liouville equation with a Lindblad operator,

it is necessary and sufficient that the second term in Eq. (5.4) vanishes. If [1C,1C†] = 0,

then Liouville equation for the one-hole RDM can be expressed as

d 1Q

dt
= −i[1H,1Q] + L(1Q,1C), (5.10)
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which is the hole analogue of Eq. (5.4). Just as in the case of the 1-electron RDM, this

equation keeps the one-hole RDM positive semidefinite for all time. We have proven that

the time evolution of the one-particle RDM by Eq. (5.4) keeps both the one-particle RDM and

the one-hole RDM positive semidefinite for all time under the condition that the Lindbladian

matrix 1C commutes with its adjoint. Therefore, constraining the Lindbladian matrix 1C

such as its commutator with its adjoint vanishes causes the 1-fermion RDM solution of

the quantum Liouville equation to satisfy the Pauli exclusion principle for all time (that is,

remain N -representable for all time). For the commutator to vanish, the 1C matrix can be

constraint to be Hermitian S, anti-Hermitian A, or a sum of Hermitian and anti-Hermitian

matrices S+A, where SA = 0. This restricted class of 1C includes the generators of Gaussian

semigroups.

5.2.2 Fermion Conditions on Multiple Lindbladian Matrices

Considering the case where there are numerous dissipation channels represented by multiple

Lindbladian matrices, we can use Eq. (5.4) as a starting point to generalize the theory of

the previous section. Taking the summation of the Lindblad terms over m channels yields

d 1D

dt
= −i[1H,1D] +

m∑

i=1

L(1D,1Ci). (5.11)

By the same method as previously presented, an analogous equation can be derived for the

1-hole RDM

d 1Q

dt
= −i[1H,1Q] +

m∑

i=1

L(1Q,1Ci). (5.12)

Once again, to have Eq. (5.12) hold true to preserve the fermionic character of the system,

each Lindbladian matrix 1Ci must satisfy

[1Ci,
1C
†
i ] = 0. (5.13)
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Constraining each of the Lindbladian matrices 1Ci to be either Hermitian or anti-Hermitian

is sufficient for the 1-fermion RDM solution of the quantum Liouville equation to satisfy the

Pauli exclusion principle and remain N -representable for all time.

A specific, physically important example of Lindbladian matrices that satisfy the above

requirement is the case where each Lindbladian matrix 1Ci is a rank-one projection operator

1Ci = γiviv
†
i . (5.14)

If m is chosen to equal the number r of one-electron orbitals and each vi is a vectors rep-

resenting the ith orbital, then each 1Ci represents the interaction of the ith orbital of the

system with the environment with γi controlling the degree of the interaction. If we fur-

ther restrict the number m of channels to the N occupied orbitals, then we recover the

form of the Lindbladian matrix presented by Pershin et al. [10]. The present work shows

that the rank-one Lindbladian matrices in Ref. [10] are a special case of the more general

arbitrary-rank Hermitian Lindbladian matrices that preserve the fermionic statistics of the

1-RDM for all time. Even within the rank-one approximation generalizing the number of

Lindbladian channels from the N occupied orbitals to the r occupied and unoccupied (vir-

tual) orbitals provides additional flexibility for modeling the interaction of the system with

the environment that maintains particle-hole symmetry [16, 17].

5.3 Applications

To illustrate, we consider the time evolution of 4 molecules N2, CO, F2, and BeH2 initialized

to their first excited states. For each molecule the effective one-electron Hamiltonian is con-

structed at the Hartree-Fock level of theory. Hartree-Fock calculations were performed in the

Dunning-Hay double-zeta basis set [18] with the quantum chemistry package GAMESS [19].

For each molecule the time evolution was performed with both a Hermitian 1C matrix and
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a non-Hermitian 1C matrix. The elements of the 1C matrix were generated with the ran-

dom number generator in the computer algebra system Maple [20]. The time propagation

of the 1-RDM was performed by solving the Liouville equation with a fourth-fifth order

Runge-Kutta method for solving initial-value differential equations [21].

Table 5.1: The first 8 occupation numbers of F2, N2, and CO are presented at 0.0 fs where
they have their time-independent Hartree-Fock values and at 2.0 fs after evolution of the
Liouville equation in the presence of environmental noise. When the Lindbladian matrix 1C
is selected to be Hermitian, the occupation numbers remain between 0 and 1. In contrast,
when the Lindbladian matrix 1C is selected to be non-Hermitian, the highest occupation
numbers increase in value to violate the Pauli exclusion principle dramatically by 2 fs.
Occupation F2 N2 CO

Number t = 0 t=2.0 fs
1C =1 C† 1C 6=1 C† 1C =1 C† 1C 6=1 C† 1C =1 C† 1C 6=1 C†

1 1 0.993 3.636 0.865 5.428 0.866 3.168
2 1 0.924 3.636 0.767 5.428 0.768 3.168
3 1 0.923 2.382 0.762 0.777 0.764 1.646
4 1 0.921 2.382 0.758 0.777 0.760 1.646
5 1 0.920 1.639 0.754 0.333 0.759 1.251
6 1 0.914 1.639 0.750 0.333 0.757 1.251
7 1 0.911 0.548 0.747 0.178 0.752 0.483
8 1 0.911 0.548 0.720 0.178 0.722 0.483

Table 5.1 presents the first 8 occupation numbers of F2, N2, and CO at 0.0 fs as well

as at 2.0 fs. At 0.0 fs the occupation numbers are those from solving the time-independent

Hartree-Fock approximation to the Schrödinger equation. When the Lindbladian matrix 1C

is selected to be Hermitian, the interaction of each electronic system with an environment

causes the occupations to change from 1 and 0 for the occupied and unoccupied orbitals,

respectively, to values between 0 and 1 at 2 fs. In contrast, when the Lindbladian matrix 1C

is selected to be non-Hermitian, the highest occupation numbers increase in value to violate

the Pauli exclusion principle dramatically by 2 fs.

Figure 5.1 shows the twelve occupation numbers of BeH2 as functions of time using (a)

a Hermitian and (b) a non-Hermitian Lindbladian matrix 1C. With a Hermitian matrix 1C

the occupation numbers lie between 0 and 1 in accordance with the Pauli exclusion principle,
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Figure 5.1: The twelve occupation numbers of BeH2 are shown as functions of time using (a)
a Hermitian and (b) a non-Hermitian Lindbladian matrix 1C. With a Hermitian matrix 1C
the occupation numbers lie between 0 and 1 in accordance with the Pauli exclusion principle,
but with a non-Hermitian 1C matrix the occupation numbers dramatically exceed 1 as the
electrons in BeH2 assume bosonic character.

but with a non-Hermitian 1C matrix the occupation numbers dramatically exceed 1 as the

electrons in BeH2 assume bosonic character. The anti-Hermitian part of the non-Hermitian

matrix 1C has the ability to convert a system obeying fermionic statistics to a system obeying

only bosonic statistics.

5.4 Discussion and Conclusions

Addition of the Lindblad operator to the quantum Liouville equation provides the most

general time evolution within the Markovian approximation that preserves the non-negativity

of the N -electron density matrix [6–8]. The most common use of the quantum Liouville

equation in many-electron quantum systems, however, is to evolve a reduced density matrix

(RDM) such as the one-electron RDM according to an effective one-electron Hamiltonian.

In this case Lindblad’s derivation is not complete because additional constraints, known as

N -representability conditions, are necessary to ensure that an RDM represents at least one

ensemble N -electron system [13–15]. The breakdown of fermionic statistics (in other words,
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the violation of the Pauli exclusion principle) has been observed in Ref. [10] for the time

evolution of the 1-RDM subject to the Lindblad operator. A generalization of the Lindblad

operator to preserve fermion statistics is necessary for treating environmental effects such

as noise and dissipation in the time evolution of effective one-electron theories (i.e. in the

time-dependent Hartree-Fock and density functional theories).

In this Communication a general constraint on the Lindblad operator was derived to

ensure that 1-RDM generated by the quantum Liouville equation satisfies the Pauli exclusion

principle for all time. Specifically, we showed that if the Lindbladian matrix is constrained

to commute with its adjoint, then the 1-RDM satisfies the Pauli exclusion principle at all

times, meaning that during the time evolution its eigenvalues always lie in the interval [0, 1].

We formally derived this result by showing that if the Lindbladian matrix commutes with

its adjoint, then the Lindblad operator preserves the non-negativity of both the one-particle

RDM 1D and the one-hole RDM 1Q, that is 1D � 0 and 1Q � 0, which imply the Pauli

exclusion principle. We also generalized the results to the addition of multiple Lindblad

operators to the quantum Liouville equation. In that case it is necessary to constrain each

Lindbladian matrix to commute with its adjoint. A sufficient condition for the dynamics to

obey fermionic statistics is to constrain the Lindbladian matrix to be either Hermitian or

anti-Hermitian.

The present generalization of Lindblad operator provides a general framework for incor-

porating environmental effects, especially dephasing and dissipation, into the time evolution

of 1-RDMs within effective one-electron theories. Our generalization reduces to Pershin et

al.’s earlier work [10] if we introduce a rank-one Lindbladian matrix for controlling the in-

teraction of each occupied orbital with the environment. Within a rank-one model of the

Lindbladian matrices we recommend including bath channels for both the occupied and un-

occupied orbitals as a more realistic approximation that obeys particle-hole symmetry [16,

17]. N -representable approximations to the Lindblad operator may be especially impor-
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tant within the framework of time-dependent density functional theories that incorporates

environmental noise.
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CHAPTER 6

ENSEMBLE OF LINDBLAD’S TRAJECTORIES FOR

NON-MARKOVIAN DYNAMICS

Reprint with permission from K. Head-Marsden and D.A. Mazziotti, Physical Review A, 99

(2) 002100 (2019). Copyright 2019 American Physical Society.

6.1 Introduction

Non-Markovian effects are important in a variety of physical quantum systems including but

not limited to exciton transport in photosynthetic light harvesting complexes[1–8], qubits and

quantum control[9–12], and quantum optics[13]. Yet despite their prevalence there remain

many unanswered questions in the theoretical treatment of such systems[14, 15]. The most

common starting point for treating non-Markovian dynamics is an exact kernel equation,

which is challenging to solve in the most general case[14, 15]. Many methods approximate the

kernel through perturbative techniques, and while they are effective for small perturbations

about the Markovian limit, they can in general limit or destroy the positivity of the density

matrix[16]. Other methods have been developed to treat non-Markovian dynamics with

built-in positivity in specific systems[17–29], but the development of a general, practical

framework for non-Markovian approximations that maintains the positive semidefiniteness

of the density matrix remains a significant problem[19]. Recent work has produced an

exact, closed form master equation which allows the treatment of non-Markovian dynamics

for Gaussian environments[30]. Other related work includes quantum jump methods and

trajectory approaches[31–37].

Lindblad developed an elegant, completely general theory for treating Markovian dy-

namics in an open quantum system while maintaining the positive semidefinite property

of the density matrix for all time[38–40]. In this paper we present a general extension of
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Lindblad’s theory to the case of non-Markovian quantum systems. While Lindblad examines

the equation of motion for a single trajectory that generalizes the Liouville equation to the

Markovian case, we consider an ensemble of Lindbladian trajectories (ELT) which allows

for an accurate calculation of dynamics in the strong coupling, non-Markovian regime while

maintaining the positivity of the density matrix. The constraint of the system’s density

matrix to be consistent with the total density matrix (i.e. positive semidefinte) has connec-

tions to the N -representability problem in which a p-partice density matrix is constrained to

represent an N -particle density matrix with N > p[41–45]. The ELT theory is also related to

post-Markovian methods [31, 33, 37] based on Kraus maps with further details given below.

The Jaynes-Cummings model is used to demonstrate the accuracy of the ELT method as it

is exactly solvable and many perturbative methods fail at capturing the exact dynamics in

the strong coupling regime[46, 47].

6.2 Theory

6.2.1 Ensemble of Lindbladian Trajectories Method

An ensemble of Lindbladian trajectories is used to calculate the density matrix at a given

time t. In Fig. 6.1 the blue density matrix at time t is the actual density matrix of the

quantum system while the green density matrices are auxiliary variables, each of which

represents a trajectory in the ensemble. Each green density matrix D̃(t, τi) is the endpoint

of a Lindblad trajectory originating from an actual (blue) density matrix at time t− τi. The

ensemble of the green density matrices D̃(t, τi) originating at different times t − τi defines

the actual (blue) density matrix at time t. Formally, this is equivalent to,
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Figure 6.1: An ensemble of Lindbladian trajectories whose weighted ensemble produces the
density matrix at time t.

D(t) =
N∑

i=1

ω(τi)D̃(t, τi) (6.1)

=
N∑

i=1

ω(τi)e
L(τi)D(t− τi) (6.2)

where N is an integer controlling the maximum amount of memory, ω(τi) are the weights of

the trajectories, and eL(τi) are the propagators. Each trajectory is a Kraus map which we

can represent by the following Lindbladian trajectory:

dD

ds
= −i[H,D] +

N∑

j=1

CjDC
†
j −

1

2
{C†jCj , D} (6.3)

where s represents an effective time within the mapping and the Lindblad terms Cj ac-

count for the interaction of the N -electron system with its environment through different

dissipative channels [39]. From the properties of Kraus maps the trajectories produce pos-

itive semidefinite density matrices whose ensemble is also positive semidefinite[48]. If the

Hamiltonian and the Lindbladian matrices are all time dependent, that is dependent on the

effective time s, then the Lindblad trajectory can approach an arbitrary Kraus map. The
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proof follows from writing the Lindblad trajectory as a composition of Kraus maps where

all but one of the Kraus maps can be chosen to be the identity operation.

This ansatz is an extension of the Lindbladian theory to the general case of non-Markovian

dynamics under the mild assumption that each point in history can be mapped to the present

using a Kraus map. Because any positive semidefinite density matrix at time t can be gen-

erated by a Kraus map from a historical density matrix at t− τ [9–12, 48], the assumption is

equivalent to requiring that each trajectory’s density matrix be positive semidefinite. Any

positive semidefinite density matrix can be generated from an initial density matrix from

a Kraus map. By assuming the positivity of each individual map in the ensemble aver-

age, we can select the nonnegative weights in the ensemble average without any additional

restriction. Although Kraus maps are employed in other open-system theories such as the

post-Markovian methods [31, 33, 37], ELT does not rely on measurement theory to generalize

the Lindblad equation, which leads to a different set of final equations.

6.2.2 Relationship to Kernel Methods

The general kernel equation is given by,

dD

dt
=

∫ t

0
K(t, τ)D(t, τ)dτ, (6.4)

where D(t, τ) is the reduced density matrix at time t−τ and K(t, τ) is the memory kernel[14,

15]. We can convert Eq. 6.2 into the form of Eq. 6.4 by taking the summation in Eq. 6.2 to

the continuous limit, differentiating each side of Eq. 6.2 with respect to t, and invoking the

Leibnitz rule:

dD(t)

dt
=

∫ t

0
ω(τ)eL(τ)

dD(t, τ)

dt
dτ, (6.5)

where t is the current time, t− τ is the initial time for each trajectory, eL(τ) are the Kraus

maps, and ω(τ) are the weights. The key difference between the Eq. 6.5 and the standard
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kernel equation in Eq. 6.4 is that the integral depends on the first derivative of the density

matrix with respect to time while the standard method relies on just the density matrix. Eq.

6.5 is the key equation because the time derivative is central to the process of maintaining

a positive semidefinite density matrix. It also has the benefit of transforming the integro-

differential equation in Eq. 6.4 into a simplified type 2 Volterra equation[49, 50], which has

well-developed numerical solutions[51].

6.3 Application

6.3.1 Jaynes-Cummings Model

To illustrate this theory, we consider the damped Jaynes-Cummings model on resonance

with and without detuning. This model consists of a single excitation in a two-level system

coupled to a reservoir of harmonic oscillators[14, 17, 46, 47]. The Hamiltonian for the model

is given by

Ĥ =
ω0σ̂z

2
+

∫
ωâ†â+ λ

(
σ̂+â+ σ̂−â†

)
dω, (6.6)

where ω0 is the two-level system’s transition frequency and λ is inversely proportional to the

reservoir correlation time. The â
†
ω and âω are the creation and are annihilation operators

for frequency modes ω, and σ̂x,y,z are the Pauli spin operators with σ̂± =
σ̂x±σ̂y

2 [17]. The

spectral density of the bath is

J(ω) =
1

2π

γ0λ
2

(ω0 −∆− ω)2 + λ2
, (6.7)

where γ0 is inversely proportional to the time scal of the system changes and ∆ is the amount

of detuning[14]. Here the decay rates and populations in the excited level from our method

are compared to those calculated exactly from the spectral density of the bath[14, 17]. We

also compare our results with the Markovian solution, the solution to the generalized master
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equation to second order (GME2), and the time convolutionless solution to second (TCL2)

and fourth (TCL4) orders[52, 53].

In the weak coupling case without detuning the correlation time of the reservoir is set

to one-fifth of the system’s time scale, and in the strong coupling case without detuning the

correlation time of the reservoir is set to five times the system’s time scale. In all calculations

we set the Markovian decay rate γ0 to 1.091. The trajectory of each density matrix in the

ELT method was computed with the computer algebra system Maple[54].

The excited-level population of the Jaynes-Cummings model has the following closed-

form solution in the Markovian limit:

D11(t) = D11(0)e−γ0t. (6.8)

In the ELT method we consider an ensemble of such Lindbladian trajectories, one trajectory

from each historical point in time,

D11(t) =
∑

i

ω(τi)D̃11(t, τi) (6.9)

where D̃11(t, τi) = D11(t − τi)e−γ(τi)(t−τi). To match the dynamics from the ELT method

with the dynamics from the full quantum system including both system and bath, we op-

timized both the weights ω(τi) and the decay parameters γ(τi) simultaneously with a least

squares fit to the exact solution by a sequential programming algorithm in Maple[55].

6.3.2 Results

Figure 6.2 (a) shows the excited-level populations of the Markovian, ELT, and exact solutions

while Fig. 6.2 (b) shows the errors in the excited-state population from all methods relative

to the exact solution. The excited-level population of the Markovian solution decays too

quickly at short times and too slowly at longer times. While the perturbative methods,
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GME2, TCL2, and TCL4, improve upon this behavior, only the ELT method agrees with

the exact solution to the precision of the numerical solution.
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Figure 6.2: The exact (black), Markovian (green), GME2 (green-blue), TCL2 and TCL4
(teal and blue respectively), and ELT (red) (a) populations of the excited level and (b)
errors relative to the exact solution are shown for the weak coupling limit (λ = 5γ0 ,γ0 =
1.091,∆ = 0) in the Jaynes-Cummings model. The ELT method shows closest agreement to
the exact solution.

In the strong coupling limit the excited-level population of each method is shown in
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Fig. 6.3. The Markovian, TCL2, and TCL4 methods give physical results and the correct

long-time behavior, they capture only the decay of the population and not its recovery. The

GME2 solution exhibits unphysical behavior in the form of large negative probabilities for

finding the model in its excited level. The ELT method correctly predicts the recovery,

matching the exact solution to the precision of the numerical methods. Physically, the

recovery arises from the energy previously transferred to the surroundings driving the system

back into the excited state, which is often referred to as a back-flow of energy or information.
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Figure 6.3: The population of the Jaynes-Cummings excited level in the strong coupling
limit (λ = 0.2γ0, γ0 = 1.091,∆ = 0) is shown as a function of time for the exact (black),
Markovian (green), GME2 (green-blue), TCL2 and TCL4 (teal and blue respectively) and
ELT (red) solutions. The ELT method agrees with the exact solution for all times.

Finally, we consider the Jaynes-Cummings model with detuning, comparing the Marko-

vian, TCL4, and ELT solutions in Fig. 6.4, where λ = 0.3γ0 and ∆ = 2.4γ0. In this case the

ensemble of such Lindbladian trajectories is augmented with trajectories of the hole density

matrix:

D11(t) =
∑

i

[
ω(τi)D̃11(t, τi) + ω̃(τi)(1− Q̃11(t, τi))

]
(6.10)
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where Q̃11(t, τi) = Q11(t−τi)e−γ(τi)(t−τi) in which Q11(t) = 1−D11(t). Physically, consider-

ation of the hole density matrix is equivalent to including an additional Lindbladian channel

corresponding to the decay of a hole from the upper level (or excitation of a particle from

the lower level). It is seen that although the detuning case is inherently non-Lindbladian

by nature[14], due to the ensemble nature of the ELT method, the exact dynamics are still

captured.
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Figure 6.4: The population of the excited level of the Jaynes-Cummings model in the strong
coupling, detuning limit (λ = 0.3γ0, γ0 = 1.091, ∆ = 2.4γ0) is shown as a function of time
for the Markovian (green), TCL4 (blue) and ELT (red) solutions. The ELT agrees with the
TCL4 solution.

6.4 Conclusion

The most general form of treating non-Markovian dynamics in open quantum systems is

with the kernel equation in Eq. (6.4). However, practical use of the kernel equation is

computationally challenging in its general form. Approximations to the kernel, especially

those that rely upon perturbative arguments, tend to sacrifice the positive semidefinite-

ness of the density matrix. Here, we have presented a general theory that considers an
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ensemble of Lindbladian trajectories originating from different times in the system’s his-

tory. In this manner the approach provides a complete account of the system’s memory in

a framework that preserves the positivity of the system’s density matrix for all time. The

Lindbladian trajectories capture the full range of potential dynamics because of the one-

to-one mapping between Lindbladian trajectories and Kraus maps. Application of ELT to

the Jaynes-Cummings model demonstrates its ability to capture non-Markovian dynamics

in both the weak and strong coupling regimes. As with Lindblad’s theory, the present gener-

alization requires physical insight from theory and/or experiments to select the appropriate

system-bath parameters. Future work will further explore the application of these results to

the more accurate description of non-Markovian quantum systems.
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CHAPTER 7

SATISFYING FERMIONIC STATISTICS IN THE MODELING

OF NON-MARKOVIAN DYNAMICS WITH ONE-ELECTRON

REDUCED DENSITY MATRICES

Parts of this chapter are reprints from a paper submitted for publication by K. Head-Marsden

and D. A. Mazziotti (2019).

7.1 Introduction

Lindlbad derived a general equation to model environmental effects in open, time-dependent

quantum systems while preserving the non-negativity of the density matrix[1–3]. However,

when used in conjunction with the 1-particle reduced density matrix, or 1-RDM, fermion

statistics are not inherently preserved[4–7]. Additional constraints have been derived on

the Lindbladian operators to ensure that the 1-RDM obeys the Pauli exclusion principle[8].

Here, we extend these constraints to treat non-Markovian dynamics.

Despite the prevalence of non-Markovian dynamics in a variety of physical systems such

as information transfer in qubits and energy transfer in photosynthetic light harvesting com-

plexes, general and accurate treatment of such dynamics remains a challenge[9–20]. Method-

ologies for non-Markovian dynamics include the quantum jump methods, quantum trajectory

approaches, and master equation methods[21–36]. Recently we developed an extension of

Lindblad’s formalism to treat non-Markovian dynamics by taking an ensemble of Lindbladian

trajectories (ELT)[37]. The advantage of the ELT method is that it provides a theoretically

complete description of non-Markovian dynamics without violation of the complete posi-

tivity of the density matrix [37]. With a proper choice of the Lindbladian channels it can

in principle match the system density matrix obtained from the exact system-bath density

matrix.

91



Here we extend the ELT theory for non-Markovian dynamics to treat systems with mul-

tiple fermions. We show that the constraints that we previously derived for the Lindblad

equation can be applied to each Lindblad trajectory of the ELT method to maintain the

fermion statistics. In particular, we use the convexity of the constrained density matrices

to prove that the ensemble inherits the constraints of the individual trajectories. These

constraints are critical because without them the many-fermion system can collapse into a

many-boson-like system in potentially extreme violation of the Pauli exclusion principle. The

ELT with fermion constraints offers a theoretically complete description of non-Markovian

dynamics without violation of the Pauli principle.

After developing the theoretical extension of the ELT method in Section 7.2.3, we apply

the resulting ELT method in Section 7.3. We apply the ELT method to three distinct systems

of two fermions in three levels. While the electrons violate the fermion statistics without the

constraints, correct fermion behavior is recovered with the constraints.

7.2 Theory

The constraints on the Lindbladian matrices to ensure fermionic statistics and the general-

ization of the Lindblad equation to the non-Markovian regime are reviewed in Sections 7.2.1

and 7.2.2, respectively. In Section 7.2.3 we generalize the ELT method to treat systems

with multiple fermions. While the derivations are presented in the notation of first quantiza-

tion, all of the results can also be expressed without modification in the notation of second

quantization.
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7.2.1 Fermion Conditions on Lindbladian Matrices

The Lindblad equation for the 1-RDM is given by,

d1D

dt
= −i[1H, 1D] +

N∑

j=1

L(1D, 1C), (7.1)

where 1H is the one-body Hamiltonian, 1D is the 1-RDM, L(1D, 1C) = 1Cj
1D1C

†
j −

1
2{1C

†
j
1Cj ,

1D} where 1C are the one-body Lindbladians[1–3].

The use of the 1-RDM requires additional constraints referred to as the N -representability

conditions: (i) Hermiticity, (ii) normalization to N particles, and (iii) two linear matrix

inequalities:

1D � 0 (7.2)

1Q � 0, (7.3)

where 1Q is the 1-hole RDM[38–43]. The nonnegativity of the 1-particle and 1-hole RDMs

is equivalent to the Pauli exclusion principle that the eigenvalues of the 1-RDM must lie in

the interval [0,1].

In Ref. [8] we derived a constraint on the Lindbladian (bath) operators that is necessary

and sufficient for the 1-RDM to obey the fermion statistics expressed in the Pauli exclusion

principle. For a single dissipative channel, the Lindbladian matrix must be normal[8],

[C,C†] = 0, (7.4)

or if there are multiple dissipative channels, the constraint can be written as a summa-

tion over multiple commutators. As previously shown, the simple constraint is a subset of

the general constraint since if all Lindbladians are normal, then the summation is trivially
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zero. However, with multiple channels the Lindbladians have greater flexibility and are not

required to be normal as long as cancellation among terms causes the sum to be zero[8].

7.2.2 Ensemble of Lindbladian Trajectories Method

Taking the ensemble average of Lindbladian trajectories originating from different points in

the system’s history produces a new density matrix,

D(t) =
N∑

i=1

ω(τi)e
L(τi)D(t− τi), (7.5)

where ω(τi) are statistical weights, τi are lag times, and eL(τi) are the Lindbladian propa-

gators[37]. Since this method takes positive trajectories from many different points in the

system’s history, the system memory is built into the dynamics. Through density matrices

from different times in the history the system has the opportunity to regain information

that was previously lost to the surroundings. As shown in previous work, this method pro-

vides a full account of the system’s memory while maintaining the positivity of the density

matrix[37].

7.2.3 Fermion Conditions in the ELT Method

The density matrix from the ELT method is an ensemble of individual Lindbladian trajecto-

ries. Since each trajectory produces a positive semidefinite density matrix, the new density

matrix will also be positive semidefinite. Due to this relationship and the convexity of the

sets of both the 1-electron and 1-hole RDMs, enforcing the Pauli principle on each trajectory

is equivalent to enforcing the principle for the ensemble of trajectories. For completeness a

formal proof of this result is given in the next section. The constraint on the Lindbladians
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is thus similar to the constraint for the multiple dissipative channels case,

∑

i

[Ci, C
†
i ] = 0. (7.6)

It should be noted that due to the multiple trajectories in the ensemble, this constraint is

analogous to the more general constraint previously derived. It is not necessary that each

Lindbladian matrix be normal, only that the sum of all the commutators vanishes. For

example, two Lindbladian channels could be paired so that each channel has a bath matrix

that is the adjoint of the other channel’s bath matrix, causing the sum in Eq. (7.6) to vanish.

7.2.4 Convexity of the 1-RDM Set

The set of density matrices with eigenvalues in the interval [0,1] is convex, and hence, the

ensemble average of matrices in the set produces another matrix in the set. Because this

result is central to the present work, we present a proof of the set’s convexity in the following

theorem.

Theorem 1. Let Mi be matrices with eigenvalues {λ(i)j } and eigenfunctions {φ(i)j } and

M =
∑
i ωiMi with eigenvalues {λ̃j} and eigenfunctions {φ̃j}, if {λ(i)j } ∈ [0, 1], ωi ≥ 0, and

∑
i ωi = 1 then {λ̃j} ∈ [0, 1].

Proof. Start by taking the expectation value of M in the basis of an eigenvector φ̃j ,

〈φ̃j |M | φ̃j〉 = 〈φ̃j |
∑

i

ωiMi | φ̃j〉 (7.7)

=
∑

i

ωi〈φ̃j |Mi | φ̃j〉 (7.8)
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Now consider the eigenfunctions φ
(i)
max corresponding to the maximum eigenvalues of Mi,

∑

i

ωi〈φ̃j |Mi | φ̃j〉 ≤
∑

i

ωi〈φ(i)max |Mi | φ(i)max〉 (7.9)

≤
∑

i

ωi (7.10)

≤ 1 (7.11)

using {λ(i)j } ∈ [0, 1] with equality holding if Mi and M share the same eigenfunctions.

An analogous argument can be made using the eigenfunctions φ
(i)
min, corresponding to the

minimum eigenvalues of Mi,

∑

i

ωi〈φ̃j |Mi | φ̃j〉 ≥
∑

i

ωi〈φ(i)min |Mi | φ(i)min〉 (7.12)

≥ 0 (7.13)

using {λ(i)j } ∈ [0, 1] again with equality holding if Mi and M share the same eigenfunctions.

Therefore,

{λ̃j} ∈ [0, 1]. (7.14)

7.3 Applications

The ELT method was previously applied to the Jaynes-Cummings model, which is a two-

level system interacting with the cavity field[37, 44, 45]. To verify the extended version of

the ELT method to capture fermion statistics, we employ here a three-level system with

two fermions[21]. There are three primary ways of arranging three different energy levels,

as shown in Fig. 7.1. The ELT method with and without constraints on the Lindbladian is
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employed to calculate occupation numbers of the three states for each of the three systems.

| 0〉

| 1〉

| 2〉a)

| 0〉

| 1〉

| 2〉b)

| 0〉

| 1〉

| 2〉c)

Figure 7.1: Three level systems arranged with a) ladder states, b) one higher-in-energy state
connected to two lower-in-energy states (∧) and c) two higher-in-energy states connected
to one lower-in-energy state (∨). The interactions through C1 are shown in green and the
interactions through C2 are shown in blue.

7.3.1 Computational Methodology

For the three systems shown in Fig. 7.1 the following Lindbladian matrices are used,

Ca,1 = |0〉 〈1|

Ca,2 = |1〉 〈2| , (7.15)

Cb,1 = |0〉 〈2|

Cb,2 = |1〉 〈2| , (7.16)

and

Cc,1 = |0〉 〈2|

Cc,2 = |0〉 〈1| , (7.17)
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respectively for the unconstrained calculation. For the constrained calculation, the number

of trajectories is doubled to include an additional trajectory for the adjoint of each dissipative

operator such that
∑
i[Ci, C

†
i ] = 0.

The Lindblad equation in Eq. (7.1) is used to propagate both the 1-particle and 1-hole

density matrices from each time in the history of the ELT method. The density matrices are

obtained through a fourth-fifth-order Runge-Kutta method for solving differential equations

in Maple[46, 47]. For all calculations the initial conditions consist of one fermion in state

|2〉, one fermion in state |1〉, and one hole in state |0〉.

To obtain a set of weights that contains non-Markovian dynamics in the 3-level system,

we use weights that are optimized to reproduce the complete non-Markovian time dynamics

of the two-level detuned Jaynes-Cummings model with parameters reported in Ref. [9].

The optimization of the weights is performed in Maple[46, 47] by a sequential quadratic

programming algorithm [48]. To recap the parameters, γ0 = 1.091 is inversely proportional

to the timescale of system decay, λ = 0.3γ0 is inversely proportional to the timescale of bath

decay, and ∆ = 2.4γ0 is the amount of detuning. For all calculations, 1
λ is used as the unit

of time. Two sets of weights are calculated, one set for the 1-particle RDM and one set for

the 1-hole RDM, as shown in Fig. 7.2.

Although these weights are obtained from numerical optimization, it is interesting to note

that when accessing memory further back, for τ > 10 the weights of the 1-particle RDM and

1-hole RDM trajectories alternate in their ebbs and flows. This alternation corresponds to

the flow of energy into the bath (1-particle RDM) and from the bath (1-hole RDM). This

intuitively makes sense as the 1-particle RDM and 1-hole RDM are complimentary entities

related by the Pauli exclusion principle.
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Figure 7.2: Weights as a function of lag time τ for the particle and hole (green circles and
purple squares respectively) trajectories as calculated using the two-level detuned Jaynes-
Cummings model, with γ0 = 1.091, λ = 0.3γ0, and ∆ = 2.4γ0.

7.3.2 Results

The first system is the 3-level ladder system, where the occupied state |2〉 decays to the

occupied state |1〉, which in turn decays into the unoccupied state |0〉 as shown in Fig. 7.3.

The second system is the 3-level ∧ system where the occupied state |2〉 decays to the occupied

state |1〉 and the unoccupied state |0〉, as shown in Fig. 7.4. The third system is the 3-level

∨ system where the two occupied states |2〉 and |1〉 decay into the unoccupied state |0〉, as

shown in Fig. 7.5.

In all three configurations, it can be seen that when the Lindbladians are unconstrained,

the fermions behave as bosons and pile up in a given state, violating the Pauli exclusion

principle. However, when the constraint on the Lindbladian matrices is applied, the fermions

obey the Pauli exclusion principle and each of the state occupations remains physically

reasonable.
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Figure 7.3: Occupation numbers for states |0〉, |1〉, and |2〉 (green circles, orange triangles,
and purple squares respectively) in the ladder configuration with a) unconstrained Lindbla-

dians and b) constrained Lindbladians such that
∑
i[Ci, C

†
i ] = 0.

7.4 Discussion and Conclusions

Many physical systems where non-Markovian dynamics are prevalent are also many-electron

systems. For example, a method which models electron transport through a photosynthetic

light harvesting complex needs to preserve fermion statistics. Moreover, if this system is
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Figure 7.4: Occupation numbers for states |0〉, |1〉, and |2〉 (green circles, orange triangles,
and purple squares respectively) in the ∧ configuration with a) unconstrained Lindbladians

and b) constrained Lindbladians such that
∑
i[Ci, C

†
i ] = 0.

embedded in a complex protein environment, it also must capture non-Markovian dynam-

ics. Here, we generalized a non-Markovian method based on an ensemble of Lindbladian

trajectories to treat systems of multiple fermions. Lindbladian operators from each time

in the system’s history are constrained to preserve fermion statistics. These constraints
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Figure 7.5: Occupation numbers for states |0〉, |1〉, and |2〉 (green circles, orange triangles,
and purple squares respectively) in the ∨ configuration with a) unconstrained Lindbladians

and b) constrained Lindbladians such that
∑
i[Ci, C

†
i ] = 0.

were verified to maintain fermion statistics through a variety of three-level systems with two

electrons.

Many non-Markovian methods rely on the Lindbladian formalism, such as Monte-Carlo

quantum jump methods or several master equation methods[21, 49]. The derived constraints
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on the Lindbladian bath operators are potentially useful in not only the ELT method but

other non-Markovian methods. The present work offers an initial but important step towards

improving the treatment of non-Markovian dynamics in many-fermion quantum systems.
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