THE UNIVERSITY OF CHICAGO

TRANSFORMATION INVARIANCE AND EQUIVARIANCE IN DEEP LEARNING

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY
JIAJUN SHEN

CHICAGO, ILLINOIS
DECEMBER 2017

Copyright (©) 2017 by Jiajun Shen
All Rights Reserved

In dedication to my parents Jian Shen, Lan Shi and my wife Qile He for their love, endless

support, encouragement, and sacrifices.

TABLE OF CONTENTS

LIST OF FIGURES o e

LIST OF TABLES e

ACKNOWLEDGMENTS e

ABSTRACT . . . e

1

INTRODUCTION . . . o e
1.1 Motivationo
1.2 Prior Work
1.2.1 Data Augmentation Approach
1.2.2 Transforming the Data
1.2.3 Transforming the Filters
1.3 Overview

BASELINE MODELS s
2.1 Statistical Models with Rotatable Features
2.1.1 Model Architecture
2.1.2 Model Performance
2.1.3 Conclusion
2.2 Spatial Transformer Network
2.2.1 Model Architecture
2.2.2 DIScussion e
2.2.3 Experiment
2.2.4 Conclusion

TRANSFORMATION-INVARIANCE VIA STUDENT TEACHER LEARNING .
3.1 Imtroduction L
3.2 Related work
3.3 Method
3.4 Image Deformation
3.4.1 Function Parametrization by Wavelet Bases
3.4.2 Create Deformed Images
3.5 Experiment
3.5.1 Training with Pairs of Rotated Images
3.5.2 Training with Pairs of Randomly Deformed Images
3.5.3 Training with Pairs of Unlabeled Data
3.6 Conclusion L

v

4 DEEP LEARNING WITH OPTIMAL INSTANTIATIONS 43

4.1 Abstract 43
4.2 Introduction 43
4.3 Background oL 45
4.4 Method 47
4.4.1 Optimizing the Training Loss 48
4.4.2 Parametrization of Image Deformation 50
4.4.3 Model Architectureo 51

4.5 Experimentso 52
4.5.1 The mnist-rot Dataset 0L 52
4.5.2 MNIST 55
4.5.3 CIFAR-10 56
4.5.4 Google Earth Dataset 57

4.6 Recover the Support Masks for Objects 59
4.6.1 Intuition and Method 59
4.6.2 Robust to Clutter 60
4.6.3 Declutter Images with Object Class Support Map 62
4.6.4 Classify the Decluttered Images 63
4.6.5 Resolving the Subset Problem 65

4.7 Deep learning with Optimal Instantiations for 3D Data 66
4.7.1 3D Data Description 67
4.7.2 Method 69
4.7.3 Parameterization of 3D Spatial Transformation 71
4.7.4 Recover the Reference Poses of 3D Objects 72

4.8 Conclusion 72
5 LEARNING FROM 3D CAD MODELS 74
5.1 Introduction 74
5.2 Related Work 76
5.2.1 Exploring the Advantage of Using 3D CAD Models 76
5.2.2 Synthetic Image Generation 78
5.2.3 Image Foreground-Background Segmentation 79

5.3 Few-shot Learning with Synthetic Images 81
5.4 Learning Image Object Extraction. 82
5.4.1 Intuition 82
5.4.2 Learning the Support Mask via Pixel Classification 83
5.4.3 Discussion 85

5.5 Generate Synthetic Images from 3D CAD Models 86
5.5.1 Render using 3D CAD models 86
5.5.2 Generate Support Maps for 3D objects 87
5.5.3 Background in Synethetic Images 88

5.6 Experiments 89
5.6.1 CIFAR-10 3-Class Dataset 90

5.6.2 Downsampled ImageNet Dataset
5.7 Conclusion

REFERENCES

vi

2.1
2.2

2.3
24

2.5

3.1

3.2

3.3

3.4

3.5
3.6

3.7

4.1

4.2

LIST OF FIGURES

Examples of images from the mnist-rot dataset.
The first row and the second row show the visualization of the object models
trained on the images with upright digits and randomly rotated digits respec-
tively. The orientation-corrected object models are shown in the third row. Image
source:[B4]. . L L
SPN architecture
The spatial transformer module can rotate and scale the images to a canonical
version of the images.
The spatial transformer module is sensitive to random clutter if they do not exist
in the training data. L

We show the joint architecture of a transformation-invariant deep neural net by
student-teacher learning. The left one is the teacher network that achieves state
of the art for a given task, and the right one is a student network that needs to be
trained. During training, the teacher network will take a canonical image as the
input while a transformed version of the same image will be created and passed
to the student network. Guided by the supervisory signal from the output from
the d-th layer of the teacher network, the student network learns to reproduce
the same feature maps by regression. After training, the student network will
append the learned d layers with the downstream layers of the teacher network
(d+1...,n layers) to perform a given task.
Visualization of some randomly-deformed training examples from the MNIST
dataset. Although some parts of the class object are distorted, they look like
different instantiations of an object coming from the same class.
Visualization of some randomly-deformed training examples from the CIFAR-10
dataset. Although some parts of the image object are distorted, they look like
different instantiations of an object coming from the same class.
Classification accuracy rates by different methods when tested on the MNIST test
datasets that contain different ranges of random rotation. Each model is trained
on the MNIST1000 training data augmented by —20° to 20° random rotations. .
Visualization of the reconstructed image by the student network.
Visualization of the filters learned by the teacher network and student network
when choosing the last convolutional layer as the soft target. The left are the
visualization of the filters bank learned by the teacher network, and the right are
the visualization of the filters bank learned by the student network.
Five pairs of generated unlabeled images. Top row shows images that contain
10 x 10 subregions sampled from the MNIST1000 dataset. Bottom row shows
rotated versions of images in the top row. L.

A rotated image of digit five can be further rotated to look like instantiations
from digit class four, five, six and nine.,
Model architecture for deep learning with optimal instantiations.

vil

31

32

4.3 Correct the image rotations using the latent rotation angles estimated by three
optimization approaches.
4.4 Examples of rotation-corrected images for ten separate classes using a conven-
tional CNN trained on upright digits (bottom) and a CNN trained on rotated
digits using our framework (top). For each rotation-corrected image, the corre-
sponding class scores are shown on the right.
4.5 Examples of optimal images deformed by the thin plate spline transformation for
different classes. The original images are shown in the first column.
4.6 Top: Example images from the CIFAR-10 dataset; Bottom: Images translated
and scaled by our model. L
4.7 (a): An example of training images from the Google Earth dataset. (b) and (c)
are examples of car images (car front point to the right) and background images
we use for training a detection model for horizontal cars.
4.8 Histogram of rotation errors when estimating the rotation angles between —180°
t0 180°. . . . e
4.9 Mean images of handwritten digits (bottom) and pose-adjusted handwritten dig-

4.10 Sample images of two different types of clutters: flanking digits (top) and random
clutter (bottom).
4.11 Examples of the original images with flanking digit clutter are shown in the first
row. The corresponding recovered reference poses under the correct class labels
are shown in the second row. The decluttered images extracted by applying
object class support are shown in the third row using a decluttering approach
described in Section 4.6.3. L
4.12 Examples of the original images with random clutter are shown in the first row.
The corresponding recovered reference poses under the correct class labels are
shown in the second row. The decluttered images extracted by applying object
class support of the correct class are shown in the third row using a decluttering
approach described in Section 4.6.3.
4.13 We show examples of misclassified digits and the corresponding optimal images
captured for the corresponding images for different classes (in the middle). On
the right, we show the corresponding decluttered images that we feed to the
downstream network to produce class scores for classification.
4.14 Example images of volumetric representation of 3D objects from the ModelNet
dataset. L
4.15 The CNN architecture for 3D object data classification.
4.16 Randomly rotated 3d objects.o
4.17 Recovered reference pose of 3d objects.

5.1 Model architecture of the convolutional neural network we use for classifying

images of size 32 X 32.
5.2 A 2x upsampling operation by bilinear kernel convolution.
5.3 End-to-end model architecture for support map prediction.

viil

62

5.4

9.5

5.6

5.7

5.8

9.9

Six canonical rendered views (first column) along with randomly generated views
(second column) of a CAD plane model.
Rendered images with clear background (first column) and their corresponding
support masks (second column). L
Examples of synthetic images by combining the rendered 3D objects and real
image background. The background images of these synthetic images come from
the Flickr dataset (top) and the Google Image website (bottom) respectively.
As we can observe from these images, background images from the Flickr dataset
usually contain other objects, which make the background noisier than the images
we collected from the Google Image website.
We show the synthetic image (the first row) and the corresponding target objects
in the image (the second row). We show in the third row the extracted target
object produced by applying the support maps to the original synthetic image. .
We show some CIFAR-10 images examples and the corresponding extracted target
objects produced by applying the support maps to the original images.
We show some example ImageNet images and the corresponding extracted target
objects produced by applying the support maps to the original images.

X

3.1

3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

9.5

LIST OF TABLES

Experiment Result on MNIST1000 with rotation (100 images per class; 5 tries
for each experiment)
Experiment Result on CIFAR-10(10k) (1000 images per class)
Experiment Result on MNIST1000 with deformation (100 images per class; 5
tries for each experiment)

The experiment results on the mnist-rot dataset.
The experiment result on MNIST-100.
Experiment Result on CIFAR-10(400)
The average rotation errors of different models.

Classification accuracy on CIFAR-10 3-class test data when limited amount of
real training data is augmented by synthetic data.
Classification result on different types of synthetic test images.
Classification accuracies on CIFAR-10 3-class test data.
Classification accuracy on the ImageNet 9-class test data when synthetic images
are created to augment the real training images.
(Classification accuracies on the ImageNet 9-class test data.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my principal advisor, Professor Yali Amit for
his advice, ideas, and patience when guiding me through my graduate studies. His views
on computer vision and deep neural networks, as well as his emphasis on clear statistical
modeling, have been very influential to my research. From Yali, I learned not only the
knowledge of statistical modeling and computer vision but also the scientific ways of thinking
and tackling problems.

I thank Professor Greg Shakhnarovich and Professor Risi Kondor for being on my com-
mittee and for providing me valuable suggestions on my work. My appreciation also extends
to the members of the Amitgroup - Lian Huan Ng, Marc Goessling, Gustav Larsson, Mark
Stoehr and Kendra Burbank for all the inspiring discussions and collaborations. I thank the
faculty and staff members of the computer science department and the statistics department
for all the help, guidance and support over the last five years.

Finally, I would like to give my special thanks to my friends and family. Their uncon-
ditional love and support have given me the strength and determination to overcome the

difficulties along the way.

x1

ABSTRACT

A major challenge for object recognition is to correctly perceive the image objects despite
the extraneous variations in the data such as shifting, rotation, deformation, etc. It would
be much easier for the vision tasks if such task-irrelevant transformation variabilities were
removed from the data. The recent success of deep learning approaches has its roots in the
ability to build feature representations that are invariant to variations caused by nuisance
factors. The expressiveness of deep networks allows the models to disentangle the underlying
factors of variations in the data and the training signals guide the models to learn feature
representations that are robust to task-irrelevant variations. However, such variations need
to be observed from the training data. Otherwise, a traditional deep neural network without
special architectural design would not generalize to these variations. To address this con-
cern, we study the problem of achieving transformation invariance and equivariance in deep
learning.

We show how some existing approaches, such as the stacked statistical model with rotat-
able features and the spatial transformer network, are imperfect at learning feature repre-
sentations that are invariant or equivariant to transformations. To search for an alternative,
we develop a training mechanism to learn transformation-invariant feature representations,
where feature maps of canonical images are used as soft targets to guide a deep neural network
to produce the same feature representations even when the input images are transformed.
As a result, our framework can obtain transformation-invariant feature representations and
makes it possible to take advantage of unlabeled data that contains an enormous amount of
variations. Additionally, we seek architectural changes to the existing deep learning models
and propose a framework for training deep neural networks with optimal instantiations. By
introducing latent variables to parametrize the transformations of the data for each class, our
approach is able to obtain the optimal instantiations while training for the downstream tasks.
Another direction we explore is the use of 3D CAD models to render 2D images as a data

xii

augmentation approach. Rendering 2D images from 3D models allows for a more compact
way of representing an object class and the models are able to observe more data variations
during training. Competitive experimental results are demonstrated by these methods, and
our analysis shows that they can be promising directions to achieve transformation invariance

and equivariance in deep learning.

xiil

CHAPTER 1
INTRODUCTION

Learning transformation-invariant representations in deep learning is particularly important,
as it helps the model to perceive image objects to be the same despite the task-irrelevant
transformations. Good generalization performance can be achieved even when the model is
applied to transformed data if the learned feature representations are invariant to extraneous
data transformations. On the other hand, the feature representations in the intermediate
layers should only be invariant to transformations within a desired range as opposed to
fully invariant, as the poses and the structures of the local features need to be preserved
for layers at a later stage [15, 16]. Therefore, many have sought to learn the equivariance
of feature representations, i.e., instead of learning transformation-invariant representations,
one can learn representations that change in a predictable way under the transformations of
the input [48]. As a result, operations on a feature map in the representation space, such as
the max-pooling operation, can be designed to achieve transformation invariance within a
desired range.

The main theme of this dissertation is to discuss approaches for learning transformation
invariance and equivariance for visual representations through deep learning. In this chapter,
we first discuss the motivation of learning transformation invariance and equivariance in deep
learning. We summarize some prior work on this topic in Section 1.2, and an overview of

the dissertation chapters is provided in Section 1.3.

1.1 Motivation

Let us consider a regular feedforward deep neural network that is proposed to solve an object
classification task. Such a deep neural network usually produces a sequence of representations

by feeding the input through multiple layers, and the final feature representations are passed

to the last layer for classification.

More specifically, an input image = € RHXWXC g mapped to a feature map in the
representation space by network & as ®(z) € R, Let T, gr denote the result of applying the
transformation g on the input image x. We want to study how the representations change
upon transformations of the input image, i.e., what is the relationship between ®(x) and

®(Tyx). In particular, we call ® equivariant to the transformation g if we have the following:
O(Tyx) = Ty®(x) (1.1)

where T é ‘RT3 Reis a map that captures how the feature maps will change after the input
image is transformed. That is, if we transform the input by the transformation g and then
pass it to the network, the output should be the same with passing the input to the network
and then map the feature representation by 7, é In particular, if we have Té as identity, then
® is transformation invariant under the transformation g.

It is desirable to achieve feature representations that are invariant to task-irrelevant
transformations so that the final feature representations will contain nothing but the task-
related variations. As a result, the classifier is not required to memorize a large number of
feature representations of transformed copies of the same input, making it easier to train.
However, in some cases, feature representations should only be invariant to transformations
within a certain range and still retain discriminative properties when the transformations
are beyond a specific range. Therefore, it is also crucial for the deep learning approaches to
obtain transformation equivariance. When the feature representations are equivariant to a
certain transformation, the range of the resulting feature representations for the input after
the transformation is tractable.

Some existing deep learning architectures already have such properties for certain trans-
formations. For example, by adopting weight sharing in the network architecture, the convo-

lutional neural network effectively captures the translation equivariance, as all the convolu-

2

tion layers in the network are translation equivariant. Shifting the input and then passing it
through the convolution layer produces the same feature map as passing the input through
the convolution layer followed by a shifting operation. This also leads to a more efficient
parametrization and allows a pooling operation to operate on the feature map to achieve
local translation invariance. However, the convolutional neural network only captures the
translation equivariance by design. Invariance and equivariance to other types of transfor-
mations including rotation, deformation, etc. cannot be naturally obtained unless enough
data is observed when training the model. To address these problems, many approaches

have been proposed, and we will discuss some of them in the next section.

1.2 Prior Work

In this section, we discuss some of the previous work on learning transformation invari-
ance and equivariance with deep learning architectures. There are three major families of
approaches in the literature on this topic, including the data augmentation approach and
approaches that require architectural changes to the existing deep learning models to ei-
ther transform the input data or transform the filters in the models. We list some of these

approaches in the following.

1.2.1 Data Augmentation Approach

Data augmentation approaches are the most common and convenient way to handle the
transformation invariance and equivariance. Such approaches usually require us to either
create or collect different transformed data to supplement the original dataset. As a result,
the model is able to observe more data variations that do not exist in the original dataset,
and it is therefore more robust to the nuisance factors of variations in the data [71, 43].
For example, the rotation-invariant neoperceptron model [20] creates multiple rotated

versions of images and feeds them to a CNN with filters shared across different orientations

3

so that feature maps for separate rotated versions of the image are obtained. A blurring
layer is then designed to reduce the number of the feature maps by pooling together within
a certain range of orientations. The representations are gradually pooled together using
blurring layers, yielding fully invariant representations at the output. In a similar vein,
the TI pooling network [45] passes multiple transformed versions of the input separately
through the network to get feature representations for each transformed instance. The
feature representations from transformed versions of the same input are aggregated together
by a max pooling operation to achieve transformation invariance. The aggregated feature
representations are later passed to the rest of the network for the downstream task. A
similar approach is designed by Dieleman et al. [18], where multiple rotated and flipped
versions of images are created and passed to the weight-shared convolutional layers like
the TI-pooling network. Instead of being aggregated by a max pooling operation in the
TI-pooling network, the resulting representations are concatenated and sent to a stack of
dense layers for downstream applications. It is later extended in [17] by exploiting the cyclic
symmetry of the feature maps in CNN, where four different cyclic operations including
slicing, pooling, rolling, and stacking, are introduced to handle the cyclic symmetry in the
representation space. Among these cyclic operations, the slicing operator first augments the
original training data by stacking together four evenly spaced rotated copies of the input
example, and the pooling/stacking operator combines the output from different rotated
versions of the example using a permutation-invariant pooling function or a concatenating
operation. The cyclic rolling operator designs a way to organize and re-align the feature maps
from different rotated copies of an image, and then it stacks the feature maps together along
the feature dimension. As a result, the stacked feature representations of the images become
equivariant to rotations of 90°, 180° or 270°. The aggregated transformation-equivariant
feature representations can be further passed to the downstream layers to handle a particular

task.

A few approaches propose some changes to the deep learning framework that are com-
bined with the data augmentation approach. The Rifd-CNN [14] proposes a rotation-
invariant layer that is trained by imposing a regularization constraint on the objective func-
tion that enforces the invariance of the feature maps before and after rotating the image.
Noord and Postma [77] propose an ensemble of convolutional neural networks, where each
convolutional network is associated with a different scaled version of the input. The output
feature maps of separate CNNs will be aggregated for further prediction. As a result, such
aggregated feature maps become scale-invariant.

Although the data augmentation approaches naturally enjoy the advantage of observing
more variations in data, the drawbacks of these approaches are also obvious: In general,
the data augmentation methods take longer to train, as more transformed versions of the
training data need to be created and observed during training. Moreover, these methods
are usually constrained as they can only consider a fixed set of global transformations of the

input images.

1.2.2 Transforming the Data

Another common approach is to design an operation to transform the input data or the
feature maps before feeding them to the rest of the deep architecture. Special transformation
operations can be designed to either remove the task-irrelevant variations by recovering the
reference forms of the data or warp the input data so that a regular deep neural network
can achieve transformation invariance or equivariance to a certain transformation.

For example, as we will discuss in Section 3.2, the spatial transformer network [38] can
transform each input image based on a transformation matrix estimated by a spatial trans-
former module within the network. As a result, a reference pose of an image can be recovered
before the model passes it to the rest of the network for classification. The warped convolu-

tion network [32] shows that a specially designed generalized convolution operator could be

equivariant to a prefixed transformation. By applying transformations repeatedly to a pivot
point to obtain a 2D warp grid for one or two commutable transformations, and a warped
image is created based on the 2D warp grid. The warped input can be further passed to a
regular convolutional neural network to handle the downstream task.

These approaches have the advantage of being more efficient in training, as the models do
not need to be trained on multiple transformed versions of the input images. By recovering
the reference poses of the input images, the downstream network is no longer required to
be invariant to transformations. However, as we will find out in Section 5.3, it is difficult
to estimate the desired reference pose of an input image, especially when the label of the
image is unknown. The spatial transformer network tries to warp the image based on the
transformation parameters regressed by the spatial transformer module, but we show that
such transformations are not accurate unless the class labels are already known. The warped
convolutional network warps the input images so that the transformation equivariance are
implicitly encoded in the input. However, the model limits the number of transformations

it can consider at the same time, which is suboptimal.

1.2.3 Transforming the Filters

In addition, special designs of filters in deep learning architectures can also make it possible
to produce feature representations that are invariant or equivariant to transformations.
Kavukcuoglu et al. [40] propose a model that tries to learn transformation-invariant
filters using sparse coding. It builds a 2D topographic map for the filter coefficients and pre-
wires overlapping subwindows of filter coefficients to be pooled together. During training,
a sparsity penalty on the sum of each neighborhood’s activations is designed to encourage
the activations across subwindows to be sparse and the coefficients within each subwindow
to be similar. As a result, filters that are pooled together end up extracting similar features.

The responses of nearby neighbors in the topographic map are pooled together to achieve

transformation invariance. This idea is further extended for convolutional neural networks
in the tiled convolutional neural network [55]. Instead of sharing weights across the entire
image space, tiled convolutional neural network leaves nearby convolutional filter weights
untied and only tying the weights of the units that are k steps away. Activations of units
that have untied weights are pooled together in the next layer, allowing the network to learn
a more complex range of invariances. A similar approach is investigated by Teney and Hebert
[75], where filters of each convolutional layer are separated into groups. Filters within each
group are constrained to be rotated versions of each other, and only the weights of the filters
with canonical orientation will be learned. Oriented response network [82] incorporates the
active rotating filters (ARFs) into deep convolutional neural networks. An active rotating
filter is defined on a spatial grid with R rotated channels, and a rotated version of the filter
can be obtained by a step of coordinate rotation using bilinear interpolation and a step of
orientation spin by adjusting the rotation channel. When convolved with the input data,
an ARF will create several rotated versions of the base filter and produce a feature map
with multiple orientation channels. The rotation equivariant vector field network [50] takes
a similar approach. It applies different rotated versions of the filters to the input and returns
a vector field that represents the magnitude and angle of the highest scoring orientation at
the spatial location. Instead of using a polar representation for the feature vectors, one can
represent the feature vector in the Cartesian coordinate system, and the convolution of the
vector fields can be computed separately in each component. Although these approaches
demonstrate a promising direction to achieve transformation invariance by transforming or
organizing the filters with special designs, the drawbacks of these approaches are also obvious:
Since filters usually have smaller sizes, it is not clear how to apply complex transformations
to the filters. As a result, invariance to complex transformations cannot be easily obtained
by this approach. For filters that capture both the magnitudes and the directions of the

activations, they usually have to make a compromise on the model complexity by either

keeping the model shallow or limit the number of transformations.

Filters can also be designed to construct a symmetry space for the representation space.
The deep symmetry network [22] achieves this by proposing a generalization of CNN that can
form feature maps over a symmetry space in addition to the grid space as in the traditional
CNN. Because extending the convolution operation to the symmetry space leads to a high-
dimensional feature map, the authors propose to sample the symmetry space by evaluating
at N control points that are local maxima of the feature representation in symmetry space
found by the Gauss-Newton optimization. A pooled feature map is computed according
to the N local optima using kernel-based interpolation method. The group equivariant
convolutional network [15] follows the same idea of building convolutional neural networks
on the symmetry space by constraining to a smaller discrete symmetry group (with flipping
and four 90° rotations). As a result, the computation of the feature representations is
more tractable. A subgroup pooling operation is also introduced to allow for invariance
to transformations within a pooling range. To pool the full feature space G, it selects a
subgroup H as the pooling region, which leads to a feature map on the quotient space G/H.
These papers provide a foundation for approaches that construct symmetry spaces for the
representation space. However, these approaches are still constrained because of the limited

transformations they can consider.

1.3 Overview

In this dissertation, we want to explore some approaches that have been used in the literature
to learn visual representations that are invariant or equivariant to transformations, and we
propose several new approaches that can achieve such properties.

Some baseline models are investigated in Chapter 2. We first present the stacked sta-
tistical model with rotatable features proposed in [54], where a 3-layer layer-wise trained

mixture model is introduced with the option of constructing an organized feature space that

8

is equivariant to cyclic transformations. The simplicity and interpretability of the statistical
model are appealing, and we use it as a baseline model to compare with other models that
we propose. The spatial transformer network [38] is also discussed in this chapter. It learns
a spatial transformer module along with the regular CNN to perform transformation oper-
ations conditional on individual data samples before classifying them. We show that such
a framework is flawed as the proper spatial transformation operations cannot be perfectly
recovered by a regular CNN.

In Chapter 3, we develop a mechanism to learn a deep neural network that can achieve
transformation invariance using the student-teacher learning framework. The output from an
intermediate layer of the teacher network is used as soft targets to guide the student network
to produce the same feature representations even when the input is transformed. As a result,
the feature maps extracted by the student network will be robust to the transformations.
Moreover, only the shallow layers need to be trained to adapt to the transformed data while
the downstream task-specific layers of the network do not need to be retrained or fine-tuned.
Therefore, labeled data are not necessarily required for training.

A framework for training deep neural networks with optimal instantiations is proposed
in Chapter 4. Latent variables are introduced to a regular deep architecture, separately
for each class, to effectively remove nuisance transformations in the data and allow the
model to obtain a reference pose for the object that is being classified. A two-step training
mechanism is designed, which alternates between optimizing over the latent variables and
the model parameters to minimize the loss function. We show our approach is able to obtain
reference poses for the objects that are being classified. As a result, a support mask for a
certain object class can be achieved by taking the average of the reference poses of objects
from the same class, and they can be applied to decluttering images of objects with different
types of random surrounding clutters. In addition, we show our approach can be extended to

3D volumetric data to recover the reference orientations of the 3D objects while classifying

them.

Another direction that we explore in Chapter 5 is the use of 3D CAD models to ren-
der 2D images as a data augmentation approach. By generating 2D images from 3D CAD
models, one can obtain a more compact way of representing an object class, which allows
more transformation variations in data to be observed when training the models. Significant
performance improvement is achieved by simply augmenting the real image training dataset
with synthetic images, especially when the real image training dataset has a limited amount
of examples. In addition, we show how a foreground-background segmentation model trained
on synthetic images can be used to extract target objects from real images. This is partic-
ularly useful as it removes the nuisance factors of variations introduced by the background,
and it allows a classification model trained on synthetic images with clear background to be

directly applied to the real data.

10

CHAPTER 2
BASELINE MODELS

In this chapter, we evaluate two deep learning models that are designed particularly to
deal with transformation variations in the data. In Section 2.1, we introduce the stacked
statistical models with rotatable features proposed in [54], where a 3-layer layer-wised trained
mixture model is introduced with the option of constructing an organized feature space that
is equivariant to rotation or other cyclic transformations. In Section 2.2, we review the spatial
transformer network introduced in [38], where a spatial transformer module is proposed and
incorporated with a conventional CNN to disentangle nuisance factors of variations from
the image objects. We present the experimental results of the both models to establish the

baselines for the future chapters.

2.1 Statistical Models with Rotatable Features

We present a 3-layer feed-forward statistical model proposed in [54], which is a layer-wise
trained mixture model with rotatable features. The model architecture contains an edge
layer, a part layer, and an object layer for classification. As the model is layer-wise trained,
labeled data is not necessarily required except for the classification layer. This model extends
the part-based statistical object model of Bernstein and Amit [6] to incorporate rotatable
part models and rotatable object models, and it allows the learned feature representations
to be equivariant to the cyclic transformations in data. We describe the model architecture

in the following.

2.1.1 Model Architecture

The 3-layer feed-forward architecture contains an edge layer, a rotatable part layer, and a
rotatable object layer.

11

Edge Layer. The first layer is an edge detection layer that extracts binary oriented
edge features at every pixel of a grayscale image. Based on the gray level edge detector
described in [1], we extract eight binary oriented edges at each pixel based on the pixel
intensity differences between the current pixel and the nearby pixels. For each detected edge
for a pixel, a line of pixels within a certain radius oriented orthogonal to the edge orientation
are defined as the neighborhood locations, and the extracted edge feature is spread to these
neighborhood locations to make the edge detection robust to small variations. As a result,
for an image I € Z where Z € [0, 1]H *W with width of W and height of H, an edge feature
map z; € {0, 1H*W*8 is produced by the edge layer.

Part Layer. The extracted edge features are passed to the part layer, where a dictionary
of filters is learned from the edge patches in an unsupervised manner. During training, edge
patches of size h x w with sufficient edge activities are selected from the edge feature maps.
Let 2(") € {0, 1}h><w><8 denote the edge feature map of the binary edge patch n. We assume
the binary edge patches are samples of a mixture model with K mixture components where
each component is a product of independent Bernoulli distributions. More specifically, we

can model the edge patches as follows:

hxwx8

K
Pa)=Y"m [T w0 =) ™" (2.1)
k=1 =1

where 7}, is the mixing weights and p, is the mean parameters for the k-th mixture compo-
nent. An EM algorithm can be designed to estimate the parameter values for each mixture
component. After training, the learned mean parameters pj. for each component can be used
as the part models to create the part representations of the images.

In order to incorporate the rotation of the data into the model, an extension of the
part layer is proposed in [54]. Instead of learning generic mixture components for all
the sampled edge patches, we introduce a latent rotation variable to the mixture model

and estimate rotation-equivariant mixture components. More specifically, let us denote
12

) 2 B) e 0 13 *wx8 55 the R evenly spaced rotated versions of binary edge

patch n. To achieve this, one can rotate an underlying image and extract features from the
corresponding image patch to obtain rotated versions of a particular edge patch. One can
stack the rotated versions of the edge patch to create a single binary feature vector z(")
and model this binary feature vector using a Bernoulli mixture model that has K mixture

components with a latent rotation variable:

K R Rxhxwx8)
i —Z;
P) =2 7%(e 11 i) (U i)) (2.2)
k=1 r=1 i=1

where Zle m. = 1 and Zﬁ:l Tl = 1 for each k. o, is a cyclic permutation of indices that
shifts the indices forward by rx hxw X8 entries to help align the rotation channels of the filter
and the edge patch. The key step in this model is the cyclic permutation operation o, for
indices of the rotated edge patches. This implies a structured organization of the parameter
spaces of the mixture components, and it implicitly forces the part representations created
by the part models to be equivariant to cyclic permutations. A modified EM algorithm is
designed to estimate the parameters of the model with latent cyclic rotation. We derive the
EM algorithm in Algorithm 1.

Using the learned dictionary of part models, one can create a part-representation of an
image by encoding each pixel of the image by a binary feature vector. To achieve this, a
neighborhood edge patch centered on the each pixel is extracted, and the i-th element of
the binary feature vector is set to be one if this patch has highest likelihood under ¢-th part
model. A max-pooling operation can be applied to make the feature maps robust to local
translations.

Note that the rotatable mixture model we used in Equation 2.2 is a distribution over
the combination of R rotated versions of an edge patch. Therefore, in order to create the
part-representation of an image, ones needs to create and combine R rotated versions of

the edge-representation of each neighborhood edge patch and calculate the likelihood of
13

Algorithm 1 EM Algorithm For Rotatable Part Model

1: procedure

Rxhxw><8 " 1*1‘1(»71)
2: Denote Pj, T() IT;2 “k i)(1 — ,uk 0’7«(')) and . o = Ty p X T
3: Choose an initial seting for the parameters 90 {ﬂ'T k"“l(ﬂ Z)}
4: t<+ 0
5: E step:
(t+1) (n). o() Pyp(a™) xmll)
6: Qo = P K|z 010) = 6]
o Do Pk/ﬂn/(x() x7 I
7 M step:
8: We solve for the following function:
t+1
9: arg maxy Q(6, 0 = > km qﬁvk’n) (log Pk,r(x(")) + logm, 1)
10: Therefore, we have
(t+1)
11: A _ 2n q’"’”
rk
t+1) (n
12: ,u(tJFl) — 2 q?(“:kvn)xz(fr)(i)
bt Qi
13: If the convergence criterion is not satisfied then
14: t+—t+1
15: and return to line 5.
16: Stop

14

it under each part model. Obviously, this is computationally intensive and tedious. To
resolve this, for each learned mixture component, we consider each part in every orientation
a separate feature, i.e., we split the original mixture component into R sets of h x w x 8
entries, each becomes a separate part model. Therefore, we will have K x R part models,
and each pixel of the part-representation of the image becomes a binary feature vector of
size K x R. Although each mixture component is broke up into separate part models for
different rotations, we can still maintain the virtual associations for the part models within
the same mixture component, and it allows the part-representations of the images to be
rotation equivariant.

Object Layer. The part-feature maps from the part layer can be fed to the object layer,
where a set of class-specific object models is learned for classification tasks. Training in this
layer is supervised, where we learn object models for each class separately. The learning
process in this layer is similar to that of the part layer that we described above except that
this time we learn a model from the part-representation of the entire image instead of the
edge-representation of randomly selected local patches.

Similarly, a rotatable object layer is also possible when we use the rotatable part layer as
the second layer. When the part models are rotatable, any rotated version of part-feature
maps can be created by transforming the part locations and then adjusting their angles.
Therefore, for any part-representation of the data, we can create rotated versions and stack
them together as a single binary part-feature vector. For each class ¢, M, rotatable object
models can be learned using the same kind of mixture distribution in Equation 2.2. After
training, one can obtain the part-representation of a given test image by passing it through
the first two layers. The part-representation of the test image is then fed to the object layer
where the likelihood of it under each object model is calculated. The class label, as well as

the orientation, can be determined by the object model that maximizes the data likelihood.

15

9|F1~[=0]0]/|A|£]Ww

Figure 2.1: Examples of images from the mnist-rot dataset.

2.1.2 Model Performance

To establish a baseline for the future chapters, we apply the model to the mnist-rot dataset
[46]. The mnist-rot dataset is a variation on the MNIST dataset where all the images are
randomly rotated by angles uniformly generated between 0° to 360°. Some examples of
images from the mnist-rot dataset are shown in Figure 2.1. Classifying the images in this
dataset is difficult as some rotated objects are easily mistaken for digits that come from a
different class (e.g., the confusion between a digit 6 and a rotated digit 9. We will discuss
other difficult cases in Chapter 4).

We apply our model to the mnist-rot dataset. For the rotatable part layer, we use 200
parts of size 6 x 6 with 16 rotations. The rotatable object models are used to calculate
the likelihood for the part-representations of the images to perform the classification task.
It shows good performance on the mnist-rot dataset, achieving an error rate of 5.76%. In
Figure 2.2, we show a visualization of the learned rotatable object models trained with one
mixture component per class. The first row and the second row show the visualization of the
object models trained on the upright digits and the rotated digits respectively. Note that
the preferred orientations of the object classes are not known to the model when training
the rotatable object model. By allowing the learned rotatable object model to classify a few
upright digits and figure out the preferable orientation, we can easily correct the orientations

of learned object models, as is shown in the third row in Figure 2.2.

16

mnist-basic

0/]2]134516]7]12]9)

mnist-rot

0/ (L] 5]5 [é[A[=]q

mnist-rot (corrected

)
01/1213 1451671719

Figure 2.2: The first row and the second row show the visualization of the object models
trained on the images with upright digits and randomly rotated digits respectively. The
orientation-corrected object models are shown in the third row. Image source:[54].

2.1.3 Conclusion

In this section, we present a 3-layer feed-forward statistical model with rotatable features.
Such a statistical framework enjoys some of the advantages of the existing deep learning
architectures (including convolutional feature learning and weights sharing across spatial
locations), but it offers a much simpler and more interpretable model.

In our experiment, we incorporate rotation into the model, and we show that the learned
part models and the object models are explicitly rotatable. As a result, the output feature
maps in the part layer and the object layer are equivariant to a discrete set of rotations.
We note that this approach can generalize to any cyclic transformation, and the model can
explicitly capture the transformation in data. The layer-wise training approach makes it
possible to take advantage of the enormous amounts of unlabeled data when training for the
first two layers and the class-annotated data is only required for training the object layer.
During testing, if we conduct the likelihood-based test using the rotatable object models, not
only the class label but also the orientation of the object can be determined by our model.

The simplicity and interpretability of the statistical model are appealing as it follows
the statistical principle of likelihood and it is fast to train. It also shows strong results on
variations of the MNIST dataset, achieving an error rate of 5.76% on the mnist-rot dataset.

We will use this as a baseline model to compare with other models that we propose.

17

Localisation net Grid
™, generator

U O 5

Sémpléf'

Spatial Transformer

Figure 2.3: The architecture of a spatial transformer module. Image source:|[38].
2.2 Spatial Transformer Network

Spatial transformer network [38] proposes a spatial transformer module that contains a
localization network and a grid generator that can be trained to transform the input data.
By combining it with a regular convolution neural network, the spatial transformer network
can learn to not only actively transform the feature maps using spatial transformer module

but also resolve the downstream task using the rest of the network at the same time.

2.2.1 Model Architecture

The key idea of the spatial transformer network is to learn a spatial transformer module
that can perform transformation operations conditional on individual data samples before
feeding the data samples to the regular convolutional neural network to handle a certain
task. We show the architecture of a spatial transformer module combined with a regular
CNN in Figure 2.3. A localization network is trained to regress the transformation pa-
rameters # for a given input. Based on the transformation parameters, a sampling grid
To(G) is then generated by transforming the regular spatial grid G. A warped output can
then be produced by applying the sampling grid on the original input U, and it is further
passed to the downstream network to handle a particular task. The designed transformation

parametrization is differentiable with respect to the parameters, which allows the gradients

18

HEAEDOENNE BEEannnnan
sl a7zl afvféefald
HEDENRBAAE OFaEaaaaan
ool f=f-ls]-]v]o| - Wofolils]a]alv|wfof/
olelof ful]rlolclcQal3folq]v]rlglolb]é

Figure 2.4: The spatial transformer module can rotate and scale the images to a canonical
version of the images.

to be backpropagated to the localization network. Therefore, we can have an end-to-end
training procedure for the spatial transformer network, and all the model parameters, in-
cluding those of the spatial transformer module and the regular CNN, are trained under the
supervision of task-specific signals.

What is surprising about the spatial transformer network is that the spatial transforma-
tion actions can be produced for the individual data samples, and this behavior is learned
together with the training of the downstream task without additional supervision. This al-
lows the network to capture the most task-relevant region of the image, and then transform
it to a preferable form. Following the notation in Equation 1.1, we have the input x = Ty®
is a spatially transformed version of a canonical version of the image z. Therefore, the spa-
tial transformer module is learning a function f that can recover the canonical form of the
transformed image Ty, i.e., f(T,2) = 2.

In Figure 2.4, we show how the spatial transformer module recovers the orientations of
some image examples. On the left, we show the test images of handwritten digits that have
been randomly rotated, and the transformed (and subsampled) test images produced by the
spatial transformer module are shown on the right. As we can see from the figure, although
undesired rotations still exist in some examples, the orientations of the most images have

been corrected, especially for those example images of digits of class one.

19

2.2.2 Discussion

Intuitively, the correctness of the recovered transformation operation for an image should be
based on the class label of the image. As a result, the learned spatial transformer module
should first recognize the class label of the current image, and then try to extract the
transformation parameters by analyzing the pose of the image based on the class label.

To understand this, let us consider an example where the task is to classify images of
rotated handwritten digits of class six and class nine. Note that although the rotated versions
of the digits from these two classes have almost the same shape, they are still distinguishable
due to some habits that people have in common when writing them. For example, the upper
part of a digit six is usually more curved while a digit nine is often handwritten with a
straight stem, and a digit nine is sometimes disambiguated by an underline. To correct the
orientation of an image of rotated digit of class six, a spatial transformer needs to recognize
it as a digit of class six rather than a digit of class nine before producing the transformation
parameters. Otherwise, it is possible that a different transformation would be produced to
rotate the image to look like an image of digit of class nine. There are some more such
examples that will be discussed in Chapter 5. Therefore, we argue that sometimes the
proper spatial transformation is undefined, and an accurate estimate of transformation is
not possible unless the image label is captured.

However, in the spatial transformer network, we do not have separate spatial transfor-
mation modules for examples from separate classes. Instead, only one spatial transformer
network is learned to produce the transformation actions for all images without knowing the
labels of the images. Since the localization network itself has the architecture of a regular
CNN, it is not invariant or equivariant to transformations such as rotation and deforma-
tion. It raises a question of whether the spatial transformer module distinguishes the class
labels of the images before transforming them. In fact, it is not surprising that the spatial

transformer module does not contain much information about the class labels. Otherwise,

20

IIIIHIEII lllﬂﬁﬂ.lﬂ
Figure 2.5: The spatial transformer module is sensitive to random clutter if they do not exist
in the training data.

we would not need the downstream CNN network to handle classification task.

2.2.8 FExperiment

We design several experiments to investigate the properties of the spatial transformer network
and evaluate the performance of the model.

In order to verify if the spatial transformer recognizes the class labels before classifying the
images, we conduct the following experiment. We train a spatial transformer network using
images of shifted objects and take the output of the second last fully connected layer (the layer
before the final layer that produces transformation parameters) in the localization network
as the feature representations for each image. Then we train a SVM classifier to classify an
image based on the feature representations of that image. We find that the trained SVM
classifier has a poor classification performance that is barely better than a random guess.
This indicates that the fully connected layer in the localization network does not contain
much information about the class labels. A possible conjecture is that the localization
network estimates the location of the pixel intensity blob and its rough orientation and
scale, and the transformation matrix is produced based on that. To verify this, we randomly

add some clutter to the test images and apply the spatial transformer module to generate

21

transformation operations for the images. Note that such random clutter is not observed
in the training data, and the spatial transformer network is trained on images with a clear
background. In Figure 2.5, we show that the spatial transformer module is sensitive to
random clutter in the background if such clutter does not exist in the training data, and it is
difficult for the spatial transformer module to recover the orientations of the image objects
when such random clutter exists in the background.

On a separate note, we find that a spatial transformer module can be explicitly trained
to regress the transformation parameters when the target values of the transformation pa-
rameters are provided as the supervised signals during the training.

To establish a baseline for the future chapters, we train a spatial transformer network on
the mnist-rot training dataset [46] and apply the model to classifying the rotated images.

We achieve an error rate of 5.71% on the mnist-rot test dataset.

2.2.4 Conclusion

The idea of learning to recover the reference poses of the images together with the down-
stream tasks proposed in the spatial transformer network is appealing. Ideally, the nuisance
factors of variations such as rotation, shifting, and deformation can be decoupled from the
task-specific networks, which would make the problem easier for the task-specific networks.
The self-contained spatial transformer module can be easily combined with a regular CNN,
and it can be trained in an end-to-end fashion.

However, as we discussed above, such a framework is flawed, as the proper spatial trans-
formation cannot be perfectly recovered by a regular CNN. We show that, in some cases, a
proper reference pose of an image is difficult to estimate or even undefined if the class label
of the image is not recognized first.

Therefore, we argue that architectural changes to the existing deep learning models are

necessary if one wants to recover the reference poses of the images. In the next few chapters,

22

we propose different approaches to deal with transformation variations in the data.

23

CHAPTER 3
TRANSFORMATION-INVARIANCE VIA STUDENT
TEACHER LEARNING

3.1 Introduction

As we mentioned above, the most common and convenient way to achieve the transforma-
tion invariance for the various models is through the use of data augmentation. Different
transformed versions of the original data can be collected and used for training the models.
The more variations of the data are observed, the models will become more transformation
invariant. By augmenting the training data using different approaches [20, 45, 18, 17, 77], it
has been shown that such methods can achieve significant performance improvement.

Despite the success of this approach, it has two drawbacks. First, such an approach
usually requires us to either create or collect the transformed data from some existing labeled
dataset. When a certain transformed version of the data is difficult to create or not readily
available in the existing labeled dataset, we are no longer able to adopt such approaches.
Second, it is usually difficult for such an approach to take advantage of unlabeled data, which
contains an enormous amount of variations that could be useful for vision tasks.

In this chapter, we propose a procedure to learn a deep neural network that could achieve
transformation invariance and take advantage of training examples that are not necessarily
labeled. We call a learned network transformation invariant if the network can produce
the same feature maps even though the input has been transformed. To achieve this goal,
we adopt the student-teacher learning framework [4, 36] for our model and pairs of two
unlabeled training images, one canonical image and one transformed version of the same
image, are provided for training the student network. Given a pre-trained teacher network,
we use the mid-layer representations of the canonical input as the supervisory signals, and the

student network is trained to reproduce the same mid-layer representations when operating

24

on the transformed version of the input. As a result, the learned feature maps will be robust
to transformations. Moreover, only the shallow layers need to be trained to adapt to the
transformed data while the downstream task-specific layers of the network do not need to
be retrained or fine-tuned. Therefore, labeled data are not required for training the student

network.

3.2 Related work

Recently, a model distilling approach was proposed to compress multiple pre-trained models
into a single one [4, 36] or to perform knowledge transfer from a (complex) model to another
(simple) one [65]. By using a student-teacher learning mechanism, training of a student
model is guided by the soft targets produced by a teacher model. The idea is to train the
student network to capture not only the class information provided by the labels but also
the finer structure learned by the teacher network.

Besides the successful application on compressing the pre-trained models, this training
mechanism has also been used for supervision transfer tasks [26]. A student model can be
trained for vision tasks where the images have a different image modality. One can train
the student model to reproduce the mid-level semantic representations learned from a well-
labeled image modality for modalities for which there are paired images and less well labeled
(e.g., depth images, optical flow images, etc.). This allows the model to use the paired images
of the two modalities and utilize the mid-level representations from the labeled modality to
guide the representation learning on the other unlabeled modalities.

In this project, we are inspired by the student-teacher learning mechanism and apply it
to the context of transformation-invariant feature learning. We use the mid-level represen-
tations from a teacher network as the supervisory signals, and teach the student network to

reproduce the feature maps when the input is a transformed version of the same image.

25

3.3 Method

A state-of-the-art deep learning model has already done an excellent job finding features
that are useful for a vision task. However, the features learned by such deep neural nets are
sensitive to transformations that were not observed in the training data, and the network
might produce a different feature map if we transform the image. Therefore, our intuition
is to build a deep learning model to produce the same feature maps even if the input is
transformed. The mechanism of learning such models is presented in Figure 3.1.

More specifically, as we can see from the figure, the model architecture contains a com-
bination of two networks: A teacher network that gives the state-of-the-art performance for
the original dataset; and a student network that tries to “de-transform” the feature maps
of the transformed version of the data. By doing this, the feature maps generated for the
transformed data and the canonical data by the student network and the teacher network
become close. To achieve this goal, we match the feature maps of two networks by regressing
the outputs of the matching layers using Lo loss, i.e., the training of the student network
is guided by the soft targets produced by the teacher network at a particular layer. When
the soft targets have high entropy, it usually provides more information than a simple hard
target. Note that no label information is required during training as the model only learns
to regress the output of the intermediate feature maps. After training, the student network
can append the downstream task-specific layers from the teacher network to perform a given
task without retraining.

Training such a model requires a two-step approach: we first train a state-of-the-art
deep learning model or take an existing model that gives a good performance on the given
task. We freeze the weights of the model and refer to it as the teacher network. Then we
build a d-layer student network that has the same architecture as the top d layers of the
teacher network. During training, a canonical version of the input is presented to the teacher

network, and the feature map of the image can be extracted at the d-th layer. Meanwhile,

26

Teacher Network: A fixed Student Network: The network that learn
state-of-art network to produce the equal feature maps from
transformed data

5 B

Layer 1 Layer 1
Layer 2 Layer 2

| |

X

Layerd Layer d

Layer d+1

_#
|

Prediction

Figure 3.1: We show the joint architecture of a transformation-invariant deep neural net by
student-teacher learning. The left one is the teacher network that achieves state of the art
for a given task, and the right one is a student network that needs to be trained. During
training, the teacher network will take a canonical image as the input while a transformed
version of the same image will be created and passed to the student network. Guided by the
supervisory signal from the output from the d-th layer of the teacher network, the student
network learns to reproduce the same feature maps by regression. After training, the student
network will append the learned d layers with the downstream layers of the teacher network
(d+1...,n layers) to perform a given task.

27

a transformed version of the input is presented to the student network, and it will take the
feature outputs from the d-th layer of the teacher network as the soft targets for regression.
In our experiment, we simply use the Euclidean distance between the desired feature output
and the generated feature output as the loss function.

During testing, the top d layers of the student network will be connected to the down-
stream layers of the teacher network to perform a certain task. As the student network
learns to reproduce the output of the teacher network and “de-transform” the feature maps
for a transformed input, the downstream layers of the teacher network are not required to
be further fine-tuned or retrained for the task.

A natural choice of the matching layer would be the last layer, where the class probabili-
ties are produced by the original model. The student network will learn to produce the same
class probabilities when a transformed version of the input is given. It is worth noting that
it only makes sense to use the class probabilities as the soft targets when the transfer dataset
consists of the data from the same set of classes. If the transfer dataset contains unlabeled
data from a different dataset and we want to learn the transformation-invariant filters for
local patterns, it would be more appropriate to use the feature maps on the shallower layers
as the soft targets. The choice of matching layer depends on the level of transformation

invariance we want to learn. We will explain this more in detail in the next section.

3.4 Image Deformation

We want to show that the student-teacher learning mechanism can help achieve invariant
representations for different types of transformations, including rotations, translations, as
well as random deformations that are not well defined. The rotated version and the translated
version of an image are usually easy to acquire, but it is unclear how to perform random
deformations for an image. In this section, we adopt the framework of image deformation

parameterization introduced in [1], and we show how to generate randomly deformed images

28

by generating smooth random deformation functions. To do so, let us first review some key
concepts of the wavelet basis functions, and we will see how this can play a part in generating

deformed images.

3.4.1 Function Parametrization by Wavelet Bases

An wavelet basis is an orthonormal bases of functions that can be used to parametrize
functions, and it is especially suited for a coarse-to-fine function parametrization.

For example, let us first consider the 1D wavelets on the unit interval. Basis functions of
a 1D wavelet with S levels can be organized hierarchically with 2% — 1 functions at each level,
where s = 1,2,....5. More specifically, at a given level s, a wavelet basis function indexed

by I =0,...,2571 — 1 as the shifting factor on the unit interval can be written as:

Vs 1(x) = g oz — 275710 (3.1)

and we have:

bso(x) = 265792y 4 (2079)a) (3.2)

where g (+) is called the mother wavelet. As we can see, all the basis functions can be
obtained by scaling, dilution, and shifting of the mother wavelet. As the level increases, both
the scaling on the mother wavelet and the possible values of [will increase, and it leads to
a finer resolution of the parametrization.

For 2D wavelets, the basis functions are still organized hierarchically with multiple levels.
To index the wavelet basis functions, in addition to the level parameter s and the shifting
factor [that are used in the 1D wavelets, an extra index « is introduced in the 2D wavelet
where av = 1, 2, 3 is used to indicate the horizontal, vertical and diagonal detail components.

More specifically, a 2D wavelet basis function on the unit square at level s can be written as

29

follows:

wa,s,ll,lg (:L’) = %,5,0,0(1’1 - 27(871)117 Ty — 27(571”2) (3.3)

where o = 1,2,3 and I1,l5 = 0,...,25"1 — 1. Similarly, VYa,s.0q,lo 18 @ scaling, dilution and

shifting of the mother wavelet v, 5 o, and we have:

as.00(@) = 2579, 60,026 z) (3.4)

In the 1D and 2D wavelet bases, the basis functions with low levels are smooth functions
that describe global variations whereas the basis functions with high levels describe more
local variations. Therefore, such a hierarchical organization of the basis functions is naturally
suited for coarse-to-fine parametrization of functions. In the next section, we will describe
how we can take advantage of this property and use the 2D wavelet basis functions to
parametrize image deformations. Note that a particular form of the mother wavelet (¢
for the 1D wavelet and v, g for the 2D wavelet) needs to be carefully chosen in order
to make the basis functions orthonormal. In this work, we use the family of Daubechies

wavelets as the basis functions for parametrizing the functions.

3.4.2 Create Deformed Images

Let us consider the image domain D as a continuum. An original image can be defined on
the domain D by F(z*), where % € D. One can introduce a smooth deformation function
¢, mapping from D to D. Therefore, a deformed image associated with the deformation
function ¢ can be expressed as F(2!) = F(2%) = F(¢(z!)), where 2! € D. In this case, for
any point in the original image F, gbfl will deform it to the corresponding position in the
image F.

To make it easier to work with, we define a displacement field as U(z) = ¢(x) —x. When

U(x) =0 for Yz € D, then ¢(-) is an identity map. As described in [1], in order to preserve

30

Figure 3.2: Visualization of some randomly-deformed training examples from the MNIST
dataset. Although some parts of the class object are distorted, they look like different
instantiations of an object coming from the same class.

the topography of the image after deformation and introduce a smooth deformation function,
one can use wavelet basis functions to obtain a natural coarse-to-fine parameterization of the
deformations. Therefore, denote U (1), U®) as the two components in the 2d displacement

field, we have the following:

d
@) =3ty (a), g = 1,2 (3.5)
k=0

for some finite d, and 1)}, is the 2D wavelet basis function. Here k = (a, s,11,19) is a four-
parameter index for the 2D wavelet basis function. Note that we have the 2D wavelet basis
function 1y 1, 1,(z) defined in Equation 3.3, where a = 1,2,3 represents the horizontal,
vertical and diagonal detail components respectively, and {1,ly = 0,...,2571 — 1 represent
the shifting factor. We can thus parametrize the random displacement field by setting the
coefficients of the basis functions with values that are independently Gaussian distributed
with mean 0 and variance 1/\s. Ag will change according to s, which is set to maintain

the smoothness of the function. Note that as s increases, the basis function focuses more

31

Figure 3.3: Visualization of some randomly-deformed training examples from the CIFAR-10
dataset. Although some parts of the image object are distorted, they look like different
instantiations of an object coming from the same class.

on the local regions with smaller supports. The basis functions with low levels are smooth
functions that describe global variations. In order to enforce the smoothness of the random
displacement field, we impose Ags = 2P so that the variance of the coefficients would descrease
as s increases. In this way, the displacement field represented by Equation 3.5 is smooth.
In order to make the random displacement field more smooth, we further set the coef-
ficients of the basis functions with high levels as zero, and randomly generate coefficients
with Gaussian distribution with zero mean and variance of 1/\s for basis functions with low
levels. After that, we can get the pixel values for the deformed images by referencing the
displacement field map and bilinear interpolation. We show the randomly deformed images
from the MNIST dataset and the CIFAR-10 dataset in Figure 3.2 and Figure 3.3. For the
deformed handwritten image in Figure 3.2, we show examples of images deformed from an
original image of digit zero and an image of digit five. As we can see, these images are very
similar to those in the original dataset, and they are essentially different instantiations of the
same image. It would be valuable to find some feature representations that are invariant to

deformations like these. Deformations on the natural images make the images less realistic

32

in Figure 3.3, but they can still be easily recognized as the different instantiations of the

same image.

3.5 Experiment

We conduct several experiments on the MNIST dataset and the CIFAR-10 dataset using
the student-teacher training mechanism and compare our results to the methods that do not
use such a training mechanism. In order to eliminate the possible transformation invariance
learned from the original dataset, we limit the number of training examples for training
the teacher network. We use the MNIST1000 (first 100 images per class from the MNIST
training dataset) and the CIFAR-10(10k) (first 1000 images per class from the CIFAR-10
training dataset). For the MNIST1000 dataset, the architecture we select for the teacher
network achieves an average error rate of 3.17% on the original test set, and we achieve error
rates of 19.12% for the CIFAR-10(10k) dataset using our selected architecture.

In this section, we experiment with the student-teacher training approach and see how
well it can handle the data with rotations and random deformations. We also show how it

can be applied to the unlabeled data.

3.5.1 Training with Pairs of Rotated Images

To evaluate the model performance on a transformed dataset, we create a rotated test dataset
for each of the datasets: for each image in the test dataset, we create five different rotated
images with randomly selected degrees from —20° to —5° or from 5° to 20°. If no augmented
data is allowed for training, then the teacher network trained on the original MNIST1000
dataset achieves an average error rate of 6.4% on the rotated test set and the teacher network
trained on the original CIFAR-10(10k) dataset achieves an average error rate of 25.72% on
the rotated test set.

We then start to experiment with the student-teacher training approach as well as the

33

Table 3.1: Experiment Result on MNIST1000 with rotation (100 images per class; 5 tries
for each experiment)

Model Description Result
Original Model (test on original test 96.83%
set)
Original Model (test on rotated test 93.60%
set)
Model tra}n.ezd with augmented data 97.52%
(test on original test set)
Model trained with augmented data 96.81%

(test on rotated test set)

Trained Student Network on Different | Last Conv First ~ Fully | Second Fully Con-

Layer as Soft Target Layer Connected nected Layer (be-
Layer fore softmax)

Student Network trained on

MNIST1000 (test on original test | 96.97% 97.54% 97.72%

set)

Student Network trained on

MNIST1000 (test on rotated test | 94.41% 96.57% 96.92%

set)

data augmentation approach. When training the student network, we first determine which
layer of the teacher network is used as the matching layer. During training, a pair of images
will be presented to the teacher network and the student network separately. The teacher
network will take the canonical version of the input and produce the feature maps at the
matching layer as the supervisory signal for the student network. A random rotation with a
degree from —20° to 20° is applied to the same input image, and the rotated image is passed
to the student network as the input. An L2 loss is used to guide the student network to
produce the same feature maps for the matching layer even though the input is randomly
rotated. To compare with the traditional data augmentation approach, we also train a CNN
on an augmented dataset. We augment the original training data by randomly rotating the
images with a degree from —20° to 20°, and the amounts of the training data for the both
approaches are the same.

How much do we gain if we adopt the student-teacher training mechanism, compared
to the traditional training approach and other simple transformation-invariance training
approaches such as the data augmentation approach? In Table 3.1 and Table 3.2, we show

34

Table 3.2: Experiment Result on CIFAR-10(10k) (1000 images per class)

Model Description Result
O?lg'lnal Model (test on 80.88%
original test set)

Original Model (test on 74.28%

rotated test set)

Model trained with aug-
mented data (test on orig- 81.60%
inal test set)

Model trained with aug-
mented data (test on ro- 78.00%
tated test set)

Second
Trained Student Network Last Conv First Fully | Fully Con-
on Different Layer as Soft Layer Connected nected Layer
Target Layer (before

softmax)

Student Network trained
on CIFAR-10(10k) (test | 75.04% 79.91% 81.40%
on original test set)

Student Network trained
on CIFAR-10(10k) (test | 76.29% 80.34% 80.71%
on rotated test set)

results of experiments on the MNIST1000 dataset and the CIFAR-10(10k). We observe
that both the data augmentation approach and the student-teacher training approach can
improve the performance of the original model on the original test set and the rotated test
set. The student-teacher training mechanism achieves comparable performance with the data
augmentation approach. Especially when tested on the rotated test set, the student-teacher
training mechanism achieves a slightly higher accuracy on both datasets. We also show that
the deeper layer we use as the soft target, the better accuracy the model achieves. This
is expected because more class information is conveyed by each neuron in a deeper hidden
layer. We note that the choice of the matching layer depends on the level of transformation
invariance we want the model to learn. Unlike the units in the fully connected layers, a unit
in the last convolutional layer only extracts a pattern for a local receptive field. Therefore,
we can only learn transformation invariance in a local region if we use the last convolutional

layer as the matching layer.

35

Sy, ®:...
:.':;g... ----- ...

£ 90% - ol ..,

a

()] .

c e,

= e, .

3 80% e ’

[°

8 RN) S

o .,

£ 70% 1 :

et ‘e,

E=] ‘e,

c .o

5 ... we

> ‘e

8 60% 1 --e- Our Approach - Last Conv Layer W,

3 Our Approach - 1st FC Layer .

< «- Our Approach - 2nd FC Layer -

50% - --*- Data Augmentation R

«- Original CNN e
10 20 30 40 50 60 70 80 90

Range of Rotation Degrees in the Testing Data

Figure 3.4: Classification accuracy rates by different methods when tested on the MNIST
test datasets that contain different ranges of random rotation. Each model is trained on the
MNIST1000 training data augmented by —20° to 20° random rotations.

As is shown above, both the data augmentation approach and the student-teacher training
approach can improve the performance of the original model on the original test set and
rotated test set. One interesting question is that when the models are trained on a dataset
of images that are rotated by degrees within a certain range, how does the performance
change when the testing data has a wider or narrower range of random rotations? To answer
this question, we train the models on a fixed training dataset of rotated images (where
the images are randomly rotated with degrees from —20° to 20°), and we want to explore
the performance on the test datasets that contain different ranges of random rotations. In
Figure 3.4, we observe that the performance of all approaches drops dramatically when the
test images have a wider range of random rotation. The performance degradation of the
student-teacher training approach and the data augmentation approach are similar, and
both of these two approaches outperform other approaches by a big margin. We also show
the accuracy result by a CNN baseline model that is trained on the MNIST1000 dataset
without any data augmentation. As we expected, the conventional CNN trained on the

original dataset is not able to observe much variations in the data and therefore produces

36

the worst results among the approaches we proposed.

0° 6 120 18° 24° 30°
71717177 |7
0P70107 71717

-30° -24° -18° -12° -6°

Original > > 7 7 7
Reconstrution 7 ;’ 7 7

Orginl ZlZjlzjyzjeritririrv)v
Reconstrution a & L L L 2. L 4 4
- II
Reconstrution / / ' / ' '

Figure 3.5: Visualization of the reconstructed image by the student network.

In order to show that the student network learns to “unrotate” the feature map, we use
the teacher network as the encoder network and learn a decoder for the teacher network to
reconstruct the input images. After learning the decoder for the teacher network, we connect
the student network with the learned decoder and construct a new autoencoder for image
reconstruction. As the student network tries to produce the same bottleneck representations
regardless of the rotation of an image, ideally the reconstruction of a rotated image will be
an upright version of the image. In Figure 3.5, we show some examples of reconstructed
images when rotations between —30° to 30° are applied to the input images. Although the
reconstructed images are not exactly the upright versions of the original image, we observe
that the student network still manages to correct some rotations in the images, especially

for those rotated versions that are close to the original input image.

37

3.5.2 Training with Pairs of Randomly Deformed Images

To show that the student-teacher learning mechanism can learn representations that are
robust to other types of transformation, we want to apply our approaches to images with
random deformations. Following the procedure we introduced in Section 3.4, we create a
deformed MNIST test dataset: for each image in the MNIST test dataset, we create five
different deformed images. Using an original CNN that trained on the MNIST1000 dataset,
the model makes an average of 4.65% test error on the deformed test set.

We then train the model using the data augmentation approach and the student-teacher
approach. Similar to the experiment above, when training the student network, we present
a canonical image to the teacher network for feature extraction and a deformed version of
the same image for training the student network to produce the same feature maps. We also
train a regular CNN using the data augmentation approach, where the data is augmented
with images that are randomly deformed. The amounts of the training data we use for the
both approaches are the same.

We show the experiment results in Table 3.3. The data augmentation approach and the
student-teacher training approach further improve the result on the MNIST1000 dataset,

and both achieve error rates that are close to 2%. We also observe that the student network

E EENEHNEE S EEEER

Figure 3.6: Visualization of the filters learned by the teacher network and student network
when choosing the last convolutional layer as the soft target. The left are the visualization
of the filters bank learned by the teacher network, and the right are the visualization of the
filters bank learned by the student network.

38

Table 3.3: Experiment Result on MNIST1000 with deformation (100 images per class; 5 tries
for each experiment)

Model Description Result
O1.r1g.1na1 Model (test on 96.83%
original test set)

Original Model (test on 95.35%

deformed test set)

Model trained with aug-
mented data (test on orig- 97.98%
inal test set)

Model trained with aug-
mented data (test on de- 97.25%
formed test set)

Second
Trained Student Network Last Conv First Fully | Fully Con-
on Different Layer as Soft Layer Connected nected Layer
Target Layer (before

softmax)

Student Network trained
on MNIST1000 (test on | 97.03% 97.69% 98.01%
original test set)

Student Network trained
on MNIST1000 (test on | 95.72% 97.02% 97.40%
deformed test set)

achieves better accuracy performance when we use the deeper layer as the soft targets, which
is consistent with what we observed in the previous experiments.

We compare the convolution filters learned in the student network and the teacher net-
work. Let us consider the case where we use the feature maps of the last convolutional layer
as the soft target. In Figure 3.6, we show the visualization of the filters learned by the two
networks when the MNIST1000 dataset is used as the transfer dataset. The visualizations
are obtained by taking the weighted average of image regions that have positive activations
on the neurons. The filter visualizations from the student network on the right have similar
but much blurrier patterns comparing to those learned by the teacher network. For a par-
ticular local pattern that activates a unit in the teacher network, we expect a corresponding
unit in the student network should also be triggered by a transformed version of this pat-
tern. Therefore each unit in the student network detects patterns that have a wider range

of variations, yielding a much blurry visualization.

39

3.5.8 Training with Pairs of Unlabeled Data

One of the advantages of the student-teacher training mechanism is that it can be trained
with unlabeled data. We create an unlabeled dataset where each unlabeled example is gener-
ated by randomly sampling a 10 x 10 subregion from the original images in the MNIST1000
dataset and putting this patch at a random location of a blank image with a black back-
ground (see some examples in Figure 3.7). We use the generated unlabeled data as the
transfer dataset to train the student network. Since the generated images contain only the
local regions of the original images, it helps the student network to learn the transformation
invariance for local patterns.

To show the advantage of using the unlabeled data, we conduct the following experiment:
We train a regular CNN model using an augmented MNIST1000 dataset where images are
randomly rotated during training, and we achieve an accuracy rate of 98.58% on the rotated
test images of digits of class one. The model performance drops to 96.75% if we train the
CNN model using the augmented MNIST1000 dataset where all images are randomly rotated
except those from digit class one (images of the canonical version of digits of class one are still
shown to the model). However, if we train a student network with the unlabeled data that

contains 10 x 10 subregions sampled from images of all classes except digit one, the network
.

Figure 3.7: Five pairs of generated unlabeled images. Top row shows images that contain
10x 10 subregions sampled from the MNIST1000 dataset. Bottom row shows rotated versions
of images in the top row.

still has an average of 97.52% test accuracy on test images of rotated digits of class one.
It is only 0.2% worse than the performance of a student network trained on the unlabeled
images of subregions sampled from all classes. It is possible that the transformation-invariant
representations learned from subregions of images from other digit classes (e.g., digit seven
and digit nine) are sufficient, so that the student network does not need to see examples
from digits of class one to “unrotate” the feature maps for rotated digit ones.

In addition to that, we can also use a different dataset where the class labels are different
from those of the transfer dataset. For example, for the CIFAR-10 dataset experiment,
we can use images from the CIFAR-100 dataset as the unlabeled data. During training, a
regular CNN pre-trained on the CIFAR-10 dataset is used as the teacher network, and the
student network is trained to match the feature maps of the CIFAR-100 images produced
by the teacher network. We observe that the accuracy rate on the rotated CIFAR-10 test
set improves to 75.91% if we use the CIFAR-100 dataset as the transfer dataset, compared

to an accuracy rate of 74.28% achieved by the original CNN model.

3.6 Conclusion

In this work, we adopt the student-teacher training mechanism to learn a deep neural network
that is invariant to general types of transformations. Using the output from an intermediate
layer as the soft targets not only enables the trained student network to remain robust to
the task-irrelevant transformations but also provides a way to use enormous amounts of
unlabeled data to provide such robustness. Especially when the image transformation is not
well defined or producing an augmented dataset that has such transformation is not possible,
our mechanism can be helpful as long as a training set with paired training examples (each
pair contains the canonical form and the transformed version of an example) is provided.
For example, such paired training examples can be extracted from image sequences of video

clips, or paired images taken by cameras in different positions, etc.

41

We were not aware of the work on cross-modal distillation by Gupta et al.[26], which
has a similar network architecture with our proposed model. However, their work mainly
focuses on training a CNN model for a new image modality by teaching it to reproduce the
same mid-level representations from a well-labeled image modality when operating on the
same image objects. In our work, we mainly investigate whether this kind of student-teacher
learning mechanism allows the learned network to be robust to local transformations and

produce the same mid-level representations even when the images are transformed.

42

CHAPTER 4
DEEP LEARNING WITH OPTIMAL INSTANTIATIONS

4.1 Abstract

One of the challenges for object recognition is the extraneous variations in the data, such
as shifting, rotation, and deformation. In this paper, we design a framework for training
deep neural networks with optimal instantiations, where latent variables are introduced,
separately for each class, to effectively remove nuisance transformations in the data and
allow the model to obtain a reference pose for the object that is being classified. We apply
a two-step training mechanism for our framework, which alternatively optimizes over the
latent variables and the model parameters to minimize the loss function. We show that
CNNs trained using our framework achieve state of the art results on the rotated MNIST
and the Google Earth dataset, and produce competitive results on MNIST and CIFAR-10

when trained on subsets of training data.

4.2 Introduction

In recent years, machine learning algorithms that involve deep architectures have gained pop-
ularity. The expressiveness of deep networks allows the models to explore possible variations
in the data and learn visual representations that are robust to task-irrelevant variations.
However, such variations need to be observed in the data when training deep neural net-
works, as the traditional networks without special design do not generalize to unobserved
variations in the data. It would become much easier for downstream tasks if such task-
irrelevant variabilities can be removed from the data.

In order to learn transformation-invariant representations, many have sought to apply
data augmentation approaches in deep learning, where transformed versions of the original

data are generated to allow the learned deep neural network to be robust to data transfor-
43

mations [20, 18, 45, 17, 77]. One can also consider a set of possible transformations and
explicitly transform the filters so that the feature maps are invariant to the selected types
of transformations [78, 75, 50, 82]. Another family of approaches tries to generalize convolu-
tional architectures by either extending the feature space to a group space of transformations
[22, 15], or warping the input so that the transformation equivariance is implicitly encoded
[32]. These approaches are limited since they are either limited to a small set of transfor-
mations, or they need to keep the models shallow because of the high computational burden
required to consider additional transformations in the feature map.

Spatial transformer networks (SPN) [38] try to remove extraneous transformation vari-
ability a priori by introducing a spatial transformation module that is trained to recover
the transformation of the input image and convert it to a canonical pose, independently of
the underlying class, before feeding it to downstream layers. However, we argue that the
transformation is not easily predicted directly from the image, and varies depending on the
class label.

We present a novel extension of the deep learning framework to recover the optimal
instantiations of the data while training for the downstream tasks. In our framework, latent
variables are introduced, separately for each class, to capture the transformations of the
data, and we apply a two-step training mechanism to alternatively optimize over the latent
variables and the neural network model parameters to minimize a designed loss function. We
emphasize that the latent variables are optimized for each class separately. Consequently,
unlike SPN that produces a single transformed version of the original input, here we produce
a transformed version for each class. The transformation is not predicted directly from the
data, rather, for each class it is estimated to optimize the output of the unit representing
that class.

We show that this framework can be easily applied to any existing neural network ar-

chitecture and offers flexibility on the types of transformation considered by the model. We

44

sH4 5 4

Figure 4.1: A rotated image of digit five can be further rotated to look like instantiations
from digit class four, five, six and nine.

apply our framework to the training of convolutional neural networks, and present compet-

itive results on mnist-rot, CIFAR-10, and the Google Earth dataset.

4.3 Background

In this section, we provide some background on spatial transformer network and discrimi-
native latent variable models. In the sequel, we shall show the intuition of why the spatial
transformer module cannot accurately estimate data transformations without capturing the
data labels in some cases, and how we can overcome this problem by introducing latent
variables to the model.

Spatial Transformer Network (SPN) [38] proposes a spatial transformer module
that contains a localization network and a grid generator that can be trained end to end
with a regular network. The localization network is trained to regress the transformation
parameters for a given input. The grid generator creates the spatial grids based on the
transformation parameters and warps the input feature maps accordingly. By combining the
spatial transformer module with a regular convolution neural network, the whole network
learns to produce spatial transformations for individual data examples during training for
the downstream task.

However, sometimes the proper spatial transformation is undefined, making it difficult to
estimate for the spatial transformer module. For example, in Figure 4.1 we show an image of

rotated digit five and how it can be rotated to look like instantiations of different digit classes.

45

Intuitively, the spatial transformer module should recognize the class label of the image, and
then extract the transformation parameters by analyzing the pose of the image object based
on the class label. Therefore, we argue that an accurate estimate of transformation is not
possible unless the image label is captured. In SPN, as the class labels of the images are not
fully captured by the spatial transformer module (otherwise we do not need a downstream
network to handle the classification task), the spatial transformer module cannot produce
accurate spatial transformation for the input.

Discriminative Latent Variable Models: Introducing latent variables to discrimi-
native models has been extensively studied in the framework of multiple instance learning
(MIL), where the latent variables are used to capture the variations of many instances within
a same labeled bag. The MI-SVM formulation of multiple instance learning was initially pro-
posed in [2], and later reformulated as latent SVM in [21]. It considers a binary classifier
that scores an example x as follows:

fp(x) = max 8 - ®(x,2) (4.1)

Z

Here f3 is a vector of model parameters, ®(x) is the feature extraction function for x and z
are latent values. The label for x can be obtained by thresholding the score.

In a similar vein, in this paper we incorporate latent variables into deep neural networks
to capture the transformations of the input. The input image is warped for each class
separately based on the latent values that optimize its output on that class. In training, this
is done for the entire batch using the old network parameter values, and then one or more

gradient steps are taken to update the network parameters.

46

4.4 Method

We consider a multi-class classifier that scores an example x for every class as follows:

f;(x) = max 5 - @g(Tz(x)) (4.2)

Here (; is a vector of model parameters for class j, @y is a feature mapping function
parametrized by 6. The latent variable z is introduced to parametrize the transformations
of the data and T,(-) transforms the input according to the value of z. The label ¢ of each

example is then determined by

¢ = arg mjax I3, (x). (4.3)

For a test example, the model finds a separate optimal latent value for each class in terms of
the output corresponding to that class. The class output with highest value yields the final
classification. Together with that classification, we also obtain an optimal transformation of
the image into reference pose.

Intuitively, in order to make the correct prediction, we want the score of the target
class to be larger than the scores of the non-target classes. As a result, we can optimize
over the model parameters and maximize the margin between fz (x) and I3, (x) for j #y.
Suppose we have a set of observations x = {xq,...,xn} and the corresponding data labels

y = {¥y1,.-.,YN}, we use the multiclass hinge loss as follows:

L(©) = Z max(0, 1 + max F5,(x3) = fay. (x) + AI6]% + Z 16;11%) (4.4)
J

1

where © = {6, 1,...,B¢c} are the model parameters and C' is the number of classes. A is
the parameter that controls the regularization term [|f]|? + 25 ||BJ-||2.
The key step in our method is to find the optimal instantiations of each example for

separate classes. At first glance, it might seem that it would be simpler to forgo the non-

47

target classes and only focus on finding the optimal instantiation of the example for the
target class. We note, however, that such an approach is often insufficient. Recall that
an image can be transformed to look like instantiations from a non-target class, like the
examples we show in Figure 4.1. Without competing with optimal instantiations of the data
from non-target classes, the model might not be learning from the most competitive negative

examples.

4.4.1 Optimizing the Training Loss

In order to minimize the hinge loss in Equation (4.4), we design a two-step training mecha-
nism. For each example, the algorithm finds the highest scoring latent values for each class
based on the current model parameters. Then the algorithm optimizes over the model pa-
rameters while fixing the latent values. We outline the procedure for the two-step training
algorithm in Algorithm 2.

When the latent variables form a discrete set, for example a finite set of rotations, op-
timization is performed by exhaustively search (ES). For continuous latent variables we
optimize fg, (x,z) from Equation(4.2) with respect to z by gradient descent (GD). We reg-
ularize the magnitude of z during optimization by penalizing its distance from the identity.
When the range of the continuous variable is very large, such as the 360 degree range of
rotations, we initialize the gradient descent at a small set of discrete initial rotations and
take that optimal value over all initializations (ESGD).

A different approach, which is a direct generalization of the original spatial transformer
model, is to use multiple spatial transformer modules (MSPN), one for each class, to directly
predict optimal values of z for each class during training and testing. Instead of optimizing
over z based on the gradient of the classifier output, in training this approach optimizes
over the neural network parameters that predict the transformation. Then in testing there

is no need for optimization as the optimal transformation for each class is predicted directly.

48

Algorithm 2 Two-Step Algorithm For Optimal Instantiation Learning

1: procedure

2: Choose an initial seting for the parameters ©°ld = {901‘1, B‘fld, - ,Bgd}.

3: Optimize Over z:

4: 2 j = arg maxy ﬁjf)ld - ®poia (Tz (x1))-

5 £(6) = Yoymax(0, 1+ maxg 4y, J, (%5) — f, () + A2 + 35 115512)
6: Optimize Over Model Parameters O:

7: 0,B1,...,8c =argming g, 3. L(O)

8: If the convergence criterion is not satisfied then

9: (gold — gnew B?ld — 5{16\7\77 o 68*1d « Bgew

10: and return to line 3.

11: Stop

Unlike SPN where only one spatial transformer module is trained for the network, this ap-
proach constructs a different spatial transformer module for each class, providing a different
latent value for each class. The downstream networks from each transformer module are all
tied until the final layer, where each one feeds into the corresponding class output unit, see
Figure 4.2.

The methods GD,ESGD and MSPN require us to parametrize the transformation function
in a form that is differentiable with respect to the latent variable so that we can use the
gradient to either directly update the latent variable or update the model parameters in the

spatial transformer modules.

49

4.4.2 Parametrization of Image Deformation

As we mentioned in the previous section, if we want to use the gradient to update the latent
variables, we need to parametrize the image transformation in a form that is differentiable
with respect to the latent variable z. In this section, following the idea introduced in [1] and
[38], we describe the general framework for the parametrization of image deformations.

Let us consider the image domain D as a continuum. An image can be defined on the
domain D by F(z®), where z° € D. One can introduce a smooth deformation function
¢, mapping from D to D. Therefore, a deformed image associated with the deformation
function ¢ can be expressed as F(2!) = F(z°) = F(¢(z!)), where ! = ¢~ 1(25) € D. In
this case, for any point z* in the original image F, ¢! will deform it to the corresponding
position 2! in the image F.

Now let us assume the deformation function ¢ is parametrized by z. We can provide a
kernel function defined on the domain of the prototype image to get a smooth version of

F(z'). Specifically, we can approximate the value of F(2!) as follows:

Flat) = /y WK (0l 2).0) dy (4.5)

Note that if K(¢(x!,2),y) = 6(¢(x!,z) — y) where 6(z) is the Dirac delta function, we
have F(z') = F(¢(zy)) = F(xs). We can calculate the gradient of F(z!) with respect to

as follows:

(ot (25 7 0 F(y)K(x%,y)d
o) R (am)) _ Dy POPE N _ [FoRE s w0

In SPN [38], the authors use the bilinear sampling kernel as K and denote D as the image

20

Spatial Transformation with Latent Variable Regular Deep Neural Network Class Scoring Function

“ .>:<
z1 n ()
- O _ P
(7] 29 ﬂ weight weight ﬁ 2
y sharing sharing
P
zZ
vV C ﬂ JBC'

Figure 4.2: Model architecture for deep learning with optimal instantiations.

grid, then Equation(4.5) can be expressed as follows:

F(a") =) F(y)max(0,1 - [af - yo|) max(0,1 = |27 — y1]) (4.7)
yeD

where (z§, z]) and (yo,y1) are the coordinates for x° and y. The gradient with respect to

OF (xt)

the coordinate of the original image, =5, can also be easily derived from Equation(4.6).

(ot (At
To calculate 8—}?%, the gradient with respect to z, we can apply the chain rule ‘2;@ =

Z
ot a
82’3(3383)%iz. We need to explicitly define a deformation function ¢ that has % = ¢(2?,z), and

83:3 b 8¢(xt7z)
2z Y "oz

then calculate . In this paper, we use 2D affine transformation and thin plate
spline transformation [9] as the two parametrizations for ¢. The gradient of ¥ with respect

to z can be easily derived from the definitions of the transformation parametrizations.

4.4.83 Model Architecture

We put all the pieces together and show the model architecture in Figure 4.2. It includes
three parts: a module for spatial transformation using latent variables, a regular deep neural
network, and a module with class scoring functions. Given an input image x, our framework

first produces the optimal latent value z; for each class j, and creates the corresponding

o1

transformed image ’sz (x). The different transformed versions of the image are then passed
to the weight-shared networks for feature extraction. Then the feature representation of the
input ®y(7z(x)) under each class j is passed to the last module to get the class scores. The
label of the example can be determined by selecting the class that has the highest score.
Depending on which approach we use to obtain z, the module for spatial transformation
marked as the red region in Figure 4.2 involves a different structure and procedure. For
MSPN the input will be passed to separate localization networks to predict latent values.
For ES, GD and ESGD, a different procedure is used: the model transforms the input based
on some initial values of z, then passes the transformed input to the rest of the network
to calculate the class scores or gradients so that the the latent values of z can be adjusted
accordingly. This procedure will be repeated multiple times before the module finds the

optimal latent values.

4.5 Experiments

We implement our model and perform experiments on the mnist-rot dataset, the CIFAR-10

dataset and the rotation angle estimation task for the Google Earth dataset.

4.5.1 The mnist-rot Dataset

The mnist-rot dataset is a variant of the MNIST dataset [46] that consists of images from
the original MNIST rotated by a random angle from 0° to 360°. The dataset contains 12000
training images and 50000 testing images.

We set the angle of rotation as the latent variable. We choose a CNN architecture
which can be trained to achieve a competitive result on the MNIST dataset. We initialize
the weights of the CNN model by training it on a subset of the original MNIST dataset
(first one hundred training image of each class). Then we train the CNN model with optimal

instantiations on the mnist-rot training data. We experiment with three different approaches

52

Rotated Image o € V Q ’V \ p

CNN with MSPN RS 71 &€ ’1,] =

CNN with ES

CNN with ESGD 0 a '7 é 2 , L/

Figure 4.3: Correct the image rotations using the latent rotation angles estimated by three
optimization approaches.

to optimizing over the latent variable including MSPN, ES and ESGD. In ESGD, we optimize
the latent variable z in parallel to avoid getting stuck on local optimum, where z is initialized
at eight different rotations, and each is optimized for ten iterations using gradient descent.
We choose the value of z that produces the highest score.

In Figure 4.3, we show some example images of rotated digits and their unrotated versions
corrected using the latent rotation angles estimated by the three approaches. Compared to
MSPN, the ES and ESGD achieve better estimates of the rotated angles. The exhaustive
search approach is more constrained since it can only search for a limited amount of rotations
(in this case every 45 degrees). The gradient descent approach can adjust the rotation
with an arbitrary angle, creating better rotation-corrected images. In Table 4.1, we show
the error rate achieved by different models. When using class-specific spatial transformer
modules to optimize over the latent variables (MSPN), we are able to achieve an error rate
of 2.64%, significantly improved from 5.71% achieved by the conventional SPN. Our best
result is achieved with ESGD, reaching an error rate of 1.25%. The state-of-art result 1.2% is
achieved by TI-Pooling [45], where 24 explicitly rotated versions of the images are presented
to the model for training and testing.

Our training framework allows the model to compare optimal instantiations of the image
under different classes and expand the margin between the score of the target class and the

highest score of non-target classes. To show why this is important, we conduct the following

93

Model Error (%)
TIRBM [72] 12
original CNN Model 4.1
Spatial Transformer Network (FCN) 5.71
TI-POOLING (24 rotations) [45] 1.2
CNN with MSPN 2.64
CNN with ES (8 rotations) 2.31
CNN with ESGD (8 initial rotations) 1.25

Table 4.1: The experiment results on the mnist-rot dataset.

experiment: We first train a traditional CNN model on 60000 training images of upright
digits from the original MNIST dataset with multi-class hinge loss. Then the trained model
can be plugged into our framework, and without additional training, we can use it to find
the latent rotation angles of the rotated digits under each class. We compare this approach
with the CNN model trained with optimal instantiations. In Figure 4.4, we can see that
although the optimal latent rotation angles under the correct class labels captured by the
two approaches are similar, the CNN trained using our framwork effectively suppresses non-
target class scores. While in the examples generated by the conventional CNN, we observe
some undesired spikes of the scores for the non-target classes, which will lead to incorrect
classifications. This approach achieves an error rate of 11.04%, which is far worse than any

result we showed in Table 4.1.

il Wl (L i ol e Ll il | |III"|I. """""‘

ﬂ “ E u H n e e e e e e '|||ll|||| e |||-||||I

Figure 4.4: Examples of rotation-corrected images for ten separate classes using a conven-
tional CNN trained on upright digits (bottom) and a CNN trained on rotated digits using
our framework (top). For each rotation-corrected image, the corresponding class scores are
shown on the right.

o4

Model Error (%)

CNN 3.17

SPN 4.9
CNN with GD (Thin Plate Spline) 2.00

Table 4.2: The experiment result on MNIST-100.

4.5.2 MNIST

We then train our model on the original MNIST dataset [47]. In order to limit the trans-
formation invariance that can be learned from the data, we only use the first 100 images
of each class from the training dataset (called MNIST1000). In order to capture the local
deformations of the data, we use the thin plate spline transformation as the latent variables.
Similarly, we first initialize the CNN model by training it on MNIST1000 dataset and then
train the model using our framework. In this experiment, we only use gradient descent (GD)
to optimize over the latent variables.

In Figure 4.5, we show the optimal images transformed by the thin plate spline transfor-
mation for different classes, where some of the transformed images look like instantiations
of other digit classes. As shown in Table 4.2, we are able to achieve an error rate of 2.0%

using our framework, which is a major improvement compared to results with the original

CNN or with SPN.

!
7
7
P22 2DA DS 22

Figure 4.5: Examples of optimal images deformed by the thin plate spline transformation
for different classes. The original images are shown in the first column.

95

4.5.39 CIFAR-10

Table 4.3: Experiment Result on CIFAR-10(400)

256¢3-256f, 1.6M params

Model Description Architecture Error, %
DCGAN (semi-supervised approach) [61] 26.2(40.4)
Exemplar-CNN (semi-supervised approach) [19] 64c5-128¢5-256¢5-512f 24.6(£0.2)
Exemplar-CNN (semi-supervised approach) [19] 92¢5-256¢5-512¢5-1024f 23.4(£0.2)
Steerable-CNN [16] 14 layers, 4.4M params 24.56
. 64¢3-64¢3-128¢3-128¢3-
CNN Baseline 28.43
256¢3-256f, 1.6M params
) . 64¢3-64c3-128¢3-128¢3-
CNN with ESGD (Rotation) 27.9
256¢3-256f, 1.6M params
)) 64c3-64c3-128¢3-128¢3-
CNN with GD (Translation, Scale) 25.53

We apply our model on the CIFAR-10 dataset [42]. We train our model using the first

400 images of each class from the training dataset (called CIFAR-10(400)) and test on the

original CIFAR-10 test dataset. A five-layer CNN model can achieve 28.43% test error after

4000 epochs of training. We choose a CNN with the same architecture for our framework.

We initialize the network by first training the CNN model on CIFAR-10(400) for 2000 epochs

and then train it using our framework for another 2000 epochs. We explore two experiments

under this setting: one with the angle of rotation as the latent variable for the model and the

other with translation and scale as the latent variables. In Figure 4.6, we show the optimal

transformation via translation and scaling for the objects in the images from CIFAR-10.

We show a 2.9% increase of model performance using a CNN with latent translation and

scaling, which is even comparable with some of the semi-supervised approaches reported in

the literature that use a large complementary unlabeled training set.

o6

i e ™ P N S
CS EFL e e (GA
4

Figure 4.6: Top: Example images from the CIFAR-10 dataset; Bottom: Images translated
and scaled by our model.

4.5.4 Google Farth Dataset

We then train our model on the Google Earth dataset [30], which contains aerial photos
of streets with bounding boxes around the vehicles. Henriques et al. [31] also add angle
annotation for each vehicle as a supplement of the dataset. The dataset contains 697 vehicles
in 15 large images, where the first ten images are used for training and the rest for testing.

The task of this dataset is to estimate the rotation parameter for each vehicle in the images.

BaMootl X- P
EI@?IM M- XA
W= RN TN
ﬁﬂ"“EH'@ = BN D7
Iﬂﬁﬁ‘-mﬁ N Bt 1
ey AI&IIE?I

(a) (b)

Figure 4.7: (a): An example of training images from the Google Earth dataset. (b) and (c)
are examples of car images (car front point to the right) and background images we use for
training a detection model for horizontal cars.

We first learn a horizontal car detection model by training a classical CNN model to
discriminate between horizontal car images and background images. In Figure 4.7, we show
some image examples for training the detection model. We use this model as initialization to

the ESGD training method, which further trains the model using images of rotated vehicles

o7

ol

15 50 100 150
Rotation Error in Degrees

Figure 4.8: Histogram of rotation errors when estimating the rotation angles between —180°
to 180°.

cropped from the training images. Then we can use the trained latent variable model to
estimate the rotation angles of the vehicles by finding the latent rotation parameters that
give the maximal values for the score function.

We also build a baseline 3-layer CNN model following the description in [32], where the
last layer of the network contains one node to regress the target rotation angles of the vehicles
(in radians). The results are shown in Table 4.4. We find that the CNN model with optimal
instantiations outperforms the baseline model by a big margin, and most of the rotation
errors are contributed by the cases where the car fronts are mistaken for the car rears. More
specifically, as we show in Figure 4.8, 77% of the data are predicted with less than 15° of
rotation error while 22% are predicted with more than 150° of rotation error. If we ignore
the difference between the front and the rear of the car and relax our problem by estimating
the rotation angles between —90° to 90°, we achieve an average test rotation error of 4.87°.

Note that the CNN for regression result from [32] shown in Table 4.4 uses a different
approach to calculate the rotation errors. Let us denote by «;,4; € (—m,7) the ground
truth and the predicted value of the angle respectively for example i. Henriques et al. [32]

define the rotation error as e; = § — ‘|ai mod & —a; mod 5| -5 ‘ We believe a better metric

would be e; = 71— ||a; — ;| mod 27 —7| if o, & € (—m,7), and e; = %—‘]ai—dﬂ mod 7 — %

o8

if aj,&; € (—7/2,7/2). We provide the error result of the CNN for regression based on our

calculation.

Model Description Average rotation error (degree)

CNN for regression [32] 28.87

Warped-CNN [32] 26.44

CNN for regression (—180° to 180°) 63.7

CNN for regression (—90° to 90°) 43.1

CNN with ESGD (—180° to 180°) 37.8

CNN with ESGD (—90° to 90°) 4.87

Table 4.4: The average rotation errors of different models.

4.6 Recover the Support Masks for Objects

In this section, we describe how we can use deep learning with optimal instantiations to
recover the support masks for the image objects. Such masks can be used for image de-

cluttering.

4.6.1 Intuition and Method

As we described in the previous sections, latent variables can be introduced to the deep neural
networks to effectively remove the nuisance transformations in the data. We parameterize
the image deformation in a form that is differentiable with respect to the latent variables so
that we can use the gradient to update the latent variables to obtain a reference pose for the
object that is being classified.

As an example, in Figure 4.9, we show the comparison between the mean images of the
original handwritten digits and the pose-adjusted handwritten digits recovered by the thin
plate splines (TPS). As nuisance transformations in the data are removed to obtain the
reference pose of the object, it is clear that the mean images of the pose-adjusted digits are

29

much sharper than the mean images of the original digits.

0| 23 45 67 8 9

Figure 4.9: Mean images of handwritten digits (bottom) and pose-adjusted handwritten
digits (top).

As we show in Figure 4.9, the reference poses recovered by this approach are well aligned
and we can obtain the support map of each object class by taking the mean images of the
pose-adjusted objects. In the following, we will show how we can apply the support maps

to remove clutter from images.

4.6.2 Robust to Clutter

In this section, we want to investigate if our approach is robust to different types of clutters,
which are not observed in the training data. Assume we train a CNN model with optimal
instantiations using the MNIST training data, we explore if this model can successfully
recover the reference poses for the test image objects when one of the following two type of

clutters exists in the images:

Flanking digits: We put two digits on the two sides of the original digit and crop the
image, so we have parts of the flanking digits as clutter. This kind of clutter is very

common when dealing with digit sequence detection.

Random clutter: We randomly select small image patches and put them around the

original digits. These patches contain digit parts such as strokes and curvatures.

We show some examples of images with the two different clutter types in Figure 4.10. Note

that nearby clutter will not touch or overlap with the original digit in the center.
60

/I

Fdo3e
iSJql ! ['

Figure 4.10: Sample images of two different types of clutters: flanking digits (top) and
random clutter (bottom).

H

We first show the reference poses recovered by our approach for images with flanking
digit clutter in the first two rows of Figure 4.11. Only the reference poses of the images
under the correct class labels are shown here. Although the model is not able to completely
remove the clutter around the target digits, the model adjusts the center digits to obtain
the preferred poses. It is worth noting that, the digits in our training data have the same
size as the digits in the test data. Therefore, the size of the pose-adjusted test digits should
remain the same, and our model is not able to remove the nearby clutter by zooming in on
the center digits in the images. If the model is trained on images with rescaled objects that
occupy the entire canvas without any padding, then the model is able to zoom in on the

center digits and remove the surrounding clutter in the test images.

BRk
b9 |

B

Figure 4.11: Examples of the original images with flanking digit clutter are shown in the first
row. The corresponding recovered reference poses under the correct class labels are shown
in the second row. The decluttered images extracted by applying object class support are
shown in the third row using a decluttering approach described in Section 4.6.3.

We then show the reference poses recovered by our approach for images with random
clutter surrounding the target objects in the first two rows of Figure 4.12. Similarly, the

61

model can adjust the pose of the target object in the center regardless of the surrounding
random clutter that the model does not observe in the training data. It is worth noting that
the reference poses captured for the objects with surrounding random clutter are different
from those captured for the objects with flanking digits. As we will discuss in the following
section, we will show some evidence to prove that our approach is less robust to random

clutter and the reference poses captured here are not perfect.

@-__i
‘0,

' I
I

Q.

pER
oE

Figure 4.12: Examples of the original images with random clutter are shown in the first
row. The corresponding recovered reference poses under the correct class labels are shown
in the second row. The decluttered images extracted by applying object class support of the
correct class are shown in the third row using a decluttering approach described in Section
4.6.3.

4.6.3 Declutter Images with Object Class Support Map

As we showed in the last section, although the reference poses are obtained using our ap-
proach, the surrounding clutter still exists as our approach is not able to zoom in on the
center digits in the images and remove the clutter. In this section, we show that we can
obtain decluttered images using the support maps of the corresponding object classes.
When the reference poses of the image objects within the same class are well aligned, as
we show in Figure 4.9, the mean images of pose-adjusted objects can be used to calculate
the support map of the reference pose for each class. As the mean images of pose-adjusted
objects are much sharper, we are able to obtain support maps that are more precise. If the
object labels of the images are known, we can apply the support maps of the correct classes

62

to the pose-aligned images with clutter and obtain the decluttered images, such as shown
in Figure 4.11 and Figure 4.12. Note that this decluttering step is naturally achieved with
the pre-trained model without any supervision. This is very useful when dealing with tasks
where the objects in the training images have clean background while the objects in the
testing images are surrounded by clutter.

Note that in Figure 4.12, we observe that some parts of the objects are cut out by the
support masks (For example, digit 9 in the seventh column and digit 7 in the eighth column).
The shapes of the recovered reference poses cannot completely match with the support masks
of the corresponding class, indicating that the surrounding clutter makes our approach less

stable.

4.6.4 Classify the Decluttered Images

We now show how decluttering images with object class support masks can be incorporated
into our framework to solve classification tasks for images with clutter. Intuitively, it would
be ideal if we can remove the clutter in the images before we classify them. As we showed
above, we are able to obtain the support maps for each object class and use the support
maps to remove the clutter in the images if the labels of the images are known. However,
how can we apply the support maps to declutter a test image when the label of the target
object is unknown?

Recall that in our approach, we optimize over the latent variables to recover the reference
pose for each object, and the latent variables are optimized for each class separately. As a
result, we know which object class the model is optimizing for during the optimization
process. Therefore, for each object, a reference pose under a particular class can be obtained
by our model, and we can then apply the support map of the corresponding class to the
reference pose of the object before passing it to the downstream network to get the output

score for that class. The class output with highest value yields the final classification. When

63

18
B
EEEEIIHHIH
Figure 4.13: We show examples of misclassified digits and the corresponding optimal images
captured for the corresponding images for different classes (in the middle). On the right,

we show the corresponding decluttered images that we feed to the downstream network to
produce class scores for classification.

HEHE
]

HEF
J

MEEH

ME B
1] £
MMEMHE
- it y
MNMENH
Y p—
ENEDE
ENEEE
L = =
JE 0 e aE
I K%
CEEEL
NEEEEn
BOEEE
NEENHE
TR
CEEED

RMENMEAEH
K

¥,
-
MEMENE
s
:
HEMEHN
BB ME B
T

BMENMENE

K

HE

BE
4

trained on the MNIST1000 dataset with a clear background and tested on original test
dataset with flanking digit clutter, our approach improves the classification accuracy rate
from 89.82% to 91.07% when we remove the clutter from test images using the support maps.
However, if we test the model on the original test dataset with random surrounding clutter,
the classification accuracy rate drops from 88.59% to 86.91%. This again shows that our
approach is less robust to random surrounding clutter.

We then look into the mistake cases made by our algorithm. In Figure 4.13, we show
examples of misclassified digits using the classification approach we described above. As we
can see from the figure, there are two types of mistakes: First, the subset problem: for some
object classes, the shapes could be similar to some image parts contained in another object
class. For instance, as we can see from the examples in the second row of Figure 4.13, a digit
nine could look like digit zero, digit four and digit seven after we deform it and apply the
support maps. Note that our classification model will produce a class score for each class
separately and label the test example with the class that has the highest score. Therefore,
having decluttered images look like images from a different class other than the target class
during the classification stage would confuse the classifier. Second, some mistakes are caused

by some undesired deformations. For instance, in the examples we show in the first row of

64

Figure 4.13, we observe in the six column that clutter from the nearby region gets pulled
to the digit one in the center to form a new object that looks like a digit five. After we
apply the support map to the image and remove the clutter, this image looks exactly like a
digit five. This is caused by too much flexibility of the deformation allowed in the thin-plate
spline methods, which we can alleviate by regularizing on the degree of deformation allowed

by the thin-plate spline.

4.6.5 Resolving the Subset Problem

We further seek methods to resolve the subset problem. As we discussed above, for each im-
age, we directly feed the decluttered images for different classes to the downstream classifier
for classification. The class scores are produced for each decluttered image separately, and
the class that produces the highest score will be picked to determine the label of the exam-
ple. Since the classification model only observes the decluttered image for a certain class,
without being aware of the decluttered images for other classes or what got masked out in
the original image, the model simply does not have the information on whether a certain
object class can best explain the scene in the original image. Therefore, this architecture is
not able to resolve the subset problem that we experienced above.

To resolve this, we apply a two-step mechanism for training and testing the images. The
first step of our method is the same as our learning mechanism with optimal instantiations,
where the optimal instantiations of each example for separate classes are captured, and we
can apply the support maps of different object classes to obtain the optimally deformed
images for separate classes with the clutter removed. In the second stage, for each example,
we stack the images of its optimal instantiations for the separate classes and train a regular
CNN to classify the label of the example based on the stack of input images - one for each
class. This time, since the model is able to observe the optimal deformed and decluttered

images from all the classes, it has much richer information on what get masked out by the

65

support maps, and it could better resolve the subset problem. By applying this two-step
mechanism to classifying images with clutter, we achieve a classification accuracy of 93.47%
on the test images with flanking digit clutter and a classification accuracy of 91.86% on the
test images with random surrounding clutter, which are 2.3% and 4.95% higher than the

approach without the two-step mechanism.

4.7 Deep learning with Optimal Instantiations for 3D Data

With the recent development of 3D scanning, extra-sensor camera (Kinect, LiDAR laser
scanner, etc.) and other techniques, people are able to collect more 3D Data. Such data
can be useful for vision tasks in the 3D environment, with applications in self-driving cars,
robotics, augmented reality, etc.

One interesting topic is to detect the poses of 3D objects. For example, by knowing the
precise pose of a 3D chair (location, facing), a robot can come up with motions to sit on
the chair. Most research formulates this problem as predicting the object’s class and the 3D
pose based on a 2D or 3D input image (2D image with depth or 3D data in other data types,
described in Section 4.7.1). Several types of approaches have been proposed to solve this
problem. The most traditional approaches are template-based approaches where a template
is scanned across the space and a distance measure is designed to find the best match with
the object and the pose[34, 35]. One can also detect the interest points of objects, describe
them with local features, and then match them with the templates in the database to capture
the object identity and pose [37, 8, 10]. However, most of these approaches assume that the
3D shape of the object instance is known, and they infer the 3D orientation by matching the
shape of the 3D template and the data. OctNet[64] relaxes this setup by assuming only the
object category is known, and learns to regress the orientations using CNNs. However, it is
not able to accurately estimate the 3D orientations when the object category is unknown.

This is expected if the model is trained to regress the 3D orientations without knowing the

66

object class labels since the model might be confused about the orientations of objects from
different classes and the inter-class variance is more difficult to capture in the 3D data.

In this section, we describe how to predict the object classes and the 3D poses when the
volumetric representations of the 3D data are given. Similar to what we have observed in
the 2D cases, we show that we can recover the spatial transformation of the 3D objects while

capturing their class labels by applying deep learning with optimal instantiations.

4.7.1 3D Data Description

There are several data types representing 3D objects, and different approaches of 3D object
detection and pose estimation have been designed for different types of 3D data representa-

tion. We list a few of them below:

RGB-D data: RGB-D sensors are capable of providing depth information for each
pixel. Although the information provided by such a data type is not as rich as real 3D
data where we should have the information of all the observable surfaces, it still provides
more information than traditional 2D images and could lead to better performance.
Lots of RGB-D datasets, as well as corresponding detection algorithms, have been

proposed, including [44, 33, 7, 25].

Point clouds: Usually collected by 3D scanners such as the LiDAR laser scanner,
point cloud data provides richer spatial information for the objects compared to the
RGB-D data. The 3D scanner measures a large number of points on object surfaces
in a three-dimensional coordinate system and outputs a point cloud as the data. Since
the data is represented by an unordered set of points, the data representation is in-
variant to any permutations within the set, and it might lead to some problems in real
applications. Therefore, point-cloud data is usually converted to a voxel-based repre-

sentation for further processing. Recently, a few methods are proposed to resolve this

67

by introducing new data structures to store the point cloud data and have achieved

good performance [62, 41].

Descriptions of composing polygons: This is usually used in computer graphics to
describe a 3D model. A 3D model states the coordinates of the vertices, the groups of
vertices that form the polygons and coloring of the polygons. Although this is sufficient
to describe any 3D data, in general one would convert it to other data types that are

easier to interpret and represent for data modeling.

2D views of 3D objects: One can also create 2D views of 3D objects to describe the
3D objects. For example, the panoramic view is a cylinder projection of 3D objects to
2D images around their central axes. Although such a 3D data representation is not
invariant to 3D rotations, it captures the shape and the texture information of the 3D
object and therefore can be used for 3D object recognition tasks [57, 70, 69]. Similar
to the panoramic view of 3D objects, one can adjust the camera position to capture
multiple views of 3D objects to obtain the information of the objects using 2D images.
A few camera positions are picked, and the views of the 3D objects are captured to
represent the shape and texture information of the 3D objects. Similarly, multiple
2D views of the 3D objects can be combined to represent the 3D objects [73, 39, 60].
Once the 2D views of the 3D objects are obtained, one can use approaches that are

commonly used for the 2D data to resolve the vision tasks for 3D data.

Volumetric representation: The most common way to represent the 3D objects
in the literature is the volumetric representation, which can represent a 3D object
on a 3D voxel grid. Although the volumetric representation is not able to capture
the texture information of the 3D objects and requires voxel grids that have high
resolution to exploit the detailed shapes of the 3D objects, it has gained popularity as

the volumetric representations of the 3D objects can be stored and manipulated with

68

simple data structures. Lots of algorithms have been proposed to resolve the vision

tasks for 3D data using volumetric representation [79, 52, 64, 68, 11, 60].

NEP ISP LT E
PeSddnoSg e
WP EE OO
Nosdeord dod

Figure 4.14: Example images of volumetric representation of 3D objects from the ModelNet
dataset.

In this work, we use the volumetric representation of the 3D object as the data for our model.

In Figure 4.14, we show some examples of volumetric representations of 3D objects.

4.7.2 Method

Similar to the scenario in 2D, we consider a 3D object classification problem where the
input data is the volumetric representation of 3D objects. We design a convolutional neural
network architecture to solve the classification task.

For 2D images, it is common to design a CNN architecture where the filters in each
convolutional layer perform 2D convolutions for the incoming feature maps. It is natural to
extend this approach to the 3D data. We pick one dimension of the volumetric representation
of the 3D object as the “depth” channel (like color channel in 2D images) and feed the 3D
data into a CNN architecture as if they were 2D images.

To understand why such a design makes sense, let us consider a CNN architecture where
the first convolutional layer contains filters of size 1 x 1. Intuitively, it acts as a scanner to

perform 3D to 2D projection along the “depth” channel. Therefore, such an architecture
69

can capture the exterior appearance of an object. This is usually sufficient to classify an
object as we normally do not depend on the interior structure of a 3D object to determine
its category (at least not in this work).

Similar to our previous work, we incorporate latent transformation variables to the con-
volutional neural network to enable learning with optimal instantiations. We show the model
architecture in Figure 4.15. As in Section 4.4, a two-step algorithm is required for optimal
instantiation learning. During training, this framework takes the 3D object data as input and
alternates between optimizing over the latent variables to find the optimal instantiations for
each class and optimizing over the model parameters to obtain a better classification model.
During testing, the model passes the input through the network to calculate gradients so
that the latent values can be adjusted accordingly. Eventually, the optimal latent value z;
under each class j together with the corresponding class score of the pose-adjusted 3D object
are captured by the model. The label of the example can be determined by selecting the
class that has the highest score.

We pick a dimension as the “depth” channel and treat the 3D object data as 2D image
data with a long “depth” channel. Therefore, we can again apply the architecture of 2D

convolutional neural network to the 3D object data.

Spatial Transformation with Latent Variable Regular Deep Neural Network Class Scoring Function
P ~"’/

A
I

Z9 weight weight
i) - sharing sharing

a7 20 e
v
-ﬁ

Figure 4.15: The CNN architecture for 3D object data classification.

Note that the module for spatial transformation marked as the red region in Figure 4.15

requires a transformation parameterization that is differentiable. In the next section, we will

70

discuss the parameterization of 3D spatial transformation we use in this work.

4.7.8 Parameterization of 3D Spatial Transformation

In the 2D scenario, we explored the transformation parameterization using an affine trans-
formation matrix and thin plate splines. Such parameterization methods can also be applied
to the 3D scenario. For example, we can parameterize a 3D geometric transformation using

a transformation matrix as follows:

-.7:’- _a b ¢ tx- -a:-
y' d e [ty| |y
2 - g h i ty| |z
1] 000 1|1

It requires 12 latent variables to capture the geometric transformation of a 3D object. In
our work, we implement a 3D spatial transformer layer that uses only three latent variables
to capture the degrees of rotation along each of the three axes. In Figure 4.16, we show how

a voxelized 3D object can be randomly rotated in three axes.

cCIngeerl P
i d EX 4 b .0
“GOEORCAR b=
el faeoand

Figure 4.16: Randomly rotated 3d objects.

71

4.7.4 Recover the Reference Poses of 3D Objects

In this section, we explore how our approach can be used to recover the reference poses
of 3D objects while classifying the objects. In this work, we use the ModelNet-10 dataset
[79] that contains orientation-aligned 3D CAD models that belong to 10 different categories.
Some examples of volumetric representations of the objects in the dataset can be found in
Figure 4.14. We randomly rotate the 3D objects in the testing data along each of the three
axes by degrees between —45° to 45° and we want to see if our approach can recover the
correct reference poses of the objects.

We choose the angle of rotation along each axis as the latent variable. We first initialize
our model by training on the orientation-aligned training data from the ModelNet-10 dataset
and then train our framework with randomly rotated training data. We optimize the latent
variable z in parallel to avoid getting stuck in local optimum, where z is initialized for each
axis at three different rotations (—30°,0°,30°), and each is optimized for ten iterations using
gradient descent. The value of z that produces the highest score is chosen as the optimal
value. During testing, similarly, we optimize the latent variable z to produce the highest
score for separate classes.

We show the pose-adjusted objects for different classes in Figure 4.17. The first column
shows some rotated 3D objects, which are randomly rotated from the orientation-aligned
objects that are shown in the second column. Starting from the third column, we show
the recovered poses for different classes and the red square frames indicate the pose-adjust
objects for the target classes. It is clear that our approach is able to recover the poses that

are close to the original orientation-aligned objects.

4.8 Conclusion

In this work, we propose a framework for training deep neural networks with optimal instan-

tiations of the data. By introducing latent variables to parametrize the transformation of
72

L LECESR

O&ﬂ'lﬁ‘l'llg
))lld«l}id¢!
l¢¢l¢tl=I

' YA A 0‘00
2 A FEE T]
dlhde IR 2L
S AP ARG VLR YR
&L ETEXITN .

'L YA RRLE LD 4

Figure 4.17: Recovered reference pose of 3d objects.

the data for each class, our approach is able to better obtain the reference pose for the object
that is being classified. We show such an approach can be easily applied together with any
existing neural network architecture and is compatible with general types of transformations

including rotation, translation, scaling and local deformations.

73

CHAPTER 5
LEARNING FROM 3D CAD MODELS

5.1 Introduction

In the previous chapters, we discussed how to make architectural changes to the existing deep
CNN models to achieve transformation invariance. Although lots of improvements have been
made to allow traditional deep CNN models to capture the transformation variations that
are not observed in the training data, these approaches are still heavily dependent on large-
scale training datasets. Since labeled data is difficult to collect, the performance of deep
CNN models could be limited due to the lack of data.

In this chapter, we want to discuss the possibility of using 3D computer-aided design
(CAD) models to render 2D training images as a data augmentation approach to help train
deep CNN models. Thanks to the development of modern 3D graphics programming, the
3D CAD models become easier to acquire, and they can be used to generate synthetic 2d
images. By generating 2D images from 3D CAD models, we can obtain a more compact
way of representing an object class by rendering images using different postures, camera
positions, material textures and light positions. This allows more transformation variations
in data to be observed when training the models.

Although the synthetic images can capture the shapes of the objects, they usually lack
realism compared to real images. Objects in synthetic images are usually perfectly isolated,
and the texture, poses and lighting are less realistic. Therefore, models trained on such data
usually fail to deliver competitive results. In this work, we explore the performance gap
between the models trained on real images and the models trained on synthetic images, and
we also propose several methods to bridge the gap. We investigate a method for zero-shot
or few-shot learning of the image objects which requires less human-labeled data, and we

explore how much we can improve compared to training with real data.

74

Another effect on the realism of the synthetic images comes from the compatibility be-
tween the rendered object images from 3D CAD models and the background images that
are usually selected from some existing data source. On the one hand, it is not feasible to
manually select background images for all the generated object images since our goal is to
automate the creation of the large-scale synthetic image dataset. On the other hand, if the
background images are randomly selected, they might contain undesired objects or noise
in the image scenes, leading to unrealistic images when combining them with the rendered
objects. In order to resolve this problem and reduce the bias and noise introduced by the
background of the images, we also create a model that can learn to produce support masks
and extract the target objects from the images. By doing this, a classifier trained on the
synthetic images of rendered objects without background can be applied to classifying the
extracted target objects from the real images. We will discuss how this can be applied to
real image classification.

The rest is organized as follows: In Section 5.2, we will discuss some recent work on
generating synthetic images to help improve the performance on vision tasks. We will also
discuss some related work on pixel-wise prediction that can be applied to produce the support
masks for object extraction. After that, we will describe two approaches by using 3D CAD
models to help 2D image classification tasks, including augmenting the training data with
synthetic images and learning to find the support masks for the target objects in the images.
The rationale behind these two approaches and the corresponding methods we use will be
discussed in Section 5.3 and Section 5.4. The details on rendering synthetic images from
3D CAD models are discussed in Section 5.5, and we present the experimental results and

conclusions in Section 5.6 and Section 5.7 respectively.

5

5.2 Related Work

There is plenty of literature on how to create synthetic images from 3D CAD models, explor-
ing different ways of taking advantage of the enormous amount of generated images to help
resolve computer vision tasks. Here we describe the details of some of these methods and dis-
cuss the difference between our approach and the approaches in the literature. In addition,
as we mentioned above, we also seek methods to extract target objects from the real images
so that we can adopt models that are trained on synthetic images without background. This
is related to the image segmentation problem, and we will discuss some possible solutions

for that in the literature.

5.2.1 Ezploring the Advantage of Using 3D CAD Models

Thanks to the flexibility of generating synthetic images, one can use it to analyze the trans-
formation invariances of the learned models. In [59], in order to show whether the transfor-
mation invariances can be learned by deep neural networks for object detection, the authors
generate synthetic images under different appearance factors including rotation (azimuth,
elevation), size, occlusion, and truncation. The paper shows that the overall performance
of deep neural networks improves when additional synthetic images are provided as training
data, indicating the advantage of using synthetic images. It shows, however, that the model
underperforms for the truncated, occluded and small objects even when additional synthetic
images are provided, suggesting that structural changes to traditional deep neural networks
are needed for these specific types of data variations.

In a similar vein, Peng et al. [58] analyze the invariance to cues (including object texture,
color, pose and shape) in deep neural networks with the help of 3D CAD models. To see
whether the deep neural network is able to extract the same high-level features despite
different (or missing) cues, the authors design a comparison experiment, where two training

datasets of synthetic images are created, one with a particular cue and the other without. A

76

trained deep neural network is used to extract the high-level features of images from these
two datasets, and the extracted feature maps from both sets are used to train two object
detectors. A similar detection performance between the two detectors would indicate that
the deep neural networks are invariant to this particular cue whereas a less cue-invariant
network will lead to poorer performance. The paper shows that the deep neural networks
are less invariant to these cues when the network is not fine-tuned for a particular task.
Even when the network is fine-tuned, the network shows a significant boost from adding
more variations of shapes, postures and object textures, indicating the model is not entirely
invariant to these factors. By augmenting the real data with synthetic images, the authors
also show a significant performance improvement by using 3D CAD models for detection
tasks in the scenario when zero or few real training examples are available to train the
detectors.

Similarly in [81] and [51], the authors train pedestrian detection models using images
from virtual scenarios 1 and show that the learned detection models can be successfully
applied to pedestrian detection in real images. In a separate line of research, much work has
been using 3D models to render images for the viewpoint estimation task. In [3], the authors
create a large-scale dataset of view-dependent 2D synthetic images from 3D object models.
Given a 2D image, the authors design an approach to find an alignment between the 2D
image and the most similar 3D model rendered at the most appropriate camera viewpoint.
In [74], the authors design a deep CNN for the viewpoint estimation task and show that
training CNN with a large amount of synthetic data is effective for such a task.

In this work, we follow the ideas of augmenting real training images with synthetic images
and investigate how synthetic images could help the classification task when zero or few real
images are available during the training. As we mentioned above, such an approach is not

perfectly applicable since the real photos contain complex environments as background and

1. See Section 5.2.2 for the details of generating synthetic images by this method.

7

they are not easily available in synthetic images. Therefore, we explore the approach of

foreground object extraction to resolve this problem.

5.2.2 Synthetic Image Generation

The first step in the work we described above is to generate synthetic images from 3D
CAD models. In [59], the authors use the PASCAL3D+ dataset[80] for empirical analysis,
which contains aligned 3D CAD model annotations for the 2D images in the PASCAL
VOC 2012 dataset. Three different rendering types of synthetic images are investigated by
the authors, including the wire-frame images, the plain-texture images, and the texture-
transferred images. Each of these types represents a different level of richness of image
detail: Wire-frame images only provide the shape boundaries of the image objects, which
only reflect the shapes of the target objects without showing the textures and backgrounds.
Plain-texture images are generated by rendering programs, where a plain color is applied to
the objects so that the synthetic images do not have realistic textures. Texture-transferred
images are generated with a distribution that is more similar to the real data: Since each
image is annotated with the target object and the corresponding aligned 3D CAD model,
one can replace the existing object with a new 3D CAD model of the same object class
and apply a different texture to it. Therefore, the objects in the generated images will have
different shapes and textures, and the synthetic images are much more realistic.

Similarly, as we mentioned previously, [58] tries to investigate if the deep neural network
is invariant to different image textures and various background. To study this, the authors
generate the synthetic image under different settings, where the target objects can be ren-
dered with real textures or gray textures, combined with different types of backgrounds
(images with real background, white background, and gray background). 3D CAD models

from the desired object categories are selected and downloaded from the 3D Warchouse?,

2. The SketchUp 3D Warehouse is an open source library where people can share 3D models online

78

and the viewpoints of the 3D models are manually selected before rendering the 2D images.
In order to create realistic object textures for the images, the authors extract the textures
of the same objects from real images and stretch them to fit the CAD models. To generate
realistic background scenes, they gather real images of scenes where each object category
is likely to appear, and the selected images are combined with the corresponding rendered
image objects to generate the final synthetic images.

Other approaches are used to generate synthetic images as well. In [81] and [51], the
authors create virtual scenarios from video sequences generated by a video game engine,
including realistic scenes with roads, buildings, vehicles, pedestrians, etc., under different
illumination conditions. Such generated synthetic images are more realistic as they are
captured from the video sequences of some video games. However, it is usually not easy to
add 3D models of desired objects to an existing video game engine, making this approach

less flexible.

5.2.3 Image Foreground-Background Segmentation

As we mentioned earlier, in order to apply a model trained with synthetic images of rendered
objects without background to classifying real images, we need to extract the target objects
from the real images. This problem is equivalent to the semantic segmentation problem if
we only need to label the scene with two categories: the image foreground that contains the
object and the image background.

Over the past few years, much work has been done on the semantic segmentation problem
using deep learning approaches. For example, R-CNN[24] generates region proposals by
selective search [76], and each region is warped to the desired resolution before being sent
to a pre-trained CNN for feature extraction. The computed feature map for each region can
then be used for fine-tuning the CNN and learning object detectors. Bounding-box regressors

are learned to improve the localization performance further. During testing, selective search

79

on the test image is again used to extract region proposals and each proposal is warped and
fed to the CNN to compute class scores. It is then followed by a non-maximum suppression
procedure that is adopted to reject overlapping regions. This is extended in [23] by replacing
the multi-stage training in R-CNN with a single-stage training procedure using a multi-task
loss that can guide the training of the bounding box detection and the object classification.
Later in [63], the R-CNN architecture is further unified with a region proposal network to
compute region proposals instead of generating them by selective search. Note that these
approaches do not directly provide semantic segmentation with arbitrary shapes but rely
on other region proposals such as CPMC [12] to create segmentated regions with arbitrary
shapes. The bounding boxes surrounding these regions are then passed to the network to
achieve the labels of these regions. A recent update of this line of work, Mask R-CNN
[29], allows the network to produce a pixel-wise binary prediction along with the object
classification and the bounding box regression, which decouples the mask prediction and
the class prediction, and it prevents competition among different classes when generating
semantic segmentation. Similarly, in order to produce semantic segmentation while detecting
the objects, [27] employs a bottom-up image segmentation by first generating the region
proposals followed by a region refinement step to create semantic segmentation at a fine
resolution.

Another line of research uses CNN features to provide dense category-level pixel labels.
For example, [49] replaces the fully-connected layers with the convolutional layers in the
CNN and builds a fully convolutional network, and the network will produce a heat map as
the output for the pixel-level prediction. However, due to the pooling and down-sampling
operations in the CNN, the resulting heat map usually has a different resolution compared
to the input. Therefore, the authors propose deconvolutional layers that can be used to
upsample the output heatmap to match the size of the input. In addition to that, skip con-

nections are introduced so that the resulting segmentation maps will have a high resolution.

80

Similarly, [28] proposes to use skip-layers, where the output feature maps of the selected
layers are upsampled to the same resolution before being concatenated together to form a
hypercolumn descriptor for each pixel. The hypercolumn descriptor can later be used to
train a pixel-wise classifier to determine the pixel category. An encoder-decoder architec-
ture can also be adopted [5, 56, 66] to produce the pixel-wise prediction for the semantic
segmentation task.

In this work, we follow the idea in [28] and use the hypercolumn descriptors from the
CNN to produce the pixel-wise prediction for foreground-background segmentation. We will

discuss more details of this approach in Section 5.4.

5.3 Few-shot Learning with Synthetic Images

As we discussed earlier, compared to the limited amount of hand-collected real images,
the richness and compactness of representing an object class using synthetic images are
appealing. One can easily collect 3D CAD models of the desired categories and create views
of these models using rendering programs. Therefore, augmenting the training data with
synthetic images generated from 3D CAD models could allow the model to observe more
transformation variations from the synthetic data that are not readily available from the real
data. In real images, target objects usually appear on particular scenes, and it is crucial for
the model to be robust to various backgrounds while recognizing the target objects in the
images. Note that the rendering program is only able to render the desired object in front
of an empty background unless we have 3D CAD models for the background. Therefore,
in order to make the rendered images more realistic, one also needs to generate realistic
background images in addition to the views of the target objects. We will discuss in detail
on how to generate synthetic images in Section 5.5.

To show how this could help the 2D image classification tasks, we can train a classifier

using synthetic images and see if the trained classifier could be used for classifying the real

81

images. We introduce a scenario when limited amount of real images are available for the
training (few-shot learning), and we investigate if augmenting the real training images with
the synthetic images could help improve the result.

We train a convolutional neural network as the classification model. In Figure 5.1, we
show the model architecture of the convolutional neural network for the input images of

dimension 32 x 32 x 3. The trained model will be further used to classify the real images.

32x32
Input Layer

Convolutional Layer
16 x 16

N
8x8 Max Pooling Layer
4x4 256 N
@ % Fully Connected Layer
N

Classification Layer

1

[

Figure 5.1: Model architecture of the convolutional neural network we use for classifying
images of size 32 x 32.

5.4 Learning Image Object Extraction

5.4.1 Intuition

As we mentioned in the previous section, one of the difficulties in creating synthetic images
is that we also need to generate realistic background images that can not be rendered as they
are not included in the 3D CAD models. Indeed, we can easily collect unlabeled real images
as background images and combine them with the rendered object images to create synthetic
images, yet such an approach is still not able to create very realistic images. It would be
preferable to have a model trained with synthetic images of objects without background

directly apply to classifying real images that have noisy background.

82

One way to achieve this is to design an algorithm to segment the real images into the
foreground regions (target objects) and the background regions and then extract the target
objects from the test images. Once the background regions of the test images are removed, we
can directly apply a model trained with synthetic images with clear background to classify the
target objects extracted from the real images. We want to emphasize that the segmentation
model also needs to be trained on the synthetic images, as we want to keep the supervision
from the real training images at a minimum level.

Such a foreground-background segmentation can be achieved by learning a pixel-to-pixel
prediction model, where a binary prediction is generated for each pixel to form the support
mask. We also want to emphasize that the model is trained to perform the segmentation for
all the objects despite the labels of the objects. We will discuss how we can build a learning-

based system that generates the support masks for the target objects in this section.

5.4.2 Learning the Support Mask via Pizel Classification

We frame the support mask learning problem as learning a function f : X —). Given
an image patch z € X, f predicts the category of the center pixel (object or background).
Inspired by the hypercolumn representation approach used in [28], we describe an algorithm

to achieve this in the following.

a+b b
a | 5 | b 3
alo|b]o
0.25/ 0.5 |0.25 atc |asbrcsd] b4d | b+d
alb olo|lolo 2 [T+ 2| T4
* 105|105 =
c d c 0 d 0
0.25/ 0.5 |0.25 c c+d d d
olololo 2 2
c c+d d d
7 & 2 n

Figure 5.2: A 2x upsampling operation by bilinear kernel convolution.

83

Similar to [28], we feed the input image to a CNN, and we want to extract the CNN
features of different layers to form a hypercolumn descriptor for each pixel location. Due to
the subsampling and pooling operations that we adopt in the CNN, the feature maps across
different layers might have different sizes compared to the input. Therefore, for feature
maps that have different sizes from the input, we resize these feature maps to the size of
the input using bilinear interpolation. We implement the bilinear interpolation upsampling
using a two-step mechanism: we first upsample the feature map with zero stuffing and
then apply a designed filter to achieve bilinear interpolation (see Figure 5.2 for an example
of 2x upsampling operation using bilinear interpolation). We take the outputs of all the
layers, upscale the feature outputs to have the same resolution with the input using bilinear
interpolation, and append all the upscaled feature outputs together to be the hypercolumn
descriptor for each pixel.

We can train the entire pipeline end-to-end to predict the binary support masks. During
training, we provide the original images and the corresponding binary target maps that have
the same resolution as the input images and targets. We can calculate the logistic loss for
each pixel location and the final loss can be calculated as the mean of the losses across all
the pixel locations in the image. We show the model architecture in Figure 5.3.

Note that we still need to provide synthetic images with real background as the training
images together with the binary target support maps as the labels during training. Since
the synthetic images are generated from 3D CAD models, it is much easier to create target
support maps as we can infer the foreground and background segmentation from the synthetic
images. We will discuss the synthetic image generation procedure more in detail in the next

section.

84

Hypercolumn Descriptor Support Map Prediction

Input Layer Convolutional Layer Dj Max Pooling Layer Dj Fully Connected Layer Support Map Prediction Layer

Figure 5.3: End-to-end model architecture for support map prediction.

5.4.3 Discussion

Learning image object extraction is not the goal of this approach; it is rather a preprocessing
step for the test images so that we can directly apply the classification model that is trained
on synthetic object images with clear background. Therefore, three questions need to be
answered: One, for synthetic test images, are we able to get reasonable object support
masks by the pixel-wise prediction based on the hypercolumn descriptors? Two, if we use
real images as the test images, are we still able to get reasonable object support masks even
though the object extraction model is trained on synthetic images? Three, if the answers
to the first two questions are yes, then the third question we need to answer is that: Are
we able to get good classification performance on real images of extracted target objects
(background removed) when the classification model is trained on synthetic object images
with clear backround? We will design some experiments to answer these questions.

Similar to the few-shot learning approach we described in Section 5.3, this approach also
requires us to generate synthetic images with real background images as the training data. It

is therefore interesting to compare the performance between the few-shot learning approach

85

and the approach of classification on the extracted objects. We will discuss the advantage

of each approach respectively in the experiment section.

5.5 Generate Synthetic Images from 3D CAD Models

In this section, we describe how to create synthetic images by generating realistic image
objects using 3D CAD models and selecting real images as the background. We also explore

how we can create object support masks for the created synthetic images.

5.5.1 Render using 3D CAD models

CAD models of different objects are becoming publicly available online. In this work, we
use the ShapeNet dataset [13], a large-scale dataset of 3D shapes that covers 55 common
object categories with more than 50,000 3D models. It is also organized according to the
WordNet hierarchy [53], making it easier to connect with some existing 2D image datasets
such as the ImageNet dataset [67]. With the available 3D models, we use a publicly available
OpenGL-based renderer to create the object images based on the 3D models.

When rendering the object images, we consider the following factors: the horizontal and
vertical axis of rotation (both control the spatial rotation of the object) and the distance
between the viewpoint and the object (controls the size of the rendered object). We set a
proper range for each of these factors to make sure the rendered images look reasonable.
To create random views of an object, we set random values within the proper ranges for
these factors and pass them to the rendering program. In addition to that, we create six
canonical views of the objects including the top, bottom, left, right, front, and back views
while properly setting the distance so that the entire model fits within the canvas.

In Figure 5.4, we show six canonical views of an object as well as some randomly generated
views of the same object. As we will discuss in the following, these generated views of objects

will be combined with selected background images to create the synthetic images.

86

Figure 5.4: Six canonical rendered views (first column) along with randomly generated views
(second column) of a CAD plane model.

5.5.2 Generate Support Maps for 3D objects

As we discussed above, one direction that we are interested in is to create a model to generate
support masks for the target objects in the real images. In order to acquire enough data
to train such a model for real images, it requires lots of human labor to annotate the real
images. One of the advantages of generating synthetic images is that we can achieve the
support masks for the objects without extra effort. When generating the object images, we
set a unique background color that is different from any texture color, and we are able to
get the support masks by capturing the regions that do not have the background color. In

Figure 5.5, for example, we show the support masks for the objects in the synthetic images.

Figure 5.5: Rendered images with clear background (first column) and their corresponding
support masks (second column).

87

5.5.8 Background in Synethetic Images

A realistic object appearance also depends on the background information. Here we describe
how to create background images and then put the rendered image objects in front of the
background to generate the synthetic images.

One source of background images for the synthetic objects are real images of different
scenes we collected as the background images. We download some scene images from the

7

Google Image website using search keyword such as “sky”, “road”, “sea”, “room”, etc. Such
images downloaded from the Google Image website usually have been post-processed, and
some important image statistics such as saturation, chroma, and contrast have been carefully
tuned to make them more appealing. In order to recover these processes and bring them
closer to natural images, we use the cylinder-coordinate HSV representation of the color
information and adjust the hue coordinate and the value coordinate to match the image
statistics with those of the natural images. Another source of background images is the
Flickr 100k dataset, which consists of 100071 images. For those, we do not need to apply
any post-processing procedure and they can be used directly as the background images for
our image objects.

It is undeniable that there are some correlations between the object classes and their
background: planes and cars usually have outdoor scenes like sky and roads, whereas fur-
niture usually appears in indoor scenes. In our work, we try to eliminate these correlations
when selecting background images for the objects and allow images objects to appear in
some unrealistic scenes (e.g., planes inside a bedroom).

After we select the background images, we need to combine the object images and the
background images to create synthetic images of the target objects. As we already have the
support maps, we can replace the non-background regions of the background images with the
some object images to create synthetic images. Note that some images are selected from the

Flickr dataset using some popular tags, including tags of some real objects like “animals”,

88

“car”, “cat”, “baby” and tags of things that are not objects like “blue”, “summer”, “uk”
and “spain”. Therefore, some of these images may already contain an object in the scene,
which makes it harder to discriminate the target objects in the foreground from the noisy
background. In Figure 5.6, we show the synthetic images generated by putting rendered 3D

CAD models in front of different types of real background images.

Figure 5.6: Examples of synthetic images by combining the rendered 3D objects and real
image background. The background images of these synthetic images come from the Flickr
dataset (top) and the Google Image website (bottom) respectively. As we can observe from
these images, background images from the Flickr dataset usually contain other objects, which
make the background noisier than the images we collected from the Google Image website.

5.6 Experiments

In order to explore the effectiveness of the discussed approaches when applied to real images,
we perform classification experiments on the CIFAR-10 dataset and the ImageNet dataset.
Note that since we only have CAD models for a few object categories, we only select images
of the available objects categories to form subsets of the original datasets. In our case, we

89

create a CIFAR-10 3-class dataset and an ImageNet 9-class dataset, and we evaluate the

performance of our approaches on these two datasets.

5.6.1 CIFAR-10 3-Class Dataset

In this experiment, we want to see how the synthetic images generated by 3D CAD models
can help classify the object images from the CIFAR-10 dataset. As we discussed earlier,
we render synthetic images using the 3D CAD models from the ShapeNet dataset, which
contains more than 50,000 3D models from 55 common object categories. Among these
55 object categories, three object categories also exist in the CIFAR-10 dataset, including
“plane”, “boat”, and “car” . Therefore, we collect the CIFAR-10 images that are from
these three classes and perform a three-class classification task. The training and testing
data partition is the same as the original CIFAR-10 dataset. We then follow the process
described in Section 5.5 to generate synthetic images with background. For each of the three
classes, we collect 30,000 synthetic images by rendering 3D CAD models using randomly
selected camera positions, and we use the first 20,000 images per class as the synthetic
training data and the rest 10,000 images as the synthetic testing data.

To solve the classification task, we build a deep CNN as a classifier and the CNN archi-
tecture is adapted from the VGG-16 model that has shown reasonably good classification
performance on the CIFAR-~10 dataset. The detail of the model architecture is shown in Fig-
ure 5.1. We first see how well the model can classify the CIFAR-10 3-class test dataset when
we augment the CIFAR-10 training data with the synthetic data. We show the experiment
results in Table 5.1. By augmenting the CIFAR-10 training data using the synthetic images,
we observe significant improvements on the performances of few-shot learning tasks. When
more and more training data from the CIFAR-10 training dataset is available, we can see
that the improvement from using synthetic images becomes smaller.

Then we take another approach, which is to extract the target objects in the real images

90

?;;I;lkf)’f(fm glFXEﬁgg With Synthetic Images Without Synthetic Images
0 per class 76.23% N/A

100 per class 83.97% 66.70%

1000 per class 91.80% 89.23%

5000 per class 95.50 % 95.07%

Table 5.1: Classification accuracy on CIFAR-10 3-class test data when limited amount of
real training data is augmented by synthetic data.

Figure 5.7: We show the synthetic image (the first row) and the corresponding target objects
in the image (the second row). We show in the third row the extracted target object produced
by applying the support maps to the original synthetic image.

and remove the background before classifying the images. To see why this is helpful, we
first apply the same procedure to the synthetic test images and investigate the classification
experiments on the synthetic images. We first create synthetic images with real image
background as the training data along with the corresponding support maps as the labels.
A pixel-wise classification model is then trained on the synthetic data, and it is used to
find the support masks of the target objects and remove the background in the synthetic
test images. In Figure 5.7, we show example images of extracted target objects by applying
the support masks for the synthetic images using the pixel classification model. As we can
see from the figure, the algorithm does a good job extracting the target objects from the

synthetic images, and the extracted target objects are almost identical with the ground-

91

Synthetic test images | Synthetic test image
(background removed) | without background

92.29% 95.0 % 96.43%

Synthetic test images

Train on synthetic images
without background
Train on synthetic images
with background

93.57% 95.5% 96.61%

Table 5.2: Classification result on different types of synthetic test images.

truth objects in the images. After we extract the target objects, we can directly apply a
classification model that is trained on synthetic object images without background to classify
the synthetic images of extracted objects. In Table 5.2, we show that by removing the
background, classification accuracy on the synthetic test images is improved from 92.29% to
95.0% when the classification model is trained on the synthetic images without background,
and it is also improved from 93.57% to 95.5% when the model is trained on the synthetic
images with real background. This shows the advantage of removing image background
before classifying the images. We show the accuracy rates when tested on the synthetic
images without background on the third column. Note that if the pixel classification model
can perfectly extract the target objects from the images, the accuracy rates on the second

column should be the same with the third column.

rJ..!

R~ e

NN T Y

Figure 5.8: We show some CIFAR-10 images examples and the corresponding extracted
target objects produced by applying the support maps to the original images.

e —

92

We then apply the same procedure to classify the real test images from the CIFAR-10
3-class test dataset. Both the pixel classification model and the image classification model
are still trained using the synthetic images, but this time we will test the models on the real
images from the CIFAR-10 3-class test dataset. In Figure 5.8, we show example images of
the extracted target objects by applying the support masks for the real images using the
pixel classification model. As we can see from the figure, although the extracted objects
are not as clean as shown in Figure 5.7 for the synthetic images, the model is still doing
a reasonably good job extracting the target objects from the real images. Of course, some
extracted objects are misleading due to the poor support masks generated by the algorithm,
and these objects can be mistaken for a different category. For instance, in the 10th example
of the top two rows in Figure 5.8, since the support mask does not cover the entire body of
the ship, it could be misclassified as an airplane if we extract the target object by applying
this support mask to the original image.

Since we are able to extract target objects from the real test images, we can classify
these objects using a classification model that is trained on the synthetic images of objects
without background. In Table 5.3, we show the classification accuracies on the CIFAR-
10 3-class test data when we apply different training and testing mechanisms. When the
classification model is trained on the synthetic images without background, we observe a
clear improvement of performance by removing image background before classifying the test

images, as the model trained on the images of objects with clear background is certainly not

Trainine Data Original Test Images | Original Test Images
& (with background) (background removed)

Synthetic images

without background 41.83% 63.60%

Synthetic images with 76.39% 58.43%

background

Table 5.3: Classification accuracies on CIFAR-10 3-class test data.

93

robust to the noisy background in the test images. On the other hand, when the model is
trained on the synthetic images with real background, we observe performance degradation
when an object-extraction procedure is applied before classifying the test images. This is
expected due to the noise introduced when extracting target objects from the test images,
and the model trained on synthetic images with background is not able to achieve good
performance when the extracted objects from test images are not clear enough. Also, we
notice that the best classification accuracy is achieved when we train the model using the
synthetic images with real background and test it on the original test images. This is
different from what we observed from the experiment results in Table 5.2 where the best
performance on the synthetic images with real background is achieved when we apply the
object-extraction procedure before classifying the test images. It is possible that the images
of the extracted objects from the real images are not as clear as those extracted from the
synthetic images as we showed in Figure 5.8, and it leads to poor performance when applying

the object-extraction procedure before classifying the images.

5.6.2 Downsampled ImageNet Dataset

In order to show the generality of our approach, we apply our approach to the downsampled
ImageNet dataset. Similar to the experiments in the last section, we use the 3D CAD models
from the ShapeNet dataset to create synthetic images. Each object category among the 55
object categories in the ShapeNet dataset has a unique WordNet ID, and a corresponding
subset of the images from the ImageNet dataset can be accessed using the same WordNet
ID. We select nine object categories (including boat, bus, car, chair, display, gun, plane,
sofa, and table) that have sufficient models in the ShapeNet dataset, and we collect the
corresponding images from the 32 x 32 downsampled ImageNet training dataset to form an
ImageNet 9-class dataset. For each category in the ImageNet dataset, we collect 1200 images

where the first 1000 images are used for training and validation, and the rest 200 images

94

Number of training data
from the ImageNet 9-
class training set

With Synthetic Images

Without Synthetic Images

0 15.56% N/A

100 per class 59.28% 45.28%
500 per class 70.67% 61.22%
1000 per class 75.17% 68.06%

Table 5.4: Classification accuracy on the ImageNet 9-class test data when synthetic images

are created to augment the real training images.

are used for testing. We also collect 30,000 synthetic images for each class by rendering 3D

CAD models using randomly selected camera positions, where the first 20,000 images per

class are used as training data, and the rest 10,000 images are used as testing data.

Similar to our previous experiment, we first explore how synthetic data augmentation
approach can help improve the classification accuracy on the ImageNet dataset. We build a
deep CNN model for the classification task, and the architecture of the model is shown in
Figure 5.1. In Table 5.4, we observe significant performance improvement in the few-shot

learning experiments when we augment the training data with synthetic images. This is

consistent with what we have seen in the previous experiments.

Figure 5.9: We show some example ImageNet images and the corresponding extracted target

.
AT &%

objects produced by applying the support maps to the original images.

95

Trainine Data Original Test Images | Original Test Images
& (with background) (background removed)

Synthetic images

without background 16.44% 29.22%

Synthetic images with 15.56% 36.11%

background

Table 5.5: Classification accuracies on the ImageNet 9-class test data.

We then apply the object-extraction procedure to the ImageNet 9-class test images before
classifying them. Similarly, a pixel classification model and an image classification model
are trained using synthetic images. We first show how well the pixel classification model
can extract the target objects from the real test images and remove the background. In
Figure 5.9, we show example images of the extracted target objects by applying the support
maps for the real images from the ImageNet 9-class test dataset. We can then classify the
images of extracted objects using a classification model trained on the synthetic images of
objects. In Table 5.5, we observe a similar performance pattern compared to the experiment
results we presented in Table 5.3: A significant performance improvement is achieved by
applying the object-extraction procedure before classifying the images when the classification
model is trained on the synthetic images without background. As is discussed above, it is
also not surprise to observe a poorer result if we extract the objects from images before
classifying them when the classification model is trained on the synthetic images with real
background. The overall best accuracy rate is achieved when the model is trained on the
synthetic images with background and directly tested on the original test images without

the object-extraction procedure.

5.7 Conclusion

In this work, we study possible methods to take advantage of 3D CAD models to explore the
transformation variations of the image objects that are not easily available in the existing

96

2D image dataset. Data augmentation with synthetic images rendered from 3D CAD models
allows the model to observe data variations that do not exist in the training data, and it
shows significant performance improvement for the classification tasks especially when we
have zero or few training examples.

We also show a foreground-background segmentation model trained on synthetic images
can reasonably extract the target objects from the real images. If the target objects can
be correctly extracted from the real images and the noisy background of the images are
completely removed, then a classification model trained on synthetic images with clear back-
ground can be directly applied to classifying the images of extracted objects. We observe
a significant performance improvement by applying the object-extraction procedure before
classifying the images when the classification model is trained on synthetic images with-
out background. Performance degradation is also observed if we perform classification task
on the extracted object when the classification model is trained on synthetic images with
background. We argue, however, that if such a segmentation model can perfectly extract
the target objects from the real images, applying the object-extraction procedure should
improve the classification result despite the type of training data, as we have already shown

in the synthetic image classification experiment in Table 5.2.

97

1]

REFERENCES

Yali Amit. 2D object detection and recognition: Models, algorithms, and networks. MIT
Press, 2002.

Stuart Andrews, loannis Tsochantaridis, and Thomas Hofmann. Support vector ma-
chines for multiple-instance learning. Advances in neural information processing sys-

tems, pages H77-584, 2003.

Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C Russell, and Josef Sivic.
Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad mod-

els. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3762-3769, 2014.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in

neural information processing systems, pages 2654-2662, 2014.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. arXiv preprint

arXiw:1511.00561, 2015.

Elliot Joel Bernstein and Yali Amit. Part-based statistical models for object classifica-
tion and detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 2, pages 734-740. IEEE, 2005.

Manuel Blum, Jost Tobias Springenberg, Jan Wiilfing, and Martin Riedmiller. A learned
feature descriptor for object recognition in rgh-d data. In Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pages 1298-1303. IEEE, 2012.

Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Unsupervised feature learning for rgh-d

based object recognition. In Experimental Robotics, pages 387-402. Springer, 2013.

98

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of defor-
mations. IEEE Transactions on pattern analysis and machine intelligence, 11(6):567—

585, 1989.

Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumbhold, Jamie Shotton, and
Carsten Rother. Learning 6d object pose estimation using 3d object coordinates. In

Furopean conference on computer vision, pages 536-551. Springer, 2014.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Generative and
discriminative voxel modeling with convolutional neural networks. arXiw preprint

arXi:1608.042306, 2016.

Joao Carreira and Cristian Sminchisescu. Cpme: Automatic object segmentation using
constrained parametric min-cuts. IEEFE Transactions on Pattern Analysis and Machine

Intelligence, 34(7):1312-1328, 2012.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Re-
port arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota

Technological Institute at Chicago, 2015.

Gong Cheng, Peicheng Zhou, and Junwei Han. Rifd-cnn: Rotation-invariant and fisher
discriminative convolutional neural networks for object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 2884-2893, 2016.

Taco S Cohen and Max Welling. Group equivariant convolutional networks. arXiv

preprint arXiw:1602.07576, 2016.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016.

99

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry

in convolutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional
neural networks for galaxy morphology prediction. Monthly notices of the royal astro-

nomical society, 450(2):1441-1459, 2015.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.
Discriminative unsupervised feature learning with convolutional neural networks. In

Advances in Neural Information Processing Systems, pages 766—774, 2014.

Beat Fasel and Daniel Gatica-Perez. Rotation-invariant neoperceptron. In Pattern
Recognition, 2006. ICPR 2006. 18th International Conference on, volume 3, pages 336—
339. IEEE, 2006.

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEFE transactions on pattern

analysis and machine intelligence, 32(9):1627-1645, 2010.

Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural

information processing systems, pages 25372545, 2014.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440-1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 580-587, 2014.

Saurabh Gupta, Ross Girshick, Pablo Arbeldez, and Jitendra Malik. Learning rich fea-
tures from rgb-d images for object detection and segmentation. In European Conference

on Computer Vision, pages 345-360. Springer, 2014.
100

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross modal distillation for super-

vision transfer. arXiw preprint arXiv:1507.00448, 2015.

Bharath Hariharan, Pablo Arbeldez, Ross Girshick, and Jitendra Malik. Simultaneous
detection and segmentation. In Furopean Conference on Computer Vision, pages 297—

312. Springer, 2014.

Bharath Hariharan, Pablo Arbeldez, Ross Girshick, and Jitendra Malik. Hypercolumns
for object segmentation and fine-grained localization. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 447-456, 2015.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. arXiv
preprint arXiw:1703.06870, 2017.

Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff to find things.

In Furopean conference on computer vision, pages 30—43. Springer, 2008.

Joao F Henriques, Pedro Martins, Rui F Caseiro, and Jorge Batista. Fast training
of pose detectors in the fourier domain. In Advances in neural information processing

systems, pages 3050-3058, 2014.

Joao F Henriques and Andrea Vedaldi. Warped convolutions: Efficient invariance to

spatial transformations. arXiv preprint arXiw:1609.04382, 2016.

Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d
mapping: Using depth cameras for dense 3d modeling of indoor environments. In In

the 12th International Symposium on Experimental Robotics (ISER. Citeseer, 2010.

Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir Navab, Pascal
Fua, and Vincent Lepetit. Gradient response maps for real-time detection of textureless
objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(5):876—

888, 2012.
101

[35]

[38]

[39]

Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt
Konolige, and Nassir Navab. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian conference on computer

viston, pages Hb48-562. Springer, 2012.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

Stefan Holzer, Jamie Shotton, and Pushmeet Kohli. Learning to efficiently detect re-
peatable interest points in depth data. In Furopean Conference on Computer Vision,

pages 200—213. Springer, 2012.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer net-

works. In Advances in Neural Information Processing Systems, pages 2017-2025, 2015.

Edward Johns, Stefan Leutenegger, and Andrew J Davison. Pairwise decomposition of
image sequences for active multi-view recognition. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 3813-3822, 2016.

Koray Kavukcuoglu, Rob Fergus, Yann LeCun, et al. Learning invariant features
through topographic filter maps. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1605-1612. IEEE, 2009.

Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the

recognition of 3d point cloud models. arXw preprint arXiv:1704.01222, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-

tems, pages 1097-1105, 2012.
102

[44]

[45]

[46]

[47]

[48]

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-
view rgb-d object dataset. In Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, pages 1817-1824. IEEE, 2011.

Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. Ti-pooling;:
transformation-invariant pooling for feature learning in convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 289-297, 2016.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio.
An empirical evaluation of deep architectures on problems with many factors of vari-

ation. In Proceedings of the 24th international conference on Machine learning, pages

473-480. ACM, 2007.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of

handwritten digits, 1998.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring
their equivariance and equivalence. In Proceedings of the IEEE conference on computer

viston and pattern recognition, pages 991-999, 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3431-3440, 2015.

Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant

vector field networks. arXiv preprint arXiv:1612.09346, 2016.

Javier Marin, David Vazquez, David Gerénimo, and Antonio M Lépez. Learning ap-
pearance in virtual scenarios for pedestrian detection. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 137-144. IEEE, 2010.
103

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for
real-time object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 922-928. IEEE, 2015.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39-41, 1995.

Lian Huan Ng, Gustav Larsson, Jiajun Shen, and Yali Amit. Stacked statistical models

with rotatable features. In Technical report, 2014.

Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W Koh, Quoc V Le, and Andrew Y
Ng. Tiled convolutional neural networks. In Advances in neural information processing

systems, pages 1279-1287, 2010.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1520-1528, 2015.

Panagiotis Papadakis, Ioannis Pratikakis, Theoharis Theoharis, and Stavros Perantonis.
Panorama: A 3d shape descriptor based on panoramic views for unsupervised 3d object

retrieval. International Journal of Computer Vision, 89(2):177-192, 2010.

Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning deep object
detectors from 3d models. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1278-1286, 2015.

Bojan Pepik, Rodrigo Benenson, Tobias Ritschel, and Bernt Schiele. What is holding
back convnets for detection? In German Conference on Pattern Recognition, pages

517-528. Springer, 2015.

Charles R Qi, Hao Su, Matthias Niefiner, Angela Dai, Mengyuan Yan, and Leonidas J

Guibas. Volumetric and multi-view cnns for object classification on 3d data. In Pro-
104

[62]

[63]

[64]

[65]

[67]

[68]

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5648-5656, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXwv preprint

arXiv:1511.06434, 2015.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with sets

and point clouds. arXiv preprint arXiv:1611.04500, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information

processing systems, pages 91-99, 2015.

Gernot Riegler, Ali Osman Ulusoys, and Andreas Geiger. Octnet: Learning deep 3d

representations at high resolutions. arXiw preprint arXiv:1611.05009, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXw:1412.6550, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 234-241. Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,

115(3):211-252, 2015.

Nima Sedaghat, Mohammadreza Zolfaghari, and Thomas Brox. Orientation-boosted

voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351, 2016.
105

[69]

[70]

[75]

[76]

[77]

Konstantinos Sfikas, Theoharis Theoharis, and loannis Pratikakis. Exploiting the
panorama representation for convolutional neural network classification and retrieval.

In Eurographics Workshop on 3D Object Retrieval, Lyon, France, 2017.

Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. Deeppano: Deep panoramic
representation for 3-d shape recognition. IEEE Signal Processing Letters, 22(12):2339—
2343, 2015.

Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convolutional
neural networks applied to visual document analysis. In ICDAR, volume 3, pages 958—

962, 2003.

Kihyuk Sohn and Honglak Lee. Learning invariant representations with local transfor-

mations. arXiv preprint arXiw:1206.6418, 2012.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE

international conference on computer vision, pages 945-953, 2015.

Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views. In Proceedings

of the IEEE International Conference on Computer Vision, pages 26862694, 2015.

Damien Teney and Martial Hebert. Learning to extract motion from videos in convo-

lutional neural networks. arXiv preprint arXiw:1601.07532, 2016.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International journal of computer vision,

104(2):154-171, 2013.

Nanne van Noord and Eric Postma. Learning scale-variant and scale-invariant features

for deep image classification. Pattern Recognition, 61:583-592, 2017.
106

[78]

[79]

[80]

[81]

Fa Wu, Peijun Hu, and Dexing Kong. Flip-rotate-pooling convolution and split
dropout on convolution neural networks for image classification. arXiv preprint

arXw:1507.08754, 2015.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1912-1920, 2015.

Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for 3d
object detection in the wild. In IEEE Winter Conference on Applications of Computer
Vision (WACYV), 2014.

Jiaolong Xu, David Vazquez, Antonio M Lépez, Javier Marin, and Daniel Ponsa. Learn-
ing a part-based pedestrian detector in a virtual world. IEEFE Transactions on Intelligent

Transportation Systems, 15(5):2121-2131, 2014.

[82] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks.

arXiv preprint arXw:1701.01833, 2017.

107

