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ABSTRACT

The fact that observed star-forming galaxies convert their gas into stars inefficiently posits a

long-standing theoretical puzzle. Available gas in galaxies is depleted on a timescale of several

Gyrs which is orders of magnitude longer than any timescale of the processes driving gas

evolution in galaxies. Many galaxy simulations can reproduce observed long depletion times

but the physical mechanism controlling their values is not well understood. In addition,

some of the simulations show a rather counter-intuitive behavior: global depletion times

appear to be almost insensitive to the assumptions about local star formation in individual

star-forming regions, a phenomenon described as “self-regulation.” Yet another part of the

puzzle is the observed tight and near-linear correlation between star formation rates and

the amount of molecular gas on kiloparsec and larger scales. A linear correlation implies

that the depletion time of molecular gas is almost independent of molecular gas density on

>kiloparsec scales, while a strong dependence is expected if, e.g., star formation is controlled

by molecular gas self-gravity. We present an intuitive physical model that explains the

origin of long gas depletion times in galaxies and the near-linear correlation between star

formation rates and molecular gas. Our model is based on mass conservation of gas as the

gas cycles between dense star-forming and diffuse states in the interstellar medium. We use

simulations of an isolated L? galaxy to illustrate our model and to explore the connection

between global depletion times and the timescales of processes driving gas evolution on small

scales. In particular, we show that our model can explain the physics of self-regulation of star

formation in galaxies with efficient stellar feedback. We also show that a linear correlation

between star formation rate and molecular gas emerges when feedback efficiently regulates

and stirs the evolution of dense, molecular gas. Our model also provides insights into the

likely origin of this relation in real galaxies on different scales.

This dissertation is based on the work published in Semenov et al. (2016, 2017, 2018,

2019).

xii



CHAPTER 1

INTRODUCTION

Understanding how galaxies build up their stellar component is a key to understanding

galaxy evolution. Formation of stars in galaxies is a complex multiscale process, as stars are

formed from gravitationally bound gaseous cores on subparsec scales, while the formation

of such cores is aided by bulk gas motions of the interstellar medium (ISM) on hundreds

of parsec scales. Gas motions on all relevant scales are in turn affected by star formation,

as young stars feed mass, energy, and momentum back to the gas, destroying dense star-

forming regions, stirring the ISM turbulence, and shaping the gas distribution on large scales

via energetic outflows.

Despite this complexity, the star formation rate (SFR) per unit gas mass on kiloparsec and

larger scales appears to be surprisingly universal: the gas depletion time, τ = Mg/Ṁ?, has

a characteristic value and exhibits a relatively small scatter (see, e.g., Kennicutt & Evans,

2012, for a review). This universality is manifested in a correlation between the surface

densities of gas and SFR known as the Kennicutt–Schmidt relation (KSR; Schmidt, 1959;

Kennicutt, 1989, 1998, see also Sanduleak 1969, Madore et al. 1974). The KSR becomes

especially tight and close to linear when only molecular gas is included in the estimate of

the gas mass (Wong & Blitz, 2002; Bigiel et al., 2008, 2011; Leroy et al., 2008, 2013; Bolatto

et al., 2017; Utomo et al., 2017; Colombo et al., 2018; de los Reyes & Kennicutt, 2019).

Although the KSR for both total and molecular gas was studied extensively in galaxy

simulations (e.g., Kravtsov, 2003; Li et al., 2005; Saitoh et al., 2008; Schaye & Dalla Vecchia,

2008; Feldmann et al., 2011; Gnedin & Kravtsov, 2011; Rahimi & Kawata, 2012; Agertz et al.,

2013; Gnedin et al., 2014; Agertz & Kravtsov, 2015; Khoperskov & Vasiliev, 2017; Capelo

et al., 2018; Lupi et al., 2018; Orr et al., 2018) and in analytical frameworks (e.g., Wyse

& Silk, 1989; Silk, 1997; Tan, 2000; Elmegreen, 2002; Krumholz & McKee, 2005; Li et al.,

2005; Krumholz & Thompson, 2007; Krumholz et al., 2009b; Silk & Norman, 2009; Ostriker

1



et al., 2010; Ostriker & Shetty, 2011; Renaud et al., 2012; Faucher-Giguère et al., 2013;

Federrath, 2013; Elmegreen, 2015; Salim et al., 2015), several rather fundamental questions

remain widely debated. For instance, there is still no consensus about the physical origin

of the KSR normalization, i.e. global depletion times in galaxies. Recent simulations used

to explore this issue find a rather counter-intuitive behavior: global depletion times appear

to be almost insensitive to the assumptions about local star formation in individual star-

forming regions—a phenomenon described as “self-regulation” (e.g., Dobbs et al., 2011a;

Agertz et al., 2013; Hopkins et al., 2013a, 2017a; Agertz & Kravtsov, 2015; Benincasa et al.,

2016; Orr et al., 2018). The physics behind this phenomenon and, more generally, the

connection between the KSR and the processes driving gas evolution on scales of star-forming

regions was not rigorously explained in such studies. Finally, the shape of the KSR is also

puzzling. In particular, it is not clear why in normal star-forming (non-starburst) galaxies,

SFR correlates almost linearly with the amount of molecular gas on kiloparsec and larger

scales. Answering these and related questions will be the focus of this dissertation.

1.1 Surprisingly long gas depletion times in galaxies

The first question we will address concerns the origin of the KSR normalization and global

depletion times in galaxies. One of the widely recognized basic facts about observed galaxies

is that they convert gas into stars inefficiently. Global depletion times of gas in galaxies are

surprisingly long, given the expected time scales of processes driving star formation.

As an example, the SFR of the Milky Way (MW) is Ṁ? ∼ 1–2 M� yr−1 (e.g., Licquia

& Newman, 2015), while its gas mass is Mg ∼ 1010 M� (e.g., Kalberla & Kerp, 2009), and

thus the global gas depletion time of the MW is τ ≡ Mg/Ṁ? ∼ 5–10 Gyr. The depletion

times of a population of normal star-forming galaxies are comparable and span a range of

∼ 2–10 Gyr (Kennicutt, 1989, 1998; Bigiel et al., 2008). The denser molecular phase of the

ISM is depleted on a similarly long time scale of τH2
≡ MH2

/Ṁ? ∼ 1–3 Gyrs (Kennicutt,
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1989, 1998; Wong & Blitz, 2002; Bigiel et al., 2008; Leroy et al., 2008, 2013; Bolatto et al.,

2017).

Compared to the time scales of any dynamical processes that are potentially relevant

for star formation, the observed gas depletion times are very long indeed. For example, the

orbital period of gas at the solar radius is torb ∼ 200 Myr, and the MW is thus depleting

its gas on the timescale of ∼ 25–50 such periods. On average, galaxies deplete their gas on

a timescale of ∼ 10–20 orbital periods (Kennicutt, 1998; Wong & Blitz, 2002; Leroy et al.,

2008; Daddi et al., 2010; Colombo et al., 2018).

The orbital period, torb, is probably the longest of the relevant dynamical timescales one

can think of. For example, the turbulent crossing time is usually tcross = h/σ ∼ 10–30 Myr,

where σ & 10 km s−1 is the velocity dispersion of gas in galactic disks and h ∼ 100–300 pc

is the disk scale height in the inner regions of galaxies. The free-fall time at the mean or

midplane density, ρ0, of galaxies spans a similar range: tff,0 ≡
√

3π/32Gρ0 ∼ 10–50 Myr.

The timescale of molecular cloud collisions is . 20 Myr (e.g., Tan, 2000). A given gas

mass encounters a spiral arm on a timescale of tarm ∼ 2π/(m[Ω(R) − Ωp]), where Ω(R) =

Vrot/R is the angular frequency of gas rotation, Ωp is the pattern speed of spiral arms,

and m is the number of spiral arms. This timescale is tarm ∼ 50–200 Myr, if we assume

Ωp ∼ 20 km s−1 kpc−1 (e.g., Bissantz et al., 2003), m ∼ 2–4 (e.g., Davis et al., 2015) and

Vrot ∼ 220 km s−1 typically derived for MW-like galaxies. Numerical simulations of gaseous

galactic disks show that star-forming molecular clouds may form on even shorter timescales

of a few tens of Myrs (Dobbs et al., 2012, 2015).

In addition to being slow on global galactic scales, star formation is inefficient even in

dense molecular star-forming regions, which convert only . 1–10% of gas into stars per

local free-fall time (Zuckerman & Evans, 1974; Zuckerman & Palmer, 1974; Krumholz &

Tan, 2007; Krumholz et al., 2012a; Evans et al., 2014; Lee et al., 2016; Heyer et al., 2016).

Such low efficiency arises because only ∼ 0.1–10% of the dense gas is self-gravitating and

3



collapsing into stars (Froebrich & Rowles, 2010).

However, the inefficiency of star-forming regions alone cannot explain long global deple-

tion times. The local depletion time in observed star-forming regions is t? ∼ 40–500 Myr

(e.g., Evans et al., 2009, 2014; Lada et al., 2010, 2012; Heiderman et al., 2010; Gutermuth

et al., 2011; Schruba et al., 2017). Thus, although the scatter is significant, typical values of

t? are considerably smaller than the global depletion time of molecular gas, τH2
∼ 1–3 Gyr.

The large scatter in depletion times measured on small scales and the difference between

local and global depletion time values indicate that only a fraction of molecular gas is actively

forming stars at any given moment. Indeed, the global depletion time can be expressed as

τ ≡ Mg

Ṁ?
=

τ?
fsf
, (1.1)

where Mg is the total gas mass of the galaxy; τ? ≡Msf/Ṁ? = 〈1/t?〉−1
sf is the mass-weighted

average over the depletion time distribution in star-forming regions, t?; and fsf ≡ Msf/Mg

is the gas mass fraction in actively star-forming regions. A similar expression can be written

for the global depletion time of molecular gas, τH2
, via a corresponding star-forming fraction

fsf,H2
≡Msf/MH2

:

τH2
≡ MH2

Ṁ?
=

τ?
fsf,H2

. (1.2)

Thus, the depletion time measured on larger scales is longer than that in star-forming

regions because, as the scale increases, more of non-star-forming gas is incorporated in the

gas mass estimate. Likewise, when depletion time is estimated on larger scales, the scatter

in τ and τH2
decreases as we average over the distribution of local t?. Such a dependence

of scatter on scale is indeed observed (Schruba et al., 2010, 2017), although some of the

obtained variation may be due to observational effects (Feldmann et al., 2011; Kruijssen &

Longmore, 2014).

Over the last three decades, a number of useful global star formation frameworks and
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models have been developed to consider the physical origin of the KSR normalization and

long depletion timescale. One class of such models associates long depletion times with the

fraction of gas in dense, self-gravitating regions of cold, supersonic molecular clouds with

the log-normal gas density PDF (Elmegreen, 2002; Krumholz & McKee, 2005; Krumholz

et al., 2012a). Such models, however, assume that all of the molecular gas is in “virialized”

star-forming molecular clouds and that the star formation efficiency in these clouds sets the

global depletion time. This assumption, which has also been frequently adopted in galaxy

simulations (e.g., Robertson & Kravtsov, 2008; Gnedin et al., 2009; Christensen et al., 2012;

Kuhlen et al., 2012), is at odds with a growing number of observations indicating that the

depletion time of star-forming molecular gas is in general considerably shorter than the

global depletion time of all molecular gas, τH2
, estimated on kiloparsec and larger scales.

Moreover, models and simulations of star formation in supersonic turbulent clouds show that

the local efficiency of star formation is primarily a strong function of the virial parameter

of the region, not just its density, temperature, and molecular fraction (e.g., Krumholz &

McKee, 2005; Padoan et al., 2012, 2017), while the virial parameter can span a wide range

of values (Dobbs et al., 2011b; Semenov et al., 2016, see also Appendix A.4).

Some models derive the KSR and its normalization by assuming that stellar feedback

regulates ISM turbulence so as to maintain vertical and/or Toomre (1964) equilibrium within

gaseous disks (Ostriker & Shetty, 2011; Faucher-Giguère et al., 2013; Hayward & Hopkins,

2017). However, it is not clear a priori why equilibrium can generically be expected in

galaxies as a whole or in kiloparsec-scale patches and why the star formation rate does not

instead reach values at which gas is driven out in a wind. Moreover, it is still debated whether

the turbulence within galactic disks is mainly driven by stellar feedback or by gravitational

instabilities (e.g., Krumholz & Burkhart, 2016).

Saitoh et al. (2008) argued that SFR is controlled by the rate at which gas is supplied from

the general ISM to the star-forming state, which makes it insensitive to the local efficiency
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of star formation. However, these authors measured the timescale at which gas is supplied

to the star-forming state to be ∼ 100 Myr and did not explain how this timescale relates to

the much longer observed depletion times of total gas, τ ∼ 2–10 Gyrs.

In this work, we aim to clarify the origin of the observed long gas depletion timescale in

galaxies, taking into account both the inefficiency of star formation in star-forming clouds

and the fact that not all of the molecular gas is actively forming stars.

1.2 Insights from galaxy formation simulations

Major insights into the origin of depletion times and the KSR can be gained using numerical

simulations of galaxy formation. Simulations enable us to vary systematically the parameters

of star formation and stellar feedback operating on small scales and explore their effect on

global star formation in galaxies.

Modeling of local star formation and feedback processes in galaxy simulations is admit-

tedly rather crude. With some variations and few exceptions, star formation prescriptions

usually follow ideas introduced for the first generation of simulations (Cen & Ostriker, 1992;

Katz, 1992): star formation occurs only in star-forming gas, defined using some conditions,

e.g., that gas density (temperature) is larger (smaller) than some threshold, that gas within

some region is gravitationally bound, that gas is in molecular phase, etc. (see, e.g., Hopkins

et al., 2013a). Star-forming gas is then converted into stellar particles using a stochastic

Poisson process with the rate

ρ̇? =
ρ

t?
, (1.3)

where ρ is the density of the gas that is deemed to be star-forming according to the adopted

criteria, and t? is its local depletion time. In most of the recent studies, this time is pa-

rameterized as t? = tff/εff , where εff is the star formation efficiency per freefall time,

tff ≡
√

3π/32Gρ. Likewise, the stellar feedback is modeled by simply injecting thermal
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and kinetic energy and momentum into gas resolution elements adjacent to a young star

particle (e.g., Hopkins et al., 2011, 2017b; Agertz et al., 2013; Simpson et al., 2015) or using

a subgrid prescription with a specific model of ISM on scales below resolution (e.g., Yepes

et al., 1997; Springel & Hernquist, 2003; Braun & Schmidt, 2012).

Despite a rather simplistic modeling of star formation and feedback on scales close to the

spatial resolution, modern galaxy formation simulations generally predict τ and the KSR

on kiloparsec and larger scales in a reasonable agreement with observations (e.g., Governato

et al., 2010; Stinson et al., 2013; Hopkins et al., 2014, 2017a; Agertz & Kravtsov, 2015, 2016;

Grand et al., 2017; Orr et al., 2018). Although in certain regimes the normalization and

slope of the KSR on galactic scales simply reflect the adopted value of t? on small scales

and its assumed density dependence (Schaye & Dalla Vecchia, 2008; Gnedin et al., 2014), in

other regimes there is no direct connection between t? and the global KSR (Hopkins et al.,

2017a; Orr et al., 2018).

An intriguing example of the behavior in the latter regime is the insensitivity of the

global depletion time to the star formation efficiency εff assumed on the scales of individual

star-forming regions. This phenomenon is usually described as “self-regulation” (e.g., Dobbs

et al., 2011a; Agertz et al., 2013; Hopkins et al., 2013a, 2017a; Agertz & Kravtsov, 2015;

Benincasa et al., 2016; Orr et al., 2018). The fact that simulations in such self-regulated

regime still result in the global depletion time close to the observed values is nontrivial. This

agreement indicates that such simulations can be used to shed light on the physical processes

connecting local parameters of star formation and feedback to the global star formation in

galaxies.

This connection and associated processes are the focus of this dissertation, and one of

our goals is to extend and make sense of the results of other recent studies of this issue (see,

e.g., Hopkins et al., 2011, 2017a; Agertz et al., 2013; Agertz & Kravtsov, 2015; Benincasa

et al., 2016; Li et al., 2017a,b).
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1.3 The linear slope of molecular Kennicutt–Schmidt relation

Yet another part of the puzzle is the near-linear slope of the molecular KSR observed in

normal star-forming (non-starburst) galaxies (Wong & Blitz, 2002; Bigiel et al., 2008, 2011;

Leroy et al., 2008, 2013; Bolatto et al., 2017; Utomo et al., 2017; Colombo et al., 2018).

In other words, the depletion time of molecular gas in kiloparsec-scale patches of the ISM,

τH2
= ΣH2

/Σ̇? ≈ 2± 1 Gyr, is independent of the molecular gas surface density ΣH2
.

The existence of some correlation between SFR and molecular gas surface densities is

expected because both SFR and molecular gas trace dense ISM gas. What is surprising,

however, is that the observed correlation is close to linear. Given that dynamical time scales

as tdyn ∝ 1/
√
Gρ, where ρ is the average density of a region, näıvely we could expect a

superlinear KSR: ρ̇? ∝ ρ/tdyn ∝ ρ1.5. Therefore, the linear slope indicates that the origin of

molecular KSR is more nuanced and is not shaped by gas self-gravity alone.

The mechanism responsible for the linear slope must be rather universal and operate in

a range of environments and for different states of dense gas. Indeed, the near-linear slope

in the molecular KSR persists in diverse galactic environments, from the average ISM of

various Hubble types of disk galaxies (e.g., Utomo et al., 2017; Colombo et al., 2018) to

low-density disk outskirts (Schruba et al., 2011) and even in low-metallicity dwarf galaxies

(Bolatto et al., 2011; Jameson et al., 2016). A close-to-linear relation is also observed for

dense gas visible in HCN and HCO+ over 8 orders of magnitude in mass and on a wide range

of spatial scales, from ∼ 10 pc scales to scales of entire galaxies (Gao & Solomon, 2004b,a;

Wu et al., 2005). However, the relation for molecular gas is not always linear: it steepens on

small, . 10 parsec, scales (e.g., Evans et al., 2009, 2014; Heiderman et al., 2010; Gutermuth

et al., 2011) and in extreme dense environments such as starburst galaxies (Genzel et al.,

2010, 2015) and galactic centers (e.g., Leroy et al., 2013). Moreover, the depletion time

exhibits mild trends with redshift and deviation of galaxies from the mean star formation

sequence (e.g., Tacconi et al., 2018). To explain the origin of the molecular KSR slope, both
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its universality at moderate and low surface densities and its steepening in more extreme

dense environments must be understood.

One of the most popular explanations for the close-to-linear slope of the molecular KSR

is the so-called “counting argument,” which was first introduced by Wu et al. (2005) to

interpret the linear relation observed for the dense gas traced by HCN and later extended to

more diffuse molecular gas states. This argument posits that all molecular gas resides in star-

forming units that have approximately the same properties and depletion times regardless of

the galactic environment. In this case, both ΣH2
and Σ̇? of an ISM patch result from counting

these units in this patch, and therefore, ΣH2
and Σ̇? become linearly related. However, the

observed properties of molecular regions do vary with & 1 kpc galactic environment (e.g.,

Miville-Deschênes et al., 2017), and therefore, the explanation of the linear slope must be

more nuanced.

Elucidating the origin of the linear slope of molecular KSR will be another goal of this

dissertation.

1.4 Dissertation outline

To address above questions and elucidate the origin of depletion times in galaxies, we in-

troduce a simple physical framework that connects galactic star formation on large scales

with the processes driving gas evolution on small scales. Our model is based on the mass

conservation equations relating the star-forming and non-star-forming components of highly

dynamic ISM and the idea of gas cycling between these components on certain characteristic

timescales under the influence of dynamical and feedback processes (such gas cycling was

also envisioned by Madore, 2010; Kruijssen & Longmore, 2014; Elmegreen, 2015, 2018).

We illustrate our model using a suite of isolated L?-galaxy simulations that is able to

reproduce the observed KSR and depletion times for both total and molecular gas. We

show that the model explains the origin of depletion times in our simulations and their
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dependence on the parameters of star formation and feedback assumed on the resolution

scale. In particular, our simulations are able to reproduce the self-regulated behavior, in

which global depletion time becomes independent of local star formation efficiency, and our

framework can explain the physical origin of this effect. In addition, we also show that our

framework provides major insights into the physics that shapes the slope of the molecular

KSR and makes it near-linear in normal star-forming galaxies.

The dissertation is structured as follows. In Chapter 2, we present our analytical model

for gas depletion times in galaxies. In Chapter 3, we describe our simulation suite and

analysis methods. In Chapter 4, we illustrate our framework using the fiducial simulation

from our suite and explore the processes that drive gas evolution in the ISM and their

corresponding timescales. In Chapter 5, we explore the effects of star formation and feedback

parameters on global star formation in our simulations and show that our analytical model

successfully explains the obtained behavior. In Chapter 6, we use our simulations and

analytical framework to gain insights into the origin of the slope of molecular KSR.
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CHAPTER 2

ANALYTIC MODEL FOR GAS DEPLETION TIME IN

GALAXIES

2.1 The connection between the depletion time and evolution

timescales of a single gas parcel

The interstellar gas in galaxies is a multiphase, dynamic medium spanning several orders

of magnitude in density and temperature. To get a sense of the processes affecting the gas

evolution in such a medium, we consider the evolution of individual gas parcels, massless

tracers of gas flows in the ISM. One can think of a representative set of the ISM atoms as

such tracers. At any given time, the local environment of such tracers can be estimated

by averaging gas properties on some scale l around the position of each tracer. The gas

around tracers will expand and contract under the influence of dynamical processes, such as

turbulence driven by gravitational instabilities and stellar feedback. Therefore, during the

evolution over a sufficiently long timescale, the conditions around each gas parcel can evolve

between the states of long and short depletion time, t?, once or over many transition cycles.

Such cycling of a gas parcel is schematically shown in Figure 2.1.

The probability density per unit time for a parcel to be converted into a star is given

by 1/t? and one can define the depletion time for a single parcel as the time required for

the integrated probability to reach unity. In what follows, for conceptual simplicity, we will

adopt a sharp threshold, t?,max, separating non-star-forming, t? > t?,max, and actively star-

forming, t? < t?,max, gas states. For a given distribution of t?, this threshold can be chosen

in such a way that regions with t? < t?,max include most of the total star formation.

The duration of a single cycle between the successive stages when the parcel’s environment

is in the star-forming state equals to the sum of the time spent in the non-star-forming, tnsf ,

and star-forming, tsf , stages. If we denote the average depletion time of the parcel during
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Figure 2.1: Schematic illustration of ISM gas evolution between non-star-forming and star-
forming states. The thick gray line depicts the mass-weighted PDF of local gas depletion
times, t? ≡ ρ/ρ̇?, where ρ and ρ̇? are the local densities of gas and SFR. The vertical dotted
line corresponds to the threshold depletion time, t?,max, separating star-forming and non-
star-forming gas. The blue loop illustrates cycling of a gas parcel between these states under
the influence of dynamical and feedback processes that supply and remove star-forming gas.
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the star-forming stage as τ?, the parcel will have a probability of tsf/τ? to be converted into

a star during the entire cycle. In other words, Nc = τ?/tsf such cycles would be needed for

the parcel to be incorporated into a star. Its depletion time can thus be written as

tdep = Nc(tnsf + tsf) = Nctnsf + τ? =

(
tnsf

tsf
+ 1

)
τ?. (2.1)

Hence, the depletion time of a gas parcel is always longer than τ? and it can be long because

star formation during tsf is inherently inefficient, i.e., τ? is long, and/or because only a small

fraction of the evolution cycle is spent in the star-forming state, i.e., tnsf/tsf is large.

2.2 The depletion time of an ISM patch or entire galaxy

The depletion time of an ISM patch, entire galaxy, or any larger region of the universe

results from the averaging the depletion times of gas parcels constituting these regions. Such

a collection of parcels has a distribution of τ?, tsf , tnsf and the collective depletion time of the

group is the average τ = 〈1/tdep〉−1 over these distributions. It is clear that if the depletion

times of individual parcels are long, τ will also be long.

In practice, the depletion time τ of an ISM patch or entire glaxy is estimated from the

instantaneous mass of gas, Mg, and young stars formed over a time interval ∆t, M?(< ∆t),

such that the average star formation rate is 〈Ṁ?〉∆t = M?(< ∆t)/∆t and the depletion time

is defined as τ ≡Mg/〈Ṁ?〉∆t. This estimate of τ can be related to the dynamics of individual

gas parcels within the patch by noting that due to mass conservation, the instantaneous total

mass of the gas parcels in the star-forming state, Msf , evolves as Ṁsf = Fsf − Ṁ?, where

Fsf is the net instantaneous flux of the gas parcels through the star formation threshold and

Ṁ? is the instantaneous SFR of all parcels. After averaging this expression over the time

interval ∆t, we get

τ ≡ Mg

〈Ṁ?〉∆t
=

Mg

〈Fsf〉∆t − 〈Ṁsf〉∆t
. (2.2)
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For brevity, in the following derivation, we omit explicit averaging, 〈...〉∆t, but assume

all fluxes and rates to be averaged over ∆t.

In general, the average net flux of gas through the star formation threshold can be

decomposed into positive and negative contributions,

Fsf = F+ − F−, (2.3)

which correspond to the supply and removal of star-forming gas illustrated in Figure 2.1.

The positive flux F+ is controlled by a combination of global dynamical processes, e.g.,

gravitational instabilities, turbulence, cooling, etc., with a significant contribution from stel-

lar feedback. The latter comes in the form of turbulence stirred by interactions of supernova-

driven bubbles and by fountain outflows of gas from star-forming regions. The negative flux

F− = F−,fb+F−,d results from the destruction of star-forming regions both by feedback from

young stars formed inside the regions, F−,fb, and by shearing due to large-scale turbulence

or differential rotation, expansion of gas behind galactic spiral arms, and other dynamical

processes not directly related to star formation inside the regions, F−,d. All fluxes can be

parameterized with the characteristic timescales, i.e., τ+, τ−,fb and τ−,d, on which gas is

supplied to and removed from the star-forming state by the corresponding processes,

F+ ≡
Mnsf

τ+
= Mg

1− fsf

τ+
, (2.4)

F−,fb ≡
Msf

τ−,fb
, (2.5)

F−,d ≡
Msf

τ−,d
, (2.6)

F− ≡
Msf

τ−
= F−,fb + F−,d = Mgfsf

(
1

τ−,fb
+

1

τ−,d

)
, (2.7)

where fsf ≡Msf/Mg is the star-forming mass fraction.

To make the relation between star formation and stellar feedback explicit, we can also
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parameterize F−,fb in a way similar to the parameterization of the mass outflow rate of

feedback-driven galactic winds,

F−,fb ≡ ξṀ? = Mgfsf
ξ

τ?
, (2.8)

where ξ is the mass-loading factor and we used the definition of the average depletion time

of star-forming gas, τ? ≡Msf/Ṁ?. In the context of Equation (2.7) the mass-loading factor

can also be interpreted as a relative rate of gas removal by feedback compared to the rate of

star formation, i.e., ξ ≡ τ?/τ−,fb.

An imbalance between the net gas flux into the star-forming state, Fsf , and the average

SFR may result in the evolution of the star-forming mass, which we also parameterize with

the characteristic timescale, τe,sf :

|Ṁsf | ≡
Msf

τe,sf
. (2.9)

The final expression for the global depletion time can be readily derived by substituting

Equations (2.3–2.9) and fsf = τ?/τ (Equation 1.1) into Equation (2.2),

τ =

(
1 + ξ +

τ?
τ−,d

± τ?
τe,sf

)
τ+ + τ?, (2.10)

where the sign in front of τ?/τe,sf reflects the sign of Ṁsf .

If we compare the terms in this equation with those in Equation (2.1) for the depletion

time of a single gas parcel, tdep = Nctnsf + τ?, their physical meaning becomes clear. The

timescale τ+ is analogous to the time tnsf that a gas parcel spends in the non-star-forming

state, while the expression in parentheses is analogous to Nc = τ?/tsf , i.e., the average

number of evolution cycles it would take for a single parcel to deplete its gas. Indeed,

Equation (2.4) gives Mnsf = F+τ+, which means that τ+ is the time over which all of

the non-star-forming gas will reach the star-forming state. Thus, τ+ is analogous to the
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average tnsf timescale for a collection of parcels. Likewise, the average rate at which the

gas mass in the star-forming state is decreasing due to star formation, dispersal, and the

overall evolution of the gas PDF during ∆t is given by Msf/τ? + Msf/τ− ±Msf/τe,sf , and

the associated timescale (1/τ? + 1/τ− ± 1/τe,sf)
−1 corresponds to the average time that gas

spends in this state. Thus, on average, gas will have to reach the star-forming state

Nc = τ?

(
1

τ?
+

1

τ−
± 1

τe,sf

)
= 1 + ξ +

τ?
τ−,d

± τ?
τe,sf

, (2.11)

times, where we used Equation (2.7) and the definition of the mass-loading factor, ξ ≡

τ?/τ−,fb.

2.3 Implications for depletion times in observed and simulated

galaxies

Equation (2.10) is the key expression of our framework. It states that the global depletion

time is the sum of the total time that gas spends in the non-star-forming state over Nc cycles

and the total time over which star-forming regions convert this gas into stars, τ?.

This equation elucidates how long τ values can be reconciled with the relatively short

local depletion times, τ?, and even shorter dynamical timescales, τ+, discussed in Section 1.1.

The global depletion time is longer than the depletion time in star-forming regions, τ?, due

to the significant fraction of time that gas spends in the non-star-forming state. The global

depletion time is longer than the timescale associated with dynamical processes supplying

star-forming gas, τ+, because gas must evolve through the non-star-forming state Nc times,

and Nc is large due to either efficient feedback, i.e., large ξ, or fast dynamical processes

destroying star-forming regions, i.e., short τ−,d (see Equation 2.11).

When feedback dominates the removal of gas from the star-forming state, the number of

cycles becomes Nc ∼ τ?/τ−,fb. This clarifies how feedback can self-regulate star formation,

16



i.e., how τ can become insensitive to τ?. Indeed, the timescale τ−,fb is proportional to the

rate of energy and momentum injection by feedback, which, in turn, is set by the local rate

of star formation, i.e., τ?. Hence, τ−,fb ∝ τ?, which renders Nc insensitive to τ?. Thus, when

Ncτ+ � τ?, the depletion time, τ ≈ Ncτ+, will be insensitive to τ?.

In a nonequilibrium state, in which Ṁsf > 0 (< 0) during ∆t, the term ±τ?/τe,sf in

Equation (2.10) accounts for the correction of the average rates estimated using the star-

forming gas fraction, fsf , defined for the instantaneous masses Msf and Mg. This correction

appears because, when Ṁsf > 0 (< 0), the actual average fraction of ∆t that gas spends

in the star-forming state is smaller (higher) than fsf and therefore more (fewer) transition

cycles are required for depletion.

In a steady state, on the other hand, the gas distribution is stationary and the star

formation rate is in equilibrium with the gas fluxes into and out of the star-forming state:

Ṁsf = Fsf − Ṁ? ≈ 0. In this case, τe,sf → ∞ and the term τ?/τe,sf can be neglected in

Equation (2.10). In such a steady state, τ = Mg/Fsf (see Equation 2.2), and depletion time

is determined by the net rate of gas inflow into the star-forming state, Fsf . When Fsf is small,

the depletion time is long. Galaxies as a whole reach the steady state with Ṁsf ≈ 0 on the

shortest of the timescales that control the global depletion time in Equation (2.10). Thus,

globally, such an assumption is justified. However, individual ISM patches may deviate from

the steady state, and the τ?/τe,sf term will be one of the sources of the scatter in depletion

times.

In Chapters 4–6, we use the framework described above and the results of isolated galaxy

simulations to illustrate the mechanism controlling depletion times in galaxies, their depen-

dence on the parameters of star formation and feedback on the scales of star-forming regions,

and the independence of molecular gas depletion time of its surface densities on &kiloparsec

scales. Although the simulations adopt specific choices for many parameters, including reso-

lution and prescriptions for star formation and feedback, the overall features and implications
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of our model do not depend on these specific choices. In general, our framework relates the

depletion time on a large scale, e.g., ∼kiloparsec scale or the scale of an entire galaxy, to

the star formation and feedback model that operates on a smaller scale, e.g., the resolution

scale of a simulation, where the distribution of local depletion times, t?, is defined.
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CHAPTER 3

SIMULATION SUITE AND ANALYSIS

3.1 Simulation code overview and isolated galaxy model

To illustrate the framework outlined above and elucidate the physical processes that give rise

to long global depletion times and linear molecular KSR, we use simulations of an isolated

∼L?-sized galaxy. We carried out our simulations using the Adaptive Refinement Tree

(ART) N -body and gas dynamics code (Kravtsov, 1999; Kravtsov et al., 2002; Rudd et al.,

2008; Gnedin & Kravtsov, 2011; Semenov et al., 2016). The ART code is a Eulerian code

that employs Adaptive Mesh Refinement (AMR) technique with the Fully Threaded Tree

data structure (Khokhlov, 1998) and a shock-capturing second-order Godunov-type method

(Colella & Glaz, 1985) with piecewise linear reconstruction (van Leer, 1979) to compute

hydrodynamical fluxes.

In our simulations we followed the evolution of an isolated gaseous disk in a live potential

of a dark matter halo, stellar bulge, and stellar disk that are modeled with collisionless

particles. We adopt the initial conditions that were used in the AGORA code comparison

project (Kim et al., 2016) and also in the study of Agertz et al. (2013). Specifically, the

isolated disk is initialized inside a dark matter halo with vc,200 = 150 km s−1 and an initial

concentration of c = 10. The initial disk of old stars has an exponential density profile with

a radial scale length of rd ≈ 3.4 kpc and a vertical scale height of hd = 0.1rd with a total

mass of M?,d ≈ 3.4×1010 M�. The stellar bulge has an initial mass of M?,b ≈ 4.3×109 M�

that is distributed with a Hernquist density profile with a = 0.1rd (Hernquist, 1990). The

initial exponential gaseous disk has the same rd and hd as the stellar disk; its total mass is

Mg ≈ 8.6× 109 M�, which corresponds to the disk gas fraction of fg ≡Mg/(M?,d +Mg) =

20%. We adaptively resolve cells where the total gas mass exceeds ∼ 8 300 M� and reach

a maximum resolution of ∆ = 40 pc. Such a ∆ is sufficient to resolve ISM structure down
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to densities of n ∼ 100–1 000 cm−3, and therefore we do resolve the dynamical build-up of

high-density regions that is sometimes claimed to limit the star-forming gas supply from the

general ISM with average density of n ∼ 1 cm−3. At the highest resolution level, we do not

apply an artificial pressure floor in cold gas. Thus, the densities of star-forming regions are

limited only by the effects of stellar feedback and the effective pressure due to thermal and

both subgrid and resolved turbulent motions discussed below.

The Poisson equation for the gravity of gas and stellar and dark matter particles is solved

using a Fast Fourier Transform on the zeroth uniform level of the AMR grid and using the

relaxation method on all refinement levels. The resolution for gravity is therefore also set

by the local resolution of the AMR grid, and in the ART code it corresponds to ∼ 2 grid

cells (see Figure 6 in Kravtsov et al., 1997). Gravitational potential and accelerations are

used to update positions and velocities of collisionless particles and are also applied in the

gas momentum and energy equations as source terms.

Gas evolution is governed by modified hydrodynamical equations that include terms

related to cooling and heating, dynamical effects of subgrid turbulence (Section 3.2), gas

consumption by star formation, and injection of mass, momentum, and energy by feedback

from young stars (Section 3.3). Cooling in the optically thin limit is implemented following

the model of Gnedin & Hollon (2012). We assume a fixed metallicity of Z = Z� and

constant background heating by interstellar radiation in the Lyman-Werner bands with the

photodissociation rate of 10−10 s−1 (Stecher & Williams, 1967). To model temperatures in

dense self-shielded gas, we assume that extinction is proportional to the local column density

of atomic gas, which we approximate as nLJ,40, where n is the gas number density in a cell

and LJ,40 is the local Jeans length with an applied temperature ceiling of 40 K (model “L1a”

in Safranek-Shrader et al., 2017).
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3.2 Subgrid-scale turbulence

A key novel element of the simulations presented in this dissertation is the explicit dynamical

modeling of gas turbulence on unresolved scales. Subgrid models to track unresolved tur-

bulence have been developed and extensively used in aerospace engineering and simulations

of terrestrial subsonic and supersonic turbulent flows (see, e.g., Sagaut, 2006; Garnier et al.,

2009, for review). In the context of galaxy formation simulations the exploration of such

type of models has only started (Latif et al., 2013; Braun et al., 2014; Braun & Schmidt,

2015; Semenov et al., 2016).

To model subgrid turbulence we employ the scale separation technique, where a large-

scale flow is governed by filtered hydrodynamical equations, whereas small-scale motions are

described by an additional hydrodynamical field. In our simulations, we use the subgrid

model described by Schmidt et al. (2014) for application in cosmological AMR simulations.

Here we briefly outline the main components and properties of this model. A more extensive

description can be found in the original paper by Schmidt et al. (2014).

Model equations follow from applying a spatial filter of scale ∆, which we take to cor-

respond to the grid cell scale, to ordinary hydrodynamical equations. The resulting set of

equations governs gas flows on resolved scales (> ∆) and contains additional terms and a

new equation for subgrid turbulent energy density, K:

∂

∂t
K +∇i(uiK) = −PK∇iui − ε+ τij∇iuj +∇iFi + SSN, (3.1)

where ui is resolved gas velocity, PK = 2K/3 is turbulent pressure, ε is the rate of tur-

bulence decay into thermal energy, τij∇iuj is viscous production by cascade from resolved

scales, ∇iFi is turbulent diffusion. The source term SSN enables us to directly inject some

fraction of supernovae energy into subgrid turbulence, however, in the simulations presented

in Chapters 4–6 we set SSN = 0 so that the subgrid turbulence is produced only via the
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interaction with the resolved flow. The total velocity dispersion of gas motions on unresolved

scales is then derived from K as σt =
√

2K/ρ.

Note that the subgrid turbulent energy is very similar to thermal energy, as the latter

results from integrating particles kinetic energies over the velocity space in the derivation

of hydrodynamical equations from the Boltzmann equation. For instance, the first term on

the right-hand side of Equation (3.1) is equivalent to the PdV work term in the equation

for thermal energy. This term implies that as gas contracts (expands) PK does work and

turbulent energy increases (decreases) similarly to thermal energy (Robertson & Goldreich,

2012). The change of K in this process depends on the local compression rate (−∇iui).

Likewise, the ε and τij∇iuj +SSN terms are equivalent to the cooling and heating terms

in the thermal energy equation, respectively. We follow Schmidt et al. (2014) and assume

an exponential decay of K into thermal energy over the time scale close to the turbulent

cell-crossing time, ε = K/tdec, where tdec ∼ ∆/σt. Numerical studies of decaying MHD

turbulence generally confirm fast dissipation over a crossing time both in subsonic and su-

personic regimes (e.g., Gammie & Ostriker, 1996; Mac Low et al., 1998; Stone et al., 1998;

Kim & Basu, 2013).

Equations for resolved gas momentum and energy also include terms related to non-

thermal pressure (PK), turbulent viscosity (τij) and diffusion (similar to ∇iFi). The latter

two terms are analogous to molecular viscosity and thermal conduction that appear in the

hydrodynamical equations when different moments of the Boltzmann equation are integrated

over the velocity space.

The equations of viscous hydrodynamics and subgrid turbulence both require closure

relations for these transport terms in order to become solvable. In both cases, these closure

relations cannot be derived from the first principles and are chosen empirically. One of the

common choices for the subgrid turbulence is to adopt the closure relations similar to those

used for usual viscosity and thermal conduction. Physically, this approach assumes that
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energy and momentum are transported on the filtering scale ∆ mainly by the eddies of size

∆, i.e. the largest unresolved eddies. Models that employ this assumption are known as the

Large-Eddy Simulations (LES) and are widely used for simulations of both incompressible

(Sagaut, 2006) and supersonic (Garnier et al., 2009) turbulent flows (see also Schmidt, 2014,

for a recent overview in the astrophysical context).

In our simulation for the turbulent stress tensor τij we use the large-eddy viscosity clo-

sure, given by Equation (8) of Schmidt & Federrath (2011) with C2 = 0 and C1 = 0.095,

appropriate for sub- and transonic regime. Our choice is justified by the fact that viscous

production of turbulence in our simulated disk is important mainly in warm diffuse gas where

subgrid turbulence is subsonic and gas is only weakly compressible (see Section A.3). We

checked that our implementation of the subgrid model with such a closure reproduces the

distribution of K in a low-resolution isotropic developed turbulence box simulation, when

compared to a high-resolution direct simulation.

In the adopted closure, τij depends on the local gradients of the resolved velocity field,

and these gradients are interpreted as the onset of turbulent cascade on scale ∆. Therefore, in

this model, turbulence can be artificially produced by large-scale velocity gradients, such as

differential rotation, disk–halo interface, etc. To suppress this spurious production, Schmidt

et al. (2014) suggest temporal averaging of simulated flow, so that τij depends only on

the gradients of fluctuating velocity part, in the so-called “shear-improved” closure, first

introduced by Lévêque et al. (2007). In our simulation we adopt exponential temporal

filtering with a time window tsi = 10 Myr, i.e., turbulent energy is produced by the cascade

from velocity perturbations that develop faster than tsi. We choose the value tsi = 10 Myr

to filter out the differential rotation, on the one hand, and to capture various developing disk

instabilities, on the other hand. We checked that our results are not sensitive to a change of

tsi by a factor of 2.

Although the subgrid turbulence model has a number of parameters, as described above,
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these parameters are calibrated using turbulence simulations and are not varied in our galaxy

formation simulations. In this sense, they do not really add tunable free parameters in such

simulations. They do affect the solution, however, as a particular choice of the closure relation

forms and their parameters controls all interactions between resolved and unresolved scales

and may depend on the flow configuration and turbulent Mach number. Generally, this might

be considered as an important limitation of our model, as the specific closure adopted for our

simulation was calibrated to reproduce the results of high-resolution simulations of developed

isotropic transonic turbulence, while we apply it to a sheared gas flow in a stratified disk.

However, we argue that this approach is still viable for prediction of the turbulent velocities

in cold star-forming gas. Specifically, we checked that the resulting distribution of turbulent

energy in cold gas is not sensitive to a particular choice of τij parametrization. This is

because the turbulent energy in this gas is mostly determined by the interplay between

heating by compression and viscous dissipation into heat (see Section A.3). Both these

effects are insensitive to turbulent Mach number as indicated by numerical simulations of

developed turbulence (Mac Low et al., 1998; Robertson & Goldreich, 2012).

One important limitation of the model is an assumption that the unresolved turbulence

on scale ∆ is in the inertial regime. This assumption is made implicitly, because the direct

simulations of developed turbulence, which were used to calibrate this model, do resolve the

inertial range. However, resolving inertial scales in a galactic disk simulation is computa-

tionally challenging as it requires high spatial resolution, because turbulence is generated on

scales comparable to the disk scale height, hd ∼ 100 pc, while numerical viscosity affects gas

flows in AMR-based codes on scales up to ∼ 10–20 cells (e.g., Kritsuk et al., 2011). Thus,

resolving the inertial scales unaffected by numerical viscosity requires minimal cell sizes of

< 5–10 pc. Therefore, our resolution is not quite within the regime in which the subgrid

turbulence model was calibrated. However, this problem is mitigated by the insensitivity of

the subgrid turbulence properties in star-forming gas to the parametrization of τij , which is
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the part that depends on the ∆ being within the inertial range. Thus, we believe the use of

the subgrid turbulence model in simulations with moderate resolution is justified.

3.3 Star formation and feedback

We stress that the scenario of gas depletion described in Chapter 2 remains valid for any

choice of star formation prescription, although the results of Chapters 5 and 6 show that

such a prescription should be chosen carefully, as it is important for the prediction of realistic

ISM properties. In this work, we adopt a usual parameterization of the local star formation

rate with a star formation efficiency per freefall time, εff ,

ρ̇? = εff
ρ

tff
, (3.2)

and systematically vary εff as will be explained at the end of this section. We allow star

formation to occur only in the gas that satisfies a chosen criterion. To explore the effects

of such a criterion, we adopt thresholds in either the gas virial parameter, αvir,sf , or the

density, nsf , and also vary the values of αvir and nsf .

As our fiducial star formation criterion, we adopt a threshold in αvir and define all gas

with αvir < αvir,sf as star-forming. For a computational cell with a side ∆, the local virial

parameter is defined as for a uniform sphere of radius R = ∆/2 (Bertoldi & McKee, 1992):

αvir ≡
5σ2

totR

3GM
≈ 9.35

(σtot/10 km s−1)2

(n/100 cm−3)(∆/40 pc)2
, (3.3)

where σtot =
√
σ2

t + c2s is the total subgrid velocity dispersion due to turbulent and thermal

motions, and subgrid turbulent velocities, σt =
√

2K/ρ, are dynamically followed in each

cell using the Schmidt et al. (2014) model.

The choice of the star formation threshold in αvir is motivated by theoretical models
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of star formation in turbulent giant molecular clouds (GMCs), which generically predict an

exponential increase of εff with decreasing αvir (see Padoan et al., 2014, for a review). For

example, Padoan et al. (2012) found that the star formation efficiency of a turbulent cloud

increases exponentially with a decreasing virial parameter, εff ≈ exp(−
√
αvir/0.53). Even

though we are able to model εff following the Padoan et al. (2012) formula (see Appendix A),

in the simulations used here, we approximate the continuous exponential dependence of εff on

αvir assuming a constant εff and a sharp αvir,sf threshold. This makes the interpretation of

simulation results easier. We explicitly checked that the global depletion times and the KSR

are similar in runs where εff follows the Padoan et al. (2012) fit and where we approximate

this fit with a threshold (see Appendix C.2).

We set our fiducial values of parameters to εff = 1% and αvir,sf = 10, as supported

by the observed efficiencies and virial parameters of star-forming GMCs (e.g., Evans et al.,

2009, 2014; Heiderman et al., 2010; Lada et al., 2010, 2012; Lee et al., 2016; Vutisalchavakul

et al., 2016; Miville-Deschênes et al., 2017), and also consistent with the results of high-

resolution GMC simulations (e.g., Padoan et al., 2012, 2017), which show a sharp increase

of εff below αvir ∼ 10. Note also that the threshold in αvir is equivalent to a threshold in

the local Jeans length that accounts for both the thermal and turbulent pressure support:

λJ = σtot
√
π/Gρ = π∆

√
αvir/5, and thus αvir,sf = 10 implies that gas becomes star-forming

when the local Jeans length is resolved by less than λJ/∆ ≈ 4.5 cells. A qualitatively similar

star formation prescription but with a different choice of parameters was studied by Hopkins

et al. (2013a).

In galaxy simulations that do not track subgrid turbulence, the GMC-scale αvir is not

readily available owing to insufficient resolution. Instead, such simulations often adopt a star

formation threshold in gas density, n, and define star-forming gas as the gas with n > nsf .

For comparison, we also explore models with varied density-based thresholds in addition to

our fiducial αvir-based threshold.
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Our default star formation prescription (Equation 3.2) implies a superlinear scaling of

local SFR with gas density: ρ̇? ∝ ρ1.5. To explore the effect of this local dependence on the

slope of the molecular KSR, we also adopt a more general recipe:

ρ̇? = εff
ρ0

tff,0

(
ρ

ρ0

)β
, (3.4)

where tff,0 =
√

3π/32Gρ0 is the freefall time at ρ0 = 100 mp cm−3 and β is a variable

parameter. For β = 1.5, this expression is equivalent to Equation (3.2).

The feedback from young stars is implemented by injection of thermal energy and radial

momentum generated during supernova (SN) remnant expansion in a nonuniform medium

in the amounts calibrated against simulations by Martizzi et al. (2015).

The explicit injection of the generated radial momentum allows one to partially resolve

the overcooling problem and efficiently couple the feedback energy to the resolved dynamics of

gas, which explains the growing popularity of the method (e.g., Simpson et al., 2015; Grisdale

et al., 2017; Hopkins et al., 2017b). However, the injected momentum is still partially lost

as a result of advection errors (see, e.g., Agertz et al., 2013), and to compensate for this loss,

we boost the momentum predicted by Martizzi et al. (2015) by a factor of 5. This value is

motivated by our idealized tests of a stellar particle exploding in a uniform medium with

additional translational motion at velocity 200 km s−1, which is comparable to the rotational

velocity of the simulated galaxy. Such a fiducial boosting factor also absorbs uncertainties

related to SNe clustering (Gentry et al., 2017, 2019), the presence of cosmic rays (Diesing &

Caprioli, 2018), and the total energy of a single SN. To explore the effects of the feedback

strength on the global depletion times, in addition to this fiducial boosting, we multiply

the injected momentum by a factor b, which is systematically varied. The resulting radial

momentum is distributed among all immediate neighbors1 of the cell hosting the supernova.

1. For a uniform grid, the number of neighbors receiving momentum is 26, but it can be larger depending
on the local refinement structure of the grid.
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The total number of SNe exploded in a single stellar particle is computed assuming

the Chabrier (2003) initial mass function. In the simulations presented in Section 4.1 and

Chapter 4, the energy and momentum of these supernovae are injected at a uniform rate

between 3 and 43 Myr after the formation of a stellar particle. In the simulations with high εff

explored in Chapters 5 and 6, a significant fraction of gas can be converted into stars before

the first SNe explode because local gas depletion time is comparable to the lag before the

first SN. Thus, to mimic the effects of pre-SN feedback, such as radiation pressure and winds

from massive young stars, in all simulations presented in Chapters 5 and 6 the momentum

injection commences at the moment when a stellar particle is created and continues for 40

Myr.

In addition to SNe type II feedback, we also account for the mass loss by stellar particles

following Leitner & Kravtsov (2011) and inject mass and the corresponding momentum

resulting from the motion of the stellar particle with respect to the gas into the cell hosting

the stellar particle.

In the end, in our simulations, star formation and feedback are parameterized by four

numbers: the star formation efficiency, εff , the star formation threshold, αvir,sf or nsf , the

slope of local SFR dependence on density, β, and the feedback boost factor, b, which we vary

in order to explore their effects on the global star formation. To assess the effect of the local

star formation efficiency, we vary εff from 0.01% to 100%, i.e., by four orders of magnitude

around our fiducial value of εff = 1%. To explore the effects of the star-forming gas definition,

we vary αvir,sf between 10 and 100 and nsf between 10 cm−3 and 100 cm−3. We expect that

such αvir and n are well resolved in our simulations, because they are sufficiently far from

the resolution-limited values of αvir ∼ 2 and n ∼ 104 cm−3 in a simulation with εff = 0.01%,

in which gas contraction is not inhibited by stellar feedback (see the bottom left panel of

Figure 5.4 below). Next, β is set to fiducial 1.5 in the simulations presented in Chapters 4–5

and is varied between 1 and 2.5 in Chapter 6. Finally, in order to explore the effect of
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the feedback strength, in addition to the fiducial case of b = 1, we also consider the 5 times

stronger feedback (b = 5), the 5 times weaker feedback (b = 0.2), and the case of no feedback

at all (b = 0). Such wide variation of model parameters allows us to explore the connection

between the subgrid scale and the global star formation in the simulated galaxy.

3.4 Analysis overview

Analysis of time evolution shows that all our simulations exhibit a short (. 300 Myr) initial

transient stage, after which the simulated galaxy settles into a quasi-equilibrium state with

approximately constant global galaxy parameters, such as gas depletion time, τ (see, e.g.,

Figure 5.1 below). Thus, in our subsequent analysis we average the galaxy properties of

interest over either 200 or 300 Myr after the initial 300 Myr of evolution with the actual

averaging interval indicated in figure captions. A 200–300 Myr time interval is sufficiently

long to average out the temporal variability of galaxy properties, but it is also shorter than

τ , and hence the galaxy maintains the approximate equilibrium over this time interval. The

only exceptions are the runs without feedback and with high local star formation efficiency

of εff ≥ 10%, in which τ is very short and the total gas mass decreases appreciably between

300 and 600 Myr. The equilibrium assumption is also violated for the central region in

simulations with εff ≤ 0.1%, where the central density keeps increasing owing to continuous

accretion. However, outside the central 1 kpc the total gas mass and the value of τ remain

approximately constant, and therefore we exclude gas in the central 1 kpc region when

computing quantities in our analysis.

Some of the results presented below relate to molecular gas content of our simulated

galaxies. To measure molecular gas mass fractions, we estimate the molecular gas density

in each cell using the KMT model (Krumholz et al., 2008, 2009a; McKee & Krumholz,

2010): ρH2
= max[0, (1 − 0.75s/(1 + 0.25s))ρ], where at solar metallicity s ≈ 1.8/τc and

τc = 320(ρ∆/g cm−2). Molecular gas surface density, ΣH2
, is measured by integrating
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molecular density in all cells along the direction perpendicular to the disk. Note that the

result presented in different chapters differ by the correction due to the helium fraction:

in Chapters 4 and 5 helium is excluded from the molecular mass while in Chapter 6 it is

included leading to ∼ 1.33 times larger molecular mass assuming 25% helium mass fraction.

For a consistent comparison with the observed KSR for H I + H2 gas in Section 4.1, we

defined neutral hydrogen to be all nonmolecular gas denser than nH,SSh, given by Equation

(13) in Rahmati et al. (2013). This threshold corresponds to the gas self-shielded from the

far ultraviolet (FUV) background with the adopted photoionization rate Γ = 10−10 s−1. We

also excluded all neutral hydrogen that is colder than 1000 K assuming that it constitutes the

optically thick cold neutral medium (CNM) not included into the observed measurements of

ΣHI. Our temperature threshold is somewhat higher than the CNM temperature estimated in

real galaxies (. 300 K, e.g., Wolfire et al., 2003) because, in our simulation, we do not resolve

the transition between warm and cold neutral gas phases, which results in intermediate gas

temperatures on the resolution scale. The particular value of the temperature threshold

was chosen to select ∼ 40% of the neutral hydrogen mass, which is close to the CNM mass

fractions estimated in the Milky Way and nearby galaxies (e.g., Heiles & Troland, 2003;

Braun, 2012; Pineda et al., 2013; Sofue, 2017).

To obtain the Σ̇?–ΣH2
relation in Chapter 6, we measure the SFR surface density from the

distribution of stars younger than 10 Myr. This time interval is chosen to approximate the

temporal averaging of SFR used in the extragalactic observations to which we will compare

our results.2

To study the detailed dynamics of individual gas parcels, we use gas tracer particles that

are passively advected with the local gas flow. The results presented in the following chapters

differ by the implementation and initialization of these tracer particles.

2. Specifically, 10 Myr corresponds to the Hα star formation indicator (see, e.g., Table 1 in Kennicutt &
Evans, 2012). Extragalactic observations usually adopt a combination of Hα and infrared indicators, which
corresponds to the SFR averaged over a somewhat longer time interval. However, we checked that our results
remain almost unchanged when we average SFRs over 30 Myr instead of 10 Myr.
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In Chapter 4, we use classical tracers that are moved at each step with the local gas

velocity interpolated to the positions of the particles using the cloud-in-cell scheme. We

populate the disk with 105 tracer particles uniformly initialized within R < 8 kpc after

300 Myr of disk evolution when the transients related to the initial off-equilibrium state had

dissipated away. After initialization, we wait for 100 Myr to let the tracers equilibrate with

the gas density distribution. At that point, the distributions of tracer densities in radial

annuli approximates the gas density PDF in computational cells.

In mesh-based codes, the classical implementation of tracer particles is known to fol-

low gas density imperfectly (Genel et al., 2012). Therefore, for the analysis presented in

Chapters 5 and 6 we implemented the scheme proposed by Genel et al. (2012) to accurately

follow gas density, modulo the Poison noise introduced by the finite number of tracers in a

cell. In this scheme, gas-tracer particles that are exchanged between adjacent computational

cells stochastically, with the probability proportional to the gas mass flux between the cells.

We initialize tracer particles proportionally to the local gas density after 400 Myr of disk

evolution.

We average the distribution of tracers to construct statistics, such as their PDF and

fluxes in the n–σtot phase diagram, between 400 and 600 Myr. We checked that at every

moment between 400 and 600 Myr phase distributions of gas and tracer particles resembled

their averaged versions, which confirms that the galaxy remained in approximate equilibrium

over the considered period of time.

We focus on the evolution of gas tracers in the n–σtot phase plane because the position of

a gas parcel in this plane determines its internal consumption time, t?, according to our star

formation prescription. To accurately quantify gas motions in the n–σtot plane, we output

positions, n, and σtot for each gas tracer every 1 Myr. The instantaneous contributions of

each tracer into the gas fluxes, d log n/dt and d log σtot/dt, are measured as the second-order

time derivatives between the previous and subsequent snapshots. To estimate the average
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local flow rates of gas, we accumulate fluxes corresponding to these derivatives and normalize

them by the local density of tracers in the n–σtot plane. To account for gas consumption,

whenever a stellar particle is formed, relative weights of all tracers inside the host cell are

decreased correspondingly.

To characterize actual fluxes that supply and remove star-forming gas, in addition to the

total flux of tracers, we separately track the fluxes of tracers with decreasing or increasing

αvir. We quantify the magnitudes of these fluxes with the characteristic evolution timescale,

on which αvir changes by an order of magnitude at a given rate,

τα,≷0 ≡
〈∣∣∣∣d log10 αvir

dt

∣∣∣∣〉−1

≷0
, (3.5)

where we average the derivative of log10 αvir taking into account only tracers with decreasing

(increasing) αvir to compute τα,<0 (τα,>0).

For the analysis presented in Chapter 6, we define the duration of a single molecular

stage of a gas tracer as

tH2
=

t2∫
t1

fH2
(t) dt, (3.6)

where fH2
is the molecular mass fraction of the cell hosting the gas tracer at a given time

step, and t1 and t2 are the subsequent moments when the gas tracer crosses the n = 10 cm−3

threshold3. We also accumulate integral star formation efficiency over tH2
as

ε =

t2∫
t1

Θsf(t)

t?(t)
dt, (3.7)

where at each time step Θsf = 1 if a gas tracer resides in a cell that satisfies the star formation

criterion, and Θsf = 0 otherwise; t? = ρ/ρ̇? is the local depletion time in star-forming gas;

3. For our choice of parameters, the Krumholz et al. (2008) model predicts that the molecular mass
fraction is 0 for n < 10 cm−3 and it sharply increases for n > 10 cm−3
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t? = tff/εff for our fiducial β = 1.5 in Equation (3.4).
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CHAPTER 4

THE PHYSICAL ORIGIN OF LONG GAS DEPLETION TIMES

In this chapter, we illustrate our framework using our fiducial simulation of a galactic disk

that reproduces the observed depletion time and the Kennicutt-Schmidt relation. We start

from a brief review of the results of our simulation in Section 4.1. In Section 4.2 we demon-

strate that the long global depletion time in our simulation originates from the rapid cycling

of ISM gas between non-star-forming and star-forming states on timescales ∼ 20–100 Myr,

in accord with the estimates discussed in the Introduction and with the results of previous

galactic disk simulations. On each evolution cycle, only a small fraction of the gas mass

is converted into stars and thus τ is long because a large number of such cycles would be

required to deplete all available gas. In Sections 4.3 and 4.4, we analyze the processes driv-

ing the rapid gas evolution and estimate the timescales of gas evolution using gas tracer

particles. We discuss our results and summarize our conclusions in Sections 4.5 and 4.6.

This chapter is based on the work published in Semenov et al. (2017).

4.1 Gas distribution and the KSR in the fiducial simulations

Figure 4.1 shows the spatial distribution of gas number density, temperature, and subgrid

turbulent velocity in our fiducial simulation with εff = 1% for αvir < αvir,sf = 10 and

b = 1 at t = 500 Myr. The figure highlights the multiphase, dynamic structure of the ISM.

Comparison with a simulation weak feedback (see, e.g., the top left panel of Figure 5.4 below)

shows that the structure of the ISM is significantly affected by stellar feedback. Its effect

is manifested in the ubiquitous regions of hot, turbulent gas and in the overall flocculent

nature of the spiral pattern.

Subgrid turbulent velocities, σt, range from . 3 km s−1 in the diffuse ISM between the

spiral arms to ∼ 30–300 km s−1 in hot SNe bubbles. In this simulation, supernovae do not
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Figure 4.1: Midplane slices of gas number density, n, temperature, T , and subgrid tur-
bulent velocity, σt =

√
2K/ρ, after 500 Myr of evolution. To make comparison easier, the

black contours in all panels indicates n = 10 cm−3, above which the molecular mass fraction
rapidly increases at solar metallicity. Green contours in the left panel show gas that satisfies
our star formation criterion, αvir < αvir,sf = 10.

explicitly inject turbulent energy, and high σt in hot bubbles are generated by the subgrid

turbulence model. In the cold dense gas, turbulent velocities are supersonic and also vary

significantly, σt ∼ 5–15 km s−1. Strong subgrid turbulence in cold gas results in high values

of αvir and, according to our star formation criterion, αvir < αvir,sf = 10, only ∼ 40% of

all molecular gas mass is star-forming at any given moment. Such star-forming regions are

shown in the left panel of Figure 4.1 with green contours.

The total SFR of our model galaxy is Ṁ? ∼ 1–2 M� yr−1, which translates to global

depletion times for the total and molecular gas of τ ∼ 4–8 Gyr and τH2
∼ 1–2 Gyr. These

values are in the ballpark of the typical values observed in nearby spiral galaxies (e.g., Wong

& Blitz, 2002; Bigiel et al., 2008; Leroy et al., 2013). The average depletion time of star-

forming gas only is τ? ∼ 300–500 Myr which is also consistent with observational estimates

of depletion times in actively star-forming regions (e.g., Evans et al., 2009, 2014; Lada et al.,

2010, 2012; Heiderman et al., 2010; Gutermuth et al., 2011; Schruba et al., 2017).

Figure 4.2 compares the Kennicutt-Schmidt relation between the surface densities of the
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Figure 4.2: Relation between the surface density of the SFR and the total (left panel)
and molecular gas (right panel) in our simulation and in observations. To match the typical
spatial scales on which this relation is usually measured, we smooth 2D maps of Σ̇?, ΣHI+H2

and ΣH2
obtained at 500 Myr with a Gaussian filter with a width of 1 kpc and plot the

median, 16th, and 84th percentiles of the resulting pixel distribution (thick and thin gray
lines). The distributions are colored according to the average galactic radius, R, of pixels in a
given bin. To match the averaging timescales of the star formation indicators, we measure the
surface density of stars that are younger than 30 Myr and define Σ̇? as Σ?(< 30 Myr)/30 Myr.
The thin red line at high Σ indicates the slope adopted in our star formation prescription,
ρ̇? ∝ ρ1.5. Thin dotted lines correspond to the constant depletion times of 0.1, 1, and 10
Gyr (from top to bottom). We compare our results to the observed relations in nearby spiral
galaxies (Bigiel et al., 2008, 2010; Leroy et al., 2013) and in the Milky Way (Misiriotis et al.,
2006). The violet contour in the right panel shows the range of τH2

∼ 0.5–2 Gyr estimated

using the radial profiles of Σ̇? and ΣH2
for the Milky Way from Figure 7 in Kennicutt &

Evans (2012).
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SFR and H I + H2 and H2 gas in our simulation1 to the observed relations in the Milky Way

and nearby spiral galaxies. Our results are in a good agreement in both normalization (i.e.,

the depletion time value) and slope. Note, in particular, that the linear relation between Σ̇?

and ΣH2
emerges from the nonlinear star formation prescription adopted in our simulation:

ρ̇? ∝ ρ1.5. In Chapter 6, we consider the origin of the linear relation and show that it results

from the particular behavior of the gas density distribution shaped by stellar feedback. In

the remainder of this chapter we focus on the physical origin of the KSR normalization and

explain why global depletion times in galaxies are long.

4.2 Long global depletion times as a result of rapid gas cycling

As we discussed at the end of Section 2, in a steady state, when 〈Ṁsf〉∆t ≈ 0 on the timescale

∆t over which the SFR is estimated, long global depletion times, τ ≡ Mg/Ṁ? = Mg/Fsf ,

originate from a small net flux of gas into the star-forming state, Fsf . In principle, Fsf could

be small if the rate at which gas evolves toward the star-forming state were set by a slow

“bottleneck” process. However, as Figure 4.3 shows, in simulations with efficient feedback,

gas rapidly transitions between the star-forming and non-star-forming states, and a small

Fsf results from a near-cancellation of large opposite fluxes into and out of the star-forming

state.

In this figure, we plot the distribution of gas tracer particles within the disk in the plane of

gas number density, n, and σtot =
√
σ2

t + c2s , that can be viewed as an effective temperature

including both thermal and turbulent gas motions on subgrid scales. The gas distribution

spans a wide range of densities, σtot, and temperatures and has two distinct peaks. The

peak at low densities, n ∼ 1 cm−3, corresponds to diffuse, warm, subsonic (σt . cs) gas at

temperature T ∼ 104 K. The gas in the second peak at n > 10 cm−3, on the other hand, is

cold (T . 100 K) and supersonic (σt > cs).

1. The definition of H I and H2 gas in our simulations is explained in Section 3.4.

37



100 101 102 103

10

3

30

σ
to

t
(k

m
s−

1
)

Net flux (Fsf)

subsonic
ISM supersonic

ISM

10

3

30

σ
to

t
(k

m
s−

1
)

αvir ↓ (F+)

100 101 102 103

n (cm−3)

10

3

30

σ
to

t
(k

m
s−

1
)

αvir ↑ (F−)

102

103

104

105

106

T
(K

)

3

10

30

100

τ α
,<

0
(M

y
r)

3

10

30

100

τ α
,>

0
(M

y
r)

Figure 4.3: Distribution of gas tracer particles in the plane of gas number density, n, and

total velocity dispersion, σtot =
√
σ2

t + c2s , averaged between 400 and 600 Myr. The black

contours in all panels indicate the average PDF of tracers and correspond to 20, 68, 95, and
99% of all tracers. The diagonal dotted lines indicate constant values of αvir from left to
right: 1000, 100, 10, and 1, with αvir = αvir,sf = 10 shown by the thick green dotted line. The

dashed line along the lower envelope of the PDF at n < 10 cm−3 indicates the median sound
speed, cs, in each density bin. Colors in the top panel show the average gas temperature in
each bin, while arrows indicate the average total fluxes of gas tracers measured as described
at the end of Section 3. Arrows in the middle and bottom panels correspond to the fluxes of
gas tracers with decreasing and increasing αvir respectively. Colors in these panels show the
distribution of the characteristic evolution timescales, τα,≷0, defined by Equation (3.5). The
normalizations of the arrows are the same in all three panels and correspond to the distances
that tracers would traverse at a given rate over 5 Myr.
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According to our star formation prescription, the star-forming gas has αvir < αvir,sf = 10.

Such gas in Figure 4.3 resides below the thick green dotted line. The net mass flux of gas

in the n–σtot plane is visualized by the arrows in the top panel of Figure 4.3, where the

length of the arrows is equal to the distance tracers would traverse in 5 Myr for a given

flux. The figure shows that arrows are rather small throughout most of the phase space

occupied by tracers and are particularly small near the thick green dotted line. This means

that the net evolution of gas in the n–σtot plane is slow and the net flux through the star

formation threshold, Fsf , is small. This small net flux results in the long global depletion

timescales exhibited by our simulated galaxy, τ ∼ 5 Gyr and τH2
∼ 1 Gyr (see Section 4.1

and Figure 4.2).

However, the middle and bottom panels of Figure 4.3 show that the small net Fsf results

from the near-cancellation of two opposite fluxes. These panels show the fluxes of only those

tracers in which αvir is decreasing, F+, or increasing, F−, and these fluxes are significantly

stronger than the net flux in the top panel. A typical tracer evolves toward and away from the

star-forming state on a timescale of order τα,≷0 ∼ 5–30 Myr, consistent with the estimates

of the timescales of relevant processes in Section 1.1. Thus, the rate of gas supply from the

warm, diffuse ISM to the star-forming state cannot be the factor limiting the global star

formation rate, as envisioned by Saitoh et al. (2008). Instead, gas generally evolves from the

diffuse to the star-forming state on a timescale of tens of Myr, much shorter than the global

depletion time. The latter is long because gas rapidly leaves the star-forming state at the

rate that nearly cancels the rate at which gas is reaching this state. In the next section, we

consider the processes that drive the fast gas evolution in more detail.

4.3 Dynamical processes shaping ISM

The average gas flow patterns shown with arrows in Figure 4.3 result from the statistical

averaging of the complicated trajectories of individual tracer particles. The particular shapes
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Figure 4.4: Trajectories of three illustrative tracers followed for 200 Myr. The left set
of panels shows the evolution of αvir for each of the three tracers. The right panel shows
the trajectories in the n–σtot plane with the corresponding colors. The gray contours and
arrows indicate the average tracer PDF and their net fluxes, as in the top panel of Figure 4.3.
The thick dotted lines in all panels correspond to the adopted star formation threshold,
αvir = αvir,sf = 10. For presentation purposes, small fluctuations of actual tracer trajectories
on timescales . 5 Myr were smoothed using Savitzky-Golay filter.

of such trajectories vary depending on local conditions and specific physical processes that

govern gas evolution.

In our simulation, gas evolution between diffuse, warm, subsonic and dense, cold, su-

personic ISM phases is governed by large-scale disk instabilities and the turbulent flows

generated by them. The evolution of gas in the dense phase is largely affected by stellar

feedback that disperses star-forming regions, drives large-scale ISM turbulence, and launches

fountain-like outflows.

In the following subsections, we consider these processes using three illustrative tracer

trajectories integrated over 200 Myr that are shown in Figure 4.4. We chose these particular

tracers because their evolution over the considered period of time is governed predominantly

by the same process over several consequential cycles of compression and expansion.
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Figure 4.5: Distributions and average fluxes of tracers residing at different galactocentric
radii, R (shown in the top left corner of each panel). Notation follows that of the top panel
of Figure 4.3. Comparison with the right panel of Figure 4.4 hints that the distribution
of tracers on the disk outskirts (top panel) is predominantly shaped by gas compression
and expansion due to the spiral arms, while close to the disk center (bottom panel), the
distribution is shaped by feedback-driven turbulence and outflows. Whirl-like patterns of
velocities in the cold, supersonic phase indicate that the distribution of dense gas at all radii
is affected by star formation feedback (see text for details).
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4.3.1 Compression and expansion due to spiral arms

The blue line in the top left panel of Figure 4.4 shows an example of the αvir evolution

followed by a tracer that swings between the subsonic and supersonic phases during cycles

of compression and expansion as it enters and exits the spiral arms. The trajectory of this

tracer in the n–σtot plane is shown with the same color in the right panel.

Due to strong compression, gas entering a spiral arm rapidly cools down and loses the

thermal support that initially dominates in the subsonic ISM. At the same time, initially

low subgrid turbulent velocities of the subsonic ISM, σt . 3 km s−1, rapidly grow due to

compressional heating (see the detailed discussion in Appendix A.3 and also Robertson &

Goldreich 2012). At n ∼ 10 cm−3, when subgrid turbulent velocities become comparable to

the thermal speed, gas detaches from the lower envelope of the distribution shown in Figure

4.3 and enters the supersonic ISM phase. Similarly, when gas leaves a spiral arm, it expands,

and subgrid turbulent velocities decrease. Eventually, under the influence of expansion and

interstellar FUV heating, gas returns to the subsonic ISM phase with n ∼ 1 cm−3 and

T ∼ 104 K.

The actual transition of gas between the subsonic and supersonic phases is fast, as it

is controlled by a strong compression rate in the spiral arms and short cooling times at

n > 1 cm−3. Hence, the rate at which diffuse gas is promoted into the dense phase is mostly

determined by the time that gas waits between subsequent passages of the spiral arms,

τarm ∼
2πR

mVgas
∼ 80 Myr

(R/8 kpc)

(m/6)(Vgas/100 km s−1)
, (4.1)

where Vgas ≡ vgas − vpat is the speed of gas relative to the spiral waves pattern, and we set

m = 6, as our simulated galaxy develops six spiral arms.

The typical time that gas spends inside a spiral arm before expansion contributes to the

dynamical rate of gas removal from the star-forming state, τ−,d. This timescale depends

on the spiral arm width, gas velocity, and the angle at which gas flows inside the arm.

42



Depending on local conditions, this timescale can be as long as a few tens of Myr.

In Figure 4.5 we plot distributions of n and σtot separately for tracers residing at different

galactic radii and therefore experiencing different ISM conditions. The distribution in the

outer disk (top panel) is shaped predominantly by the compression and expansion due to

the spiral arms. Specifically, most of the gas mass in the outer disk resides in the diffuse

subsonic phase and forms a peak at n ∼ 1 cm−3 and T ∼ 104 K. The tail extending along

the lower envelope of the distribution toward the dense supersonic phase corresponds to the

gas currently being compressed in the spiral arms. As the figure also shows, the compression

of diffuse gas in the spiral arms is only relevant at large radii, whereas closer to the disk

center, less gas remains in the diffuse phase, and this process becomes much less important.

4.3.2 SNe-induced shocks and ISM turbulence

We find that the evolution of dense, supersonic gas in the n–σtot plane is dominated by

the turbulence that is driven by stellar feedback. Injection of momentum by SNe in a star-

forming region results in a rapid expansion of gas until the region is eventually dispersed.

Shocks associated with expanding bubbles compress gas in the disk plane, which may induce

new episodes of star formation and subsequent SN explosions. The turbulence resulting from

overlapping and interacting bubbles makes gas parcels oscillate in fast cycles, as illustrated

by the green trajectory in Figure 4.4.

The characteristic timescale between subsequent compressions of ISM gas by such ex-

panding SN shocks corresponds to

τshell ∼
L

vshell
∼ 50 Myr

(L/1 kpc)

(vshell/20 km s−1)
, (4.2)

where L is a typical separation between bubbles (see, e.g., the temperature map in the middle

panel of Figure 4.1) and vshell is a typical velocity of shells on a scale L.
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Compression and expansion of gas in the turbulent ISM is accompanied by the increase

and decrease of turbulent velocity dispersion. As a result, averaging of such large-scale

turbulent motions over many tracers results in a prominent clockwise whirl-like pattern of

arrows around the peak of the PDF in the cold (blue) part of the diagram (see Figures 4.3

and 4.5). Closer to the peak center, the net flux magnitude decreases due to the averaging

between fast motions of many tracers at the different stages of their turbulent compression-

expansion cycles.

As Figure 4.5 shows, such a whirlwind pattern is most prominent at R ≤ 6 kpc. Thus, the

feedback-driven turbulence and associated compression and expansion of gas are dominant

processes at these radii in the cold, supersonic gas. The ISM at these radii has a complex

structure (see Figure 4.1) reflecting the chaotic turbulent nature of the gas.

4.3.3 Feedback-driven fountain outflows

Supernova feedback also affects some of the gas by accelerating it in the direction perpen-

dicular to the disk plane. Such gas expands in fountain-like outflows but eventually cycles

back to the ISM under the influence of the disk potential. Interactions of such outflows with

the halo gas adjacent to the disk result in an increase of small-scale turbulent velocities that

quickly dissipate when the gas falls back onto the disk.

An example of a tracer trajectory during expansion and subsequent recycling of a fountain

outflow is shown with the red lines in Figure 4.4. This particular tracer was ejected and recy-

cled twice, at ∼ 20–80 and ∼ 130–150 Myr. In each event, after its star-forming region was

dispersed by feedback, this tracer acquired a moderate vertical velocity of vz ∼ 50 km s−1

and elevated as high as ∼ 400 pc above the disk plane, i.e., a few scale heights, before falling

back onto the disk. At the highest elevation point, the gas in these outflows expands only to

the densities comparable to those of the diffuse subsonic ISM phase, n ∼ 0.2–2 cm−3 and its

virial parameter reaches the values of αvir ∼ 103–104 due to the strong turbulence generated
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by the interaction of the expanding outflow with the surrounding gas. Outflows launched by

feedback from regions of more vigorous star formation reach even lower n and higher αvir.

The timescale of the fountain cycle can be estimated as a dynamical time in the gravita-

tional field of a massive infinite sheet of constant surface density Σtot, corresponding to the

local total surface density of the disk,

τgrav ∼
vz

πGΣtot
∼ 20 Myr

(vz/50 km s−1)

(Σtot/200 M� pc−2)
, (4.3)

where vz is the initial vertical velocity of gas in the outflow and Σtot = Σ? + Σg ∼

200 M� pc−2 is the typical total surface density of gas and stars in our simulated galax-

ies.

The averaging of trajectories between many gas parcels constituting fountain-like outflows

results in a tail of the distribution directed from the star-forming state toward the lower

densities and higher σtot. The total flux of tracers forms a prominent counterclockwise

vortex inside this tail that is clearly seen in Figures 4.3 and 4.5.

Figure 4.5 shows that at all radii within the disk, some fraction of gas evolves in the

manner discussed above, which indicates the existence of fountain-like outflows. At larger

radii, where the SFR is slower, the outflows are less prominent but still visible as a net flux

of tracers directed toward lower densities along the top envelope of the distribution shown

in the upper panel. Gas in such outflows at large radii usually returns to the diffuse, warm,

subsonic ISM between the spiral arms. Closer to the center, outflows are ubiquitous, and,

after falling back, their gas directly rejoins the tumultuous large-scale turbulent motions of

dense, supersonic gas.
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Figure 4.6: Distribution of times that tracers spend in non-star-forming (tnsf , top panel)
and star-forming (tsf , bottom panel) states between successive crossings of the star formation
threshold. Distributions of tnsf and tsf are shown as a function of galactic radius, R. The
top axis in each panel also indicates the average surface density of gas at a given radius,
Σg ∝ exp(−R/rd), where rd is the initial scale radius of the disk. Contours indicate 68%
and 95% of trajectories. The thick red lines show the median timescales at every radius.
The dotted line in the top panel corresponds to the free-fall time at the average midplane
density at a given radius. Colors in the top panel show the average fraction of time spent in
the dense phase with n > 10 cm−3: fnsf,dense ≡ tnsf,dense/tnsf . Colors in the bottom panel
show the average number of passages through the star-forming state required for complete
depletion, Nc (Equation 4.4). To increase the statistics for long cycles, we follow tracers
between 400 and 1 000 Myr of the disk evolution. For presentation purposes, we smooth the
resulting distributions, preserving their main features.
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4.4 Duration and number of evolution cycles

Typical tracer trajectories considered in the previous section explicitly confirm that during

the evolution, gas parcels perform many fast cycles and rapidly explore a significant portion

of the PDF, frequently switching between non-star-forming and star-forming states. As we

discussed in Section 2, the distribution of the time that the gas parcels spend on each cycle

in these states, tnsf and tsf , determines the global depletion time of the galaxy.

In Figure 4.6 we plot the distribution of tnsf and tsf directly measured from the trajecto-

ries of all tracers as the time between consequential crossings of the star formation threshold.

The results in the previous section indicate that the mix of the processes governing gas evo-

lution may change with the galactic radius, R, and surface density, Σg. Thus, to explore

possible trends, we plot the distributions of timescales as a function of R and Σg.

The distribution of tnsf shown in the top panel indicates that the majority of tracers spend

less than 100 Myr in the non-star-forming stage of evolution during each cycle. At higher

average surface densities closer to the disk center, this time is even shorter, tnsf . 50 Myr,

with a very low median value (thick red line).

Colors in the top panel show the average fraction of time that gas tracers spend in the

dense phase, n > 10 cm−3, over the non-star-forming stage of evolution. A blue color at

small radii implies that gas preferentially stays in the dense, molecular phase even when it

does not form stars. This is also evident from the bottom panel of Figure 4.5, which shows

that only a small fraction of gas expands to n < 10 cm−3 and it does so as a part of fountain

outflows.

At larger radii, the relatively slow rate of star-forming gas replenishment via compression

in the spiral arms becomes important, and the median tnsf increases to ∼ 80 Myr. Gas

governed by this process spends significant time in the diffuse subsonic ISM, and such tracer

trajectories occupy the areas of the longest tnsf at R > 4 kpc (green color in Figure 4.6).

However, as indicated by the blue color, at such radii many tracers still perform short cycles
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with tnsf < 50 Myr without leaving the dense phase.

The increase of the tnsf median value is consistent with the scaling proportional to

the free-fall time at the mean or midplane density at a given radius, tff,0 ∝ ρ
−1/2
0 =

(Σg/2hd)−1/2, shown by the dotted line in Figure 4.6 (see also Saitoh et al., 2008). Such

scaling is sometimes adopted in analytical models of galactic star formation to define the

timescale on which star-forming regions are created (e.g., Krumholz et al., 2012a; Elmegreen,

2015). As we discussed above, tnsf in our simulations is set by both stellar feedback that

drives turbulence and dynamical processes within the ISM. The scaling of the median tnsf

with density indicates that gravity and the associated timescale plays at least some role in

setting the time that gas spends in the non-star-forming state. For example, the fall of the

gas driven out in a fountain outflow back to the disk will occur on a timescale of order ∼ tff,0.

The bottom panel of Figure 4.6 shows the distribution of time spent by tracers in the

star-forming state on each cycle. This timescale is close to the typical “lifetime” of star-

forming regions and is quite short: tsf . 20 Myr or 2–4 free-fall times at the typical densities

of star-forming regions. The fact that tsf is, on average, significantly shorter than tnsf is

consistent with the small mass fraction of star-forming gas.

As we discussed in Section 2, the average time that a gas parcel spends in the star-forming

state on a single cycle determines the total number of such cycles required for complete

depletion as Nc = τ?/tsf . For every tracer on each passage through the star-forming stage,

we estimate this number as the inverse fraction of mass depleted during the passage,

N−1
c =

∫
dt

t?
=

∫
εff
dt

tff
, (4.4)

where the integral is accumulated for each tracer particle while it is in the star-forming state

between subsequent crossings of the star formation threshold. The resulting distribution of

Nc is shown by the colors in the bottom panel of the figure.

In agreement with our model, typical Nc ∼ 50 and the lifetimes of gas in the star-forming

48



state, tsf ∼ 10–20 Myr, are consistent with the range of the star-forming gas depletion

times, τ? ∼ Nctsf ∼ 300–500 Myr, obtained in our simulation. In addition, assuming

tnsf ∼ 50–100 Myr, Equation (2.1) for the typical depletion time of a gas parcel gives a

value of ∼ 2–5 Gyr, which is consistent with the actual global depletion time obtained in

our simulation (see Section 3).

4.5 Discussion

4.5.1 Comparison with previous studies

The short, ∼ 10–100 Myr, timescales of the physical processes driving the evolution of gas

in the ISM (see the top panel of Figure 4.6) indicate that the ISM is vigorously “boiling”

when considered on the global depletion timescale. During this vigorous evolution, gas cycles

between non-star-forming and star-forming stages and spends only tsf ∼ 5–15 Myr in the

star-forming stage on each cycle (see the bottom panel of Figure 4.6), which is consistent

with the short lifetimes derived for observed GMCs (e.g., Kawamura et al., 2009; Murray,

2011; Schruba et al., 2017).

Observational estimates of the integral star-formation efficiency during a star-forming

stage, defined for a given star-forming region containing a gas mass of mg and a mass of

formed young stars of m? as ε ≡ m?/(mg + m?), give ε ∼ 1–20% (e.g., Evans et al., 2009;

Lada et al., 2010). This fraction is even smaller in less-efficient clouds (e.g., Rebolledo et al.,

2015; Lee et al., 2016; Vutisalchavakul et al., 2016). A similar range of ε is also obtained

in simulations of star cluster formation (Gavagnin et al., 2017), models of star formation

in GMCs (e.g., Zamora-Avilés & Vázquez-Semadeni, 2014), and cosmological simulations of

a Milky Way-sized galaxy that resolve the growth of globular clusters and self-consistently

capture its termination by stellar feedback (Li et al., 2017b).

Such values of ε imply that gas parcels must undergo Nc ∼ ε−1 ∼ 5–100 cycles transition-
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ing from the non-star-forming to star-forming state before they convert their gas into stars.

This number of cycles is also consistent with the typical depletion times of star-forming gas,

τ? ≡ 〈1/t?〉−1
sf , and lifetimes, tsf , derived for observed star-forming regions, Nc = τ?/tsf .

Specifically, depletion times of gas in observed star-forming regions are estimated to be

t? ∼ 50–500 Myr (e.g., Evans et al., 2009, 2014; Lada et al., 2010, 2012; Heiderman et al.,

2010; Gutermuth et al., 2011; Schruba et al., 2017); for tsf ∼ 5–15 Myr quoted above, these

t? give Nc ∼ (50–500)/(5–15) ∼ 3–100. Such Nc are in the ballpark of the Nc range that

we estimate for the gas in our simulations (see the bottom panel of Figure 4.6), although we

note that the number of cycles in our simulation can be somewhat overestimated due to the

artificially sharp threshold in the definition of star-forming gas.

Note that specific values of tnsf , tsf and Nc depend on the scale, l, on which the small-

scale distribution of t? is defined. Clearly, if we consider the evolution of gas parcels on the

scale of protostellar cores, ∼ 0.01 pc, the star-forming stage of evolution will correspond to

the formation of one or a handful of stars, which will consume most of the gas in a single

event. The gas parcels on this scale will spend a long time in the non-star-forming stage and

will consume their gas in one or a few cycles, Nc = 1 + ξ, where ξ corresponds to the ratio

of the protostellar core mass returned back to the ISM to the mass of the formed star.

The key expression of our model (Equation 2.10) was derived by applying the mass

conservation law to all star-forming gas in a galaxy or in a given ISM patch. Mass conser-

vation can also be invoked to build a model for the formation, evolution, and destruction

of individual GMCs (e.g., Feldmann & Gnedin, 2011; Zamora-Avilés et al., 2012; Lee et al.,

2016).

Our model is based on mass conservation alone, and thus the overall physical explanation

for long gas depletion times presented in Chapter 2 does not require the assumption of

dynamical equilibrium. Indeed, when a gas parcel undergoes some inherently nonequilibrium

process, such as compression in a spiral arm, the parcel’s depletion time will still be given by
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tdep = (τ?/tsf)(tnsf +tsf) = τ?(tnsf/tsf +1), and therefore tdep will be long if tnsf � tsf and/or

τ? is long. The absence of a long-term equilibrium requirement is an essential difference of our

framework from the models for the Kennicutt-Schmidt relation that rely on the assumption

of self-regulation to the vertical or Toomre (1964) equilibrium state (e.g., Ostriker & Shetty,

2011; Faucher-Giguère et al., 2013).

In fact, our model explicitly accounts for the deviations from the equilibrium state in

which Ṁsf ≈ 0. Such deviations, along with fluctuations of other quantities that enter

Equation (2.10), can be important sources of the depletion time scatter. These deviations

can be substantial for individual ISM patches, which generally will not be in equilibrium,

even if a galaxy as a whole is. Additional scatter can arise due to observational tracers

sampling different stages of gas evolution incompletely (Kruijssen & Longmore, 2014).

We note, however, that unlike the models of Ostriker & Shetty (2011) and Faucher-

Giguère et al. (2013), our conceptual framework cannot quantitatively predict the depletion

time by itself. It only elucidates how the depletion time is related to the timescales of the

processes driving gas evolution. The variables through which this relation is parameterized

can be either calibrated in simulations, as is done in this study, or be derived in analytical

models (e.g., Zamora-Avilés et al., 2012). Nevertheless, as detailed in the next subsection

and Chapters 5 and 6, our framework is very useful for interpreting and explaining a number

of puzzling facts about star formation in both observed and simulated galaxies.

4.5.2 Implications for observations

Rapid cycling of gas between non-star-forming and star-forming states explains the large

discrepancy between long global depletion times of & 1 Gyr and short, ∼ 10–100 Myr,

timescales associated with the dynamical processes in the ISM. Only a small fraction of

gas is converted into stars during each cycle, and therefore gas would have to go through a

large number of cycles to be depleted.
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Our model also naturally explains the difference between observed local depletion times

of (mostly molecular) gas in star-forming regions, t? ∼ 50–500 Myr, and global depletion

times of both total gas, τ ∼ 2–10 Gyr, and molecular gas, τH2
∼ 1–3 Gyr. The global

depletion times, τ and τH2
, are longer than the average gas depletion time in star-forming

regions, τ?, due to the significant fraction of time that gas spends in the non-star-forming

state (see Equation 2.1). This implies that only a fraction of total and molecular gas is

forming stars at any given moment. For example, the observed values of t? and τH2
indicate

that only fsf,H2
≡ Msf/MH2

= τ?/τH2
∼ 5%–50% of molecular gas is forming stars. The

range of fsf,H2
in our simulation is consistent with this estimate, with the non-star-forming

molecular gas state corresponding to strongly turbulent cold gas. Diffuse, non-star-forming

molecular gas is also observed in the Milky Way, but its mass fraction (∼ 25% from Roman-

Duval et al., 2016) is a factor of ∼ 2–4 too low to explain the discrepancy between global

and local depletion times of molecular gas. Thus, a substantial fraction of non-star-forming

molecular gas must be missed in such observations.

As pointed out by Kruijssen & Longmore (2014), a model considering different evolution-

ary stages and corresponding chemical phases of the ISM gas can be used to interpret the

dependence of the depletion time and its scatter on the averaging scale (see, e.g., Schruba

et al., 2017). This dependence in observed galaxies can also be used as a stringent test of

the star formation and feedback implementation in galaxy formation models.

Our model for gas depletion time provides a natural framework for predicting and inter-

preting trends with galaxy properties and redshift. For instance, we show that the duration

of cycles decreases with increasing surface density as tnsf ∝ Σ−0.5
g . As we will also show in

Section 6.1, this trend is accompanied by a milder but nevertheless nonnegligible decrease

in τ?. This means that the observed decrease in global depletion times in high-redshift and

starburst galaxies (e.g., Kennicutt, 1998; Bouché et al., 2007; Genzel et al., 2010; Tacconi

et al., 2018) can be explained by shorter dynamical timescales, tnsf , and star-forming gas
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depletion times, τ?, associated with high-density environments. In addition, the nonequilib-

rium state of starburst galaxies may result in short τ due to the contribution of the τ?/τe,sf

term in Equation (2.10).

The described mechanism controlling depletion time remains qualitatively the same in the

presence of cosmological accretion of gas. Indeed, the cycling of the ISM gas between star-

forming and non-star-forming states happens on short, . 100 Myr, dynamical timescales,

while the accretion of intergalactic gas proceeds on a much longer timescale, comparable with

Gyrs-long gas depletion times. As new gas is added to the galaxy, the timescales that control

ISM gas cycling—tnsf , tsf , and τ?—can slowly change because they depend on the global

properties of galaxy, such as its total mass. However, at any moment, the depletion time will

still be set by the dynamical gas cycling in the ISM even though the typical duration of a

cycle can slowly change with time. Cosmological accretion can significantly affect gas cycling

only when it happens on a timescale comparable with the duration of a cycle, . 100 Myr,

e.g., during galaxy mergers.

Our framework also predicts the dependence of depletion times and KSR shape on metal-

licity. Gas must be shielded by a certain column density in order to become cold and molec-

ular. This column density has a corresponding number density at which such a transition

occurs, as can be seen in the phase diagrams in Figure 4.5, that show the sharp change from

the warm, transonic phase (yellow) to the cold, supersonic phase (blue) at n ∼ 10 cm−3. At

lower metallicities, both the characteristic number density and column density of the tran-

sition increase, leading to the decrease of fH2
, fsf and τ?. Thus, the overall gas depletion

time, τ , increases.

The higher characteristic density of the transition at lower metallicity also results in

the shift of the turnover in the KSR for total gas to higher surface densities. This shift is

qualitatively similar to that predicted by the Gnedin & Kravtsov (2011) models, where star

formation is tied to molecular gas. We have confirmed this explicitly by resimulating our
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model galaxy at a lower metallicity and will present these results in a forthcoming paper.

4.6 Summary

In this chapter we explored our physical model that elucidates why gas depletion times in

galaxies are long compared to the timescales of the processes driving the evolution of the

interstellar medium. We show that the depletion time is long not because some bottleneck

in the formation of star-forming regions imposes a long evolutionary timescale, but because

only a small fraction of the gas mass is converted into stars during a single star-forming

stage in the evolution of a gas parcel. This fraction is small due to both the short duration

of the star-forming stage, as dynamical processes and stellar feedback efficiently disperse

star-forming regions, and the low intrinsic star formation efficiency of dense molecular gas.

A gas parcel thus must go through many cycles transitioning between non-star-forming and

star-forming states before it becomes converted into stars. Hence, even though the duration

of each cycle can be short, the global depletion time is long because the number of cycles is

large.

Furthermore, the difference between the global and local depletion times of molecular gas

in our model arises because not all of the molecular gas is actively forming stars. Non-star-

forming molecular gas appears naturally if local star formation efficiency is a strong function

of the virial parameter of a region, while the molecular fraction of gas is set by its ability to

shield against FUV radiation and is a function of mainly gas number density and metallicity.

We illustrate our model using the results of an isolated L?-sized disk galaxy simulation

that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas.

Our results and conclusions can be summarized as follows.

1. Analysis of our simulation shows that the properties of gas parcels in the ISM evolve on

timescales of ∼ 10–100 Myr under the influence of compression by the spiral arms, ISM

turbulence, and SNe-driven shocks. The relative importance of these processes varies

54



with galactocentric radius, R, and average surface density. At R & 5 kpc, the evolution

from a warm, diffuse state to a dense, cold phase is driven mainly by compression in

the spiral arms, while SNe-driven shocks and large-scale ISM turbulence dominate at

smaller radii.

2. During an evolutionary cycle, gas spends most of the time in the non-star-forming

state, tnsf > tsf , whereas the time spent in the star-forming state, tsf , is limited by

stellar feedback and dynamical processes to tsf ∼ 5–15 Myr. We find that the median

tnsf varies with gas surface density as tnsf ∝ Σ−0.5
g .

3. On the resolution scale of our simulation, 40 pc, the typical range of densities in star-

forming regions is limited to n ∼ 10–103 cm−3 by the interstellar FUV background

and stellar feedback. We find that the resulting depletion times of star-forming gas

τ? ∼ 300–500 Myr are consistent with the depletion times estimated for observed GMCs

on these scales.

4. The distributions of depletion times and lifetimes of star-forming regions in our simula-

tions imply that a typical gas parcel has to undergo 5–100 cycles transitioning between

non-star-forming and star-forming states before converting its mass into stars.
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CHAPTER 5

EFFECTS OF STAR FORMATION AND FEEDBACK

PARAMETERS ON GLOBAL STAR FORMATION IN

GALAXIES

Recent simulations of galaxy formation revealed several nontrivial dependencies of global star

formation on the parameters of star formation and feedback adopted on the resolution scale

of simulations. One of the most intriguing results is that in simulations with strong feedback,

the galaxy-scale star formation rate—and hence the global depletion time—is insensitive to

the local star formation efficiency (e.g., Dobbs et al., 2011a; Agertz et al., 2013; Hopkins

et al., 2013a, 2017a; Agertz & Kravtsov, 2015; Benincasa et al., 2016; Orr et al., 2018). This

behavior is thought to be due to “self-regulation” of star formation by feedback (e.g., Dobbs

et al., 2011a).

In this chapter, we focus on explaining the connection between the local parameters

of star formation and feedback and global star formation and galaxies, and our goal is to

extend and make sense of the results of other recent studies of this issue. In Section 5.1,

we use the simulation suite presented in Chapter 3 where we systematically varied εff value,

star formation threshold, and feedback strength to show that the global depletion time and

the star-forming gas mass fraction in simulated galaxies exhibit systematic and well-defined

trends as a function of these parameters. In Section 5.2, we demonstrate that these trends

can be reproduced both qualitatively and quantitatively using the physical model presented

in Chapter 2 that explains the origin of long gas depletion times in galaxies.

In Section 5.3, we compare our simulation results and model predictions to the observed

star-forming properties of real galaxies. We also discuss how the trends identified in simula-

tions and our analytic model can be used to guide the choice of star formation and feedback

parameters in high-resolution galaxy simulations. In particular, we show that both the
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global depletion times and the star-forming gas mass fractions of observed galaxies should

be used on kiloparsec and larger scales, while the measurements of the depletion time and

its scatter on smaller spatial scales provide additional constraints on the local efficiency of

star formation.

In Section 5.4, we compare our predictions with the results of previous recent studies and

interpret their results in the context of our model, and in Section 5.5, we summarize our

results and conclusions.

This chapter is based on the work published in Semenov et al. (2018).

5.1 Overview of simulation results

The analysis presented in this section focuses on the quantities that characterize the global

star formation of the simulated galaxy: the global gas depletion time,

τ ≡ Mg

Ṁ?
, (5.1)

as well as the mass fraction of star-forming gas, fsf = Msf/Mg, and the mean freefall time

of star-forming gas, τff = 〈1/tff〉−1
sf . Here the star-forming gas mass, Msf , is the total mass

of all gas in the galaxy that satisfies the adopted star formation criterion. Consequently, the

average freefall time is defined by analogy with Equation (3.2), Ṁ? = εffMsf/τff , and thus τff

depends on the local tff via εff/τff = Ṁ?/Msf =
∫

(εff/tff)ρdV/
∫
ρdV = εff〈1/tff〉sf , where

the integrals are taken over all star-forming gas. The values of τ , fsf , and τff are closely

related. For example, the global depletion time can be expressed as

τ ≡ Mg

Ṁ?
=
Msf

Ṁ?

Mg

Msf
=

τff
εfffsf

. (5.2)

Below, we describe the trends of τ , fsf , and τff with the main parameters of the star

formation and feedback prescriptions in our L?-sized galaxy simulations: efficiency εff , the
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Figure 5.1: Evolution of the global depletion time, τ , and the star-forming mass frac-
tion, fsf , in the simulations with varying εff at the fiducial feedback strength (b = 1) and
star formation threshold (αvir,sf = 10). To compare different runs at the same temporal
resolution, all curves are smoothed using a Gaussian filter with a width of 30 Myr. All quan-
tities are measured in a cylindrical volume centered at the disk center with |z| < 2 kpc and
1 < R < 20 kpc.
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Figure 5.2: Dependence of the equilibrium τ and fsf values on the εff value in our sim-
ulations with fiducial star formation threshold (αvir,sf = 10) and different feedback boosts:
weak (b = 0.2; triangles), fiducial (b = 1; circles), and strong (b = 5; squares). The values
of τ and fsf are time-averaged between 300 and 600 Myr, with error bars indicating 5th and
95th percentiles over this time interval. The choice of the averaging interval is explained
in Section 3.4. Gray lines show the predictions of our model, which will be explained in
Section 5.2. The figure illustrates qualitatively different behavior of τ and fsf at low and
high εff .
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Figure 5.3: Equilibrium values of τ , fsf , and τff , in simulations with varying εff and different
feedback strengths (b; left column) and star formation thresholds set in virial parameter
(αvir < αvir,sf ; middle columns) and gas density (n > nsf ; right column). The feedback
strength is varied at the fiducial threshold value (αvir,sf = 10), whereas the threshold is
varied at the fiducial feedback strength (b = 1). Points indicate the values of τ , fsf , and τff
time-averaged between 300 and 600 Myr, with error bars indicating 5th and 95th percentiles
over this time interval. To avoid overlap, points for εff = 0.1%, 1%, and 10% are slightly
shifted horizontally around the actually used values of b, αvir,sf , and nsf . Lines show our
analytical model detailed in Section 5.2 and summarized in Appendix B.1.

60



feedback strength parameter b, and the star formation threshold αvir,sf or nsf . The efficiency

εff affects local star formation in the most direct way, while the feedback strength b affects

the integral local star formation efficiency by controlling the time that gas spends in the star-

forming state. The interplay between star formation and feedback also affects the overall

distribution of gas in a galaxy. For a given distribution, the star formation thresholds control

the mass fraction, fsf , and the mean density of star-forming gas, and thus its mean freefall

time, τff .

Figure 5.1 shows the evolution of τ and fsf in simulations with varying εff at the fixed

fiducial feedback strength (b = 1) and the star formation threshold (αvir,sf = 10). After

the initial transient stage, τ and fsf become approximately constant in time at values that

depend on the choice of εff . To explore this dependence on εff , we average the equilibrium

values of τ and fsf between 300 and 600 Myr1 and show them in Figure 5.2 with error bars

indicating temporal variability around the average. In addition to simulations with fiducial

feedback (circles), the figure also shows the results for 5 times weaker (triangles) and 5 times

stronger feedback (squares). Star formation histories in these and all other our simulations

are qualitatively similar to those shown above, and thus for quantitative comparison from

now on we will consider only the equilibrium values of τ and fsf . Gray lines in this figure

show the predictions of our analytic model that will be detailed in Section 5.2.

Figure 5.2 clearly shows that the dependence of τ and fsf on εff is qualitatively different

when εff is low and when it is high. When εff is low, ≤ 0.01%, τ scales as ε−1
ff , whereas the

star-forming mass fraction remains independent of εff . When εff is high, εff ≥ 1%, the trends

are reversed: τ is independent of εff , whereas fsf scales as ε−1
ff . It is this independence of τ

from εff that has been referred to as self-regulation in the literature.

The figure also shows that the dependence on εff remains qualitatively similar at different

feedback strengths, and the limiting regimes of low and high εff exist at all b. However,

1. The choice of this time interval is explained in Section 3.4.
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for stronger feedback, the transition to the self-regulation regime occurs at smaller εff and

depletion time in this regime increases.

This increase of τ with feedback strength at high εff is easier to quantify in the top left

panel of Figure 5.3, which shows τ as a function of feedback boost b at different εff . As

before, the error bars indicate temporal variability around the average, and lines show the

predictions of our model that will be detailed in Section 5.2. From the figure, depletion time

at high εff increases almost linearly with b: τ ∼ (6 Gyr) b0.75. The middle left panel shows

that fsf exhibits the opposite trend with b. The bottom left panel also shows that despite

wide variation of εff and b, the average freefall time in star-forming gas varies only mildly,

from τff ∼ 3 Myr at low εff to τff ∼ 5–6 Myr at high εff .

The middle column of panels in Figure 5.3 shows the variation of τ , fsf , and τff in the

runs with different εff and values of the adopted star formation threshold: αvir,sf = 10, 30,

and 100. Again, for every value of αvir,sf , the dependence on εff is qualitatively similar to

the fiducial case. In the high-εff regime, τ decreases at higher αvir,sf , i.e., when the threshold

becomes less stringent and makes more gas eligible to star formation. At a less stringent

threshold, fsf and τff both increase, and this increase is stronger in the high-εff regime. In

the right panels of Figure 5.3, the star formation threshold is set in the gas density rather

than in αvir, and the behavior of τ , fsf , and τff remains qualitatively the same, but the

direction of all trends is opposite since a density-based threshold becomes less stringent at

smaller nsf .

The presented results show that the key global star formation properties of our simulated

galaxies change systematically with changing parameters of the local star formation and

feedback. The trends are well defined and exhibit distinct behavior in the low-εff and high-

εff regimes. In the latter, the global star formation rate and the gas depletion time become

insensitive to the variation of εff , while the mass fraction of the star-forming gas, fsf , is

inversely proportional to εff . In the low-εff regime, the trends are reversed: τ scales inversely
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with εff , while fsf is almost insensitive to it. The dependence of τ on the feedback strength

parameter b is the opposite to the dependence on εff : in the low-εff regime, τ is insensitive

to b, while in the high-εff regime τ exhibits a close-to-linear scaling with b.

5.2 Interpretation of the results using the analytic model

As solid lines in Figures 5.2 and 5.3 show, the trends of τ , fsf , and τff are well described by a

physical model of gas cycling in the interstellar medium formulated in Chapter 2. This model

is based on the basic mass conservation between different parts of the interstellar gas. In this

section, we summarize the main equations of our model and its predictions for the regimes

of star formation regulation in galaxies. We then discuss the qualitative predictions of the

model for the trends of τ , fsf , and τff in simulations and provide a physical interpretation

of these trends. We then show that with a minimal calibration, our model can reproduce

these trends quantitatively. For convenience, the meanings of quantities used in our model

are summarized in Table B.1 in Appendix B.1.

5.2.1 Two regimes of star formation regulation

To interpret the results presented above, we will use the main Equation (2.10) of our model

for depletion times. This equation was derived from the conservation of star-forming mass

in a galaxy or ISM patch,

Ṁsf = F+ − F−,d − F−,fb − Ṁ?, (5.3)

adopting the following parametrization of fluxes and SFR:

F+ =
Mnsf

τ+
, F−,d =

Msf

τ−,d
, F−,fb = ξ

Msf

τ?
, Ṁ? =

Msf

τ?
. (5.4)
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As our simulated galaxy quickly settles into a quasi-steady regime with approximately

constant τ , fsf , and τff , we will ignore the non-equilibrium term that reflects the variation of

star-forming mass by setting Ṁsf = 0, i.e. τe,sf →∞ in Equation (2.10).2 For our subsequent

discussion, it is also convenient to rearrange terms in the resulting Equation (2.10) as

τ = (1 + ξ)τ+ +

(
1 +

τ+
τ−,d

)
τff
εff
, (5.5)

where we have substituted the parametrization of local depletion time, τ? = τff/εff . Similarly,

star-forming mass fraction can be expressed using Equation (5.2):

fsf =
τff
εff τ

=

[
(1 + ξ)τ+

εff
τff

+ 1 +
τ+
τ−,d

]−1

. (5.6)

As was shown in Figures 5.2 and 5.3 and as we will discuss in more detail below, Equa-

tions (5.5) and (5.6) can predict the trends of τ and fsf observed in our simulations with

varied star formation efficiency εff , star formation threshold, and feedback strength b. We

note that the latter is closely related to the ξ parameter of the model. Both these parameters

reflect the strength of feedback per unit stellar mass formed and its efficacy in dispersing

star-forming regions. However, these parameters are not identical: b is a relative strength of

the momentum injection in our implementation of feedback, while ξ = F−,fb/Ṁ? is an av-

erage “mass-loading factor” that characterizes the efficacy of gas removal from star-forming

regions by feedback (see Chapter 2). We also note that in equations for τ and fsf the average

freefall time in the star-forming gas, τff , is a model parameter, but, as we will show in Sec-

tion 5.2.2 and Appendix B.1, its trends with simulation parameters discussed in Section 5.1

2. We stress that an assumption of the quasi-equilibrium is not required in general and is made here only
to simplify notation. As was discussed in Section 4.5, the term ±τ?/τe,sf contributes to the scatter of the
depletion time in galaxies or ISM patches. For normal star-forming galaxies, this term is small and can
become significant only if the global dynamical properties of the galaxy change on a timescale much shorter
than the local depletion time τ?. Thus, in case of, e.g., starburst mergers, a more general Equation (2.10)
should be used.
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can also be understood using our model predictions.

Equation (5.5) readily shows that the global depletion time is a sum of two terms, one of

which may dominate depending on the parameters. For example, the first term, (1+ξ)τ+, will

dominate when feedback is sufficiently strong, i.e. ξ is large, or star formation efficiency εff

is sufficiently high so that the second term, (1+τ+/τ−,d)τff/εff , is subdominant. Conversely,

the second term may dominate if feedback is inefficient or εff is low. In these two regimes,

the dependence of depletion time on the parameters of star formation and feedback will

be qualitatively different. Specifically, when the first term in the equation dominates, τ is

insensitive to εff and scales with feedback strength ξ. Conversely, when the second term

dominates, τ scales as ε−1
ff and is independent of feedback strength.

Physically, these two regimes reflect the dominance of different negative terms in the

mass conservation Equation (5.3) and thus different mechanisms that limit lifetimes of star-

forming regions. In the first regime, τ ≈ (1+ ξ)τ+ and the lifetime of gas in the star-forming

state is limited by feedback and star formation itself. We therefore will refer to this case as

the “self-regulation regime” because this was the term used to indicate insensitivity of τ to

εff in previous studies. In the second regime, τ ≈ (1 + τ+/τ−,d)τff/εff and star-forming gas

lifetime is limited by dynamical processes dispersing star-forming regions, such as turbulent

shear, differential rotation, and expansion behind spiral arms, operating on timescale τ−,d.

We will refer to this case as the “dynamics-regulation regime,” as star formation passively

reflects the distribution of ISM gas regulated by gas dynamics, rather than actively shaping

it by gas consumption and associated feedback.

In the next section, we will consider dynamics- and self-regulation regimes in more detail.

We will illustrate these regimes using our simulations with the fiducial feedback strength

and star formation threshold but varying εff from a low value of 0.01%, corresponding to the

dynamics-regulation regime, to a high value of 100%, corresponding to the self-regulation

regime. As Figure 5.4 shows, in different regimes the quasi-equilibrium ISM gas distribution
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is qualitatively different. The figure shows the midplane density slices and n–σtot diagrams

(like the one in Figure 4.3) colored according to the average gas temperature, with arrows

indicating average gas fluxes. In agreement with the results of Chapter 4, small net fluxes

through the star formation threshold result from the near cancellation of strong positive and

negative fluxes, F+ and F−, whose typical magnitudes are shown with the thick blue and

red arrows, respectively, in the lower right corner of each diagram. Depending on the εff

value, the negative flux can be dominated by either dynamical or feedback-driven flux, F−,d

or F−,fb, which in turn results in qualitatively different behavior of Equation (5.5).

5.2.2 Predictions for trends of τ , fsf, and τff

Interpretation of scalings in the dynamics-regulation regime

As discussed above, dynamics-regulation occurs when εff or ξ are small, so that the second

term on the right-hand side of Equation (5.5) dominates. In this case, τ scales inversely with

εff :

τ ≈
(

1 +
τ+
τ−,d

)
τff
εff
. (5.7)

The star-forming mass fraction, on the other hand, remains independent of εff because,

according to Equation (5.6),

fsf ≈
(

1 +
τ+
τ−,d

)−1

. (5.8)

Such scalings, τ ∝ ε−1
ff and fsf ≈ const, indeed persist in our simulations with low εff values

(see εff = 0.01% and 0.1% in Figures 5.1–5.3).

Physically, these scalings arise because at low εff and ξ the contributions of star forma-

tion (Ṁ?) and feedback (F−,fb) terms to the overall mass flux balance in Equation (5.3)

become small. As a result, the steady state is established with F−,d ≈ F+, which yields

Equations (5.7) and (5.8). In our simulated galaxy, such a state is established as gas is
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Figure 5.4: Effect of εff on the spatial gas distribution and the gas distribution in the phase
space of the gas density, n, and the total subgrid velocity dispersion, σtot. The adopted value
for εff changes from left to right: 0.01%, 1%, and 100%. The top row of panels shows the
midplane density slices at t = 500 Myr, with black contour indicating cold dense gas, n >
10 cm−3, and green contour indicating star-forming regions, αvir < αvir,sf = 10. The bottom
row of panels shows n–σtot diagrams colored with the mass-weighted temperature in each
bin. The distribution is time averaged between 400 and 600 Myr using gas-tracer particles
at R > 1 kpc (see Section 3.4). Black contours indicate 68%, 95%, and 99% of resulting
gas tracers’ PDF. Thin red arrows throughout the diagram show the average net flux of gas
tracers, while the thick blue and red arrows in the corner of each panel illustrate magnitudes
and directions of the average positive and negative gas fluxes, respectively, measured at the
point indicated with a cross. All arrows can be directly compared to each other because
their normalization is the same: the arrow extent corresponds to the distance that a tracer
traverses over 5 Myr. Star-forming gas in each n–σtot diagram resides below the thick dotted
line, which corresponds to the star formation threshold of αvir,sf = 10. Thin dotted lines
parallel to the star formation threshold show constant values of αvir = 1000, 100, and 1
(from left to right).
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compressed into new star-forming clumps at the same rate at which old clumps are dis-

persed by differential rotation and tidal torques, and neither of these processes depends on

εff . The interplay between compression and dynamical dispersal determines the steady-state

distribution of gas in the n–σtot diagram (the bottom left panel of Figure 5.4), which is

also insensitive to εff . As a consequence, the star-forming mass fraction, fsf , and the mean

freefall time in star-forming gas, τff , also do not depend on εff and are determined solely by

the definition of the star-forming gas. The global depletion time, however, does depend on

εff as is evident from Equation (5.7).

As F−,fb is subdominant in this regime, τ , fsf , and τff are also insensitive to the feedback

strength, but they do depend on the star formation threshold. Indeed, as blue lines in the

left column of Figure 5.3 show, τ , fsf , and τff remain approximately constant when feedback

boost factor, b, is varied from 0 to 5. At the same time, when star formation threshold is

varied such that more gas is included in the star-forming state, both fsf and τff increase

because more low-density gas is added, while τ decreases as additional star-forming gas

increases SFR. It is worth noting that these dependencies on star formation threshold are

rather weak when the threshold encompasses significant fraction of the ISM gas, but they

become stronger when the threshold selects gas only from the high-density tail of distribution,

because it is this high-density gas that mostly determines τ , fsf , and τff .

Finally, it is also worth noting that for some galaxies, or certain regions within galaxies,

equilibrium may not be achievable, so that F+ > F−,d or F+ < F−,d. In this case distri-

bution of gas evolves, and thus τ , fsf , and τff also change with time. This occurs in the

central regions of galaxies in simulations with εff = 0.1% and 0.01%, where the central gas

concentration grows owing to accretion, and which we thus exclude from our analysis (see

Section 3.4).
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Interpretation of scalings in the self-regulation regime

Self-regulation occurs when εff or ξ are sufficiently large, so that the first term on the right-

hand side of Equation (5.5) dominates and depletion time is given by

τ ≈ (1 + ξ)τ+, (5.9)

and is thus independent of εff , but scales almost linearly with ξ. In this regime, the star-

forming mass fraction scales inversely with εff (see Equation 5.6):

fsf ≈
1

(1 + ξ)εff

τff
τ+
, (5.10)

which also implies fsf � 1 because τff/εff � (1 + ξ)τ+ is required for the subdominance of

the terms proportional to ε−1
ff in Equation (5.5).

The scalings of Equations (5.9) and (5.10) are consistent with the results of our simula-

tions with large εff values (Figures 5.1–5.3). The insensitivity of τ to εff and its scaling with

feedback strength have also been observed in other simulations with high εff and efficient

feedback (e.g., Agertz & Kravtsov, 2015; Hopkins et al., 2017a; Orr et al., 2018). In the

literature, these phenomena are also usually referred to as “self-regulation.”

As was already mentioned in Section 2.3, self-regulation occurs when gas spends most of

the time in non-star-forming stages, fsf � 1, and the rate of star-forming gas supply, F+

in Equation (5.3), is balanced by rapid gas consumption and strong feedback-induced gas

dispersal: F+ ≈ Ṁ?+F−,fb. In this case, global depletion time is given by τ ≈ Ncτ+, where

Nc is the total number of cycles between non-star-forming and star-forming states. Due to

large Ṁ? + F−,fb ∝ (1 + ξ)εff , the duration of star-forming stages, tsf , is regulated by star

formation and feedback: when εff or ξ are increased, the lifetime of gas in the star-forming

state shortens as tsf ∝ [(1 + ξ)εff ]−1. However, the total time spent in the star-forming state

before complete depletion depends on εff but not on ξ: τ? ∝ ε−1
ff . The dependence on εff
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thus cancels out in Nc = τ?/tsf and global depletion time becomes independent of εff but

maintains scaling with ξ.

Therefore, in the self-regulation regime, star formation regulates itself by controlling

the timescale on which feedback disperses star-forming regions and the timescale on which

gas is converted into stars in these regions. The relative importance of these processes is

determined by the feedback strength per unit of formed stars, i.e. the ξ value.

When feedback is efficient, ξ � 1, as is the case in our simulations3 shown in Figure 5.4,

the ISM gas distribution at high εff is shaped by feedback-induced gas motions, F+ ≈ F−,fb.

Specifically, as the top panels show, at εff = 1% and 100%, efficient feedback makes ISM

structure flocculent and devoid of dense star-forming clumps, which are typical in the εff =

0.01% simulation. The bottom panels show that at high εff efficient feedback keeps most of

the dense gas above the star formation threshold or close to it. This results in a significant

decrease of fsf and increase of τff in this regime, compared to the dynamics-regulated regime.

When feedback is inefficient, ξ � 1, or even completely absent, ξ = 0, the gas con-

sumption dominates at high εff , F+ ≈ Ṁ?. In this regime, all available star-forming gas is

rapidly converted into stars and the global depletion time is determined by the timescale on

which new star-forming gas is supplied, i.e. τ ∼ τ+. Thus, this regime is analogous to the

“bottleneck” scenario envisioned by Saitoh et al. (2008). Our simulations with b = 0 and

εff ≥ 10% operate in this regime, and because τ+ is short, τ is also short, so that gas is

rapidly consumed and the simulated galaxy cannot settle into a quasi-equilibrium state.

Dependence of τ , fsf , and τff on the choice of the star formation threshold can also be

understood as follows. As εff and ξ increase, the average density of the star-forming gas

decreases, which increases τff . For the density-based threshold, the value of τff becomes

independent of εff and ξ as the star-forming gas is kept at the density close to the threshold,

n ∼ nsf . Larger αvir,sf (or smaller nsf) in Figure 5.3 results in shorter τ ∝ τ+, because τ+

3. Our results in Section 5.2.2 and Appendix B.1 suggest that ξ ∼ 60 in our simulations with fiducial
feedback and star formation threshold.
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decreases as it takes less time for gas to evolve from the typical ISM density and αvir to

the values of the star-forming gas. As typical densities of the star-forming gas decrease, τff

increases and thus fsf ∝ τff/τ+ (Equation 5.10) also increases because of both longer τff and

shorter τ+.

In the above discussion, the dynamical time τ+ was assumed to be independent of εff

and the feedback strength. This is certainly a simplification, as τ+ can be determined by

feedback, which can limit the lifetime of star-forming regions, drive large-scale turbulence in

the ISM, inflate low density hot bubbles, launch fountain-like outflows, and sweep gas into

new star-forming regions. These processes are reflected in the complicated pattern of the

net gas flux in the n–σtot plane in the bottom middle panel of Figure 5.4, which shows a

prominent clockwise whirl near the star formation threshold and a counterclockwise whirl in

the lower-density gas. The clockwise whirl originates from the ISM gas being swept by SN

shells, while the counterclockwise whirl is shaped by the gas in freely expanding shells (see

Section 4.3 for a more detailed discussion). Nevertheless, we find that the dependence of τ+

on the feedback strength variation is much weaker than the linear scalings of τ and fsf with

ξ and εff (see the quantitative predictions below), and thus our simplification is warranted.

Transition between the regimes

Self-regulation or dynamics-regulation regimes occur when the first or second term in Equa-

tion (5.5) dominates. In Section 5.1, we illustrated these regimes using simulations in which

εff , feedback strength, and star formation threshold are varied in a wide range. The transition

between the two regimes depends on all of these parameters. For example, the dependence

of transition on the feedback strength is evident from Figure 5.2: at stronger feedback, the

transition occurs at smaller εff . As a result, the run with εff = 1% and weak feedback,

b = 0.2, exhibits behavior of the dynamics-regulation regime, while the galaxy in the run

with the same εff but with much stronger feedback, b = 5, is in the self-regulation regime.
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Similarly, from the middle and right panels of Figure 5.3, when εff = 1% and threshold

defines a significant fraction of gas as star-forming (e.g., αvir,sf = 100 or nsf = 10 cm−3),

simulated galaxies are in the dynamics-regulation regime. On the other hand, when thresh-

old defines only a small fraction of gas as star-forming (e.g., αvir,sf = 10 or nsf = 100 cm−3),

galaxies are in the self-regulation regime.

Note, however, that achieving self-regulation with the threshold variation is not always

possible, because the threshold affects both terms in Equation (5.5), and thus the value of the

threshold at which the first term dominates does not always exist. For example, in the top

middle panel of Figure 5.3, when εff < 1%, depletion time bends upward at αvir,sf < 10 and

remains inversely proportional to εff and therefore never reaches the self-regulation regime.

In the transition between dynamics-regulated and self-regulated regimes, the relation

between our model parameters follows from the condition that the terms in Equation (5.5)

are comparable:

(1 + ξ)εff ∼
(

1 +
τ+
τ−,d

)
τff
τ+
. (5.11)

Notably, in this case a given galaxy has the same star-forming mass fraction independent of

εff or the feedback strength. Indeed, after substituting condition (5.11) into Equation (5.6),

we get

fsf ∼
1

2

(
1 +

τ+
τ−,d

)−1

, (5.12)

i.e., the star-forming mass fraction at the transition is half of that in the dynamics-regulation

regime (Equation 5.8).

Quantitative predictions as a function of εff and feedback strength

So far, we described how the model presented above can qualitatively explain the trends and

regimes revealed by our simulations. Here we will show that the model can also describe the

simulation results quantitatively.
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To predict τ and fsf in the simulations using Equations (5.5) and (5.6), we note that the

unknown parameters enter these equations only in three different combinations: (1 + ξ)τ+,

τ+/τ−,d, and τff/εff . These can be calibrated against a small subset of the simulations in the

dynamics- and self-regulation regimes using scalings discussed above as a guide. Quantitative

predictions of the model with calibrated parameters for the trends of τ and fsf can then be

compared with the results of other simulations, not used in the calibration.

Specifically, using two runs in the self-regulated regime with εff = 100%, we measure the

normalization of (1+ξ)τ+ and its scaling with the feedback boosting factor b. Equation (5.9)

gives the normalization of the global depletion time in the high-εff run with b = 1: [(1 +

ξ)τ+]0 ≈ τ(b = 1) ∼ 6 Gyr. Adopting (1 + ξ)τ+ ∝ bβ for the scaling with b, the slope

β = ∆ log τ/∆ log b ≈ 0.75 is measured using the second run with b = 5, and thus the final

relation is

(1 + ξ)τ+ ≈ 6 b0.75 Gyr, (5.13)

i.e. (1 + ξ)τ+ is long and increases almost linearly with b.

Using a simulation with εff = 0.01% (i.e., the dynamics-regulation regime) and Equa-

tion (5.8), we estimate the ratio of dynamical times τ+/τ−,d from the value of star-forming

mass fraction, fsf ≈ 0.2, measured in this simulation:

τ+
τ−,d

≈ 1

fsf
− 1 ∼ 4, (5.14)

which implies that in the absence of feedback the star-forming gas is supplied 4 times more

slowly than it is dispersed by dynamical effects.

Finally, the last unknown parameter is the average freefall time in the star-forming gas,

τff . In our simulations, τff varies only mildly, from τff ≈ 2–3 Myr in the dynamics-regulation

regime to τff ≈ 5–6 Myr in the self-regulation regime. In the simplest case, we can make

predictions assuming a constant τff = 4 Myr, which is representative of the freefall time in
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Figure 5.5: Comparison of our model predictions (shown with lines) for the global depletion
time (τ ; top panel) and the star-forming mass fraction (fsf ; bottom panel) with the results
of our simulations with varying εff and the feedback boost factor, b, assuming the fiducial
star formation threshold, αvir,sf = 10 (notation repeats that of Figure 5.3). To fix the model
parameters, we use τ in two high-εff runs (red circled points in the top panel), which give
(1+ξ)τ+ ∼ (6 Gyr) b0.75, and fsf from a low-εff run (blue circled point in the bottom panel),
which gives τ+/τ−,d ∼ 4. As thick lines show, if we neglect variation of τff and assume the
average τff = 4 Myr, our model correctly predicts the overall behavior of τ and fsf . As thin
lines show, predictions of our model are improved if the variation of τff is also modeled as
explained in Appendix B.1. To avoid clutter, simulation points for εff = 0.1%, 1%, and 10%
are slightly shifted horizontally around the actually used values of b = 0, 0.2, 1, and 5.
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star-forming regions both in our simulations and in observations.

Figure 5.5 compares the simulation results for τ and fsf as a function of the feedback

strength, b, with the predictions of our model with constant τff = 4 Myr (thick lines). Of the

20 simulation results shown by points in the figure, only three were used to calibrate the four

model parameters, [(1+ξ)τ+]0, β, τ+/τ−,d, and τff , as described above; these simulations are

shown by the large circled points. For the other 17 simulations, the lines show predictions

of the model. Figure 5.5 shows that the model correctly predicts a wide variation of τ and

fsf with εff and the feedback strength b in the entire suite of simulations.

Moreover, τ and fsf involve two independent quantities, Ṁ? and Msf , measured in the

simulations. Thus, our four-parameter model calibrated using three simulations describes

well 17 × 2 = 34 independent data points. The fact that our model closely agrees with

the simulations when we treat τff as a fixed parameter and τ+ as independent of ξ and εff

indicates that most of the variation of τ and fsf is driven by their explicit dependence on

εff and ξ in Equations (5.5) and (5.6), whereas any variation of τff and τ+ with εff and ξ is

secondary.

Nevertheless, accounting for τff variations can somewhat improve the accuracy of our

model. Thin lines in Figure 5.5 and in the left panels of Figure 5.3 show our model predictions

incorporating τff variation with εff and ξ values. To model this variation, we note that the

increase of τff during the transition from the dynamics-regulation regime to the self-regulation

regime is controlled by the total rate of the star-forming gas removal by gas consumption and

feedback: Ṁ?+F−,fb ∝ (1 + ξ)εff . Thus, we calibrate the values of τff in these regimes using

the same three simulations as before, and we interpolate τff as a function of (1 + ξ)εff for all

other simulations. The details of this calibration and the adopted interpolation function are

presented in Appendix B.1.
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Quantitative predictions as a function of the star formation threshold

To predict how τ , fsf , and τff depend on the star formation threshold, αvir,sf , we need to

calibrate model parameters as a function of αvir,sf . Analogously to the previous section, we

constrain these dependencies using runs in the limiting regimes and use our model to predict

τ , fsf , and τff in the other simulations. Our model predictions are shown with lines in the

middle column of panels in Figure 5.3 using calibrations done as follows.

First, the dependence of (1 + ξ)τ+ and τff in the self-regulation regime on αvir,sf can be

assessed using a run with εff = 100% and fiducial αvir,sf = 10 and an additional run with

αvir,sf = 100 to obtain the following scalings:

(1 + ξ)τ+ ∝ α−0.5
vir,sf , (5.15)

τff ∝ α0.4
vir,sf . (5.16)

The scaling of (1 + ξ)τ+ is measured as the slope of τ in the top middle panel of the figure.

For the typical density of the star-forming gas n̄, the freefall time is τff ∝ n̄−0.5 and the

slope of 0.4 in Equation (5.16) thus indicates that n̄ ∝ α−0.8
vir,sf . Given that αvir ∝ σ2

t /n, this

means that the typical velocity dispersion in the star-forming gas scales as σ̄t ∝ α0.1
vir,sf .

Second, we note that to constrain the behavior of τ+/τ−,d and τff in the dynamics-

regulated regime, no extra runs are needed, and all the required information can be obtained

directly from the simulation with εff = 0.01% and b = 1, which has been already used in

the previous section. This is because in the dynamics-regulated regime the gas distribution

in the n–σtot plane is not affected by star formation and feedback, and thus we expect

it to be the same as in the bottom left panel of Figure 5.4. Therefore, fsf—which yields

τ+/τ−,d from Equation (5.8)—and τff as a function of the star formation threshold can be

directly measured from this distribution. We spline fsf(αvir,sf) and τff(αvir,sf) in the low-εff

simulation with fiducial αvir,sf and show these functions with blue lines in the bottom two

76



panels of the middle column in Figure 5.3.

These two steps fix the dependencies of (1 + ξ)τ+, τ+/τ−,d, and τff on the star formation

threshold, and thus we can predict how τ , fsf , and τff depend on the threshold at different

εff and our predictions closely agree with the results of simulations, as shown in the middle

column of panels in Figure 5.3. To test our model, we repeated the above steps for the

simulations with the star formation threshold in the gas density rather than in αvir. As

the right column of Figure 5.3 shows, our predictions again closely agree with the results of

the simulations, although the values of the parameters are of course different (see Appendix

B.1).

5.2.3 Generic approach to calibrating the star formation and feedback

parameters in simulations

Galaxy simulations can differ significantly in numerical methods used to handle hydrodynam-

ics and in specific details of the implementation of star formation and feedback processes.

The implementations can also be applied at different resolutions, so that the values and

sometimes even the physical meaning of the parameters change. Thus, the parameter val-

ues of our model that we calibrated above should be used with caution and applied only

when similar numerical techniques, resolutions, and implementations of star formation and

feedback are used.

Nevertheless, the overall calibration approach can still be used in all cases to choose the

values of the star formation and feedback parameters. For example, one can calibrate τ and

fsf dependence on the parameters in the dynamics-regulation regime using one simulation

with a very low (or even zero) value of εff , as was done in Section 5.2. Then, the τ and

fsf behavior in the self-regulation regime can be anchored using several simulations with

varying feedback strength and star formation threshold at sufficiently high εff . The value of

εff appropriate for this second step can be chosen from the condition that the local depletion
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time at typical densities of the star-forming gas must be much shorter than the global

depletion time, which thus implies εff � τff/τ . The appropriately high value of εff will also

result in fsf much smaller than the fsf in the simulation with low εff .

5.3 Comparisons with observations

Results presented in the previous section demonstrate that our general theoretical framework

for star formation in galaxies can describe and explain the results of galaxy simulations both

qualitatively and quantitatively. The model can thus be also used to interpret and explain

observational results, in particular the observed long gas depletion times in galaxies, as we

showed in Chapter 4. In this section, we use the observations to constrain the parameters of

our model, in particular, the efficiency of star formation per freefall time, εff . We also use

the model to infer whether observed galaxies are in the dynamics- or self-regulation regime.

Specifically, we use the observed values of the depletion time of atomic+molecular and

just molecular gas at different scales—from global galactic values to the scales comparable

to our resolution limit of ∼ 40 pc—as well as the mass fraction of gas in star-forming regions

and in the molecular phase. Comparisons and inferences from observations on different scales

are presented in separate sections below. In most of the comparisons, we use observations

in the Milky Way, where star formation is studied most extensively. However, whenever

possible, we also use recent observations of other nearby galaxies. Note that we focus here

on the inferences specific to ∼L?-sized galaxies, as our simulated galaxy model has structural

parameters typical for such galaxies.

In what follows, we use the star formation rates in simulations computed differently

on different scales, in ways that approximate how corresponding rates are estimated in

observations. We compute the local SFR using the total mass of stellar particles younger

than some age tsf in the cell: Ṁcell
? ≡ Mcell

? (< tsf)/tsf , where the choice of tsf is motivated

by star formation indicators used in observations. In Sections 5.3.3 and 5.3.5, we compare
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our results with extragalactic studies that use Hα and far IR indicators sensitive to the

presence of massive young stars, and we thus adopt tsf = 10 Myr (see, e.g., Table 1 in

Kennicutt & Evans, 2012). In Section 5.3.4 we compare with observations of individual

star-forming regions, where SFR is estimated by direct counting of pre-main-sequence young

stellar objects, and thus we adopt tsf = 1 Myr in this case. To compare our results with the

observed distribution of molecular gas, we define molecular gas in our simulations as detailed

in Section 3.4.

5.3.1 Global τ and fsf

We start our comparisons with observations by comparing our model and simulation predic-

tions as a function of εff and the feedback strength b with the global values of the depletion

time, τ , and the mass fraction of star-forming gas, fsf . To make a fair comparison, τ and fsf

in observations must be defined consistently with their definition in the simulations. While

τ can be compared directly using the total gas mass and SFR, the comparison of fsf is

more nuanced, because one needs to choose which gas in real galaxies corresponds to the

star-forming gas in simulations. Our fiducial star formation criterion, αvir < αvir,sf = 10, is

motivated by αvir in observed GMCs, and it selects molecular gas with the lowest turbulent

velocity dispersions on the scale of our resolution, ∆ = 40 pc. Such a criterion also results

in the average freefall time in star-forming regions of τff ≈ 3–6 Myr, which is consistent with

typical τff values estimated for observed GMCs (see, e.g., Figure 1 in Agertz & Kravtsov,

2015). In simulations with larger αvir,sf , τff becomes several times longer than observed in

GMCs (see the bottom middle panel of Figure 5.3). Thus, we argue that our fiducial value

of αvir = 10 corresponds to the definition of the star-forming regions in observations most

closely, and we will use the simulations with this value to constrain εff . We will, however,

discuss the dependence on the assumed threshold below, whenever it is relevant.

To compare our model results, we use the global depletion time and the mass fraction
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Figure 5.6: Comparison of our simulation results (points) and our model predictions (gray
lines) for the star-forming mass fraction, fsf , and the global depletion time, τ , with their
values in the Milky Way (green rectangle). Notation of points repeats that of Figure 5.3,
with color indicating εff and the feedback boost factor, b, increasing upward: 0, 0.2, 1, and 5.
Solid gray lines show the predictions of our model calibrated in Section 5.2.2 for the constant
values of 0.2 < b < 5 and 0.01% < εff < 100%, with thicker lines corresponding to the values
used in the simulations and thinner lines showing intermediate values: b ≈ 0.45 and 2.2 and
εff ≈ 0.032%, 0.32%, 3.2%, and 32%. The dashed line indicates model predictions for runs
without feedback (b = 0), assuming τ+ = 100 Myr, as motivated by the results of Section 4.4.
The green rectangle indicates the range estimated for the Milky Way, fsf ∼ 1.5%–10% and
τ ∼ 5–10 Gyr, as explained in the text.
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of the star-forming gas in the Milky Way, τ ∼ 5–10 Gyr and fsf ∼ 1.5%–10% estimated

as follows. The range of τ follows from Mg ∼ 1010 M� (e.g., Kalberla & Kerp, 2009) and

Ṁ? ∼ 1–2 M� yr−1 (e.g., Licquia & Newman, 2015). The upper limit on the star-forming

mass fraction follows from the assumption that all molecular gas in the Milky Way is star-

forming, and thus fsf < fH2
= MH2

/Mg ∼ (109 M�)/(1010 M�) ∼ 10% (Heyer & Dame,

2015). A conservative lower limit on fsf can be estimated using the total mass in the largest

star-forming GMCs in the Milky Way from Murray (2011), with sizes comparable to our

resolution of 40 pc. These massive GMCs account for 33% of total SFR in the Milky Way

but have a total mass of ≈ 5× 107 M�. If the rest of star formation in the Milky Way were

proceeding in clouds with local depletion times similar to those in the Murray (2011) sample,

then the total mass of the star-forming gas would be 3 times larger, or ≈ 1.5 × 108 M�,

which would mean fsf ∼ 1.5%. However, this estimate is a conservative lower limit because

the rest of the star-forming gas probably forms stars with lower efficiency, as it does not

host bright radio sources associated with H II regions, used by Murray (2011) to identify the

star-forming GMCs.

In Figure 5.6, the above constraints on τ and fsf in the Milky Way (green rectangle) are

compared to the results of our simulations (points with error bars) and the predictions of

our analytical model (gray lines). The figure shows that only εff ∼ 0.5%–5% and b ∼ 0.3–2

can satisfy the constraints on both τ and fsf simultaneously. It is important to note that

this constraint on εff is rather generous, due to the rather conservative lower limit estimate

of fsf we use for the Milky Way.

This conclusion would not change if we adopted a different star formation threshold.

Figure 5.3 shows that αvir,sf values smaller than our fiducial αvir,sf = 10 would result in

even smaller fsf , while even values as large as αvir,sf = 100 for εff = 100% would only

increase the star-forming gas mass fraction to fsf ≈ 0.7%, while decreasing the depletion

time to τ ≈ 2 Gyr, which is still far outside the range we estimate for the Milky Way.
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Note that the figure shows that τ and fsf in the Milky Way have values close to the tran-

sition between self-regulation and dynamics-regulation regimes. Indeed, the self-regulation

regime corresponds to small fsf < 0.01 at which gray lines of constant b are horizontal, the

dynamics-regulation regime is manifested by the convergence of these lines to fsf ∼ 0.2,

and fsf in the Milky Way lie in between these two regimes. The conclusion that the Milky

Way is in the regime intermediate between dynamics- and self-regulation regimes is also

directly supported by the estimate for the second term in Equation (5.5), (1 + τ+/τ−,d)τ?.

Indeed, observed local depletion times in the Milky Way’s GMCs are τ? ∼ 100 − 500 Myr

(e.g., Evans et al., 2009, 2014; Heiderman et al., 2010; Lada et al., 2010, 2012; Gutermuth

et al., 2011; Schruba et al., 2017), and the prefactor in front of τ? is likely similar to that

obtained in our simulations, 1 + τ+/τ−,d ∼ 5 (Equation 5.14), because we expect that our

simulations capture dynamical time scales of star-forming gas supply and dispersal. As a

result, (1 + τ+/τ−,d)τ? ∼ 0.5–2.5 Gyr contributes a sizable fraction to the observed global

depletion time in the Milky Way, τdep,MW ∼ 5–10 Gyr, and thus the Milky Way is in the

intermediate regime.

5.3.2 Global mass fraction and the depletion time of molecular gas

Figure 5.7 compares the global molecular gas mass fraction, fH2
, and its depletion time, τH2

,

estimated for the Milky Way (green rectangle) with their values measured in our simulations

(points with error bars) and predicted by our model (gray lines). For the Milky Way,

we used fH2
= (1.0 ± 0.3) × 109 M� from Heyer & Dame (2015) and estimated τH2

=

(109 M�)/(1–2 M� yr−1) ∼ 0.5–1 Gyr. In the simulations, the total molecular mass, MH2
,

required to compute fH2
and τH2

is derived as a sum of the molecular mass in each cell,

computed as explained at the beginning of Section 5.3. The model predictions are obtained

using the dependence of fH2
on εff and the feedback strength, calibrated at the end of

Appendix B.2. The definition of the molecular gas depletion time is τH2
≡ MH2

/Ṁ? =
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Figure 5.7: Comparison of the simulation results (points) and our model predictions (gray
lines) with the total molecular mass fraction, fH2

, and the global depletion time of molecular
gas, τH2

= fH2
τ , in the Milky Way (green rectangle). The symbols and lines are the same

as in Figure 5.6. Our model for fH2
is explained in Appendix B.2. For the Milky Way,

we adopt fH2
= (1.0 ± 0.3) × 109 M� (Heyer & Dame, 2015) and τH2

= (109 M�)/(1–

2 M� yr−1) ∼ 0.5–1 Gyr (e.g., Licquia & Newman, 2015).
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(MH2
/Mg)(Mg/Ṁ?) = fH2

τ , with τ given by Equation (5.5).

The figure shows that fH2
and τH2

within the observed range can be obtained only in the

simulations with εff ∼ 0.5%–5% and b ∼ 0.2–3. Note that this range of parameters is similar

to the range constrained by the observed fsf and τ in the previous section. This consistency

between different constraints indicates that in our simulations with εff ∼ 1% and b ∼ 1 the

overall distribution of the ISM gas in different phases is captured correctly.

Typical values of fH2
estimated in other L?-sized galaxies are usually even larger than

the Milky Way value (e.g., ∼ 10%–30% in Leroy et al., 2008). According to Figure 5.7, such

fH2
, together with somewhat longer depletion times (τH2

∼ 1–3 Gyr in Bigiel et al., 2008,

2011; Leroy et al., 2013; Utomo et al., 2017), favors small values of εff . Our model, calibrated

on a specific simulation of an L?-sized galaxy, does not predict values fH2
> 20%. However,

according to our model, the values of fH2
> 20% observed in molecular-rich galaxies can be

due to a smaller ratio of dynamical time scales τ+/τ−,d in such galaxies as compared to the

value of τ+/τ−,d ∼ 4 in our simulated galaxy, which sets the upper limit of fH2
∼ 20% in

the dynamics-regulation regime (Equation 5.8).

Figure 5.7 also illustrates three interesting differences in the behavior of fH2
and τH2

as compared to that of fsf and τ in the previous section: (1) the range of fH2
variation is

substantially narrower than that of fsf ; (2) in contrast to τ , τH2
does depend on εff even in

the self-regulation regime; and (3) the temporal variation of τH2
(shown with vertical error

bars) is much smaller than that of τ . The range of fH2
variation is narrow because even

at high εff and b feedback cannot efficiently clear the non-star-forming molecular gas that

piles up above the star formation threshold. When τ is independent of εff , the sensitivity of

τH2
to εff originates from the weak sensitivity of fH2

to εff , τH2
= fH2

τ , and its temporal

variation is small because fH2
anticorrelates with τff , as both respond to the dispersal of the

dense gas by feedback, and this anticorrelation mitigates the variation of τH2
∝ fH2

τff . Note

that all these effects are due to the definition of the star-forming gas being different from
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Figure 5.8: Comparison of the molecular gas depletion time, τH2
, averaged on kiloparsec

scale in our simulations (squares with vertical bands), with the observed range shown with
horizontal color bands. The blue band indicates the range of τH2

∼ 1.6 Gyr (excluding
correction for helium) with a factor of 2 scatter, which was derived in a number of studies
(Bigiel et al., 2008, 2011; Leroy et al., 2013; Bolatto et al., 2017; Utomo et al., 2017; Colombo
et al., 2018). The green band indicates the range of kiloparsec scale τH2

in the Milky Way,
estimated from the profiles of ΣH2

and ΣH2
in Figure 7 in Kennicutt & Evans (2012). In

simulations, τH2
is averaged using 10 simulation snapshots between 410 and 500 Myr. Squares

indicate the mass-weighted averages 〈1/τH2
〉−1, and vertical stripes show the range of the

running median for gas with ΣH2
> 1 M� pc−2. For presentation purposes, the simulation

points are slightly shifted horizontally around the actually used values of b = 0.2, 1, and 5.
Colored lines show the predictions of our model for the global depletion time of the molecular
gas (see Sections 5.3.2).

the molecular gas and its corollary of the existence of the non-star-forming molecular gas.

5.3.3 Molecular gas depletion times on kiloparsec scales

Over the past two decades, star formation, the distribution of the molecular gas, and its

depletion time τH2
= ΣH2

/Σ̇? have been studied observationally down to kiloparsec scales

in dozens of nearby galaxies (e.g., Wong & Blitz, 2002; Bigiel et al., 2008, 2011; Leroy

et al., 2013; Bolatto et al., 2017; Utomo et al., 2017). These observational studies show that
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typical observed values of τH2
∼ 2 Gyr have a factor of ∼ 2 scatter and are independent of

the local kiloparsec-scale molecular gas surface density, ΣH2
. In the Milky Way, values of

kiloparsec-scale τH2
are somewhat shorter and span a range of τH2

∼ 0.5–2 Gyr (estimated

from Figure 7 in Kennicutt & Evans, 2012).

In Figure 5.8, we compare these values of τH2
(colored bands) with the results of our

simulations (squares with vertical stripes) and our model predictions (thin lines). As the

figure shows, the results of our fiducial simulation with εff = 1% and b = 1 agree well

with the typical values of τH2
inferred in observations. However, the simulations with, e.g.,

εff ∼ 100% and b ∼ 5 also agree with the observed range of τH2
because the dependence of

τH2
on these parameters (and especially on εff) is relatively weak. Similarly to the global

star-forming gas and molecular gas mass fractions considered above in Section 5.3.2, the

parameters will be constrained much better when estimates of the molecular gas fraction

become available on subgalactic scales in more and more galaxies (e.g., Wong et al., 2013;

Leroy et al., 2016, 2017).

To make the comparison presented in Figure 5.8, in the simulations we compute τH2
=

ΣH2
/Σ̇?, where ΣH2

and Σ̇? are measured by first projecting the local densities of the

molecular gas and SFR perpendicular to the disk plane and then smoothing the resulting

surface densities using a Gaussian filter with a width of 1 kpc. Squares in Figure 5.8 show the

mass-weighted averages 〈1/τH2
〉−1 on a kiloparsec scale, which are equivalent to the global

depletion times of the molecular gas,4 and these averages are well approximated by our

model (colored lines). A vertical band around each square indicates variation of the running

median of τH2
in bins of ΣH2

at surface densities of ΣH2
> 1 M� pc−2. This variation is

rather small because our simulations produce constant τH2
, even though a density-dependent

depletion time is adopted on subgrid scale: τ? ∝ τff ∝ ρ−0.5. Such independence of τH2
from

ΣH2
agrees with the observed constant τH2

, and its origin in our simulations is discussed

4. By definition, 〈1/τH2
〉−1 ≡ [

∫
dA (ΣH2

/τH2
)/
∫
dA ΣH2

]−1 =
∫
dA ΣH2

/
∫
dA Σ̇? = MH2

/Ṁ?.
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Figure 5.9: Comparison of the molecular gas depletion time and the gas surface densities
on GMC scales with their distribution on the resolution scale in our simulations, ∆ = 40 pc.
Adopted star formation efficiency increases from the left to the right: εff = 0.01%, 1%,
and 100%. The color map shows the mass-weighted distribution of computational cells
for which we define ΣH2,40 pc = Mcell

H2
/∆2 with molecular mass in a cell, Mcell

H2
, computed

using the model of Krumholz et al. (2009a, see the beginning of Section 5.3 above) and
τH2

= Mcell
H2

/Ṁcell
? = Mcell

H2
/(Mcell

? (< 1 Myr)/(1 Myr)), where in each cell Mcell
? (< 1 Myr)

is the total mass of stars younger than 1 Myr. Cells containing only a single stellar particle
form the diagonal upper boundary of τH2

distribution. Cells without young stellar particles
are indicated by blue horizontal stripes on top of each axis. Orange points show the observed
τH2

in the Milky Way GMCs from Lada et al. (2010, circles), Heiderman et al. (2010, stars),
and Vutisalchavakul et al. (2016, squares). A green polygon indicates the range of ΣH2

and
τH2

observed in three nearby spiral galaxies by Rebolledo et al. (2015).

in Chapter 6. We also find that the scatter around the running median (not shown in the

figure) is consistent with observations as well (see Figure 4.2).

5.3.4 Molecular gas depletion times on tens of parsec scales

Although current observations in most galaxies probe star formation and molecular gas only

on scales & 1 kpc, observations of star-forming regions in the Milky Way allow us to examine

these quantities on smaller scales. Furthermore, scales of . 100 pc are increasingly probed

in nearby galaxies (Bolatto et al., 2011; Rebolledo et al., 2015; Leroy et al., 2017), and this

allows us to compare results of our simulations on these scales as well.

Figure 5.9 shows the variation of τH2
in the Milky Way (points; Heiderman et al., 2010;

Lada et al., 2010; Vutisalchavakul et al., 2016) and three nearby spiral galaxies (trapezoidal
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region; Rebolledo et al., 2015) with the molecular gas depletion time on the scale of 40 pc

in our simulations (blue color map) as a function of ΣH2
. For this comparison we only show

GMCs in the Milky Way that have sizes of & 10 pc, to make the scales comparable to the

scale probed in our simulations. Different panels show the distribution of the local depletion

times in our simulations with different values of the star formation efficiency: εff = 0.01%,

1%, and 100%.

As the figure shows, although the observed τH2
vary substantially, their typical values

can be reproduced only in runs with εff ∼ 1%, while runs with too low (high) εff signifi-

cantly overestimate (underestimate) τH2
in star-forming regions. Note that in all runs the

distribution of τH2
is bimodal: τH2

is either finite, which corresponds to star-forming gas,

or infinitely long, i.e. the gas is non-star-forming. In the figure, τH2
in the latter case is

artificially set to 500 Gyr for illustration purposes. Different runs differ by the fraction of

the molecular gas in the star-forming state and by the average τH2
of such gas. The fraction

of the star-forming gas is the lowest in the run with εff = 100%, and this gas has depletion

times of only ∼ 2–200 Myr. These short depletion times of star-forming H2 are averaged

with large amounts of the non-star-forming molecular gas in this run, so that the depletion

time on & 1 kpc scales in the εff = 100% case is only a factor of two shorter than in the

εff = 1% run. This shows that while τH2
on & 1 kpc scales is relatively insensitive to εff , its

values on the scales of . 100 pc are quite sensitive to the efficiency and can thus be used to

constrain it.

5.3.5 The scale dependence of molecular gas depletion times

Results of the previous two sections clearly show that the distribution of τH2
depends on the

spatial scale. Indeed, τH2
in a given ISM patch results from averaging over a distribution

of gas and stars inside the patch, and thus τH2
depends on the patch size, L: τH2

(L). The

quantity that particularly strongly depends on the spatial scale is scatter: when the size
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Figure 5.10: Effect of εff and the feedback boost factor, b, on the τH2
bias as a function

of the spatial smoothing scale, L. The depletion time in a given aperture of size L is defined
as τH2

(L) ≡ ΣH2,L/Σ̇?,L, where ΣH2,L and Σ̇?,L are the molecular gas and the SFR surface
densities smoothed using a Gaussian filter with a width L. Star symbols indicate the median
depletion time measured in the apertures centered on peaks in Σ̇?, while circles correspond to
the apertures centered on peaks in ΣH2

. To factor out the variation of the global molecular
gas depletion time with the feedback strength, we divide τH2

(L) by global τH2
. Dashed lines

show the results obtained for M33 by Schruba et al. (2010). To match the temporal averaging
of the Hα indicator used by Schruba et al. (2010), we estimate Σ̇? using stars younger than
10 Myr.
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of the patch decreases, patch-to-patch variation of gas and stars contained inside a patch

becomes stronger, which leads to a stronger variation of the derived depletion time in each

patch and thus larger scatter in τH2
.

Following Schruba et al. (2010), one of the ways to express the dependence of scatter on

the spatial scale is to consider the scale dependence of the depletion time, τH2
(L), measured

in patches centered on the peaks of ΣH2
, which thus are biased to long τH2

(L), versus those

measured in patches centered on the peaks of Σ̇?, which are biased to short τH2
(L). The

difference between these two estimates of τH2
(L) is small on large scales, and their values are

approximately equal to the global depletion time. At smaller scales, this difference increases,

as shown in Figure 5.10, which compares τH2
(L) observed in M33 by Schruba et al. (2010)

with the results of our simulations.

In simulations, τH2
(L) centered on gas or stars strongly depends on εff and the feedback

boost factor b because stronger feedback-induced gas flux results in more expulsive evacuation

of the gas from star-forming regions, which leads to a stronger spatial displacement of ΣH2

and Σ̇? peaks. As Figure 5.10 shows, the fiducial run that satisfied all previous constraints

also provides a reasonably good match to the observed τH2
(L). Overall, for the fiducial

feedback strength, both gas- and star-centered τH2
(L) favors εff . 10%. Note, however,

that there is a degeneracy between the feedback strength and εff value: the simulation with

εff = 1% and b = 5 produces a relation similar to the simulation with εff = 10% and b = 1.

It is also worth noting that ΣH2
-centered τH2

(L) is noticeably more sensitive to εff and

b values. The sensitivity is stronger because at higher εff or b the gas lifetime in the star-

forming state is shorter, young stars are more sporadic, and thus it is less probable for a

given patch centered on a ΣH2
peak to contain young stars. As a result, τH2

(L) at high

εff or b becomes highly biased to very large values. On the contrary, Σ̇?-centered patches

almost always contain molecular gas, because its abundance does not significantly decrease

at stronger feedback (see Section 5.3.2). As a result, for Σ̇?-centered patches, the bias also
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increases with εff and b (τH2
(L) becomes shorter), but this change is much milder than for

ΣH2
-centered patches.

Such strong dependence of ΣH2
-centered τH2

(L) on star formation and feedback param-

eters can provide tight constraints on these parameters. These constraints can be improved

significantly if the scale dependence of τH2
is measured in a larger sample of galaxies. Note,

however, that more comprehensive comparison must include the effects of the intrinsic varia-

tion of εff and the metallicity dependence of the molecular gas fraction on GMC scale, which

are not accounted for in our simulations.

5.4 Comparison with previous studies

In previous sections, we showed that our simple theoretical framework presented in Chapter 2

explains how local star formation and feedback parameters affect the global star formation

in our L?-sized galaxy simulations, both qualitatively and quantitatively. Here we illustrate

how our framework can also explain the results of other recent galaxy simulations done with

different numerical methods and implementations of star formation and feedback, both in

isolated setups and in the cosmological context. Specifically, we will use our model to inter-

pret trends (or lack thereof) of the depletion times with the local star formation efficiency,

εff , the feedback strength, and the adopted star formation thresholds.

For example, our framework predicts that in the simulations that adopt high εff values

and implement efficient feedback the depletion time is almost completely insensitive to the

value of εff . This is because in this regime τ is controlled by the time that gas spends in

the non-star-forming state, which does not depend on εff explicitly. This explains why τ is

insensitive to the variation of εff in the simulations of Hopkins et al. (2017a); this behavior

is also reproduced in our simulations (see Figures 5.1 and 5.3 above). In this regime, our

framework also predicts a nearly linear scaling of τ with the feedback strength parameter ξ,

as is indeed observed in simulations (Benincasa et al., 2016; Hopkins et al., 2017a; Orr et al.,
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2018).

For smaller values of εff ≈ 1–10%, when the two terms in Equation (5.5) contribute

comparably to the total depletion time, the model predicts that τ should scale with εff

weakly (sublinearly). This was indeed observed in a number of simulations carried out in

this regime (Saitoh et al., 2008; Dobbs et al., 2011a; Agertz et al., 2013, 2015; Benincasa

et al., 2016). In this case, sublinear scaling is also expected with the strength of feedback,

ξ, which is also confirmed by simulations (Hopkins et al., 2011; Agertz et al., 2013, 2015;

Benincasa et al., 2016).

For simulations with εff . 1% or when the feedback implementation is inefficient, ξ � 1,

our model predicts that the depletion time is controlled by the second term in Equation (5.5)

and that it scales inversely with εff : τ ∼ ε−1
ff . Such scaling was observed in the simulations

without feedback by Agertz et al. (2013, 2015), while in the simulations using the same

galaxy model but with efficient feedback, τ was found to be only weakly dependent on εff .

The weak dependence or complete insensitivity of τ to εff at intermediate and high εff

explains why different galaxy simulations with widely different εff ∼ 1%–100% all produce

realistic global depletion times. However, as our results of Section 5.3 show, these simulations

make drastically different predictions for the star-forming and molecular gas mass fractions,

which can be used to constrain εff in this regime (see Sections 5.3.1 and 5.3.2). A similar idea

was reported previously by Hopkins et al. (2012, 2013b), who showed that the fraction of

gas in the dense molecular state with n > 104 cm−3 strongly depends on the local efficiency

εff and the feedback implementation. Specifically, simulations with high εff and efficient

feedback have a small dense gas mass fraction owing to efficient conversion of dense gas

into stars and its dispersal by feedback. This effect can explain why in the simulations with

εff = 100% reported by Orr et al. (2018) the Kennicutt–Schmidt relation between the surface

densities of SFR and dense and cold gas (n > 10 cm−3 and T < 300 K) is considerably higher

than the observed relation for molecular gas. In these simulations, the SFR is likely realistic
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because the depletion time of the total gas is expected to be insensitive to εff . The dense gas

fraction, on the contrary, is expected to be small, which leads to the small surface density

of such gas and thus high Kennicutt–Schmidt relation as in Orr et al. (2018).

Our model also predicts that τ depends on the star formation threshold differently in

different regimes. For low εff , τ only weakly depends on the threshold value, while at high

εff , τ decreases when the threshold encompasses more gas from a given distribution (see top

middle and left panels in Figure 5.3). The former weak trend agrees with the results of

Saitoh et al. (2008), who found that for εff ∼ 1.5% the value of τ decreased only by a factor

of ∼ 1.5–2 when the density threshold was varied from nsf = 100 to 0.1 cm−3. Similarly,

Hopkins et al. (2011) and Benincasa et al. (2016) found almost no dependence of τ on nsf .

On the contrary, in simulations of Agertz et al. (2015) with εff = 10%, τ varied relatively

strongly with variation of nsf , as expected for high εff . We note that to observe the effect

on τ when a combination of thresholds in different physical variables is used, all thresholds

must be varied simultaneously. Varying thresholds one by one may not affect τ if several

thresholds define approximately the same gas as star-forming. This is likely why Hopkins

et al. (2017a) found that τ is insensitive to variation of star formation thresholds, when

thresholds in different variables were changed.

5.5 Summary

Using a simple physical model presented in Chapter 2 and a suite of L?-sized galaxy simula-

tions, we explored how the global depletion times in galaxies, τ = Mg/Ṁ?, and the gas mass

fractions in the star-forming and molecular states depend on the choices of the parameters

of local star formation and feedback.

In our model, τ is expressed as a sum of contributions from different physical processes,

which include dynamical processes in the ISM, the conversion of gas into stars in star-forming

regions, and the dispersal of such regions by stellar feedback. Some of these processes
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explicitly depend on the parameters of the local star formation and feedback model, such as

a star formation efficiency per freefall time, εff , and a feedback boost factor, b. Others do

not have such explicit dependence and may be affected by these parameters only indirectly.

This leads to two distinct regimes, in which terms with and without such explicit dependence

dominate.

We demonstrated these regimes in a suite of L?-sized galaxy simulations, in which we

systematically varied εff , b, and the thresholds used to define the star-forming gas. We

also showed that the trends of τ and the star-forming gas mass fraction exhibited in the

simulations can be reproduced by our model both qualitatively and quantitatively after a

minimal calibration of the model parameters. The main results of our simulations and the

predictions of our model can be summarized as follows:

1. When εff or b are large, the contribution of processes without explicit dependence on

εff dominates and τ is insensitive to εff , which is usually referred to as “self-regulation”

in the literature. However, in this regime, the mass fractions of the star-forming (fsf)

and the molecular (fH2
) gas do depend sensitively on εff and τ scales almost linearly

with the feedback strength factor for b & 1.

2. Conversely, when εff or b are sufficiently small, τ is dominated by the processes that

explicitly depend on the local gas depletion time, t? = tff/εff in Equation (3.2), and thus

on εff , but not on the feedback strength. In this case, the model predicts τ ∝ ε−1
ff and

only weak dependence of fsf and fH2
on εff , the behavior confirmed by our simulations.

3. The star formation threshold controls the mass fraction of the star-forming gas, the

extent of star-forming regions, and their average properties, such as the average freefall

time. We find that when εff is small and the threshold is such that only a small fraction

of the ISM gas is star-forming, τ and fsf are sensitive to the threshold value.

4. When εff is large or feedback is efficient (i.e., when the first term in Equation 5.5
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dominates), fsf is small and most of the star-forming gas has density or virial param-

eter close to the star formation threshold. In this case global star formation and the

molecular mass fraction, fH2
, become sensitive to the value of the threshold.

The dependence of global star-forming properties of galaxies on the parameters of the

local star formation and feedback model can be used to constrain the values of these pa-

rameters using observations of global galaxy properties. For example, the global depletion

times of the total and molecular gas constrain the feedback strength but cannot constrain

the value of εff owing to their weak dependence on this parameter. However, the value of εff

can be constrained using the mass fraction of gas in the star-forming or molecular state. In

addition, we showed that εff can be constrained using the distribution of local depletion times

in star-forming regions and measurements of τH2
for gas patches of different sizes centered

on the peaks of the molecular gas surface density.

Using our simulation suite, we demonstrated that it is possible to find a combination

of the local star formation and feedback parameters that satisfies all of these observational

constraints. Our fiducial run with εff = 1%, the fiducial feedback boost b = 1, and the star

formation threshold based on the virial parameter, αvir < αvir,sf = 10, is able to match all

considered observations reasonably well. The low values of εff ∼ 1% are also consistent with

previous inferences (e.g., Krumholz et al., 2012a, and references therein). We admit that

the obtained constraints on εff and other parameters are specific to the scales close to our

resolution, i.e. ∼ 40 pc, and an additional study is required to explore the scale dependence

of these constraints on smaller spatial scales. We note, however, that the observed depletion

times in GMCs on parsec scales also favor εff ∼ 1%–10% (e.g., Heiderman et al., 2010;

Gutermuth et al., 2011), while simulations with a few parsec resolution adopting higher εff

seem to underpredict the amount of dense star-forming gas (see the end of Section 5.4).

We also showed that our model explains the results of a number of recent studies that

explored the effects of the local star formation and feedback model on the global properties
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of simulated galaxies. This broad consistency confirms that our model accurately describes

the origin of global star-forming properties in galaxy simulations and thus allows us to

understand the role played by gas dynamics, star formation, and feedback in shaping these

properties. Understanding the role of these processes in simulations also sheds light on their

role in real galaxies, which is an essential step toward understanding how real galaxies form

and evolve.
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CHAPTER 6

THE SLOPE OF THE MOLECULAR KENNICUTT–SCHMIDT

RELATION

One of the most intriguing results of our simulations is the emergence of the linear Σ̇?–ΣH2

relation consistent with observations (see the right panel of Figure 4.2), even though on

small scales the star formation rate is assumed to scale nonlinearly with the gas density:

ρ̇? = εffρ/tff ∝ ρ1.5. Moreover, as we will show, in our simulations with a star formation

threshold in virial parameter, the relation on kiloparsec scales remains near-linear when we

vary the slope adopted locally (β in Equation 3.4). This insensitivity is a counterexample to

the argument that in simulations, the KSR on kiloparsec scales simply reflects the relation

assumed at the resolution scale (Schaye & Dalla Vecchia, 2008; Gnedin et al., 2014). We show

instead that the linear slope of the molecular KSR on kiloparsec scales and its insensitivity

to small-scale star formation parameters is a result of self-regulation by stellar feedback. We

will also show that the choice of the star formation threshold has a strong effect on the slope

of the Σ̇?–ΣH2
relation. As we will also discuss, these results can be explained using the

analytic framework of Chapter 2.

This chapter is organized as follows. In Section 6.1, we demonstrate how the molecular

KSR obtained in our simulations changes depending on the parameters of star formation and

feedback. In Section 6.2, we show how the obtained results relate to the gas PDF in ISM

patches and its scaling with gas surface density. In Section 6.3, we use our analytic model

based on ISM gas cycling to explain our results and elucidate the origin of the linear slope

of molecular KSR. In Section 6.4, we compare our model to previous works and discuss its

implications for the KSR derived in observations and simulations of galaxies. In Section 6.5,

we summarize our results and conclusions.

This chapter is based on the work published in Semenov et al. (2019).
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Figure 6.1: Results of our fiducial simulation with the star formation threshold in virial
parameter, αvir < αvir,sf = 10. The depletion time of molecular gas is almost independent of
ΣH2

and thus the molecular KSR is almost linear in this simulation. The two face-on maps on

the left show the surface densities of total gas, Σg, and SFR, Σ̇?. SFR is averaged over 10 Myr
as explained in Section 3.4. The surface density of molecular gas, ΣH2

, is computed using the
Krumholz et al. (2008) model (see Section 3.4), and the gray contours indicate regions where
ΣH2

/Σg > 30%. The right panel shows the depletion time of molecular gas, τH2
= ΣH2

/Σ̇?,
averaged on 1 kpc scale as a function of ΣH2

. The distribution is averaged over 11 snapshots
between 500 and 600 Myr and is colored according to the average galactocentric radius R.
Dark blue lines show the running median (thick line) and 16th and 84th percentiles (thin
lines). Blue points show the running median in the EDGE-CALIFA sample of galaxies from
Utomo et al. (2017). The green contour shows 68% of points from Leroy et al. (2013); the
median of this sample is very similar to Utomo et al. (2017), and therefore, it is not shown
here. The orange rectangle shows τH2

∼ 0.7–2.7 Gyr estimated for the Milky Way using

Ṁ? ∼ 1 M� yr−1 and MH2
∼ 109 M� (before correction for helium; Heyer & Dame, 2015)

and adopting a factor of 2 uncertainty in τH2
(Figure 7 in Kennicutt & Evans, 2012).

6.1 Molecular KSR in simulations

Figure 6.1 shows the results of our fiducial simulation with the star formation threshold in

gas virial parameter, αvir < αvir,sf = 10, εff = 1%, and β = 1.5 in Equation (3.4). The left

two panels show the surface densities of total gas, Σg, and SFR, Σ̇?. The surface density of

molecular gas, ΣH2
, reflects the distribution of dense gas and, for reference, the gray contours

indicate the regions where the molecular gas fraction is larger than 30%. The right panel

shows the depletion time of molecular gas, τH2
= ΣH2

/Σ̇?, as a function of ΣH2
where both

Σ̇? and ΣH2
are averaged on 1 kpc scale using a 2D Gaussian filter with a width of 1 kpc.
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Figure 6.2: Dependence of the molecular KSR in simulations with αvir,sf = 10 threshold

on the slope of the local star formation relation: ρ̇? ∝ ρβ , where β is varied from 1.0
to 2.5 (see Equation 3.4). The adopted slopes are indicated by dashed lines, which show
the scaling of the local depletion time, ρ/ρ̇? ∝ ρ1−β . Three panels show simulations with
different εff values and feedback strengths per supernova, with the total feedback budget
per local freefall time increasing from left to right. In simulations without feedback (left
panel), the median τH2

(ΣH2
) on kiloparsec scales (thick lines) depends on the local slope.

As the feedback budget increases, the sensitivity to the local slope becomes weaker in our
fiducial simulation (middle panel) and completely disappears in simulations with 100 times
larger local εff (right panel). Remarkably, in the latter regime of very efficient feedback, τH2

becomes almost independent of ΣH2
as observed in real galaxies (gray contours and error

bars; see the legend in the right panel of Figure 6.1).
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The figure shows that τH2
in our fiducial simulation is almost independent of ΣH2

and

thus the molecular KSR is almost linear, Σ̇? ∝ ΣH2
, in agreement with the molecular KSR of

observed galaxies at similar ΣH2
. This nearly linear slope is not imposed by the choice of our

star formation prescription and its parameters. Instead, the near-linear slope emerges from

a significantly steeper local star formation relation, ρ̇? = εff ρ/tff ∝ ρ1.5. If the molecular

KSR reflected this small-scale slope, it would have the slope shown by the thin gray line in

the right panel, which is clearly much steeper than the slope we measure.

To stress this point, in the middle panel of Figure 6.2 we show that the Σ̇?–ΣH2
relation

remains close to linear even when the local SFR is assumed to have a steeper dependence on

gas density: ρ̇? ∝ ρ2 and ∝ ρ2.5. Such weak sensitivity of the Σ̇?–ΣH2
slope to its local value

provides a counter-example to the argument that the KSR on ∼kpc scales simply reflects

the local star formation relation (Schaye & Dalla Vecchia, 2008; Gnedin et al., 2014) and

demonstrates that the KSR slope can be nearly independent of the slope of the local relation.

The left and right panels of Figure 6.2 show that the emergence of the linear KSR slope

and its independence of the local star formation relation depend on the efficiency of star

formation and the corresponding efficacy of stellar feedback. Indeed, in simulations without

feedback (left panel), the molecular KSR slope on kiloparsec scale becomes quite sensitive

to the assumed local slope β. On the other hand, in simulations with εff = 100% where

feedback is very efficient (right panel), kiloparsec-scale molecular KSR becomes completely

insensitive to the local star formation relation, and its slope stays close to linear. We have

also checked that the relation remains linear when we increase feedback momentum input per

supernova instead of increasing εff (Appendix C.1) and when we continuously vary εff with

αvir instead of using a sharp threshold (Appendix C.2). We also find that the slope remains

linear as long as the molecular KSR is averaged on & 500 pc scales (see Appendix C.3).

Apart from feedback, the choice of star formation threshold also plays a crucial role in

shaping the kiloparsec-scale molecular KSR. For example, Figure 6.3 shows that when we
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Figure 6.3: Same as Figure 6.1 but for a star formation threshold in gas density: n > nsf =
100 cm−3. The dashed line in the right panel shows the median τH2

from Figure 6.1. For a
density threshold, the molecular KSR becomes significantly steeper than in the simulation
with an αvir-based threshold.

choose a threshold in density, n > nsf = 100 cm−3, instead of the αvir, the molecular KSR

significantly steepens to Σ̇? ∝ Σ1.5
H2

at ΣH2
> 10 M� pc−2 (galactocentric radii of R < 6 kpc)

and to even steeper slope at ΣH2
< 10 M� pc−2 (R > 6 kpc). A similar steep molecular KSR

was also found by Capelo et al. (2018), who also used the nsf = 100 cm−3 star formation

threshold. In addition, we find that the slope steepens for larger values of εff and larger

values of the nsf threshold (see Appendix C.1). In other words, the emergence of the linear

KSR and its insensitivity to local star formation parameters occur only when we use the

αvir-based threshold.

The qualitatively different behavior of the molecular KSR in simulations with αvir- and

nsf -based thresholds stems from different distributions of star-forming gas in simulations

with different thresholds, which is evident from the Σ̇? maps in Figures 6.1 and 6.3. In the

simulation with the constant nsf threshold, the SFR is more centrally concentrated, and a

significant fraction of molecular gas in the outskirts of the disk is not forming stars. This

results in longer depletion times at large radii and steeper Σ̇?–ΣH2
relation.

The results presented above demonstrate that the slope of the molecular KSR has a

nontrivial origin and is shaped by several factors. To understand the trends of the slope
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with the choice of star formation threshold, εff value, and feedback strength, we will first

examine our results from a different angle using the language of the PDF of gas properties

(next Section). We will then discuss how our simulation results can be understood in the

simple physical framework that we developed to explain the long gas depletion times of

galaxies (Section 6.3).

6.2 Connecting the kiloparsec-scale KSR with gas PDF and star

formation relation on small scales

Before we proceed to discuss the physical interpretation of the simulation results presented

above, we will examine how kiloparsec-scale KSR is connected to the local SFR and PDF of

gas properties. This connection not only clearly illustrates the interdependencies of different

quantities via explicit equations but also elucidates the conditions required for the linearity

of the molecular KSR. To this end, we will consider the depletion time of gas in star-

forming regions, τ? = Σsf/Σ̇?, and the mass fraction of molecular gas in these regions,

fsf,H2
= Σsf/ΣH2

, as it is the ratio of these quantities that defines the global depletion time

of molecular gas:

τH2
=

ΣH2

Σ̇?
=

ΣH2

Σsf

Σsf

Σ̇?
=

τ?
fsf,H2

. (6.1)

The results presented in this section do not explain the simulation results presented

above, but rather restate these results in a different useful way. Readers more interested in

the physical interpretation of the results can proceed to Section 6.3. A detailed derivation

of the equations used below is presented in the Appendix C.4.

102



6.2.1 Molecular Depletion Time and PDF of Gas Properties

To quantify the relation between molecular gas depletion time and gas PDF, we note that

both fsf,H2
and τ? in Equation (6.1) are the averages over the distribution of gas in the ISM

patches. In particular, fsf,H2
can be expressed in terms of the PDF of molecular gas, PH2

:

fsf,H2
=

∫∫ ∞
0

Θsf(ρ,q)PH2
(ρ,q|ΣH2

)dρdq, (6.2)

where the star formation threshold, Θsf(ρ,q), can depend on the density, ρ, and any other

local properties of the region, q, such as temperature, turbulent velocity, etc. For our choice

of thresholds, Θsf(ρ, σ) = θ(αvir,sf − αvir(ρ, σ)) and Θsf(ρ) = θ(ρ − ρsf), where θ is the

Heaviside step function: θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0.1 PH2
(ρ,q|ΣH2

) in the

above equation is the mass-weighted PDF of the molecular gas averaged between patches

with surface density ΣH2
; the PDF shape in general will depend on ΣH2

.

Similarly, τ? can be written as

1

τ?
=

∫ ∞
0

1

t?
Psf(ρ|ΣH2

)dρ ∝
∫ ∞

0
ρβ−1Psf(ρ|ΣH2

)dρ, (6.3)

where t? = ρ/ρ̇? ∝ ρ1−β is the local depletion time,2 and the mass-weighted density PDF of

star-forming gas is defined as

Psf(ρ|ΣH2
) =

∫
Θsf(ρ,q)PH2

(ρ,q|ΣH2
)dq∫∫∞

0 Θsf(ρ,q)PH2
(ρ,q|ΣH2

)dρdq
. (6.4)

First, note that the dependencies of fsf,H2
and τ? on ΣH2

in Equations (6.2) and (6.3) are

rather nontrivial. To obtain a linear KSR, these dependencies must be similar and cancel out

1. In general, Θsf can also parameterize smooth transitions to the star-forming state by continuously
changing between 0 and 1.

2. The averaging of inverse t? results from the averaging of local star formation rates ρ̇? = ρ/t?: τ−1
? =

Σ̇?/Σsf =
∫
t−1
? ρdV/

∫
ρdV = 〈t−1

? 〉sf , where the integrals are taken over star-forming regions in an ISM
patch.
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in Equation (6.1), which means that the gas PDF must scale with ΣH2
in a very particular

way. Second, the observed independence from the local slope β in simulations with efficient

feedback implies that the trends of fsf,H2
and τ? must remain similar when β is changed.

This effect is also nontrivial because τ? depends on β explicitly (Equation 6.3), while fsf,H2

depends on β only implicitly via the effect of β on the gas PDF. Finally, Equations (6.2–

6.4) show that fsf,H2
and τ? explicitly depend on the shape of the star formation threshold,

Θsf . This means that, given a specific gas PDF, the above cancellation can occur for some

thresholds but not for the others. In the next section, we will examine the trends of the gas

PDF, τ?, fsf,H2
, and τH2

observed in our simulations.

6.2.2 Trends of the Gas PDF, τ?, fsf,H2
, and τH2

in Simulations

The dependence of the gas PDF, τ?, fsf,H2
, and τH2

on ΣH2
, the local star formation slope

β, and the star formation threshold can be explored in simulations directly, as all of the

relevant quantities can be measured. In particular, we will consider these trends in two

simulations from our suite: the fiducial run in which the KSR is linear (Figure 6.1) and the

run with the same parameters but with the density-based star formation threshold in which

the molecular KSR is steep (Figure 6.3).

Figure 6.4 shows the distribution of gas in these simulations in the plane of gas density

and total velocity dispersion, σtot =
√
c2s + σ2

t , which includes both thermal and subgrid

turbulent velocities. The distributions are averaged in 1 kpc-wide annuli at different galacto-

centric radii, R, and three horizontal panels show three representative radii. Given that the

gas surface density exponentially decreases with increasing R, these distributions correspond

to widely different ΣH2
values.

As the top row in the figure shows, in our fiducial simulation, the gas PDF does change

with changing ΣH2
, which results in trends of τ? and fsf,H2

with ΣH2
. In particular, according

to Equation (6.3), the trend of τ? is due to the scaling of the star-forming part of the PDF. To
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Figure 6.4: Dependence of gas distribution on galactocentric radius (and therefore on the
average gas density) in the simulations with αvir,sf = 10 (top row) and nsf = 100 cm−3 star
formation threshold (bottom row). Each column of panels shows the distribution averaged
between 500 and 700 Myr in 1 kpc wide annuli at different galactocentric radii: R = 2–3 kpc
(left), 5–6 kpc (middle), and 8–9 kpc (right). Contours show 25%, 68%, 95%, and 99% of the
PDF. The color of the distribution indicates the average temperature, and the blue region
(cold gas) roughly indicates the distribution of molecular gas. The dashed line close to the
lower envelope of the distribution shows the median temperature as a function of density.
The thick dotted line shows the star formation threshold adopted in these simulations; star-
forming gas resides to the right of the threshold. Thin dotted lines indicate constant values
of the virial parameter: αvir = 100, 10, and 1 from left to right.
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Figure 6.5: Density PDFs of star-forming gas (Equation 6.4) in concentric 1 kpc wide
annuli in the simulation with the αvir,sf threshold. PDFs are averaged between 500 and
700 Myr and colored according to the average density of molecular gas in each annulus, ΣH2

.
The top panel shows that PDFs are not fixed but scale with ΣH2

, while the bottom panel
demonstrates that this scaling is weaker than self-similar. If the PDF scaled self-similarly, its
shape would be fixed as a function of ρ/ΣH2

. To make this ratio dimensionless, we multiply
it by our resolution ∆ = 40 pc. The PDF in the central region (R < 1 kpc, pale yellow) is
bimodal, with a prominent bump at n ∼ (2− 7)× 103 cm−3, which corresponds to a central
concentration of high-σt gas that does not form stars according to the αvir < 10 criterion.
When we use a density threshold (Figure 6.7), such a bump does not form because all gas
at such densities would rapidly form stars.

106



0.1 1 10 100
ΣH2 (M� pc−2)

1

0.2

0.3

0.4

0.6

0.8

f s
f,

H
2
;
τ

(G
y
r)

∝
Σ −0.2H

2
fsf,H2

τ?

τH2 = τ?/fsf,H2

Figure 6.6: Dependence of molecular gas depletion time, τH2
(solid line, left axis), star-

forming gas depletion time, τ? (thin line, left axis), and the star-forming mass fraction of
molecular gas, fsf,H2

(dotted line, right axis) on the average surface density of molecular
gas, ΣH2

, in radial annuli with widths of 1 kpc. The trends of τ? and fsf,H2
with ΣH2

cancel
each other out in the expression for the molecular gas depletion time, τ = τ?/fsf,H2

, which
results in a linear KSR for molecular gas.
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explore the τ? trend in more detail, in Figure 6.5 we plot these parts of the PDF (integrated

over σtot) in concentric 1 kpc-wide annuli out to R = 10 kpc.

If star-forming gas PDF were independent of ΣH2
, Psf(ρ|ΣH2

) = F (ρ), Equation (6.3)

implies that τ? would also be independent of ΣH2
. This case corresponds to the “counting

argument” often used as an explanation for the linearity of the molecular KSR (see Sec-

tion 1.3). However, the top panel of Figure 6.5 shows that the PDF is not fixed but shifts to

higher density with increasing ΣH2
. Therefore, τ? is not constant but decreases with ΣH2

.

On the other hand, if the PDF scaled self-similarly, Psf(ρ|ΣH2
) = F (ρ/ΣH2

)/ΣH2
where

F is a function of a fixed shape and peak location, then τ? would inherit the slope from

the local star formation relation: τ? ∝ Σ
1−β
H2

= Σ−0.5
H2

for β = 1.5, as is explicitly shown in

Appendix C.4 (see also Gnedin et al., 2014). However, the bottom panel of Figure 6.5 shows

that PDFs for different ρ/ΣH2
do not coincide, with their peak changing significantly with

ΣH2
. This strong deviation from self-similar scaling results in a scaling of τ? that is weaker

than the self-similar expectation of τ? ∝ Σ−0.5
H2

.

The actual scaling of τ? with ΣH2
produced in our fiducial simulation is shown with the

thin line in Figure 6.6. According to the figure, τ? scales as τ? ∝ Σ−0.2
H2

. If the star-forming

fraction fsf,H2
were independent of ΣH2

, this scaling would be enough to make the KSR

noticeably nonlinear: Σ̇? ∝ Σ1.2
H2

. However, as the dashed line in the figure shows, fsf,H2

scales with ΣH2
similarly to τ?. Given that τH2

= τ?/fsf,H2
(Equation 6.1), these scalings

cancel, resulting in τH2
almost independent of ΣH2

and a nearly linear molecular KSR (thick

line in the figure).

We find that in the simulations with an αvir-based threshold, such cancellation holds for

all values of the slope of the local star formation relation β as long as feedback is as strong as

in the fiducial simulation or stronger (see Section 6.1 and Appendix C.1). Such cancellation,

however, does not happen in the simulations without feedback, in which the slope of the

molecular KSR becomes sensitive to the local slope β, and in all of the simulations with the
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nsf = 100 cm−3 star formation threshold. The dependence of PDF on ΣH2
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do not cancel out, leading to a strong dependence of τH2

on ΣH2
and

a superlinear molecular KSR.
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density-based star formation threshold. In the latter case, the density threshold defines only

the high-density tail of distribution as star-forming gas (see the bottom row of Figure 6.4).

Therefore, the PDF of star-forming gas and τ? become almost independent of ΣH2
, as shown

in Figures 6.7 and 6.8. However, the star-forming fraction of molecular gas does increase

at higher ΣH2
, and therefore τH2

= τ?/fsf,H2
decreases with increasing ΣH2

, resulting in a

superlinear molecular KSR.

Results presented in this section clearly show that the linear slope of molecular KSR in

the simulations with an αvir-based star formation threshold and efficient feedback is rather

nontrivial and results from a cancellation of trends of physical properties controlling τH2
with

both β and ΣH2
. The cancellation occurs only when feedback is efficient, and it depends on

the choice of the star formation threshold.

The language of gas PDF is direct and clearly shows the relation between large-scale

observables and small-scale properties of gas and star formation. However, we cannot use it

to fully explain our simulation results because this requires knowledge of the exact functional

form of the gas PDF, its dependence on ΣH2
, and its response to feedback. Therefore, in

what follows, we will adopt an approximate approach that can qualitatively explain several

of our key results.

6.3 The physics of the molecular KSR slope

In this section, we show that several key results of our simulations can be understood using

the theoretical framework introduced in Chapter 2. The model is based on the conservation

of mass and considers dynamic gas cycling between star-forming and non-star-forming states.

In this model, the depletion time of total gas in an ISM patch is τ ∼ Nc(tnsf + tsf), where

tnsf and tsf are the average times in non-star-forming and star-forming stages in each cycle,

and the number of cycles, Nc ∼ τ?/tsf , is set by the condition that after many cycles, gas

must spend on average τ? ≡ Σsf/Σ̇? in the star-forming state. The fraction of the initial gas
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parcel mass that is converted into stars during each cycle is correspondingly ε ∼ tsf/τ?.

6.3.1 Molecular KSR and Gas Evolution Timescales

In the dynamical framework outlined above, the star-forming mass fraction of molecular gas

can be expressed as the relative time in star-forming and molecular stages on each cycle, tsf

and tH2
:

fsf,H2
≡ Σsf

ΣH2

∼ tsf
tH2

. (6.5)

Here, tH2
is the duration of the molecular stage during one evolution cycle—i.e., the time

between the moment when gas becomes molecular and the moment when it becomes atomic

again. The time tsf is the total time during one cycle that gas spends in the star-forming

state. Note that during tH2
a given gas parcel may remain non-star-forming (tsf = 0) or

become star-forming one or multiple times. In the latter case, tsf is the sum of all star-forming

stages that a gas parcel experienced.

Given these definitions, Equation (6.1) can be rewritten as

τH2
=

τ?
fsf,H2

∼ τ?
tsf

tH2
∼ tH2

ε
. (6.6)

Further derivation proceeds analogously to Chapter 2. To express tsf via the timescales

of the processes driving gas evolution, we note that the amount of star-forming gas in ISM

patches, Σsf , is regulated by the combined effect of gas consumption at the rate Σ̇? and

dispersal of star-forming gas by feedback and dynamical processes (e.g., passages of spiral

arms) at the rates of F−,fb and F−,d, respectively. Analogously to Chapter 2, we parameterize

these as

F−,fb = ξΣ̇? = ξ
Σsf

τ?
, F−,d =

Σsf

τ−,d
, (6.7)

where ξ is the “mass-loading factor” of star-forming gas dispersal by feedback, while τ−,d

is the characteristic timescale of the dynamical dispersal of star-forming regions. The total

111



rate of gas removal from star-forming regions is thus Σ̇?+F−,fb +F−,d and the characteristic

time that gas spends in the star-forming state can thus be expressed as

tsf ∼
Σsf

Σ̇? + F−,fb + F−,d
= τ?

(
1 + ξ +

τ?
τ−,d

)−1

. (6.8)

To relate these quantities to the depletion time of molecular gas, consider the character-

istic time that gas spends in molecular form, tH2
= tH2,nsf + tsf , where tH2,nsf is the time

that molecular gas spends outside of star-forming regions. Equations (6.6) and (6.8) then

give

τH2
= (1 + ξ) tH2,nsf +

(
1 +

tH2,nsf

τ−,d

)
τ?. (6.9)

This expression is analogous to Equation (5.5) above and has similar behavior. In partic-

ular, only the second term explicitly depends on the slope of the local star formation relation

β via the dependence of τ? on β (Equation 6.3). The first term can depend on β only im-

plicitly. As we will detail below, the regimes in which one of these two terms dominates

correspond to the regimes where molecular KSR is sensitive or insensitive to β (Figure 6.2),

and thus these regimes are directly analogous to those discussed in Section 5.2. As we will

also show, Equation (6.9) can help us understand why the molecular KSR is close to linear

when an αvir-based star formation threshold is used and why it steepens for a density-based

threshold.

6.3.2 Dependence of Molecular KSR on the Local Slope β

When feedback is strong (ξ is large) and star formation is locally efficient, i.e. τ? is short

(due to, e.g., large εff), the first term in Equation (6.9) dominates. Given that only τ? in

the second term explicitly depends on β (Equation 6.3), in this regime, τH2
can be expected

to only weakly depend on the local slope. Indeed, we showed that the sensitivity to β

disappears completely for the εff = 100% compared to a weak dependence in the εff = 1%
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runs (Figure 6.2). This insensitivity indicates that in the context of our framework, the first

term does not depend on β even indirectly. This can be understood as follows.

Equation (6.8) shows that in this regime (ξ � τ?/τ−,d), the characteristic time a gas par-

cel spends in a star-forming region in a single cycle is tsf ∼ τ?/(1 + ξ) ∼ τ?ε and corresponds

to the time it takes to form enough young stars to disperse a typical star-forming region.

For the higher SFR of larger β values, and correspondingly smaller τ?, the young star mass

fraction ε required for dispersal will be reached faster, and tsf will be shorter. Thus, both τ?

and tsf depend on β in a similar way, so that this dependence cancels in ε ∼ tsf/τ? rendering

the integral stellar mass fraction required for dispersal roughly constant. Given that the

lifetime of gas in the molecular state is not related to β, this cancellation is the main reason

why τH2
∝ tH2

τ?/tsf is independent of β. The bottom panel of Figure 6.9 demonstrates

that ε and tH2
are indeed independent of β in the simulation with εff = 100%, even though

τ? does depend on β, as shown in the top panel.

When feedback is weak (small ξ) or star formation is locally inefficient (τ? is long), the

second term in Equation (6.9) dominates. This term is proportional to τ?, which explicitly

depends on the local slope β. As shown in Figure 6.10, this dependence of τ? on β also

implies the dependence of the molecular KSR on β because tH2
(ΣH2

) does not depend on

β, while in this regime ε(ΣH2
) does. Their ratio τH2

∼ tH2
/ε, therefore, is no longer close to

constant, but depends on ΣH2
in a way sensitive to β, as observed in our simulations without

feedback (left panel of Figure 6.2). It is worth noting that although there is a value of β at

which the large-scale slope becomes close to linear in these simulations, this is coincidental

and holds only for β ≈ 1.5. Physically, tsf in this regime is controlled not by feedback but

by dynamical processes that disperse star-forming and molecular regions, such as turbulent

shear, differential rotation, expansion behind spiral arms, etc.

In the intermediate regime, in which the two terms in Equation (6.9) are comparable,

we can expect an intermediate weak sensitivity of the KSR to β, as is indeed observed in
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our simulations with fiducial feedback strength and εff = 1% (middle panel of Figure 6.2).

This behavior is explained by the contribution of two comparable terms to τH2
which can

be demonstrated explicitly.

According to Equation (6.9), the τH2
in these simulations differ from the simulations with

εff = 100% and fiducial feedback only by the second term, which is 100 times smaller in the

latter case. At the same time, τH2
in the simulations with εff = 1% and with or without

feedback differ only by the first term. Therefore, Equation (6.9) predicts that the τH2
in

our fiducial simulations equals the τH2
in simulations with εff = 1% and no feedback plus

the τH2
in simulations with εff = 100% and fiducial feedback. Figure 6.11 shows that this

is indeed the case. For β = 1.5 and 2, the measured τH2
and the sum agree extremely well,

while for β = 1 and 2.5, they are within a factor of 1.5. A small difference in the latter case

is due to the extra dependencies of tH2,nsf , τ−,d, and τ? on εff , β, and feedback strength. For

example, feedback disperses the high-density tail of the gas PDF, making τ? longer. This

effect becomes stronger for larger β because steeper local star formation relation ρ̇? ∝ ρβ

results in a more efficient dispersal of dense gas. The difference between the measured τH2

and the sum therefore increases with increasing β.

6.3.3 Dependence on the Choice of Star Formation Threshold

Simulation results in Section 6.1 show that a near-linear KSR emerges only in simulations

with efficient feedback and αvir-based star formation threshold. In simulations with the

same parameters but using a density-based threshold, the molecular KSR is significantly

steeper (see Figure 6.3). This is not surprising, because the star formation threshold affects

all terms in Equation (6.9), and thus the behavior of the molecular KSR can be different for

different threshold choices. Figure 6.12 shows that tH2
(ΣH2

) is independent of the choice of

threshold or feedback strength, but the ε(ΣH2
) trend does steepen for the density-based star

formation threshold and is thus responsible for the steepening of the molecular KSR in such

114



1

10

1

2

5

20

τ ?
(M

y
r)

εff = 100%; fid. FB

local slope

1.0

1.5

2.0

2.5

0.1 1 10 100
ΣH2 (M� pc−2)

2

3

5

ε
×

20
0;
t H

2
(M

y
r)

∝
Σ

0.
3

H
2

ε = tsf/τ?
tH2

Figure 6.9: Trends of τ? (top panel), ε = tsf/τ? and tH2
(bottom panel) in our simulations

with εff = 100% and different slopes of the local star formation relation ρ̇? ∝ ρβ , β = 1,
1.5, 2, and 2.5 (see Equation 3.4). We measure ε, tsf , and tH2

for each molecular stage using
gas-tracer particles as explained in Section 3.4 and show their values averaged in concentric
annuli. The stages are accumulated between 450 and 800 Myr of disk evolution. The figure
illustrates two types of cancellation that result in a near-linear KSR. First, the variation of
the τ? trend with β cancels out by tsf in ε = tsf/τ?. Second, the trends of ε and tH2

with
ΣH2

nearly cancel in τH2
∼ tH2

/ε, resulting in a nearly linear molecular KSR.

115



0.1

1

10

ε ff
τ ?

(M
y
r)

εff = 1%; no FB

local slope

1.0

1.5

2.0

2.5

1 10 100
ΣH2 (M� pc−2)

10

2

5

20

ε
×

2
00

;
t H

2
(M

y
r)

ε = tsf/τ?
tH2

Figure 6.10: Same as Figure 6.9 but for simulations with εff = 1% and no feedback. While
the trends of tH2

(ΣH2
) remain almost the same as in Figure 6.9, there is no longer feedback-

imposed cancellation of the trends in ε = tsf/τ?, and ε(ΣH2
) becomes strongly dependent

on β, which leads to the dependence of τH2
and the KSR slope on β in simulations without

feedback (left panel of Figure 6.2). To produce this plot, we accumulated molecular and
star-forming stages of gas-tracers evolution over a shorter period of time (between 450 and
600 Myr) because for large β and no feedback, the total gas mass changes more rapidly due
to the short global depletion times. The local depletion times in the top panel are normalized
by εff to simplify the comparison with the trends in Figure 6.9. The thin gray line in the
bottom panel repeats that from Figure 6.9.
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Figure 6.11: Comparison of our simulation results with the predictions of the analytical
model. The thick lines show the τH2

in the simulations with εff = 1%, fiducial feedback

strength, and different slopes of the local star formation relation ρ̇? ∝ ρβ , differentiated by
color. These lines are equivalent to those shown in the middle panel of Figure 6.2 but shifted
up and down by an arbitrary factor to avoid clutter. Our model predicts that the τH2

in
these simulations must be close to the sum of the τH2

in our simulations without feedback
(left panel of Figure 6.2) and the τH2

in our simulations with εff = 100% (right panel of
Figure 6.2). These sums are shown with thin lines for corresponding values of β and they
do indeed agree with the τH2

in our fiducial simulations.

simulation. This behavior can be understood using the gas distributions in simulations with

different thresholds shown in Figure 6.4.

In all simulations, dense, supersonic gas reaches approximate equilibrium between tur-

bulence production on the local dynamical time, tdyn ∝ 1/
√
Gρ, and turbulence decay on

the local eddy-turnover time, tdec ∼ ∆/σt, so that tdyn ∼ tdec and σt ∝ ρ0.5, and the gas

PDF aligns along the lines of αvir ∝ σ2
t /ρ ∼ const, parallel to the αvir,sf = 10 threshold.

This alignment persists at all ΣH2
.

In simulations with the αvir-based threshold, gas can become star-forming relatively

quickly after becoming molecular because low-σt gas can be star-forming even at rather
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Figure 6.12: Effect of εff , feedback strength, and star formation threshold on the ε(ΣH2
)

and tH2
(ΣH2

) trends. The fiducial case shown by the orange lines corresponds to εff = 1%,
fiducial feedback, and αvir,sf = 10 threshold. Other colors show simulations in which these
parameters are changed as indicated in the legend. To illustrate the variation of trends with
parameters, we compare simulations with the local slope β = 2 instead of the fiducial β = 1.5
because in these simulations trends vary more strongly due to a stronger dependence of τ?
on ΣH2

(see Figures 6.9 and 6.10). The trend of ε varies much stronger than that of tH2
,

and therefore, it is the trend of ε that defines the dependence of τH2
∼ tH2

/ε on ΣH2
and

the slope of the molecular KSR.
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small densities, while σt can become small simply by turbulence decay when it cannot be

offset with compression or feedback. In contrast, in simulations with the density-based

threshold, transition to the star-forming state is hindered because molecular gas must be

compressed to relatively high densities to exceed the threshold.

This difference can be illustrated using the distributions of Σ̇? and molecular gas in

the middle panels of Figures 6.1 and 6.3. In the simulation with the αvir,sf = 10 threshold

(Figure 6.1), almost every molecular region (gray contours) contains a star-forming subregion

with young stars, and thus molecular gas is always either star-forming or is spatially close

to a star-forming region. In contrast, in the simulation with the density-based threshold

(Figure 6.3), a substantial number of molecular regions, especially in the disk outskirts, are

not star-forming. As Figure 6.13 shows, they would be star-forming if we used the αvir < 10

threshold instead of n > 100 cm−3.

The incidence of star-forming regions is thus a steeper function of ΣH2
in the simulation

with the density-based threshold and so is ε(ΣH2
) (Figure 6.12), which explains the steeper

molecular KSR. For a density-based threshold, the average ε decreases at lower ΣH2
because

of the larger fraction of gas tracers that go through the molecular stage without reaching

the star-forming state and thus have ε = 0.

Although we have considered specific choices of thresholds here, our conclusions and their

implications are more general. The basic scaling of τH2
with timescales in Equation (6.6)

holds for any choice of star formation threshold, while as we can see, tH2
(ΣH2

) is insensitive

to the details of feedback and star formation prescriptions. Thus, any prescription that

shapes ε(ΣH2
) to be similar to tH2

(ΣH2
) will lead to a near-linear molecular KSR and vice

versa. Possible reasons why the ε(ΣH2
) and tH2

(ΣH2
) trends are similar will be discussed in

the next section.

119
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nsf = 100 cm−3

Figure 6.13: Distribution of molecular (gray contours) and star-forming gas (filled blue
contours) in the simulation with the nsf = 100 cm−3 star formation threshold. The filled
orange contours show regions with αvir < 10. Non-star-forming molecular regions on the
disk outskirts in this simulation would be star-forming if the star formation threshold were
in the virial parameter, αvir < αvir,sf = 10. This is because it is much easier for gas to
lose turbulence support and reach an αvir threshold than to be compressed to a threshold
density.
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6.3.4 The Origin of the Linear Molecular KSR

The results presented so far indicate that ε and tH2
both depend on ΣH2

and therefore, to

produce a linear molecular KSR, these trends must cancel out in τH2
∼ tH2

/ε. According to

Equation (6.6), τ?/fsf,H2
∼ tH2

/ε and thus this cancellation is simply another manifestation

of the cancellation of the τ?(ΣH2
) and fsf,H2

(ΣH2
) trends discussed in Section 6.2.

We can readily understand why the dependencies of ε and tH2
on ΣH2

should be of the

same sign when feedback is efficient in dispersing star-forming regions. Indeed, ε is expected

to increase with increasing ΣH2
, because at higher ΣH2

, the gravity of the disk and pressure

of the ISM are larger, making it harder for feedback to disperse star-forming regions and

thus requiring a larger ε for dispersal. At the same time, the time that the gas spends in

the molecular state during one cycle, tH2
, can also increase because a larger fraction of gas

is molecular at larger ΣH2
.

The quantitative explanation of why these trends are similar is less obvious, but can

be understood as follows. Our analysis shows that in simulations with efficient feedback,

gas tracers experience local chaotic fluctuations of their density and velocity dispersion, and

they move randomly in the n–σtot plane. In simulations with an αvir-based star formation

threshold, most molecular gas is close to the threshold due to its alignment along the αvir =

const direction (see Section 6.3.3), and therefore, it randomly transits into the star-forming

state and back. If the probability of transition is close to uniform, the number of transitions

during a molecular stage, Nsf , will simply be proportional to the duration of this stage,

Nsf ∝ tH2
. Although the duration of each star-forming stage is regulated by feedback as

we discussed above, the total time the parcel spends in the star-forming state, tsf , will

also be proportional to Nsf and the gas parcel thus converts the fraction ε ∼ tsf/τ? ∝ tH2

into stars during one molecular phase. This leads to a constant molecular depletion time,

τH2
∼ tH2

/ε ≈ const, and a linear molecular KSR.

The above mechanism will also operate in a more general case of varying εff as long as εff
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is a strong function of αvir. Such a strong dependence of εff on αvir is a generic prediction

of theoretical models of star formation in a turbulent medium (see Padoan et al., 2014, for a

review). In Appendix C.2 we show that the molecular KSR indeed remains linear when we

vary εff as an exponential function of αvir instead of assuming a sharp threshold.

When feedback is inefficient, the evolution of molecular gas is not as chaotic, and the

ε(ΣH2
) trend becomes sensitive to feedback strength and εff value, as can be seen in Fig-

ure 6.12. Given that the tH2
(ΣH2

) trend is nearly independent of feedback strength and εff ,

the depletion time τH2
is no longer constant in such regimes.

Likewise, when a density threshold with a high value is used to define star-forming regions

instead of αvir, most of the molecular gas is far from the threshold and the transition to a

star-forming state in this case is not due to random motions of gas parcels in the n–σtot

plane, but is mainly due to secular evolution and gas compression to high densities. In this

case, tsf is no longer proportional to tH2
and τH2

6= const. For lower values of a density

threshold, a larger fraction of gas is near the threshold and transitions to a star-forming

state again become dominated by random fluctuations, which makes the slope shallower and

closer to linear (see Figure C.2 in the Appendix C.1). The slope in this case depends on the

threshold value as the dynamical equilibrium between compression and turbulent pressure

align gas along the αvir = const direction, not along n = const.

The presented explanation for why ε and tH2
exhibit similar trends with ΣH2

, and thus

why τH2
≈ const when feedback is strong, is admittedly qualitative. This question calls for

further exploration both in high-resolution simulations of the ISM patches and observation-

ally in studies of molecular and star-forming regions, as we discuss below in Section 6.4.2.
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6.4 Discussion

6.4.1 Comparison to Previous Models

A commonly used explanation for the nearly linear molecular KSR is the so-called “counting

argument” (e.g., Wu et al., 2005), in which one assumes that molecular regions have similar

properties (e.g., density and thus depletion time τ?) and have a fixed fraction of gas that

is undergoing star formation (i.e., fsf,H2
). Then, τH2

= τ?/fsf,H2
(Equation 6.1) becomes

independent of ΣH2
because both τ? and fsf,H2

are the same and independent of ΣH2
.

However, as we showed in Section 6.2.2, our simulations indicate that both τ? and fsf,H2

in molecular regions can vary with ΣH2
and still produce a nearly linear molecular KSR.

Furthermore, properties of molecular clouds do change with galactocentric radius and thus

with surface density in observed galaxies (e.g., Heyer & Dame, 2015; Miville-Deschênes et al.,

2017). The origin of the linear slope of the molecular KSR is therefore more nuanced.

Madore (2010) and later Elmegreen (2015, 2018) considered the origin of the KSR from

the timescales of gas evolution in different states. Their approach is similar to the basis of

our model, which allows a direct comparison. In particular, Madore (2010) expressed the

depletion time of total gas as τ ≡ Σg/Σ̇? ∼ (τc + τs)/ε, where the duration of one gas cycle

consists of the “collapse time” τc, on which average ISM gas evolves to the star-forming

state, and “stagnation time” τs, on which star-forming gas is dispersed by feedback. The

fraction of gas converted into stars in one cycle, ε, is assumed to be fixed. Then, assuming

also that τc ∝ Σ−0.5
g and τs is constant, τs will dominate at sufficiently high Σg and the KSR

will become linear because the depletion time will become independent of Σg: τ ∼ τs/ε.

Elmegreen (2015, 2018) used principles similar to the Madore (2010) model but assuming

that the total depletion time is proportional to the freefall time at the midplane density, tff ,

with constant efficiency, εff , so that the depletion time of molecular gas3 is τH2
= fH2

tff/εff .

3. In Elmegreen (2015), the molecular state is denoted by the subscripts “CO,” indicating that in obser-
vations, this state corresponds to the gas visible in CO. For consistency with our notation, we have changed
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Next, similarly to our Equation (6.5), the molecular fraction is expressed as the ratio of

timescales in the corresponding states: fH2
∼ tff,H2

/(tff + tff,H2
), where tff,H2

is the freefall

time at the density of the molecular transition. The timescale tff,H2
is independent of ΣH2

by construction because it is assumed to be set by the density of the atomic-to-molecular

transition, which, in turn, is set by the local ISM properties rather than the large-scale surface

density. For average ISM densities significantly lower than the molecular transition density,

tff � tff,H2
and therefore τH2

∼ tff,H2
/εff becomes independent of ΣH2

and the molecular

KSR becomes linear. To compare with our model below, we note that in the Elmegreen

(2015, 2018) model the duration of star formation cycle is assumed to be tff + tff,H2
and thus

the integral star formation efficiency per cycle is ε = εff(tff + tff,H2
)/tff ∼ εff .

Although the models of Madore (2010) and Elmegreen (2015, 2018) are rather insightful,

their prediction of the linear slope for the molecular KSR follows from two strong assump-

tions that the characteristic time of molecular gas evolution (τs in Madore 2010 or tff,H2
in

Elmegreen 2015, 2018) and the integral efficiency of star formation ε are all independent of

the kiloparsec-scale gas surface density. Neither of these assumptions holds in our simula-

tions. As was shown in Figure 6.9, ε increases with ΣH2
because at higher ΣH2

, feedback

must overcome stronger forces to disperse a region and thus a larger fraction of molecular

gas must be converted into stars. At the same time, the lifetime of molecular gas also in-

creases. Nevertheless, in our simulations with the αvir,sf threshold and efficient feedback, the

molecular KSR slope is still linear. As we showed, the slope is linear not because ε and the

lifetime of molecular gas are independent of ΣH2
, but because they scale with ΣH2

similarly,

and their trends nearly cancel.

Finally, Gnedin et al. (2014) argued that the linear molecular KSR on a & 1 kpc scale is

indicative of a linear relation on small scales (i.e., β = 1 in our notation). As emphasized in

that paper, this argument follows from the assumption that the gas PDF is self-similar and

subscripts “CO” to “H2.”
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that star-forming gas can be defined using a threshold that is a simple function of gas density.

In this case, the slope of the global relation is directly inherited from the small-scale relation

in the regime when fsf,H2
→ 1 (see “special case 1” in Appendix C.4). As we explicitly

showed in Section 6.2.2, the gas PDF in simulations with efficient feedback is not self-

similar. This lack of self-similarity decouples the slope of the large-scale molecular KSR from

the slope of the small-scale star formation recipe. Moreover, we showed that the definition

of star-forming gas plays an important role in the resulting scaling, because the choice of

the star-formation threshold explicitly enters the relevant equations (see Equations 6.1–6.4).

Finally, our results clearly show that the variation of fsf,H2
with ΣH2

is important, as it

compensates the scaling of τ? resulting from the particular scaling of the gas PDF with ΣH2
.

6.4.2 Implications for the Interpretations of the Observed Molecular KSR

The framework presented in Section 6.3 is rather general and can help us elucidate the

physical processes shaping the slope of the star formation relations observed in different

galactic environments, on different spatial scales, and for different gas tracers.

According to our model, a linear KSR for molecular gas is expected as long as the lifetime

of gas in the molecular state, tH2
, and the fraction of gas mass converted into stars over this

lifetime, ε, exhibit similar trends with ΣH2
so that these trends cancel in τH2

∼ tH2
/ε. The

mechanism that makes the tH2
and ε trends similar must be rather generic, because the KSR

for molecular gas is observed to be linear in diverse environments: from the average ISM

of normal star-forming galaxies across the Hubble sequence (Utomo et al., 2017; Colombo

et al., 2018) to low-metallicity dwarf galaxies (Bolatto et al., 2011; Jameson et al., 2016) and

low-density galactic disk outskirts (Schruba et al., 2011).

An example of such a generic mechanism would be the efficient regulation of molecular

stages by feedback. As we discussed above, feedback in our simulations makes evolution

of molecular gas chaotic and the mass fraction of young stars formed by a given gas parcel

125



during one molecular cycle becomes proportional to the duration of the cycle, ε ∝ tH2
, which

renders the molecular depletion time constant, τH2
∼ tH2

/ε.

The molecular KSR steepens in high-density environments typical in starburst galaxies

(e.g., Genzel et al., 2010, 2015; Leroy et al., 2013). In the context of our model, the steepening

corresponds to the regime in which feedback is less efficient in dispersing star-forming regions

and dense molecular gas, the second term in Equation (6.9) becomes comparable to the first,

and ε is no longer proportional to tH2
, which makes molecular KSR nonlinear. In addition,

tH2
becomes shorter, due to either stronger gravity at higher gas surface densities or shorter

turbulent crossing time at higher gas velocity dispersions.

Our model can also be used to interpret the KSR observed on scales much smaller than

a kiloparsec and for gas states much denser than normal molecular gas. To this end, Equa-

tion (6.6) should be rewritten as

τS ∼
τ?
tsf
tS ∼

tS
ε
, (6.10)

where τS is the depletion time of gas in a given state S, tS is the average time that a gas

parcel spends in this state in a single cycle, and ε ∼ tsf/τ? is the fraction of gas converted

into stars in one cycle through the state S. To apply this equation on different scales, its

terms must be defined appropriately for the chosen scale.

For example, this equation can explain why the KSR becomes superlinear on the scales

of individual star-forming regions, . 50 pc (e.g., Evans et al., 2009, 2014; Heiderman et al.,

2010; Gutermuth et al., 2011). Surveys of star-forming giant molecular clouds (GMCs) select

only molecular gas from the star-forming stage, and therefore, the tS in Equation (6.10) for

such objects equals tsf . According to Equation (6.10), in this case depletion time is simply

τGMC ∼ τ? and there is no longer feedback-imposed cancellation of the dependency in the

τ?/tsf ratio on the large-scale ISM properties. In this picture, the slope of the small-scale

KSR for star-forming regions is thus expected to reflect any dependence that τ? has on the

properties of these regions. Note also that mass fluxes of gas on the scales of GMCs are
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likely out of equilibrium, which will lead to a large variation of τH2
(see Sections 2.3 and 4.5)

and thus a large scatter of the KSR, as is indeed observed on small scales (e.g., Lee et al.,

2016; Vutisalchavakul et al., 2016; Leroy et al., 2017). Other sources of scatter include the

intrinsic variation of gas properties in star-forming regions, incomplete sampling of different

stages of gas evolution, and decoupled evolution of gas and star formation tracers (Feldmann

et al., 2011; Kruijssen & Longmore, 2014).

Equation (6.10) can also be applied to interpret the linear relation between the amount

of dense molecular gas traced by HCN and the total SFR observed on a wide range of scales

(Gao & Solomon, 2004b,a; Wu et al., 2005). If we consider Equation (6.10) on a . 1 pc

scale, typical for HCN gas, the star formation efficiency, ε, will correspond to a fraction of a

dense core mass that is eventually incorporated in a star (e.g., ε & 50% in Federrath et al.,

2014). The lifetime of such cores, tHCN, will be controlled by their local freefall time, on

which the star is formed, and the rate at which the remaining dense gas is dispersed by

feedback. With these definitions of ε and tHCN, the interpretation of the linear relation for

HCN gas is similar to that for all molecular gas except that the separation between the scale

on which HCN gas resides (. 1 pc) and the scale on which the relation is measured (up to

the scale of entire galaxies) is much larger. Because of such large scale separation, both ε and

tHCN are expected to be independent of the large scale and thus τHCN ∼ tHCN/ε will also be

independent of the total HCN gas mass inside this scale, rendering the relation linear. Note,

however, that the linear relation for dense molecular gas can also be in part an observational

effect, due to the selection of gas from a narrow density range in the PDF tail (Krumholz

& Thompson, 2007) or from the densest parts of isothermal spherical clouds (Parmentier,

2017).
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6.4.3 Effect of Threshold on the Efficiency of Feedback in Galaxy

Simulations

Our results show that the choice of star formation threshold in galaxy simulations has a

significant impact on the resulting slope of the KSR. Contrary to previous arguments in

the literature, we show that in our simulations the slope of the molecular KSR does not

merely reflect the density dependence of the star formation recipe adopted at the resolution

scale, but depends on the density PDF of the ISM gas, which is strongly affected by feedback.

Physically, the threshold determines both the locations where current star formation proceeds

and the timescale and efficacy with which feedback can render star-forming gas non-star-

forming. The strong effect that the choice of threshold has on the results implies that this

choice must be made with great care, as was indeed demonstrated in related contexts by

Governato et al. (2010) and Hopkins et al. (2013a).

As was shown in Sections 6.3.2–6.3.4, the role of feedback in making the KSR linear

is twofold. First, feedback must efficiently disperse star-forming gas, which results in self-

regulation to constant star formation efficiency per cycle, ε, independent of the rate at which

gas is converted into stars in the star-forming state. Second, feedback must be efficient in

converting molecular gas into the atomic state and establishing a correlation between tH2

and ε which leads to a near cancellation of their trends with ΣH2
in τH2

∼ tH2
/ε and thus

to a near-linear KSR.

Our results indicate that the efficacy of stellar feedback in both of these aspects is much

higher when the star formation threshold is based on αvir, compared to the threshold based

on constant gas density. Indeed, it is generally faster to render gas non-star-forming by

driving subgrid turbulence and thereby increasing αvir than to actually disperse a star-

forming region and decrease its density. Similarly, the lifetime of gas in the molecular phase

is also controlled by feedback to a much larger degree, because gas becomes star-forming

shortly after it becomes molecular and therefore has less time to become denser and is more
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difficult to be dispersed.

The above arguments and our simulation results thus favor a star formation threshold

in virial parameter (see also Hopkins et al., 2013a) rather than the more popular threshold

in gas density. Not only is such a threshold well motivated by models of star formation in

turbulent ISM, it also naturally leads to a linear KSR for molecular gas when feedback is

efficient. The use of this threshold in practice is somewhat complicated by the necessity to

estimate turbulent velocity dispersion at the resolution scale and generally requires modeling

of turbulent velocities on subgrid scales. On the other hand, our results indicate that simu-

lations that use density-based or the fH2
star formation threshold should be interpreted with

caution, especially on the sub-galactic scale, where the gas distribution is strongly affected

by the choice of threshold.

The optimal choice of the threshold and other parameters of star formation and feedback

models will of course depend on the scale on which these models are applied. In particular,

the mechanism of the linear KSR origin on kiloparsec scales requires high resolution so that

the transitions of gas between atomic, molecular, and star-forming states on sub-kiloparsec

scales are sufficiently resolved. The resolution of state-of-the-art large-volume cosmological

simulations, . 1 kpc, is not yet sufficient to capture these transitions, and thus, the slope of

the KSR on kiloparsec scales reflects that adopted in the star formation prescription.

6.5 Summary

Using a suite of isolated L? galaxy simulations, we explored the origin of the slope of the

relation between surface densities of molecular gas and SFR averaged on kiloparsec scales.

We showed that when feedback is efficient and the star formation threshold is based on the

virial parameter, this relation has a near-linear slope, regardless of the slope adopted in the

resolution-scale relation between star formation rate and gas density. Thus, in this regime,

the slope of the KSR on kiloparsec scales does not reflect the slope on small scales, contrary
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to a number of previous arguments in the literature.

We showed that the linear slope of the molecular KSR and its insensitivity to the local

slope result from the particular scaling of the gas PDF with the gas surface density. When

feedback is efficient in shaping the PDF, the PDF scaling leads to a cancellation of trends

exhibited by the average depletion times in star-forming gas and by star-forming mass frac-

tions. When feedback is not efficient, the gas PDF is shaped by dynamical processes, such

as ISM turbulence and passage of spiral arms, and the KSR becomes dependent on the local

slope and thus is not necessarily linear.

We explained these results using an analytical model based on the conservation of inter-

stellar gas mass as the gas cycles between atomic, molecular, and star-forming states (see

Section 6.3)—the model we previously used to explain the physical origin of the gas depletion

time and its dependence on star formation efficiency and feedback strength (Chapters 4–5).

Our main findings can be summarized as follows:

1. In Section 6.3.2, we show that when feedback is efficient in dispersing star-forming gas,

the typical duration of star-forming stages, tsf , is proportional to the local depletion

time of star-forming gas, τ?, so that the molecular depletion time, τH2
∝ tH2

τ?/tsf ,

becomes independent of τ?. This explains why the molecular KSR is insensitive to

the local slope adopted in the subgrid prescription for star formation, because only τ?

depends explicitly on the local slope (see Equation 6.3), while the time the gas spends

in molecular form during each cycle, tH2
, does not.

2. When feedback is inefficient, tsf is controlled by dynamical processes that disperse star-

forming gas: turbulent shear, differential rotation of galactic disk, expansion behind

spiral arms, etc. Star formation, and thus τ?, reflects the gas PDF shaped by these

dynamical processes, but does not affect this PDF via feedback. Thus, the trend of

tsf is no longer proportional to τ?, and the molecular KSR becomes dependent on the

local slope of the star formation prescription β.
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3. Simulations in the regime intermediate between the regimes of efficient and inefficient

feedback exhibit intermediate behavior. Thus, in our fiducial simulation with εff = 1%,

the effects of feedback and dynamical processes are both important, and therefore, the

molecular KSR is close to linear, but its slope weakly depends on the local slope (see

Figure 6.2 and Section 6.3.2).

4. We show that a near-linear molecular KSR emerges only in simulations that use a

star formation threshold in the virial parameter. The molecular KSR generally has a

nonlinear slope in simulations with the same efficiency and feedback strength, but that

use a density-based threshold, with the slope steepening with the increasing threshold

value. We argue that this is because in the latter simulations, the time between the

moment gas becomes molecular and the moment it becomes star-forming is much

longer. As a result, at lower ΣH2
, a smaller fraction of molecular gas is able to reach

the star-forming state, and the molecular KSR therefore becomes steep.

The theoretical framework we use to interpret our simulation results is rather general and

can be used to interpret observations as well. For example, it can shed light on the origin of

star formation relations observed for different gas tracers, on different spatial scales, and in

different galactic environments, as we discuss in Section 6.4.2.

The framework is also useful for interpreting and designing galaxy formation simulations.

In particular, our results indicate that attention should be paid not only to the modeling of

feedback but also to the modeling of star formation and, in particular, the choice of criteria

used to identify star-forming gas. Our simulation results favor a criterion based on the local

virial parameter instead of the commonly used density-based criterion (Section 6.4.3).
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CONCLUSION

We presented an intuitive physical model that explains the origin of gas depletion times in

galaxies. Our framework is based on the equation of gas mass conservation and the idea of

gas cycling between diffuse ISM and the dense star-forming state on characteristic timescales

set by dynamical and feedback processes that drive gas evolution.

The short, ∼ 10–100 Myr, timescales of the physical processes driving the evolution of

gas indicate that the ISM is vigorously “boiling” when considered on the Gyrs-long global

depletion timescale. The global depletion time is long, because on each evolution cycle every

gas parcel spends only a small fraction of time in the star-forming state and converts only

a small fraction of mass into stars, thus requiring a large number of evolution cycles for gas

depletion. This explains why global depletion times are much longer than the dynamical

timescales in the ISM, that determine the duration of a single evolution cycle. Global

depletion times are also longer than local depletion times in actively star-forming regions

because gas spends significant fraction of each cycle in the non-star-forming state.

We illustrated our framework using the results of isolated L? galaxy simulations. Our

framework can explain the dependence of the global depletion time on the parameters of star

formation and feedback assumed on the resolution scale in our simulations. In particular,

we showed that gas depletion time scales inversely with the local star formation efficiency

when this efficiency is assumed to be small, and becomes independent of efficiency when the

efficiency is large.

The latter regime is usually described as “self-regulation” by feedback in the literature

(e.g., Dobbs et al., 2011a; Hopkins et al., 2013a, 2017a), and our model explains the phys-

ical mechanism of this behavior. Global depletion time becomes independent of the local

depletion time and efficiency in star-forming regions when stellar feedback limits the dura-

tion of star-forming stages and makes them negligible compared to the entire duration of

the evolution cycle. As efficiency increases, local depletion time decreases, but so does the
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duration of star-forming stages because the amount of young stars sufficient to destroy each

star-forming region forms sooner. These two trends cancel out making the total number of

evolution cycles required for gas depletion and global depletion time independent of local

star formation efficiency.

The insensitivity of global depletion time to local star formation efficiency implies that

its value cannot be used to constrain the efficiency in the self-regulated regime. However, as

we showed, the mass fraction of star-forming gas in such a regime scales inversely with the

local star formation efficiency and therefore it can be used to constrain the efficiency in this

regime.

Our model also sheds light on the origin of the linear correlation between SFR and

molecular gas surface densities observed on kiloparsec and larger scales in normal star-

forming (non-starburst) galaxies. We showed that the slope of this relation has a similar

behavior as the KSR normalization (i.e. global depletion time): when feedback is efficient,

the molecular KSR slope becomes independent of the density dependence slope adopted

locally. This behaviour is a counter-example to the argument that the KSR on large scales

reflects the slope adopted in the star formation prescription (Schaye & Dalla Vecchia, 2008;

Gnedin et al., 2014), and as we show, its physical origin is analogous to that of the self-

regulation of the KSR normalization.

The presented model for the gas depletion timescale is a generic framework that can be

applied not only to galaxies as a whole but also to individual ISM patches with sizes ranging

from ∼ kiloparsec to a typical size of star-forming regions, ∼ 10 parsec. It can also be used

to predict and interpret trends of gas depletion time with the ISM properties, gas and stellar

surface densities, metallicity, galaxy morphology, and redshift.

As a final comment, we note that in the context of galaxy evolution over cosmological

timescales, the actual gas depletion time is often considered to be unimportant. For example,

galaxies from the star-forming sequence are predicted to form stars at the rates regulated by
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gas accretion and gas loss in winds, because gas depletion times in such galaxies are short

compared to other relevant timescales (e.g., Bouché et al., 2010; Davé et al., 2012; Lilly

et al., 2013). Note, however, that dwarf galaxies and galaxies from the green valley consume

gas on extremely long timescales of & 5–10 Gyr, and, therefore, their depletion times do

affect their evolution. Moreover, at z & 5–6, when the age of the universe is . 1 Gyr, the

Gyr-long gas depletion times become comparable to the cosmological evolution timescale

and will therefore play an important role in controlling the SFR during the early stages of

galaxies evolution (e.g., Dekel & Mandelker, 2014; Peng & Maiolino, 2014). The framework

for modeling gas depletion time presented in this dissertation thus opens a way to refine

theoretical models of galaxy formation in this regime, which is particularly important in the

upcoming era of the James Webb Space Telescope.
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APPENDIX A

SUBGRID TURBULENCE AND NONUNIVERSAL STAR

FORMATION EFFICIENCY

In this chapter, we present the results of a galaxy simulation with explicitly modeled un-

resolved turbulence (Section 3.2) and star formation efficiency (SFE) per freefall time, εff ,

that is not assumed constant but varied in each cell depending on the predicted level of un-

resolved turbulence. We use these results both to illustrate the unresolved turbulence model

and to explain the motivation behind our fiducial choice of the star formation threshold in

gas virial parameter adopted in the rest of the dissertation.

We use the same initial conditions of an isolated L? galaxy as in all other simulations

presented in this dissertation (see Section 3.1). The main differences of the simulation

presented in this chapter are the adopted model for continuously varied εff and the assumed

parameters of stellar feedback. These differences are detailed in Section A.1.

In Sections A.2 and A.3, we discuss the distribution of gas properties controlling local

star formation efficiencies in our simulation: gas density, temperature, and subgrid turbulent

velocity. In Section A.4, we show that the adopted star formation model predicts a wide

variation of SFE with star formation happening only in cold dense gas without requiring

any ad hoc density or temperature thresholds. In Sections A.5, we compare our results with

observations of star formation on GMC scale in the Milky Way and nearby galaxies. In

Section A.6, we discuss our findings and compare them with the results of previous studies.

This chapter is based on the work published in Semenov et al. (2016).
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A.1 Turbulence-based star formation efficiency and stellar

feedback

Observational evidence of turbulence in molecular clouds motivated development of analytic

models that relate star formation to the properties of self-gravitating MHD turbulence in

GMCs (Krumholz & McKee, 2005; Padoan & Nordlund, 2011; Federrath & Klessen, 2012;

Hennebelle & Chabrier, 2013). Generally, these models predict variation of star formation

efficiency with virial parameter αvir and both sonic and Alfvénic Mach numbers. However,

such models usually rely on strong assumptions about turbulence in GMCs, such as the gas

density PDF being static, and the critical density for collapse, that is assumed to be inde-

pendent of local flow configuration. Recent direct MHD simulations of turbulent molecular

clouds do confirm the strong variation of star formation efficiency with αvir but reveal a

surprising insensitivity to other cloud properties (Padoan et al., 2012, 2017). Specifically,

Padoan et al. (2012) find that the star formation efficiency per free-fall time of simulated

GMCs can be parametrized by the following simple formula1:

εff = εw exp

(
−
√
αvir

0.53

)
, (A.1)

where εw is a normalization coefficient that takes into account mass loss during formation

of stars from protostellar objects and virial parameter of a cubical region with a size ∆ is

computed as for a uniform sphere of radius R = ∆/2: αvir ≡ 5σ2
tR/(3GM) ∝ σ2

t /(ρ∆2)

(Bertoldi & McKee, 1992). The range of αvir probed by Padoan et al. (2012) covers a wide

range of SFE, εff ∼ 0.5–50%, that matches the observed variation, and the above fit holds on

the scales of GMCs, few to hundred pc. Therefore, this fit can be directly applied in galaxy

formation simulations if the turbulent velocity σt on GMC scale is known.

1. Padoan et al. (2012) fit their εff as a function of the ratio of freefall, tff =
√

3π/32Gρ, and box-crossing
times, tcr = ∆/2σ: εff = εw exp (−1.6tff/tcr), which is equivalent to Equation (A.1) because by definition
αvir = 5σ2∆/6GM ≈ 1.35(tff/tcr)

2.
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The fit to the numerical results given by Equation (A.1) agrees within a factor of ∼ 2

with the results obtained by other authors (Clark et al., 2005; Price & Bate, 2009; Wang

et al., 2010; Krumholz et al., 2012b; Federrath, 2015), although such comparison requires

care, as SFE is defined and measured differently in different studies.

Equation (A.1) indicates that SFE is exponentially sensitive to αvir and therefore, if

GMCs have a range of αvir values, the formula implies a wide variation of εff . This variation

and the relative insensitivity to thermal and Alfvénic Mach numbers can be understood as

follows. At a fixed sonic Mach number M , increasing αvir ∝M2/ρ is equivalent to decreasing

the average density of gas, ρ. As the critical density at which gas becomes self-gravitating

in physical units is constant, the critical overdensity relative to the average density increases

with decreasing ρ. As a result, the SFE decreases with decreasing fraction of gas mass at

overdensities above critical (e.g., Padoan & Nordlund, 2011). The dependence of SFE on

sonic and Alfvénic Mach numbers is more complex because their increase results in both

widening the density PDF of MHD turbulence and increasing of the critical overdensity

(Padoan & Nordlund, 2011). Padoan et al. (2012) results show that these effects roughly

cancel each other and SFE becomes relatively insensitive to the actual values of these Mach

numbers, at least at high M explored by these authors.

In the regime of low-M turbulence the contribution of thermal pressure to the support

against gravity cannot be neglected. To extend the above formula to this regime, we redefine

αvir to take into account thermal pressure support (Chandrasekhar, 1951):

αvir ≡
5σ2

totR

3GM
≈ 9.35

(σtot/10 km s−1)2

(n/100 cm−3)(∆/40 pc)2
, (A.2)

where σtot =
√
σ2

t + c2s includes both the sound speed, cs, and subgrid turbulent velocity

dispersion, σt.

In the simulation presented here, we estimate σt =
√

2K/ρ from the SGS turbulence

energy K and compute SFE in each cell using Equations (A.1) and (A.2) with the cell size
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for the value of ∆. We adopt εw = 0.9 consistent with the results of Federrath et al. (2014)

who showed that the mass loss due to outflows does not exceed 10% on the scale where

Padoan et al. (2012) form sink particles.

We stress that all parametrizations and parameter values in the star formation model

adopted in this chapter are not tuned but taken from the results of simulations of star

formation in GMCs.

Stellar feedback is modeled as described in Section 3.3 but with a choice of parameters

different from their fiducial values. In contrast to our fiducial model, we do not boost the SN

radial momentum predicted using the Martizzi et al. (2015) results. This regime corresponds

to the “weak feedback” case explored in Chapter 5 (b = 0.2). In addition, we convert 30%

of the radial momentum predicted by Martizzi et al. (2015) directly into subgrid turbulent

energy via the term SSN in Equation (3.1). The combined effect of both these changes is

that the rate of momentum injection into the ISM by each young stellar particle is ∼ 7 times

smaller than in our fiducial simulation explored in Chapters 4–6. As a result, the ISM of

the galaxy presented here is not as flocculent as in our fiducial run (Figure 4.1) with some

of the gas being able to form long-lived high-density clumps.

A.2 Spatial distribution of gas density and temperature

The star formation efficiency in our simulation is predicted based on the self-consistently

evolved local density, temperature, and subgrid turbulent velocity. Thus, in this and the next

sections we discuss the distribution of these quantities in our simulated disk with a special

emphasis on the turbulent velocities. We also compare to observations the star formation

efficiencies and rates predicted by our turbulence-based star formation prescription.

As can be seen in panels a and b of Figure A.1, by t ≈ 600 Myr most of the disk volume

is filled by the diffuse (n ∼ 0.1–2 cm−3) warm (T ∼ 104 K) gas, while denser gas resides in

spiral structures. The spiral arms travel around the disk compressing diffuse gas for certain
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Figure A.1: Gaseous disk after 600 Myr of evolution. The top row shows from left to
right slices of density (a), temperature (b), and subgrid rms turbulent velocity σt =

√
2K/ρ

(c) in the disk plane. The temperature and rms velocities are derived from the thermal and
subgrid turbulent energies respectively. The bottom row shows derived quantities related
to the star formation prescription. Left panel (d) shows the virial parameter calculated
using Equation (A.2). Only the gas mass was taken into account in estimation of αvir.
Equation (A.1) translates the derived αvir directly into SFE shown in the middle panel
(e). Thin grey lines in all six panels indicate an iso-density contour that corresponds to
n = 10 cm−3 and, therefore, encompasses cold dense gas. Thus, the predicted SFE exhibits
strong spatial variation even in the cold gas. Right panel (f) shows the distribution of the
local gas depletion time defined as t? ≡ ρ/ρ̇?. Purple circles in panels a, c and e indicate
dense gaseous clumps.
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periods of time. Their motion relative to the diffuse gas is generally supersonic and these

spiral waves are thus accompanied by shocks. As gas is being compressed, at n ∼ 5 cm−3

cooling by thermal excitation of C II and O I fine structure lines becomes efficient and gas

rapidly cools down. This substantial cooling in spiral arms means that the pre-arm shocks

are radiative and, therefore, they produce density jumps of orders of magnitude at the spiral

arm interfaces.

The highest densities are reached in gaseous clumps. These clumps develop within the

spiral arms due to local gravitational instabilities (e.g., Agertz et al., 2009b; Dekel et al.,

2009; Bournaud et al., 2010). Several examples of such clumps are circled in Figure A.1a.

In contrast to spiral arms, these high-density clumps are persistent physical objects rather

than waves and so they may survive for a significant period of time. Examination of disk

evolution shows that some of the clumps last up to a couple of disk revolutions, until they

are disrupted by feedback or merged with the gas concentration in the disk center, as also

found in a number of other studies (e.g., Genel et al., 2012). The long-lasting clumps may

themselves drive the formation of the disk spiral structure (e.g., D’Onghia et al., 2013).

Hot rarefied bubbles of gas are another kind of prominent features seen in Figures A.1a

and b. Some of these bubbles are inflated by exploding SNe in the regions with active star

formation. Local injections of SNe energy and momentum affect the distribution of dense

cold gas, as they disrupt gaseous clumps and tear spiral arms apart. Sometimes, as in the

case of the large hot spot near the marker “B”, the hot gas instead is being pushed into the

disk plane from the hot halo (T ≈ Tvir ∼ 106 K) in regions where the disk is thinned and its

gas pressure is low.

A.3 Properties of the ISM turbulence

Given the importance of turbulence for our adopted star formation prescription, we begin

with the discussion of the small-scale subgrid turbulence in the disk. Figure A.1c shows that
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Figure A.2: The distribution of subgrid turbulent velocities σt (top panel) and the resulting
star formation efficiencies per free-fall time εff (bottom panel) at different densities. The
distributions take into account all cells within cylindrical volume with R < 20 kpc (∼ 6
initial scale radii) and |z| < 1 kpc (total height is ∼ 6 initial scale heights) centered at the
disk center. To increase statistics we average PDFs over 23 snapshots at 600 ± 10 Myr.
Colors show the mass-weighted average temperature in bin and its intensity indicates the
total mass in bin. Black contours enclose 25%, 68%, 95% (top) and 5%, 15%, 30% (bottom)
of the current total gas mass. The turbulent velocities in cold spiral arms result from
compression of diffuse gas and scale with density roughly as σt ∝ n1/2 (dashed red line given
by Equation A.5). The linear structures at the upper right end of the n − σt distribution
correspond to dense gaseous clumps with σt ≈ const. Bottom panel shows the distribution
of star formation efficiency computed using Equation (A.1). The adopted model naturally
introduces an exponential cutoff at densities n ∼ 10 cm−3. If compared to universal εff
prescriptions turbulent model predicts broad variation by orders of magnitude, even though
the average SFE is still ∼ 1%.
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the subgrid model predicts the rms turbulent velocities, σt, at the level of few to ten km s−1

on the scale of our smallest grid cells (40 pc). This result agrees with the observed velocity

dispersion on GMC scales (Gammie et al., 1991; Bolatto et al., 2008; Sun et al., 2018),

Milky Way dynamics (Kalberla & Dedes, 2008), and extragalactic HI data (Petric & Rupen,

2007; Tamburro et al., 2009), as well as with high resolution disk simulations (Agertz et al.,

2009a). The turbulent velocities in our simulation increase towards the disk center where

gravitational instabilities and frequent SNe maintain higher σt (Agertz et al., 2009a). High

σt in bright spots that correspond to hot gas (105–106 K in Figure A.1b) are driven by

expanding supernova bubbles. Dense cold spiral arms are typically more turbulent than the

surrounding gas and therefore they are well traceable in the σt map, especially at r > 5 kpc.

Enhanced turbulent velocities in the spiral arms result from the compression of inter-arm

turbulence. Similarly, collapse of gas into dense gaseous clumps also results in high turbulent

velocities (circled in Figures A.1a and c).

Quantitative conclusions about turbulence in different ISM phases can be drawn from the

distribution of σt as a function of local gas density shown in Figure A.2a. In this plot several

distinct phases are highlighted using color: the warm diffuse gas at T ∼ 104 K (yellow), the

cold dense gas in spiral arms and dense clumps (blue), and the hot tenuous gas at T > 105 K

in the SNe bubbles and hot gaseous halo surrounding the disk (red). The contours enclosing

different mass fractions show that most of the gas mass is in the warm and cold phases.

The warm gas phase corresponds to the diffuse gas between spiral arms and around the

disk plane (white color in Figure A.1b). In this phase, turbulence is in an approximate

equilibrium between production due to instabilities (e.g., Bournaud et al., 2010), sourcing

by SNe and viscous dissipation into heat. Most of the gas mass in this phase resides on the

disk outskirts (r > 5 kpc, labelled as the “outer disk”) and the typical subgrid turbulent

velocities are ∼ 1–2 km s−1 with a significant scatter of ∼ 0.5 dex. Note that the actual

velocity dispersion of the disk would include resolved gas motions that are considerably
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larger. As mentioned above, σt in the diffuse gas increases towards the disk center and

may reach few tens to hundred km s−1. Some of the warm gas with the largest velocity

dispersions resides in expanding SNe bubbles, which drive turbulent velocities to the highest

values found in our simulation, few hundred km s−1.

The cold gas phase is, of course, the most interesting for star formation. The figure

shows that such gas has typical subgrid turbulent velocities of σt ∼ 3–10 km s−1. This

result agrees with the observed three-dimensional turbulent velocities in GMCs (∼ 8 km s−1

on scales of 40 pc in Bolatto et al. 2008 and ∼ 2–20 km s−1 on 45–120 pc scales in Sun

et al. 2018). We find that the actual value of σt correlates with the local compression rate,

−∇iui. This result indicates that the main source of turbulent energy in this regime is

heating by compression of the diffuse gas (Robertson & Goldreich, 2012). Specifically, as a

parcel of relaxed gas at T ∼ 104 K enters a spiral arm both thermal and turbulent energies

increase, as pressures associated with thermal and random motions do negative work during

compression. However, at typical spiral arm densities the excess of thermal energy is quickly

radiated away and the gas cools down. In contrast to thermal energy, turbulent energy

dissipates on the local crossing time scale, tdec ∼ ∆/σt (e.g., Mac Low et al., 1998), which

may be longer than the time spent by the gas parcel inside the spiral arm. The turbulent

dissipation time scale and the time spent in the spiral arm can be estimated as

tdec ≈ 4 Myr

(
∆

40 pc

)( σt

10 km s−1

)−1
, (A.3)

tarm ≈ 3 Myr

(
warm

300 pc

)( varm

100 km s−1

)−1
, (A.4)

where warm is a typical spiral arm width and varm is its typical velocity relative to the

ambient gas. Here we neglect the fact that gas may enter into spiral arms at different angles

and then travel along the spiral arm. We approximate the spiral arm passing time simply
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as warm/varm with typical values found in our simulation. Actual tarm may vary around the

estimation from Equation (A.4) depending on the local gas dynamics.

In the outer disk, where the pre-shocked gas has low turbulent velocities (σt ∼ 1 km s−1),

turbulence decays slowly (tdec > tarm) and σt increases in spiral arms. The bimodal distri-

bution of mass in Figure A.2a indicates that the compression is fast and, therefore, the gas

is either relaxed or resides in a spiral arm. In the inner disk where σt is high (∼ 10 km s−1)

turbulence may decay during compression (tdec ∼ tarm) and the increase of σt with density

is shallower. Turbulence decays even more efficiently in the dense gaseous clumps where

σt reaches few tens km s−1. Their typical lifetime (> 100 Myr) is considerably longer than

the turbulence decay time scale (few Myr from Equation A.3). As a result, σt reaches an

equilibrium value, that weakly depends on density (purple lines in Figure A.2).

Star formation in our model proceeds in the cold dense gas. The pressure support in this

gas is dominated by small-scale turbulent motions, as the sound speed in this phase is cs ∼

1 km s−1
√
T/100 K and the turbulent velocities (σt > 3 km s−1) are supersonic. Therefore,

the gas in this regime forms stars with the efficiency that depends on σt (Equations A.1

and A.2). In our simulation, we find that the average σt in cold gas depends on density as

(dashed red line in Figure A.2a)

σt = 12 km s−1
( n

100 cm−3

)1/2
. (A.5)

This scaling with density reflects the approximate balance between turbulence production

on a local dynamical timescale and decay on a cell-crossing time. As gas gravity plays a

major role in compressing the gas, we expect the former timescale to be tdyn ∝ (ρG)−1/2,

while the decay time is tdec ∼ ∆/σt. In quasi-equilibrium, equating these two timescales

results in the above scaling: σt ∝ ρ1/2.

Note that this scaling implies that αvir ∝ σ2
t /ρ ≈ const, but it does not necessarily

require that gas is in virial equilibrium with αvir ∼ 1. Instead, the value of αvir will depend
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on the actual mix of processes that control local gas compression and dynamical production

of turbulence. For instance, substituting Equation (A.5) into (A.2) shows that in the cold

gas in our simulation αvir ∼ 13 on average.

Figure A.2a shows significant scatter around the average behavior expressed by Equa-

tion (A.5), ∼ 0.3 dex. We find that this scatter is mostly due to the variation of local

compression rate, −∇iui. This offers hope that σ may be approximated in simulations with-

out explicit subgrid turbulence modeling using dependencies of σt on density and ∇iui, that

can be calibrated using simulations with such modeling. We will explore the relation of the

local compression rate and the subgrid turbulent velocity in a future study.

In closing, we note that the above discussion shows that the key mechanism of turbulence

production in star-forming regions of our disk is the compression of warm, transonic gas by

spiral waves. This justifies the usage of the linear closure for the turbulent stress tensor τij ,

as discussed in Section 3.2. In particular, production of subgrid turbulence from resolved

motions is mostly important in diffuse gas with T ∼ 104 K. This temperature corresponds

to the sound speed of cs ∼ 10 km s−1 and, therefore, the typical turbulent velocities in this

gas (few km s−1) are sub- or transonic, for which the linear closure for the stress tensor is

more appropriate (Schmidt & Federrath, 2011).

A.4 Local star formation efficiency

In our simulation we derive the star formation efficiency εff in each cell using Equations (A.1)

and (A.2). These equations parametrize local SFE via the virial parameter:

αvir ∝
σ2

t + c2s (T )

ρ
, (A.6)

where ρ, T and σt are the gas density, temperature, and subgrid turbulent velocity dispersion

self-consistently evolved by the code. As can be seen in Figure A.1d the virial parameter of
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modeled cells on scale of 40 pc is rather high and exhibits significant variation.

Given the exponential dependence of εff on the virial parameter, the αvir variation trans-

lates into an even wider spatial variation of εff . This variation in the dense gas can be seen

in panels e and f of Figure A.1 that show maps of εff and local gas depletion time relative

to the gas denser than n = 10 cm−3, shown by the thin gray contours.

The depletion time of molecular gas, and thus possibly εff , is indeed observed to vary

along the spiral arms of M51 (Meidt et al., 2013). As an extreme example of this spatial

variation, compare the spiral arms denoted as A and B in the panel e of Figure A.1. Panels

a and b of the figure show that the gas in these arms has similar density and temperature

and, therefore, a common star formation model with a constant SFE above a fixed density

threshold would predict the same efficiency and similar depletion time in both arms. How-

ever, in our simulation, the spiral arm A forms stars much more efficiently than the arm B

due to lower turbulent velocity predicted by the subgrid model.

As discussed in Section A.3 the difference in σt originates from the variation in the

local compression rates. The compression rate, in turn, may vary due to several reasons.

First, gas may experience different compression in spiral arms depending on the large-scale

dynamics and development of local disk instabilities. Second, turbulence may be suppressed

(enhanced) in spiral arms due to local expansion (contraction) of gas along the arm. Third,

spiral arms may be affected by hot gas from either SNe bubbles or the halo gas penetrating

into the disk. In particular, as can be seen in Figure A.1b, the spiral arm B is adjacent to

a bubble of hot gas in the downstream direction. The thermal pressure of this hot gas may

contribute to compression.

In all three scenarios higher turbulent velocities result from stronger compression. More

quantitative information about the SFE variation with density can be drawn from the phase

diagram shown in Figure A.2b. The most noticeable features of this diagram are the sharp

cutoff at n ∼ 10 cm−3 and the orders of magnitude variation of εff .
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The exponential cutoff at n ∼ 10 cm−3 in our model arises naturally from the thermal

support in warm diffuse gas. In particular, turbulent velocities in this phase are mostly

subsonic and gas is supported against gravity mainly by its thermal pressure. This thermal

support is codified in the definition of the virial parameter given by Equation (A.2), which

results in the exponential suppression of εff in the diffuse gas, as the virial parameter becomes

large: αvir ∼ 103 T4/n0, where T4 = T/104 K and n0 = n/1 cm−3.

In the cold phase, on the other hand, the turbulence is supersonic and its pressure

provides the main support against gravity. The typical turbulent crossing time in this regime

is of the order of the free-fall time: αvir ∼ 10 σ2
t1/n2, where σt1 = σt/10 km s−1 and

n2 = n/100 cm−3. This value of αvir corresponds to εff ∼ 1%, typical for observed star-

forming regions. As a result, in the turbulent model only cold dense gas forms stars at a

reasonably large efficiency. The transition from the negligible values of εff in the warm diffuse

gas to εff ∼ 1% in the cold dense gas is sharp due to the abrupt drop in temperature. This

sharp transition is responsible for the effective density threshold for efficient star formation

at n ∼ 10 cm−3.

The most efficient star formation in our simulation occurs in the gas of density n ∼

10–100 cm−3 in spiral arms and dense clumps. The average trend of σt with density (σt ∝

n1/2 from Equation (A.5)) substituted into Equation (A.1) results in constant εff ∼ 0.6%

independent of density, as αvir ∝ σ2
tn. Therefore, the entire variation of εff around the

average value originates from the scatter of modeled turbulent velocities around the average

trend. As we mentioned before, this scatter is related to the variation of local compression

rate.

Although the mass-weighted average εff in our disk is quite similar to the universal value

εff ∼ 1% at n > 10 cm−3 usually inferred from observations, the large spatial and temporal

variation of the SFE predicted by our model may have important effects on galaxy evolution.

For example, localization of efficient star formation in high-density regions may have a drastic
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effect on the ability of galaxy to drive large-scale winds and affect the final morphology of

the galaxy (e.g., Governato et al., 2010).

A.5 Comparison with observed GMCs

In order to check the viability of the star formation model used in this chapter, we compare

its predictions to the SFRs in observed GMCs. Specifically, in Figure A.3 we compare the

local gas surface density (Σg = ρ∆) and the surface density of SFR (Σ̇? = ρ̇?∆ = εffρ∆/tff)

in individual cells (∆ = 40 pc) to the corresponding quantities measured in GMCs. For a fair

comparison, we select the observed clouds with sizes in the range ∼ 5–100 pc, that straddle

the cell size in our simulation.

The distribution of SFR in our disk has a sharp upper boundary with a wide tail to-

wards lower rates. The observed local star-forming regions from Heiderman et al. (2010);

Lada et al. (2010); Murray (2011) agree remarkably well with the upper envelope of our

predicted distribution, whereas the extragalactic data agrees with the main mode of SF in

our simulation. This may be because studies of the local GMCs focus on the regions with

the most efficient star formation. On the other hand, blind surveys of star formation on

GMC scales do reveal abundant gas with εff � 1% both in the Milky Way (e.g., Lee et al.,

2016; Vutisalchavakul et al., 2016) and in nearby star-forming galaxies (Utomo et al., 2018).

In contrast to the local surveys, GMCs in other galaxies are sampled more uniformly

and do indicate prevalent dense gas with low star formation efficiency. For instance, the

blue polygon in Figure A.3 summarizes the Rebolledo et al. (2015) results for three nearby

spiral galaxies: NGC 6946, NGC 628 and M101. Their inferred SFRs do agree with the

typical SFRs of the dense gas in our simulation. The observed SFR distribution in the

Small Magellanic Cloud (SMC; pink polygon in Figure A.3; Bolatto et al., 2011) also reveals

that most of its dense molecular gas forms stars rather inefficiently. However, the SMC

is a dwarf galaxy with substantially different dynamics and significantly lower metallicity
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Figure A.3: Star formation rates obtained in our simulation are broadly consistent with
observational data. Blue color indicates mass weighted distribution of cells in Σg–Σ̇? plane.
Black contours indicate 5%, 15% and 30% of the current total gaseous disk mass. Grey
dotted lines correspond to constant values of εff in the simulated star-forming regions. The
overplotted data points show different samples of GMCs in the Milky Way: Heiderman
et al. (2010, stars and squares), Lada et al. (2010, circles) and Murray (2011, triangles). In
this plot we show only GMCs with sizes in the range ∼ 5–100 pc that roughly correspond
to our cell size, ∆ = 40 pc. Two polygons show resolved star formation rates in nearby
galaxies. The blue one summarizes results of Rebolledo et al. (2015) for three nearby spirals:
NGC 6946, NGC 628 and M101, while the pink one indicates star formation in the Small
Magellanic Cloud (Bolatto et al., 2011). In the Rebolledo et al. (2015) sample we correct
gas surface densities for helium assuming 25% mass fraction.
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than the Milky Way, and therefore, its global SFR is considerably lower than that of our

simulated galaxy. This discrepancy is yet another manifestation of the SFE variation and

its dependence on galaxy properties.

A.6 Discussion

The results presented in this chapter show that our turbulence-based model for star formation

predicts a wide variation of SFE from εff < 0.1% to ∼ 10%. The predicted distribution of

SFE at the resolution scale of our simulation, ∼ 40 pc, agrees with the SFRs observed in

star-forming regions on similar scales. As we show in Section C.2, such a model also predicts

realistic molecular gas depletion times and a linear slope of molecular KSR in agreement with

observations.2 This agreement is non-trivial because on galactic scales our model predictions

are determined by the small-scale spatial distribution of density and turbulent energy shaped

by galactic evolution. Moreover, on the scales of individual star-forming regions (cells in

simulations) the star formation rate is not tuned but is estimated from the local gas density

and turbulent energy using predictions of GMC-scale simulations (see Section A.1). Once

calibrated to reproduce the results of such simulations, parameters of both the subgrid

turbulence model and the prescription for star formation remain fixed in our galactic disk

simulations. Remarkably, the model predicts SFRs in agreement with observations without

any additional tweaking of these parameters.

Although the agreement with the global SFR and gas depletion time can also be achieved

in simulations that adopt universal εff recipes, such recipes require ad hoc assumptions about

a value of εff and criteria for star formation. Also, as we show in Chapter 6, a commonly

used recipe with a constant εff above a fixed density threshold leads to a molecular KSR

2. Note that the simulations presented in Section C.2 were run with stronger stellar feedback, b = 1 and
5, compared to b = 0.2 in the simulation presented in this chapter (see Section A.1). We checked that in
the simulation with fiducial b = 1, the predicted distributions of σt, εff , and SFR on 40 pc scale remain in
quantitative agreement with observations.
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that is significantly steeper than the observed relation. In contrast, a simulation in which

SFE varies in a way motivated by the model explored here, is able to reproduce the observed

near-linear molecular KSR.

One important feature of the turbulence-based star formation model is the pronounced

physical density threshold for star formation at nth ∼ 10 cm−3. Such density threshold is

often set by hand in galaxy formation modeling. In our simulation, however, this threshold

arises from the rapid drop in temperature as density increases beyond nth. Such threshold is

quite similar to the effective thresholds in H2-based models of star formation in which local

SFE is modulated by the molecular gas mass fraction fH2
: ρ̇? = εfffH2

ρ/tff (Robertson &

Kravtsov, 2008; Gnedin et al., 2009). In particular, the molecular fraction correlates with

the cold gas abundance and, therefore, the threshold in our model corresponds to the density

at which fH2
rapidly increases. We thus also expect that nth in our model should depend

on gas metallicity similarly to the threshold in the fH2
-based models if gas thermodynamics

is modeled properly to capture dependence of the net cooling function on gas metallicity.

Modeling of the star formation density threshold can be further improved if we take

into account the effects of gas clumpiness on its net cooling rate: Λcool ∝ C, where C ≡

〈ρ2〉/〈ρ〉2 ≥ 1 is a clumping factor and brackets denote averaging over a certain spatial

region. Galaxy formation simulations almost always assume C = 1 on the unresolved scales,

but actual dense ISM can be quite clumpy in regions where turbulence is supersonic. Local

clumping factor can be derived from the shape of the underlying subgrid density PDF, that

can be estimated, for instance, with the aid of the subgrid turbulence model from the local

parameters, such as effective Mach number. The clumping factor could then be accounted

for in the calculation of the net cooling rate Λcool. Overall, the star formation threshold

should shift to lower values of density for C > 1.

The importance of turbulence for modeling star formation in galaxy formation simulations

has been already recognized. Specifically, Hopkins et al. (2013a) developed a model for the
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star formation threshold, in which star formation is allowed only in self-gravitating gas,

αvir < 1, but with a constant efficiency of εff = 100%. Even though their model also

predicts significant localization of star formation, it substantially differs from the model

presented in this chapter both technically and conceptually.

From the technical point of view, our subgrid turbulence model provides a more appro-

priate way to track local σt than an estimate based on the local velocity gradients on the

resolution scale. Due to substantial effects of numerical viscosity on these scales such an

estimate is not accurate.

More importantly, in our model we vary εff continuously with αvir, as predicted by the

Padoan et al. (2012) model, while the prescription of Hopkins et al. (2013a) adopts a fixed

εff = 100% for αvir < 1 and εff = 0 otherwise. For comparison, the Padoan et al. (2012)

model predicts εff ≈ 26% for αvir ≈ 1 and εff reaches > 99% only at αvir . 0.1. Moreover, in

our model star formation can proceed in gravitationally unbound regions. In the turbulence-

driven star formation, a given region may be globally unbound, but can contain local bound

star-forming regions created by the turbulent cascade on small scales. For example, at

αvir ≈ 10 the Padoan et al. (2012) model predicts εff ≈ 1%, which is a healthy efficiency

estimated for many GMCs (e.g., Krumholz et al., 2012a). Thus, the assumption of constant

εff below a fixed αvir threshold is a simplification. As we show in Chapter 5, the predicted

depletion times and mass-fractions and densities of star-forming gas do depend on the choice

of εff and αvir threshold values.

Turbulent models of star formation with εff continuously varying with αvir were stud-

ied by other authors as well. In particular, Braun et al. (2014) examined a star formation

prescription based on the model of Padoan & Nordlund (2011) coupled with a subgrid tur-

bulence model in isolated disk simulations. Their subgrid model also included a prescription

for multiphase ISM (Braun & Schmidt, 2012), and turbulent velocities were rescaled to the

scale of cold self-gravitating clumps within this subgrid medium. Our disk models and star
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formation implementations are sufficiently different, which complicates a direct comparison

of our results. We only note that, although Braun et al. (2014) also found gas depletion time

variation across the galaxy, in their case this variation was mostly due to the variation of fH2
,

as the SF prescription based on the Padoan & Nordlund (2011) results predicted εff ∼ 10%

in their star-forming regions with only a small scatter. The variation of the depletion time

in our simulations is due to the wide variation of local εff , which, in turn, is caused by the

scatter in the virial parameter αvir that is dominated by the variation of turbulent velocities.

This origin of variation of SFE and local gas depletion times in our model is more in

line with the models studied more recently by Braun & Schmidt (2015). These authors used

a series of disk simulations similar to those in Braun et al. (2014), but examined several

star formation prescriptions based on the local turbulent properties predicted by the subgrid

model, including the model of Padoan et al. (2012, the “PHN” model), which we use in our

work.

Although the overall level of turbulence predicted by the subgrid model in their disk

is in qualitative agreement with our results, Braun & Schmidt (2015) found that the PHN

model predicts values of SFE that are systematically too low: εff . 0.1%. According to

Equation (A.1), such low εff should arise in regions with virial parameter: αvir & 20, which

is significantly larger than the values estimated for the observed GMCs (e.g., Bolatto et al.,

2008; Dobbs et al., 2011b). We believe that the origin of this discrepancy is in the subgrid

model of multiphase gas distribution used by Braun & Schmidt (2015). In this model, the size

of cold clouds is set by the condition of αvir = 1, but at the same time, turbulent velocities

are rescaled from the cell size to the cloud size assuming a turbulent cascade scaling which

results in αvir & 20. This indicates that their model is not internally consistent.

Regardless of the difference in the actual values of εff , the results of Braun & Schmidt

(2015) are qualitatively consistent with our main finding that turbulence based star formation

prescription predicts a wide variation of εff .
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Considering the results presented in this chapter, we conclude that the star formation

prescription based on subgrid turbulence produces realistic star formation efficiencies and

rates when applied in a galaxy-scale simulation. The lack of free parameters and the fact

that this prescription relies on direct GMC-scale simulations put star formation modeling

within this framework on a much firmer footing compared to standard recipes.
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APPENDIX B

DEPLETION TIME MODEL DETAILS

B.1 Summary of model parameters

Our model equations,

τ = (1 + ξ)τ+ +

(
1 +

τ+
τ−,d

)
τff
εff
, (B.1)

fsf =
1

εff

τff
τ
, (B.2)

are derived from the mass conservation equation between star-forming and non-star-forming

states in the ISM, as explained in Chapter 2. The parameters used in our model and their

meanings are summarized in Table B.1.

As we showed in Section 5.2.2, the model equations describe our simulation results even

if we assume that all the model parameters, including τff , are fixed. However, the accuracy

of our model can be improved if the variation of τff is incorporated.

To account for the variation of τff with ξ and εff , we note that star-forming gas is removed

at a rate Ṁ? + F−,fb ∝ (1 + ξ)εff and therefore τff increases from τdr
ff to τ sr

ff when (1 + ξ)εff

increases and the galaxy switches from the dynamics-regulation (thus the superscript “dr”)

to the self-regulation (“sr”) regime. Note that the dependence of τff on the combination

(1 + ξ)εff is itself a prediction of the model. This prediction is confirmed by the simulation

results shown in Figure B.1, as τff from all simulations with different εff and ξ scale as a

function of (1 + ξ)εff .

We then can interpolate τff between τdr
ff and τ sr

ff as a function of ψ ≡ (1 + ξ)εff using a

155



Table B.1: Definitions of the quantities used in our model

Var. Definition Meaning Modela

Modeled properties of the galaxy

τ Mg/Ṁ? Global depletion time of total gas Eq. (5.5)
fsf Msf/Mg Star-forming gas mass fraction Eq. (5.6)

τff 〈1/tff〉−1
sf Mean freefall time in star-forming gas Eq. (B.3–B.6)b

Model parameters

τ? Msf/Ṁ? Depletion time of star-forming gas τff/εff
τ+ Eq. (2.4) Dynamical timescale on which non-star-forming gas

becomes star-forming
Eq. (B.8)

τ−,d Eq. (2.6) Timescale on which star-forming gas is dynamically
dispersed

Splinec

ξ Eq. (2.8) Average feedback mass-loading factor on the scale
of star-forming regions

60 b0.75

τdr
ff τff in the dynamics-regulated regime Splinec

τ sr
ff τff in the self-regulated regime Eq. (B.11)

Simulation parameters controlling local star formation and feedback

εff Eq. (3.2) Star formation efficiency per freefall time
αvir,sf Sec. 3.3 Star formation threshold in virial parameter
nsf Sec. 3.3 Star formation threshold in gas density
b Sec. 3.3 Boost factor of momentum injected per SN

aThe last column indicates model predictions for τ , fsf , and τff and calibrated values for model parameters.
Listed calibrations are obtained for the αvir-based star formation threshold. Calibrations for the density-
based threshold are provided at the end of Appendix B.1.

bThe model predicts the position and the width of τff transition between τdr
ff and τ sr

ff .
cThe values of τ−,d and τdr

ff as functions of αvir are obtained directly from the n–σtot distribution in our
simulation with εff = 0.01% and fiducial b = 1 and αvir,sf = 10. We spline these values to obtain τ−,d(αvir,sf)
and τdr

ff (αvir,sf) in simulations with different αvir,sf (see the end of Appendix B.1).
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simple fitting formula shown with the solid line in Figure B.1:

τff = τdr
ff + f(ψ) (τ sr

ff − τdr
ff ), (B.3)

f(ψ) =
1

π
arctan

(
log(ψ)− log(ψcr)

w

)
+

1

2
, (B.4)

in which the position, ψcr, and the width, w, of transition can be predicted by our model.

Specifically, from Equation (5.11), the transition happens at

ψcr =

(
1 +

τ+
τ−,d

)
τff
τ+
, (B.5)

where, for simplicity, we assume average τff = 4 Myr, representative of our simulation results.

The width of the transition can be estimated assuming that as (1 + ξ)εff increases from very

low values, the transition appears when Ṁ?+F−,fb becomes comparable to F−,d. This yields

(1 + ξ)εff ∼ τdr
ff /τ−,d and thus the width is

w = log(ψcr)− log(τdr
ff /τ−,d). (B.6)

In the dynamics-regulation regime, i.e. at small (1 + ξ)εff , τdr
ff is determined by the high-

density tail of the star-forming gas probability density function (PDF) and is independent

of the star formation. In the self-regulation regime, i.e. at large (1 + ξ)εff , τ sr
ff increases as

the high-density tail is dispersed and the star-forming gas stays close to the star formation

threshold. These trends of τff in the limiting regimes are apparent in the results of our

simulation suite shown in Figure B.1.

Equations (B.3–B.6) augment the main equations of our model (B.1 and B.2) with the

variation of τff with our model parameters: εff , ξ, τ+, τ−,d, τ sr
ff , τdr

ff . To calibrate the depen-

dence of these parameters on our simulation parameters—i.e. local efficiency εff , feedback
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Figure B.1: Comparison of our model prediction for the variation of the freefall time
in the star-forming gas, τff , with the results of our simulations. To measure τff in the
dynamics-regulation (small (1 + ξ)εff) and self-regulation (large (1 + ξ)εff) regimes and the
parameters of the transition between these regimes, we use the the same runs that were
used to calibrate (1 + ξ)τ+ and τ+/τ−,d in Section 5.2.2 (indicated by circled points). The
predictions of our model agree with the results of all simulations, except for the run with
b = 0 and εff = 100% (open circle), which does not remain in equilibrium owing to the rapid
global gas consumption.
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boost factor b, and star formation threshold αvir,sf—we assume

ξ = ξ0b
β , (B.7)

τ+ = (100 Myr) (αvir,sf/10)γ , (B.8)

τ sr
ff = (τ sr

ff )0 (ψ/100)a(αvir,sf/10)b. (B.9)

Here we assume that at fiducial αvir,sf = 10, τ+ ∼ 100 Myr, as indicated by the results

in Section 4.4. The value of τ+ does depend on the star formation threshold because the

threshold determines when the transition from the non-star-forming to the star-forming state

happens in the evolution of each gas parcel. Equation (B.9) incorporates the dependence of

τ sr
ff on ψ ≡ (1 + ξ)εff and star formation threshold discussed above.

Next, as detailed in Sections 5.2.2 and 5.2.2, we use three runs in the self-regulation

regime with different feedback boost, b, and threshold, αvir,sf , to estimate

(1 + ξ)τ+ ∼ (6 Gyr) b0.75 (αvir,sf/10)−0.5, (B.10)

τ sr
ff ∼ (6 Myr) (ψ/100)0.035 (αvir,sf/10)0.4, (B.11)

which imply ξ0 = 60, β = 0.75, γ = −0.5, (τ sr
ff )0 = 6 Myr, a = 0.035, and b = 0.4. Note,

in particular, that ξ ≈ 60 b0.75 which implies that our fiducial feedback (b = 1) is rather

efficient and ξ � 1 in Equation (B.1).

Finally, the last two parameters, τdr
ff and τ−,d, are measured as functions of αvir,sf directly

from the n–σtot distribution in our run with εff = 0.01% (bottom left panel of Figure 5.4).

To this end, we note that because of the dynamics-regulation regime, this distribution would

not change if αvir,sf was varied. We then measure τdr
ff (αvir,sf) as 〈1/tff〉−1 in gas with

αvir < αvir,sf and τ−,d(αvir,sf) from fsf(αvir,sf) using Equation (5.8): τ−,d = τ+/(1/fsf − 1).

We spline τdr
ff (αvir,sf) and fsf(αvir,sf) and show them with blue lines in the bottom two panels

of the middle column in Figure 5.3. For example, at our fiducial threshold of αvir,sf = 10,
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τdr
ff ∼ 2.5 Myr and fsf ∼ 20%, which implies τ−,d ∼ τ+/4 ∼ 25 Myr.

For the density-based star formation threshold we study only the dependence on nsf but

not on b. In other words, we replace Equations (B.7–B.9) with

ξ = ξ0, (B.12)

τ+ = (100 Myr) (nsf/100 cm−3)γ , (B.13)

τ sr
ff = (τ sr

ff )0 (nsf/100 cm−3)−1/2. (B.14)

Note that the slope in the last equation is not a parameter because, in contrast to the

αvir-based threshold, the dependence of τ sr
ff on the density threshold follows from definition,

since in this regime all star-forming gas has density ∼ nsf . For the same reason, τ sr
ff does

not depend on ψ for a density-based threshold.

The value (τ sr
ff )0 = 5 Myr is measured directly from the simulation with εff = 100% and

nsf = 100 cm−3, and using another run with lower nsf we get

(1 + ξ)τ+ ∼ (4.5 Gyr) (nsf/100 cm−3)0.5, (B.15)

and thus ξ0 = 45 and γ = 0.5.

B.2 Model for molecular gas mass fraction

Similarly to star-forming gas above a given threshold, molecular gas distribution is also

shaped by dynamical and feedback-driven gas flows. Therefore, similarly to Section 5.2.1,

mass conservation can be considered for the molecular state of the ISM to derive the relation

between the molecular mass fraction, fH2
= MH2

/Mg, and the timescales of relevant pro-

cesses supplying and removing molecular gas. In the equation for total molecular gas mass
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Figure B.2: Comparison of our model predictions for the variation of the global molecular
mass fraction, fH2

≡ MH2
/Mg, with the results of the simulations. We average the total

molecular mass in the simulations between 300 and 600 Myr, defining it as a sum of molecular
masses in individual cells, which are computed using the Krumholz et al. (2009a) model (see
Section 5.3 for details). To obtain model predictions, we interpolate fH2

between its values
at low and high (1 + ξ)εff calibrated using the simulations in corresponding regimes (large
circled points). The value of (1 + ξ)εff at which this transition occurs and the width of the
transition are predicted by the model (Equations B.5 and B.6). The open red circle indicates
the run with b = 0 and εff = 100%, which does not remain in equilibrium owing to the rapid
global gas consumption.
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conservation,

ṀH2
= FH2

+ − FH2
− − Ṁ?, (B.16)

we parameterize relevant fluxes as

FH2
+ ≡ (1− fH2

)Mg

τH2
+

, (B.17)

FH2
− ≡ fH2

Mg

τH2
−

, (B.18)

Ṁ? ≡
fsfMg

τ?
. (B.19)

That is, FH2
+ and FH2

− are parameterized analogously to F+ and F− in Section 2.2 and the

equation for Ṁ? repeats corresponding expression there.

Then, assuming steady state with ṀH2
≈ 0, substitution of Equations (B.17)–(B.19) into

Equation (B.16) yields

fH2
≈ 1− (τH2

+ /τ?)fsf

1 + (τH2
+ /τH2

− )
, (B.20)

where fsf can be computed using Equation (5.6).

At low εff , τ? = τff/εff → ∞, and thus fH2
∼ [1 + (τH2

+ /τH2
− )]−1, which is analogous to

Equation (5.8), with τH2
+ and τH2

− independent of star formation and feedback. At high εff ,

all terms in Equation (B.20) are relevant and τH2
− depends on star formation and feedback

parameters in a nontrivial way. This nontrivial dependence is more complex than a simple

scaling with local depletion time τ?—as was the case for the star-forming gas removal time

τ− ≈ τ−,fb = τ?/ξ—because τH2
− also depends on the dynamics of non-star-forming molecular

gas and the details of its dissociation.

Thus, τH2
− cannot be easily related to the parameters of subgrid star formation and

feedback, which does not allow to use Equation (B.20) for predicting how fH2
depends on

the parameters of star formation and feedback. However, this dependence can be calibrated

using the same approach that we used to model variation of the freefall time in star-forming
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gas, τff (Appendix B.1).

The approach is similar because the change of both τff and fH2
reflects the response of

the gas PDF to the changing feedback-induced flux parameterized by (1 + ξ)εff , and thus

fH2
variation with (1 + ξ)εff is qualitatively similar to that of τff . Indeed, as Figure B.2

shows, at (1 + ξ)εff < 0.1, the value of fH2
∼ 20% remains independent of ξ and εff because

feedback is too weak to affect the gas PDF. Between (1 + ξ)εff ∼ 0.1 and 1, the value of

fH2
decreases by a factor of 2 as feedback clears the high-density tail of the molecular gas

distribution, and at (1 + ξ)εff > 1 the decrease of fH2
slows down as the non-star-forming

molecular gas accumulates above the star formation threshold. As the black curve shows,

such variation of fH2
with (1 + ξ)εff can be approximated by the same fitting formula as

the one used for τff (Equations B.3–B.6), with the limiting values of fH2
at low and high

(1 + ξ)εff calibrated using the simulations: fdr
H2

= 23% and f sr
H2

= 0.05 [(1 + ξ)εff/60]−0.1.

The discussed effect of star formation and feedback on fH2
also allows us to predict

the variation of fH2
with the star formation threshold. Namely, in the dynamics-regulation

regime, we expect fH2
∼ 23% to be independent of the star formation threshold because the

ISM gas distribution remains independent of star formation. In the self-regulation regime,

fH2
decreases when the threshold is shifted to higher αvir,sf or lower nsf , because the region

in the n–σtot plane corresponding to the non-star-forming molecular gas shrinks.

163



APPENDIX C

MOLECULAR KSR — ADDITIONAL RESULTS

C.1 Dependence of molecular KSR slope on star formation and

feedback parameters

Figure C.1 shows the dependencies of the molecular KSR slope on the efficiency of star

formation per freefall time, εff , and feedback strength in our simulations with αvir,sf = 10

(blue lines) and nsf = 100 cm−3 star formation thresholds (orange lines). In simulations

with the αvir,sf threshold, the slope remains linear and only the normalization changes at

different εff and feedback strength, as we showed in Figure 5.8. In simulations with the nsf

threshold, in contrast, the slope becomes steeper for larger values of εff .

Figure C.2 shows the change of the molecular KSR slope in simulations with different

values of the αvir and density threshold. For an nsf threshold, the slope becomes shallower

for lower nsf : for nsf & 30 cm−3, the slope is steeper than linear, but it becomes shallower

than linear for smaller nsf because non-molecular gas is identified as star-forming. For the

αvir,sf thresholds, the sensitivity of the slope to the αvir,sf value is much weaker, although

the slope still becomes somewhat shallower for very large values of αvir.

C.2 Molecular KSR slope in simulations with explicitly modeled

εff

As was shown in Figure 6.1, our fiducial simulation with the αvir,sf = 10 star formation

threshold and constant εff = 1% reproduces the observed near-linear slope of the molecular

KSR. Figure C.3 shows that the molecular KSR remains linear when we vary εff using the
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Figure C.1: Median depletion time of the molecular gas as a function of ΣH2
in simulations

with αvir,sf = 10 (blue lines) and nsf = 100 cm−3 star formation thresholds (orange lines),
and different values of local star formation efficiency εff and feedback strength. Solid lines
show τH2

for fiducial feedback strength and εff = 1% (i.e., the same as in Figures 6.1 and
6.3), dashed lines show τH2

for higher εff = 100%, and dashed-dotted line show τH2
in

simulations where the fiducial momentum input from supernovae is multiplied by a factor
of 5 (see Section 3). Gray contours and points with error bars indicate the observed τH2

(see the legend in Figures 6.1), and the thin gray line shows the slope adopted in the star
formation prescription: ρ̇? = εff ρ/tff ∝ ρ1.5 and thus ρ/ρ̇? ∝ ρ−0.5.
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Figure C.2: Same as Figure C.1 but for different values of the star formation threshold:
αvir,sf = 10, 30, and 100 (blue lines), and nsf = 100, 30, and 10 cm−3 (orange lines).

fit to the simulation results of Padoan et al. (2012):

εff = exp(−
√
αvir/0.53). (C.1)

The figure also shows that the normalization of the KSR is affected by feedback strength in

the same way as in the simulations with a sharp αvir threshold (see Appendix C.1).

The KSR in simulations with varied εff is similar to that in our fiducial simulation because

our threshold choice, αvir,sf = 10, approximates the exponential increase of εff for αvir . 10

in Equation (C.1). A factor of ∼ 2 difference in normalization can be explained by the

somewhat higher εff values predicted by Equation (C.1), compared to our fiducial εff = 1%.

Indeed, the αvir of the star-forming gas in our fiducial simulation ranges between 10 and ∼ 2

(see Figure 6.4), and Equation (C.1) predicts εff ∼ 1.3%–14% for such αvir.

Interestingly, Lupi et al. (2018) used a star formation prescription with varying εff and

166



1 10 100
ΣH2 (M� pc−2)

0.1

1

10

τ H
2

(G
y
r)

αvir,sf = 10; fid. fb

εff(αvir); fid. fb

εff(αvir); 5× fid. fb

Figure C.3: Median depletion time of molecular gas as a function of ΣH2
in simulations

with εff continuously varied according to Equation (C.1). Green and red lines show the
results for our fiducial and 5 times stronger feedback, respectively. For reference, the blue
line shows the results of our fiducial simulation with εff = 1% in gas defined by a sharp star
formation threshold, αvir < 10. The thin gray line shows the slope of τH2

∝ Σ−0.5
H2

.

also found a shallow molecular KSR. Their KSR is somewhat steeper than linear, which can

be due to a strong adopted dependence of εff on density (see their Appendix A) and the

resulting large effective local slope β. This result is consistent with our fiducial simulations

with high β that also have a somewhat steeper than linear molecular KSR (see Figure 6.2).

Lupi et al. (2018) also found that the molecular KSR slope depends on the assumptions

about the unresolved clumping factor of the gas.

C.3 Dependence of molecular KSR slope on the averaging scale

In this work, we focused on the molecular KSR averaged on 1 kpc scales. The scale depen-

dence of the KSR is an interesting related topic (e.g., Feldmann et al., 2011; Khoperskov

& Vasiliev, 2017; Orr et al., 2018). Figure C.4 shows how the slope of the molecular KSR
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in our fiducial simulation depends on the averaging scale. As expected, on scales close to

the resolution scale of our simulation (40 pc), the KSR slope approaches the slope of the

adopted star formation prescription, β = 1.5. However, as the averaging scale increases, the

molecular KSR flattens and becomes near-linear at & 500 pc scales. At any larger scale, the

molecular KSR remains linear because when the slope is linear for a certain smoothing scale,

it always remains linear on larger scales, as discussed for special case 2 in Appendix C.4.

The transition scale of ∼ 500 pc reflects the spatial coherence of star-forming and non-

star-forming molecular gas in our simulations. Patches of < 500 pc size preferentially include

only one of the states, while larger patches are sufficient to average between both states. This

effect also leads to a scatter that increases on smaller scales (Kruijssen & Longmore, 2014).

A similar coherence scale was also obtained for M33 by Schruba et al. (2011).

C.4 Derivation of the equations connecting molecular KSR with

gas PDF and star formation on small scales

The depletion time of molecular gas in a single kiloparsec-scale patch can be expressed as a

function of the local SFR density, ρ̇?, and molecular gas mass in the patch, MH2
, as follows:

1

τH2

=
Σ̇?

ΣH2

=
Ṁ?

MH2

=
1

MH2

∫
ρ̇?dV, (C.2)

where integration is carried out over the patch volume. If we assume that ρ̇? is a power-law

function of gas density, we can write ρ̇? as

ρ̇? = Aρβ Θsf(ρ,q), (C.3)

where Θsf(ρ,q) is a function varying from 0 to 1 that defines star-forming gas as a function

of gas density and a vector of other relevant properties q. Furthermore, we can express the
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Figure C.4: The dependence of median τH2
= ΣH2

/Σ̇? on the width of the 2D Gaussian

filter used to average the Σ̇? and ΣH2
maps in our fiducial simulation with the αvir,sf = 10 star

formation threshold and εff = 1%. When the averaging scale is close to the resolution scale
(40 pc), the molecular KSR slope approaches that adopted in the star formation prescription
(shown by the gray line) and can become somewhat steeper due to the large scatter of τH2

on these small scales. At ∼ 500 pc, the slope becomes near-linear (i.e. τH2
≈ const), and it

stays linear at any larger scale.
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volume element dV as

dV =
∂2V

∂ρ∂q
dρdq =

MH2

fH2
ρ
PH2

(ρ,q)dρdq, (C.4)

where

PH2
(ρ,q) =

1

MH2

∂2MH2

∂ρ∂q
=
fH2

ρ

MH2

∂2V

∂ρ∂q
(C.5)

is the mass-weighted distribution of molecular gas, and fH2
is the local mass fraction of

molecular gas, which can be a function of total gas density ρ, metallicity, radiation field, and

other properties. In general, the variation of fH2
in star-forming regions can be accounted

for. However, most of the star-forming gas selected by our criteria has fH2
≈ 1, and therefore,

we will adopt fH2
= 1 in star-forming gas. Under this assumption, Equations (C.2)–(C.4)

can be combined to

1

τH2

= A

∫∫ ∞
0

ρβ−1Θsf(ρ,q)PH2
(ρ,q)dρdq. (C.6)

Equation (C.6) describes the relation between molecular gas depletion time and the PDF

of molecular gas in a single ISM patch. The shape of PH2
(ρ,q) in this equation can vary

from patch to patch, leading to variation of τH2
. To obtain the molecular KSR, this equation

must be averaged between patches with the same molecular surface density ΣH2
:

〈
1

τH2

〉
= A

∫∫ ∞
0

ρβ−1Θsf(ρ,q)〈PH2
〉(ρ,q|ΣH2

)dρdq, (C.7)

where the average shape of 〈PH2
〉 will depend on ΣH2

and this dependence will define the

dependence of the average τH2
on ΣH2

, i.e. the slope of the molecular KSR.

Finally, omitting explicit averaging to simplify notation, Equation (C.7) can be rewritten

as

1

τH2

=
fsf,H2

τ?
, (C.8)
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where, by definition,

fsf,H2
=

∫∫ ∞
0

Θsf(ρ,q)PH2
(ρ,q|ΣH2

)dρdq (C.9)

is the star-forming mass fraction of molecular gas and

1

τ?
= A

∫ ∞
0

ρβ−1Psf(ρ|ΣH2
)dρ (C.10)

is the inverse local depletion time 1/t? = ρ̇?/ρ = Aρβ−1 averaged over the density PDF of

star-forming gas:

Psf(ρ|ΣH2
) =

∫
Θsf(ρ,q)PH2

(ρ,q|ΣH2
)dq∫∫∞

0 Θsf(ρ,q)PH2
(ρ,q|ΣH2

)dρdq
. (C.11)

Equations (C.8–C.11) show that the connection between the slope of the Σ̇?–ΣH2
relation

on kiloparsec scales and its local value β is nontrivial and in general depends on the scaling

of gas PDF with ΣH2
. However, in some special cases studied previously in the literature,

these equations predict a direct relation between global and local slopes. In these special

cases, fsf,H2
is assumed to be independent of ΣH2

as would be the case if, e.g., all molecular

gas were star-forming, fsf,H2
= 1. The KSR slope is then determined only by the behavior

of the integral in the definition of τ? (Equation C.10).

Special case 1. Star-forming gas PDF scales self-similarly with ΣH2
: Psf(ρ|ΣH2

) =

F (ρ/ΣH2
)/ΣH2

. In this case, τ? inherits the dependence on ΣH2
from the local star for-

mation relation, 1/t? ∝ ρβ−1:

1

τ?
= AΣ

β−1
H2

∫ ∞
0

xβ−1F (x)dx ∝ Σ
β−1
H2

, (C.12)

and therefore the KSR inherits the local slope β: Σ̇? ∝ Σ
β
H2

(cf. Gnedin et al., 2014).
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Special case 2. Local relation is linear, β = 1. In this case,

1

τ?
= A

∫ ∞
0

Psf(ρ|ΣH2
)dρ = A, (C.13)

and the KSR is also linear: Σ̇? = Afsf,H2
ΣH2

(cf. Gnedin et al., 2014). Physically, when

β = 1, the local depletion time t? = ρ/ρ̇? = ρ1−β/A = A−1 is constant in all star-forming

gas and thus its average τ? = t? = A−1 is independent of ΣH2
. This means, for example,

that the linear molecular KSR observed on kiloparsec scales will remain linear when averaged

on any larger scale (see Figure C.4).

Special case 3. The shape of the star-forming gas PDF is independent of ΣH2
: Psf(ρ|ΣH2

) =

F (ρ) and

1

τ?
= A

∫ ∞
0

ρβ−1F (ρ)dρ (C.14)

becomes independent of ΣH2
, and therefore the KSR becomes linear regardless of the local

slope β: Σ̇? ∝ ΣH2
. This is a more general case of the “counting argument,” in which all

star-forming regions are assumed to have the same density ρ0 so that Psf(ρ|ΣH2
) = δ(ρ−ρ0).
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