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ABSTRACT

The fact that observed star-forming galaxies convert their gas into stars inefficiently posits a
long-standing theoretical puzzle. Available gas in galaxies is depleted on a timescale of several
Gyrs which is orders of magnitude longer than any timescale of the processes driving gas
evolution in galaxies. Many galaxy simulations can reproduce observed long depletion times
but the physical mechanism controlling their values is not well understood. In addition,
some of the simulations show a rather counter-intuitive behavior: global depletion times
appear to be almost insensitive to the assumptions about local star formation in individual
star-forming regions, a phenomenon described as “self-regulation.” Yet another part of the
puzzle is the observed tight and near-linear correlation between star formation rates and
the amount of molecular gas on kiloparsec and larger scales. A linear correlation implies
that the depletion time of molecular gas is almost independent of molecular gas density on
>kiloparsec scales, while a strong dependence is expected if, e.g., star formation is controlled
by molecular gas self-gravity. We present an intuitive physical model that explains the
origin of long gas depletion times in galaxies and the near-linear correlation between star
formation rates and molecular gas. Our model is based on mass conservation of gas as the
gas cycles between dense star-forming and diffuse states in the interstellar medium. We use
simulations of an isolated Ly galaxy to illustrate our model and to explore the connection
between global depletion times and the timescales of processes driving gas evolution on small
scales. In particular, we show that our model can explain the physics of self-regulation of star
formation in galaxies with efficient stellar feedback. We also show that a linear correlation
between star formation rate and molecular gas emerges when feedback efficiently regulates
and stirs the evolution of dense, molecular gas. Our model also provides insights into the

likely origin of this relation in real galaxies on different scales.

This dissertation is based on the work published in Semenov et al. (2016, 2017, 2018,
2019).

xii



CHAPTER 1
INTRODUCTION

Understanding how galaxies build up their stellar component is a key to understanding
galaxy evolution. Formation of stars in galaxies is a complex multiscale process, as stars are
formed from gravitationally bound gaseous cores on subparsec scales, while the formation
of such cores is aided by bulk gas motions of the interstellar medium (ISM) on hundreds
of parsec scales. Gas motions on all relevant scales are in turn affected by star formation,
as young stars feed mass, energy, and momentum back to the gas, destroying dense star-
forming regions, stirring the ISM turbulence, and shaping the gas distribution on large scales
via energetic outflows.

Despite this complexity, the star formation rate (SFR) per unit gas mass on kiloparsec and
larger scales appears to be surprisingly universal: the gas depletion time, 7 = M/ M,, has
a characteristic value and exhibits a relatively small scatter (see, e.g., Kennicutt & Evans,
2012, for a review). This universality is manifested in a correlation between the surface
densities of gas and SFR known as the Kennicutt—Schmidt relation (KSR; Schmidt, 1959;
Kennicutt, 1989, 1998, see also Sanduleak 1969, Madore et al. 1974). The KSR becomes
especially tight and close to linear when only molecular gas is included in the estimate of
the gas mass (Wong & Blitz, 2002; Bigiel et al., 2008, 2011; Leroy et al., 2008, 2013; Bolatto
et al., 2017; Utomo et al., 2017; Colombo et al., 2018; de los Reyes & Kennicutt, 2019).

Although the KSR for both total and molecular gas was studied extensively in galaxy
simulations (e.g., Kravtsov, 2003; Li et al., 2005; Saitoh et al., 2008; Schaye & Dalla Vecchia,
2008; Feldmann et al., 2011; Gnedin & Kravtsov, 2011; Rahimi & Kawata, 2012; Agertz et al.,
2013; Gnedin et al., 2014; Agertz & Kravtsov, 2015; Khoperskov & Vasiliev, 2017; Capelo
et al., 2018; Lupi et al., 2018; Orr et al., 2018) and in analytical frameworks (e.g., Wyse
& Silk, 1989; Silk, 1997; Tan, 2000; Elmegreen, 2002; Krumholz & McKee, 2005; Li et al.,

2005; Krumholz & Thompson, 2007; Krumholz et al., 2009b; Silk & Norman, 2009; Ostriker
1



et al., 2010; Ostriker & Shetty, 2011; Renaud et al., 2012; Faucher-Giguere et al., 2013;
Federrath, 2013; Elmegreen, 2015; Salim et al., 2015), several rather fundamental questions
remain widely debated. For instance, there is still no consensus about the physical origin
of the KSR normalization, i.e. global depletion times in galaxies. Recent simulations used
to explore this issue find a rather counter-intuitive behavior: global depletion times appear
to be almost insensitive to the assumptions about local star formation in individual star-
forming regions—a phenomenon described as “self-regulation” (e.g., Dobbs et al., 2011a;
Agertz et al., 2013; Hopkins et al., 2013a, 2017a; Agertz & Kravtsov, 2015; Benincasa et al.,
2016; Orr et al., 2018). The physics behind this phenomenon and, more generally, the
connection between the KSR and the processes driving gas evolution on scales of star-forming
regions was not rigorously explained in such studies. Finally, the shape of the KSR is also
puzzling. In particular, it is not clear why in normal star-forming (non-starburst) galaxies,
SFR correlates almost linearly with the amount of molecular gas on kiloparsec and larger

scales. Answering these and related questions will be the focus of this dissertation.

1.1 Surprisingly long gas depletion times in galaxies

The first question we will address concerns the origin of the KSR normalization and global
depletion times in galaxies. One of the widely recognized basic facts about observed galaxies
is that they convert gas into stars inefficiently. Global depletion times of gas in galaxies are
surprisingly long, given the expected time scales of processes driving star formation.

As an example, the SFR of the Milky Way (MW) is M, ~ 1-2 Mg yr~! (e.g., Licquia
& Newman, 2015), while its gas mass is Mg ~ 1019 Mg (e.g., Kalberla & Kerp, 2009), and
thus the global gas depletion time of the MW is 7 = Mg/ M, ~ 5-10 Gyr. The depletion
times of a population of normal star-forming galaxies are comparable and span a range of
~ 2-10 Gyr (Kennicutt, 1989, 1998; Bigiel et al., 2008). The denser molecular phase of the

ISM is depleted on a similarly long time scale of 7y, = My, / M, ~ 1-3 Gyrs (Kennicutt,
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1989, 1998; Wong & Blitz, 2002; Bigiel et al., 2008; Leroy et al., 2008, 2013; Bolatto et al.,
2017).

Compared to the time scales of any dynamical processes that are potentially relevant
for star formation, the observed gas depletion times are very long indeed. For example, the
orbital period of gas at the solar radius is ¢y, ~ 200 Myr, and the MW is thus depleting
its gas on the timescale of ~ 25-50 such periods. On average, galaxies deplete their gas on
a timescale of ~ 10-20 orbital periods (Kennicutt, 1998; Wong & Blitz, 2002; Leroy et al.,
2008; Daddi et al., 2010; Colombo et al., 2018).

The orbital period, ¢, is probably the longest of the relevant dynamical timescales one
can think of. For example, the turbulent crossing time is usually tcross = h/o ~ 10-30 Myr,
where o 2 10 km s~ is the velocity dispersion of gas in galactic disks and h ~ 100-300 pc
is the disk scale height in the inner regions of galaxies. The free-fall time at the mean or
midplane density, pg, of galaxies spans a similar range: g o = \/m ~ 10-50 Myr.
The timescale of molecular cloud collisions is < 20 Myr (e.g., Tan, 2000). A given gas
mass encounters a spiral arm on a timescale of taym ~ 27/(m[Q(R) — Qp]), where Q(R) =
Viot/R is the angular frequency of gas rotation, ), is the pattern speed of spiral arms,
and m is the number of spiral arms. This timescale is tarm ~ 50-200 Myr, if we assume
Qp ~ 20 km s~ kpe™! (e.g., Bissantz et al., 2003), m ~ 2-4 (e.g., Davis et al., 2015) and
Viot ~ 220 km s~ typically derived for MW-like galaxies. Numerical simulations of gaseous
galactic disks show that star-forming molecular clouds may form on even shorter timescales
of a few tens of Myrs (Dobbs et al., 2012, 2015).

In addition to being slow on global galactic scales, star formation is inefficient even in
dense molecular star-forming regions, which convert only < 1-10% of gas into stars per
local free-fall time (Zuckerman & Evans, 1974; Zuckerman & Palmer, 1974; Krumholz &
Tan, 2007; Krumholz et al., 2012a; Evans et al., 2014; Lee et al., 2016; Heyer et al., 2016).

Such low efficiency arises because only ~ 0.1-10% of the dense gas is self-gravitating and



collapsing into stars (Froebrich & Rowles, 2010).

However, the inefficiency of star-forming regions alone cannot explain long global deple-
tion times. The local depletion time in observed star-forming regions is t, ~ 40-500 Myr
(e.g., Evans et al., 2009, 2014; Lada et al., 2010, 2012; Heiderman et al., 2010; Gutermuth
et al., 2011; Schruba et al., 2017). Thus, although the scatter is significant, typical values of
tx are considerably smaller than the global depletion time of molecular gas, g, ~ 1-3 Gyr.

The large scatter in depletion times measured on small scales and the difference between
local and global depletion time values indicate that only a fraction of molecular gas is actively
forming stars at any given moment. Indeed, the global depletion time can be expressed as

Mg 7

e (1.1)

T = —,
M fsf

where My is the total gas mass of the galaxy; 7% = Mg/ M, = (l/t*>s_f1 is the mass-weighted
average over the depletion time distribution in star-forming regions, tx; and fg = Mgp/My
is the gas mass fraction in actively star-forming regions. A similar expression can be written

for the global depletion time of molecular gas, 7y, via a corresponding star-forming fraction

fsf,Hg = Msf/MHQ:
My, T

H, = ——= = . (1.2)
2 M, fsf,Hg

Thus, the depletion time measured on larger scales is longer than that in star-forming
regions because, as the scale increases, more of non-star-forming gas is incorporated in the
gas mass estimate. Likewise, when depletion time is estimated on larger scales, the scatter
in 7 and 7, decreases as we average over the distribution of local #x. Such a dependence
of scatter on scale is indeed observed (Schruba et al., 2010, 2017), although some of the
obtained variation may be due to observational effects (Feldmann et al., 2011; Kruijssen &
Longmore, 2014).

Over the last three decades, a number of useful global star formation frameworks and



models have been developed to consider the physical origin of the KSR normalization and
long depletion timescale. One class of such models associates long depletion times with the
fraction of gas in dense, self-gravitating regions of cold, supersonic molecular clouds with
the log-normal gas density PDF (Elmegreen, 2002; Krumholz & McKee, 2005; Krumholz
et al., 2012a). Such models, however, assume that all of the molecular gas is in “virialized”
star-forming molecular clouds and that the star formation efficiency in these clouds sets the
global depletion time. This assumption, which has also been frequently adopted in galaxy
simulations (e.g., Robertson & Kravtsov, 2008; Gnedin et al., 2009; Christensen et al., 2012;
Kuhlen et al., 2012), is at odds with a growing number of observations indicating that the
depletion time of star-forming molecular gas is in general considerably shorter than the
global depletion time of all molecular gas, 7g,, estimated on kiloparsec and larger scales.
Moreover, models and simulations of star formation in supersonic turbulent clouds show that
the local efficiency of star formation is primarily a strong function of the virial parameter
of the region, not just its density, temperature, and molecular fraction (e.g., Krumholz &
McKee, 2005; Padoan et al., 2012, 2017), while the virial parameter can span a wide range
of values (Dobbs et al., 2011b; Semenov et al., 2016, see also Appendix A.4).

Some models derive the KSR and its normalization by assuming that stellar feedback
regulates ISM turbulence so as to maintain vertical and/or Toomre (1964) equilibrium within
gaseous disks (Ostriker & Shetty, 2011; Faucher-Giguere et al., 2013; Hayward & Hopkins,
2017). However, it is not clear a priori why equilibrium can generically be expected in
galaxies as a whole or in kiloparsec-scale patches and why the star formation rate does not
instead reach values at which gas is driven out in a wind. Moreover, it is still debated whether
the turbulence within galactic disks is mainly driven by stellar feedback or by gravitational
instabilities (e.g., Krumholz & Burkhart, 2016).

Saitoh et al. (2008) argued that SFR is controlled by the rate at which gas is supplied from

the general ISM to the star-forming state, which makes it insensitive to the local efficiency



of star formation. However, these authors measured the timescale at which gas is supplied
to the star-forming state to be ~ 100 Myr and did not explain how this timescale relates to
the much longer observed depletion times of total gas, 7 ~ 2-10 Gyrs.

In this work, we aim to clarify the origin of the observed long gas depletion timescale in
galaxies, taking into account both the inefficiency of star formation in star-forming clouds

and the fact that not all of the molecular gas is actively forming stars.

1.2 Insights from galaxy formation simulations

Major insights into the origin of depletion times and the KSR can be gained using numerical
simulations of galaxy formation. Simulations enable us to vary systematically the parameters
of star formation and stellar feedback operating on small scales and explore their effect on
global star formation in galaxies.

Modeling of local star formation and feedback processes in galaxy simulations is admit-
tedly rather crude. With some variations and few exceptions, star formation prescriptions
usually follow ideas introduced for the first generation of simulations (Cen & Ostriker, 1992;
Katz, 1992): star formation occurs only in star-forming gas, defined using some conditions,
e.g., that gas density (temperature) is larger (smaller) than some threshold, that gas within
some region is gravitationally bound, that gas is in molecular phase, etc. (see, e.g., Hopkins
et al., 2013a). Star-forming gas is then converted into stellar particles using a stochastic

Poisson process with the rate

po="1, (1.3)
Tx

where p is the density of the gas that is deemed to be star-forming according to the adopted
criteria, and t, is its local depletion time. In most of the recent studies, this time is pa-

rameterized as t, = tg/eg, where eg is the star formation efficiency per freefall time,

tg = \/37/32Gp. Likewise, the stellar feedback is modeled by simply injecting thermal



and kinetic energy and momentum into gas resolution elements adjacent to a young star
particle (e.g., Hopkins et al., 2011, 2017b; Agertz et al., 2013; Simpson et al., 2015) or using
a subgrid prescription with a specific model of ISM on scales below resolution (e.g., Yepes
et al., 1997; Springel & Hernquist, 2003; Braun & Schmidt, 2012).

Despite a rather simplistic modeling of star formation and feedback on scales close to the
spatial resolution, modern galaxy formation simulations generally predict 7 and the KSR
on kiloparsec and larger scales in a reasonable agreement with observations (e.g., Governato
et al., 2010; Stinson et al., 2013; Hopkins et al., 2014, 2017a; Agertz & Kravtsov, 2015, 2016;
Grand et al., 2017; Orr et al., 2018). Although in certain regimes the normalization and
slope of the KSR on galactic scales simply reflect the adopted value of ¢, on small scales
and its assumed density dependence (Schaye & Dalla Vecchia, 2008; Gnedin et al., 2014), in
other regimes there is no direct connection between t, and the global KSR (Hopkins et al.,
2017a; Orr et al., 2018).

An intriguing example of the behavior in the latter regime is the insensitivity of the
global depletion time to the star formation efficiency eg assumed on the scales of individual
star-forming regions. This phenomenon is usually described as “self-regulation” (e.g., Dobbs
et al., 2011a; Agertz et al., 2013; Hopkins et al., 2013a, 2017a; Agertz & Kravtsov, 2015;
Benincasa et al., 2016; Orr et al., 2018). The fact that simulations in such self-regulated
regime still result in the global depletion time close to the observed values is nontrivial. This
agreement indicates that such simulations can be used to shed light on the physical processes
connecting local parameters of star formation and feedback to the global star formation in
galaxies.

This connection and associated processes are the focus of this dissertation, and one of
our goals is to extend and make sense of the results of other recent studies of this issue (see,
e.g., Hopkins et al., 2011, 2017a; Agertz et al., 2013; Agertz & Kravtsov, 2015; Benincasa
et al., 2016; Li et al., 2017a,b).



1.3 The linear slope of molecular Kennicutt—Schmidt relation

Yet another part of the puzzle is the near-linear slope of the molecular KSR observed in
normal star-forming (non-starburst) galaxies (Wong & Blitz, 2002; Bigiel et al., 2008, 2011;
Leroy et al., 2008, 2013; Bolatto et al., 2017; Utomo et al., 2017; Colombo et al., 2018).
In other words, the depletion time of molecular gas in kiloparsec-scale patches of the ISM,
THy = LH,/ Y, ~ 2+ 1 Gyr, is independent of the molecular gas surface density YH,-

The existence of some correlation between SFR and molecular gas surface densities is
expected because both SFR and molecular gas trace dense ISM gas. What is surprising,
however, is that the observed correlation is close to linear. Given that dynamical time scales
as fqyn x 1 /v/Gp, where p is the average density of a region, naively we could expect a
superlinear KSR: px o p/ tdyn X p12. Therefore, the linear slope indicates that the origin of
molecular KSR is more nuanced and is not shaped by gas self-gravity alone.

The mechanism responsible for the linear slope must be rather universal and operate in
a range of environments and for different states of dense gas. Indeed, the near-linear slope
in the molecular KSR persists in diverse galactic environments, from the average ISM of
various Hubble types of disk galaxies (e.g., Utomo et al., 2017; Colombo et al., 2018) to
low-density disk outskirts (Schruba et al., 2011) and even in low-metallicity dwarf galaxies
(Bolatto et al., 2011; Jameson et al., 2016). A close-to-linear relation is also observed for
dense gas visible in HCN and HCO™ over 8 orders of magnitude in mass and on a wide range
of spatial scales, from ~ 10 pc scales to scales of entire galaxies (Gao & Solomon, 2004b,a;
Wu et al., 2005). However, the relation for molecular gas is not always linear: it steepens on
small, < 10 parsec, scales (e.g., Evans et al., 2009, 2014; Heiderman et al., 2010; Gutermuth
et al., 2011) and in extreme dense environments such as starburst galaxies (Genzel et al.,
2010, 2015) and galactic centers (e.g., Leroy et al., 2013). Moreover, the depletion time
exhibits mild trends with redshift and deviation of galaxies from the mean star formation

sequence (e.g., Tacconi et al., 2018). To explain the origin of the molecular KSR slope, both
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its universality at moderate and low surface densities and its steepening in more extreme
dense environments must be understood.

One of the most popular explanations for the close-to-linear slope of the molecular KSR
is the so-called “counting argument,” which was first introduced by Wu et al. (2005) to
interpret the linear relation observed for the dense gas traced by HCN and later extended to
more diffuse molecular gas states. This argument posits that all molecular gas resides in star-
forming units that have approximately the same properties and depletion times regardless of
the galactic environment. In this case, both Xy, and 3, of an ISM patch result from counting
these units in this patch, and therefore, ¥y, and ¥, become linearly related. However, the
observed properties of molecular regions do vary with 2 1 kpc galactic environment (e.g.,
Miville-Deschénes et al., 2017), and therefore, the explanation of the linear slope must be
more nuanced.

Elucidating the origin of the linear slope of molecular KSR will be another goal of this

dissertation.

1.4 Dissertation outline

To address above questions and elucidate the origin of depletion times in galaxies, we in-
troduce a simple physical framework that connects galactic star formation on large scales
with the processes driving gas evolution on small scales. Our model is based on the mass
conservation equations relating the star-forming and non-star-forming components of highly
dynamic ISM and the idea of gas cycling between these components on certain characteristic
timescales under the influence of dynamical and feedback processes (such gas cycling was
also envisioned by Madore, 2010; Kruijssen & Longmore, 2014; Elmegreen, 2015, 2018).
We illustrate our model using a suite of isolated Li-galaxy simulations that is able to
reproduce the observed KSR and depletion times for both total and molecular gas. We

show that the model explains the origin of depletion times in our simulations and their
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dependence on the parameters of star formation and feedback assumed on the resolution
scale. In particular, our simulations are able to reproduce the self-regulated behavior, in
which global depletion time becomes independent of local star formation efficiency, and our
framework can explain the physical origin of this effect. In addition, we also show that our
framework provides major insights into the physics that shapes the slope of the molecular
KSR and makes it near-linear in normal star-forming galaxies.

The dissertation is structured as follows. In Chapter 2, we present our analytical model
for gas depletion times in galaxies. In Chapter 3, we describe our simulation suite and
analysis methods. In Chapter 4, we illustrate our framework using the fiducial simulation
from our suite and explore the processes that drive gas evolution in the ISM and their
corresponding timescales. In Chapter 5, we explore the effects of star formation and feedback
parameters on global star formation in our simulations and show that our analytical model
successfully explains the obtained behavior. In Chapter 6, we use our simulations and

analytical framework to gain insights into the origin of the slope of molecular KSR.
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CHAPTER 2
ANALYTIC MODEL FOR GAS DEPLETION TIME IN
GALAXIES

2.1 The connection between the depletion time and evolution

timescales of a single gas parcel

The interstellar gas in galaxies is a multiphase, dynamic medium spanning several orders
of magnitude in density and temperature. To get a sense of the processes affecting the gas
evolution in such a medium, we consider the evolution of individual gas parcels, massless
tracers of gas flows in the ISM. One can think of a representative set of the ISM atoms as
such tracers. At any given time, the local environment of such tracers can be estimated
by averaging gas properties on some scale [ around the position of each tracer. The gas
around tracers will expand and contract under the influence of dynamical processes, such as
turbulence driven by gravitational instabilities and stellar feedback. Therefore, during the
evolution over a sufficiently long timescale, the conditions around each gas parcel can evolve
between the states of long and short depletion time, ., once or over many transition cycles.
Such cycling of a gas parcel is schematically shown in Figure 2.1.

The probability density per unit time for a parcel to be converted into a star is given
by 1/t and one can define the depletion time for a single parcel as the time required for
the integrated probability to reach unity. In what follows, for conceptual simplicity, we will
adopt a sharp threshold, #x max, separating non-star-forming, tx > tx max, and actively star-
forming, . < tx max, gas states. For a given distribution of ¢, this threshold can be chosen
in such a way that regions with t, < tx max include most of the total star formation.

The duration of a single cycle between the successive stages when the parcel’s environment
is in the star-forming state equals to the sum of the time spent in the non-star-forming, ¢,

and star-forming, t.r, stages. If we denote the average depletion time of the parcel during
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Figure 2.1: Schematic illustration of ISM gas evolution between non-star-forming and star-
forming states. The thick gray line depicts the mass-weighted PDF of local gas depletion
times, t. = p/p«, where p and p, are the local densities of gas and SFR. The vertical dotted
line corresponds to the threshold depletion time, ?x max, separating star-forming and non-
star-forming gas. The blue loop illustrates cycling of a gas parcel between these states under
the influence of dynamical and feedback processes that supply and remove star-forming gas.
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the star-forming stage as 7y, the parcel will have a probability of ¢ /7 to be converted into
a star during the entire cycle. In other words, No = 7/t such cycles would be needed for

the parcel to be incorporated into a star. Its depletion time can thus be written as

T
tdep = Ne(tyst + tsr) = Netpgr + % = <tn—bff + 1) Tx- (2.1)
s

Hence, the depletion time of a gas parcel is always longer than 7, and it can be long because
star formation during ¢y is inherently inefficient, i.e., 7y is long, and /or because only a small

fraction of the evolution cycle is spent in the star-forming state, i.e., ¢/t is large.

2.2 The depletion time of an ISM patch or entire galaxy

The depletion time of an ISM patch, entire galaxy, or any larger region of the universe
results from the averaging the depletion times of gas parcels constituting these regions. Such
a collection of parcels has a distribution of 74, ¢4, t,,sf and the collective depletion time of the
group is the average 7 = (1/ tdep>71 over these distributions. It is clear that if the depletion
times of individual parcels are long, 7 will also be long.

In practice, the depletion time 7 of an ISM patch or entire glaxy is estimated from the
instantaneous mass of gas, Mg, and young stars formed over a time interval At, My (< At),
such that the average star formation rate is (M) a4 = My (< At)/At and the depletion time
is defined as 7 = My / (M) A;- This estimate of 7 can be related to the dynamics of individual
gas parcels within the patch by noting that due to mass conservation, the instantaneous total
mass of the gas parcels in the star-forming state, Mg, evolves as Msf = Fy — M,, where
F is the net instantaneous flux of the gas parcels through the star formation threshold and
M, is the instantaneous SFR of all parcels. After averaging this expression over the time
interval At, we get

Mg _ Mg : (2.2)
(Ma)ar — (F)ar — (Mgg) At
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For brevity, in the following derivation, we omit explicit averaging, (...)a;, but assume
all fluxes and rates to be averaged over At.
In general, the average net flux of gas through the star formation threshold can be

decomposed into positive and negative contributions,

Fop = Fy — F-, (2:3)

which correspond to the supply and removal of star-forming gas illustrated in Figure 2.1.
The positive flux F. is controlled by a combination of global dynamical processes, e.g.,
gravitational instabilities, turbulence, cooling, etc., with a significant contribution from stel-
lar feedback. The latter comes in the form of turbulence stirred by interactions of supernova-
driven bubbles and by fountain outflows of gas from star-forming regions. The negative flux
F_ =F_ g+ F_ q results from the destruction of star-forming regions both by feedback from
young stars formed inside the regions, F_ ,, and by shearing due to large-scale turbulence
or differential rotation, expansion of gas behind galactic spiral arms, and other dynamical
processes not directly related to star formation inside the regions, F_ 4. All fluxes can be
parameterized with the characteristic timescales, i.e., 74, 7_ g, and 7_ 4, on which gas is

supplied to and removed from the star-forming state by the corresponding processes,

M 1—
Py = Mot _ g 1o St (2.4)
+ T+ & T4+
M.
F g = %, (2.5)
M.
Fog=—¢ (2.6)
) T—7d
My 1 1
= T_S =F_ g+ F_q= Mgfs <T_fb+a>7 (2.7)

where fgf = Mgp/My is the star-forming mass fraction.

To make the relation between star formation and stellar feedback explicit, we can also
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parameterize F_ g, in a way similar to the parameterization of the mass outflow rate of

feedback-driven galactic winds,

§

F_ = EMy = Mgfsz—*y (2.8)

where £ is the mass-loading factor and we used the definition of the average depletion time
of star-forming gas, 7 = Mg/ M,. In the context of Equation (2.7) the mass-loading factor
can also be interpreted as a relative rate of gas removal by feedback compared to the rate of
star formation, i.e., = 7 /7_ ).

An imbalance between the net gas flux into the star-forming state, Fy, and the average
SFR may result in the evolution of the star-forming mass, which we also parameterize with

the characteristic timescale, T, g

Msf

M| =
° Te,sf

(2.9)

The final expression for the global depletion time can be readily derived by substituting

Equations (2.3-2.9) and fg = 7«/7 (Equation 1.1) into Equation (2.2),

r=(14+e+ 2 )b, (2.10)
T—d Tesf

where the sign in front of 7 /7, ¢ reflects the sign of My.

If we compare the terms in this equation with those in Equation (2.1) for the depletion
time of a single gas parcel, tqe;, = Nelpst + T, their physical meaning becomes clear. The
timescale 7 is analogous to the time ¢, that a gas parcel spends in the non-star-forming
state, while the expression in parentheses is analogous to N. = 7i/tg, i.e., the average
number of evolution cycles it would take for a single parcel to deplete its gas. Indeed,
Equation (2.4) gives Mg = F474, which means that 74 is the time over which all of

the non-star-forming gas will reach the star-forming state. Thus, 74 is analogous to the
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average t,¢r timescale for a collection of parcels. Likewise, the average rate at which the
gas mass in the star-forming state is decreasing due to star formation, dispersal, and the
overall evolution of the gas PDF during At is given by Mp/7 + Mgp/7— & Mgt /7e o, and
the associated timescale (1/7% +1/7— £ 1/ Tejsf>_l corresponds to the average time that gas

spends in this state. Thus, on average, gas will have to reach the star-forming state

111
NC:T*<—+—:|: >:1+§+ o > (2.11)

Y
T T—  Tegf T—d Tesf

times, where we used Equation (2.7) and the definition of the mass-loading factor, { =

T*/T,,fb.

2.3 Implications for depletion times in observed and simulated

galaxies

Equation (2.10) is the key expression of our framework. It states that the global depletion
time is the sum of the total time that gas spends in the non-star-forming state over N cycles
and the total time over which star-forming regions convert this gas into stars, Tx.

This equation elucidates how long 7 values can be reconciled with the relatively short
local depletion times, 7y, and even shorter dynamical timescales, 7, discussed in Section 1.1.
The global depletion time is longer than the depletion time in star-forming regions, 7y, due
to the significant fraction of time that gas spends in the non-star-forming state. The global
depletion time is longer than the timescale associated with dynamical processes supplying
star-forming gas, 74+, because gas must evolve through the non-star-forming state N, times,
and N is large due to either efficient feedback, i.e., large &, or fast dynamical processes
destroying star-forming regions, i.e., short 7_ 4 (see Equation 2.11).

When feedback dominates the removal of gas from the star-forming state, the number of

cycles becomes N¢ ~ 7 /7_ g,. This clarifies how feedback can self-regulate star formation,
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L.e., how 7 can become insensitive to 7x. Indeed, the timescale 7_ g, is proportional to the
rate of energy and momentum injection by feedback, which, in turn, is set by the local rate
of star formation, i.e., 7«. Hence, 7_ g, o< 7y, which renders N¢ insensitive to 7x. Thus, when
NeTy > 74, the depletion time, 7 &~ N.74, will be insensitive to 7.

In a nonequilibrium state, in which My > 0 (< 0) during At, the term 7/ Tesf I
Equation (2.10) accounts for the correction of the average rates estimated using the star-
forming gas fraction, fy, defined for the instantaneous masses My and M. This correction
appears because, when Msf > 0 (< 0), the actual average fraction of At that gas spends
in the star-forming state is smaller (higher) than fi and therefore more (fewer) transition
cycles are required for depletion.

In a steady state, on the other hand, the gas distribution is stationary and the star
formation rate is in equilibrium with the gas fluxes into and out of the star-forming state:
Msf = Fy4 — M, ~ 0. In this case, Test — 00 and the term 7./7 ¢ can be neglected in
Equation (2.10). In such a steady state, 7 = Mg /Fy (see Equation 2.2), and depletion time
is determined by the net rate of gas inflow into the star-forming state, Fis. When Fj¢ is small,
the depletion time is long. Galaxies as a whole reach the steady state with Msf ~ 0 on the
shortest of the timescales that control the global depletion time in Equation (2.10). Thus,
globally, such an assumption is justified. However, individual ISM patches may deviate from
the steady state, and the 7, /7. ¢ term will be one of the sources of the scatter in depletion
times.

In Chapters 4-6, we use the framework described above and the results of isolated galaxy
simulations to illustrate the mechanism controlling depletion times in galaxies, their depen-
dence on the parameters of star formation and feedback on the scales of star-forming regions,
and the independence of molecular gas depletion time of its surface densities on >kiloparsec
scales. Although the simulations adopt specific choices for many parameters, including reso-

lution and prescriptions for star formation and feedback, the overall features and implications
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of our model do not depend on these specific choices. In general, our framework relates the
depletion time on a large scale, e.g., ~kiloparsec scale or the scale of an entire galaxy, to
the star formation and feedback model that operates on a smaller scale, e.g., the resolution

scale of a simulation, where the distribution of local depletion times, t,, is defined.
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CHAPTER 3
SIMULATION SUITE AND ANALYSIS

3.1 Simulation code overview and isolated galaxy model

To illustrate the framework outlined above and elucidate the physical processes that give rise
to long global depletion times and linear molecular KSR, we use simulations of an isolated
~L,-sized galaxy. We carried out our simulations using the Adaptive Refinement Tree
(ART) N-body and gas dynamics code (Kravtsov, 1999; Kravtsov et al., 2002; Rudd et al.,
2008; Gnedin & Kravtsov, 2011; Semenov et al., 2016). The ART code is a Eulerian code
that employs Adaptive Mesh Refinement (AMR) technique with the Fully Threaded Tree
data structure (Khokhlov, 1998) and a shock-capturing second-order Godunov-type method
(Colella & Glaz, 1985) with piecewise linear reconstruction (van Leer, 1979) to compute
hydrodynamical fluxes.

In our simulations we followed the evolution of an isolated gaseous disk in a live potential
of a dark matter halo, stellar bulge, and stellar disk that are modeled with collisionless
particles. We adopt the initial conditions that were used in the AGORA code comparison
project (Kim et al., 2016) and also in the study of Agertz et al. (2013). Specifically, the
isolated disk is initialized inside a dark matter halo with v 909 = 150 km s~ and an initial
concentration of ¢ = 10. The initial disk of old stars has an exponential density profile with
a radial scale length of rq ~ 3.4 kpc and a vertical scale height of hy = 0.1rq with a total
mass of M, q ~ 3.4 x 1019 M. The stellar bulge has an initial mass of My, =~ 4.3% 109 Mg
that is distributed with a Hernquist density profile with a = 0.1rq (Hernquist, 1990). The
initial exponential gaseous disk has the same 74 and hg as the stellar disk; its total mass is
My =~ 8.6 x 10 M, which corresponds to the disk gas fraction of fy = Mg/(M, q + Mg) =
20%. We adaptively resolve cells where the total gas mass exceeds ~ 8 300 My, and reach

a maximum resolution of A = 40 pc. Such a A is sufficient to resolve ISM structure down
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to densities of n ~ 100-1 000 cm ™3, and therefore we do resolve the dynamical build-up of
high-density regions that is sometimes claimed to limit the star-forming gas supply from the
general ISM with average density of n ~ 1 cm™3. At the highest resolution level, we do not
apply an artificial pressure floor in cold gas. Thus, the densities of star-forming regions are
limited only by the effects of stellar feedback and the effective pressure due to thermal and
both subgrid and resolved turbulent motions discussed below.

The Poisson equation for the gravity of gas and stellar and dark matter particles is solved
using a Fast Fourier Transform on the zeroth uniform level of the AMR grid and using the
relaxation method on all refinement levels. The resolution for gravity is therefore also set
by the local resolution of the AMR grid, and in the ART code it corresponds to ~ 2 grid
cells (see Figure 6 in Kravtsov et al., 1997). Gravitational potential and accelerations are
used to update positions and velocities of collisionless particles and are also applied in the
gas momentum and energy equations as source terms.

Gas evolution is governed by modified hydrodynamical equations that include terms
related to cooling and heating, dynamical effects of subgrid turbulence (Section 3.2), gas
consumption by star formation, and injection of mass, momentum, and energy by feedback
from young stars (Section 3.3). Cooling in the optically thin limit is implemented following
the model of Gnedin & Hollon (2012). We assume a fixed metallicity of Z = Zs and
constant background heating by interstellar radiation in the Lyman-Werner bands with the
photodissociation rate of 10710 s~1 (Stecher & Williams, 1967). To model temperatures in
dense self-shielded gas, we assume that extinction is proportional to the local column density
of atomic gas, which we approximate as nLj 49, where n is the gas number density in a cell
and Lj 49 is the local Jeans length with an applied temperature ceiling of 40 K (model “L1a”
in Safranek-Shrader et al., 2017).
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3.2 Subgrid-scale turbulence

A key novel element of the simulations presented in this dissertation is the explicit dynamical
modeling of gas turbulence on unresolved scales. Subgrid models to track unresolved tur-
bulence have been developed and extensively used in aerospace engineering and simulations
of terrestrial subsonic and supersonic turbulent flows (see, e.g., Sagaut, 2006; Garnier et al.,
2009, for review). In the context of galaxy formation simulations the exploration of such
type of models has only started (Latif et al., 2013; Braun et al., 2014; Braun & Schmidt,
2015; Semenov et al., 2016).

To model subgrid turbulence we employ the scale separation technique, where a large-
scale flow is governed by filtered hydrodynamical equations, whereas small-scale motions are
described by an additional hydrodynamical field. In our simulations, we use the subgrid
model described by Schmidt et al. (2014) for application in cosmological AMR simulations.
Here we briefly outline the main components and properties of this model. A more extensive
description can be found in the original paper by Schmidt et al. (2014).

Model equations follow from applying a spatial filter of scale A, which we take to cor-
respond to the grid cell scale, to ordinary hydrodynamical equations. The resulting set of
equations governs gas flows on resolved scales (> A) and contains additional terms and a
new equation for subgrid turbulent energy density, K:

0
aK +V;(u;K) = —PgVu; — e+ 7i;Viu; + ViF; + SN, (3.1)

where wu; is resolved gas velocity, P = 2K/3 is turbulent pressure, ¢ is the rate of tur-
bulence decay into thermal energy, 7;;V;u; is viscous production by cascade from resolved
scales, V,;F; is turbulent diffusion. The source term Sqy enables us to directly inject some
fraction of supernovae energy into subgrid turbulence, however, in the simulations presented

in Chapters 4-6 we set Sqn = 0 so that the subgrid turbulence is produced only via the
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interaction with the resolved flow. The total velocity dispersion of gas motions on unresolved
scales is then derived from K as oy = /2K/p.

Note that the subgrid turbulent energy is very similar to thermal energy, as the latter
results from integrating particles kinetic energies over the velocity space in the derivation
of hydrodynamical equations from the Boltzmann equation. For instance, the first term on
the right-hand side of Equation (3.1) is equivalent to the PdV work term in the equation
for thermal energy. This term implies that as gas contracts (expands) Py does work and
turbulent energy increases (decreases) similarly to thermal energy (Robertson & Goldreich,
2012). The change of K in this process depends on the local compression rate (—V;u;).

Likewise, the ¢ and 7;;V;u; + SgN terms are equivalent to the cooling and heating terms
in the thermal energy equation, respectively. We follow Schmidt et al. (2014) and assume
an exponential decay of K into thermal energy over the time scale close to the turbulent
cell-crossing time, ¢ = K/tqee, Where tgee ~ A/oy. Numerical studies of decaying MHD
turbulence generally confirm fast dissipation over a crossing time both in subsonic and su-
personic regimes (e.g., Gammie & Ostriker, 1996; Mac Low et al., 1998; Stone et al., 1998;
Kim & Basu, 2013).

Equations for resolved gas momentum and energy also include terms related to non-
thermal pressure (P ), turbulent viscosity (7;;) and diffusion (similar to V;F;). The latter
two terms are analogous to molecular viscosity and thermal conduction that appear in the
hydrodynamical equations when different moments of the Boltzmann equation are integrated
over the velocity space.

The equations of viscous hydrodynamics and subgrid turbulence both require closure
relations for these transport terms in order to become solvable. In both cases, these closure
relations cannot be derived from the first principles and are chosen empirically. One of the
common choices for the subgrid turbulence is to adopt the closure relations similar to those

used for usual viscosity and thermal conduction. Physically, this approach assumes that
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energy and momentum are transported on the filtering scale A mainly by the eddies of size
A, i.e. the largest unresolved eddies. Models that employ this assumption are known as the
Large-Eddy Simulations (LES) and are widely used for simulations of both incompressible
(Sagaut, 2006) and supersonic (Garnier et al., 2009) turbulent flows (see also Schmidt, 2014,
for a recent overview in the astrophysical context).

In our simulation for the turbulent stress tensor 7;; we use the large-eddy viscosity clo-
sure, given by Equation (8) of Schmidt & Federrath (2011) with Cy = 0 and C7 = 0.095,
appropriate for sub- and transonic regime. Our choice is justified by the fact that viscous
production of turbulence in our simulated disk is important mainly in warm diffuse gas where
subgrid turbulence is subsonic and gas is only weakly compressible (see Section A.3). We
checked that our implementation of the subgrid model with such a closure reproduces the
distribution of K in a low-resolution isotropic developed turbulence box simulation, when
compared to a high-resolution direct simulation.

In the adopted closure, 7;; depends on the local gradients of the resolved velocity field,
and these gradients are interpreted as the onset of turbulent cascade on scale A. Therefore, in
this model, turbulence can be artificially produced by large-scale velocity gradients, such as
differential rotation, disk—halo interface, etc. To suppress this spurious production, Schmidt
et al. (2014) suggest temporal averaging of simulated flow, so that 7;; depends only on
the gradients of fluctuating velocity part, in the so-called “shear-improved” closure, first
introduced by Lévéque et al. (2007). In our simulation we adopt exponential temporal
filtering with a time window tg; = 10 Myr, i.e., turbulent energy is produced by the cascade
from velocity perturbations that develop faster than ti;. We choose the value t = 10 Myr
to filter out the differential rotation, on the one hand, and to capture various developing disk
instabilities, on the other hand. We checked that our results are not sensitive to a change of
t; by a factor of 2.

Although the subgrid turbulence model has a number of parameters, as described above,
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these parameters are calibrated using turbulence simulations and are not varied in our galaxy
formation simulations. In this sense, they do not really add tunable free parameters in such
simulations. They do affect the solution, however, as a particular choice of the closure relation
forms and their parameters controls all interactions between resolved and unresolved scales
and may depend on the flow configuration and turbulent Mach number. Generally, this might
be considered as an important limitation of our model, as the specific closure adopted for our
simulation was calibrated to reproduce the results of high-resolution simulations of developed
isotropic transonic turbulence, while we apply it to a sheared gas flow in a stratified disk.
However, we argue that this approach is still viable for prediction of the turbulent velocities
in cold star-forming gas. Specifically, we checked that the resulting distribution of turbulent
energy in cold gas is not sensitive to a particular choice of 7;; parametrization. This is
because the turbulent energy in this gas is mostly determined by the interplay between
heating by compression and viscous dissipation into heat (see Section A.3). Both these
effects are insensitive to turbulent Mach number as indicated by numerical simulations of
developed turbulence (Mac Low et al., 1998; Robertson & Goldreich, 2012).

One important limitation of the model is an assumption that the unresolved turbulence
on scale A is in the inertial regime. This assumption is made implicitly, because the direct
simulations of developed turbulence, which were used to calibrate this model, do resolve the
inertial range. However, resolving inertial scales in a galactic disk simulation is computa-
tionally challenging as it requires high spatial resolution, because turbulence is generated on
scales comparable to the disk scale height, hy ~ 100 pc, while numerical viscosity affects gas
flows in AMR-based codes on scales up to ~ 10-20 cells (e.g., Kritsuk et al., 2011). Thus,
resolving the inertial scales unaffected by numerical viscosity requires minimal cell sizes of
< 5-10 pc. Therefore, our resolution is not quite within the regime in which the subgrid
turbulence model was calibrated. However, this problem is mitigated by the insensitivity of

the subgrid turbulence properties in star-forming gas to the parametrization of 7;;, which is
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the part that depends on the A being within the inertial range. Thus, we believe the use of

the subgrid turbulence model in simulations with moderate resolution is justified.

3.3 Star formation and feedback

We stress that the scenario of gas depletion described in Chapter 2 remains valid for any
choice of star formation prescription, although the results of Chapters 5 and 6 show that
such a prescription should be chosen carefully, as it is important for the prediction of realistic
ISM properties. In this work, we adopt a usual parameterization of the local star formation

rate with a star formation efficiency per freefall time, e,

e = e, (3.2)
ff

and systematically vary eg as will be explained at the end of this section. We allow star
formation to occur only in the gas that satisfies a chosen criterion. To explore the effects
of such a criterion, we adopt thresholds in either the gas virial parameter, oy, ¢, or the
density, ngr, and also vary the values of oy and ng.

As our fiducial star formation criterion, we adopt a threshold in ay;, and define all gas
with ayir < ayir ¢¢ as star-forming. For a computational cell with a side A, the local virial

parameter is defined as for a uniform sphere of radius R = A/2 (Bertoldi & McKee, 1992):

5Ut20tR ~ 035 (O‘tot/lo km 8_1)2
(n/100 cm—3)(A /40 pc)?’

(3.3)

where oot = 4/ ag + ¢2 is the total subgrid velocity dispersion due to turbulent and thermal
motions, and subgrid turbulent velocities, oy = /2K/p, are dynamically followed in each
cell using the Schmidt et al. (2014) model.

The choice of the star formation threshold in w4, is motivated by theoretical models
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of star formation in turbulent giant molecular clouds (GMCs), which generically predict an
exponential increase of eg with decreasing ayi, (see Padoan et al., 2014, for a review). For
example, Padoan et al. (2012) found that the star formation efficiency of a turbulent cloud
increases exponentially with a decreasing virial parameter, eg ~ exp(—\/m). Even
though we are able to model eg following the Padoan et al. (2012) formula (see Appendix A),
in the simulations used here, we approximate the continuous exponential dependence of eg on
iy assuming a constant eg and a sharp i, ¢ threshold. This makes the interpretation of
simulation results easier. We explicitly checked that the global depletion times and the KSR
are similar in runs where eg follows the Padoan et al. (2012) fit and where we approximate
this fit with a threshold (see Appendix C.2).

We set our fiducial values of parameters to eg = 1% and ¢ = 10, as supported
by the observed efficiencies and virial parameters of star-forming GMCs (e.g., Evans et al.,
2009, 2014; Heiderman et al., 2010; Lada et al., 2010, 2012; Lee et al., 2016; Vutisalchavakul
et al., 2016; Miville-Deschénes et al., 2017), and also consistent with the results of high-
resolution GMC simulations (e.g., Padoan et al., 2012, 2017), which show a sharp increase
of eg below oy, ~ 10. Note also that the threshold in o, is equivalent to a threshold in
the local Jeans length that accounts for both the thermal and turbulent pressure support:
AJ = Utot\/m =7A \/m, and thus oy, ¢ = 10 implies that gas becomes star-forming
when the local Jeans length is resolved by less than Aj/A = 4.5 cells. A qualitatively similar
star formation prescription but with a different choice of parameters was studied by Hopkins
et al. (2013a).

In galaxy simulations that do not track subgrid turbulence, the GMC-scale oy, is not
readily available owing to insufficient resolution. Instead, such simulations often adopt a star
formation threshold in gas density, n, and define star-forming gas as the gas with n > ng.
For comparison, we also explore models with varied density-based thresholds in addition to

our fiducial ay;-based threshold.
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Our default star formation prescription (Equation 3.2) implies a superlinear scaling of
local SFR with gas density: px o< p!®. To explore the effect of this local dependence on the

slope of the molecular KSR, we also adopt a more general recipe:

by = e PO (ﬁ)ﬂ | (3.4)
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where i o = \/m is the freefall time at pg = 100 mp cm 3 and f is a variable
parameter. For § = 1.5, this expression is equivalent to Equation (3.2).

The feedback from young stars is implemented by injection of thermal energy and radial
momentum generated during supernova (SN) remnant expansion in a nonuniform medium
in the amounts calibrated against simulations by Martizzi et al. (2015).

The explicit injection of the generated radial momentum allows one to partially resolve
the overcooling problem and efficiently couple the feedback energy to the resolved dynamics of
gas, which explains the growing popularity of the method (e.g., Simpson et al., 2015; Grisdale
et al., 2017; Hopkins et al., 2017b). However, the injected momentum is still partially lost
as a result of advection errors (see, e.g., Agertz et al., 2013), and to compensate for this loss,
we boost the momentum predicted by Martizzi et al. (2015) by a factor of 5. This value is
motivated by our idealized tests of a stellar particle exploding in a uniform medium with
additional translational motion at velocity 200 km s~1 which is comparable to the rotational
velocity of the simulated galaxy. Such a fiducial boosting factor also absorbs uncertainties
related to SNe clustering (Gentry et al., 2017, 2019), the presence of cosmic rays (Diesing &
Caprioli, 2018), and the total energy of a single SN. To explore the effects of the feedback
strength on the global depletion times, in addition to this fiducial boosting, we multiply
the injected momentum by a factor b, which is systematically varied. The resulting radial

momentum is distributed among all immediate neighbors! of the cell hosting the supernova.

1. For a uniform grid, the number of neighbors receiving momentum is 26, but it can be larger depending
on the local refinement structure of the grid.
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The total number of SNe exploded in a single stellar particle is computed assuming
the Chabrier (2003) initial mass function. In the simulations presented in Section 4.1 and
Chapter 4, the energy and momentum of these supernovae are injected at a uniform rate
between 3 and 43 Myr after the formation of a stellar particle. In the simulations with high eg
explored in Chapters 5 and 6, a significant fraction of gas can be converted into stars before
the first SNe explode because local gas depletion time is comparable to the lag before the
first SN. Thus, to mimic the effects of pre-SN feedback, such as radiation pressure and winds
from massive young stars, in all simulations presented in Chapters 5 and 6 the momentum
injection commences at the moment when a stellar particle is created and continues for 40
Myr.

In addition to SNe type II feedback, we also account for the mass loss by stellar particles
following Leitner & Kravtsov (2011) and inject mass and the corresponding momentum
resulting from the motion of the stellar particle with respect to the gas into the cell hosting
the stellar particle.

In the end, in our simulations, star formation and feedback are parameterized by four
numbers: the star formation efficiency, g, the star formation threshold, oy ¢ or ng, the
slope of local SFR dependence on density, [, and the feedback boost factor, b, which we vary
in order to explore their effects on the global star formation. To assess the effect of the local
star formation efficiency, we vary eg from 0.01% to 100%, i.e., by four orders of magnitude
around our fiducial value of eg = 1%. To explore the effects of the star-forming gas definition,
we vary Qwipsf between 10 and 100 and ng¢ between 10 cm ™3 and 100 cm™3. We expect that
such ay4, and n are well resolved in our simulations, because they are sufficiently far from

3 in a simulation with eg = 0.01%,

the resolution-limited values of oy ~ 2 and n ~ 10% cm™
in which gas contraction is not inhibited by stellar feedback (see the bottom left panel of
Figure 5.4 below). Next, /3 is set to fiducial 1.5 in the simulations presented in Chapters 4-5

and is varied between 1 and 2.5 in Chapter 6. Finally, in order to explore the effect of
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the feedback strength, in addition to the fiducial case of b = 1, we also consider the 5 times
stronger feedback (b = 5), the 5 times weaker feedback (b = 0.2), and the case of no feedback
at all (b =0). Such wide variation of model parameters allows us to explore the connection

between the subgrid scale and the global star formation in the simulated galaxy.

3.4 Analysis overview

Analysis of time evolution shows that all our simulations exhibit a short (< 300 Myr) initial
transient stage, after which the simulated galaxy settles into a quasi-equilibrium state with
approximately constant global galaxy parameters, such as gas depletion time, 7 (see, e.g.,
Figure 5.1 below). Thus, in our subsequent analysis we average the galaxy properties of
interest over either 200 or 300 Myr after the initial 300 Myr of evolution with the actual
averaging interval indicated in figure captions. A 200-300 Myr time interval is sufficiently
long to average out the temporal variability of galaxy properties, but it is also shorter than
7, and hence the galaxy maintains the approximate equilibrium over this time interval. The
only exceptions are the runs without feedback and with high local star formation efficiency
of eg > 10%, in which 7 is very short and the total gas mass decreases appreciably between
300 and 600 Myr. The equilibrium assumption is also violated for the central region in
simulations with eg < 0.1%, where the central density keeps increasing owing to continuous
accretion. However, outside the central 1 kpc the total gas mass and the value of 7 remain
approximately constant, and therefore we exclude gas in the central 1 kpc region when
computing quantities in our analysis.

Some of the results presented below relate to molecular gas content of our simulated
galaxies. To measure molecular gas mass fractions, we estimate the molecular gas density
in each cell using the KMT model (Krumholz et al., 2008, 2009a; McKee & Krumbholz,
2010): pp, = max|0, (1 — 0.75s/(1 + 0.25s))p|, where at solar metallicity s ~ 1.8/7 and

Te = 320(pA/g cm™2). Molecular gas surface density, YH,, is measured by integrating
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molecular density in all cells along the direction perpendicular to the disk. Note that the
result presented in different chapters differ by the correction due to the helium fraction:
in Chapters 4 and 5 helium is excluded from the molecular mass while in Chapter 6 it is
included leading to ~ 1.33 times larger molecular mass assuming 25% helium mass fraction.

For a consistent comparison with the observed KSR for H 1 + Hy gas in Section 4.1, we
defined neutral hydrogen to be all nonmolecular gas denser than ny sgy, given by Equation
(13) in Rahmati et al. (2013). This threshold corresponds to the gas self-shielded from the
far ultraviolet (FUV) background with the adopted photoionization rate I' = 10710 s=1, We
also excluded all neutral hydrogen that is colder than 1000 K assuming that it constitutes the
optically thick cold neutral medium (CNM) not included into the observed measurements of
Yy1. Our temperature threshold is somewhat higher than the CNM temperature estimated in
real galaxies (< 300 K, e.g., Wolfire et al., 2003) because, in our simulation, we do not resolve
the transition between warm and cold neutral gas phases, which results in intermediate gas
temperatures on the resolution scale. The particular value of the temperature threshold
was chosen to select ~ 40% of the neutral hydrogen mass, which is close to the CNM mass
fractions estimated in the Milky Way and nearby galaxies (e.g., Heiles & Troland, 2003;
Braun, 2012; Pineda et al., 2013; Sofue, 2017).

To obtain the 2*—EH2 relation in Chapter 6, we measure the SFR surface density from the
distribution of stars younger than 10 Myr. This time interval is chosen to approximate the
temporal averaging of SFR used in the extragalactic observations to which we will compare
our results.?

To study the detailed dynamics of individual gas parcels, we use gas tracer particles that
are passively advected with the local gas flow. The results presented in the following chapters

differ by the implementation and initialization of these tracer particles.

2. Specifically, 10 Myr corresponds to the Ha star formation indicator (see, e.g., Table 1 in Kennicutt &
Evans, 2012). Extragalactic observations usually adopt a combination of Ha and infrared indicators, which
corresponds to the SFR averaged over a somewhat longer time interval. However, we checked that our results
remain almost unchanged when we average SFRs over 30 Myr instead of 10 Myr.
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In Chapter 4, we use classical tracers that are moved at each step with the local gas
velocity interpolated to the positions of the particles using the cloud-in-cell scheme. We
populate the disk with 10° tracer particles uniformly initialized within R < 8 kpc after
300 Myr of disk evolution when the transients related to the initial off-equilibrium state had
dissipated away. After initialization, we wait for 100 Myr to let the tracers equilibrate with
the gas density distribution. At that point, the distributions of tracer densities in radial
annuli approximates the gas density PDF in computational cells.

In mesh-based codes, the classical implementation of tracer particles is known to fol-
low gas density imperfectly (Genel et al., 2012). Therefore, for the analysis presented in
Chapters 5 and 6 we implemented the scheme proposed by Genel et al. (2012) to accurately
follow gas density, modulo the Poison noise introduced by the finite number of tracers in a
cell. In this scheme, gas-tracer particles that are exchanged between adjacent computational
cells stochastically, with the probability proportional to the gas mass flux between the cells.
We initialize tracer particles proportionally to the local gas density after 400 Myr of disk
evolution.

We average the distribution of tracers to construct statistics, such as their PDF and
fluxes in the n—otot phase diagram, between 400 and 600 Myr. We checked that at every
moment between 400 and 600 Myr phase distributions of gas and tracer particles resembled
their averaged versions, which confirms that the galaxy remained in approximate equilibrium
over the considered period of time.

We focus on the evolution of gas tracers in the n—oot phase plane because the position of
a gas parcel in this plane determines its internal consumption time, t,, according to our star
formation prescription. To accurately quantify gas motions in the n—o¢ot plane, we output
positions, n, and oot for each gas tracer every 1 Myr. The instantaneous contributions of
each tracer into the gas fluxes, dlogn/dt and dlog oot /dt, are measured as the second-order

time derivatives between the previous and subsequent snapshots. To estimate the average
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local flow rates of gas, we accumulate fluxes corresponding to these derivatives and normalize
them by the local density of tracers in the n—otot plane. To account for gas consumption,
whenever a stellar particle is formed, relative weights of all tracers inside the host cell are
decreased correspondingly.

To characterize actual fluxes that supply and remove star-forming gas, in addition to the
total flux of tracers, we separately track the fluxes of tracers with decreasing or increasing
awip- We quantify the magnitudes of these fluxes with the characteristic evolution timescale,

on which o changes by an order of magnitude at a given rate,

>2; , (3.5)

where we average the derivative of logy( i, taking into account only tracers with decreasing

_ [ |d10810 Ovir
7—0‘720 - dt

(increasing) o, to compute 7, < (7o, >0)-
For the analysis presented in Chapter 6, we define the duration of a single molecular

stage of a gas tracer as

tr, = / fu, (1) dt, (3.6)

where fy, is the molecular mass fraction of the cell hosting the gas tracer at a given time

step, and t; and t9 are the subsequent moments when the gas tracer crosses the n = 10 cm ™3
threshold3. We also accumulate integral star formation efficiency over iy, as
t2
Ogp(t
= / (0 g (3.7)
ti(?)
t1

where at each time step O4 = 1 if a gas tracer resides in a cell that satisfies the star formation

criterion, and O¢ = 0 otherwise; t, = p/p« is the local depletion time in star-forming gas;

3. For our choice of parameters, the Krumholz et al. (2008) model predicts that the molecular mass
fraction is 0 for n < 10 cm~3 and it sharply increases for n > 10 cm ™3
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tw = tg/eg for our fiducial § = 1.5 in Equation (3.4).
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CHAPTER 4
THE PHYSICAL ORIGIN OF LONG GAS DEPLETION TIMES

In this chapter, we illustrate our framework using our fiducial simulation of a galactic disk
that reproduces the observed depletion time and the Kennicutt-Schmidt relation. We start
from a brief review of the results of our simulation in Section 4.1. In Section 4.2 we demon-
strate that the long global depletion time in our simulation originates from the rapid cycling
of ISM gas between non-star-forming and star-forming states on timescales ~ 20-100 Myr,
in accord with the estimates discussed in the Introduction and with the results of previous
galactic disk simulations. On each evolution cycle, only a small fraction of the gas mass
is converted into stars and thus 7 is long because a large number of such cycles would be
required to deplete all available gas. In Sections 4.3 and 4.4, we analyze the processes driv-
ing the rapid gas evolution and estimate the timescales of gas evolution using gas tracer
particles. We discuss our results and summarize our conclusions in Sections 4.5 and 4.6.

This chapter is based on the work published in Semenov et al. (2017).

4.1 Gas distribution and the KSR in the fiducial simulations

Figure 4.1 shows the spatial distribution of gas number density, temperature, and subgrid
turbulent velocity in our fiducial simulation with eg = 1% for ayy < ayi e = 10 and
b=1at t =500 Myr. The figure highlights the multiphase, dynamic structure of the ISM.
Comparison with a simulation weak feedback (see, e.g., the top left panel of Figure 5.4 below)
shows that the structure of the ISM is significantly affected by stellar feedback. Its effect
is manifested in the ubiquitous regions of hot, turbulent gas and in the overall flocculent
nature of the spiral pattern.

Subgrid turbulent velocities, o, range from < 3 km s~ in the diffuse ISM between the

spiral arms to ~ 30-300 km s~ ! in hot SNe bubbles. In this simulation, supernovae do not
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Figure 4.1: Midplane slices of gas number density, n, temperature, T, and subgrid tur-
bulent velocity, oy = /2K/p, after 500 Myr of evolution. To make comparison easier, the
black contours in all panels indicates n = 10 cm ™3, above which the molecular mass fraction
rapidly increases at solar metallicity. Green contours in the left panel show gas that satisfies
our star formation criterion, ayi < iy f = 10.

explicitly inject turbulent energy, and high o¢ in hot bubbles are generated by the subgrid
turbulence model. In the cold dense gas, turbulent velocities are supersonic and also vary
significantly, oy ~ 5-15 km s~1. Strong subgrid turbulence in cold gas results in high values
of ayjy and, according to our star formation criterion, ayi < ayi o = 10, only ~ 40% of
all molecular gas mass is star-forming at any given moment. Such star-forming regions are
shown in the left panel of Figure 4.1 with green contours.

The total SFR of our model galaxy is My ~ 1-2 Me yr—1, which translates to global
depletion times for the total and molecular gas of 7 ~ 4-8 Gyr and g, ~ 1-2 Gyr. These
values are in the ballpark of the typical values observed in nearby spiral galaxies (e.g., Wong
& Blitz, 2002; Bigiel et al., 2008; Leroy et al., 2013). The average depletion time of star-
forming gas only is 7% ~ 300-500 Myr which is also consistent with observational estimates
of depletion times in actively star-forming regions (e.g., Evans et al., 2009, 2014; Lada et al.,
2010, 2012; Heiderman et al., 2010; Gutermuth et al., 2011; Schruba et al., 2017).

Figure 4.2 compares the Kennicutt-Schmidt relation between the surface densities of the
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Figure 4.2: Relation between the surface density of the SFR and the total (left panel)
and molecular gas (right panel) in our simulation and in observations. To match the typical
spatial scales on which this relation is usually measured, we smooth 2D maps of Yy, Y HI+H,
and Yy, obtained at 500 Myr with a Gaussian filter with a width of 1 kpc and plot the

median, 16", and 84™ percentiles of the resulting pixel distribution (thick and thin gray
lines). The distributions are colored according to the average galactic radius, R, of pixels in a
given bin. To match the averaging timescales of the star formation indicators, we measure the
surface density of stars that are younger than 30 Myr and define ¥ as X4 (< 30 Myr)/30 Myr.
The thin red line at high > indicates the slope adopted in our star formation prescription,
px o ptP. Thin dotted lines correspond to the constant depletion times of 0.1, 1, and 10
Gyr (from top to bottom). We compare our results to the observed relations in nearby spiral
galaxies (Bigiel et al., 2008, 2010; Leroy et al., 2013) and in the Milky Way (Misiriotis et al.,
2006). The violet contour in the right panel shows the range of 75, ~ 0.5-2 Gyr estimated

using the radial profiles of ¥, and Y, for the Milky Way from Figure 7 in Kennicutt &
Evans (2012).
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SFR and H 1 + Hy and Hy gas in our simulation! to the observed relations in the Milky Way
and nearby spiral galaxies. Our results are in a good agreement in both normalization (i.e.,
the depletion time value) and slope. Note, in particular, that the linear relation between N
and Xy, emerges from the nonlinear star formation prescription adopted in our simulation:
px < pr. In Chapter 6, we consider the origin of the linear relation and show that it results
from the particular behavior of the gas density distribution shaped by stellar feedback. In
the remainder of this chapter we focus on the physical origin of the KSR normalization and

explain why global depletion times in galaxies are long.

4.2 Long global depletion times as a result of rapid gas cycling

As we discussed at the end of Section 2, in a steady state, when (M) A+ = 0 on the timescale
At over which the SFR is estimated, long global depletion times, 7 = M/ M, = Mg/ Fy,
originate from a small net flux of gas into the star-forming state, Fi¢. In principle, Fy could
be small if the rate at which gas evolves toward the star-forming state were set by a slow
“bottleneck” process. However, as Figure 4.3 shows, in simulations with efficient feedback,
gas rapidly transitions between the star-forming and non-star-forming states, and a small
Fy¢ results from a near-cancellation of large opposite fluxes into and out of the star-forming
state.

In this figure, we plot the distribution of gas tracer particles within the disk in the plane of
gas number density, n, and oot = 1/0'452 + ¢2, that can be viewed as an effective temperature
including both thermal and turbulent gas motions on subgrid scales. The gas distribution
spans a wide range of densities, otot, and temperatures and has two distinct peaks. The

3, corresponds to diffuse, warm, subsonic (oy < ¢s) gas at

peak at low densities, n ~ 1 cm™
temperature T ~ 10* K. The gas in the second peak at n > 10 cm 3, on the other hand, is

cold (T" < 100 K) and supersonic (of > ¢g).

1. The definition of H 1 and Hs gas in our simulations is explained in Section 3.4.
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Figure 4.3: Distribution of gas tracer particles in the plane of gas number density, n, and

total velocity dispersion, oot = 1/ Ut2 + ¢2, averaged between 400 and 600 Myr. The black
contours in all panels indicate the average PDF of tracers and correspond to 20, 68, 95, and
99% of all tracers. The diagonal dotted lines indicate constant values of oy, from left to
right: 1000, 100, 10, and 1, with awjp = @i g¢ = 10 shown by the thick green dotted line. The
dashed line along the lower envelope of the PDF at n < 10 cm ™2 indicates the median sound
speed, cg, in each density bin. Colors in the top panel show the average gas temperature in
each bin, while arrows indicate the average total fluxes of gas tracers measured as described
at the end of Section 3. Arrows in the middle and bottom panels correspond to the fluxes of
gas tracers with decreasing and increasing o, respectively. Colors in these panels show the
distribution of the characteristic evolution timescales, 7, >0, defined by Equation (3.5). The
normalizations of the arrows are the same in all three panels and correspond to the distances
that tracers would traverse at a given rate over 5 Myr.
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According to our star formation prescription, the star-forming gas has ayj, < ayip gt = 10.
Such gas in Figure 4.3 resides below the thick green dotted line. The net mass flux of gas
in the n—otot plane is visualized by the arrows in the top panel of Figure 4.3, where the
length of the arrows is equal to the distance tracers would traverse in 5 Myr for a given
flux. The figure shows that arrows are rather small throughout most of the phase space
occupied by tracers and are particularly small near the thick green dotted line. This means
that the net evolution of gas in the n—o¢yt plane is slow and the net flux through the star
formation threshold, Fg, is small. This small net flux results in the long global depletion
timescales exhibited by our simulated galaxy, 7 ~ 5 Gyr and 7y, ~ 1 Gyr (see Section 4.1
and Figure 4.2).

However, the middle and bottom panels of Figure 4.3 show that the small net Fi¢ results
from the near-cancellation of two opposite fluxes. These panels show the fluxes of only those
tracers in which ay;, is decreasing, F., or increasing, F_, and these fluxes are significantly
stronger than the net flux in the top panel. A typical tracer evolves toward and away from the
star-forming state on a timescale of order 7, >0 ~ 5-30 Myr, consistent with the estimates
of the timescales of relevant processes in Section 1.1. Thus, the rate of gas supply from the
warm, diffuse ISM to the star-forming state cannot be the factor limiting the global star
formation rate, as envisioned by Saitoh et al. (2008). Instead, gas generally evolves from the
diffuse to the star-forming state on a timescale of tens of Myr, much shorter than the global
depletion time. The latter is long because gas rapidly leaves the star-forming state at the
rate that nearly cancels the rate at which gas is reaching this state. In the next section, we

consider the processes that drive the fast gas evolution in more detail.

4.3 Dynamical processes shaping ISM

The average gas flow patterns shown with arrows in Figure 4.3 result from the statistical

averaging of the complicated trajectories of individual tracer particles. The particular shapes
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Figure 4.4: Trajectories of three illustrative tracers followed for 200 Myr. The left set
of panels shows the evolution of ay;, for each of the three tracers. The right panel shows
the trajectories in the n—o¢ot plane with the corresponding colors. The gray contours and
arrows indicate the average tracer PDF and their net fluxes, as in the top panel of Figure 4.3.
The thick dotted lines in all panels correspond to the adopted star formation threshold,
Qyir = Qyirsf = 10. For presentation purposes, small fluctuations of actual tracer trajectories
on timescales < 5 Myr were smoothed using Savitzky-Golay filter.

of such trajectories vary depending on local conditions and specific physical processes that
govern gas evolution.

In our simulation, gas evolution between diffuse, warm, subsonic and dense, cold, su-
personic ISM phases is governed by large-scale disk instabilities and the turbulent flows
generated by them. The evolution of gas in the dense phase is largely affected by stellar
feedback that disperses star-forming regions, drives large-scale ISM turbulence, and launches
fountain-like outflows.

In the following subsections, we consider these processes using three illustrative tracer
trajectories integrated over 200 Myr that are shown in Figure 4.4. We chose these particular
tracers because their evolution over the considered period of time is governed predominantly

by the same process over several consequential cycles of compression and expansion.
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Figure 4.5: Distributions and average fluxes of tracers residing at different galactocentric
radii, R (shown in the top left corner of each panel). Notation follows that of the top panel
of Figure 4.3. Comparison with the right panel of Figure 4.4 hints that the distribution
of tracers on the disk outskirts (top panel) is predominantly shaped by gas compression
and expansion due to the spiral arms, while close to the disk center (bottom panel), the
distribution is shaped by feedback-driven turbulence and outflows. Whirl-like patterns of
velocities in the cold, supersonic phase indicate that the distribution of dense gas at all radii
is affected by star formation feedback (see text for details).
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4.3.1 Compression and expansion due to spiral arms

The blue line in the top left panel of Figure 4.4 shows an example of the ay;4, evolution
followed by a tracer that swings between the subsonic and supersonic phases during cycles
of compression and expansion as it enters and exits the spiral arms. The trajectory of this
tracer in the n—o¢ot plane is shown with the same color in the right panel.

Due to strong compression, gas entering a spiral arm rapidly cools down and loses the
thermal support that initially dominates in the subsonic ISM. At the same time, initially
low subgrid turbulent velocities of the subsonic ISM, oy < 3 km s~L rapidly grow due to
compressional heating (see the detailed discussion in Appendix A.3 and also Robertson &
Goldreich 2012). At n ~ 10 cm ™3, when subgrid turbulent velocities become comparable to
the thermal speed, gas detaches from the lower envelope of the distribution shown in Figure
4.3 and enters the supersonic ISM phase. Similarly, when gas leaves a spiral arm, it expands,
and subgrid turbulent velocities decrease. Eventually, under the influence of expansion and

3 and

interstellar FUV heating, gas returns to the subsonic ISM phase with n ~ 1 cm™
T ~10* K.

The actual transition of gas between the subsonic and supersonic phases is fast, as it
is controlled by a strong compression rate in the spiral arms and short cooling times at
n > 1 cm™3. Hence, the rate at which diffuse gas is promoted into the dense phase is mostly
determined by the time that gas waits between subsequent passages of the spiral arms,

2R (R/8 kpc)

~ 80 M
M Vigas Y (m/6)(Vigas/100 km s~ 1)

(4.1)

Tarm ™~

where Vgas = vgas — Upat is the speed of gas relative to the spiral waves pattern, and we set
m = 6, as our simulated galaxy develops six spiral arms.

The typical time that gas spends inside a spiral arm before expansion contributes to the
dynamical rate of gas removal from the star-forming state, 7_ 3. This timescale depends

on the spiral arm width, gas velocity, and the angle at which gas flows inside the arm.
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Depending on local conditions, this timescale can be as long as a few tens of Myr.

In Figure 4.5 we plot distributions of n and oot separately for tracers residing at different
galactic radii and therefore experiencing different ISM conditions. The distribution in the
outer disk (top panel) is shaped predominantly by the compression and expansion due to
the spiral arms. Specifically, most of the gas mass in the outer disk resides in the diffuse
subsonic phase and forms a peak at n ~ 1 cm™3 and T ~ 10* K. The tail extending along
the lower envelope of the distribution toward the dense supersonic phase corresponds to the
gas currently being compressed in the spiral arms. As the figure also shows, the compression
of diffuse gas in the spiral arms is only relevant at large radii, whereas closer to the disk

center, less gas remains in the diffuse phase, and this process becomes much less important.

4.3.2  SNe-induced shocks and ISM turbulence

We find that the evolution of dense, supersonic gas in the n—o¢ot plane is dominated by
the turbulence that is driven by stellar feedback. Injection of momentum by SNe in a star-
forming region results in a rapid expansion of gas until the region is eventually dispersed.
Shocks associated with expanding bubbles compress gas in the disk plane, which may induce
new episodes of star formation and subsequent SN explosions. The turbulence resulting from
overlapping and interacting bubbles makes gas parcels oscillate in fast cycles, as illustrated
by the green trajectory in Figure 4.4.

The characteristic timescale between subsequent compressions of ISM gas by such ex-

panding SN shocks corresponds to

L/1k
50 Myr (L/1 kpc) -
Ughell (Vgher1/20 km s~)

(4.2)

Tshell ™

where L is a typical separation between bubbles (see, e.g., the temperature map in the middle

panel of Figure 4.1) and vg,q); is a typical velocity of shells on a scale L.
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Compression and expansion of gas in the turbulent ISM is accompanied by the increase
and decrease of turbulent velocity dispersion. As a result, averaging of such large-scale
turbulent motions over many tracers results in a prominent clockwise whirl-like pattern of
arrows around the peak of the PDF in the cold (blue) part of the diagram (see Figures 4.3
and 4.5). Closer to the peak center, the net flux magnitude decreases due to the averaging
between fast motions of many tracers at the different stages of their turbulent compression-
expansion cycles.

As Figure 4.5 shows, such a whirlwind pattern is most prominent at R < 6 kpc. Thus, the
feedback-driven turbulence and associated compression and expansion of gas are dominant
processes at these radii in the cold, supersonic gas. The ISM at these radii has a complex

structure (see Figure 4.1) reflecting the chaotic turbulent nature of the gas.

4.3.83  Feedback-driven fountain outflows

Supernova feedback also affects some of the gas by accelerating it in the direction perpen-
dicular to the disk plane. Such gas expands in fountain-like outflows but eventually cycles
back to the ISM under the influence of the disk potential. Interactions of such outflows with
the halo gas adjacent to the disk result in an increase of small-scale turbulent velocities that
quickly dissipate when the gas falls back onto the disk.

An example of a tracer trajectory during expansion and subsequent recycling of a fountain
outflow is shown with the red lines in Figure 4.4. This particular tracer was ejected and recy-
cled twice, at ~ 20-80 and ~ 130-150 Myr. In each event, after its star-forming region was
dispersed by feedback, this tracer acquired a moderate vertical velocity of v, ~ 50 km s~ 1
and elevated as high as ~ 400 pc above the disk plane, i.e., a few scale heights, before falling
back onto the disk. At the highest elevation point, the gas in these outflows expands only to

the densities comparable to those of the diffuse subsonic ISM phase, n ~ 0.2-2 cm ™3 and its

virial parameter reaches the values of oy, ~ 103-10* due to the strong turbulence generated
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by the interaction of the expanding outflow with the surrounding gas. Outflows launched by

feedback from regions of more vigorous star formation reach even lower n and higher o,
The timescale of the fountain cycle can be estimated as a dynamical time in the gravita-

tional field of a massive infinite sheet of constant surface density o, corresponding to the

local total surface density of the disk,

(v5/50 km s~ 1)

Uz
~ ~ 20 Myr , 4.3
Terav WGZtot Y (Ztot/QOO M@ pC_2) ( )
where v, is the initial vertical velocity of gas in the outflow and Yot = Xy + Xg ~

200 M, pe~2 is the typical total surface density of gas and stars in our simulated galax-
ies.

The averaging of trajectories between many gas parcels constituting fountain-like outflows
results in a tail of the distribution directed from the star-forming state toward the lower
densities and higher otot. The total flux of tracers forms a prominent counterclockwise
vortex inside this tail that is clearly seen in Figures 4.3 and 4.5.

Figure 4.5 shows that at all radii within the disk, some fraction of gas evolves in the
manner discussed above, which indicates the existence of fountain-like outflows. At larger
radii, where the SFR is slower, the outflows are less prominent but still visible as a net flux
of tracers directed toward lower densities along the top envelope of the distribution shown
in the upper panel. Gas in such outflows at large radii usually returns to the diffuse, warm,
subsonic ISM between the spiral arms. Closer to the center, outflows are ubiquitous, and,
after falling back, their gas directly rejoins the tumultuous large-scale turbulent motions of

dense, supersonic gas.
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Figure 4.6: Distribution of times that tracers spend in non-star-forming (¢4, top panel)
and star-forming (¢, bottom panel) states between successive crossings of the star formation
threshold. Distributions of ¢, and ¢y are shown as a function of galactic radius, R. The
top axis in each panel also indicates the average surface density of gas at a given radius,
Yg o< exp(—R/rq), where rq is the initial scale radius of the disk. Contours indicate 68%
and 95% of trajectories. The thick red lines show the median timescales at every radius.
The dotted line in the top panel corresponds to the free-fall time at the average midplane
density at a given radius. Colors in the top panel show the average fraction of time spent in
the dense phase with n > 10 cm™3: fust,dense = tusf,dense/tnst- Colors in the bottom panel
show the average number of passages through the star-forming state required for complete
depletion, N. (Equation 4.4). To increase the statistics for long cycles, we follow tracers
between 400 and 1000 Myr of the disk evolution. For presentation purposes, we smooth the
resulting distributions, preserving their main features.
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4.4 Duration and number of evolution cycles

Typical tracer trajectories considered in the previous section explicitly confirm that during
the evolution, gas parcels perform many fast cycles and rapidly explore a significant portion
of the PDF, frequently switching between non-star-forming and star-forming states. As we
discussed in Section 2, the distribution of the time that the gas parcels spend on each cycle
in these states, ¢4t and tgr, determines the global depletion time of the galaxy.

In Figure 4.6 we plot the distribution of ¢4 and ty directly measured from the trajecto-
ries of all tracers as the time between consequential crossings of the star formation threshold.
The results in the previous section indicate that the mix of the processes governing gas evo-
lution may change with the galactic radius, R, and surface density, Yg. Thus, to explore
possible trends, we plot the distributions of timescales as a function of R and ;.

The distribution of ¢4t shown in the top panel indicates that the majority of tracers spend
less than 100 Myr in the non-star-forming stage of evolution during each cycle. At higher
average surface densities closer to the disk center, this time is even shorter, ¢, < 50 Myr,
with a very low median value (thick red line).

Colors in the top panel show the average fraction of time that gas tracers spend in the

3 over the non-star-forming stage of evolution. A blue color at

dense phase, n > 10 cm™
small radii implies that gas preferentially stays in the dense, molecular phase even when it
does not form stars. This is also evident from the bottom panel of Figure 4.5, which shows
that only a small fraction of gas expands to n < 10 cm ™3 and it does so as a part of fountain
outflows.

At larger radii, the relatively slow rate of star-forming gas replenishment via compression
in the spiral arms becomes important, and the median t,4 increases to ~ 80 Myr. Gas
governed by this process spends significant time in the diffuse subsonic ISM, and such tracer

trajectories occupy the areas of the longest ¢, at R > 4 kpc (green color in Figure 4.6).

However, as indicated by the blue color, at such radii many tracers still perform short cycles
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with ¢4 < 50 Myr without leaving the dense phase.

The increase of the ¢, median value is consistent with the scaling proportional to
the free-fall time at the mean or midplane density at a given radius, g o pa 172 _
(Eg/th)_1/2, shown by the dotted line in Figure 4.6 (see also Saitoh et al., 2008). Such
scaling is sometimes adopted in analytical models of galactic star formation to define the
timescale on which star-forming regions are created (e.g., Krumholz et al., 2012a; Elmegreen,
2015). As we discussed above, t,¢ in our simulations is set by both stellar feedback that
drives turbulence and dynamical processes within the ISM. The scaling of the median ¢,
with density indicates that gravity and the associated timescale plays at least some role in
setting the time that gas spends in the non-star-forming state. For example, the fall of the
gas driven out in a fountain outflow back to the disk will occur on a timescale of order ~ tg (.

The bottom panel of Figure 4.6 shows the distribution of time spent by tracers in the
star-forming state on each cycle. This timescale is close to the typical “lifetime” of star-
forming regions and is quite short: ¢ty < 20 Myr or 24 free-fall times at the typical densities
of star-forming regions. The fact that {y is, on average, significantly shorter than ¢, is
consistent with the small mass fraction of star-forming gas.

As we discussed in Section 2, the average time that a gas parcel spends in the star-forming
state on a single cycle determines the total number of such cycles required for complete

depletion as N = 74 /tg. For every tracer on each passage through the star-forming stage,

we estimate this number as the inverse fraction of mass depleted during the passage,

dt dt
N = / a_ / e (4.4)
t* tﬁ'

where the integral is accumulated for each tracer particle while it is in the star-forming state
between subsequent crossings of the star formation threshold. The resulting distribution of
N is shown by the colors in the bottom panel of the figure.

In agreement with our model, typical N, ~ 50 and the lifetimes of gas in the star-forming
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state, g ~ 10-20 Myr, are consistent with the range of the star-forming gas depletion
times, 7% ~ Nctge ~ 300-500 Myr, obtained in our simulation. In addition, assuming
thst ~ 50-100 Myr, Equation (2.1) for the typical depletion time of a gas parcel gives a
value of ~ 2-5 Gyr, which is consistent with the actual global depletion time obtained in

our simulation (see Section 3).

4.5 Discussion

4.5.1 Comparison with previous studies

The short, ~ 10-100 Myr, timescales of the physical processes driving the evolution of gas
in the ISM (see the top panel of Figure 4.6) indicate that the ISM is vigorously “boiling”
when considered on the global depletion timescale. During this vigorous evolution, gas cycles
between non-star-forming and star-forming stages and spends only ty ~ 5-15 Myr in the
star-forming stage on each cycle (see the bottom panel of Figure 4.6), which is consistent
with the short lifetimes derived for observed GMCs (e.g., Kawamura et al., 2009; Murray,
2011; Schruba et al., 2017).

Observational estimates of the integral star-formation efficiency during a star-forming
stage, defined for a given star-forming region containing a gas mass of mg and a mass of
formed young stars of my as € = m,/(mg + my), give € ~ 1-20% (e.g., Evans et al., 2009;
Lada et al., 2010). This fraction is even smaller in less-efficient clouds (e.g., Rebolledo et al.,
2015; Lee et al., 2016; Vutisalchavakul et al., 2016). A similar range of € is also obtained
in simulations of star cluster formation (Gavagnin et al., 2017), models of star formation
in GMCs (e.g., Zamora-Avilés & Vazquez-Semadeni, 2014), and cosmological simulations of
a Milky Way-sized galaxy that resolve the growth of globular clusters and self-consistently
capture its termination by stellar feedback (Li et al., 2017b).

Such values of e imply that gas parcels must undergo N ~ ¢! ~ 5-100 cycles transition-
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ing from the non-star-forming to star-forming state before they convert their gas into stars.
This number of cycles is also consistent with the typical depletion times of star-forming gas,
T = (1 /t*>s_f17 and lifetimes, tgr, derived for observed star-forming regions, N = 7y /tsf.
Specifically, depletion times of gas in observed star-forming regions are estimated to be
tx ~ 50-500 Myr (e.g., Evans et al., 2009, 2014; Lada et al., 2010, 2012; Heiderman et al.,
2010; Gutermuth et al., 2011; Schruba et al., 2017); for ty¢ ~ 5-15 Myr quoted above, these
ty give N ~ (50-500)/(5-15) ~ 3-100. Such N¢ are in the ballpark of the N, range that
we estimate for the gas in our simulations (see the bottom panel of Figure 4.6), although we
note that the number of cycles in our simulation can be somewhat overestimated due to the
artificially sharp threshold in the definition of star-forming gas.

Note that specific values of t,4f, tf and N depend on the scale, [, on which the small-
scale distribution of t, is defined. Clearly, if we consider the evolution of gas parcels on the
scale of protostellar cores, ~ 0.01 pc, the star-forming stage of evolution will correspond to
the formation of one or a handful of stars, which will consume most of the gas in a single
event. The gas parcels on this scale will spend a long time in the non-star-forming stage and
will consume their gas in one or a few cycles, N. = 1 + &, where £ corresponds to the ratio
of the protostellar core mass returned back to the ISM to the mass of the formed star.

The key expression of our model (Equation 2.10) was derived by applying the mass
conservation law to all star-forming gas in a galaxy or in a given ISM patch. Mass conser-
vation can also be invoked to build a model for the formation, evolution, and destruction
of individual GMCs (e.g., Feldmann & Gnedin, 2011; Zamora-Avilés et al., 2012; Lee et al.,
2016).

Our model is based on mass conservation alone, and thus the overall physical explanation
for long gas depletion times presented in Chapter 2 does not require the assumption of
dynamical equilibrium. Indeed, when a gas parcel undergoes some inherently nonequilibrium

process, such as compression in a spiral arm, the parcel’s depletion time will still be given by
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taep = (Tw/tst) (tnst Ttsf) = Tw(tnst/tsr+1), and therefore tgep, will be long if ¢4 >> ¢ and/or
T« is long. The absence of a long-term equilibrium requirement is an essential difference of our
framework from the models for the Kennicutt-Schmidt relation that rely on the assumption
of self-regulation to the vertical or Toomre (1964) equilibrium state (e.g., Ostriker & Shetty,
2011; Faucher-Giguere et al., 2013).

In fact, our model explicitly accounts for the deviations from the equilibrium state in
which Msf ~ 0. Such deviations, along with fluctuations of other quantities that enter
Equation (2.10), can be important sources of the depletion time scatter. These deviations
can be substantial for individual ISM patches, which generally will not be in equilibrium,
even if a galaxy as a whole is. Additional scatter can arise due to observational tracers
sampling different stages of gas evolution incompletely (Kruijssen & Longmore, 2014).

We note, however, that unlike the models of Ostriker & Shetty (2011) and Faucher-
Giguere et al. (2013), our conceptual framework cannot quantitatively predict the depletion
time by itself. It only elucidates how the depletion time is related to the timescales of the
processes driving gas evolution. The variables through which this relation is parameterized
can be either calibrated in simulations, as is done in this study, or be derived in analytical
models (e.g., Zamora-Avilés et al., 2012). Nevertheless, as detailed in the next subsection
and Chapters 5 and 6, our framework is very useful for interpreting and explaining a number

of puzzling facts about star formation in both observed and simulated galaxies.

4.5.2  Implications for observations

Rapid cycling of gas between non-star-forming and star-forming states explains the large
discrepancy between long global depletion times of 2 1 Gyr and short, ~ 10-100 Myr,
timescales associated with the dynamical processes in the ISM. Only a small fraction of
gas is converted into stars during each cycle, and therefore gas would have to go through a

large number of cycles to be depleted.
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Our model also naturally explains the difference between observed local depletion times
of (mostly molecular) gas in star-forming regions, ¢, ~ 50-500 Myr, and global depletion
times of both total gas, 7 ~ 2-10 Gyr, and molecular gas, 7y, ~ 1-3 Gyr. The global
depletion times, 7 and 1y,, are longer than the average gas depletion time in star-forming
regions, Ty, due to the significant fraction of time that gas spends in the non-star-forming
state (see Equation 2.1). This implies that only a fraction of total and molecular gas is
forming stars at any given moment. For example, the observed values of ¢, and 7y, indicate
that only fo 1, = Msg/Mp, = 7«/TH, ~ 5%50% of molecular gas is forming stars. The
range of f¢r 1, in our simulation is consistent with this estimate, with the non-star-forming
molecular gas state corresponding to strongly turbulent cold gas. Diffuse, non-star-forming
molecular gas is also observed in the Milky Way, but its mass fraction (~ 25% from Roman-
Duval et al., 2016) is a factor of ~ 24 too low to explain the discrepancy between global
and local depletion times of molecular gas. Thus, a substantial fraction of non-star-forming
molecular gas must be missed in such observations.

As pointed out by Kruijssen & Longmore (2014), a model considering different evolution-
ary stages and corresponding chemical phases of the ISM gas can be used to interpret the
dependence of the depletion time and its scatter on the averaging scale (see, e.g., Schruba
et al., 2017). This dependence in observed galaxies can also be used as a stringent test of
the star formation and feedback implementation in galaxy formation models.

Our model for gas depletion time provides a natural framework for predicting and inter-
preting trends with galaxy properties and redshift. For instance, we show that the duration
of cycles decreases with increasing surface density as ¢, o< Xy 05 As we will also show in
Section 6.1, this trend is accompanied by a milder but nevertheless nonnegligible decrease
in 7. This means that the observed decrease in global depletion times in high-redshift and
starburst galaxies (e.g., Kennicutt, 1998; Bouché et al., 2007; Genzel et al., 2010; Tacconi

et al., 2018) can be explained by shorter dynamical timescales, t, 4, and star-forming gas
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depletion times, 74, associated with high-density environments. In addition, the nonequilib-
rium state of starburst galaxies may result in short 7 due to the contribution of the 7, /7 o
term in Equation (2.10).

The described mechanism controlling depletion time remains qualitatively the same in the
presence of cosmological accretion of gas. Indeed, the cycling of the ISM gas between star-
forming and non-star-forming states happens on short, < 100 Myr, dynamical timescales,
while the accretion of intergalactic gas proceeds on a much longer timescale, comparable with
Gyrs-long gas depletion times. As new gas is added to the galaxy, the timescales that control
ISM gas cycling—+,4f, tsf, and 7—can slowly change because they depend on the global
properties of galaxy, such as its total mass. However, at any moment, the depletion time will
still be set by the dynamical gas cycling in the ISM even though the typical duration of a
cycle can slowly change with time. Cosmological accretion can significantly affect gas cycling
only when it happens on a timescale comparable with the duration of a cycle, < 100 Myr,
e.g., during galaxy mergers.

Our framework also predicts the dependence of depletion times and KSR shape on metal-
licity. Gas must be shielded by a certain column density in order to become cold and molec-
ular. This column density has a corresponding number density at which such a transition
occurs, as can be seen in the phase diagrams in Figure 4.5, that show the sharp change from
the warm, transonic phase (yellow) to the cold, supersonic phase (blue) at n ~ 10 cm™3. At
lower metallicities, both the characteristic number density and column density of the tran-
sition increase, leading to the decrease of fy,, fsf and 7. Thus, the overall gas depletion
time, 7, increases.

The higher characteristic density of the transition at lower metallicity also results in
the shift of the turnover in the KSR for total gas to higher surface densities. This shift is
qualitatively similar to that predicted by the Gnedin & Kravtsov (2011) models, where star

formation is tied to molecular gas. We have confirmed this explicitly by resimulating our
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model galaxy at a lower metallicity and will present these results in a forthcoming paper.

4.6 Summary

In this chapter we explored our physical model that elucidates why gas depletion times in
galaxies are long compared to the timescales of the processes driving the evolution of the
interstellar medium. We show that the depletion time is long not because some bottleneck
in the formation of star-forming regions imposes a long evolutionary timescale, but because
only a small fraction of the gas mass is converted into stars during a single star-forming
stage in the evolution of a gas parcel. This fraction is small due to both the short duration
of the star-forming stage, as dynamical processes and stellar feedback efficiently disperse
star-forming regions, and the low intrinsic star formation efficiency of dense molecular gas.
A gas parcel thus must go through many cycles transitioning between non-star-forming and
star-forming states before it becomes converted into stars. Hence, even though the duration
of each cycle can be short, the global depletion time is long because the number of cycles is
large.

Furthermore, the difference between the global and local depletion times of molecular gas
in our model arises because not all of the molecular gas is actively forming stars. Non-star-
forming molecular gas appears naturally if local star formation efficiency is a strong function
of the virial parameter of a region, while the molecular fraction of gas is set by its ability to
shield against FUV radiation and is a function of mainly gas number density and metallicity.

We illustrate our model using the results of an isolated L,-sized disk galaxy simulation
that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas.

Our results and conclusions can be summarized as follows.

1. Analysis of our simulation shows that the properties of gas parcels in the ISM evolve on
timescales of ~ 10-100 Myr under the influence of compression by the spiral arms, ISM

turbulence, and SNe-driven shocks. The relative importance of these processes varies
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with galactocentric radius, R, and average surface density. At R 2 5 kpc, the evolution
from a warm, diffuse state to a dense, cold phase is driven mainly by compression in
the spiral arms, while SNe-driven shocks and large-scale ISM turbulence dominate at

smaller radii.

. During an evolutionary cycle, gas spends most of the time in the non-star-forming
state, t,q > tsf, whereas the time spent in the star-forming state, tg, is limited by
stellar feedback and dynamical processes to tgf ~ 5-15 Myr. We find that the median

thsf varies with gas surface density as ¢4 o Zg—0~5,

. On the resolution scale of our simulation, 40 pc, the typical range of densities in star-
forming regions is limited to n ~ 10-10% cm™3 by the interstellar FUV background
and stellar feedback. We find that the resulting depletion times of star-forming gas
T ~ 300-500 Myr are consistent with the depletion times estimated for observed GMCs

on these scales.

. The distributions of depletion times and lifetimes of star-forming regions in our simula-
tions imply that a typical gas parcel has to undergo 5-100 cycles transitioning between

non-star-forming and star-forming states before converting its mass into stars.
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CHAPTER 5
EFFECTS OF STAR FORMATION AND FEEDBACK
PARAMETERS ON GLOBAL STAR FORMATION IN
GALAXIES

Recent simulations of galaxy formation revealed several nontrivial dependencies of global star
formation on the parameters of star formation and feedback adopted on the resolution scale
of simulations. One of the most intriguing results is that in simulations with strong feedback,
the galaxy-scale star formation rate—and hence the global depletion time—is insensitive to
the local star formation efficiency (e.g., Dobbs et al., 2011a; Agertz et al., 2013; Hopkins
et al., 2013a, 2017a; Agertz & Kravtsov, 2015; Benincasa et al., 2016; Orr et al., 2018). This
behavior is thought to be due to “self-regulation” of star formation by feedback (e.g., Dobbs
et al., 2011a).

In this chapter, we focus on explaining the connection between the local parameters
of star formation and feedback and global star formation and galaxies, and our goal is to
extend and make sense of the results of other recent studies of this issue. In Section 5.1,
we use the simulation suite presented in Chapter 3 where we systematically varied eg value,
star formation threshold, and feedback strength to show that the global depletion time and
the star-forming gas mass fraction in simulated galaxies exhibit systematic and well-defined
trends as a function of these parameters. In Section 5.2, we demonstrate that these trends
can be reproduced both qualitatively and quantitatively using the physical model presented
in Chapter 2 that explains the origin of long gas depletion times in galaxies.

In Section 5.3, we compare our simulation results and model predictions to the observed
star-forming properties of real galaxies. We also discuss how the trends identified in simula-
tions and our analytic model can be used to guide the choice of star formation and feedback

parameters in high-resolution galaxy simulations. In particular, we show that both the
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global depletion times and the star-forming gas mass fractions of observed galaxies should
be used on kiloparsec and larger scales, while the measurements of the depletion time and
its scatter on smaller spatial scales provide additional constraints on the local efficiency of
star formation.

In Section 5.4, we compare our predictions with the results of previous recent studies and
interpret their results in the context of our model, and in Section 5.5, we summarize our
results and conclusions.

This chapter is based on the work published in Semenov et al. (2018).

5.1 Overview of simulation results

The analysis presented in this section focuses on the quantities that characterize the global

star formation of the simulated galaxy: the global gas depletion time,

Mg
M,

(5.1)

T

as well as the mass fraction of star-forming gas, fyf = My/Mg, and the mean freefall time
of star-forming gas, 7 = (1 /tff>s_fl. Here the star-forming gas mass, M, is the total mass
of all gas in the galaxy that satisfies the adopted star formation criterion. Consequently, the
average freefall time is defined by analogy with Equation (3.2), My = eg My /g, and thus 7
depends on the local tg via eg/rq = My/Myg = [(eg/tg)pdV/ [ pdV = eq(1/tg)ss, where
the integrals are taken over all star-forming gas. The values of 7, fi, and 7g are closely

related. For example, the global depletion time can be expressed as

My _ My My _ 7| (5.2)
M M, Mgt eff fof

T

Below, we describe the trends of 7, fy, and 7 with the main parameters of the star

formation and feedback prescriptions in our L,-sized galaxy simulations: efficiency eg, the
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Figure 5.1: Evolution of the global depletion time, 7, and the star-forming mass frac-
tion, fg, in the simulations with varying eg at the fiducial feedback strength (b = 1) and
star formation threshold (o ¢ = 10). To compare different runs at the same temporal
resolution, all curves are smoothed using a Gaussian filter with a width of 30 Myr. All quan-
tities are measured in a cylindrical volume centered at the disk center with |z| < 2 kpc and
1 < R < 20 kpe.
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Figure 5.2: Dependence of the equilibrium 7 and fg values on the eg value in our sim-
ulations with fiducial star formation threshold (ay;, ¢ = 10) and different feedback boosts:
weak (b = 0.2; triangles), fiducial (b = 1; circles), and strong (b = 5; squares). The values
of 7 and f are time-averaged between 300 and 600 Myr, with error bars indicating 5th and
95th percentiles over this time interval. The choice of the averaging interval is explained
in Section 3.4. Gray lines show the predictions of our model, which will be explained in
Section 5.2. The figure illustrates qualitatively different behavior of 7 and f at low and
high €ff-
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Figure 5.3: Equilibrium values of 7, fq, and 7, in simulations with varying eg and different
feedback strengths (b; left column) and star formation thresholds set in virial parameter
(ayir < Qyipgf; middle columns) and gas density (n > ngp; right column). The feedback
strength is varied at the fiducial threshold value (ayi g = 10), whereas the threshold is
varied at the fiducial feedback strength (b = 1). Points indicate the values of 7, fg, and 7g
time-averaged between 300 and 600 Myr, with error bars indicating 5th and 95t percentiles
over this time interval. To avoid overlap, points for eg = 0.1%, 1%, and 10% are slightly
shifted horizontally around the actually used values of b, ay;; s, and ng. Lines show our
analytical model detailed in Section 5.2 and summarized in Appendix B.1.
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feedback strength parameter b, and the star formation threshold a;; ¢f or nge. The efficiency
e affects local star formation in the most direct way, while the feedback strength b affects
the integral local star formation efficiency by controlling the time that gas spends in the star-
forming state. The interplay between star formation and feedback also affects the overall
distribution of gas in a galaxy. For a given distribution, the star formation thresholds control
the mass fraction, fi, and the mean density of star-forming gas, and thus its mean freefall
time, 7g.

Figure 5.1 shows the evolution of 7 and fy in simulations with varying eg at the fixed
fiducial feedback strength (b = 1) and the star formation threshold (o o = 10). After
the initial transient stage, 7 and fg become approximately constant in time at values that
depend on the choice of eg. To explore this dependence on e, we average the equilibrium
values of 7 and fi between 300 and 600 Myr! and show them in Figure 5.2 with error bars
indicating temporal variability around the average. In addition to simulations with fiducial
feedback (circles), the figure also shows the results for 5 times weaker (triangles) and 5 times
stronger feedback (squares). Star formation histories in these and all other our simulations
are qualitatively similar to those shown above, and thus for quantitative comparison from
now on we will consider only the equilibrium values of 7 and fg. Gray lines in this figure
show the predictions of our analytic model that will be detailed in Section 5.2.

Figure 5.2 clearly shows that the dependence of 7 and fi on eg is qualitatively different
when eg is low and when it is high. When eg is low, < 0.01%, 7 scales as egl, whereas the
star-forming mass fraction remains independent of eg. When eg is high, eg > 1%, the trends
are reversed: 7 is independent of eg, whereas f scales as egl. It is this independence of 7
from eg that has been referred to as self-regulation in the literature.

The figure also shows that the dependence on eg remains qualitatively similar at different

feedback strengths, and the limiting regimes of low and high eg exist at all b. However,

1. The choice of this time interval is explained in Section 3.4.
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for stronger feedback, the transition to the self-regulation regime occurs at smaller eg and
depletion time in this regime increases.

This increase of 7 with feedback strength at high eg is easier to quantify in the top left
panel of Figure 5.3, which shows 7 as a function of feedback boost b at different eg. As
before, the error bars indicate temporal variability around the average, and lines show the
predictions of our model that will be detailed in Section 5.2. From the figure, depletion time
at high eg increases almost linearly with b: 7 ~ (6 Gyr) 0-75. The middle left panel shows
that fy exhibits the opposite trend with . The bottom left panel also shows that despite
wide variation of eg and b, the average freefall time in star-forming gas varies only mildly,
from 7 ~ 3 Myr at low eg to 7g ~ 5-6 Myr at high eg.

The middle column of panels in Figure 5.3 shows the variation of 7, fqr, and 7 in the
runs with different e and values of the adopted star formation threshold: avy;, o = 10, 30,
and 100. Again, for every value of ay;; gf, the dependence on eg is qualitatively similar to
the fiducial case. In the high-eg regime, 7 decreases at higher ay;; gf, 1.e., when the threshold
becomes less stringent and makes more gas eligible to star formation. At a less stringent
threshold, fi and 7g both increase, and this increase is stronger in the high-eg regime. In
the right panels of Figure 5.3, the star formation threshold is set in the gas density rather
than in ayi,, and the behavior of 7, fi, and 77 remains qualitatively the same, but the
direction of all trends is opposite since a density-based threshold becomes less stringent at
smaller ngs.

The presented results show that the key global star formation properties of our simulated
galaxies change systematically with changing parameters of the local star formation and
feedback. The trends are well defined and exhibit distinct behavior in the low-eg and high-
e regimes. In the latter, the global star formation rate and the gas depletion time become
insensitive to the variation of eg, while the mass fraction of the star-forming gas, fgf, is

inversely proportional to eg. In the low-eg regime, the trends are reversed: 7 scales inversely
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with eg, while fi is almost insensitive to it. The dependence of 7 on the feedback strength
parameter b is the opposite to the dependence on eg: in the low-eg regime, 7 is insensitive

to b, while in the high-eg regime 7 exhibits a close-to-linear scaling with b.

5.2 Interpretation of the results using the analytic model

As solid lines in Figures 5.2 and 5.3 show, the trends of 7, fir, and 74 are well described by a
physical model of gas cycling in the interstellar medium formulated in Chapter 2. This model
is based on the basic mass conservation between different parts of the interstellar gas. In this
section, we summarize the main equations of our model and its predictions for the regimes
of star formation regulation in galaxies. We then discuss the qualitative predictions of the
model for the trends of 7, fir, and 7 in simulations and provide a physical interpretation
of these trends. We then show that with a minimal calibration, our model can reproduce
these trends quantitatively. For convenience, the meanings of quantities used in our model

are summarized in Table B.1 in Appendix B.1.

5.2.1 Two regimes of star formation requlation

To interpret the results presented above, we will use the main Equation (2.10) of our model
for depletion times. This equation was derived from the conservation of star-forming mass

in a galaxy or ISM patch,
My =Fy — F_q—F_g, — M, (5.3)

adopting the following parametrization of fluxes and SFR:

F_|_ — nsf’ F ’d — bf’ Ff7fb :€ bf’ M* — _bf

T+ T_d Tx Tx
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As our simulated galaxy quickly settles into a quasi-steady regime with approximately
constant 7, fir, and 7, we will ignore the non-equilibrium term that reflects the variation of
star-forming mass by setting Mg = 0, i.e. Tesf — 00 in Equation (2.10).2 For our subsequent

discussion, it is also convenient to rearrange terms in the resulting Equation (2.10) as

T= (1467 + <1+T—+> ey (5.5)

T_d) e

where we have substituted the parametrization of local depletion time, 7 = 7 /€. Similarly,

star-forming mass fraction can be expressed using Equation (5.2):

-1
T+

T—,d

_TH
fsf - eq T (5.6)

€
(1+&m L +1+
THF

As was shown in Figures 5.2 and 5.3 and as we will discuss in more detail below, Equa-
tions (5.5) and (5.6) can predict the trends of 7 and fy observed in our simulations with
varied star formation efficiency eg, star formation threshold, and feedback strength b. We
note that the latter is closely related to the £ parameter of the model. Both these parameters
reflect the strength of feedback per unit stellar mass formed and its efficacy in dispersing
star-forming regions. However, these parameters are not identical: b is a relative strength of
the momentum injection in our implementation of feedback, while § = F_ g,/ M, is an av-
erage “mass-loading factor” that characterizes the efficacy of gas removal from star-forming
regions by feedback (see Chapter 2). We also note that in equations for 7 and fg the average
freefall time in the star-forming gas, 7g, is a model parameter, but, as we will show in Sec-

tion 5.2.2 and Appendix B.1, its trends with simulation parameters discussed in Section 5.1

2. We stress that an assumption of the quasi-equilibrium is not required in general and is made here only
to simplify notation. As was discussed in Section 4.5, the term =7, /7c ¢ contributes to the scatter of the
depletion time in galaxies or ISM patches. For normal star-forming galaxies, this term is small and can
become significant only if the global dynamical properties of the galaxy change on a timescale much shorter
than the local depletion time 7,. Thus, in case of, e.g., starburst mergers, a more general Equation (2.10)
should be used.
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can also be understood using our model predictions.

Equation (5.5) readily shows that the global depletion time is a sum of two terms, one of
which may dominate depending on the parameters. For example, the first term, (14-&)74, will
dominate when feedback is sufficiently strong, i.e. £ is large, or star formation efficiency eg
is sufficiently high so that the second term, (1+74/7_ q)7q/€g, is subdominant. Conversely,
the second term may dominate if feedback is inefficient or eg is low. In these two regimes,
the dependence of depletion time on the parameters of star formation and feedback will
be qualitatively different. Specifically, when the first term in the equation dominates, 7 is
insensitive to eg and scales with feedback strength . Conversely, when the second term
dominates, 7 scales as ef}l and is independent of feedback strength.

Physically, these two regimes reflect the dominance of different negative terms in the
mass conservation Equation (5.3) and thus different mechanisms that limit lifetimes of star-
forming regions. In the first regime, 7 ~ (1 +¢&)7+ and the lifetime of gas in the star-forming
state is limited by feedback and star formation itself. We therefore will refer to this case as
the “self-regulation regime” because this was the term used to indicate insensitivity of 7 to
e in previous studies. In the second regime, 7~ (1 + 74 /7_ q)7/eg and star-forming gas
lifetime is limited by dynamical processes dispersing star-forming regions, such as turbulent
shear, differential rotation, and expansion behind spiral arms, operating on timescale 7_ 4.
We will refer to this case as the “dynamics-regulation regime,” as star formation passively
reflects the distribution of ISM gas regulated by gas dynamics, rather than actively shaping
it by gas consumption and associated feedback.

In the next section, we will consider dynamics- and self-regulation regimes in more detail.
We will illustrate these regimes using our simulations with the fiducial feedback strength
and star formation threshold but varying eg from a low value of 0.01%, corresponding to the
dynamics-regulation regime, to a high value of 100%, corresponding to the self-regulation

regime. As Figure 5.4 shows, in different regimes the quasi-equilibrium ISM gas distribution
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is qualitatively different. The figure shows the midplane density slices and n—oot diagrams
(like the one in Figure 4.3) colored according to the average gas temperature, with arrows
indicating average gas fluxes. In agreement with the results of Chapter 4, small net fluxes
through the star formation threshold result from the near cancellation of strong positive and
negative fluxes, F and F_, whose typical magnitudes are shown with the thick blue and
red arrows, respectively, in the lower right corner of each diagram. Depending on the eg
value, the negative flux can be dominated by either dynamical or feedback-driven flux, F__ 4

or F_ ,, which in turn results in qualitatively different behavior of Equation (5.5).

5.2.2  Predictions for trends of T, fs, and g

Interpretation of scalings in the dynamaics-regulation regime

As discussed above, dynamics-regulation occurs when eg or £ are small, so that the second

term on the right-hand side of Equation (5.5) dominates. In this case, 7 scales inversely with

€fF:

T (1 + T—+> T (5.7)

T_d) €

The star-forming mass fraction, on the other hand, remains independent of eg because,

-1
fu ~ (1 + T—*) . (5.8)

T_d

according to Equation (5.6),

Such scalings, 7 x eél and fy ~ const, indeed persist in our simulations with low eg values
(see eg = 0.01% and 0.1% in Figures 5.1-5.3).

Physically, these scalings arise because at low eg and £ the contributions of star forma-
tion (M,) and feedback (F_ g,) terms to the overall mass flux balance in Equation (5.3)
become small. As a result, the steady state is established with F_ 4 ~ F, which yields

Equations (5.7) and (5.8). In our simulated galaxy, such a state is established as gas is

66



100 EI bAbi B IR IR B LA B ".'."-"E EI bRbi LA IR IR I LA B ".'."-"E EI hhbb IR UL IR IR IR B ".'."-"E 106

301

10

Otor (km s71)

1] ea=100% -\

[ e =0.01% .
IR AT EET I E T ERTTTY RTINS BT BT BT E NI | II o vl vl ol Sevwod vevd o]
10~210~1 10° 10! 10% 10° 10* 10=210-' 10 10' 10% 10° 10* 10-210-' 10 10! 10% 10° 10%

n (em™3) n (cm™?) n (cm™?)

Figure 5.4: Effect of eg on the spatial gas distribution and the gas distribution in the phase
space of the gas density, n, and the total subgrid velocity dispersion, otot. The adopted value
for eg changes from left to right: 0.01%, 1%, and 100%. The top row of panels shows the
midplane density slices at ¢ = 500 Myr, with black contour indicating cold dense gas, n >
10 em 3, and green contour indicating star-forming regions, Qyir < Qyirgf = 10. The bottom
row of panels shows n—oot diagrams colored with the mass-weighted temperature in each
bin. The distribution is time averaged between 400 and 600 Myr using gas-tracer particles
at R > 1 kpc (see Section 3.4). Black contours indicate 68%, 95%, and 99% of resulting
gas tracers’ PDF. Thin red arrows throughout the diagram show the average net flux of gas
tracers, while the thick blue and red arrows in the corner of each panel illustrate magnitudes
and directions of the average positive and negative gas fluxes, respectively, measured at the
point indicated with a cross. All arrows can be directly compared to each other because
their normalization is the same: the arrow extent corresponds to the distance that a tracer
traverses over 5 Myr. Star-forming gas in each n—oto diagram resides below the thick dotted
line, which corresponds to the star formation threshold of ay;. ¢ = 10. Thin dotted lines
parallel to the star formation threshold show constant values of ay;, = 1000, 100, and 1
(from left to right).
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compressed into new star-forming clumps at the same rate at which old clumps are dis-
persed by differential rotation and tidal torques, and neither of these processes depends on
eg- The interplay between compression and dynamical dispersal determines the steady-state
distribution of gas in the n—oot diagram (the bottom left panel of Figure 5.4), which is
also insensitive to eg. As a consequence, the star-forming mass fraction, fqr, and the mean
freefall time in star-forming gas, 7, also do not depend on eg and are determined solely by
the definition of the star-forming gas. The global depletion time, however, does depend on
e as is evident from Equation (5.7).

As F_ g, is subdominant in this regime, 7, fgt, and 7 are also insensitive to the feedback
strength, but they do depend on the star formation threshold. Indeed, as blue lines in the
left column of Figure 5.3 show, 7, fi, and 7 remain approximately constant when feedback
boost factor, b, is varied from 0 to 5. At the same time, when star formation threshold is
varied such that more gas is included in the star-forming state, both fy and 74 increase
because more low-density gas is added, while 7 decreases as additional star-forming gas
increases SFR. It is worth noting that these dependencies on star formation threshold are
rather weak when the threshold encompasses significant fraction of the ISM gas, but they
become stronger when the threshold selects gas only from the high-density tail of distribution,
because it is this high-density gas that mostly determines 7, fy, and 74.

Finally, it is also worth noting that for some galaxies, or certain regions within galaxies,
equilibrium may not be achievable, so that Fy > F_ 4 or F}. < I 4. In this case distri-
bution of gas evolves, and thus 7, fy, and 7 also change with time. This occurs in the
central regions of galaxies in simulations with eg = 0.1% and 0.01%, where the central gas
concentration grows owing to accretion, and which we thus exclude from our analysis (see

Section 3.4).
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Interpretation of scalings in the self-requlation regime

Self-regulation occurs when eg or £ are sufficiently large, so that the first term on the right-

hand side of Equation (5.5) dominates and depletion time is given by
T~ (1+&)74, (5.9)

and is thus independent of eg, but scales almost linearly with £. In this regime, the star-

forming mass fraction scales inversely with eg (see Equation 5.6):

fsfz< L (5.10)

(T4 Ee v
which also implies fi < 1 because 74 /eg < (1 + &)74+ is required for the subdominance of
the terms proportional to ef}l in Equation (5.5).

The scalings of Equations (5.9) and (5.10) are consistent with the results of our simula-
tions with large eg values (Figures 5.1-5.3). The insensitivity of 7 to eg and its scaling with
feedback strength have also been observed in other simulations with high eg and efficient
feedback (e.g., Agertz & Kravtsov, 2015; Hopkins et al., 2017a; Orr et al., 2018). In the
literature, these phenomena are also usually referred to as “self-regulation.”

As was already mentioned in Section 2.3, self-regulation occurs when gas spends most of
the time in non-star-forming stages, fi¢ < 1, and the rate of star-forming gas supply, Fy
in Equation (5.3), is balanced by rapid gas consumption and strong feedback-induced gas
dispersal: Fy ~ M,+F _ fb- In this case, global depletion time is given by 7 ~ N7, where
N is the total number of cycles between non-star-forming and star-forming states. Due to
large M, + F_ g, (1 + &)egr, the duration of star-forming stages, tg, is regulated by star
formation and feedback: when eg or £ are increased, the lifetime of gas in the star-forming
state shortens as tg o< [(1+&)eg]~!. However, the total time spent in the star-forming state

before complete depletion depends on eg but not on & 74 ef}l. The dependence on eg
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thus cancels out in N; = 74 /tgs and global depletion time becomes independent of eg but
maintains scaling with &.

Therefore, in the self-regulation regime, star formation regulates itself by controlling
the timescale on which feedback disperses star-forming regions and the timescale on which
gas is converted into stars in these regions. The relative importance of these processes is
determined by the feedback strength per unit of formed stars, i.e. the £ value.

When feedback is efficient, £ > 1, as is the case in our simulations? shown in Figure 5.4,
the ISM gas distribution at high eg is shaped by feedback-induced gas motions, Fy ~ F_ g,.
Specifically, as the top panels show, at eg = 1% and 100%, efficient feedback makes ISM
structure flocculent and devoid of dense star-forming clumps, which are typical in the eg =
0.01% simulation. The bottom panels show that at high eg efficient feedback keeps most of
the dense gas above the star formation threshold or close to it. This results in a significant
decrease of fy and increase of 7g in this regime, compared to the dynamics-regulated regime.

When feedback is inefficient, £ < 1, or even completely absent, ¢ = 0, the gas con-
sumption dominates at high eg, Fy ~ M. In this regime, all available star-forming gas is
rapidly converted into stars and the global depletion time is determined by the timescale on
which new star-forming gas is supplied, i.e. 7 ~ 7. Thus, this regime is analogous to the
“bottleneck” scenario envisioned by Saitoh et al. (2008). Our simulations with b = 0 and
eg > 10% operate in this regime, and because 74 is short, 7 is also short, so that gas is
rapidly consumed and the simulated galaxy cannot settle into a quasi-equilibrium state.

Dependence of 7, fi, and 7 on the choice of the star formation threshold can also be
understood as follows. As eg and ¢ increase, the average density of the star-forming gas
decreases, which increases 7. For the density-based threshold, the value of 7 becomes
independent of eg and £ as the star-forming gas is kept at the density close to the threshold,

n ~ ng. Larger ayi, ¢ (or smaller ng) in Figure 5.3 results in shorter 7 oc 74, because 7+

3. Our results in Section 5.2.2 and Appendix B.1 suggest that & ~ 60 in our simulations with fiducial
feedback and star formation threshold.
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decreases as it takes less time for gas to evolve from the typical ISM density and ayj, to
the values of the star-forming gas. As typical densities of the star-forming gas decrease, ¢
increases and thus fi o< 74 /74 (Equation 5.10) also increases because of both longer 7 and
shorter 7.

In the above discussion, the dynamical time 74 was assumed to be independent of eg
and the feedback strength. This is certainly a simplification, as 7 can be determined by
feedback, which can limit the lifetime of star-forming regions, drive large-scale turbulence in
the ISM, inflate low density hot bubbles, launch fountain-like outflows, and sweep gas into
new star-forming regions. These processes are reflected in the complicated pattern of the
net gas flux in the n—oyt plane in the bottom middle panel of Figure 5.4, which shows a
prominent clockwise whirl near the star formation threshold and a counterclockwise whirl in
the lower-density gas. The clockwise whirl originates from the ISM gas being swept by SN
shells, while the counterclockwise whirl is shaped by the gas in freely expanding shells (see
Section 4.3 for a more detailed discussion). Nevertheless, we find that the dependence of 74
on the feedback strength variation is much weaker than the linear scalings of 7 and fg with

¢ and e (see the quantitative predictions below), and thus our simplification is warranted.

Transition between the regimes

Self-regulation or dynamics-regulation regimes occur when the first or second term in Equa-
tion (5.5) dominates. In Section 5.1, we illustrated these regimes using simulations in which
ef, feedback strength, and star formation threshold are varied in a wide range. The transition
between the two regimes depends on all of these parameters. For example, the dependence
of transition on the feedback strength is evident from Figure 5.2: at stronger feedback, the
transition occurs at smaller eg. As a result, the run with eg = 1% and weak feedback,
b = 0.2, exhibits behavior of the dynamics-regulation regime, while the galaxy in the run

with the same eg but with much stronger feedback, b = 5, is in the self-regulation regime.
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Similarly, from the middle and right panels of Figure 5.3, when eg = 1% and threshold
defines a significant fraction of gas as star-forming (e.g., oy, g = 100 or ng = 10 cm™3),
simulated galaxies are in the dynamics-regulation regime. On the other hand, when thresh-
old defines only a small fraction of gas as star-forming (e.g., ayi; g = 10 or ng = 100 cm™3),
galaxies are in the self-regulation regime.

Note, however, that achieving self-regulation with the threshold variation is not always
possible, because the threshold affects both terms in Equation (5.5), and thus the value of the
threshold at which the first term dominates does not always exist. For example, in the top
middle panel of Figure 5.3, when eg < 1%, depletion time bends upward at Qyirsf < 10 and
remains inversely proportional to eg and therefore never reaches the self-regulation regime.

In the transition between dynamics-regulated and self-regulated regimes, the relation
between our model parameters follows from the condition that the terms in Equation (5.5)

are comparable:

T—d) T+

(1+ e ~ <1+T—+> s (5.11)

Notably, in this case a given galaxy has the same star-forming mass fraction independent of
eg or the feedback strength. Indeed, after substituting condition (5.11) into Equation (5.6),

we get
-1
1 T
fst~ 5 (1 + ) : (5.12)

i.e., the star-forming mass fraction at the transition is half of that in the dynamics-regulation

regime (Equation 5.8).

Quantitative predictions as a function of eg and feedback strength

So far, we described how the model presented above can qualitatively explain the trends and
regimes revealed by our simulations. Here we will show that the model can also describe the

simulation results quantitatively.
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To predict 7 and fg in the simulations using Equations (5.5) and (5.6), we note that the
unknown parameters enter these equations only in three different combinations: (1 + &)1y,
74+/7_ q, and 7¢¢ /egr. These can be calibrated against a small subset of the simulations in the
dynamics- and self-regulation regimes using scalings discussed above as a guide. Quantitative
predictions of the model with calibrated parameters for the trends of 7 and fy can then be
compared with the results of other simulations, not used in the calibration.

Specifically, using two runs in the self-regulated regime with eg = 100%, we measure the
normalization of (1+¢)74 and its scaling with the feedback boosting factor b. Equation (5.9)
gives the normalization of the global depletion time in the high-eg run with b = 1: [(1 +
7o ~ 7(b = 1) ~ 6 Gyr. Adopting (1 + &)7 o b5 for the scaling with b, the slope
f = Alog7T/Alogb = 0.75 is measured using the second run with b = 5, and thus the final
relation is

(1+ &)y =677 Gyr, (5.13)

i.e. (14 ¢&)74 is long and increases almost linearly with b.
Using a simulation with eg = 0.01% (i.e., the dynamics-regulation regime) and Equa-
tion (5.8), we estimate the ratio of dynamical times 74 /7_ 4 from the value of star-forming

mass fraction, fy ~ 0.2, measured in this simulation:

T+ -~
T—,d

~

1
f_sf —1~4, (5.14)
which implies that in the absence of feedback the star-forming gas is supplied 4 times more
slowly than it is dispersed by dynamical effects.

Finally, the last unknown parameter is the average freefall time in the star-forming gas,
7. In our simulations, 7 varies only mildly, from 7 ~ 2-3 Myr in the dynamics-regulation
regime to 7g ~ 5-6 Myr in the self-regulation regime. In the simplest case, we can make

predictions assuming a constant 7 = 4 Myr, which is representative of the freefall time in
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Figure 5.5: Comparison of our model predictions (shown with lines) for the global depletion
time (7; top panel) and the star-forming mass fraction (fg; bottom panel) with the results
of our simulations with varying eg and the feedback boost factor, b, assuming the fiducial
star formation threshold, ;. ¢f = 10 (notation repeats that of Figure 5.3). To fix the model
parameters, we use 7 in two high-eg runs (red circled points in the top panel), which give
(14+&)7+ ~ (6 Gyr) 075 and fy from a low-eg run (blue circled point in the bottom panel),
which gives 71 /7_ 4 ~ 4. As thick lines show, if we neglect variation of 7 and assume the
average 7 = 4 Myr, our model correctly predicts the overall behavior of 7 and fg. As thin
lines show, predictions of our model are improved if the variation of 7g is also modeled as
explained in Appendix B.1. To avoid clutter, simulation points for eg = 0.1%, 1%, and 10%
are slightly shifted horizontally around the actually used values of b =0, 0.2, 1, and 5.
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star-forming regions both in our simulations and in observations.

Figure 5.5 compares the simulation results for 7 and fi as a function of the feedback
strength, b, with the predictions of our model with constant 74 = 4 Myr (thick lines). Of the
20 simulation results shown by points in the figure, only three were used to calibrate the four
model parameters, [(1+&)7+]o, 8, 7+/7_ 4, and 7, as described above; these simulations are
shown by the large circled points. For the other 17 simulations, the lines show predictions
of the model. Figure 5.5 shows that the model correctly predicts a wide variation of 7 and
fst with eg and the feedback strength b in the entire suite of simulations.

Moreover, 7 and fg involve two independent quantities, M, and Mg, measured in the
simulations. Thus, our four-parameter model calibrated using three simulations describes
well 17 x 2 = 34 independent data points. The fact that our model closely agrees with
the simulations when we treat 7g as a fixed parameter and 74 as independent of ¢ and eg
indicates that most of the variation of 7 and fg is driven by their explicit dependence on
eg and & in Equations (5.5) and (5.6), whereas any variation of 7 and 74 with eg and & is
secondary.

Nevertheless, accounting for 7 variations can somewhat improve the accuracy of our
model. Thin lines in Figure 5.5 and in the left panels of Figure 5.3 show our model predictions
incorporating 7g variation with eg and £ values. To model this variation, we note that the
increase of 7g during the transition from the dynamics-regulation regime to the self-regulation
regime is controlled by the total rate of the star-forming gas removal by gas consumption and
feedback: M, + F _ b X (1+&)eg. Thus, we calibrate the values of 7¢ in these regimes using
the same three simulations as before, and we interpolate 7 as a function of (1 + £)eg for all
other simulations. The details of this calibration and the adopted interpolation function are

presented in Appendix B.1.
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Quantitative predictions as a function of the star formation threshold

To predict how 7, f¢, and 7¢ depend on the star formation threshold, ay;; ¢, we need to
calibrate model parameters as a function of ay; ¢f. Analogously to the previous section, we
constrain these dependencies using runs in the limiting regimes and use our model to predict
T, fsf, and 7 in the other simulations. Our model predictions are shown with lines in the
middle column of panels in Figure 5.3 using calibrations done as follows.

First, the dependence of (1 + §)74 and 74 in the self-regulation regime on a;, ¢ can be
assessed using a run with e = 100% and fiducial oy, ¢ = 10 and an additional run with

ayir st = 100 to obtain the following scalings:

(1+ &7 o ag) g (5.15)
7 o alit . (5.16)

The scaling of (1 4 &)1+ is measured as the slope of 7 in the top middle panel of the figure.

For the typical density of the star-forming gas n, the freefall time is 7 o 1705 and the
—-0.8

virsf” Given that ayiy o atz/n, this

slope of 0.4 in Equation (5.16) thus indicates that n o «
0.1

means that the typical velocity dispersion in the star-forming gas scales as ¢ gy sf

Second, we mnote that to constrain the behavior of 74/7_ 4 and 74 in the dynamics-
regulated regime, no extra runs are needed, and all the required information can be obtained
directly from the simulation with eg = 0.01% and b = 1, which has been already used in
the previous section. This is because in the dynamics-regulated regime the gas distribution
in the n—otot plane is not affected by star formation and feedback, and thus we expect
it to be the same as in the bottom left panel of Figure 5.4. Therefore, fi—which yields
74/7_ q from Equation (5.8)—and 7 as a function of the star formation threshold can be
directly measured from this distribution. We spline fqt(avyirsf) and 7g(ayipsf) in the low-eg

simulation with fiducial ay; ¢ and show these functions with blue lines in the bottom two
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panels of the middle column in Figure 5.3.

These two steps fix the dependencies of (1+&)7+, 74 /7_ 4, and 7 on the star formation
threshold, and thus we can predict how 7, fi, and 77 depend on the threshold at different
eg and our predictions closely agree with the results of simulations, as shown in the middle
column of panels in Figure 5.3. To test our model, we repeated the above steps for the
simulations with the star formation threshold in the gas density rather than in oy As
the right column of Figure 5.3 shows, our predictions again closely agree with the results of

the simulations, although the values of the parameters are of course different (see Appendix

B.1).

5.2.8  Generic approach to calibrating the star formation and feedback

parameters in simulations

Galaxy simulations can differ significantly in numerical methods used to handle hydrodynam-
ics and in specific details of the implementation of star formation and feedback processes.
The implementations can also be applied at different resolutions, so that the values and
sometimes even the physical meaning of the parameters change. Thus, the parameter val-
ues of our model that we calibrated above should be used with caution and applied only
when similar numerical techniques, resolutions, and implementations of star formation and
feedback are used.

Nevertheless, the overall calibration approach can still be used in all cases to choose the
values of the star formation and feedback parameters. For example, one can calibrate 7 and
fst dependence on the parameters in the dynamics-regulation regime using one simulation
with a very low (or even zero) value of eg, as was done in Section 5.2. Then, the 7 and
fst behavior in the self-regulation regime can be anchored using several simulations with
varying feedback strength and star formation threshold at sufficiently high eg. The value of

eg appropriate for this second step can be chosen from the condition that the local depletion
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time at typical densities of the star-forming gas must be much shorter than the global
depletion time, which thus implies eg > 7 /7. The appropriately high value of eg will also

result in fi much smaller than the fy in the simulation with low eg.

5.3 Comparisons with observations

Results presented in the previous section demonstrate that our general theoretical framework
for star formation in galaxies can describe and explain the results of galaxy simulations both
qualitatively and quantitatively. The model can thus be also used to interpret and explain
observational results, in particular the observed long gas depletion times in galaxies, as we
showed in Chapter 4. In this section, we use the observations to constrain the parameters of
our model, in particular, the efficiency of star formation per freefall time, eg. We also use
the model to infer whether observed galaxies are in the dynamics- or self-regulation regime.

Specifically, we use the observed values of the depletion time of atomic+molecular and
just molecular gas at different scales—from global galactic values to the scales comparable
to our resolution limit of ~ 40 pc—as well as the mass fraction of gas in star-forming regions
and in the molecular phase. Comparisons and inferences from observations on different scales
are presented in separate sections below. In most of the comparisons, we use observations
in the Milky Way, where star formation is studied most extensively. However, whenever
possible, we also use recent observations of other nearby galaxies. Note that we focus here
on the inferences specific to ~L,-sized galaxies, as our simulated galaxy model has structural
parameters typical for such galaxies.

In what follows, we use the star formation rates in simulations computed differently
on different scales, in ways that approximate how corresponding rates are estimated in
observations. We compute the local SFR using the total mass of stellar particles younger
than some age fy in the cell: M = MCell(< t4)/ty, where the choice of tg is motivated

by star formation indicators used in observations. In Sections 5.3.3 and 5.3.5, we compare
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our results with extragalactic studies that use Ha and far IR indicators sensitive to the
presence of massive young stars, and we thus adopt tg = 10 Myr (see, e.g., Table 1 in
Kennicutt & Evans, 2012). In Section 5.3.4 we compare with observations of individual
star-forming regions, where SFR is estimated by direct counting of pre-main-sequence young
stellar objects, and thus we adopt ¢ = 1 Myr in this case. To compare our results with the
observed distribution of molecular gas, we define molecular gas in our simulations as detailed

in Section 3.4.

5.3.1 Global T and fy

We start our comparisons with observations by comparing our model and simulation predic-
tions as a function of eg and the feedback strength b with the global values of the depletion
time, 7, and the mass fraction of star-forming gas, fi. To make a fair comparison, 7 and fgf
in observations must be defined consistently with their definition in the simulations. While
7 can be compared directly using the total gas mass and SFR, the comparison of fg is
more nuanced, because one needs to choose which gas in real galaxies corresponds to the
star-forming gas in simulations. Our fiducial star formation criterion, ayiy < ayirgf = 10, is
motivated by oy, in observed GMCs, and it selects molecular gas with the lowest turbulent
velocity dispersions on the scale of our resolution, A = 40 pc. Such a criterion also results
in the average freefall time in star-forming regions of 74 ~ 3-6 Myr, which is consistent with
typical t¢ values estimated for observed GMCs (see, e.g., Figure 1 in Agertz & Kravtsov,
2015). In simulations with larger ay;, ¢, T becomes several times longer than observed in
GMCs (see the bottom middle panel of Figure 5.3). Thus, we argue that our fiducial value
of ayi = 10 corresponds to the definition of the star-forming regions in observations most
closely, and we will use the simulations with this value to constrain eg. We will, however,
discuss the dependence on the assumed threshold below, whenever it is relevant.

To compare our model results, we use the global depletion time and the mass fraction
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Figure 5.6: Comparison of our simulation results (points) and our model predictions (gray
lines) for the star-forming mass fraction, fg, and the global depletion time, 7, with their
values in the Milky Way (green rectangle). Notation of points repeats that of Figure 5.3,
with color indicating eg and the feedback boost factor, b, increasing upward: 0, 0.2, 1, and 5.
Solid gray lines show the predictions of our model calibrated in Section 5.2.2 for the constant
values of 0.2 < b < 5 and 0.01% < eg < 100%, with thicker lines corresponding to the values
used in the simulations and thinner lines showing intermediate values: b ~ 0.45 and 2.2 and
eg ~ 0.032%, 0.32%, 3.2%, and 32%. The dashed line indicates model predictions for runs
without feedback (b = 0), assuming 74 = 100 Myr, as motivated by the results of Section 4.4.
The green rectangle indicates the range estimated for the Milky Way, fg ~ 1.5%-10% and
7 ~ 510 Gyr, as explained in the text.
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of the star-forming gas in the Milky Way, 7 ~ 5-10 Gyr and f ~ 1.5%10% estimated
as follows. The range of 7 follows from My ~ 1019 Mg (e.g., Kalberla & Kerp, 2009) and
M, ~1-2 Mg yr*1 (e.g., Licquia & Newman, 2015). The upper limit on the star-forming
mass fraction follows from the assumption that all molecular gas in the Milky Way is star-
forming, and thus fy < fy, = Mp,/Mg ~ (107 M) /(1010 Mg) ~ 10% (Heyer & Dame,
2015). A conservative lower limit on fi can be estimated using the total mass in the largest
star-forming GMCs in the Milky Way from Murray (2011), with sizes comparable to our
resolution of 40 pc. These massive GMCs account for 33% of total SFR in the Milky Way
but have a total mass of ~ 5 x 107 Mg . If the rest of star formation in the Milky Way were
proceeding in clouds with local depletion times similar to those in the Murray (2011) sample,
then the total mass of the star-forming gas would be 3 times larger, or ~ 1.5 x 10% Mo,
which would mean fg ~ 1.5%. However, this estimate is a conservative lower limit because
the rest of the star-forming gas probably forms stars with lower efficiency, as it does not
host bright radio sources associated with H II regions, used by Murray (2011) to identify the
star-forming GMCs.

In Figure 5.6, the above constraints on 7 and fy in the Milky Way (green rectangle) are
compared to the results of our simulations (points with error bars) and the predictions of
our analytical model (gray lines). The figure shows that only eg ~ 0.5%5% and b ~ 0.3-2
can satisfy the constraints on both 7 and fg simultaneously. It is important to note that
this constraint on eg is rather generous, due to the rather conservative lower limit estimate
of fir we use for the Milky Way.

This conclusion would not change if we adopted a different star formation threshold.
Figure 5.3 shows that ;¢ values smaller than our fiducial ay;. ¢ = 10 would result in
even smaller fgr, while even values as large as ayi g = 100 for eg = 100% would only
increase the star-forming gas mass fraction to fy ~ 0.7%, while decreasing the depletion

time to 7 =~ 2 Gyr, which is still far outside the range we estimate for the Milky Way.
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Note that the figure shows that 7 and fy in the Milky Way have values close to the tran-
sition between self-regulation and dynamics-regulation regimes. Indeed, the self-regulation
regime corresponds to small fi < 0.01 at which gray lines of constant b are horizontal, the
dynamics-regulation regime is manifested by the convergence of these lines to fi ~ 0.2,
and fqr in the Milky Way lie in between these two regimes. The conclusion that the Milky
Way is in the regime intermediate between dynamics- and self-regulation regimes is also
directly supported by the estimate for the second term in Equation (5.5), (1 + 74/7_ 4)7s.
Indeed, observed local depletion times in the Milky Way’s GMCs are 7, ~ 100 — 500 Myr
(e.g., Evans et al., 2009, 2014; Heiderman et al., 2010; Lada et al., 2010, 2012; Gutermuth
et al., 2011; Schruba et al., 2017), and the prefactor in front of 7, is likely similar to that
obtained in our simulations, 1 + 74 /7_ 4 ~ 5 (Equation 5.14), because we expect that our
simulations capture dynamical time scales of star-forming gas supply and dispersal. As a
result, (1 + 74/7_ q)7% ~ 0.5-2.5 Gyr contributes a sizable fraction to the observed global
depletion time in the Milky Way, 7gep Mw ~ 5-10 Gyr, and thus the Milky Way is in the

intermediate regime.

5.3.2  Global mass fraction and the depletion time of molecular gas

Figure 5.7 compares the global molecular gas mass fraction, fy,, and its depletion time, 7y,
estimated for the Milky Way (green rectangle) with their values measured in our simulations
(points with error bars) and predicted by our model (gray lines). For the Milky Way,
we used fp, = (1.0 £ 0.3) x 10? M from Heyer & Dame (2015) and estimated THy =
(109 Mg)/(1-2 M@ yr~1) ~ 0.5-1 Gyr. In the simulations, the total molecular mass, My,
required to compute fp, and 7p, is derived as a sum of the molecular mass in each cell,
computed as explained at the beginning of Section 5.3. The model predictions are obtained
using the dependence of fy, on eg and the feedback strength, calibrated at the end of

Appendix B.2. The definition of the molecular gas depletion time is 7, = Mp,/ M, =
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Figure 5.7: Comparison of the simulation results (points) and our model predictions (gray
lines) with the total molecular mass fraction, JH,, and the global depletion time of molecular
gas, TH, = fH,7, in the Milky Way (green rectangle). The symbols and lines are the same
as in Figure 5.6. Our model for fy, is explained in Appendix B.2. For the Milky Way,
we adopt fr, = (1.0 £ 0.3) x 10 Mg (Heyer & Dame, 2015) and 7, = (109 Mg)/(1-
2 Mg yr~ 1) ~ 0.5-1 Gyr (e.g., Licquia & Newman, 2015).
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(MHQ/Mg)(Mg/M*) = fu,7, with 7 given by Equation (5.5).

The figure shows that fy,, and 7y, within the observed range can be obtained only in the
simulations with eg ~ 0.5%-5% and b ~ 0.2-3. Note that this range of parameters is similar
to the range constrained by the observed fi and 7 in the previous section. This consistency
between different constraints indicates that in our simulations with eg ~ 1% and b ~ 1 the
overall distribution of the ISM gas in different phases is captured correctly.

Typical values of f, estimated in other L,-sized galaxies are usually even larger than
the Milky Way value (e.g., ~ 10%-30% in Leroy et al., 2008). According to Figure 5.7, such
fH,, together with somewhat longer depletion times (7, ~ 1-3 Gyr in Bigiel et al., 2008,
2011; Leroy et al., 2013; Utomo et al., 2017), favors small values of eg. Our model, calibrated
on a specific simulation of an Ly-sized galaxy, does not predict values fy, > 20%. However,
according to our model, the values of f, > 20% observed in molecular-rich galaxies can be
due to a smaller ratio of dynamical time scales 74/ T_ 4 in such galaxies as compared to the
value of 74 /7_ g ~ 4 in our simulated galaxy, which sets the upper limit of fy, ~ 20% in
the dynamics-regulation regime (Equation 5.8).

Figure 5.7 also illustrates three interesting differences in the behavior of fg, and 7y,
as compared to that of fy and 7 in the previous section: (1) the range of fy, variation is
substantially narrower than that of fy; (2) in contrast to 7, 7, does depend on e even in
the self-regulation regime; and (3) the temporal variation of 7y, (shown with vertical error
bars) is much smaller than that of 7. The range of fy, variation is narrow because even
at high eg and b feedback cannot efficiently clear the non-star-forming molecular gas that
piles up above the star formation threshold. When 7 is independent of eg, the sensitivity of
TH, tO € originates from the weak sensitivity of fg, to eg, TH, = fH,7, and its temporal
variation is small because fy,, anticorrelates with 7, as both respond to the dispersal of the
dense gas by feedback, and this anticorrelation mitigates the variation of 7y, o< fy, 7. Note

that all these effects are due to the definition of the star-forming gas being different from
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Figure 5.8: Comparison of the molecular gas depletion time, 7y, , averaged on kiloparsec
scale in our simulations (squares with vertical bands), with the observed range shown with
horizontal color bands. The blue band indicates the range of 7y, ~ 1.6 Gyr (excluding
correction for helium) with a factor of 2 scatter, which was derived in a number of studies
(Bigiel et al., 2008, 2011; Leroy et al., 2013; Bolatto et al., 2017; Utomo et al., 2017; Colombo
et al., 2018). The green band indicates the range of kiloparsec scale 7y, in the Milky Way,
estimated from the profiles of Yy, and ¥y, in Figure 7 in Kennicutt & Evans (2012). In
simulations, 7y, is averaged using 10 simulation snapshots between 410 and 500 Myr. Squares

indicate the mass-weighted averages (1/ TH2>_1, and vertical stripes show the range of the

running median for gas with Yy, > 1 Mg pc~2. For presentation purposes, the simulation
points are slightly shifted horizontally around the actually used values of b = 0.2, 1, and 5.
Colored lines show the predictions of our model for the global depletion time of the molecular
gas (see Sections 5.3.2).

the molecular gas and its corollary of the existence of the non-star-forming molecular gas.

5.3.8 Molecular gas depletion times on kiloparsec scales

Over the past two decades, star formation, the distribution of the molecular gas, and its
depletion time 1y, = Xy, / 3, have been studied observationally down to kiloparsec scales
in dozens of nearby galaxies (e.g., Wong & Blitz, 2002; Bigiel et al., 2008, 2011; Leroy

et al., 2013; Bolatto et al., 2017; Utomo et al., 2017). These observational studies show that
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typical observed values of 7, ~ 2 Gyr have a factor of ~ 2 scatter and are independent of
the local kiloparsec-scale molecular gas surface density, Yp,. In the Milky Way, values of
kiloparsec-scale 7y, are somewhat shorter and span a range of 7y, ~ 0.5-2 Gyr (estimated
from Figure 7 in Kennicutt & Evans, 2012).

In Figure 5.8, we compare these values of 7y, (colored bands) with the results of our
simulations (squares with vertical stripes) and our model predictions (thin lines). As the
figure shows, the results of our fiducial simulation with eg = 1% and b = 1 agree well
with the typical values of 7y, inferred in observations. However, the simulations with, e.g.,
e ~ 100% and b ~ 5 also agree with the observed range of 7, because the dependence of
TH, on these parameters (and especially on eg) is relatively weak. Similarly to the global
star-forming gas and molecular gas mass fractions considered above in Section 5.3.2, the
parameters will be constrained much better when estimates of the molecular gas fraction
become available on subgalactic scales in more and more galaxies (e.g., Wong et al., 2013;
Leroy et al., 2016, 2017).

To make the comparison presented in Figure 5.8, in the simulations we compute 7y, =
YH, /2*, where g, and 3, are measured by first projecting the local densities of the
molecular gas and SFR perpendicular to the disk plane and then smoothing the resulting
surface densities using a Gaussian filter with a width of 1 kpc. Squares in Figure 5.8 show the

—1 on a kiloparsec scale, which are equivalent to the global

mass-weighted averages (1/7y,)
depletion times of the molecular gas,4 and these averages are well approximated by our
model (colored lines). A vertical band around each square indicates variation of the running
median of 7y, in bins of Yy, at surface densities of Xy, > 1 Mg pc—2. This variation is
rather small because our simulations produce constant 7y, , even though a density-dependent
depletion time is adopted on subgrid scale: 7, o< 7 o p*0'5. Such independence of 7g, from

Yy, agrees with the observed constant 7y, and its origin in our simulations is discussed

2

4. By definition, (1/my,)"" = [[dA (Su,/™,)/ [ dA Sw,) ™! = [dA Su,/ [ dA S, = My, /M,.
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Figure 5.9: Comparison of the molecular gas depletion time and the gas surface densities
on GMC scales with their distribution on the resolution scale in our simulations, A = 40 pc.
Adopted star formation efficiency increases from the left to the right: eg = 0.01%, 1%,
and 100%. The color map shows the mass-weighted distribution of computational cells
for which we define ¥y, 40 pc = MerQH /A? with molecular mass in a cell, Merzu, computed

using the model of Krumholz et al. (2009a, see the beginning of Section 5.3 above) and
THy = MI?IGH/MfeH = MI?IGZH/(MfeH(< 1 Myr)/(1 Myr)), where in each cell Mcll(< 1 Myr)
is the ’l:otal2 mass of stars younger than 1 Myr. Cells containing only a single stellar particle
form the diagonal upper boundary of 7y, distribution. Cells without young stellar particles
are indicated by blue horizontal stripes on top of each axis. Orange points show the observed
TH, in the Milky Way GMCs from Lada et al. (2010, circles), Heiderman et al. (2010, stars),
and Vutisalchavakul et al. (2016, squares). A green polygon indicates the range of Xy, and
TH, observed in three nearby spiral galaxies by Rebolledo et al. (2015).

in Chapter 6. We also find that the scatter around the running median (not shown in the

figure) is consistent with observations as well (see Figure 4.2).

5.3.4  Molecular gas depletion times on tens of parsec scales

Although current observations in most galaxies probe star formation and molecular gas only
on scales 2 1 kpc, observations of star-forming regions in the Milky Way allow us to examine
these quantities on smaller scales. Furthermore, scales of < 100 pc are increasingly probed
in nearby galaxies (Bolatto et al., 2011; Rebolledo et al., 2015; Leroy et al., 2017), and this
allows us to compare results of our simulations on these scales as well.

Figure 5.9 shows the variation of 7, in the Milky Way (points; Heiderman et al., 2010;

Lada et al., 2010; Vutisalchavakul et al., 2016) and three nearby spiral galaxies (trapezoidal
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region; Rebolledo et al., 2015) with the molecular gas depletion time on the scale of 40 pc
in our simulations (blue color map) as a function of ¥p,. For this comparison we only show
GMCs in the Milky Way that have sizes of 2 10 pc, to make the scales comparable to the
scale probed in our simulations. Different panels show the distribution of the local depletion
times in our simulations with different values of the star formation efficiency: eg = 0.01%,
1%, and 100%.

As the figure shows, although the observed 7y, vary substantially, their typical values
can be reproduced only in runs with eg ~ 1%, while runs with too low (high) eg signifi-
cantly overestimate (underestimate) 7g, in star-forming regions. Note that in all runs the
distribution of 7y, is bimodal: 7y, is either finite, which corresponds to star-forming gas,
or infinitely long, i.e. the gas is non-star-forming. In the figure, 7, in the latter case is
artificially set to 500 Gyr for illustration purposes. Different runs differ by the fraction of
the molecular gas in the star-forming state and by the average 7y, of such gas. The fraction
of the star-forming gas is the lowest in the run with eg = 100%, and this gas has depletion
times of only ~ 2-200 Myr. These short depletion times of star-forming Ho are averaged
with large amounts of the non-star-forming molecular gas in this run, so that the depletion
time on 2 1 kpc scales in the eg = 100% case is only a factor of two shorter than in the
e = 1% run. This shows that while 7y, on 2 1 kpc scales is relatively insensitive to eg, its
values on the scales of < 100 pc are quite sensitive to the efficiency and can thus be used to

constrain it.

5.3.5 The scale dependence of molecular gas depletion times

Results of the previous two sections clearly show that the distribution of 73, depends on the
spatial scale. Indeed, Ty, in a given ISM patch results from averaging over a distribution
of gas and stars inside the patch, and thus 7y, depends on the patch size, L: 7y,(L). The

quantity that particularly strongly depends on the spatial scale is scatter: when the size
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Figure 5.10: Effect of e and the feedback boost factor, b, on the 7y, bias as a function
of the spatial smoothing scale, L. The depletion time in a given aperture of size L is defined
as TH, (L) = YH,.1./ 2'3*7 L, where Xy, 1, and 2'3*7 1, are the molecular gas and the SFR surface
densities smoothed using a Gaussian filter with a width L. Star symbols indicate the median
depletion time measured in the apertures centered on peaks in 3, while circles correspond to
the apertures centered on peaks in Xp,. To factor out the variation of the global molecular
gas depletion time with the feedback strength, we divide 7y, (L) by global 7y,. Dashed lines
show the results obtained for M33 by Schruba et al. (2010). To match the temporal averaging
of the Hov indicator used by Schruba et al. (2010), we estimate 3., using stars younger than
10 Myr.
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of the patch decreases, patch-to-patch variation of gas and stars contained inside a patch
becomes stronger, which leads to a stronger variation of the derived depletion time in each
patch and thus larger scatter in 7y, .

Following Schruba et al. (2010), one of the ways to express the dependence of scatter on
the spatial scale is to consider the scale dependence of the depletion time, 7y, (L), measured
in patches centered on the peaks of Xy, , which thus are biased to long 7, (L), versus those
measured in patches centered on the peaks of 34, which are biased to short THZ(L>. The
difference between these two estimates of 7y, (L) is small on large scales, and their values are
approximately equal to the global depletion time. At smaller scales, this difference increases,
as shown in Figure 5.10, which compares 7y, (L) observed in M33 by Schruba et al. (2010)
with the results of our simulations.

In simulations, 711, (L) centered on gas or stars strongly depends on eg and the feedback
boost factor b because stronger feedback-induced gas flux results in more expulsive evacuation
of the gas from star-forming regions, which leads to a stronger spatial displacement of Xy,
and Y, peaks. As Figure 5.10 shows, the fiducial run that satisfied all previous constraints
also provides a reasonably good match to the observed 7p,(L). Overall, for the fiducial
feedback strength, both gas- and star-centered 7, (L) favors eg < 10%. Note, however,
that there is a degeneracy between the feedback strength and eg value: the simulation with
eg = 1% and b = 5 produces a relation similar to the simulation with eg = 10% and b = 1.

It is also worth noting that Yjy,-centered g, (L) is noticeably more sensitive to eg and
b values. The sensitivity is stronger because at higher eg or b the gas lifetime in the star-
forming state is shorter, young stars are more sporadic, and thus it is less probable for a
given patch centered on a ¥y, peak to contain young stars. As a result, 7y, (L) at high
e or b becomes highly biased to very large values. On the contrary, > ,-centered patches
almost always contain molecular gas, because its abundance does not significantly decrease

at stronger feedback (see Section 5.3.2). As a result, for Yy-centered patches, the bias also
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increases with eg and b (7, (L) becomes shorter), but this change is much milder than for
Yy,-centered patches.

Such strong dependence of Yp,-centered 7y, (L) on star formation and feedback param-
eters can provide tight constraints on these parameters. These constraints can be improved
significantly if the scale dependence of 7y, is measured in a larger sample of galaxies. Note,
however, that more comprehensive comparison must include the effects of the intrinsic varia-
tion of eg and the metallicity dependence of the molecular gas fraction on GMC scale, which

are not accounted for in our simulations.

5.4 Comparison with previous studies

In previous sections, we showed that our simple theoretical framework presented in Chapter 2
explains how local star formation and feedback parameters affect the global star formation
in our L,-sized galaxy simulations, both qualitatively and quantitatively. Here we illustrate
how our framework can also explain the results of other recent galaxy simulations done with
different numerical methods and implementations of star formation and feedback, both in
isolated setups and in the cosmological context. Specifically, we will use our model to inter-
pret trends (or lack thereof) of the depletion times with the local star formation efficiency,
eff, the feedback strength, and the adopted star formation thresholds.

For example, our framework predicts that in the simulations that adopt high eg values
and implement efficient feedback the depletion time is almost completely insensitive to the
value of eg. This is because in this regime 7 is controlled by the time that gas spends in
the non-star-forming state, which does not depend on eg explicitly. This explains why 7 is
insensitive to the variation of eg in the simulations of Hopkins et al. (2017a); this behavior
is also reproduced in our simulations (see Figures 5.1 and 5.3 above). In this regime, our
framework also predicts a nearly linear scaling of 7 with the feedback strength parameter &,

as is indeed observed in simulations (Benincasa et al., 2016; Hopkins et al., 2017a; Orr et al.,
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2018).

For smaller values of eg ~ 1-10%, when the two terms in Equation (5.5) contribute
comparably to the total depletion time, the model predicts that 7 should scale with eg
weakly (sublinearly). This was indeed observed in a number of simulations carried out in
this regime (Saitoh et al., 2008; Dobbs et al., 2011a; Agertz et al., 2013, 2015; Benincasa
et al., 2016). In this case, sublinear scaling is also expected with the strength of feedback,
¢, which is also confirmed by simulations (Hopkins et al., 2011; Agertz et al., 2013, 2015;
Benincasa et al., 2016).

For simulations with eg < 1% or when the feedback implementation is inefficient, £ < 1,
our model predicts that the depletion time is controlled by the second term in Equation (5.5)
and that it scales inversely with eg: 7 ~ e&l. Such scaling was observed in the simulations
without feedback by Agertz et al. (2013, 2015), while in the simulations using the same
galaxy model but with efficient feedback, 7 was found to be only weakly dependent on eg.

The weak dependence or complete insensitivity of 7 to eg at intermediate and high eg
explains why different galaxy simulations with widely different eg ~ 1%-100% all produce
realistic global depletion times. However, as our results of Section 5.3 show, these simulations
make drastically different predictions for the star-forming and molecular gas mass fractions,
which can be used to constrain eg in this regime (see Sections 5.3.1 and 5.3.2). A similar idea
was reported previously by Hopkins et al. (2012, 2013b), who showed that the fraction of
gas in the dense molecular state with n > 10% cm ™3 strongly depends on the local efficiency
eg and the feedback implementation. Specifically, simulations with high eg and efficient
feedback have a small dense gas mass fraction owing to efficient conversion of dense gas
into stars and its dispersal by feedback. This effect can explain why in the simulations with
eg = 100% reported by Orr et al. (2018) the Kennicutt—Schmidt relation between the surface
densities of SFR and dense and cold gas (n > 10 cm™3 and T' < 300 K) is considerably higher

than the observed relation for molecular gas. In these simulations, the SFR is likely realistic
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because the depletion time of the total gas is expected to be insensitive to eg. The dense gas
fraction, on the contrary, is expected to be small, which leads to the small surface density
of such gas and thus high Kennicutt-Schmidt relation as in Orr et al. (2018).

Our model also predicts that 7 depends on the star formation threshold differently in
different regimes. For low eg, 7 only weakly depends on the threshold value, while at high
eg, T decreases when the threshold encompasses more gas from a given distribution (see top
middle and left panels in Figure 5.3). The former weak trend agrees with the results of
Saitoh et al. (2008), who found that for eg ~ 1.5% the value of 7 decreased only by a factor
of ~ 1.5-2 when the density threshold was varied from ng = 100 to 0.1 cm 3. Similarly,
Hopkins et al. (2011) and Benincasa et al. (2016) found almost no dependence of 7 on ng.
On the contrary, in simulations of Agertz et al. (2015) with eg = 10%, 7 varied relatively
strongly with variation of ngf, as expected for high eg. We note that to observe the effect
on 7 when a combination of thresholds in different physical variables is used, all thresholds
must be varied simultaneously. Varying thresholds one by one may not affect 7 if several
thresholds define approximately the same gas as star-forming. This is likely why Hopkins
et al. (2017a) found that 7 is insensitive to variation of star formation thresholds, when

thresholds in different variables were changed.

5.5 Summary

Using a simple physical model presented in Chapter 2 and a suite of Ly-sized galaxy simula-
tions, we explored how the global depletion times in galaxies, 7 = Mg/ M, and the gas mass
fractions in the star-forming and molecular states depend on the choices of the parameters
of local star formation and feedback.

In our model, 7 is expressed as a sum of contributions from different physical processes,
which include dynamical processes in the ISM, the conversion of gas into stars in star-forming

regions, and the dispersal of such regions by stellar feedback. Some of these processes
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explicitly depend on the parameters of the local star formation and feedback model, such as
a star formation efficiency per freefall time, eg, and a feedback boost factor, b. Others do
not have such explicit dependence and may be affected by these parameters only indirectly.
This leads to two distinct regimes, in which terms with and without such explicit dependence
dominate.

We demonstrated these regimes in a suite of Ly-sized galaxy simulations, in which we
systematically varied eg, b, and the thresholds used to define the star-forming gas. We
also showed that the trends of 7 and the star-forming gas mass fraction exhibited in the
simulations can be reproduced by our model both qualitatively and quantitatively after a
minimal calibration of the model parameters. The main results of our simulations and the

predictions of our model can be summarized as follows:

1. When eg or b are large, the contribution of processes without explicit dependence on
e dominates and 7 is insensitive to eg, which is usually referred to as “self-regulation”
in the literature. However, in this regime, the mass fractions of the star-forming (fgf)
and the molecular (fy,) gas do depend sensitively on eg and 7 scales almost linearly

with the feedback strength factor for b 2> 1.

2. Conversely, when eg or b are sufficiently small, 7 is dominated by the processes that
explicitly depend on the local gas depletion time, t, = tg/eg in Equation (3.2), and thus
on eg, but not on the feedback strength. In this case, the model predicts 7 ef}l and

only weak dependence of fg and f,, on g, the behavior confirmed by our simulations.

3. The star formation threshold controls the mass fraction of the star-forming gas, the
extent of star-forming regions, and their average properties, such as the average freefall
time. We find that when eg is small and the threshold is such that only a small fraction

of the ISM gas is star-forming, 7 and f are sensitive to the threshold value.

4. When eg is large or feedback is efficient (i.e., when the first term in Equation 5.5
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dominates), fy is small and most of the star-forming gas has density or virial param-
eter close to the star formation threshold. In this case global star formation and the

molecular mass fraction, fp,, become sensitive to the value of the threshold.

The dependence of global star-forming properties of galaxies on the parameters of the
local star formation and feedback model can be used to constrain the values of these pa-
rameters using observations of global galaxy properties. For example, the global depletion
times of the total and molecular gas constrain the feedback strength but cannot constrain
the value of eg owing to their weak dependence on this parameter. However, the value of eg
can be constrained using the mass fraction of gas in the star-forming or molecular state. In
addition, we showed that eg can be constrained using the distribution of local depletion times
in star-forming regions and measurements of 7y, for gas patches of different sizes centered
on the peaks of the molecular gas surface density.

Using our simulation suite, we demonstrated that it is possible to find a combination
of the local star formation and feedback parameters that satisfies all of these observational
constraints. Our fiducial run with eg = 1%, the fiducial feedback boost b = 1, and the star
formation threshold based on the virial parameter, ayi < ayir ¢t = 10, is able to match all
considered observations reasonably well. The low values of eg ~ 1% are also consistent with
previous inferences (e.g., Krumholz et al., 2012a, and references therein). We admit that
the obtained constraints on eg and other parameters are specific to the scales close to our
resolution, i.e. ~ 40 pc, and an additional study is required to explore the scale dependence
of these constraints on smaller spatial scales. We note, however, that the observed depletion
times in GMCs on parsec scales also favor eg ~ 1%-10% (e.g., Heiderman et al., 2010;
Gutermuth et al., 2011), while simulations with a few parsec resolution adopting higher eg
seem to underpredict the amount of dense star-forming gas (see the end of Section 5.4).

We also showed that our model explains the results of a number of recent studies that

explored the effects of the local star formation and feedback model on the global properties
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of simulated galaxies. This broad consistency confirms that our model accurately describes
the origin of global star-forming properties in galaxy simulations and thus allows us to
understand the role played by gas dynamics, star formation, and feedback in shaping these
properties. Understanding the role of these processes in simulations also sheds light on their
role in real galaxies, which is an essential step toward understanding how real galaxies form

and evolve.

96



CHAPTER 6
THE SLOPE OF THE MOLECULAR KENNICUTT-SCHMIDT
RELATION

One of the most intriguing results of our simulations is the emergence of the linear Z']*fZHQ
relation consistent with observations (see the right panel of Figure 4.2), even though on
small scales the star formation rate is assumed to scale nonlinearly with the gas density:
Px = egp/lg p12. Moreover, as we will show, in our simulations with a star formation
threshold in virial parameter, the relation on kiloparsec scales remains near-linear when we
vary the slope adopted locally (5 in Equation 3.4). This insensitivity is a counterexample to
the argument that in simulations, the KSR on kiloparsec scales simply reflects the relation
assumed at the resolution scale (Schaye & Dalla Vecchia, 2008; Gnedin et al., 2014). We show
instead that the linear slope of the molecular KSR on kiloparsec scales and its insensitivity
to small-scale star formation parameters is a result of self-regulation by stellar feedback. We
will also show that the choice of the star formation threshold has a strong effect on the slope
of the 2*72H2 relation. As we will also discuss, these results can be explained using the
analytic framework of Chapter 2.

This chapter is organized as follows. In Section 6.1, we demonstrate how the molecular
KSR obtained in our simulations changes depending on the parameters of star formation and
feedback. In Section 6.2, we show how the obtained results relate to the gas PDF in ISM
patches and its scaling with gas surface density. In Section 6.3, we use our analytic model
based on ISM gas cycling to explain our results and elucidate the origin of the linear slope
of molecular KSR. In Section 6.4, we compare our model to previous works and discuss its
implications for the KSR derived in observations and simulations of galaxies. In Section 6.5,
we summarize our results and conclusions.

This chapter is based on the work published in Semenov et al. (2019).
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Figure 6.1: Results of our fiducial simulation with the star formation threshold in virial
parameter, ayir < Qyirgf = 10. The depletion time of molecular gas is almost independent of
¥y, and thus the molecular KSR is almost linear in this simulation. The two face-on maps on
the left show the surface densities of total gas, Yg, and SFR, 3,. SFR is averaged over 10 Myr
as explained in Section 3.4. The surface density of molecular gas, Xy, is computed using the
Krumholz et al. (2008) model (see Section 3.4), and the gray contours indicate regions where
YH,/¥g > 30%. The right panel shows the depletion time of molecular gas, 7y, = ¥p,/ Yy,
averaged on 1 kpc scale as a function of Xp,. The distribution is averaged over 11 snapshots
between 500 and 600 Myr and is colored according to the average galactocentric radius R.
Dark blue lines show the running median (thick line) and 16" and 840 percentiles (thin
lines). Blue points show the running median in the EDGE-CALIFA sample of galaxies from
Utomo et al. (2017). The green contour shows 68% of points from Leroy et al. (2013); the
median of this sample is very similar to Utomo et al. (2017), and therefore, it is not shown
here. The orange rectangle shows 7y, ~ 0.7-2.7 Gyr estimated for the Milky Way using
M, ~1Mg yr~! and My, ~ 109 M (before correction for helium; Heyer & Dame, 2015)
and adopting a factor of 2 uncertainty in 7y, (Figure 7 in Kennicutt & Evans, 2012).

6.1 Molecular KSR in simulations

Figure 6.1 shows the results of our fiducial simulation with the star formation threshold in
gas virial parameter, ayir < ayip st = 10, eg = 1%, and 8 = 1.5 in Equation (3.4). The left
two panels show the surface densities of total gas, ¥g, and SFR, 3. The surface density of
molecular gas, Yy, , reflects the distribution of dense gas and, for reference, the gray contours
indicate the regions where the molecular gas fraction is larger than 30%. The right panel
shows the depletion time of molecular gas, Ty, = ¥p,/ >, as a function of Yy, where both

>, and ¥y, are averaged on 1 kpc scale using a 2D Gaussian filter with a width of 1 kpc.
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Figure 6.2: Dependence of the molecular KSR in simulations with ay;, ¢ = 10 threshold

on the slope of the local star formation relation: px o pB , where (3 is varied from 1.0
to 2.5 (see Equation 3.4). The adopted slopes are indicated by dashed lines, which show
the scaling of the local depletion time, p/p. o plfﬂ . Three panels show simulations with
different e values and feedback strengths per supernova, with the total feedback budget
per local freefall time increasing from left to right. In simulations without feedback (left
panel), the median 7y, (Xp,) on kiloparsec scales (thick lines) depends on the local slope.
As the feedback budget increases, the sensitivity to the local slope becomes weaker in our
fiducial simulation (middle panel) and completely disappears in simulations with 100 times
larger local eg (right panel). Remarkably, in the latter regime of very efficient feedback, 7,
becomes almost independent of ¥p, as observed in real galaxies (gray contours and error
bars; see the legend in the right panel of Figure 6.1).
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The figure shows that 73, in our fiducial simulation is almost independent of ¥y, and
thus the molecular KSR is almost linear, ¥, o YH,, in agreement with the molecular KSR of
observed galaxies at similar 3p,. This nearly linear slope is not imposed by the choice of our
star formation prescription and its parameters. Instead, the near-linear slope emerges from
a significantly steeper local star formation relation, px = eg p/tg p1'5. If the molecular
KSR reflected this small-scale slope, it would have the slope shown by the thin gray line in
the right panel, which is clearly much steeper than the slope we measure.

To stress this point, in the middle panel of Figure 6.2 we show that the X.]*fZHz relation
remains close to linear even when the local SFR is assumed to have a steeper dependence on
gas density: py o p? and o p2°. Such weak sensitivity of the 2*721412 slope to its local value
provides a counter-example to the argument that the KSR on ~kpc scales simply reflects
the local star formation relation (Schaye & Dalla Vecchia, 2008; Gnedin et al., 2014) and
demonstrates that the KSR slope can be nearly independent of the slope of the local relation.

The left and right panels of Figure 6.2 show that the emergence of the linear KSR slope
and its independence of the local star formation relation depend on the efficiency of star
formation and the corresponding efficacy of stellar feedback. Indeed, in simulations without
feedback (left panel), the molecular KSR slope on kiloparsec scale becomes quite sensitive
to the assumed local slope . On the other hand, in simulations with eg = 100% where
feedback is very efficient (right panel), kiloparsec-scale molecular KSR becomes completely
insensitive to the local star formation relation, and its slope stays close to linear. We have
also checked that the relation remains linear when we increase feedback momentum input per
supernova instead of increasing eg (Appendix C.1) and when we continuously vary eg with
aip instead of using a sharp threshold (Appendix C.2). We also find that the slope remains
linear as long as the molecular KSR is averaged on 2 500 pc scales (see Appendix C.3).

Apart from feedback, the choice of star formation threshold also plays a crucial role in

shaping the kiloparsec-scale molecular KSR. For example, Figure 6.3 shows that when we
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Figure 6.3: Same as Figure 6.1 but for a star formation threshold in gas density: n > ng =
100 cm™3. The dashed line in the right panel shows the median TH, from Figure 6.1. For a
density threshold, the molecular KSR becomes significantly steeper than in the simulation
with an ay;-based threshold.

3 instead of the i, the molecular KSR

choose a threshold in density, n > ng = 100 cm™
significantly steepens to 3y o E%Ig’ at Xy, > 10 Mg pc2 (galactocentric radii of R < 6 kpc)
and to even steeper slope at 2y, < 10 Mg pe2 (R > 6 kpc). A similar steep molecular KSR
was also found by Capelo et al. (2018), who also used the ng = 100 cm™3 star formation
threshold. In addition, we find that the slope steepens for larger values of eg and larger
values of the ng threshold (see Appendix C.1). In other words, the emergence of the linear
KSR and its insensitivity to local star formation parameters occur only when we use the
aip-based threshold.

The qualitatively different behavior of the molecular KSR in simulations with oy~ and
nep-based thresholds stems from different distributions of star-forming gas in simulations
with different thresholds, which is evident from the 3, maps in Figures 6.1 and 6.3. In the
simulation with the constant ng threshold, the SFR is more centrally concentrated, and a
significant fraction of molecular gas in the outskirts of the disk is not forming stars. This
results in longer depletion times at large radii and steeper X'J*fZHQ relation.

The results presented above demonstrate that the slope of the molecular KSR has a

nontrivial origin and is shaped by several factors. To understand the trends of the slope

101



with the choice of star formation threshold, e value, and feedback strength, we will first
examine our results from a different angle using the language of the PDF of gas properties
(next Section). We will then discuss how our simulation results can be understood in the
simple physical framework that we developed to explain the long gas depletion times of

galaxies (Section 6.3).

6.2 Connecting the kiloparsec-scale KSR with gas PDF and star

formation relation on small scales

Before we proceed to discuss the physical interpretation of the simulation results presented
above, we will examine how kiloparsec-scale KSR is connected to the local SFR and PDF of
gas properties. This connection not only clearly illustrates the interdependencies of different
quantities via explicit equations but also elucidates the conditions required for the linearity
of the molecular KSR. To this end, we will consider the depletion time of gas in star-
forming regions, 7 = g/ 3, and the mass fraction of molecular gas in these regions,
fst Hy = Sst/>XH,, as it is the ratio of these quantities that defines the global depletion time

of molecular gas:

EHQ _ ZHZ & - T

: st . (6.1)
2k DN 2k fsf,H2

THy =

The results presented in this section do not explain the simulation results presented
above, but rather restate these results in a different useful way. Readers more interested in
the physical interpretation of the results can proceed to Section 6.3. A detailed derivation

of the equations used below is presented in the Appendix C.4.
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6.2.1 Molecular Depletion Time and PDF of Gas Properties

To quantify the relation between molecular gas depletion time and gas PDF, we note that
both fef 1, and 7 in Equation (6.1) are the averages over the distribution of gas in the ISM

patches. In particular, f¢r 1y, can be expressed in terms of the PDF of molecular gas, Pp,:

o
fst Hy = / /O Ot (p, a) P, (p, a|XH,)dpdq, (6.2)

where the star formation threshold, ©¢(p, q), can depend on the density, p, and any other
local properties of the region, q, such as temperature, turbulent velocity, etc. For our choice
of thresholds, Og(p, o) = O(ayir st — avir(p,0)) and Og(p) = O(p — pst), where 0 is the
Heaviside step function: 6(z) = 1 for # > 0 and 6(z) = 0 for z < 0.1 Py, (p,d|¥n,) in the
above equation is the mass-weighted PDF of the molecular gas averaged between patches
with surface density Yp,; the PDF shape in general will depend on X, .

Similarly, 7, can be written as

% 1 > 1
_:/0 Z sf(P|ZH2)dPO</O P Psf(p|ZH2)dp’ (63)

where ty, = p/px pl_ﬁ is the local depletion time,? and the mass-weighted density PDF of

star-forming gas is defined as

O« (p, q) P, (p, a|Xm, )dq
[15° ©s¢(p, a) P, (p, 4l Sy, ) dpdq

First, note that the dependencies of f p, and 7 on ¥y, in Equations (6.2) and (6.3) are

rather nontrivial. To obtain a linear KSR, these dependencies must be similar and cancel out

1. In general, ©4 can also parameterize smooth transitions to the star-forming state by continuously
changing between 0 and 1.

2. The averaging of inverse t, results from the averaging of local star formation rates p, = p/t,: 7, =

2*/Zsf = [t;'pdV/ [ pdV = (t;')s, where the integrals are taken over star-forming regions in an ISM
patch.
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in Equation (6.1), which means that the gas PDF must scale with Xy, in a very particular
way. Second, the observed independence from the local slope § in simulations with efficient
feedback implies that the trends of f¢ 1, and 74 must remain similar when f is changed.
This effect is also nontrivial because 7, depends on 3 explicitly (Equation 6.3), while fgf 1,
depends on (3 only implicitly via the effect of § on the gas PDF. Finally, Equations (6.2—
6.4) show that fg i, and 7. explicitly depend on the shape of the star formation threshold,
O4¢. This means that, given a specific gas PDF, the above cancellation can occur for some
thresholds but not for the others. In the next section, we will examine the trends of the gas

PDF, 7«, fst H,, and 7y, observed in our simulations.

6.2.2 Trends of the Gas PDF, 7., f¢mn,, and g, in Simulations

The dependence of the gas PDF, 7y, f¢t n,, and 7, on Xy, the local star formation slope
B, and the star formation threshold can be explored in simulations directly, as all of the
relevant quantities can be measured. In particular, we will consider these trends in two
simulations from our suite: the fiducial run in which the KSR is linear (Figure 6.1) and the
run with the same parameters but with the density-based star formation threshold in which
the molecular KSR is steep (Figure 6.3).

Figure 6.4 shows the distribution of gas in these simulations in the plane of gas density
and total velocity dispersion, otot = 4/c2 + 0't2, which includes both thermal and subgrid
turbulent velocities. The distributions are averaged in 1 kpc-wide annuli at different galacto-
centric radii, R, and three horizontal panels show three representative radii. Given that the
gas surface density exponentially decreases with increasing R, these distributions correspond
to widely different Yy, values.

As the top row in the figure shows, in our fiducial simulation, the gas PDF does change
with changing Yy, , which results in trends of 7, and fg¢ g, with Xp,. In particular, according

to Equation (6.3), the trend of 7y is due to the scaling of the star-forming part of the PDF. To
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Figure 6.4: Dependence of gas distribution on galactocentric radius (and therefore on the
average gas density) in the simulations with ay;, ¢ = 10 (top row) and ng = 100 cm ™3 star
formation threshold (bottom row). Each column of panels shows the distribution averaged
between 500 and 700 Myr in 1 kpc wide annuli at different galactocentric radii: R = 2-3 kpc
(left), 5-6 kpc (middle), and 8-9 kpc (right). Contours show 25%, 68%, 95%, and 99% of the
PDEFE. The color of the distribution indicates the average temperature, and the blue region
(cold gas) roughly indicates the distribution of molecular gas. The dashed line close to the
lower envelope of the distribution shows the median temperature as a function of density.
The thick dotted line shows the star formation threshold adopted in these simulations; star-
forming gas resides to the right of the threshold. Thin dotted lines indicate constant values
of the virial parameter: oy, = 100, 10, and 1 from left to right.
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Figure 6.5: Density PDFs of star-forming gas (Equation 6.4) in concentric 1 kpc wide
annuli in the simulation with the oy ¢ threshold. PDFs are averaged between 500 and
700 Myr and colored according to the average density of molecular gas in each annulus, Yy, .
The top panel shows that PDFs are not fixed but scale with Yy, while the bottom panel
demonstrates that this scaling is weaker than self-similar. If the PDF scaled self-similarly, its
shape would be fixed as a function of p/¥p,. To make this ratio dimensionless, we multiply
it by our resolution A = 40 pc. The PDF in the central region (R < 1 kpc, pale yellow) is
bimodal, with a prominent bump at n ~ (2 —7) x 103 em™3, which corresponds to a central
concentration of high-oy gas that does not form stars according to the oy < 10 criterion.
When we use a density threshold (Figure 6.7), such a bump does not form because all gas
at such densities would rapidly form stars.
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Figure 6.6: Dependence of molecular gas depletion time, 7y, (solid line, left axis), star-
forming gas depletion time, 7% (thin line, left axis), and the star-forming mass fraction of
molecular gas, fg p, (dotted line, right axis) on the average surface density of molecular
gas, Xy, in radial annuli with widths of 1 kpc. The trends of 7« and fg g, with Xy, cancel
each other out in the expression for the molecular gas depletion time, 7 = 7,/ Jst,Hy» Which
results in a linear KSR for molecular gas.
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explore the 7, trend in more detail, in Figure 6.5 we plot these parts of the PDF (integrated
over otet) in concentric 1 kpe-wide annuli out to R = 10 kpc.

If star-forming gas PDF were independent of ¥p,, Py (p|¥H,) = F(p), Equation (6.3)
implies that 7, would also be independent of Xy,. This case corresponds to the “counting
argument” often used as an explanation for the linearity of the molecular KSR (see Sec-
tion 1.3). However, the top panel of Figure 6.5 shows that the PDF is not fixed but shifts to
higher density with increasing Yyy,. Therefore, 7, is not constant but decreases with Xy, .

On the other hand, if the PDF scaled self-similarly, Pyt (p|Xn,) = F(p/2H,)/>H, where
F' is a function of a fixed shape and peak location, then 74 would inherit the slope from
the local star formation relation: 7, o E%I;B = E}_Ig"r’ for § = 1.5, as is explicitly shown in
Appendix C.4 (see also Gnedin et al., 2014). However, the bottom panel of Figure 6.5 shows
that PDFs for different p/¥p, do not coincide, with their peak changing significantly with
YH,- This strong deviation from self-similar scaling results in a scaling of 7, that is weaker
than the self-similar expectation of 7, Eﬁg@

The actual scaling of 7, with EH2 produced in our fiducial simulation is shown with the
thin line in Figure 6.6. According to the figure, 7, scales as 7 o Z}_I(QM. If the star-forming
fraction f¢ g, were independent of Yy, this scaling would be enough to make the KSR
noticeably nonlinear: Y, o 211{3 However, as the dashed line in the figure shows, fs g,
scales with Yy, similarly to 7. Given that 7y, = 7/ fsr 1, (Equation 6.1), these scalings
cancel, resulting in 7, almost independent of ¥p, and a nearly linear molecular KSR (thick
line in the figure).

We find that in the simulations with an ay;-based threshold, such cancellation holds for
all values of the slope of the local star formation relation 3 as long as feedback is as strong as
in the fiducial simulation or stronger (see Section 6.1 and Appendix C.1). Such cancellation,
however, does not happen in the simulations without feedback, in which the slope of the

molecular KSR becomes sensitive to the local slope 3, and in all of the simulations with the
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Figure 6.7: Same as the top panel in Figure 6.5 but for the simulation with the

ngt = 100 cm ™3 star formation threshold. The dependence of PDF on Yy, is much weaker
compared to the simulation with the ay;. ¢ = 10 threshold.
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Figure 6.8: Same as Figure 6.8 but for the simulation with the ng = 100 cm ™3 star
formation threshold. In contrast to the simulation with ;. ¢f = 10 threshold, the trends of
T and fef g, with X, do not cancel out, leading to a strong dependence of 7, on Xy, and
a superlinear molecular KSR.
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density-based star formation threshold. In the latter case, the density threshold defines only
the high-density tail of distribution as star-forming gas (see the bottom row of Figure 6.4).
Therefore, the PDF of star-forming gas and 7« become almost independent of Yy, , as shown
in Figures 6.7 and 6.8. However, the star-forming fraction of molecular gas does increase
at higher Yy, and therefore myy, = 7/ fsf p, decreases with increasing ¥y, , resulting in a
superlinear molecular KSR.

Results presented in this section clearly show that the linear slope of molecular KSR in
the simulations with an ayj.-based star formation threshold and efficient feedback is rather
nontrivial and results from a cancellation of trends of physical properties controlling 7y, with
both  and Yp,. The cancellation occurs only when feedback is efficient, and it depends on
the choice of the star formation threshold.

The language of gas PDF is direct and clearly shows the relation between large-scale
observables and small-scale properties of gas and star formation. However, we cannot use it
to fully explain our simulation results because this requires knowledge of the exact functional
form of the gas PDF, its dependence on Yp,, and its response to feedback. Therefore, in
what follows, we will adopt an approximate approach that can qualitatively explain several

of our key results.

6.3 The physics of the molecular KSR slope

In this section, we show that several key results of our simulations can be understood using
the theoretical framework introduced in Chapter 2. The model is based on the conservation
of mass and considers dynamic gas cycling between star-forming and non-star-forming states.
In this model, the depletion time of total gas in an ISM patch is 7 ~ Ne(tper + tgr), where
thsf and tgp are the average times in non-star-forming and star-forming stages in each cycle,
and the number of cycles, No ~ 74 /tg, is set by the condition that after many cycles, gas

must spend on average 74 = Yg¢ /Y in the star-forming state. The fraction of the initial gas
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parcel mass that is converted into stars during each cycle is correspondingly € ~ tqp/7y.

6.3.1 Molecular KSR and Gas Evolution Timescales

In the dynamical framework outlined above, the star-forming mass fraction of molecular gas
can be expressed as the relative time in star-forming and molecular stages on each cycle, ty¢

and ty,:

Zsf ~ Lsf (6.5)
Yy,  tH,

fo7H2 =

Here, tp, is the duration of the molecular stage during one evolution cycle—i.e., the time
between the moment when gas becomes molecular and the moment when it becomes atomic
again. The time tg is the total time during one cycle that gas spends in the star-forming
state. Note that during ty, a given gas parcel may remain non-star-forming (tg = 0) or
become star-forming one or multiple times. In the latter case, g is the sum of all star-forming
stages that a gas parcel experienced.

Given these definitions, Equation (6.1) can be rewritten as

Tx Tx I,
e B2 e

T _= ~
ot ,Ho tsf

Hy

(6.6)

Further derivation proceeds analogously to Chapter 2. To express ti via the timescales
of the processes driving gas evolution, we note that the amount of star-forming gas in ISM
patches, Y, is regulated by the combined effect of gas consumption at the rate 3, and
dispersal of star-forming gas by feedback and dynamical processes (e.g., passages of spiral
arms) at the rates of F' _mand F_ 4, respectively. Analogously to Chapter 2, we parameterize
these as

: Yt
F_p =8 =§{—, F_q= , (6.7)

Tx T_ 7d

where § is the “mass-loading factor” of star-forming gas dispersal by feedback, while 7_ 4

is the characteristic timescale of the dynamical dispersal of star-forming regions. The total
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rate of gas removal from star-forming regions is thus 3, + F _ b+ F_ q and the characteristic

time that gas spends in the star-forming state can thus be expressed as

-1

5

t ~ sf —r [1rer . (6.8)
E*—FF_,fb—f-F_d T—.d

To relate these quantities to the depletion time of molecular gas, consider the character-
istic time that gas spends in molecular form, ty, = tg, net + tsr, Where iy, o is the time
that molecular gas spends outside of star-forming regions. Equations (6.6) and (6.8) then
give

t
THy = (1+9) T, nsf + (1 + HZ’H_Sf> Tx- (6.9)
7-77d

This expression is analogous to Equation (5.5) above and has similar behavior. In partic-
ular, only the second term explicitly depends on the slope of the local star formation relation
B via the dependence of 74 on  (Equation 6.3). The first term can depend on f only im-
plicitly. As we will detail below, the regimes in which one of these two terms dominates
correspond to the regimes where molecular KSR is sensitive or insensitive to § (Figure 6.2),
and thus these regimes are directly analogous to those discussed in Section 5.2. As we will
also show, Equation (6.9) can help us understand why the molecular KSR is close to linear

when an ay;-based star formation threshold is used and why it steepens for a density-based

threshold.

6.3.2 Dependence of Molecular KSR on the Local Slope [

When feedback is strong (¢ is large) and star formation is locally efficient, i.e. 74 is short
(due to, e.g., large eg), the first term in Equation (6.9) dominates. Given that only 7, in
the second term explicitly depends on 3 (Equation 6.3), in this regime, 7y, can be expected
to only weakly depend on the local slope. Indeed, we showed that the sensitivity to
disappears completely for the eg = 100% compared to a weak dependence in the eg = 1%
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runs (Figure 6.2). This insensitivity indicates that in the context of our framework, the first
term does not depend on [ even indirectly. This can be understood as follows.

Equation (6.8) shows that in this regime (§ > 7/7_ ), the characteristic time a gas par-
cel spends in a star-forming region in a single cycle is tgf ~ 75 /(1 + &) ~ 7x€ and corresponds
to the time it takes to form enough young stars to disperse a typical star-forming region.
For the higher SFR of larger § values, and correspondingly smaller 74, the young star mass
fraction e required for dispersal will be reached faster, and ¢y will be shorter. Thus, both 7,
and tg depend on f in a similar way, so that this dependence cancels in € ~ /7, rendering
the integral stellar mass fraction required for dispersal roughly constant. Given that the
lifetime of gas in the molecular state is not related to 3, this cancellation is the main reason
why 7H, o th, T«/tg is independent of 3. The bottom panel of Figure 6.9 demonstrates
that ¢ and ¢y, are indeed independent of 3 in the simulation with eg = 100%, even though
T does depend on [, as shown in the top panel.

When feedback is weak (small £) or star formation is locally inefficient (74 is long), the
second term in Equation (6.9) dominates. This term is proportional to 7, which explicitly
depends on the local slope 8. As shown in Figure 6.10, this dependence of 7« on 3 also
implies the dependence of the molecular KSR on  because tH2(EH2) does not depend on
3, while in this regime €(Xp,) does. Their ratio 7y, ~ tp, /€, therefore, is no longer close to
constant, but depends on Yy, in a way sensitive to 3, as observed in our simulations without
feedback (left panel of Figure 6.2). It is worth noting that although there is a value of § at
which the large-scale slope becomes close to linear in these simulations, this is coincidental
and holds only for 8 ~ 1.5. Physically, t4 in this regime is controlled not by feedback but
by dynamical processes that disperse star-forming and molecular regions, such as turbulent
shear, differential rotation, expansion behind spiral arms, etc.

In the intermediate regime, in which the two terms in Equation (6.9) are comparable,

we can expect an intermediate weak sensitivity of the KSR to (3, as is indeed observed in
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our simulations with fiducial feedback strength and eg = 1% (middle panel of Figure 6.2).
This behavior is explained by the contribution of two comparable terms to 7, which can
be demonstrated explicitly.

According to Equation (6.9), the 7y, in these simulations differ from the simulations with
eg = 100% and fiducial feedback only by the second term, which is 100 times smaller in the
latter case. At the same time, 7y, in the simulations with eg = 1% and with or without
feedback differ only by the first term. Therefore, Equation (6.9) predicts that the g, in
our fiducial simulations equals the 7y, in simulations with eg = 1% and no feedback plus
the g, in simulations with eg = 100% and fiducial feedback. Figure 6.11 shows that this
is indeed the case. For 3 = 1.5 and 2, the measured 7y, and the sum agree extremely well,
while for § = 1 and 2.5, they are within a factor of 1.5. A small difference in the latter case
is due to the extra dependencies of ty, n¢f, 7 4, and 7« on €, 3, and feedback strength. For
example, feedback disperses the high-density tail of the gas PDF, making 7, longer. This
effect becomes stronger for larger S because steeper local star formation relation p, o< ,05
results in a more efficient dispersal of dense gas. The difference between the measured 7y,

and the sum therefore increases with increasing f.

6.3.3 Dependence on the Choice of Star Formation Threshold

Simulation results in Section 6.1 show that a near-linear KSR emerges only in simulations
with efficient feedback and ay;-based star formation threshold. In simulations with the
same parameters but using a density-based threshold, the molecular KSR is significantly
steeper (see Figure 6.3). This is not surprising, because the star formation threshold affects
all terms in Equation (6.9), and thus the behavior of the molecular KSR can be different for
different threshold choices. Figure 6.12 shows that ¢y, (¥p,) is independent of the choice of
threshold or feedback strength, but the €(¥p,) trend does steepen for the density-based star

formation threshold and is thus responsible for the steepening of the molecular KSR in such
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Figure 6.9: Trends of 7 (top panel), € = ts/7« and ty, (bottom panel) in our simulations

with eg = 100% and different slopes of the local star formation relation px o pﬁ , B =1,
1.5, 2, and 2.5 (see Equation 3.4). We measure ¢, t, and ty, for each molecular stage using
gas-tracer particles as explained in Section 3.4 and show their values averaged in concentric
annuli. The stages are accumulated between 450 and 800 Myr of disk evolution. The figure
illustrates two types of cancellation that result in a near-linear KSR. First, the variation of
the 7, trend with 3 cancels out by ty in € = tg/7. Second, the trends of € and ¢y, with

YH, nearly cancel in 7, ~ tp, /€, resulting in a nearly linear molecular KSR.
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Figure 6.10: Same as Figure 6.9 but for simulations with eg = 1% and no feedback. While
the trends of tp, (X, ) remain almost the same as in Figure 6.9, there is no longer feedback-
imposed cancellation of the trends in € = ty /7%, and e(EHQ) becomes strongly dependent
on 3, which leads to the dependence of 7p, and the KSR slope on 8 in simulations without
feedback (left panel of Figure 6.2). To produce this plot, we accumulated molecular and
star-forming stages of gas-tracers evolution over a shorter period of time (between 450 and
600 Myr) because for large 8 and no feedback, the total gas mass changes more rapidly due
to the short global depletion times. The local depletion times in the top panel are normalized
by eg to simplify the comparison with the trends in Figure 6.9. The thin gray line in the
bottom panel repeats that from Figure 6.9.
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Figure 6.11: Comparison of our simulation results with the predictions of the analytical
model. The thick lines show the 7g, in the simulations with eg = 1%, fiducial feedback

strength, and different slopes of the local star formation relation p, o pﬂ , differentiated by
color. These lines are equivalent to those shown in the middle panel of Figure 6.2 but shifted
up and down by an arbitrary factor to avoid clutter. Our model predicts that the 7g, in
these simulations must be close to the sum of the 7y, in our simulations without feedback
(left panel of Figure 6.2) and the 7, in our simulations with eg = 100% (right panel of
Figure 6.2). These sums are shown with thin lines for corresponding values of 8 and they
do indeed agree with the 7g, in our fiducial simulations.

simulation. This behavior can be understood using the gas distributions in simulations with
different thresholds shown in Figure 6.4.

In all simulations, dense, supersonic gas reaches approximate equilibrium between tur-
bulence production on the local dynamical time, ¢4y, o< 1 /v/Gp, and turbulence decay on
the local eddy-turnover time, tge. ~ A/ot, so that tqyn ~ tgec and oy p%5, and the gas
PDF aligns along the lines of oy, o Ut2 /p ~ const, parallel to the i, ¢ = 10 threshold.
This alignment persists at all Yy, .

In simulations with the «y;--based threshold, gas can become star-forming relatively

quickly after becoming molecular because low-o¢ gas can be star-forming even at rather
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Figure 6.12: Effect of eg, feedback strength, and star formation threshold on the (X))
and ty, (Xp,) trends. The fiducial case shown by the orange lines corresponds to eg = 1%,
fiducial feedback, and ayi. ¢ = 10 threshold. Other colors show simulations in which these
parameters are changed as indicated in the legend. To illustrate the variation of trends with
parameters, we compare simulations with the local slope S = 2 instead of the fiducial 8 = 1.5
because in these simulations trends vary more strongly due to a stronger dependence of 74
on Xy, (see Figures 6.9 and 6.10). The trend of € varies much stronger than that of ty,,
and therefore, it is the trend of € that defines the dependence of 7y, ~ ty,/€ on ¥p, and
the slope of the molecular KSR.
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small densities, while ot can become small simply by turbulence decay when it cannot be
offset with compression or feedback. In contrast, in simulations with the density-based
threshold, transition to the star-forming state is hindered because molecular gas must be
compressed to relatively high densities to exceed the threshold.

This difference can be illustrated using the distributions of ¥y and molecular gas in
the middle panels of Figures 6.1 and 6.3. In the simulation with the ay;. ¢ = 10 threshold
(Figure 6.1), almost every molecular region (gray contours) contains a star-forming subregion
with young stars, and thus molecular gas is always either star-forming or is spatially close
to a star-forming region. In contrast, in the simulation with the density-based threshold
(Figure 6.3), a substantial number of molecular regions, especially in the disk outskirts, are
not star-forming. As Figure 6.13 shows, they would be star-forming if we used the ay; < 10
threshold instead of n > 100 cm™3.

The incidence of star-forming regions is thus a steeper function of Xy, in the simulation
with the density-based threshold and so is €(Xy,) (Figure 6.12), which explains the steeper
molecular KSR. For a density-based threshold, the average e decreases at lower Yp, because
of the larger fraction of gas tracers that go through the molecular stage without reaching
the star-forming state and thus have € = 0.

Although we have considered specific choices of thresholds here, our conclusions and their
implications are more general. The basic scaling of 7y, with timescales in Equation (6.6)
holds for any choice of star formation threshold, while as we can see, ty, (X, ) is insensitive
to the details of feedback and star formation prescriptions. Thus, any prescription that
shapes €(¥p,) to be similar to ty,(Xp,) will lead to a near-linear molecular KSR and vice
versa. Possible reasons why the €(¥p,) and ty, (X, ) trends are similar will be discussed in

the next section.
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Figure 6.13: Distribution of molecular (gray contours) and star-forming gas (filled blue
contours) in the simulation with the ng = 100 cm™3 star formation threshold. The filled
orange contours show regions with ay;; < 10. Non-star-forming molecular regions on the
disk outskirts in this simulation would be star-forming if the star formation threshold were
in the virial parameter, ayj < ayjg¢ = 10. This is because it is much easier for gas to
lose turbulence support and reach an v, threshold than to be compressed to a threshold
density.
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6.3.4 The Origin of the Linear Molecular KSR

The results presented so far indicate that e and ¢y, both depend on Xy, and therefore, to
produce a linear molecular KSR, these trends must cancel out in 7y, ~ tp, /€. According to
Equation (6.6), 7/ fs 1, ~ tH,/€ and thus this cancellation is simply another manifestation
of the cancellation of the 7 (X)) and fe b, (¥p,) trends discussed in Section 6.2.

We can readily understand why the dependencies of € and ty, on X, should be of the
same sign when feedback is efficient in dispersing star-forming regions. Indeed, € is expected
to increase with increasing Yy, , because at higher Xy, , the gravity of the disk and pressure
of the ISM are larger, making it harder for feedback to disperse star-forming regions and
thus requiring a larger € for dispersal. At the same time, the time that the gas spends in
the molecular state during one cycle, ty,, can also increase because a larger fraction of gas
is molecular at larger Yy, .

The quantitative explanation of why these trends are similar is less obvious, but can
be understood as follows. Our analysis shows that in simulations with efficient feedback,
gas tracers experience local chaotic fluctuations of their density and velocity dispersion, and
they move randomly in the n—oyo plane. In simulations with an ay;-based star formation
threshold, most molecular gas is close to the threshold due to its alignment along the ay, =
const direction (see Section 6.3.3), and therefore, it randomly transits into the star-forming
state and back. If the probability of transition is close to uniform, the number of transitions
during a molecular stage, Ng, will simply be proportional to the duration of this stage,
Ngt o< ty,. Although the duration of each star-forming stage is regulated by feedback as
we discussed above, the total time the parcel spends in the star-forming state, tgp, will
also be proportional to Ng and the gas parcel thus converts the fraction e ~ ty¢ /7 o iy,
into stars during one molecular phase. This leads to a constant molecular depletion time,
TH, ~ tH,/€ ~ const, and a linear molecular KSR.

The above mechanism will also operate in a more general case of varying eg as long as eg
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is a strong function of ay4,. Such a strong dependence of eg on ay; is a generic prediction
of theoretical models of star formation in a turbulent medium (see Padoan et al., 2014, for a
review). In Appendix C.2 we show that the molecular KSR indeed remains linear when we
vary eg as an exponential function of oy, instead of assuming a sharp threshold.

When feedback is inefficient, the evolution of molecular gas is not as chaotic, and the
€(Xy,) trend becomes sensitive to feedback strength and eg value, as can be seen in Fig-
ure 6.12. Given that the ¢y, (3p,) trend is nearly independent of feedback strength and eg,
the depletion time 7y, is no longer constant in such regimes.

Likewise, when a density threshold with a high value is used to define star-forming regions
instead of ay;;, most of the molecular gas is far from the threshold and the transition to a
star-forming state in this case is not due to random motions of gas parcels in the n—otot
plane, but is mainly due to secular evolution and gas compression to high densities. In this
case, tgf is no longer proportional to ty, and 7, # const. For lower values of a density
threshold, a larger fraction of gas is near the threshold and transitions to a star-forming
state again become dominated by random fluctuations, which makes the slope shallower and
closer to linear (see Figure C.2 in the Appendix C.1). The slope in this case depends on the
threshold value as the dynamical equilibrium between compression and turbulent pressure
align gas along the ay4, = const direction, not along n = const.

The presented explanation for why € and #y, exhibit similar trends with Xy, and thus
why 7y, &~ const when feedback is strong, is admittedly qualitative. This question calls for
further exploration both in high-resolution simulations of the ISM patches and observation-

ally in studies of molecular and star-forming regions, as we discuss below in Section 6.4.2.
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6.4 Discussion

6.4.1 Comparison to Previous Models

A commonly used explanation for the nearly linear molecular KSR is the so-called “counting
argument” (e.g., Wu et al., 2005), in which one assumes that molecular regions have similar
properties (e.g., density and thus depletion time 7) and have a fixed fraction of gas that
is undergoing star formation (i.e., fs11,). Then, 7y, = 7/ fsr 1, (Equation 6.1) becomes
independent of Xy, because both 7. and fg p, are the same and independent of X, .
However, as we showed in Section 6.2.2, our simulations indicate that both 7 and f¢ g,
in molecular regions can vary with Yy, and still produce a nearly linear molecular KSR.
Furthermore, properties of molecular clouds do change with galactocentric radius and thus
with surface density in observed galaxies (e.g., Heyer & Dame, 2015; Miville-Deschénes et al.,
2017). The origin of the linear slope of the molecular KSR is therefore more nuanced.
Madore (2010) and later Elmegreen (2015, 2018) considered the origin of the KSR from
the timescales of gas evolution in different states. Their approach is similar to the basis of
our model, which allows a direct comparison. In particular, Madore (2010) expressed the
depletion time of total gas as T = Yg /Y ~ (T + 75)/¢, where the duration of one gas cycle
consists of the “collapse time” 7., on which average ISM gas evolves to the star-forming
state, and “stagnation time” 75, on which star-forming gas is dispersed by feedback. The
fraction of gas converted into stars in one cycle, €, is assumed to be fixed. Then, assuming
also that 7 Zg 05 and Ts is constant, 75 will dominate at sufficiently high ¥ and the KSR
will become linear because the depletion time will become independent of Yg: 7 ~ 7g/e.
Elmegreen (2015, 2018) used principles similar to the Madore (2010) model but assuming
that the total depletion time is proportional to the freefall time at the midplane density, ¢,

with constant efficiency, eg, so that the depletion time of molecular gas® is THy = fH,tH/ s

3. In Elmegreen (2015), the molecular state is denoted by the subscripts “CO,” indicating that in obser-
vations, this state corresponds to the gas visible in CO. For consistency with our notation, we have changed
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Next, similarly to our Equation (6.5), the molecular fraction is expressed as the ratio of
timescales in the corresponding states: fy, ~ t 11,/ (tg + tr 1,), Where tg 1, is the freefall
time at the density of the molecular transition. The timescale i g, is independent of Yy,
by construction because it is assumed to be set by the density of the atomic-to-molecular
transition, which, in turn, is set by the local ISM properties rather than the large-scale surface
density. For average ISM densities significantly lower than the molecular transition density;,
tg > tg p, and therefore 7y, ~ tg 11,/ becomes independent of Yy, and the molecular
KSR becomes linear. To compare with our model below, we note that in the Elmegreen
(2015, 2018) model the duration of star formation cycle is assumed to be tg +tg g, and thus
the integral star formation efficiency per cycle is € = eg(tg + tg 1,)/tr ~ g

Although the models of Madore (2010) and Elmegreen (2015, 2018) are rather insightful,
their prediction of the linear slope for the molecular KSR follows from two strong assump-
tions that the characteristic time of molecular gas evolution (75 in Madore 2010 or tg p, in
Elmegreen 2015, 2018) and the integral efficiency of star formation € are all independent of
the kiloparsec-scale gas surface density. Neither of these assumptions holds in our simula-
tions. As was shown in Figure 6.9, € increases with ¥y, because at higher Yy, feedback
must overcome stronger forces to disperse a region and thus a larger fraction of molecular
gas must be converted into stars. At the same time, the lifetime of molecular gas also in-
creases. Nevertheless, in our simulations with the a;, ¢ threshold and efficient feedback, the
molecular KSR slope is still linear. As we showed, the slope is linear not because € and the
lifetime of molecular gas are independent of Xy, but because they scale with ¥y, similarly,
and their trends nearly cancel.

Finally, Gnedin et al. (2014) argued that the linear molecular KSR on a 2 1 kpc scale is
indicative of a linear relation on small scales (i.e., § = 1 in our notation). As emphasized in

that paper, this argument follows from the assumption that the gas PDF is self-similar and

subscripts “CO” to “Hy.”
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that star-forming gas can be defined using a threshold that is a simple function of gas density.
In this case, the slope of the global relation is directly inherited from the small-scale relation
in the regime when firy, — 1 (see “special case 17 in Appendix C.4). As we explicitly
showed in Section 6.2.2, the gas PDF in simulations with efficient feedback is not self-
similar. This lack of self-similarity decouples the slope of the large-scale molecular KSR from
the slope of the small-scale star formation recipe. Moreover, we showed that the definition
of star-forming gas plays an important role in the resulting scaling, because the choice of
the star-formation threshold explicitly enters the relevant equations (see Equations 6.1-6.4).
Finally, our results clearly show that the variation of fg g, with Xy, is important, as it

compensates the scaling of 7, resulting from the particular scaling of the gas PDF with Y, .

6.4.2 Implications for the Interpretations of the Observed Molecular KSR

The framework presented in Section 6.3 is rather general and can help us elucidate the
physical processes shaping the slope of the star formation relations observed in different
galactic environments, on different spatial scales, and for different gas tracers.

According to our model, a linear KSR for molecular gas is expected as long as the lifetime
of gas in the molecular state, ty,, and the fraction of gas mass converted into stars over this
lifetime, €, exhibit similar trends with X, so that these trends cancel in 7y, ~ t,/e. The
mechanism that makes the y,, and € trends similar must be rather generic, because the KSR
for molecular gas is observed to be linear in diverse environments: from the average ISM
of normal star-forming galaxies across the Hubble sequence (Utomo et al., 2017; Colombo
et al., 2018) to low-metallicity dwarf galaxies (Bolatto et al., 2011; Jameson et al., 2016) and
low-density galactic disk outskirts (Schruba et al., 2011).

An example of such a generic mechanism would be the efficient regulation of molecular
stages by feedback. As we discussed above, feedback in our simulations makes evolution

of molecular gas chaotic and the mass fraction of young stars formed by a given gas parcel
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during one molecular cycle becomes proportional to the duration of the cycle, € o tp,, which
renders the molecular depletion time constant, 7y, ~ tp, /€.

The molecular KSR steepens in high-density environments typical in starburst galaxies
(e.g., Genzel et al., 2010, 2015; Leroy et al., 2013). In the context of our model, the steepening
corresponds to the regime in which feedback is less efficient in dispersing star-forming regions
and dense molecular gas, the second term in Equation (6.9) becomes comparable to the first,
and ¢ is no longer proportional to ty,, which makes molecular KSR nonlinear. In addition,
th, becomes shorter, due to either stronger gravity at higher gas surface densities or shorter
turbulent crossing time at higher gas velocity dispersions.

Our model can also be used to interpret the KSR observed on scales much smaller than
a kiloparsec and for gas states much denser than normal molecular gas. To this end, Equa-
tion (6.6) should be rewritten as

t

TSNZ——*tSN—S, (6.10)
sf €

where 7g is the depletion time of gas in a given state S, tg is the average time that a gas
parcel spends in this state in a single cycle, and € ~ ty /7 is the fraction of gas converted
into stars in one cycle through the state S. To apply this equation on different scales, its
terms must be defined appropriately for the chosen scale.

For example, this equation can explain why the KSR becomes superlinear on the scales
of individual star-forming regions, < 50 pc (e.g., Evans et al., 2009, 2014; Heiderman et al.,
2010; Gutermuth et al., 2011). Surveys of star-forming giant molecular clouds (GMCs) select
only molecular gas from the star-forming stage, and therefore, the ¢g in Equation (6.10) for
such objects equals tg. According to Equation (6.10), in this case depletion time is simply
TaMC ~ T« and there is no longer feedback-imposed cancellation of the dependency in the
T« [ty ratio on the large-scale ISM properties. In this picture, the slope of the small-scale
KSR for star-forming regions is thus expected to reflect any dependence that 7, has on the

properties of these regions. Note also that mass fluxes of gas on the scales of GMCs are
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likely out of equilibrium, which will lead to a large variation of 7y, (see Sections 2.3 and 4.5)
and thus a large scatter of the KSR, as is indeed observed on small scales (e.g., Lee et al.,
2016; Vutisalchavakul et al., 2016; Leroy et al., 2017). Other sources of scatter include the
intrinsic variation of gas properties in star-forming regions, incomplete sampling of different
stages of gas evolution, and decoupled evolution of gas and star formation tracers (Feldmann
et al., 2011; Kruijssen & Longmore, 2014).

Equation (6.10) can also be applied to interpret the linear relation between the amount
of dense molecular gas traced by HCN and the total SFR observed on a wide range of scales
(Gao & Solomon, 2004b,a; Wu et al., 2005). If we consider Equation (6.10) on a < 1 pc
scale, typical for HCN gas, the star formation efficiency, e, will correspond to a fraction of a
dense core mass that is eventually incorporated in a star (e.g., € 2 50% in Federrath et al.,
2014). The lifetime of such cores, tyycn, will be controlled by their local freefall time, on
which the star is formed, and the rate at which the remaining dense gas is dispersed by
feedback. With these definitions of € and tycn, the interpretation of the linear relation for
HCN gas is similar to that for all molecular gas except that the separation between the scale
on which HCN gas resides (< 1 pc) and the scale on which the relation is measured (up to
the scale of entire galaxies) is much larger. Because of such large scale separation, both € and
tgeon are expected to be independent of the large scale and thus Tgen ~ tgen/€ will also be
independent of the total HCN gas mass inside this scale, rendering the relation linear. Note,
however, that the linear relation for dense molecular gas can also be in part an observational
effect, due to the selection of gas from a narrow density range in the PDF tail (Krumholz

& Thompson, 2007) or from the densest parts of isothermal spherical clouds (Parmentier,

2017).
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6.4.3 Effect of Threshold on the Efficiency of Feedback in Galaxy

Stmulations

Our results show that the choice of star formation threshold in galaxy simulations has a
significant impact on the resulting slope of the KSR. Contrary to previous arguments in
the literature, we show that in our simulations the slope of the molecular KSR does not
merely reflect the density dependence of the star formation recipe adopted at the resolution
scale, but depends on the density PDF of the ISM gas, which is strongly affected by feedback.
Physically, the threshold determines both the locations where current star formation proceeds
and the timescale and efficacy with which feedback can render star-forming gas non-star-
forming. The strong effect that the choice of threshold has on the results implies that this
choice must be made with great care, as was indeed demonstrated in related contexts by
Governato et al. (2010) and Hopkins et al. (2013a).

As was shown in Sections 6.3.2-6.3.4, the role of feedback in making the KSR linear
is twofold. First, feedback must efficiently disperse star-forming gas, which results in self-
regulation to constant star formation efficiency per cycle, €, independent of the rate at which
gas is converted into stars in the star-forming state. Second, feedback must be efficient in
converting molecular gas into the atomic state and establishing a correlation between ty,
and € which leads to a near cancellation of their trends with Xy, in 7, ~ t,/€ and thus
to a near-linear KSR.

Our results indicate that the efficacy of stellar feedback in both of these aspects is much
higher when the star formation threshold is based on a;,, compared to the threshold based
on constant gas density. Indeed, it is generally faster to render gas non-star-forming by
driving subgrid turbulence and thereby increasing oy, than to actually disperse a star-
forming region and decrease its density. Similarly, the lifetime of gas in the molecular phase
is also controlled by feedback to a much larger degree, because gas becomes star-forming
shortly after it becomes molecular and therefore has less time to become denser and is more
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difficult to be dispersed.

The above arguments and our simulation results thus favor a star formation threshold
in virial parameter (see also Hopkins et al., 2013a) rather than the more popular threshold
in gas density. Not only is such a threshold well motivated by models of star formation in
turbulent ISM, it also naturally leads to a linear KSR for molecular gas when feedback is
efficient. The use of this threshold in practice is somewhat complicated by the necessity to
estimate turbulent velocity dispersion at the resolution scale and generally requires modeling
of turbulent velocities on subgrid scales. On the other hand, our results indicate that simu-
lations that use density-based or the fp, star formation threshold should be interpreted with
caution, especially on the sub-galactic scale, where the gas distribution is strongly affected
by the choice of threshold.

The optimal choice of the threshold and other parameters of star formation and feedback
models will of course depend on the scale on which these models are applied. In particular,
the mechanism of the linear KSR origin on kiloparsec scales requires high resolution so that
the transitions of gas between atomic, molecular, and star-forming states on sub-kiloparsec
scales are sufficiently resolved. The resolution of state-of-the-art large-volume cosmological
simulations, < 1 kpc, is not yet sufficient to capture these transitions, and thus, the slope of

the KSR on kiloparsec scales reflects that adopted in the star formation prescription.

6.5 Summary

Using a suite of isolated L, galaxy simulations, we explored the origin of the slope of the
relation between surface densities of molecular gas and SFR, averaged on kiloparsec scales.
We showed that when feedback is efficient and the star formation threshold is based on the
virial parameter, this relation has a near-linear slope, regardless of the slope adopted in the
resolution-scale relation between star formation rate and gas density. Thus, in this regime,

the slope of the KSR on kiloparsec scales does not reflect the slope on small scales, contrary
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to a number of previous arguments in the literature.

We showed that the linear slope of the molecular KSR and its insensitivity to the local
slope result from the particular scaling of the gas PDF with the gas surface density. When
feedback is efficient in shaping the PDF, the PDF scaling leads to a cancellation of trends
exhibited by the average depletion times in star-forming gas and by star-forming mass frac-
tions. When feedback is not efficient, the gas PDF is shaped by dynamical processes, such
as ISM turbulence and passage of spiral arms, and the KSR becomes dependent on the local
slope and thus is not necessarily linear.

We explained these results using an analytical model based on the conservation of inter-
stellar gas mass as the gas cycles between atomic, molecular, and star-forming states (see
Section 6.3)—the model we previously used to explain the physical origin of the gas depletion
time and its dependence on star formation efficiency and feedback strength (Chapters 4-5).

Our main findings can be summarized as follows:

1. In Section 6.3.2, we show that when feedback is efficient in dispersing star-forming gas,
the typical duration of star-forming stages, ¢, is proportional to the local depletion
time of star-forming gas, 7, so that the molecular depletion time, 7p, o ty, T Jtsr,
becomes independent of 7. This explains why the molecular KSR is insensitive to
the local slope adopted in the subgrid prescription for star formation, because only 74
depends explicitly on the local slope (see Equation 6.3), while the time the gas spends

in molecular form during each cycle, tp,, does not.

2. When feedback is inefficient, ¢4 is controlled by dynamical processes that disperse star-
forming gas: turbulent shear, differential rotation of galactic disk, expansion behind
spiral arms, etc. Star formation, and thus 74, reflects the gas PDF shaped by these
dynamical processes, but does not affect this PDF via feedback. Thus, the trend of
ts is no longer proportional to 74, and the molecular KSR becomes dependent on the

local slope of the star formation prescription f.
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3. Simulations in the regime intermediate between the regimes of efficient and inefficient
feedback exhibit intermediate behavior. Thus, in our fiducial simulation with eg = 1%,
the effects of feedback and dynamical processes are both important, and therefore, the
molecular KSR is close to linear, but its slope weakly depends on the local slope (see

Figure 6.2 and Section 6.3.2).

4. We show that a near-linear molecular KSR emerges only in simulations that use a
star formation threshold in the virial parameter. The molecular KSR generally has a
nonlinear slope in simulations with the same efficiency and feedback strength, but that
use a density-based threshold, with the slope steepening with the increasing threshold
value. We argue that this is because in the latter simulations, the time between the
moment gas becomes molecular and the moment it becomes star-forming is much
longer. As a result, at lower Yp,, a smaller fraction of molecular gas is able to reach

the star-forming state, and the molecular KSR therefore becomes steep.

The theoretical framework we use to interpret our simulation results is rather general and
can be used to interpret observations as well. For example, it can shed light on the origin of
star formation relations observed for different gas tracers, on different spatial scales, and in
different galactic environments, as we discuss in Section 6.4.2.

The framework is also useful for interpreting and designing galaxy formation simulations.
In particular, our results indicate that attention should be paid not only to the modeling of
feedback but also to the modeling of star formation and, in particular, the choice of criteria
used to identify star-forming gas. Our simulation results favor a criterion based on the local

virial parameter instead of the commonly used density-based criterion (Section 6.4.3).
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CONCLUSION

We presented an intuitive physical model that explains the origin of gas depletion times in
galaxies. Our framework is based on the equation of gas mass conservation and the idea of
gas cycling between diffuse ISM and the dense star-forming state on characteristic timescales
set by dynamical and feedback processes that drive gas evolution.

The short, ~ 10-100 Myr, timescales of the physical processes driving the evolution of
gas indicate that the ISM is vigorously “boiling” when considered on the Gyrs-long global
depletion timescale. The global depletion time is long, because on each evolution cycle every
gas parcel spends only a small fraction of time in the star-forming state and converts only
a small fraction of mass into stars, thus requiring a large number of evolution cycles for gas
depletion. This explains why global depletion times are much longer than the dynamical
timescales in the ISM, that determine the duration of a single evolution cycle. Global
depletion times are also longer than local depletion times in actively star-forming regions
because gas spends significant fraction of each cycle in the non-star-forming state.

We illustrated our framework using the results of isolated L, galaxy simulations. Our
framework can explain the dependence of the global depletion time on the parameters of star
formation and feedback assumed on the resolution scale in our simulations. In particular,
we showed that gas depletion time scales inversely with the local star formation efficiency
when this efficiency is assumed to be small, and becomes independent of efficiency when the
efficiency is large.

The latter regime is usually described as “self-regulation” by feedback in the literature
(e.g., Dobbs et al., 2011a; Hopkins et al., 2013a, 2017a), and our model explains the phys-
ical mechanism of this behavior. Global depletion time becomes independent of the local
depletion time and efficiency in star-forming regions when stellar feedback limits the dura-
tion of star-forming stages and makes them negligible compared to the entire duration of

the evolution cycle. As efficiency increases, local depletion time decreases, but so does the
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duration of star-forming stages because the amount of young stars sufficient to destroy each
star-forming region forms sooner. These two trends cancel out making the total number of
evolution cycles required for gas depletion and global depletion time independent of local
star formation efficiency.

The insensitivity of global depletion time to local star formation efficiency implies that
its value cannot be used to constrain the efficiency in the self-regulated regime. However, as
we showed, the mass fraction of star-forming gas in such a regime scales inversely with the
local star formation efficiency and therefore it can be used to constrain the efficiency in this
regime.

Our model also sheds light on the origin of the linear correlation between SFR and
molecular gas surface densities observed on kiloparsec and larger scales in normal star-
forming (non-starburst) galaxies. We showed that the slope of this relation has a similar
behavior as the KSR normalization (i.e. global depletion time): when feedback is efficient,
the molecular KSR slope becomes independent of the density dependence slope adopted
locally. This behaviour is a counter-example to the argument that the KSR on large scales
reflects the slope adopted in the star formation prescription (Schaye & Dalla Vecchia, 2008;
Gnedin et al., 2014), and as we show, its physical origin is analogous to that of the self-
regulation of the KSR normalization.

The presented model for the gas depletion timescale is a generic framework that can be
applied not only to galaxies as a whole but also to individual ISM patches with sizes ranging
from ~ kiloparsec to a typical size of star-forming regions, ~ 10 parsec. It can also be used
to predict and interpret trends of gas depletion time with the ISM properties, gas and stellar
surface densities, metallicity, galaxy morphology, and redshift.

As a final comment, we note that in the context of galaxy evolution over cosmological
timescales, the actual gas depletion time is often considered to be unimportant. For example,

galaxies from the star-forming sequence are predicted to form stars at the rates regulated by
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gas accretion and gas loss in winds, because gas depletion times in such galaxies are short
compared to other relevant timescales (e.g., Bouché et al., 2010; Davé et al., 2012; Lilly
et al., 2013). Note, however, that dwarf galaxies and galaxies from the green valley consume
gas on extremely long timescales of 2 5-10 Gyr, and, therefore, their depletion times do
affect their evolution. Moreover, at z 2 5-6, when the age of the universe is < 1 Gyr, the
Gyr-long gas depletion times become comparable to the cosmological evolution timescale
and will therefore play an important role in controlling the SFR during the early stages of
galaxies evolution (e.g., Dekel & Mandelker, 2014; Peng & Maiolino, 2014). The framework
for modeling gas depletion time presented in this dissertation thus opens a way to refine
theoretical models of galaxy formation in this regime, which is particularly important in the

upcoming era of the James Webb Space Telescope.
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APPENDIX A
SUBGRID TURBULENCE AND NONUNIVERSAL STAR
FORMATION EFFICIENCY

In this chapter, we present the results of a galaxy simulation with explicitly modeled un-
resolved turbulence (Section 3.2) and star formation efficiency (SFE) per freefall time, eg,
that is not assumed constant but varied in each cell depending on the predicted level of un-
resolved turbulence. We use these results both to illustrate the unresolved turbulence model
and to explain the motivation behind our fiducial choice of the star formation threshold in
gas virial parameter adopted in the rest of the dissertation.

We use the same initial conditions of an isolated L, galaxy as in all other simulations
presented in this dissertation (see Section 3.1). The main differences of the simulation
presented in this chapter are the adopted model for continuously varied eg and the assumed
parameters of stellar feedback. These differences are detailed in Section A.1.

In Sections A.2 and A.3, we discuss the distribution of gas properties controlling local
star formation efficiencies in our simulation: gas density, temperature, and subgrid turbulent
velocity. In Section A.4, we show that the adopted star formation model predicts a wide
variation of SFE with star formation happening only in cold dense gas without requiring
any ad hoc density or temperature thresholds. In Sections A.5, we compare our results with
observations of star formation on GMC scale in the Milky Way and nearby galaxies. In
Section A.6, we discuss our findings and compare them with the results of previous studies.

This chapter is based on the work published in Semenov et al. (2016).
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A.1 Turbulence-based star formation efficiency and stellar

feedback

Observational evidence of turbulence in molecular clouds motivated development of analytic
models that relate star formation to the properties of self-gravitating MHD turbulence in
GMCs (Krumholz & McKee, 2005; Padoan & Nordlund, 2011; Federrath & Klessen, 2012;
Hennebelle & Chabrier, 2013). Generally, these models predict variation of star formation
efficiency with virial parameter oy and both sonic and Alfvénic Mach numbers. However,
such models usually rely on strong assumptions about turbulence in GMCs, such as the gas
density PDF being static, and the critical density for collapse, that is assumed to be inde-
pendent of local flow configuration. Recent direct MHD simulations of turbulent molecular
clouds do confirm the strong variation of star formation efficiency with «y;, but reveal a
surprising insensitivity to other cloud properties (Padoan et al., 2012, 2017). Specifically,
Padoan et al. (2012) find that the star formation efficiency per free-fall time of simulated

GMCs can be parametrized by the following simple formulal:

€ = €w €XP (—1 / g?;) , (A.1)

where €y is a normalization coefficient that takes into account mass loss during formation

of stars from protostellar objects and virial parameter of a cubical region with a size A is
computed as for a uniform sphere of radius R = A/2: oy = 50§R/ (B3GM) (Tt2 /(pA?)
(Bertoldi & McKee, 1992). The range of ayj, probed by Padoan et al. (2012) covers a wide
range of SFE, eg ~ 0.5-50%, that matches the observed variation, and the above fit holds on
the scales of GMCs, few to hundred pc. Therefore, this fit can be directly applied in galaxy

formation simulations if the turbulent velocity or on GMC scale is known.

1. Padoan et al. (2012) fit their eg as a function of the ratio of freefall, tg = 1/37/32Gp, and box-crossing
times, to, = A/20: eg = €y exp (—1.6tg/te), which is equivalent to Equation (A.1) because by definition
Qyir = 502 AJ6GM = 1.35(tg /ter)?.
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The fit to the numerical results given by Equation (A.1) agrees within a factor of ~ 2
with the results obtained by other authors (Clark et al., 2005; Price & Bate, 2009; Wang
et al., 2010; Krumholz et al., 2012b; Federrath, 2015), although such comparison requires
care, as SFE is defined and measured differently in different studies.

Equation (A.1) indicates that SFE is exponentially sensitive to ayi and therefore, if
GMCs have a range of ay;, values, the formula implies a wide variation of eg. This variation
and the relative insensitivity to thermal and Alfvénic Mach numbers can be understood as
follows. At a fixed sonic Mach number M, increasing oy o< M2 /p is equivalent to decreasing
the average density of gas, p. As the critical density at which gas becomes self-gravitating
in physical units is constant, the critical overdensity relative to the average density increases
with decreasing p. As a result, the SFE decreases with decreasing fraction of gas mass at
overdensities above critical (e.g., Padoan & Nordlund, 2011). The dependence of SFE on
sonic and Alfvénic Mach numbers is more complex because their increase results in both
widening the density PDF of MHD turbulence and increasing of the critical overdensity
(Padoan & Nordlund, 2011). Padoan et al. (2012) results show that these effects roughly
cancel each other and SFE becomes relatively insensitive to the actual values of these Mach
numbers, at least at high M explored by these authors.

In the regime of low-M turbulence the contribution of thermal pressure to the support
against gravity cannot be neglected. To extend the above formula to this regime, we redefine

ayir to take into account thermal pressure support (Chandrasekhar, 1951):

50t20tR N (0tot/10 km 871)2
7 (n/100 cm—3)(A /40 pc)2’

Qyir = 3SOM (A.2)

where oot = \/at2 + ¢2 includes both the sound speed, cs, and subgrid turbulent velocity
dispersion, .
In the simulation presented here, we estimate oy = /2K /p from the SGS turbulence

energy K and compute SFE in each cell using Equations (A.1) and (A.2) with the cell size
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for the value of A. We adopt e = 0.9 consistent with the results of Federrath et al. (2014)
who showed that the mass loss due to outflows does not exceed 10% on the scale where
Padoan et al. (2012) form sink particles.

We stress that all parametrizations and parameter values in the star formation model
adopted in this chapter are not tuned but taken from the results of simulations of star
formation in GMCs.

Stellar feedback is modeled as described in Section 3.3 but with a choice of parameters
different from their fiducial values. In contrast to our fiducial model, we do not boost the SN
radial momentum predicted using the Martizzi et al. (2015) results. This regime corresponds
to the “weak feedback” case explored in Chapter 5 (b = 0.2). In addition, we convert 30%
of the radial momentum predicted by Martizzi et al. (2015) directly into subgrid turbulent
energy via the term Sqy in Equation (3.1). The combined effect of both these changes is
that the rate of momentum injection into the ISM by each young stellar particle is ~ 7 times
smaller than in our fiducial simulation explored in Chapters 4-6. As a result, the ISM of
the galaxy presented here is not as flocculent as in our fiducial run (Figure 4.1) with some

of the gas being able to form long-lived high-density clumps.

A.2 Spatial distribution of gas density and temperature

The star formation efficiency in our simulation is predicted based on the self-consistently
evolved local density, temperature, and subgrid turbulent velocity. Thus, in this and the next
sections we discuss the distribution of these quantities in our simulated disk with a special
emphasis on the turbulent velocities. We also compare to observations the star formation
efficiencies and rates predicted by our turbulence-based star formation prescription.

As can be seen in panels a and b of Figure A.1, by ¢ ~ 600 Myr most of the disk volume
is filled by the diffuse (n ~ 0.1-2 cm™3) warm (T ~ 10% K) gas, while denser gas resides in

spiral structures. The spiral arms travel around the disk compressing diffuse gas for certain
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Figure A.1: Gaseous disk after 600 Myr of evolution. The top row shows from left to
right slices of density (a), temperature (b), and subgrid rms turbulent velocity oy = /2K /p
(c) in the disk plane. The temperature and rms velocities are derived from the thermal and
subgrid turbulent energies respectively. The bottom row shows derived quantities related
to the star formation prescription. Left panel (d) shows the virial parameter calculated
using Equation (A.2). Only the gas mass was taken into account in estimation of ayiy.
Equation (A.1) translates the derived ayj, directly into SFE shown in the middle panel
(e). Thin grey lines in all six panels indicate an iso-density contour that corresponds to
n =10 cm™? and, therefore, encompasses cold dense gas. Thus, the predicted SFE exhibits
strong spatial variation even in the cold gas. Right panel (f) shows the distribution of the
local gas depletion time defined as t, = p/px. Purple circles in panels a, ¢ and e indicate
dense gaseous clumps.
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periods of time. Their motion relative to the diffuse gas is generally supersonic and these
spiral waves are thus accompanied by shocks. As gas is being compressed, at n ~ 5 cm™3
cooling by thermal excitation of C II and O I fine structure lines becomes efficient and gas
rapidly cools down. This substantial cooling in spiral arms means that the pre-arm shocks
are radiative and, therefore, they produce density jumps of orders of magnitude at the spiral
arm interfaces.

The highest densities are reached in gaseous clumps. These clumps develop within the
spiral arms due to local gravitational instabilities (e.g., Agertz et al., 2009b; Dekel et al.,
2009; Bournaud et al., 2010). Several examples of such clumps are circled in Figure A.la.
In contrast to spiral arms, these high-density clumps are persistent physical objects rather
than waves and so they may survive for a significant period of time. Examination of disk
evolution shows that some of the clumps last up to a couple of disk revolutions, until they
are disrupted by feedback or merged with the gas concentration in the disk center, as also
found in a number of other studies (e.g., Genel et al., 2012). The long-lasting clumps may
themselves drive the formation of the disk spiral structure (e.g., D’Onghia et al., 2013).

Hot rarefied bubbles of gas are another kind of prominent features seen in Figures A.la
and b. Some of these bubbles are inflated by exploding SNe in the regions with active star
formation. Local injections of SNe energy and momentum affect the distribution of dense
cold gas, as they disrupt gaseous clumps and tear spiral arms apart. Sometimes, as in the
case of the large hot spot near the marker “B”, the hot gas instead is being pushed into the
disk plane from the hot halo (T & Ty, ~ 109 K) in regions where the disk is thinned and its

gas pressure is low.

A.3 Properties of the ISM turbulence

Given the importance of turbulence for our adopted star formation prescription, we begin

with the discussion of the small-scale subgrid turbulence in the disk. Figure A.lc shows that
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Figure A.2: The distribution of subgrid turbulent velocities o (top panel) and the resulting
star formation efficiencies per free-fall time eg (bottom panel) at different densities. The
distributions take into account all cells within cylindrical volume with R < 20 kpc (~ 6
initial scale radii) and |z| < 1 kpc (total height is ~ 6 initial scale heights) centered at the
disk center. To increase statistics we average PDFs over 23 snapshots at 600 £ 10 Myr.
Colors show the mass-weighted average temperature in bin and its intensity indicates the
total mass in bin. Black contours enclose 25%, 68%, 95% (top) and 5%, 15%, 30% (bottom )
of the current total gas mass. The turbulent velocities in cold spiral arms result from
compression of diffuse gas and scale with density roughly as ot o nl/2 (dashed red line given
by Equation A.5). The linear structures at the upper right end of the n — oy distribution
correspond to dense gaseous clumps with oy ~ const. Bottom panel shows the distribution
of star formation efficiency computed using Equation (A.1). The adopted model naturally
introduces an exponential cutoff at densities n ~ 10 cm™>. If compared to universal €fF
prescriptions turbulent model predicts broad variation by orders of magnitude, even though
the average SFE is still ~ 1%.
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the subgrid model predicts the rms turbulent velocities, o¢, at the level of few to ten km g1

on the scale of our smallest grid cells (40 pc). This result agrees with the observed velocity
dispersion on GMC scales (Gammie et al., 1991; Bolatto et al., 2008; Sun et al., 2018),
Milky Way dynamics (Kalberla & Dedes, 2008), and extragalactic HI data (Petric & Rupen,
2007; Tamburro et al., 2009), as well as with high resolution disk simulations (Agertz et al.,
2009a). The turbulent velocities in our simulation increase towards the disk center where
gravitational instabilities and frequent SNe maintain higher oy (Agertz et al., 2009a). High
ot in bright spots that correspond to hot gas (105f106 K in Figure A.1b) are driven by
expanding supernova bubbles. Dense cold spiral arms are typically more turbulent than the
surrounding gas and therefore they are well traceable in the oy map, especially at » > 5 kpc.
Enhanced turbulent velocities in the spiral arms result from the compression of inter-arm
turbulence. Similarly, collapse of gas into dense gaseous clumps also results in high turbulent
velocities (circled in Figures A.la and c).

Quantitative conclusions about turbulence in different ISM phases can be drawn from the
distribution of oy as a function of local gas density shown in Figure A.2a. In this plot several
distinct phases are highlighted using color: the warm diffuse gas at T ~ 10* K (yellow), the
cold dense gas in spiral arms and dense clumps (blue), and the hot tenuous gas at T' > 10° K
in the SNe bubbles and hot gaseous halo surrounding the disk (red). The contours enclosing
different mass fractions show that most of the gas mass is in the warm and cold phases.

The warm gas phase corresponds to the diffuse gas between spiral arms and around the
disk plane (white color in Figure A.1b). In this phase, turbulence is in an approximate
equilibrium between production due to instabilities (e.g., Bournaud et al., 2010), sourcing
by SNe and viscous dissipation into heat. Most of the gas mass in this phase resides on the
disk outskirts (r > 5 kpc, labelled as the “outer disk”) and the typical subgrid turbulent
velocities are ~ 1-2 km s~! with a significant scatter of ~ 0.5 dex. Note that the actual

velocity dispersion of the disk would include resolved gas motions that are considerably
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larger. As mentioned above, o¢ in the diffuse gas increases towards the disk center and

1

may reach few tens to hundred km s™". Some of the warm gas with the largest velocity

dispersions resides in expanding SNe bubbles, which drive turbulent velocities to the highest
values found in our simulation, few hundred km s~ 1.

The cold gas phase is, of course, the most interesting for star formation. The figure
shows that such gas has typical subgrid turbulent velocities of oy ~ 3-10 km s~1. This
result agrees with the observed three-dimensional turbulent velocities in GMCs (~ 8 km s~
on scales of 40 pc in Bolatto et al. 2008 and ~ 2-20 km s~! on 45-120 pc scales in Sun
et al. 2018). We find that the actual value of ot correlates with the local compression rate,
—V,u;. This result indicates that the main source of turbulent energy in this regime is
heating by compression of the diffuse gas (Robertson & Goldreich, 2012). Specifically, as a
parcel of relaxed gas at T' ~ 10* K enters a spiral arm both thermal and turbulent energies
increase, as pressures associated with thermal and random motions do negative work during
compression. However, at typical spiral arm densities the excess of thermal energy is quickly
radiated away and the gas cools down. In contrast to thermal energy, turbulent energy
dissipates on the local crossing time scale, tjo. ~ A/o¢ (e.g., Mac Low et al., 1998), which
may be longer than the time spent by the gas parcel inside the spiral arm. The turbulent

dissipation time scale and the time spent in the spiral arm can be estimated as

A ot -1
to A~ d M ( ) , A3
dec v (40 pc) 10 km s—1 (A.3)
Warm Varm -1
farm ~ 3 M < ) , A4
arm vt (300 pc) 100 km s~ 1 (A.4)

where warm is a typical spiral arm width and vary is its typical velocity relative to the
ambient gas. Here we neglect the fact that gas may enter into spiral arms at different angles

and then travel along the spiral arm. We approximate the spiral arm passing time simply
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as Warm /Varm With typical values found in our simulation. Actual tary may vary around the
estimation from Equation (A.4) depending on the local gas dynamics.

In the outer disk, where the pre-shocked gas has low turbulent velocities (o ~ 1 km s’l),
turbulence decays slowly (tgec > tarm) and oy increases in spiral arms. The bimodal distri-
bution of mass in Figure A.2a indicates that the compression is fast and, therefore, the gas
is either relaxed or resides in a spiral arm. In the inner disk where oy is high (~ 10 km s™1)
turbulence may decay during compression (tge. ~ tarm) and the increase of oy with density
is shallower. Turbulence decays even more efficiently in the dense gaseous clumps where
ot reaches few tens km s~!. Their typical lifetime (> 100 Myr) is considerably longer than
the turbulence decay time scale (few Myr from Equation A.3). As a result, oy reaches an
equilibrium value, that weakly depends on density (purple lines in Figure A.2).

Star formation in our model proceeds in the cold dense gas. The pressure support in this
gas is dominated by small-scale turbulent motions, as the sound speed in this phase is cg ~
1 km s_l\/m and the turbulent velocities (ot > 3 km s~1) are supersonic. Therefore,
the gas in this regime forms stars with the efficiency that depends on oy (Equations A.1
and A.2). In our simulation, we find that the average ot in cold gas depends on density as
(dashed red line in Figure A.2a)

n >1 /2

—12km s (g
ot 5 100 em—3

(A.5)

This scaling with density reflects the approximate balance between turbulence production
on a local dynamical timescale and decay on a cell-crossing time. As gas gravity plays a
major role in compressing the gas, we expect the former timescale to be ¢4y, (pG)_l/ 2
while the decay time is tgo. ~ A/og. In quasi-equilibrium, equating these two timescales
results in the above scaling: oy pl/ 2,

Note that this scaling implies that ay;, o UtQ /p & const, but it does not necessarily

require that gas is in virial equilibrium with o ~ 1. Instead, the value of a;, will depend
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on the actual mix of processes that control local gas compression and dynamical production
of turbulence. For instance, substituting Equation (A.5) into (A.2) shows that in the cold
gas in our simulation oy, ~ 13 on average.

Figure A.2a shows significant scatter around the average behavior expressed by Equa-
tion (A.5), ~ 0.3 dex. We find that this scatter is mostly due to the variation of local
compression rate, —V,;u;. This offers hope that 0 may be approximated in simulations with-
out explicit subgrid turbulence modeling using dependencies of o on density and V,u;, that
can be calibrated using simulations with such modeling. We will explore the relation of the
local compression rate and the subgrid turbulent velocity in a future study.

In closing, we note that the above discussion shows that the key mechanism of turbulence
production in star-forming regions of our disk is the compression of warm, transonic gas by
spiral waves. This justifies the usage of the linear closure for the turbulent stress tensor 7;;,
as discussed in Section 3.2. In particular, production of subgrid turbulence from resolved
motions is mostly important in diffuse gas with 7'~ 10* K. This temperature corresponds
to the sound speed of ¢s ~ 10 km s~ 1 and, therefore, the typical turbulent velocities in this
gas (few km s™1) are sub- or transonic, for which the linear closure for the stress tensor is

more appropriate (Schmidt & Federrath, 2011).

A.4 Local star formation efficiency

In our simulation we derive the star formation efficiency eg in each cell using Equations (A.1)

and (A.2). These equations parametrize local SFE via the virial parameter:

Qyip ¢ —————, (A.6)

where p, T and oy are the gas density, temperature, and subgrid turbulent velocity dispersion

self-consistently evolved by the code. As can be seen in Figure A.1d the virial parameter of
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modeled cells on scale of 40 pc is rather high and exhibits significant variation.

Given the exponential dependence of eg on the virial parameter, the ay;, variation trans-
lates into an even wider spatial variation of eg. This variation in the dense gas can be seen
in panels e and f of Figure A.1 that show maps of eg and local gas depletion time relative
to the gas denser than n = 10 cm™3, shown by the thin gray contours.

The depletion time of molecular gas, and thus possibly eg, is indeed observed to vary
along the spiral arms of M51 (Meidt et al., 2013). As an extreme example of this spatial
variation, compare the spiral arms denoted as A and B in the panel e of Figure A.1. Panels
a and b of the figure show that the gas in these arms has similar density and temperature
and, therefore, a common star formation model with a constant SFE above a fixed density
threshold would predict the same efficiency and similar depletion time in both arms. How-
ever, in our simulation, the spiral arm A forms stars much more efficiently than the arm B
due to lower turbulent velocity predicted by the subgrid model.

As discussed in Section A.3 the difference in oy originates from the variation in the
local compression rates. The compression rate, in turn, may vary due to several reasons.
First, gas may experience different compression in spiral arms depending on the large-scale
dynamics and development of local disk instabilities. Second, turbulence may be suppressed
(enhanced) in spiral arms due to local expansion (contraction) of gas along the arm. Third,
spiral arms may be affected by hot gas from either SNe bubbles or the halo gas penetrating
into the disk. In particular, as can be seen in Figure A.1b, the spiral arm B is adjacent to
a bubble of hot gas in the downstream direction. The thermal pressure of this hot gas may
contribute to compression.

In all three scenarios higher turbulent velocities result from stronger compression. More
quantitative information about the SFE variation with density can be drawn from the phase
diagram shown in Figure A.2b. The most noticeable features of this diagram are the sharp

cutoff at n ~ 10 em™3 and the orders of magnitude variation of eg.
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3 in our model arises naturally from the thermal

The exponential cutoff at n ~ 10 ecm™
support in warm diffuse gas. In particular, turbulent velocities in this phase are mostly
subsonic and gas is supported against gravity mainly by its thermal pressure. This thermal
support is codified in the definition of the virial parameter given by Equation (A.2), which
results in the exponential suppression of eg in the diffuse gas, as the virial parameter becomes
large: iy ~ 103 Ty/ng, where Ty = T/10* K and ng = n/1 cm™3.

In the cold phase, on the other hand, the turbulence is supersonic and its pressure
provides the main support against gravity. The typical turbulent crossing time in this regime
is of the order of the free-fall time: ay; ~ 10 O'?l/ng, where 041 = 0¢/10 km s71 and
ny = n/100 cm 3. This value of ayj corresponds to eg ~ 1%, typical for observed star-
forming regions. As a result, in the turbulent model only cold dense gas forms stars at a
reasonably large efficiency. The transition from the negligible values of eg in the warm diffuse
gas to eg ~ 1% in the cold dense gas is sharp due to the abrupt drop in temperature. This
sharp transition is responsible for the effective density threshold for efficient star formation
at n ~ 10 cm 3.

The most efficient star formation in our simulation occurs in the gas of density n ~
10-100 cm ™3 in spiral arms and dense clumps. The average trend of oy with density (ot
n'/2 from Equation (A.5)) substituted into Equation (A.1) results in constant eg ~ 0.6%
independent of density, as ayj Jth. Therefore, the entire variation of eg around the
average value originates from the scatter of modeled turbulent velocities around the average
trend. As we mentioned before, this scatter is related to the variation of local compression
rate.

Although the mass-weighted average eg in our disk is quite similar to the universal value
eg ~ 1% at n > 10 cm 3 usually inferred from observations, the large spatial and temporal

variation of the SFE predicted by our model may have important effects on galaxy evolution.

For example, localization of efficient star formation in high-density regions may have a drastic
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effect on the ability of galaxy to drive large-scale winds and affect the final morphology of

the galaxy (e.g., Governato et al., 2010).

A.5 Comparison with observed GMCs

In order to check the viability of the star formation model used in this chapter, we compare
its predictions to the SFRs in observed GMCs. Specifically, in Figure A.3 we compare the
local gas surface density (Sg = pA) and the surface density of SFR (X4 = puA = egpA/ty)
in individual cells (A = 40 pc) to the corresponding quantities measured in GMCs. For a fair
comparison, we select the observed clouds with sizes in the range ~ 5-100 pc, that straddle
the cell size in our simulation.

The distribution of SFR in our disk has a sharp upper boundary with a wide tail to-
wards lower rates. The observed local star-forming regions from Heiderman et al. (2010);
Lada et al. (2010); Murray (2011) agree remarkably well with the upper envelope of our
predicted distribution, whereas the extragalactic data agrees with the main mode of SF in
our simulation. This may be because studies of the local GMCs focus on the regions with
the most efficient star formation. On the other hand, blind surveys of star formation on
GMC scales do reveal abundant gas with eg < 1% both in the Milky Way (e.g., Lee et al.,
2016; Vutisalchavakul et al., 2016) and in nearby star-forming galaxies (Utomo et al., 2018).

In contrast to the local surveys, GMCs in other galaxies are sampled more uniformly
and do indicate prevalent dense gas with low star formation efficiency. For instance, the
blue polygon in Figure A.3 summarizes the Rebolledo et al. (2015) results for three nearby
spiral galaxies: NGC 6946, NGC 628 and M101. Their inferred SFRs do agree with the
typical SFRs of the dense gas in our simulation. The observed SFR distribution in the
Small Magellanic Cloud (SMC; pink polygon in Figure A.3; Bolatto et al., 2011) also reveals
that most of its dense molecular gas forms stars rather inefficiently. However, the SMC

is a dwarf galaxy with substantially different dynamics and significantly lower metallicity
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Figure A.3: Star formation rates obtained in our simulation are broadly consistent with
observational data. Blue color indicates mass weighted distribution of cells in ngi* plane.
Black contours indicate 5%, 15% and 30% of the current total gaseous disk mass. Grey
dotted lines correspond to constant values of eg in the simulated star-forming regions. The
overplotted data points show different samples of GMCs in the Milky Way: Heiderman
et al. (2010, stars and squares), Lada et al. (2010, circles) and Murray (2011, triangles). In
this plot we show only GMCs with sizes in the range ~ 5-100 pc that roughly correspond
to our cell size, A = 40 pc. Two polygons show resolved star formation rates in nearby
galaxies. The blue one summarizes results of Rebolledo et al. (2015) for three nearby spirals:
NGC 6946, NGC 628 and M101, while the pink one indicates star formation in the Small
Magellanic Cloud (Bolatto et al., 2011). In the Rebolledo et al. (2015) sample we correct
gas surface densities for helium assuming 25% mass fraction.
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than the Milky Way, and therefore, its global SFR is considerably lower than that of our
simulated galaxy. This discrepancy is yet another manifestation of the SFE variation and

its dependence on galaxy properties.

A.6 Discussion

The results presented in this chapter show that our turbulence-based model for star formation
predicts a wide variation of SFE from eg < 0.1% to ~ 10%. The predicted distribution of
SFE at the resolution scale of our simulation, ~ 40 pc, agrees with the SFRs observed in
star-forming regions on similar scales. As we show in Section C.2, such a model also predicts
realistic molecular gas depletion times and a linear slope of molecular KSR in agreement with
observations.2 This agreement is non-trivial because on galactic scales our model predictions
are determined by the small-scale spatial distribution of density and turbulent energy shaped
by galactic evolution. Moreover, on the scales of individual star-forming regions (cells in
simulations) the star formation rate is not tuned but is estimated from the local gas density
and turbulent energy using predictions of GMC-scale simulations (see Section A.1). Once
calibrated to reproduce the results of such simulations, parameters of both the subgrid
turbulence model and the prescription for star formation remain fixed in our galactic disk
simulations. Remarkably, the model predicts SFRs in agreement with observations without
any additional tweaking of these parameters.

Although the agreement with the global SFR and gas depletion time can also be achieved
in simulations that adopt universal eg recipes, such recipes require ad hoc assumptions about
a value of eg and criteria for star formation. Also, as we show in Chapter 6, a commonly

used recipe with a constant eg above a fixed density threshold leads to a molecular KSR

2. Note that the simulations presented in Section C.2 were run with stronger stellar feedback, b = 1 and
5, compared to b = 0.2 in the simulation presented in this chapter (see Section A.1). We checked that in
the simulation with fiducial b = 1, the predicted distributions of oy, e, and SFR on 40 pc scale remain in
quantitative agreement with observations.
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that is significantly steeper than the observed relation. In contrast, a simulation in which
SFE varies in a way motivated by the model explored here, is able to reproduce the observed
near-linear molecular KSR.

One important feature of the turbulence-based star formation model is the pronounced
physical density threshold for star formation at ng, ~ 10 cm™3. Such density threshold is
often set by hand in galaxy formation modeling. In our simulation, however, this threshold
arises from the rapid drop in temperature as density increases beyond n4y,. Such threshold is
quite similar to the effective thresholds in Ho-based models of star formation in which local
SFE is modulated by the molecular gas mass fraction fu,: px = e fr,p/tg (Robertson &
Kravtsov, 2008; Gnedin et al., 2009). In particular, the molecular fraction correlates with
the cold gas abundance and, therefore, the threshold in our model corresponds to the density
at which fy, rapidly increases. We thus also expect that ng, in our model should depend
on gas metallicity similarly to the threshold in the fy,-based models if gas thermodynamics
is modeled properly to capture dependence of the net cooling function on gas metallicity.

Modeling of the star formation density threshold can be further improved if we take
into account the effects of gas clumpiness on its net cooling rate: A.,, o< C, where C =
(p?)/(p)? > 1 is a clumping factor and brackets denote averaging over a certain spatial
region. Galaxy formation simulations almost always assume C' = 1 on the unresolved scales,
but actual dense ISM can be quite clumpy in regions where turbulence is supersonic. Local
clumping factor can be derived from the shape of the underlying subgrid density PDF, that
can be estimated, for instance, with the aid of the subgrid turbulence model from the local
parameters, such as effective Mach number. The clumping factor could then be accounted
for in the calculation of the net cooling rate A.y,. Overall, the star formation threshold
should shift to lower values of density for C' > 1.

The importance of turbulence for modeling star formation in galaxy formation simulations

has been already recognized. Specifically, Hopkins et al. (2013a) developed a model for the
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star formation threshold, in which star formation is allowed only in self-gravitating gas,
ayir < 1, but with a constant efficiency of eg = 100%. FEven though their model also
predicts significant localization of star formation, it substantially differs from the model
presented in this chapter both technically and conceptually.

From the technical point of view, our subgrid turbulence model provides a more appro-
priate way to track local oy than an estimate based on the local velocity gradients on the
resolution scale. Due to substantial effects of numerical viscosity on these scales such an
estimate is not accurate.

More importantly, in our model we vary eg continuously with ay;., as predicted by the
Padoan et al. (2012) model, while the prescription of Hopkins et al. (2013a) adopts a fixed
eg = 100% for oy, < 1 and eg = 0 otherwise. For comparison, the Padoan et al. (2012)

< 0.1. Moreover, in

~J

model predicts eg & 26% for oy, & 1 and eg reaches > 99% only at oy
our model star formation can proceed in gravitationally unbound regions. In the turbulence-
driven star formation, a given region may be globally unbound, but can contain local bound
star-forming regions created by the turbulent cascade on small scales. For example, at
ayir = 10 the Padoan et al. (2012) model predicts eg ~ 1%, which is a healthy efficiency
estimated for many GMCs (e.g., Krumholz et al., 2012a). Thus, the assumption of constant
eg below a fixed ayi, threshold is a simplification. As we show in Chapter 5, the predicted
depletion times and mass-fractions and densities of star-forming gas do depend on the choice
of eg and oy, threshold values.

Turbulent models of star formation with eg continuously varying with oy, were stud-
ied by other authors as well. In particular, Braun et al. (2014) examined a star formation
prescription based on the model of Padoan & Nordlund (2011) coupled with a subgrid tur-
bulence model in isolated disk simulations. Their subgrid model also included a prescription
for multiphase ISM (Braun & Schmidt, 2012), and turbulent velocities were rescaled to the

scale of cold self-gravitating clumps within this subgrid medium. Our disk models and star
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formation implementations are sufficiently different, which complicates a direct comparison
of our results. We only note that, although Braun et al. (2014) also found gas depletion time
variation across the galaxy, in their case this variation was mostly due to the variation of fy,,
as the SF prescription based on the Padoan & Nordlund (2011) results predicted eg ~ 10%
in their star-forming regions with only a small scatter. The variation of the depletion time
in our simulations is due to the wide variation of local eg, which, in turn, is caused by the
scatter in the virial parameter a.;, that is dominated by the variation of turbulent velocities.

This origin of variation of SFE and local gas depletion times in our model is more in
line with the models studied more recently by Braun & Schmidt (2015). These authors used
a series of disk simulations similar to those in Braun et al. (2014), but examined several
star formation prescriptions based on the local turbulent properties predicted by the subgrid
model, including the model of Padoan et al. (2012, the “PHN” model), which we use in our
work.

Although the overall level of turbulence predicted by the subgrid model in their disk
is in qualitative agreement with our results, Braun & Schmidt (2015) found that the PHN
model predicts values of SFE that are systematically too low: eg < 0.1%. According to
Equation (A.1), such low eg should arise in regions with virial parameter: o, 2 20, which
is significantly larger than the values estimated for the observed GMCs (e.g., Bolatto et al.,
2008; Dobbs et al., 2011b). We believe that the origin of this discrepancy is in the subgrid
model of multiphase gas distribution used by Braun & Schmidt (2015). In this model, the size
of cold clouds is set by the condition of ay; = 1, but at the same time, turbulent velocities
are rescaled from the cell size to the cloud size assuming a turbulent cascade scaling which
results in ayi 2= 20. This indicates that their model is not internally consistent.

Regardless of the difference in the actual values of eg, the results of Braun & Schmidt
(2015) are qualitatively consistent with our main finding that turbulence based star formation

prescription predicts a wide variation of eg.
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Considering the results presented in this chapter, we conclude that the star formation
prescription based on subgrid turbulence produces realistic star formation efficiencies and
rates when applied in a galaxy-scale simulation. The lack of free parameters and the fact
that this prescription relies on direct GMC-scale simulations put star formation modeling

within this framework on a much firmer footing compared to standard recipes.
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APPENDIX B
DEPLETION TIME MODEL DETAILS

B.1 Summary of model parameters

Our model equations,

T=(1+&m + (1 +—t ) s (B.1)
T_d) €
1 ¢
- B.2
fsf o T ( )

are derived from the mass conservation equation between star-forming and non-star-forming
states in the ISM, as explained in Chapter 2. The parameters used in our model and their
meanings are summarized in Table B.1.

As we showed in Section 5.2.2, the model equations describe our simulation results even
if we assume that all the model parameters, including 7, are fixed. However, the accuracy
of our model can be improved if the variation of 7g is incorporated.

To account for the variation of 7 with £ and eg, we note that star-forming gas is removed
at a rate M, + F_ g, o< (1 + §)eg and therefore 7 increases from Ti‘fir to 75 when (1 + §)eg
increases and the galaxy switches from the dynamics-regulation (thus the superscript “dr”)
to the self-regulation (“sr”) regime. Note that the dependence of 7 on the combination
(1 + &)eg is itself a prediction of the model. This prediction is confirmed by the simulation
results shown in Figure B.1, as 7¢ from all simulations with different eg and £ scale as a
function of (1 4+ &)eg.

We then can interpolate 7 between Tigfir and 75" as a function of ¢ = (1 + {)eg using a
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Table B.1: Definitions of the quantities used in our model

Var.  Definition Meaning Model?®

Modeled properties of the galazy

T Mg/M* Global depletion time of total gas Eq. (5.5)

fst Mgy /Mg Star-forming gas mass fraction Eq. (5.6)

T (1/ tﬁ'>s_f1 Mean freefall time in star-forming gas Eq. (B.3-B.6)P

Model parameters

T My /M,  Depletion time of star-forming gas T/ €

T+ Eq. (2.4) Dynamical timescale on which non-star-forming gas Eq. (B.8)
becomes star-forming

T_d Eq. (2.6) Timescale on which star-forming gas is dynamically Spline®
dispersed

'3 Eq. (2.8) Average feedback mass-loading factor on the scale 60 b0-7
of star-forming regions

Tf(fh T in the dynamics-regulated regime Spline®

T 7g in the self-regulated regime Eq. (B.11)

Simulation parameters controlling local star formation and feedback

€f Eq. (3.2) Star formation efficiency per freefall time

Qyirgf  oec. 3.3 Star formation threshold in virial parameter

Ngf Sec. 3.3 Star formation threshold in gas density

b Sec. 3.3  Boost factor of momentum injected per SN

®The last column indicates model predictions for 7, fs, and 7¢ and calibrated values for model parameters.
Listed calibrations are obtained for the ay;-based star formation threshold. Calibrations for the density-
based threshold are provided at the end of Appendix B.1.

®The model predicts the position and the width of 7 transition between 74" and 5.

“The values of 7_ q and

dr

7§ as functions of oy, are obtained directly from the n—oyo distribution in our
simulation with eg = 0.01% and fiducial b = 1 and oir s = 10. We spline these values to obtain 7_ q(virsf)
and Tgr(avirﬁsf) in simulations with different ayiy f (see the end of Appendix B.1).
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simple fitting formula shown with the solid line in Figure B.1:

5 =7 + f) (7 — 1), (B.3)
fy) = %arctan (log(@/)) —wlog(%bcr)) + %, (B.4)

in which the position, 1¢r, and the width, w, of transition can be predicted by our model.

Specifically, from Equation (5.11), the transition happens at

T—d) T+

%:G+E)E’ (B.5)

where, for simplicity, we assume average 7g = 4 Myr, representative of our simulation results.
The width of the transition can be estimated assuming that as (1+ &)eg increases from very
low values, the transition appears when M, + F _ f, becomes comparable to F_ 4. This yields

(14 &)eg ~ def‘r/T_’d and thus the width is

w = log(ter) — 10g(7’§r/7'_7d). (B.6)

In the dynamics-regulation regime, i.e. at small (1+¢&)eg, Tgﬁr is determined by the high-
density tail of the star-forming gas probability density function (PDF) and is independent
of the star formation. In the self-regulation regime, i.e. at large (14 &)eg, 73" increases as
the high-density tail is dispersed and the star-forming gas stays close to the star formation
threshold. These trends of 7g in the limiting regimes are apparent in the results of our
simulation suite shown in Figure B.1.

Equations (B.3-B.6) augment the main equations of our model (B.1 and B.2) with the
variation of 7 with our model parameters: eg, &, 74+, T_ g, Tffr, Tléfir. To calibrate the depen-

dence of these parameters on our simulation parameters—i.e. local efficiency eg, feedback
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Figure B.1: Comparison of our model prediction for the variation of the freefall time
in the star-forming gas, 7g, with the results of our simulations. To measure 7 in the
dynamics-regulation (small (1 + §)eg) and self-regulation (large (1 + €)eg) regimes and the
parameters of the transition between these regimes, we use the the same runs that were
used to calibrate (1 + &)t and 74 /7_ 4 in Section 5.2.2 (indicated by circled points). The
predictions of our model agree with the results of all simulations, except for the run with
b =0 and eg = 100% (open circle), which does not remain in equilibrium owing to the rapid
global gas consumption.
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boost factor b, and star formation threshold o, y—we assume

¢ = &b, (B.7)
7+ = (100 Myr) (O‘Vir,sf/lo),y? (B.8)
T = (7§ )o (w/loo)a(avir,sf/lo)b- (B.9)

Here we assume that at fiducial ay g = 10, 7 ~ 100 Myr, as indicated by the results
in Section 4.4. The value of 74 does depend on the star formation threshold because the
threshold determines when the transition from the non-star-forming to the star-forming state
happens in the evolution of each gas parcel. Equation (B.9) incorporates the dependence of
74 on ¥ = (1 + &)eg and star formation threshold discussed above.

Next, as detailed in Sections 5.2.2 and 5.2.2, we use three runs in the self-regulation

regime with different feedback boost, b, and threshold, ay;; 4, to estimate

(1+&)74 ~ (6 Gyr) b (ayyy 5/10) 70, (B.10)
i~ (6 Myr) (1/100)%9% (g, o /10)4, (B.11)

which imply §y = 60, 8 = 0.75, v = —0.5, (75 )o = 6 Myr, a = 0.035, and b = 0.4. Note,
in particular, that & ~ 60 77 which implies that our fiducial feedback (b = 1) is rather
efficient and £ > 1 in Equation (B.1).

Finally, the last two parameters, Tgr and 7_ 4, are measured as functions of a;; ¢ directly
from the n—oot distribution in our run with eg = 0.01% (bottom left panel of Figure 5.4).
To this end, we note that because of the dynamics-regulation regime, this distribution would

Lin gas with

not change if i, ¢ was varied. We then measure Tgfh (ayirgr) as (1/tg)~
Qyir < Olyir of and T—,d(avir,sf) from fsf(avir,sf) using Equation (5'8): T—d = 7-+/(1/fo - 1)'
We spline T§r<avirjsf) and fer(ayirsf) and show them with blue lines in the bottom two panels

of the middle column in Figure 5.3. For example, at our fiducial threshold of av;, o = 10,
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T&r ~ 2.5 Myr and fg ~ 20%, which implies 7_ 4 ~ 74 /4 ~ 25 Myr.
For the density-based star formation threshold we study only the dependence on ng but

not on b. In other words, we replace Equations (B.7-B.9) with

§ = o, (B.12)
74 = (100 Myr) (ng/100 cm3)7, (B.13)
7 = (750 (ngg/100 cm™3)~1/2, (B.14)

Note that the slope in the last equation is not a parameter because, in contrast to the
aip-based threshold, the dependence of 75" on the density threshold follows from definition,
since in this regime all star-forming gas has density ~ ng. For the same reason, 73" does
not depend on 1 for a density-based threshold.

The value (Tfsfr)o = 5 Myr is measured directly from the simulation with eg = 100% and

ngt = 100 em ™3, and using another run with lower ng we get
(14 &)1y ~ (4.5 Gyr) (ng/100 cm3)05, (B.15)

and thus £y = 45 and v = 0.5.

B.2 Model for molecular gas mass fraction

Similarly to star-forming gas above a given threshold, molecular gas distribution is also
shaped by dynamical and feedback-driven gas flows. Therefore, similarly to Section 5.2.1,
mass conservation can be considered for the molecular state of the ISM to derive the relation
between the molecular mass fraction, fy, = Mpy,/Mg, and the timescales of relevant pro-

cesses supplying and removing molecular gas. In the equation for total molecular gas mass
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Figure B.2: Comparison of our model predictions for the variation of the global molecular
mass fraction, fy, = My, /Mg, with the results of the simulations. We average the total
molecular mass in the simulations between 300 and 600 Myr, defining it as a sum of molecular
masses in individual cells, which are computed using the Krumholz et al. (2009a) model (see
Section 5.3 for details). To obtain model predictions, we interpolate fy, between its values
at low and high (1 4 §)eg calibrated using the simulations in corresponding regimes (large
circled points). The value of (1 + &)eg at which this transition occurs and the width of the
transition are predicted by the model (Equations B.5 and B.6). The open red circle indicates
the run with b = 0 and eg = 100%, which does not remain in equilibrium owing to the rapid
global gas consumption.

161



conservation,

My, = F2 — P2 (B.16)

we parameterize relevant fluxes as

H L (B.17)
-
M,
pHo = S Me (B.18)
Ho
T_
. M,
ar, = S5t (B.19)
Tx

That is, FEQ and F ?2 are parameterized analogously to F+ and F_ in Section 2.2 and the
equation for My repeats corresponding expression there.
Then, assuming steady state with MH2 ~ 0, substitution of Equations (B.17)—(B.19) into

Equation (B.16) yields
H
fH -~ 1— (T+2/T*)fsf
Tl ()

(B.20)

where fy can be computed using Equation (5.6).

At low e, T = Tq¢/eg — 00, and thus fp, ~ [1 + (sz/TEIZ)]_l, which is analogous to
Equation (5.8), with TE2 and T§2 independent of star formation and feedback. At high eg,
all terms in Equation (B.20) are relevant and 72 depends on star formation and feedback
parameters in a nontrivial way. This nontrivial dependence is more complex than a simple
scaling with local depletion time 7—as was the case for the star-forming gas removal time
T_ N T_ g, = Tx/§—because 7'?2 also depends on the dynamics of non-star-forming molecular
gas and the details of its dissociation.

Thus, 7512 cannot be easily related to the parameters of subgrid star formation and
feedback, which does not allow to use Equation (B.20) for predicting how JH, depends on
the parameters of star formation and feedback. However, this dependence can be calibrated

using the same approach that we used to model variation of the freefall time in star-forming
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gas, 7 (Appendix B.1).

The approach is similar because the change of both 74 and fy, reflects the response of
the gas PDF to the changing feedback-induced flux parameterized by (1 + £)eg, and thus
fu, variation with (1 + §)eg is qualitatively similar to that of 7. Indeed, as Figure B.2
shows, at (1 + &)eg < 0.1, the value of Ty ~ 20% remains independent of £ and eg because
feedback is too weak to affect the gas PDF. Between (1 + {)eg ~ 0.1 and 1, the value of
fH, decreases by a factor of 2 as feedback clears the high-density tail of the molecular gas
distribution, and at (1 + §)eg > 1 the decrease of fy, slows down as the non-star-forming
molecular gas accumulates above the star formation threshold. As the black curve shows,
such variation of fy, with (1 + §)eg can be approximated by the same fitting formula as
the one used for 7¢ (Equations B.3-B.6), with the limiting values of fy, at low and high
(14 &)eg calibrated using the simulations: fIC{h; =23% and ff, = 0.05 [(1 + €)eg/60] 701,

The discussed effect of star formation and feedback on fy, also allows us to predict
the variation of fy, with the star formation threshold. Namely, in the dynamics-regulation
regime, we expect fy, ~ 23% to be independent of the star formation threshold because the
ISM gas distribution remains independent of star formation. In the self-regulation regime,
JH, decreases when the threshold is shifted to higher ;. o or lower ngg, because the region

in the n—o¢ot plane corresponding to the non-star-forming molecular gas shrinks.
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APPENDIX C
MOLECULAR KSR — ADDITIONAL RESULT'S

C.1 Dependence of molecular KSR slope on star formation and

feedback parameters

Figure C.1 shows the dependencies of the molecular KSR slope on the efficiency of star
formation per freefall time, e, and feedback strength in our simulations with ;. ¢ = 10
(blue lines) and ng = 100 cm™3 star formation thresholds (orange lines). In simulations
with the ;¢ threshold, the slope remains linear and only the normalization changes at
different eg and feedback strength, as we showed in Figure 5.8. In simulations with the ngs
threshold, in contrast, the slope becomes steeper for larger values of eg.

Figure C.2 shows the change of the molecular KSR slope in simulations with different
values of the ayi, and density threshold. For an ng threshold, the slope becomes shallower
for lower ng: for ng = 30 cm 3, the slope is steeper than linear, but it becomes shallower
than linear for smaller ng because non-molecular gas is identified as star-forming. For the
Qyirsf thresholds, the sensitivity of the slope to the ay;, ¢t value is much weaker, although

the slope still becomes somewhat shallower for very large values of ay;y.

C.2 Molecular KSR slope in simulations with explicitly modeled
€ff

As was shown in Figure 6.1, our fiducial simulation with the ay;. ¢ = 10 star formation
threshold and constant eg = 1% reproduces the observed near-linear slope of the molecular

KSR. Figure C.3 shows that the molecular KSR remains linear when we vary eg using the

164



100 pr—r=rr—————rr—————rm

10F \ ;
/;;: L
o — e s N — T
\C.D/ I “"‘\\
o Oéxns':lo "
E f
1' \ =

:—*—_—_-~_’~—~~
N

: — Cff — 1%; fid. fb
[ = = ¢ = 100%; fid. b
— s = 1%; 5 x fid. fb

T Y R oY
1 10 100

EHQ (MQ pC_Q)

’—'——-~

Figure C.1: Median depletion time of the molecular gas as a function of ¥y, in simulations
with ayi g = 10 (blue lines) and ng = 100 cm ™3 star formation thresholds (orange lines),
and different values of local star formation efficiency eg and feedback strength. Solid lines
show 7y, for fiducial feedback strength and eg = 1% (i.e., the same as in Figures 6.1 and
6.3), dashed lines show 7g, for higher eg = 100%, and dashed-dotted line show 7y, in
simulations where the fiducial momentum input from supernovae is multiplied by a factor
of 5 (see Section 3). Gray contours and points with error bars indicate the observed 7y,
(see the legend in Figures 6.1), and the thin gray line shows the slope adopted in the star
formation prescription: px = eg p/tg o pt° and thus p/px o p~9-2.
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Figure C.2: Same as Figure C.1 but for different values of the star formation threshold:
yir st = 10, 30, and 100 (blue lines), and ng = 100, 30, and 10 cm ™3 (orange lines).

fit to the simulation results of Padoan et al. (2012):

e = exp(—+/ ayir/0.53).

(C.1)

The figure also shows that the normalization of the KSR is affected by feedback strength in
the same way as in the simulations with a sharp ayj, threshold (see Appendix C.1).

The KSR in simulations with varied eg is similar to that in our fiducial simulation because
our threshold choice, i, ¢ = 10, approximates the exponential increase of eg for ayy S 10
in Equation (C.1). A factor of ~ 2 difference in normalization can be explained by the
somewhat higher eg values predicted by Equation (C.1), compared to our fiducial eg = 1%.
Indeed, the ay;, of the star-forming gas in our fiducial simulation ranges between 10 and ~ 2

(see Figure 6.4), and Equation (C.1) predicts eg ~ 1.3%-14% for such oy

Interestingly, Lupi et al. (2018) used a star formation prescription with varying eg and
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Figure C.3: Median depletion time of molecular gas as a function of ¥y, in simulations
with e continuously varied according to Equation (C.1). Green and red lines show the
results for our fiducial and 5 times stronger feedback, respectively. For reference, the blue
line shows the results of our fiducial simulation with eg = 1% in gas defined by a sharp star
formation threshold, ay < 10. The thin gray line shows the slope of 7y, o 2&2‘5.

also found a shallow molecular KSR. Their KSR is somewhat steeper than linear, which can
be due to a strong adopted dependence of eg on density (see their Appendix A) and the
resulting large effective local slope 8. This result is consistent with our fiducial simulations
with high 5 that also have a somewhat steeper than linear molecular KSR (see Figure 6.2).
Lupi et al. (2018) also found that the molecular KSR slope depends on the assumptions

about the unresolved clumping factor of the gas.

C.3 Dependence of molecular KSR slope on the averaging scale

In this work, we focused on the molecular KSR averaged on 1 kpc scales. The scale depen-
dence of the KSR is an interesting related topic (e.g., Feldmann et al., 2011; Khoperskov

& Vasiliev, 2017; Orr et al., 2018). Figure C.4 shows how the slope of the molecular KSR
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in our fiducial simulation depends on the averaging scale. As expected, on scales close to
the resolution scale of our simulation (40 pc), the KSR slope approaches the slope of the
adopted star formation prescription, § = 1.5. However, as the averaging scale increases, the
molecular KSR flattens and becomes near-linear at 2 500 pc scales. At any larger scale, the
molecular KSR remains linear because when the slope is linear for a certain smoothing scale,
it always remains linear on larger scales, as discussed for special case 2 in Appendix C.4.
The transition scale of ~ 500 pc reflects the spatial coherence of star-forming and non-
star-forming molecular gas in our simulations. Patches of < 500 pc size preferentially include
only one of the states, while larger patches are sufficient to average between both states. This
effect also leads to a scatter that increases on smaller scales (Kruijssen & Longmore, 2014).

A similar coherence scale was also obtained for M33 by Schruba et al. (2011).

C.4 Derivation of the equations connecting molecular KSR with

gas PDF and star formation on small scales

The depletion time of molecular gas in a single kiloparsec-scale patch can be expressed as a

function of the local SFR density, px, and molecular gas mass in the patch, My, as follows:

1 )y M. 1 _
THy Hy Hy Ho

where integration is carried out over the patch volume. If we assume that p, is a power-law

function of gas density, we can write px as

p* = Apﬁ @Sf(p’ q)7 (CS)

where Og(p, q) is a function varying from 0 to 1 that defines star-forming gas as a function

of gas density and a vector of other relevant properties q. Furthermore, we can express the
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Figure C.4: The dependence of median 7y, = ¥y, / >, on the width of the 2D Gaussian
filter used to average the Y and Yy, maps in our fiducial simulation with the av;, of = 10 star
formation threshold and eg = 1%. When the averaging scale is close to the resolution scale
(40 pc), the molecular KSR slope approaches that adopted in the star formation prescription
(shown by the gray line) and can become somewhat steeper due to the large scatter of TH,
on these small scales. At ~ 500 pc, the slope becomes near-linear (i.e. THy R const), and it
stays linear at any larger scale.
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volume element dV as

02V My
dV = ——dpdq = 2p ,q)dpdq, C.4
9p0q"" Tewop H, (0, q)dp (C.4)
where
1 0®°My, fu,p 02V
Py, (p,q) 2 =2 (C.5)

" My, dpdq My, dpdq
is the mass-weighted distribution of molecular gas, and fy, is the local mass fraction of
molecular gas, which can be a function of total gas density p, metallicity, radiation field, and
other properties. In general, the variation of fy, in star-forming regions can be accounted
for. However, most of the star-forming gas selected by our criteria has fy, = 1, and therefore,
we will adopt fy, = 1 in star-forming gas. Under this assumption, Equations (C.2)-(C.4)

can be combined to

1 ©
—=A / /0 PP 104 (p, ) Pa, (p, a)dpdq. (C.6)

TH 2

Equation (C.6) describes the relation between molecular gas depletion time and the PDF
of molecular gas in a single ISM patch. The shape of PHQ(p, q) in this equation can vary
from patch to patch, leading to variation of 7g,. To obtain the molecular KSR, this equation

must be averaged between patches with the same molecular surface density g, :

<L> 4 / /0 " 104 (0, a){Pity) (>l S, )dpda, 7

TH,

where the average shape of (Pp,) will depend on ¥, and this dependence will define the
dependence of the average 7y, on ¥y, i.e. the slope of the molecular KSR.
Finally, omitting explicit averaging to simplify notation, Equation (C.7) can be rewritten

as
1 o fo,HQ
TH, Ty
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where, by definition,

o0
fst oy = / /0 Ot (p, a) P, (0, al¥n, )dpdq (C.9)

is the star-forming mass fraction of molecular gas and

1 © 4
——a [ Rl (C.10)

T

is the inverse local depletion time 1/t, = pi/p = Apﬂ —1 averaged over the density PDF of

star-forming gas:

O.¢(p, @) P, (p, oS, )d
[15° Ost(p, @) P, (p, alXq, ) dpdg

Equations (C.8-C.11) show that the connection between the slope of the S*fZHQ relation

on kiloparsec scales and its local value § is nontrivial and in general depends on the scaling
of gas PDF with Xp,. However, in some special cases studied previously in the literature,
these equations predict a direct relation between global and local slopes. In these special
cases, fqf H, 1 assumed to be independent of Yy, as would be the case if, e.g., all molecular
gas were star-forming, fsf g, = 1. The KSR slope is then determined only by the behavior
of the integral in the definition of 7, (Equation C.10).

Special case 1. Star-forming gas PDF scales self-similarly with ¥p,: Py (p|Xn,) =
F(p/¥H,)/YH,- In this case, 7, inherits the dependence on X, from the local star for-

mation relation, 1/t o pﬂ_l:

1 1 [ 5 -1
— = A% /0 P (w)dr o S (C.12)

Tx

and therefore the KSR inherits the local slope 8: %, o Z% (cf. Gnedin et al., 2014).
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Special case 2. Local relation is linear, § = 1. In this case,

1 o0
— =4[ PalolS)do = A (C.13)

T

and the KSR is also linear: ¥, = Afst HyXH, (cf. Gnedin et al., 2014). Physically, when
B =1, the local depletion time t, = p/px = p* P /A = A~L is constant in all star-forming
gas and thus its average 74 = t, = A~ is independent of YH,- This means, for example,
that the linear molecular KSR observed on kiloparsec scales will remain linear when averaged
on any larger scale (see Figure C.4).

Special case 3. The shape of the star-forming gas PDF is independent of Xp,: Pyt (p|Xn,) =
F(p) and

1 — A/OO pﬁ—lp(p)dp (C.14)

T 0
becomes independent of X, and therefore the KSR becomes linear regardless of the local
slope 8: ¥y o YH,- This is a more general case of the “counting argument,” in which all

star-forming regions are assumed to have the same density pg so that Py (p|Xn,) = 6(p—po).

172



REFERENCES

Agertz, O., & Kravtsov, A. V. 2015, ApJ, 804, 18

. 2016, ApJ, 824, 79

Agertz, O., Kravtsov, A. V., Leitner, S. N.; & Gnedin, N. Y. 2013, ApJ, 770, 25
Agertz, O., Lake, G., Teyssier, R., et al. 2009a, MNRAS, 392, 294

Agertz, O., Romeo, A. B., & Grisdale, K. 2015, MNRAS, 449, 2156

Agertz, O., Teyssier, R., & Moore, B. 2009b, MNRAS, 397, L64

Benincasa, S. M., Wadsley, J., Couchman, H. M. P., & Keller, B. W. 2016, MNRAS, 462,
3053

Bertoldi, F., & McKee, C. F. 1992, ApJ, 395, 140

Bigiel, F., Leroy, A., Walter, F., et al. 2010, AJ, 140, 1194

—. 2008, AJ, 136, 2846

Bigiel, F., Leroy, A. K., Walter, F., et al. 2011, ApJLetters, 730, L.13

Bissantz, N., Englmaier, P., & Gerhard, O. 2003, MNRAS, 340, 949

Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., & Blitz, L. 2008, ApJ, 686, 948
Bolatto, A. D., Leroy, A. K., Jameson, K., et al. 2011, ApJ, 741, 12

Bolatto, A. D., Wong, T., Utomo, D., et al. 2017, ApJ, 846, 159

Bouché, N., Cresci, G., Davies, R., et al. 2007, ApJ, 671, 303

Bouché, N., Dekel, A., Genzel, R., et al. 2010, ApJ, 718, 1001

Bournaud, F., Elmegreen, B. G., Teyssier, R., Block, D. L., & Puerari, 1. 2010, MNRAS,
409, 1088

Braun, H., & Schmidt, W. 2012, MNRAS, 421, 1838

—. 2015, MNRAS, 454, 1545

Braun, H., Schmidt, W., Niemeyer, J. C., & Almgren, A. S. 2014, MNRAS, 442, 3407
Braun, R. 2012, ApJ, 749, 87

Capelo, P. R., Bovino, S., Lupi, A., Schleicher, D. R. G., & Grassi, T. 2018, MNRAS, 475,
3283

173



Cen, R., & Ostriker, J. P. 1992, ApJLetters, 399, L113

Chabrier, G. 2003, PASP, 115, 763

Chandrasekhar, S. 1951, Proceedings of the Royal Society of London Series A, 210, 26
Christensen, C., Quinn, T., Governato, F., et al. 2012, MNRAS, 425, 3058

Clark, P. C., Bonnell, I. A., Zinnecker, H., & Bate, M. R. 2005, MNRAS, 359, 809
Colella, P., & Glaz, H. M. 1985, Journal of Computational Physics, 59, 264
Colombo, D., Kalinova, V., Utomo, D., et al. 2018, MNRAS, 475, 1791

Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJLetters, 714, L118

Davé, R., Finlator, K., & Oppenheimer, B. D. 2012, MNRAS, 421, 98

Davis, B. L., Kennefick, D., Kennefick, J., et al. 2015, ApJLetters, 802, .13

de los Reyes, M. A. C., & Kennicutt, Robert C., J. 2019, ApJ, 872, 16

Dekel, A., & Mandelker, N. 2014, MNRAS, 444, 2071

Dekel, A., Sari, R., & Ceverino, D. 2009, ApJ, 703, 785

Diesing, R., & Caprioli, D. 2018, Physical Review Letters, 121, 091101

Dobbs, C. L., Burkert, A., & Pringle, J. E. 2011a, MNRAS, 417, 1318

—. 2011b, MNRAS, 413, 2935

Dobbs, C. L., Pringle, J. E., & Burkert, A. 2012, MNRAS, 425, 2157

Dobbs, C. L., Pringle, J. E., & Duarte-Cabral, A. 2015, MNRAS, 446, 3608
D’Onghia, E., Vogelsberger, M., & Hernquist, L. 2013, ApJ, 766, 34

Elmegreen, B. G. 2002, ApJ, 577, 206

—. 2015, ApJLetters, 814, L30

—. 2018, ApJ, 854, 16

Evans, II, N. J., Heiderman, A., & Vutisalchavakul, N. 2014, ApJ, 782, 114
Evans, II, N. J., Dunham, M. M., Jgrgensen, J. K., et al. 2009, ApJS, 181, 321
Faucher-Giguere, C.-A., Quataert, E., & Hopkins, P. F. 2013, MNRAS, 433, 1970
Federrath, C. 2013, MNRAS, 436, 3167

174



Federrath, C. 2015, MNRAS, 450, 4035

Federrath, C., & Klessen, R. S. 2012, ApJ, 761, 156

Federrath, C., Schrén, M., Banerjee, R., & Klessen, R. S. 2014, ApJ, 790, 128
Feldmann, R., & Gnedin, N. Y. 2011, ApJLetters, 727, L.12

Feldmann, R., Gnedin, N. Y., & Kravtsov, A. V. 2011, ApJ, 732, 115
Froebrich, D., & Rowles, J. 2010, MNRAS, 406, 1350

Gammie, C. F., & Ostriker, E. C. 1996, ApJ, 466, 814

Gammie, C. F., Ostriker, J. P., & Jog, C. J. 1991, ApJ, 378, 565

Gao, Y., & Solomon, P. M. 2004a, ApJS, 152, 63

—. 2004b, ApJ, 606, 271

Garnier, E., Adams, N., & Sagaut, P. 2009, Large Eddy Simulation for Compressible Flows
(Springer Netherlands)

Gavagnin, E., Bleuler, A., Rosdahl, J., & Teyssier, R. 2017, ArXiv e-prints, arXiv:1701.07982
Genel, S., Naab, T., Genzel, R., et al. 2012, ApJ, 745, 11

Gentry, E. S., Krumholz, M. R., Dekel, A., & Madau, P. 2017, MNRAS, 465, 2471

Gentry, E. S., Krumholz, M. R., Madau, P., & Lupi, A. 2019, MNRAS, 483, 3647

Gengzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091

Genzel, R., Tacconi, L. J., Lutz, D., et al. 2015, ApJ, 800, 20

Gnedin, N. Y., & Hollon, N. 2012, ApJS, 202, 13

Gnedin, N. Y., & Kravtsov, A. V. 2011, ApJ, 728, 88

Gnedin, N. Y., Tasker, E. J., & Fujimoto, Y. 2014, ApJLetters, 787, L7

Gnedin, N. Y., Tassis, K., & Kravtsov, A. V. 2009, ApJ, 697, 55

Governato, F., Brook, C., Mayer, L., et al. 2010, Nature, 463, 203

Grand, R. J. J., Gémez, F. A., Marinacci, F., et al. 2017, MNRAS, 467, 179

Grisdale, K., Agertz, O., Romeo, A. B., Renaud, F., & Read, J. I. 2017, MNRAS, 466, 1093
Gutermuth, R. A., Pipher, J. L., Megeath, S. T., et al. 2011, ApJ, 739, 84

Hayward, C. C., & Hopkins, P. F. 2017, MNRAS, 465, 1682
175



Heiderman, A., Evans, II, N. J., Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019
Heiles, C., & Troland, T. H. 2003, ApJ, 586, 1067

Hennebelle, P., & Chabrier, G. 2013, ApJ, 770, 150

Hernquist, L. 1990, ApJ, 356, 359

Heyer, M., & Dame, T. M. 2015, ARA&A, 53, 583

Heyer, M., Gutermuth, R., Urquhart, J. S., et al. 2016, A&A, 588, A29

Hopkins, P. F., Keres, D., Onorbe, J., et al. 2014, MNRAS, 445, 581

Hopkins, P. F., Narayanan, D., & Murray, N. 2013a, MNRAS, 432, 2647

Hopkins, P. F., Narayanan, D., Murray, N., & Quataert, E. 2013b, MNRAS, 433, 69
Hopkins, P. F., Quataert, E., & Murray, N. 2011, MNRAS, 417, 950

—. 2012, MNRAS, 421, 3488

Hopkins, P. F., Wetzel, A., Keres, D., et al. 2017a, ArXiv e-prints, arXiv:1702.06148
—. 2017b, ArXiv e-prints, arXiv:1707.07010

Hunter, J. D. 2007, CSE, 9, 90

Jameson, K. E., Bolatto, A. D., Leroy, A. K., et al. 2016, ApJ, 825, 12

Jones, E., Oliphant, T., Peterson, P., et al. 2001-2016, http://www.scipy.org
Kalberla, P. M. W., & Dedes, L. 2008, A&A, 487, 951

Kalberla, P. M. W., & Kerp, J. 2009, ARA&A, 47, 27

Katz, N. 1992, ApJ, 391, 502

Kawamura, A., Mizuno, Y., Minamidani, T., et al. 2009, ApJS, 184, 1

Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531

Kennicutt, Jr., R. C. 1989, ApJ, 344, 685

—. 1998, ApJ, 498, 541

Khokhlov, A. 1998, Journal of Computational Physics, 143, 519

Khoperskov, S. A., & Vasiliev, E. O. 2017, MNRAS, 468, 920

Kim, C.-G., & Basu, S. 2013, ApJ, 778, 88

176



Kim, J.-h., Agertz, O., Teyssier, R., et al. 2016, ApJ, 833, 202

Kravtsov, A. V. 1999, PhD thesis, NEW MEXICO STATE UNIVERSITY
—. 2003, ApJLetters, 590, L1

Kravtsov, A. V., Klypin, A., & Hoffman, Y. 2002, ApJ, 571, 563

Kravtsov, A. V., Klypin, A. A.; & Khokhlov, A. M. 1997, ApJS, 111, 73
Kritsuk, A. G., Nordlund, A., Collins, D., et al. 2011, ApJ, 737, 13
Kruijssen, J. M. D., & Longmore, S. N. 2014, MNRAS, 439, 3239
Krumholz, M. R., & Burkhart, B. 2016, MNRAS, 458, 1671

Krumholz, M. R., Dekel, A., & McKee, C. F. 2012a, ApJ, 745, 69
Krumholz, M. R., Klein, R. 1., & McKee, C. F. 2012b, ApJ, 754, 71
Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250

Krumbholz, M. R., McKee, C. F., & Tumlinson, J. 2008, ApJ, 689, 865

—. 2009a, ApJ, 693, 216

—. 2009b, ApJ, 699, 850

Krumbholz, M. R., & Tan, J. C. 2007, ApJ, 654, 304

Krumbholz, M. R., & Thompson, T. A. 2007, ApJ, 669, 289

Kuhlen, M., Krumholz, M. R., Madau, P., Smith, B. D., & Wise, J. 2012, ApJ, 749, 36
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ, 745, 190
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687

Latif, M. A., Schleicher, D. R. G., Schmidt, W., & Niemeyer, J. C. 2013, MNRAS, 436, 2989
Lee, E. J., Miville-Deschénes, M.-A., & Murray, N. W. 2016, ApJ, 833, 229
Leitner, S. N., & Kravtsov, A. V. 2011, ApJ, 734, 48

Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782

Leroy, A. K., Walter, F., Sandstrom, K., et al. 2013, AJ, 146, 19

Leroy, A. K., Hughes, A., Schruba, A., et al. 2016, ApJ, 831, 16

Leroy, A. K., Schinnerer, E., Hughes, A., et al. 2017, ApJ, 846, 71

177



Lévéque, E., Toschi, F., Shao, L., & Bertoglio, J.-P. 2007, Journal of Fluid Mechanics, 570,
491

Li, H., Gnedin, O. Y., & Gnedin, N. Y. 2017a, ArXiv e-prints, arXiv:1712.01219

Li, H., Gnedin, O. Y., Gnedin, N. Y., et al. 2017b, ApJ, 834, 69

Li, Y., Mac Low, M.-M., & Klessen, R. S. 2005, ApJLetters, 620, L19

Licquia, T. C., & Newman, J. A. 2015, ApJ, 806, 96

Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, Y. 2013, ApJ, 772, 119
Lupi, A., Bovino, S., Capelo, P. R., Volonteri, M., & Silk, J. 2018, MNRAS, 474, 2884

Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Physical Review Letters,
80, 2754

Madore, B. F. 2010, ApJLetters, 716, L131

Madore, B. F., van den Bergh, S., & Rogstad, D. H. 1974, ApJ, 191, 317
Martizzi, D., Faucher-Giguere, C.-A., & Quataert, E. 2015, MNRAS, 450, 504
McKee, C. F., & Krumholz, M. R. 2010, ApJ, 709, 308

Meidt, S. E., Schinnerer, E., Garcia-Burillo, S., et al. 2013, ApJ, 779, 45

Misiriotis, A., Xilouris, E. M., Papamastorakis, J., Boumis, P., & Goudis, C. D. 2006, A&A,
459, 113

Miville-Deschénes, M.-A., Murray, N., & Lee, E. J. 2017, ApJ, 834, 57

Murray, N. 2011, ApJ, 729, 133

Orr, M. E., Hayward, C. C., Hopkins, P. F., et al. 2018, MNRAS, 478, 3653
Ostriker, E. C., McKee, C. F., & Leroy, A. K. 2010, ApJ, 721, 975

Ostriker, E. C., & Shetty, R. 2011, ApJ, 731, 41

Padoan, P., Federrath, C., Chabrier, G., et al. 2014, Protostars and Planets VI, 77
Padoan, P., Haugbglle, T., & Nordlund, A. 2012, ApJLetters, 759, L27

Padoan, P., Haugbglle, T., Nordlund, A., & Frimann, S. 2017, ApJ, 840, 48
Padoan, P., & Nordlund, A. 2011, ApJ, 730, 40

Parmentier, G. 2017, ApJ, 843, 7

178



Peng, Y .-j., & Maiolino, R. 2014, MNRAS, 443, 3643

Petric, A. O., & Rupen, M. P. 2007, AJ, 134, 1952

Pineda, J. L., Langer, W. D., Velusamy, T., & Goldsmith, P. F. 2013, A&A, 554, A103
Price, D. J., & Bate, M. R. 2009, MNRAS, 398, 33

Rahimi, A., & Kawata, D. 2012, MNRAS, 422, 2609

Rahmati, A., Pawlik, A. H., Raicevic, M., & Schaye, J. 2013, MNRAS, 430, 2427
Rebolledo, D., Wong, T., Xue, R., et al. 2015, ApJ, 808, 99

Renaud, F., Kraljic, K., & Bournaud, F. 2012, ApJLetters, 760, L16

Robertson, B., & Goldreich, P. 2012, ApJLetters, 750, L31

Robertson, B. E., & Kravtsov, A. V. 2008, ApJ, 680, 1083

Roman-Duval, J., Heyer, M., Brunt, C. M., et al. 2016, ApJ, 818, 144

Rudd, D. H., Zentner, A. R., & Kravtsov, A. V. 2008, ApJ, 672, 19
Safranek-Shrader, C., Krumholz, M. R., Kim, C.-G., et al. 2017, MNRAS, 465, 885

Sagaut, P. 2006, Large Eddy Simulation for Incompressible Flows (Springer-Verlag Berlin
Heidelberg)

Saitoh, T. R., Daisaka, H., Kokubo, E., et al. 2008, PASJ, 60, 667
Salim, D. M., Federrath, C., & Kewley, L. J. 2015, ApJLetters, 806, L36
Sanduleak, N. 1969, AJ, 74, 47

Schaye, J., & Dalla Vecchia, C. 2008, MNRAS, 383, 1210

Schmidt, M. 1959, ApJ, 129, 243

Schmidt, W. 2014, Numerical Modelling of Astrophysical Turbulence (Springer International
Publishing)

Schmidt, W., & Federrath, C. 2011, A&A, 528, A106
Schmidt, W., Almgren, A. S., Braun, H., et al. 2014, MNRAS, 440, 3051

Schruba, A., Leroy, A. K., Walter, F., Sandstrom, K., & Rosolowsky, E. 2010, ApJ, 722,
1699

Schruba, A., Leroy, A. K., Walter, F., et al. 2011, AJ, 142, 37

179



Schruba, A., Leroy, A. K., Kruijssen, J. M. D., et al. 2017, ApJ, 835, 278
Semenov, V. A., Kravtsov, A. V., & Gnedin, N. Y. 2016, ApJ, 826, 200

—. 2017, ApJ, 845, 133

—. 2018, ApJ, 861, 4

—. 2019, ApJ, 870, 79

Silk, J. 1997, ApJ, 481, 703

Silk, J., & Norman, C. 2009, ApJ, 700, 262

Simpson, C. M., Bryan, G. L., Hummels, C., & Ostriker, J. P. 2015, ApJ, 809, 69
Sofue, Y. 2017, MNRAS, 468, 4030

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289

Stecher, T. P., & Williams, D. A. 1967, ApJLetters, 149, L.29

Stinson, G. S., Brook, C., Maccio, A. V., et al. 2013, MNRAS, 428, 129

Stone, J. M., Ostriker, E. C., & Gammie, C. F. 1998, ApJLetters, 508, .99

Sun, J., Leroy, A. K., Schruba, A., et al. 2018, ArXiv e-prints, arXiv:1805.00937
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179

Tamburro, D., Rix, H-W., Leroy, A. K., et al. 2009, AJ, 137, 4424

Tan, J. C. 2000, ApJ, 536, 173

Toomre, A. 1964, ApJ, 139, 1217

Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9

Utomo, D., Bolatto, A. D., Wong, T., et al. 2017, ApJ, 849, 26

Utomo, D., Sun, J., Leroy, A. K., et al. 2018, ApJLetters, 861, L18

van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22

van Leer, B. 1979, Journal of Computational Physics, 32, 101

Vutisalchavakul, N., Evans, II, N. J., & Heyer, M. 2016, ApJ, 831, 73

Wang, P., Li, Z.-Y., Abel, T., & Nakamura, F. 2010, ApJ, 709, 27

Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ, 587, 278

180



Wong, T., & Blitz, L. 2002, ApJ, 569, 157

Wong, T., Xue, R., Bolatto, A. D., et al. 2013, ApJLetters, 777, L4

Wu, J., Evans, II, N. J., Gao, Y., et al. 2005, ApJLetters, 635, L173
Wyse, R. F. G., & Silk, J. 1989, ApJ, 339, 700

Yepes, G., Kates, R., Khokhlov, A., & Klypin, A. 1997, MNRAS, 284, 235
Zamora-Avilés, M., & Vazquez-Semadeni, E. 2014, ApJ, 793, 84
Zamora-Avilés, M., Vazquez-Semadeni, E., & Colin, P. 2012, ApJ, 751, 77
Zuckerman, B., & Evans, II, N. J. 1974, ApJLetters, 192, L.L149
Zuckerman, B., & Palmer, P. 1974, ARA&A, 12, 279

181



