
THE UNIVERSITY OF CHICAGO

TRANSFORMATION INVARIANCE AND EQUIVARIANCE IN DEEP LEARNING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

JIAJUN SHEN

CHICAGO, ILLINOIS

DECEMBER 2017

Copyright c© 2017 by Jiajun Shen

All Rights Reserved

In dedication to my parents Jian Shen, Lan Shi and my wife Qile He for their love, endless

support, encouragement, and sacrifices.

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . x

ACKNOWLEDGMENTS . xi

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Prior Work . 3

1.2.1 Data Augmentation Approach . 3
1.2.2 Transforming the Data . 5
1.2.3 Transforming the Filters . 6

1.3 Overview . 8

2 BASELINE MODELS . 11
2.1 Statistical Models with Rotatable Features 11

2.1.1 Model Architecture . 11
2.1.2 Model Performance . 16
2.1.3 Conclusion . 17

2.2 Spatial Transformer Network . 18
2.2.1 Model Architecture . 18
2.2.2 Discussion . 20
2.2.3 Experiment . 21
2.2.4 Conclusion . 22

3 TRANSFORMATION-INVARIANCE VIA STUDENT TEACHER LEARNING . 24
3.1 Introduction . 24
3.2 Related work . 25
3.3 Method . 26
3.4 Image Deformation . 28

3.4.1 Function Parametrization by Wavelet Bases 29
3.4.2 Create Deformed Images . 30

3.5 Experiment . 33
3.5.1 Training with Pairs of Rotated Images 33
3.5.2 Training with Pairs of Randomly Deformed Images 38
3.5.3 Training with Pairs of Unlabeled Data 40

3.6 Conclusion . 41

iv

4 DEEP LEARNING WITH OPTIMAL INSTANTIATIONS 43
4.1 Abstract . 43
4.2 Introduction . 43
4.3 Background . 45
4.4 Method . 47

4.4.1 Optimizing the Training Loss . 48
4.4.2 Parametrization of Image Deformation 50
4.4.3 Model Architecture . 51

4.5 Experiments . 52
4.5.1 The mnist-rot Dataset . 52
4.5.2 MNIST . 55
4.5.3 CIFAR-10 . 56
4.5.4 Google Earth Dataset . 57

4.6 Recover the Support Masks for Objects . 59
4.6.1 Intuition and Method . 59
4.6.2 Robust to Clutter . 60
4.6.3 Declutter Images with Object Class Support Map 62
4.6.4 Classify the Decluttered Images . 63
4.6.5 Resolving the Subset Problem . 65

4.7 Deep learning with Optimal Instantiations for 3D Data 66
4.7.1 3D Data Description . 67
4.7.2 Method . 69
4.7.3 Parameterization of 3D Spatial Transformation 71
4.7.4 Recover the Reference Poses of 3D Objects 72

4.8 Conclusion . 72

5 LEARNING FROM 3D CAD MODELS . 74
5.1 Introduction . 74
5.2 Related Work . 76

5.2.1 Exploring the Advantage of Using 3D CAD Models 76
5.2.2 Synthetic Image Generation . 78
5.2.3 Image Foreground-Background Segmentation 79

5.3 Few-shot Learning with Synthetic Images . 81
5.4 Learning Image Object Extraction . 82

5.4.1 Intuition . 82
5.4.2 Learning the Support Mask via Pixel Classification 83
5.4.3 Discussion . 85

5.5 Generate Synthetic Images from 3D CAD Models 86
5.5.1 Render using 3D CAD models . 86
5.5.2 Generate Support Maps for 3D objects 87
5.5.3 Background in Synethetic Images . 88

5.6 Experiments . 89
5.6.1 CIFAR-10 3-Class Dataset . 90

v

5.6.2 Downsampled ImageNet Dataset . 94
5.7 Conclusion . 96

REFERENCES . 98

vi

LIST OF FIGURES

2.1 Examples of images from the mnist-rot dataset. 16
2.2 The first row and the second row show the visualization of the object models

trained on the images with upright digits and randomly rotated digits respec-
tively. The orientation-corrected object models are shown in the third row. Image
source:[54]. 17

2.3 SPN architecture . 18
2.4 The spatial transformer module can rotate and scale the images to a canonical

version of the images. 19
2.5 The spatial transformer module is sensitive to random clutter if they do not exist

in the training data. 21

3.1 We show the joint architecture of a transformation-invariant deep neural net by
student-teacher learning. The left one is the teacher network that achieves state
of the art for a given task, and the right one is a student network that needs to be
trained. During training, the teacher network will take a canonical image as the
input while a transformed version of the same image will be created and passed
to the student network. Guided by the supervisory signal from the output from
the d-th layer of the teacher network, the student network learns to reproduce
the same feature maps by regression. After training, the student network will
append the learned d layers with the downstream layers of the teacher network
(d+ 1 . . . , n layers) to perform a given task. 27

3.2 Visualization of some randomly-deformed training examples from the MNIST
dataset. Although some parts of the class object are distorted, they look like
different instantiations of an object coming from the same class. 31

3.3 Visualization of some randomly-deformed training examples from the CIFAR-10
dataset. Although some parts of the image object are distorted, they look like
different instantiations of an object coming from the same class. 32

3.4 Classification accuracy rates by different methods when tested on the MNIST test
datasets that contain different ranges of random rotation. Each model is trained
on the MNIST1000 training data augmented by −20◦ to 20◦ random rotations. . 36

3.5 Visualization of the reconstructed image by the student network. 37
3.6 Visualization of the filters learned by the teacher network and student network

when choosing the last convolutional layer as the soft target. The left are the
visualization of the filters bank learned by the teacher network, and the right are
the visualization of the filters bank learned by the student network. 38

3.7 Five pairs of generated unlabeled images. Top row shows images that contain
10 × 10 subregions sampled from the MNIST1000 dataset. Bottom row shows
rotated versions of images in the top row. 40

4.1 A rotated image of digit five can be further rotated to look like instantiations
from digit class four, five, six and nine. 45

4.2 Model architecture for deep learning with optimal instantiations. 51

vii

4.3 Correct the image rotations using the latent rotation angles estimated by three
optimization approaches. 53

4.4 Examples of rotation-corrected images for ten separate classes using a conven-
tional CNN trained on upright digits (bottom) and a CNN trained on rotated
digits using our framework (top). For each rotation-corrected image, the corre-
sponding class scores are shown on the right. 54

4.5 Examples of optimal images deformed by the thin plate spline transformation for
different classes. The original images are shown in the first column. 55

4.6 Top: Example images from the CIFAR-10 dataset; Bottom: Images translated
and scaled by our model. 57

4.7 (a): An example of training images from the Google Earth dataset. (b) and (c)
are examples of car images (car front point to the right) and background images
we use for training a detection model for horizontal cars. 57

4.8 Histogram of rotation errors when estimating the rotation angles between −180◦

to 180◦. 58
4.9 Mean images of handwritten digits (bottom) and pose-adjusted handwritten dig-

its (top). 60
4.10 Sample images of two different types of clutters: flanking digits (top) and random

clutter (bottom). 61
4.11 Examples of the original images with flanking digit clutter are shown in the first

row. The corresponding recovered reference poses under the correct class labels
are shown in the second row. The decluttered images extracted by applying
object class support are shown in the third row using a decluttering approach
described in Section 4.6.3. 61

4.12 Examples of the original images with random clutter are shown in the first row.
The corresponding recovered reference poses under the correct class labels are
shown in the second row. The decluttered images extracted by applying object
class support of the correct class are shown in the third row using a decluttering
approach described in Section 4.6.3. 62

4.13 We show examples of misclassified digits and the corresponding optimal images
captured for the corresponding images for different classes (in the middle). On
the right, we show the corresponding decluttered images that we feed to the
downstream network to produce class scores for classification. 64

4.14 Example images of volumetric representation of 3D objects from the ModelNet
dataset. 69

4.15 The CNN architecture for 3D object data classification. 70
4.16 Randomly rotated 3d objects. 71
4.17 Recovered reference pose of 3d objects. 73

5.1 Model architecture of the convolutional neural network we use for classifying
images of size 32× 32. 82

5.2 A 2× upsampling operation by bilinear kernel convolution. 83
5.3 End-to-end model architecture for support map prediction. 85

viii

5.4 Six canonical rendered views (first column) along with randomly generated views
(second column) of a CAD plane model. 87

5.5 Rendered images with clear background (first column) and their corresponding
support masks (second column). 87

5.6 Examples of synthetic images by combining the rendered 3D objects and real
image background. The background images of these synthetic images come from
the Flickr dataset (top) and the Google Image website (bottom) respectively.
As we can observe from these images, background images from the Flickr dataset
usually contain other objects, which make the background noisier than the images
we collected from the Google Image website. 89

5.7 We show the synthetic image (the first row) and the corresponding target objects
in the image (the second row). We show in the third row the extracted target
object produced by applying the support maps to the original synthetic image. . 91

5.8 We show some CIFAR-10 images examples and the corresponding extracted target
objects produced by applying the support maps to the original images. 92

5.9 We show some example ImageNet images and the corresponding extracted target
objects produced by applying the support maps to the original images. 95

ix

LIST OF TABLES

3.1 Experiment Result on MNIST1000 with rotation (100 images per class; 5 tries
for each experiment) . 34

3.2 Experiment Result on CIFAR-10(10k) (1000 images per class) 35
3.3 Experiment Result on MNIST1000 with deformation (100 images per class; 5

tries for each experiment) . 39

4.1 The experiment results on the mnist-rot dataset. 54
4.2 The experiment result on MNIST-100. 55
4.3 Experiment Result on CIFAR-10(400) . 56
4.4 The average rotation errors of different models. 59

5.1 Classification accuracy on CIFAR-10 3-class test data when limited amount of
real training data is augmented by synthetic data. 91

5.2 Classification result on different types of synthetic test images. 92
5.3 Classification accuracies on CIFAR-10 3-class test data. 93
5.4 Classification accuracy on the ImageNet 9-class test data when synthetic images

are created to augment the real training images. 95
5.5 Classification accuracies on the ImageNet 9-class test data. 96

x

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my principal advisor, Professor Yali Amit for

his advice, ideas, and patience when guiding me through my graduate studies. His views

on computer vision and deep neural networks, as well as his emphasis on clear statistical

modeling, have been very influential to my research. From Yali, I learned not only the

knowledge of statistical modeling and computer vision but also the scientific ways of thinking

and tackling problems.

I thank Professor Greg Shakhnarovich and Professor Risi Kondor for being on my com-

mittee and for providing me valuable suggestions on my work. My appreciation also extends

to the members of the Amitgroup - Lian Huan Ng, Marc Goessling, Gustav Larsson, Mark

Stoehr and Kendra Burbank for all the inspiring discussions and collaborations. I thank the

faculty and staff members of the computer science department and the statistics department

for all the help, guidance and support over the last five years.

Finally, I would like to give my special thanks to my friends and family. Their uncon-

ditional love and support have given me the strength and determination to overcome the

difficulties along the way.

xi

ABSTRACT

A major challenge for object recognition is to correctly perceive the image objects despite

the extraneous variations in the data such as shifting, rotation, deformation, etc. It would

be much easier for the vision tasks if such task-irrelevant transformation variabilities were

removed from the data. The recent success of deep learning approaches has its roots in the

ability to build feature representations that are invariant to variations caused by nuisance

factors. The expressiveness of deep networks allows the models to disentangle the underlying

factors of variations in the data and the training signals guide the models to learn feature

representations that are robust to task-irrelevant variations. However, such variations need

to be observed from the training data. Otherwise, a traditional deep neural network without

special architectural design would not generalize to these variations. To address this con-

cern, we study the problem of achieving transformation invariance and equivariance in deep

learning.

We show how some existing approaches, such as the stacked statistical model with rotat-

able features and the spatial transformer network, are imperfect at learning feature repre-

sentations that are invariant or equivariant to transformations. To search for an alternative,

we develop a training mechanism to learn transformation-invariant feature representations,

where feature maps of canonical images are used as soft targets to guide a deep neural network

to produce the same feature representations even when the input images are transformed.

As a result, our framework can obtain transformation-invariant feature representations and

makes it possible to take advantage of unlabeled data that contains an enormous amount of

variations. Additionally, we seek architectural changes to the existing deep learning models

and propose a framework for training deep neural networks with optimal instantiations. By

introducing latent variables to parametrize the transformations of the data for each class, our

approach is able to obtain the optimal instantiations while training for the downstream tasks.

Another direction we explore is the use of 3D CAD models to render 2D images as a data

xii

augmentation approach. Rendering 2D images from 3D models allows for a more compact

way of representing an object class and the models are able to observe more data variations

during training. Competitive experimental results are demonstrated by these methods, and

our analysis shows that they can be promising directions to achieve transformation invariance

and equivariance in deep learning.

xiii

CHAPTER 1

INTRODUCTION

Learning transformation-invariant representations in deep learning is particularly important,

as it helps the model to perceive image objects to be the same despite the task-irrelevant

transformations. Good generalization performance can be achieved even when the model is

applied to transformed data if the learned feature representations are invariant to extraneous

data transformations. On the other hand, the feature representations in the intermediate

layers should only be invariant to transformations within a desired range as opposed to

fully invariant, as the poses and the structures of the local features need to be preserved

for layers at a later stage [15, 16]. Therefore, many have sought to learn the equivariance

of feature representations, i.e., instead of learning transformation-invariant representations,

one can learn representations that change in a predictable way under the transformations of

the input [48]. As a result, operations on a feature map in the representation space, such as

the max-pooling operation, can be designed to achieve transformation invariance within a

desired range.

The main theme of this dissertation is to discuss approaches for learning transformation

invariance and equivariance for visual representations through deep learning. In this chapter,

we first discuss the motivation of learning transformation invariance and equivariance in deep

learning. We summarize some prior work on this topic in Section 1.2, and an overview of

the dissertation chapters is provided in Section 1.3.

1.1 Motivation

Let us consider a regular feedforward deep neural network that is proposed to solve an object

classification task. Such a deep neural network usually produces a sequence of representations

by feeding the input through multiple layers, and the final feature representations are passed

1

to the last layer for classification.

More specifically, an input image x ∈ RH×W×C is mapped to a feature map in the

representation space by network Φ as Φ(x) ∈ Rd. Let Tgx denote the result of applying the

transformation g on the input image x. We want to study how the representations change

upon transformations of the input image, i.e., what is the relationship between Φ(x) and

Φ(Tgx). In particular, we call Φ equivariant to the transformation g if we have the following:

Φ(Tgx) = T ′gΦ(x) (1.1)

where T ′g : Rd → Rd is a map that captures how the feature maps will change after the input

image is transformed. That is, if we transform the input by the transformation g and then

pass it to the network, the output should be the same with passing the input to the network

and then map the feature representation by T ′g. In particular, if we have T ′g as identity, then

Φ is transformation invariant under the transformation g.

It is desirable to achieve feature representations that are invariant to task-irrelevant

transformations so that the final feature representations will contain nothing but the task-

related variations. As a result, the classifier is not required to memorize a large number of

feature representations of transformed copies of the same input, making it easier to train.

However, in some cases, feature representations should only be invariant to transformations

within a certain range and still retain discriminative properties when the transformations

are beyond a specific range. Therefore, it is also crucial for the deep learning approaches to

obtain transformation equivariance. When the feature representations are equivariant to a

certain transformation, the range of the resulting feature representations for the input after

the transformation is tractable.

Some existing deep learning architectures already have such properties for certain trans-

formations. For example, by adopting weight sharing in the network architecture, the convo-

lutional neural network effectively captures the translation equivariance, as all the convolu-

2

tion layers in the network are translation equivariant. Shifting the input and then passing it

through the convolution layer produces the same feature map as passing the input through

the convolution layer followed by a shifting operation. This also leads to a more efficient

parametrization and allows a pooling operation to operate on the feature map to achieve

local translation invariance. However, the convolutional neural network only captures the

translation equivariance by design. Invariance and equivariance to other types of transfor-

mations including rotation, deformation, etc. cannot be naturally obtained unless enough

data is observed when training the model. To address these problems, many approaches

have been proposed, and we will discuss some of them in the next section.

1.2 Prior Work

In this section, we discuss some of the previous work on learning transformation invari-

ance and equivariance with deep learning architectures. There are three major families of

approaches in the literature on this topic, including the data augmentation approach and

approaches that require architectural changes to the existing deep learning models to ei-

ther transform the input data or transform the filters in the models. We list some of these

approaches in the following.

1.2.1 Data Augmentation Approach

Data augmentation approaches are the most common and convenient way to handle the

transformation invariance and equivariance. Such approaches usually require us to either

create or collect different transformed data to supplement the original dataset. As a result,

the model is able to observe more data variations that do not exist in the original dataset,

and it is therefore more robust to the nuisance factors of variations in the data [71, 43].

For example, the rotation-invariant neoperceptron model [20] creates multiple rotated

versions of images and feeds them to a CNN with filters shared across different orientations

3

so that feature maps for separate rotated versions of the image are obtained. A blurring

layer is then designed to reduce the number of the feature maps by pooling together within

a certain range of orientations. The representations are gradually pooled together using

blurring layers, yielding fully invariant representations at the output. In a similar vein,

the TI pooling network [45] passes multiple transformed versions of the input separately

through the network to get feature representations for each transformed instance. The

feature representations from transformed versions of the same input are aggregated together

by a max pooling operation to achieve transformation invariance. The aggregated feature

representations are later passed to the rest of the network for the downstream task. A

similar approach is designed by Dieleman et al. [18], where multiple rotated and flipped

versions of images are created and passed to the weight-shared convolutional layers like

the TI-pooling network. Instead of being aggregated by a max pooling operation in the

TI-pooling network, the resulting representations are concatenated and sent to a stack of

dense layers for downstream applications. It is later extended in [17] by exploiting the cyclic

symmetry of the feature maps in CNN, where four different cyclic operations including

slicing, pooling, rolling, and stacking, are introduced to handle the cyclic symmetry in the

representation space. Among these cyclic operations, the slicing operator first augments the

original training data by stacking together four evenly spaced rotated copies of the input

example, and the pooling/stacking operator combines the output from different rotated

versions of the example using a permutation-invariant pooling function or a concatenating

operation. The cyclic rolling operator designs a way to organize and re-align the feature maps

from different rotated copies of an image, and then it stacks the feature maps together along

the feature dimension. As a result, the stacked feature representations of the images become

equivariant to rotations of 90◦, 180◦ or 270◦. The aggregated transformation-equivariant

feature representations can be further passed to the downstream layers to handle a particular

task.

4

A few approaches propose some changes to the deep learning framework that are com-

bined with the data augmentation approach. The Rifd-CNN [14] proposes a rotation-

invariant layer that is trained by imposing a regularization constraint on the objective func-

tion that enforces the invariance of the feature maps before and after rotating the image.

Noord and Postma [77] propose an ensemble of convolutional neural networks, where each

convolutional network is associated with a different scaled version of the input. The output

feature maps of separate CNNs will be aggregated for further prediction. As a result, such

aggregated feature maps become scale-invariant.

Although the data augmentation approaches naturally enjoy the advantage of observing

more variations in data, the drawbacks of these approaches are also obvious: In general,

the data augmentation methods take longer to train, as more transformed versions of the

training data need to be created and observed during training. Moreover, these methods

are usually constrained as they can only consider a fixed set of global transformations of the

input images.

1.2.2 Transforming the Data

Another common approach is to design an operation to transform the input data or the

feature maps before feeding them to the rest of the deep architecture. Special transformation

operations can be designed to either remove the task-irrelevant variations by recovering the

reference forms of the data or warp the input data so that a regular deep neural network

can achieve transformation invariance or equivariance to a certain transformation.

For example, as we will discuss in Section 3.2, the spatial transformer network [38] can

transform each input image based on a transformation matrix estimated by a spatial trans-

former module within the network. As a result, a reference pose of an image can be recovered

before the model passes it to the rest of the network for classification. The warped convolu-

tion network [32] shows that a specially designed generalized convolution operator could be

5

equivariant to a prefixed transformation. By applying transformations repeatedly to a pivot

point to obtain a 2D warp grid for one or two commutable transformations, and a warped

image is created based on the 2D warp grid. The warped input can be further passed to a

regular convolutional neural network to handle the downstream task.

These approaches have the advantage of being more efficient in training, as the models do

not need to be trained on multiple transformed versions of the input images. By recovering

the reference poses of the input images, the downstream network is no longer required to

be invariant to transformations. However, as we will find out in Section 5.3, it is difficult

to estimate the desired reference pose of an input image, especially when the label of the

image is unknown. The spatial transformer network tries to warp the image based on the

transformation parameters regressed by the spatial transformer module, but we show that

such transformations are not accurate unless the class labels are already known. The warped

convolutional network warps the input images so that the transformation equivariance are

implicitly encoded in the input. However, the model limits the number of transformations

it can consider at the same time, which is suboptimal.

1.2.3 Transforming the Filters

In addition, special designs of filters in deep learning architectures can also make it possible

to produce feature representations that are invariant or equivariant to transformations.

Kavukcuoglu et al. [40] propose a model that tries to learn transformation-invariant

filters using sparse coding. It builds a 2D topographic map for the filter coefficients and pre-

wires overlapping subwindows of filter coefficients to be pooled together. During training,

a sparsity penalty on the sum of each neighborhood’s activations is designed to encourage

the activations across subwindows to be sparse and the coefficients within each subwindow

to be similar. As a result, filters that are pooled together end up extracting similar features.

The responses of nearby neighbors in the topographic map are pooled together to achieve

6

transformation invariance. This idea is further extended for convolutional neural networks

in the tiled convolutional neural network [55]. Instead of sharing weights across the entire

image space, tiled convolutional neural network leaves nearby convolutional filter weights

untied and only tying the weights of the units that are k steps away. Activations of units

that have untied weights are pooled together in the next layer, allowing the network to learn

a more complex range of invariances. A similar approach is investigated by Teney and Hebert

[75], where filters of each convolutional layer are separated into groups. Filters within each

group are constrained to be rotated versions of each other, and only the weights of the filters

with canonical orientation will be learned. Oriented response network [82] incorporates the

active rotating filters (ARFs) into deep convolutional neural networks. An active rotating

filter is defined on a spatial grid with R rotated channels, and a rotated version of the filter

can be obtained by a step of coordinate rotation using bilinear interpolation and a step of

orientation spin by adjusting the rotation channel. When convolved with the input data,

an ARF will create several rotated versions of the base filter and produce a feature map

with multiple orientation channels. The rotation equivariant vector field network [50] takes

a similar approach. It applies different rotated versions of the filters to the input and returns

a vector field that represents the magnitude and angle of the highest scoring orientation at

the spatial location. Instead of using a polar representation for the feature vectors, one can

represent the feature vector in the Cartesian coordinate system, and the convolution of the

vector fields can be computed separately in each component. Although these approaches

demonstrate a promising direction to achieve transformation invariance by transforming or

organizing the filters with special designs, the drawbacks of these approaches are also obvious:

Since filters usually have smaller sizes, it is not clear how to apply complex transformations

to the filters. As a result, invariance to complex transformations cannot be easily obtained

by this approach. For filters that capture both the magnitudes and the directions of the

activations, they usually have to make a compromise on the model complexity by either

7

keeping the model shallow or limit the number of transformations.

Filters can also be designed to construct a symmetry space for the representation space.

The deep symmetry network [22] achieves this by proposing a generalization of CNN that can

form feature maps over a symmetry space in addition to the grid space as in the traditional

CNN. Because extending the convolution operation to the symmetry space leads to a high-

dimensional feature map, the authors propose to sample the symmetry space by evaluating

at N control points that are local maxima of the feature representation in symmetry space

found by the Gauss-Newton optimization. A pooled feature map is computed according

to the N local optima using kernel-based interpolation method. The group equivariant

convolutional network [15] follows the same idea of building convolutional neural networks

on the symmetry space by constraining to a smaller discrete symmetry group (with flipping

and four 90◦ rotations). As a result, the computation of the feature representations is

more tractable. A subgroup pooling operation is also introduced to allow for invariance

to transformations within a pooling range. To pool the full feature space G, it selects a

subgroup H as the pooling region, which leads to a feature map on the quotient space G/H.

These papers provide a foundation for approaches that construct symmetry spaces for the

representation space. However, these approaches are still constrained because of the limited

transformations they can consider.

1.3 Overview

In this dissertation, we want to explore some approaches that have been used in the literature

to learn visual representations that are invariant or equivariant to transformations, and we

propose several new approaches that can achieve such properties.

Some baseline models are investigated in Chapter 2. We first present the stacked sta-

tistical model with rotatable features proposed in [54], where a 3-layer layer-wise trained

mixture model is introduced with the option of constructing an organized feature space that

8

is equivariant to cyclic transformations. The simplicity and interpretability of the statistical

model are appealing, and we use it as a baseline model to compare with other models that

we propose. The spatial transformer network [38] is also discussed in this chapter. It learns

a spatial transformer module along with the regular CNN to perform transformation oper-

ations conditional on individual data samples before classifying them. We show that such

a framework is flawed as the proper spatial transformation operations cannot be perfectly

recovered by a regular CNN.

In Chapter 3, we develop a mechanism to learn a deep neural network that can achieve

transformation invariance using the student-teacher learning framework. The output from an

intermediate layer of the teacher network is used as soft targets to guide the student network

to produce the same feature representations even when the input is transformed. As a result,

the feature maps extracted by the student network will be robust to the transformations.

Moreover, only the shallow layers need to be trained to adapt to the transformed data while

the downstream task-specific layers of the network do not need to be retrained or fine-tuned.

Therefore, labeled data are not necessarily required for training.

A framework for training deep neural networks with optimal instantiations is proposed

in Chapter 4. Latent variables are introduced to a regular deep architecture, separately

for each class, to effectively remove nuisance transformations in the data and allow the

model to obtain a reference pose for the object that is being classified. A two-step training

mechanism is designed, which alternates between optimizing over the latent variables and

the model parameters to minimize the loss function. We show our approach is able to obtain

reference poses for the objects that are being classified. As a result, a support mask for a

certain object class can be achieved by taking the average of the reference poses of objects

from the same class, and they can be applied to decluttering images of objects with different

types of random surrounding clutters. In addition, we show our approach can be extended to

3D volumetric data to recover the reference orientations of the 3D objects while classifying

9

them.

Another direction that we explore in Chapter 5 is the use of 3D CAD models to ren-

der 2D images as a data augmentation approach. By generating 2D images from 3D CAD

models, one can obtain a more compact way of representing an object class, which allows

more transformation variations in data to be observed when training the models. Significant

performance improvement is achieved by simply augmenting the real image training dataset

with synthetic images, especially when the real image training dataset has a limited amount

of examples. In addition, we show how a foreground-background segmentation model trained

on synthetic images can be used to extract target objects from real images. This is partic-

ularly useful as it removes the nuisance factors of variations introduced by the background,

and it allows a classification model trained on synthetic images with clear background to be

directly applied to the real data.

10

CHAPTER 2

BASELINE MODELS

In this chapter, we evaluate two deep learning models that are designed particularly to

deal with transformation variations in the data. In Section 2.1, we introduce the stacked

statistical models with rotatable features proposed in [54], where a 3-layer layer-wised trained

mixture model is introduced with the option of constructing an organized feature space that

is equivariant to rotation or other cyclic transformations. In Section 2.2, we review the spatial

transformer network introduced in [38], where a spatial transformer module is proposed and

incorporated with a conventional CNN to disentangle nuisance factors of variations from

the image objects. We present the experimental results of the both models to establish the

baselines for the future chapters.

2.1 Statistical Models with Rotatable Features

We present a 3-layer feed-forward statistical model proposed in [54], which is a layer-wise

trained mixture model with rotatable features. The model architecture contains an edge

layer, a part layer, and an object layer for classification. As the model is layer-wise trained,

labeled data is not necessarily required except for the classification layer. This model extends

the part-based statistical object model of Bernstein and Amit [6] to incorporate rotatable

part models and rotatable object models, and it allows the learned feature representations

to be equivariant to the cyclic transformations in data. We describe the model architecture

in the following.

2.1.1 Model Architecture

The 3-layer feed-forward architecture contains an edge layer, a rotatable part layer, and a

rotatable object layer.

11

Edge Layer. The first layer is an edge detection layer that extracts binary oriented

edge features at every pixel of a grayscale image. Based on the gray level edge detector

described in [1], we extract eight binary oriented edges at each pixel based on the pixel

intensity differences between the current pixel and the nearby pixels. For each detected edge

for a pixel, a line of pixels within a certain radius oriented orthogonal to the edge orientation

are defined as the neighborhood locations, and the extracted edge feature is spread to these

neighborhood locations to make the edge detection robust to small variations. As a result,

for an image I ∈ I where I ∈ [0, 1]H×W with width of W and height of H, an edge feature

map xI ∈ {0, 1}H×W×8 is produced by the edge layer.

Part Layer. The extracted edge features are passed to the part layer, where a dictionary

of filters is learned from the edge patches in an unsupervised manner. During training, edge

patches of size h×w with sufficient edge activities are selected from the edge feature maps.

Let x(n) ∈ {0, 1}h×w×8 denote the edge feature map of the binary edge patch n. We assume

the binary edge patches are samples of a mixture model with K mixture components where

each component is a product of independent Bernoulli distributions. More specifically, we

can model the edge patches as follows:

P (x) =
K∑
k=1

πk

h×w×8∏
i=1

µxik,i
(
1− µk,i

)1−xi (2.1)

where πk is the mixing weights and µk is the mean parameters for the k-th mixture compo-

nent. An EM algorithm can be designed to estimate the parameter values for each mixture

component. After training, the learned mean parameters µk for each component can be used

as the part models to create the part representations of the images.

In order to incorporate the rotation of the data into the model, an extension of the

part layer is proposed in [54]. Instead of learning generic mixture components for all

the sampled edge patches, we introduce a latent rotation variable to the mixture model

and estimate rotation-equivariant mixture components. More specifically, let us denote

12

x(n,1), . . . , x(n,R) ∈ {0, 1}h×w×8 as the R evenly spaced rotated versions of binary edge

patch n. To achieve this, one can rotate an underlying image and extract features from the

corresponding image patch to obtain rotated versions of a particular edge patch. One can

stack the rotated versions of the edge patch to create a single binary feature vector x(n)

and model this binary feature vector using a Bernoulli mixture model that has K mixture

components with a latent rotation variable:

P (x) =
K∑
k=1

πk

(R∑
r=1

πr|k

R×h×w×8∏
i=1

µxi
k,σr(i)

(
1− µk,σr(i)

)1−xi) (2.2)

where
∑K
k=1 πk = 1 and

∑R
r=1 πr|k = 1 for each k. σr is a cyclic permutation of indices that

shifts the indices forward by r×h×w×8 entries to help align the rotation channels of the filter

and the edge patch. The key step in this model is the cyclic permutation operation σr for

indices of the rotated edge patches. This implies a structured organization of the parameter

spaces of the mixture components, and it implicitly forces the part representations created

by the part models to be equivariant to cyclic permutations. A modified EM algorithm is

designed to estimate the parameters of the model with latent cyclic rotation. We derive the

EM algorithm in Algorithm 1.

Using the learned dictionary of part models, one can create a part-representation of an

image by encoding each pixel of the image by a binary feature vector. To achieve this, a

neighborhood edge patch centered on the each pixel is extracted, and the i-th element of

the binary feature vector is set to be one if this patch has highest likelihood under i-th part

model. A max-pooling operation can be applied to make the feature maps robust to local

translations.

Note that the rotatable mixture model we used in Equation 2.2 is a distribution over

the combination of R rotated versions of an edge patch. Therefore, in order to create the

part-representation of an image, ones needs to create and combine R rotated versions of

the edge-representation of each neighborhood edge patch and calculate the likelihood of

13

Algorithm 1 EM Algorithm For Rotatable Part Model

1: procedure

2: Denote Pk,r(x
(n)) =

∏R×h×w×8
i=1 µ

x
(n)
i
k,σr(i)

(
1− µk,σr(i)

)1−x(n)i and πr,k = πr|k × πk.

3: Choose an initial seting for the parameters θ(0) = {π(0)
r,k , µ

(0)
k,i}.

4: t← 0

5: E step:

6: q
(t+1)
r,k,n = P (r, k|x(n); θ(t)) =

Pk,r(x
(n))×π(t)r,k∑

r′,k′ Pk′,r′(x
(n))×π(t)

r′,k′
.

7: M step:

8: We solve for the following function:

9: arg maxθQ(θ, θ(t)) =
∑
r,k,n q

(t+1)
r,k,n

(
logPk,r(x

(n)) + log πr,k
)

10: Therefore, we have

11: π
(t+1)
r,k =

∑
n q

(t+1)
r,k,n
N

12: µ
(t+1)
k,i =

∑
r,n q

(t+1)
r,k,n x

(n)
σr(i)∑

r,n q
(t+1)
r,k,n

13: If the convergence criterion is not satisfied then

14: t← t+ 1

15: and return to line 5.

16: Stop

14

it under each part model. Obviously, this is computationally intensive and tedious. To

resolve this, for each learned mixture component, we consider each part in every orientation

a separate feature, i.e., we split the original mixture component into R sets of h × w × 8

entries, each becomes a separate part model. Therefore, we will have K × R part models,

and each pixel of the part-representation of the image becomes a binary feature vector of

size K × R. Although each mixture component is broke up into separate part models for

different rotations, we can still maintain the virtual associations for the part models within

the same mixture component, and it allows the part-representations of the images to be

rotation equivariant.

Object Layer. The part-feature maps from the part layer can be fed to the object layer,

where a set of class-specific object models is learned for classification tasks. Training in this

layer is supervised, where we learn object models for each class separately. The learning

process in this layer is similar to that of the part layer that we described above except that

this time we learn a model from the part-representation of the entire image instead of the

edge-representation of randomly selected local patches.

Similarly, a rotatable object layer is also possible when we use the rotatable part layer as

the second layer. When the part models are rotatable, any rotated version of part-feature

maps can be created by transforming the part locations and then adjusting their angles.

Therefore, for any part-representation of the data, we can create rotated versions and stack

them together as a single binary part-feature vector. For each class c, Mc rotatable object

models can be learned using the same kind of mixture distribution in Equation 2.2. After

training, one can obtain the part-representation of a given test image by passing it through

the first two layers. The part-representation of the test image is then fed to the object layer

where the likelihood of it under each object model is calculated. The class label, as well as

the orientation, can be determined by the object model that maximizes the data likelihood.

15

Figure 2.1: Examples of images from the mnist-rot dataset.

2.1.2 Model Performance

To establish a baseline for the future chapters, we apply the model to the mnist-rot dataset

[46]. The mnist-rot dataset is a variation on the MNIST dataset where all the images are

randomly rotated by angles uniformly generated between 0◦ to 360◦. Some examples of

images from the mnist-rot dataset are shown in Figure 2.1. Classifying the images in this

dataset is difficult as some rotated objects are easily mistaken for digits that come from a

different class (e.g., the confusion between a digit 6 and a rotated digit 9. We will discuss

other difficult cases in Chapter 4).

We apply our model to the mnist-rot dataset. For the rotatable part layer, we use 200

parts of size 6 × 6 with 16 rotations. The rotatable object models are used to calculate

the likelihood for the part-representations of the images to perform the classification task.

It shows good performance on the mnist-rot dataset, achieving an error rate of 5.76%. In

Figure 2.2, we show a visualization of the learned rotatable object models trained with one

mixture component per class. The first row and the second row show the visualization of the

object models trained on the upright digits and the rotated digits respectively. Note that

the preferred orientations of the object classes are not known to the model when training

the rotatable object model. By allowing the learned rotatable object model to classify a few

upright digits and figure out the preferable orientation, we can easily correct the orientations

of learned object models, as is shown in the third row in Figure 2.2.

16

mnist-basic

mnist-rot

mnist-rot (corrected)

Figure 2.2: The first row and the second row show the visualization of the object models
trained on the images with upright digits and randomly rotated digits respectively. The
orientation-corrected object models are shown in the third row. Image source:[54].

2.1.3 Conclusion

In this section, we present a 3-layer feed-forward statistical model with rotatable features.

Such a statistical framework enjoys some of the advantages of the existing deep learning

architectures (including convolutional feature learning and weights sharing across spatial

locations), but it offers a much simpler and more interpretable model.

In our experiment, we incorporate rotation into the model, and we show that the learned

part models and the object models are explicitly rotatable. As a result, the output feature

maps in the part layer and the object layer are equivariant to a discrete set of rotations.

We note that this approach can generalize to any cyclic transformation, and the model can

explicitly capture the transformation in data. The layer-wise training approach makes it

possible to take advantage of the enormous amounts of unlabeled data when training for the

first two layers and the class-annotated data is only required for training the object layer.

During testing, if we conduct the likelihood-based test using the rotatable object models, not

only the class label but also the orientation of the object can be determined by our model.

The simplicity and interpretability of the statistical model are appealing as it follows

the statistical principle of likelihood and it is fast to train. It also shows strong results on

variations of the MNIST dataset, achieving an error rate of 5.76% on the mnist-rot dataset.

We will use this as a baseline model to compare with other models that we propose.

17

Figure 2.3: The architecture of a spatial transformer module. Image source:[38].

2.2 Spatial Transformer Network

Spatial transformer network [38] proposes a spatial transformer module that contains a

localization network and a grid generator that can be trained to transform the input data.

By combining it with a regular convolution neural network, the spatial transformer network

can learn to not only actively transform the feature maps using spatial transformer module

but also resolve the downstream task using the rest of the network at the same time.

2.2.1 Model Architecture

The key idea of the spatial transformer network is to learn a spatial transformer module

that can perform transformation operations conditional on individual data samples before

feeding the data samples to the regular convolutional neural network to handle a certain

task. We show the architecture of a spatial transformer module combined with a regular

CNN in Figure 2.3. A localization network is trained to regress the transformation pa-

rameters θ for a given input. Based on the transformation parameters, a sampling grid

Tθ(G) is then generated by transforming the regular spatial grid G. A warped output can

then be produced by applying the sampling grid on the original input U , and it is further

passed to the downstream network to handle a particular task. The designed transformation

parametrization is differentiable with respect to the parameters, which allows the gradients

18

Figure 2.4: The spatial transformer module can rotate and scale the images to a canonical
version of the images.

to be backpropagated to the localization network. Therefore, we can have an end-to-end

training procedure for the spatial transformer network, and all the model parameters, in-

cluding those of the spatial transformer module and the regular CNN, are trained under the

supervision of task-specific signals.

What is surprising about the spatial transformer network is that the spatial transforma-

tion actions can be produced for the individual data samples, and this behavior is learned

together with the training of the downstream task without additional supervision. This al-

lows the network to capture the most task-relevant region of the image, and then transform

it to a preferable form. Following the notation in Equation 1.1, we have the input x = Tgx̂

is a spatially transformed version of a canonical version of the image x̂. Therefore, the spa-

tial transformer module is learning a function f that can recover the canonical form of the

transformed image Tgx̂, i.e., f(Tgx̂) = x̂.

In Figure 2.4, we show how the spatial transformer module recovers the orientations of

some image examples. On the left, we show the test images of handwritten digits that have

been randomly rotated, and the transformed (and subsampled) test images produced by the

spatial transformer module are shown on the right. As we can see from the figure, although

undesired rotations still exist in some examples, the orientations of the most images have

been corrected, especially for those example images of digits of class one.

19

2.2.2 Discussion

Intuitively, the correctness of the recovered transformation operation for an image should be

based on the class label of the image. As a result, the learned spatial transformer module

should first recognize the class label of the current image, and then try to extract the

transformation parameters by analyzing the pose of the image based on the class label.

To understand this, let us consider an example where the task is to classify images of

rotated handwritten digits of class six and class nine. Note that although the rotated versions

of the digits from these two classes have almost the same shape, they are still distinguishable

due to some habits that people have in common when writing them. For example, the upper

part of a digit six is usually more curved while a digit nine is often handwritten with a

straight stem, and a digit nine is sometimes disambiguated by an underline. To correct the

orientation of an image of rotated digit of class six, a spatial transformer needs to recognize

it as a digit of class six rather than a digit of class nine before producing the transformation

parameters. Otherwise, it is possible that a different transformation would be produced to

rotate the image to look like an image of digit of class nine. There are some more such

examples that will be discussed in Chapter 5. Therefore, we argue that sometimes the

proper spatial transformation is undefined, and an accurate estimate of transformation is

not possible unless the image label is captured.

However, in the spatial transformer network, we do not have separate spatial transfor-

mation modules for examples from separate classes. Instead, only one spatial transformer

network is learned to produce the transformation actions for all images without knowing the

labels of the images. Since the localization network itself has the architecture of a regular

CNN, it is not invariant or equivariant to transformations such as rotation and deforma-

tion. It raises a question of whether the spatial transformer module distinguishes the class

labels of the images before transforming them. In fact, it is not surprising that the spatial

transformer module does not contain much information about the class labels. Otherwise,

20

Figure 2.5: The spatial transformer module is sensitive to random clutter if they do not exist
in the training data.

we would not need the downstream CNN network to handle classification task.

2.2.3 Experiment

We design several experiments to investigate the properties of the spatial transformer network

and evaluate the performance of the model.

In order to verify if the spatial transformer recognizes the class labels before classifying the

images, we conduct the following experiment. We train a spatial transformer network using

images of shifted objects and take the output of the second last fully connected layer (the layer

before the final layer that produces transformation parameters) in the localization network

as the feature representations for each image. Then we train a SVM classifier to classify an

image based on the feature representations of that image. We find that the trained SVM

classifier has a poor classification performance that is barely better than a random guess.

This indicates that the fully connected layer in the localization network does not contain

much information about the class labels. A possible conjecture is that the localization

network estimates the location of the pixel intensity blob and its rough orientation and

scale, and the transformation matrix is produced based on that. To verify this, we randomly

add some clutter to the test images and apply the spatial transformer module to generate

21

transformation operations for the images. Note that such random clutter is not observed

in the training data, and the spatial transformer network is trained on images with a clear

background. In Figure 2.5, we show that the spatial transformer module is sensitive to

random clutter in the background if such clutter does not exist in the training data, and it is

difficult for the spatial transformer module to recover the orientations of the image objects

when such random clutter exists in the background.

On a separate note, we find that a spatial transformer module can be explicitly trained

to regress the transformation parameters when the target values of the transformation pa-

rameters are provided as the supervised signals during the training.

To establish a baseline for the future chapters, we train a spatial transformer network on

the mnist-rot training dataset [46] and apply the model to classifying the rotated images.

We achieve an error rate of 5.71% on the mnist-rot test dataset.

2.2.4 Conclusion

The idea of learning to recover the reference poses of the images together with the down-

stream tasks proposed in the spatial transformer network is appealing. Ideally, the nuisance

factors of variations such as rotation, shifting, and deformation can be decoupled from the

task-specific networks, which would make the problem easier for the task-specific networks.

The self-contained spatial transformer module can be easily combined with a regular CNN,

and it can be trained in an end-to-end fashion.

However, as we discussed above, such a framework is flawed, as the proper spatial trans-

formation cannot be perfectly recovered by a regular CNN. We show that, in some cases, a

proper reference pose of an image is difficult to estimate or even undefined if the class label

of the image is not recognized first.

Therefore, we argue that architectural changes to the existing deep learning models are

necessary if one wants to recover the reference poses of the images. In the next few chapters,

22

we propose different approaches to deal with transformation variations in the data.

23

CHAPTER 3

TRANSFORMATION-INVARIANCE VIA STUDENT

TEACHER LEARNING

3.1 Introduction

As we mentioned above, the most common and convenient way to achieve the transforma-

tion invariance for the various models is through the use of data augmentation. Different

transformed versions of the original data can be collected and used for training the models.

The more variations of the data are observed, the models will become more transformation

invariant. By augmenting the training data using different approaches [20, 45, 18, 17, 77], it

has been shown that such methods can achieve significant performance improvement.

Despite the success of this approach, it has two drawbacks. First, such an approach

usually requires us to either create or collect the transformed data from some existing labeled

dataset. When a certain transformed version of the data is difficult to create or not readily

available in the existing labeled dataset, we are no longer able to adopt such approaches.

Second, it is usually difficult for such an approach to take advantage of unlabeled data, which

contains an enormous amount of variations that could be useful for vision tasks.

In this chapter, we propose a procedure to learn a deep neural network that could achieve

transformation invariance and take advantage of training examples that are not necessarily

labeled. We call a learned network transformation invariant if the network can produce

the same feature maps even though the input has been transformed. To achieve this goal,

we adopt the student-teacher learning framework [4, 36] for our model and pairs of two

unlabeled training images, one canonical image and one transformed version of the same

image, are provided for training the student network. Given a pre-trained teacher network,

we use the mid-layer representations of the canonical input as the supervisory signals, and the

student network is trained to reproduce the same mid-layer representations when operating

24

on the transformed version of the input. As a result, the learned feature maps will be robust

to transformations. Moreover, only the shallow layers need to be trained to adapt to the

transformed data while the downstream task-specific layers of the network do not need to

be retrained or fine-tuned. Therefore, labeled data are not required for training the student

network.

3.2 Related work

Recently, a model distilling approach was proposed to compress multiple pre-trained models

into a single one [4, 36] or to perform knowledge transfer from a (complex) model to another

(simple) one [65]. By using a student-teacher learning mechanism, training of a student

model is guided by the soft targets produced by a teacher model. The idea is to train the

student network to capture not only the class information provided by the labels but also

the finer structure learned by the teacher network.

Besides the successful application on compressing the pre-trained models, this training

mechanism has also been used for supervision transfer tasks [26]. A student model can be

trained for vision tasks where the images have a different image modality. One can train

the student model to reproduce the mid-level semantic representations learned from a well-

labeled image modality for modalities for which there are paired images and less well labeled

(e.g., depth images, optical flow images, etc.). This allows the model to use the paired images

of the two modalities and utilize the mid-level representations from the labeled modality to

guide the representation learning on the other unlabeled modalities.

In this project, we are inspired by the student-teacher learning mechanism and apply it

to the context of transformation-invariant feature learning. We use the mid-level represen-

tations from a teacher network as the supervisory signals, and teach the student network to

reproduce the feature maps when the input is a transformed version of the same image.

25

3.3 Method

A state-of-the-art deep learning model has already done an excellent job finding features

that are useful for a vision task. However, the features learned by such deep neural nets are

sensitive to transformations that were not observed in the training data, and the network

might produce a different feature map if we transform the image. Therefore, our intuition

is to build a deep learning model to produce the same feature maps even if the input is

transformed. The mechanism of learning such models is presented in Figure 3.1.

More specifically, as we can see from the figure, the model architecture contains a com-

bination of two networks: A teacher network that gives the state-of-the-art performance for

the original dataset; and a student network that tries to “de-transform” the feature maps

of the transformed version of the data. By doing this, the feature maps generated for the

transformed data and the canonical data by the student network and the teacher network

become close. To achieve this goal, we match the feature maps of two networks by regressing

the outputs of the matching layers using L2 loss, i.e., the training of the student network

is guided by the soft targets produced by the teacher network at a particular layer. When

the soft targets have high entropy, it usually provides more information than a simple hard

target. Note that no label information is required during training as the model only learns

to regress the output of the intermediate feature maps. After training, the student network

can append the downstream task-specific layers from the teacher network to perform a given

task without retraining.

Training such a model requires a two-step approach: we first train a state-of-the-art

deep learning model or take an existing model that gives a good performance on the given

task. We freeze the weights of the model and refer to it as the teacher network. Then we

build a d-layer student network that has the same architecture as the top d layers of the

teacher network. During training, a canonical version of the input is presented to the teacher

network, and the feature map of the image can be extracted at the d-th layer. Meanwhile,

26

Figure 3.1: We show the joint architecture of a transformation-invariant deep neural net by
student-teacher learning. The left one is the teacher network that achieves state of the art
for a given task, and the right one is a student network that needs to be trained. During
training, the teacher network will take a canonical image as the input while a transformed
version of the same image will be created and passed to the student network. Guided by the
supervisory signal from the output from the d-th layer of the teacher network, the student
network learns to reproduce the same feature maps by regression. After training, the student
network will append the learned d layers with the downstream layers of the teacher network
(d+ 1 . . . , n layers) to perform a given task.

27

a transformed version of the input is presented to the student network, and it will take the

feature outputs from the d-th layer of the teacher network as the soft targets for regression.

In our experiment, we simply use the Euclidean distance between the desired feature output

and the generated feature output as the loss function.

During testing, the top d layers of the student network will be connected to the down-

stream layers of the teacher network to perform a certain task. As the student network

learns to reproduce the output of the teacher network and “de-transform” the feature maps

for a transformed input, the downstream layers of the teacher network are not required to

be further fine-tuned or retrained for the task.

A natural choice of the matching layer would be the last layer, where the class probabili-

ties are produced by the original model. The student network will learn to produce the same

class probabilities when a transformed version of the input is given. It is worth noting that

it only makes sense to use the class probabilities as the soft targets when the transfer dataset

consists of the data from the same set of classes. If the transfer dataset contains unlabeled

data from a different dataset and we want to learn the transformation-invariant filters for

local patterns, it would be more appropriate to use the feature maps on the shallower layers

as the soft targets. The choice of matching layer depends on the level of transformation

invariance we want to learn. We will explain this more in detail in the next section.

3.4 Image Deformation

We want to show that the student-teacher learning mechanism can help achieve invariant

representations for different types of transformations, including rotations, translations, as

well as random deformations that are not well defined. The rotated version and the translated

version of an image are usually easy to acquire, but it is unclear how to perform random

deformations for an image. In this section, we adopt the framework of image deformation

parameterization introduced in [1], and we show how to generate randomly deformed images

28

by generating smooth random deformation functions. To do so, let us first review some key

concepts of the wavelet basis functions, and we will see how this can play a part in generating

deformed images.

3.4.1 Function Parametrization by Wavelet Bases

An wavelet basis is an orthonormal bases of functions that can be used to parametrize

functions, and it is especially suited for a coarse-to-fine function parametrization.

For example, let us first consider the 1D wavelets on the unit interval. Basis functions of

a 1D wavelet with S levels can be organized hierarchically with 2s−1 functions at each level,

where s = 1, 2, . . . S. More specifically, at a given level s, a wavelet basis function indexed

by l = 0, . . . , 2s−1 − 1 as the shifting factor on the unit interval can be written as:

ψs,l(x) = ψs,0(x− 2−(s−1)l) (3.1)

and we have:

ψs,0(x) = 2(s−S)/2ψS,0(2(s−S)x) (3.2)

where ψS,0(·) is called the mother wavelet. As we can see, all the basis functions can be

obtained by scaling, dilution, and shifting of the mother wavelet. As the level increases, both

the scaling on the mother wavelet and the possible values of l will increase, and it leads to

a finer resolution of the parametrization.

For 2D wavelets, the basis functions are still organized hierarchically with multiple levels.

To index the wavelet basis functions, in addition to the level parameter s and the shifting

factor l that are used in the 1D wavelets, an extra index α is introduced in the 2D wavelet

where α = 1, 2, 3 is used to indicate the horizontal, vertical and diagonal detail components.

More specifically, a 2D wavelet basis function on the unit square at level s can be written as

29

follows:

ψα,s,l1,l2(x) = ψα,s,0,0(x1 − 2−(s−1)l1, x2 − 2−(s−1)l2) (3.3)

where α = 1, 2, 3 and l1, l2 = 0, . . . , 2s−1 − 1. Similarly, ψα,s,l1,l2 is a scaling, dilution and

shifting of the mother wavelet ψα,S,0,0, and we have:

ψα,s,0,0(x) = 2(s−S)ψα,S,0,0(2(s−S)x) (3.4)

In the 1D and 2D wavelet bases, the basis functions with low levels are smooth functions

that describe global variations whereas the basis functions with high levels describe more

local variations. Therefore, such a hierarchical organization of the basis functions is naturally

suited for coarse-to-fine parametrization of functions. In the next section, we will describe

how we can take advantage of this property and use the 2D wavelet basis functions to

parametrize image deformations. Note that a particular form of the mother wavelet (ψS,0

for the 1D wavelet and ψα,S,0,0 for the 2D wavelet) needs to be carefully chosen in order

to make the basis functions orthonormal. In this work, we use the family of Daubechies

wavelets as the basis functions for parametrizing the functions.

3.4.2 Create Deformed Images

Let us consider the image domain D as a continuum. An original image can be defined on

the domain D by F (xs), where xs ∈ D. One can introduce a smooth deformation function

φ, mapping from D to D. Therefore, a deformed image associated with the deformation

function φ can be expressed as F̃ (xt) = F (xs) = F (φ(xt)), where xt ∈ D. In this case, for

any point in the original image F , φ−1 will deform it to the corresponding position in the

image F̃ .

To make it easier to work with, we define a displacement field as U(x) = φ(x)−x. When

U(x) = 0 for ∀x ∈ D, then φ(·) is an identity map. As described in [1], in order to preserve

30

Figure 3.2: Visualization of some randomly-deformed training examples from the MNIST
dataset. Although some parts of the class object are distorted, they look like different
instantiations of an object coming from the same class.

the topography of the image after deformation and introduce a smooth deformation function,

one can use wavelet basis functions to obtain a natural coarse-to-fine parameterization of the

deformations. Therefore, denote U (1), U (2) as the two components in the 2d displacement

field, we have the following:

U (q)(x) =
d∑

k=0

u
(q)
k ψk(x), q = 1, 2 (3.5)

for some finite d, and ψk is the 2D wavelet basis function. Here k = (α, s, l1, l2) is a four-

parameter index for the 2D wavelet basis function. Note that we have the 2D wavelet basis

function ψα,s,l1,l2(x) defined in Equation 3.3, where α = 1, 2, 3 represents the horizontal,

vertical and diagonal detail components respectively, and l1, l2 = 0, . . . , 2s−1 − 1 represent

the shifting factor. We can thus parametrize the random displacement field by setting the

coefficients of the basis functions with values that are independently Gaussian distributed

with mean 0 and variance 1/λs. λs will change according to s, which is set to maintain

the smoothness of the function. Note that as s increases, the basis function focuses more

31

Figure 3.3: Visualization of some randomly-deformed training examples from the CIFAR-10
dataset. Although some parts of the image object are distorted, they look like different
instantiations of an object coming from the same class.

on the local regions with smaller supports. The basis functions with low levels are smooth

functions that describe global variations. In order to enforce the smoothness of the random

displacement field, we impose λs = 2ρs so that the variance of the coefficients would descrease

as s increases. In this way, the displacement field represented by Equation 3.5 is smooth.

In order to make the random displacement field more smooth, we further set the coef-

ficients of the basis functions with high levels as zero, and randomly generate coefficients

with Gaussian distribution with zero mean and variance of 1/λs for basis functions with low

levels. After that, we can get the pixel values for the deformed images by referencing the

displacement field map and bilinear interpolation. We show the randomly deformed images

from the MNIST dataset and the CIFAR-10 dataset in Figure 3.2 and Figure 3.3. For the

deformed handwritten image in Figure 3.2, we show examples of images deformed from an

original image of digit zero and an image of digit five. As we can see, these images are very

similar to those in the original dataset, and they are essentially different instantiations of the

same image. It would be valuable to find some feature representations that are invariant to

deformations like these. Deformations on the natural images make the images less realistic

32

in Figure 3.3, but they can still be easily recognized as the different instantiations of the

same image.

3.5 Experiment

We conduct several experiments on the MNIST dataset and the CIFAR-10 dataset using

the student-teacher training mechanism and compare our results to the methods that do not

use such a training mechanism. In order to eliminate the possible transformation invariance

learned from the original dataset, we limit the number of training examples for training

the teacher network. We use the MNIST1000 (first 100 images per class from the MNIST

training dataset) and the CIFAR-10(10k) (first 1000 images per class from the CIFAR-10

training dataset). For the MNIST1000 dataset, the architecture we select for the teacher

network achieves an average error rate of 3.17% on the original test set, and we achieve error

rates of 19.12% for the CIFAR-10(10k) dataset using our selected architecture.

In this section, we experiment with the student-teacher training approach and see how

well it can handle the data with rotations and random deformations. We also show how it

can be applied to the unlabeled data.

3.5.1 Training with Pairs of Rotated Images

To evaluate the model performance on a transformed dataset, we create a rotated test dataset

for each of the datasets: for each image in the test dataset, we create five different rotated

images with randomly selected degrees from −20◦ to −5◦ or from 5◦ to 20◦. If no augmented

data is allowed for training, then the teacher network trained on the original MNIST1000

dataset achieves an average error rate of 6.4% on the rotated test set and the teacher network

trained on the original CIFAR-10(10k) dataset achieves an average error rate of 25.72% on

the rotated test set.

We then start to experiment with the student-teacher training approach as well as the

33

Table 3.1: Experiment Result on MNIST1000 with rotation (100 images per class; 5 tries
for each experiment)

Model Description Result
Original Model (test on original test
set)

96.83%

Original Model (test on rotated test
set)

93.60%

Model trained with augmented data
(test on original test set)

97.52%

Model trained with augmented data
(test on rotated test set)

96.81%

Trained Student Network on Different
Layer as Soft Target

Last Conv
Layer

First Fully
Connected
Layer

Second Fully Con-
nected Layer (be-
fore softmax)

Student Network trained on
MNIST1000 (test on original test
set)

96.97% 97.54% 97.72%

Student Network trained on
MNIST1000 (test on rotated test
set)

94.41% 96.57% 96.92%

data augmentation approach. When training the student network, we first determine which

layer of the teacher network is used as the matching layer. During training, a pair of images

will be presented to the teacher network and the student network separately. The teacher

network will take the canonical version of the input and produce the feature maps at the

matching layer as the supervisory signal for the student network. A random rotation with a

degree from −20◦ to 20◦ is applied to the same input image, and the rotated image is passed

to the student network as the input. An L2 loss is used to guide the student network to

produce the same feature maps for the matching layer even though the input is randomly

rotated. To compare with the traditional data augmentation approach, we also train a CNN

on an augmented dataset. We augment the original training data by randomly rotating the

images with a degree from −20◦ to 20◦, and the amounts of the training data for the both

approaches are the same.

How much do we gain if we adopt the student-teacher training mechanism, compared

to the traditional training approach and other simple transformation-invariance training

approaches such as the data augmentation approach? In Table 3.1 and Table 3.2, we show

34

Table 3.2: Experiment Result on CIFAR-10(10k) (1000 images per class)

Model Description Result
Original Model (test on
original test set)

80.88%

Original Model (test on
rotated test set)

74.28%

Model trained with aug-
mented data (test on orig-
inal test set)

81.60%

Model trained with aug-
mented data (test on ro-
tated test set)

78.00%

Trained Student Network
on Different Layer as Soft
Target

Last Conv
Layer

First Fully
Connected
Layer

Second
Fully Con-
nected Layer
(before
softmax)

Student Network trained
on CIFAR-10(10k) (test
on original test set)

75.04% 79.91% 81.40%

Student Network trained
on CIFAR-10(10k) (test
on rotated test set)

76.29% 80.34% 80.71%

results of experiments on the MNIST1000 dataset and the CIFAR-10(10k). We observe

that both the data augmentation approach and the student-teacher training approach can

improve the performance of the original model on the original test set and the rotated test

set. The student-teacher training mechanism achieves comparable performance with the data

augmentation approach. Especially when tested on the rotated test set, the student-teacher

training mechanism achieves a slightly higher accuracy on both datasets. We also show that

the deeper layer we use as the soft target, the better accuracy the model achieves. This

is expected because more class information is conveyed by each neuron in a deeper hidden

layer. We note that the choice of the matching layer depends on the level of transformation

invariance we want the model to learn. Unlike the units in the fully connected layers, a unit

in the last convolutional layer only extracts a pattern for a local receptive field. Therefore,

we can only learn transformation invariance in a local region if we use the last convolutional

layer as the matching layer.

35

Figure 3.4: Classification accuracy rates by different methods when tested on the MNIST
test datasets that contain different ranges of random rotation. Each model is trained on the
MNIST1000 training data augmented by −20◦ to 20◦ random rotations.

As is shown above, both the data augmentation approach and the student-teacher training

approach can improve the performance of the original model on the original test set and

rotated test set. One interesting question is that when the models are trained on a dataset

of images that are rotated by degrees within a certain range, how does the performance

change when the testing data has a wider or narrower range of random rotations? To answer

this question, we train the models on a fixed training dataset of rotated images (where

the images are randomly rotated with degrees from −20◦ to 20◦), and we want to explore

the performance on the test datasets that contain different ranges of random rotations. In

Figure 3.4, we observe that the performance of all approaches drops dramatically when the

test images have a wider range of random rotation. The performance degradation of the

student-teacher training approach and the data augmentation approach are similar, and

both of these two approaches outperform other approaches by a big margin. We also show

the accuracy result by a CNN baseline model that is trained on the MNIST1000 dataset

without any data augmentation. As we expected, the conventional CNN trained on the

original dataset is not able to observe much variations in the data and therefore produces

36

the worst results among the approaches we proposed.

Figure 3.5: Visualization of the reconstructed image by the student network.

In order to show that the student network learns to “unrotate” the feature map, we use

the teacher network as the encoder network and learn a decoder for the teacher network to

reconstruct the input images. After learning the decoder for the teacher network, we connect

the student network with the learned decoder and construct a new autoencoder for image

reconstruction. As the student network tries to produce the same bottleneck representations

regardless of the rotation of an image, ideally the reconstruction of a rotated image will be

an upright version of the image. In Figure 3.5, we show some examples of reconstructed

images when rotations between −30◦ to 30◦ are applied to the input images. Although the

reconstructed images are not exactly the upright versions of the original image, we observe

that the student network still manages to correct some rotations in the images, especially

for those rotated versions that are close to the original input image.

37

3.5.2 Training with Pairs of Randomly Deformed Images

To show that the student-teacher learning mechanism can learn representations that are

robust to other types of transformation, we want to apply our approaches to images with

random deformations. Following the procedure we introduced in Section 3.4, we create a

deformed MNIST test dataset: for each image in the MNIST test dataset, we create five

different deformed images. Using an original CNN that trained on the MNIST1000 dataset,

the model makes an average of 4.65% test error on the deformed test set.

We then train the model using the data augmentation approach and the student-teacher

approach. Similar to the experiment above, when training the student network, we present

a canonical image to the teacher network for feature extraction and a deformed version of

the same image for training the student network to produce the same feature maps. We also

train a regular CNN using the data augmentation approach, where the data is augmented

with images that are randomly deformed. The amounts of the training data we use for the

both approaches are the same.

We show the experiment results in Table 3.3. The data augmentation approach and the

student-teacher training approach further improve the result on the MNIST1000 dataset,

and both achieve error rates that are close to 2%. We also observe that the student network

Figure 3.6: Visualization of the filters learned by the teacher network and student network
when choosing the last convolutional layer as the soft target. The left are the visualization
of the filters bank learned by the teacher network, and the right are the visualization of the
filters bank learned by the student network.

38

Table 3.3: Experiment Result on MNIST1000 with deformation (100 images per class; 5 tries
for each experiment)

Model Description Result
Original Model (test on
original test set)

96.83%

Original Model (test on
deformed test set)

95.35%

Model trained with aug-
mented data (test on orig-
inal test set)

97.98%

Model trained with aug-
mented data (test on de-
formed test set)

97.25%

Trained Student Network
on Different Layer as Soft
Target

Last Conv
Layer

First Fully
Connected
Layer

Second
Fully Con-
nected Layer
(before
softmax)

Student Network trained
on MNIST1000 (test on
original test set)

97.03% 97.69% 98.01%

Student Network trained
on MNIST1000 (test on
deformed test set)

95.72% 97.02% 97.40%

achieves better accuracy performance when we use the deeper layer as the soft targets, which

is consistent with what we observed in the previous experiments.

We compare the convolution filters learned in the student network and the teacher net-

work. Let us consider the case where we use the feature maps of the last convolutional layer

as the soft target. In Figure 3.6, we show the visualization of the filters learned by the two

networks when the MNIST1000 dataset is used as the transfer dataset. The visualizations

are obtained by taking the weighted average of image regions that have positive activations

on the neurons. The filter visualizations from the student network on the right have similar

but much blurrier patterns comparing to those learned by the teacher network. For a par-

ticular local pattern that activates a unit in the teacher network, we expect a corresponding

unit in the student network should also be triggered by a transformed version of this pat-

tern. Therefore each unit in the student network detects patterns that have a wider range

of variations, yielding a much blurry visualization.

39

3.5.3 Training with Pairs of Unlabeled Data

One of the advantages of the student-teacher training mechanism is that it can be trained

with unlabeled data. We create an unlabeled dataset where each unlabeled example is gener-

ated by randomly sampling a 10× 10 subregion from the original images in the MNIST1000

dataset and putting this patch at a random location of a blank image with a black back-

ground (see some examples in Figure 3.7). We use the generated unlabeled data as the

transfer dataset to train the student network. Since the generated images contain only the

local regions of the original images, it helps the student network to learn the transformation

invariance for local patterns.

To show the advantage of using the unlabeled data, we conduct the following experiment:

We train a regular CNN model using an augmented MNIST1000 dataset where images are

randomly rotated during training, and we achieve an accuracy rate of 98.58% on the rotated

test images of digits of class one. The model performance drops to 96.75% if we train the

CNN model using the augmented MNIST1000 dataset where all images are randomly rotated

except those from digit class one (images of the canonical version of digits of class one are still

shown to the model). However, if we train a student network with the unlabeled data that

contains 10× 10 subregions sampled from images of all classes except digit one, the network

Figure 3.7: Five pairs of generated unlabeled images. Top row shows images that contain
10×10 subregions sampled from the MNIST1000 dataset. Bottom row shows rotated versions
of images in the top row.

40

still has an average of 97.52% test accuracy on test images of rotated digits of class one.

It is only 0.2% worse than the performance of a student network trained on the unlabeled

images of subregions sampled from all classes. It is possible that the transformation-invariant

representations learned from subregions of images from other digit classes (e.g., digit seven

and digit nine) are sufficient, so that the student network does not need to see examples

from digits of class one to “unrotate” the feature maps for rotated digit ones.

In addition to that, we can also use a different dataset where the class labels are different

from those of the transfer dataset. For example, for the CIFAR-10 dataset experiment,

we can use images from the CIFAR-100 dataset as the unlabeled data. During training, a

regular CNN pre-trained on the CIFAR-10 dataset is used as the teacher network, and the

student network is trained to match the feature maps of the CIFAR-100 images produced

by the teacher network. We observe that the accuracy rate on the rotated CIFAR-10 test

set improves to 75.91% if we use the CIFAR-100 dataset as the transfer dataset, compared

to an accuracy rate of 74.28% achieved by the original CNN model.

3.6 Conclusion

In this work, we adopt the student-teacher training mechanism to learn a deep neural network

that is invariant to general types of transformations. Using the output from an intermediate

layer as the soft targets not only enables the trained student network to remain robust to

the task-irrelevant transformations but also provides a way to use enormous amounts of

unlabeled data to provide such robustness. Especially when the image transformation is not

well defined or producing an augmented dataset that has such transformation is not possible,

our mechanism can be helpful as long as a training set with paired training examples (each

pair contains the canonical form and the transformed version of an example) is provided.

For example, such paired training examples can be extracted from image sequences of video

clips, or paired images taken by cameras in different positions, etc.

41

We were not aware of the work on cross-modal distillation by Gupta et al.[26], which

has a similar network architecture with our proposed model. However, their work mainly

focuses on training a CNN model for a new image modality by teaching it to reproduce the

same mid-level representations from a well-labeled image modality when operating on the

same image objects. In our work, we mainly investigate whether this kind of student-teacher

learning mechanism allows the learned network to be robust to local transformations and

produce the same mid-level representations even when the images are transformed.

42

CHAPTER 4

DEEP LEARNING WITH OPTIMAL INSTANTIATIONS

4.1 Abstract

One of the challenges for object recognition is the extraneous variations in the data, such

as shifting, rotation, and deformation. In this paper, we design a framework for training

deep neural networks with optimal instantiations, where latent variables are introduced,

separately for each class, to effectively remove nuisance transformations in the data and

allow the model to obtain a reference pose for the object that is being classified. We apply

a two-step training mechanism for our framework, which alternatively optimizes over the

latent variables and the model parameters to minimize the loss function. We show that

CNNs trained using our framework achieve state of the art results on the rotated MNIST

and the Google Earth dataset, and produce competitive results on MNIST and CIFAR-10

when trained on subsets of training data.

4.2 Introduction

In recent years, machine learning algorithms that involve deep architectures have gained pop-

ularity. The expressiveness of deep networks allows the models to explore possible variations

in the data and learn visual representations that are robust to task-irrelevant variations.

However, such variations need to be observed in the data when training deep neural net-

works, as the traditional networks without special design do not generalize to unobserved

variations in the data. It would become much easier for downstream tasks if such task-

irrelevant variabilities can be removed from the data.

In order to learn transformation-invariant representations, many have sought to apply

data augmentation approaches in deep learning, where transformed versions of the original

data are generated to allow the learned deep neural network to be robust to data transfor-

43

mations [20, 18, 45, 17, 77]. One can also consider a set of possible transformations and

explicitly transform the filters so that the feature maps are invariant to the selected types

of transformations [78, 75, 50, 82]. Another family of approaches tries to generalize convolu-

tional architectures by either extending the feature space to a group space of transformations

[22, 15], or warping the input so that the transformation equivariance is implicitly encoded

[32]. These approaches are limited since they are either limited to a small set of transfor-

mations, or they need to keep the models shallow because of the high computational burden

required to consider additional transformations in the feature map.

Spatial transformer networks (SPN) [38] try to remove extraneous transformation vari-

ability a priori by introducing a spatial transformation module that is trained to recover

the transformation of the input image and convert it to a canonical pose, independently of

the underlying class, before feeding it to downstream layers. However, we argue that the

transformation is not easily predicted directly from the image, and varies depending on the

class label.

We present a novel extension of the deep learning framework to recover the optimal

instantiations of the data while training for the downstream tasks. In our framework, latent

variables are introduced, separately for each class, to capture the transformations of the

data, and we apply a two-step training mechanism to alternatively optimize over the latent

variables and the neural network model parameters to minimize a designed loss function. We

emphasize that the latent variables are optimized for each class separately. Consequently,

unlike SPN that produces a single transformed version of the original input, here we produce

a transformed version for each class. The transformation is not predicted directly from the

data, rather, for each class it is estimated to optimize the output of the unit representing

that class.

We show that this framework can be easily applied to any existing neural network ar-

chitecture and offers flexibility on the types of transformation considered by the model. We

44

Figure 4.1: A rotated image of digit five can be further rotated to look like instantiations
from digit class four, five, six and nine.

apply our framework to the training of convolutional neural networks, and present compet-

itive results on mnist-rot, CIFAR-10, and the Google Earth dataset.

4.3 Background

In this section, we provide some background on spatial transformer network and discrimi-

native latent variable models. In the sequel, we shall show the intuition of why the spatial

transformer module cannot accurately estimate data transformations without capturing the

data labels in some cases, and how we can overcome this problem by introducing latent

variables to the model.

Spatial Transformer Network (SPN) [38] proposes a spatial transformer module

that contains a localization network and a grid generator that can be trained end to end

with a regular network. The localization network is trained to regress the transformation

parameters for a given input. The grid generator creates the spatial grids based on the

transformation parameters and warps the input feature maps accordingly. By combining the

spatial transformer module with a regular convolution neural network, the whole network

learns to produce spatial transformations for individual data examples during training for

the downstream task.

However, sometimes the proper spatial transformation is undefined, making it difficult to

estimate for the spatial transformer module. For example, in Figure 4.1 we show an image of

rotated digit five and how it can be rotated to look like instantiations of different digit classes.

45

Intuitively, the spatial transformer module should recognize the class label of the image, and

then extract the transformation parameters by analyzing the pose of the image object based

on the class label. Therefore, we argue that an accurate estimate of transformation is not

possible unless the image label is captured. In SPN, as the class labels of the images are not

fully captured by the spatial transformer module (otherwise we do not need a downstream

network to handle the classification task), the spatial transformer module cannot produce

accurate spatial transformation for the input.

Discriminative Latent Variable Models: Introducing latent variables to discrimi-

native models has been extensively studied in the framework of multiple instance learning

(MIL), where the latent variables are used to capture the variations of many instances within

a same labeled bag. The MI-SVM formulation of multiple instance learning was initially pro-

posed in [2], and later reformulated as latent SVM in [21]. It considers a binary classifier

that scores an example x as follows:

fβ(x) = max
z

β · Φ(x, z) (4.1)

Here β is a vector of model parameters, Φ(x) is the feature extraction function for x and z

are latent values. The label for x can be obtained by thresholding the score.

In a similar vein, in this paper we incorporate latent variables into deep neural networks

to capture the transformations of the input. The input image is warped for each class

separately based on the latent values that optimize its output on that class. In training, this

is done for the entire batch using the old network parameter values, and then one or more

gradient steps are taken to update the network parameters.

46

4.4 Method

We consider a multi-class classifier that scores an example x for every class as follows:

fβj(x) = max
z

βj · Φθ(Tz(x)) (4.2)

Here βj is a vector of model parameters for class j, Φθ is a feature mapping function

parametrized by θ. The latent variable z is introduced to parametrize the transformations

of the data and Tz(·) transforms the input according to the value of z. The label ĉ of each

example is then determined by

ĉ = arg max
j
fβj(x). (4.3)

For a test example, the model finds a separate optimal latent value for each class in terms of

the output corresponding to that class. The class output with highest value yields the final

classification. Together with that classification, we also obtain an optimal transformation of

the image into reference pose.

Intuitively, in order to make the correct prediction, we want the score of the target

class to be larger than the scores of the non-target classes. As a result, we can optimize

over the model parameters and maximize the margin between fβy(x) and fβj(x) for j 6= y.

Suppose we have a set of observations x = {x1, . . . ,xN} and the corresponding data labels

y = {y1, . . . ,yN}, we use the multiclass hinge loss as follows:

L(Θ) =
∑
i

max(0, 1 + max
j 6=yi

fβj(xi)− fβyi (xi)) + λ(‖θ‖2 +
∑
j

‖βj‖2) (4.4)

where Θ = {θ, β1, . . . , βC} are the model parameters and C is the number of classes. λ is

the parameter that controls the regularization term ‖θ‖2 +
∑

j ‖βj‖2.

The key step in our method is to find the optimal instantiations of each example for

separate classes. At first glance, it might seem that it would be simpler to forgo the non-

47

target classes and only focus on finding the optimal instantiation of the example for the

target class. We note, however, that such an approach is often insufficient. Recall that

an image can be transformed to look like instantiations from a non-target class, like the

examples we show in Figure 4.1. Without competing with optimal instantiations of the data

from non-target classes, the model might not be learning from the most competitive negative

examples.

4.4.1 Optimizing the Training Loss

In order to minimize the hinge loss in Equation (4.4), we design a two-step training mecha-

nism. For each example, the algorithm finds the highest scoring latent values for each class

based on the current model parameters. Then the algorithm optimizes over the model pa-

rameters while fixing the latent values. We outline the procedure for the two-step training

algorithm in Algorithm 2.

When the latent variables form a discrete set, for example a finite set of rotations, op-

timization is performed by exhaustively search (ES). For continuous latent variables we

optimize fβj(x, z) from Equation(4.2) with respect to z by gradient descent (GD). We reg-

ularize the magnitude of z during optimization by penalizing its distance from the identity.

When the range of the continuous variable is very large, such as the 360 degree range of

rotations, we initialize the gradient descent at a small set of discrete initial rotations and

take that optimal value over all initializations (ESGD).

A different approach, which is a direct generalization of the original spatial transformer

model, is to use multiple spatial transformer modules (MSPN), one for each class, to directly

predict optimal values of z for each class during training and testing. Instead of optimizing

over z based on the gradient of the classifier output, in training this approach optimizes

over the neural network parameters that predict the transformation. Then in testing there

is no need for optimization as the optimal transformation for each class is predicted directly.

48

Algorithm 2 Two-Step Algorithm For Optimal Instantiation Learning

1: procedure

2: Choose an initial seting for the parameters Θold = {θold, βold
1 , . . . , βold

C }.

3: Optimize Over z:

4: zi,j = arg maxz β
old
j · Φθold (Tz (xi)).

5: L(Θ) =
∑

i max(0, 1 + maxj6=yi fβj(xi)− fβyi (xi)) + λ(‖θ‖2 +
∑

j ‖βj‖2)

6: Optimize Over Model Parameters Θ:

7: θ, β1, . . . , βC = arg minθ,β1,...,βC L(Θ)

8: If the convergence criterion is not satisfied then

9: θold ← θnew, βold
1 ← βnew

1 , . . . , βold
C ← βnew

C

10: and return to line 3.

11: Stop

Unlike SPN where only one spatial transformer module is trained for the network, this ap-

proach constructs a different spatial transformer module for each class, providing a different

latent value for each class. The downstream networks from each transformer module are all

tied until the final layer, where each one feeds into the corresponding class output unit, see

Figure 4.2.

The methods GD,ESGD and MSPN require us to parametrize the transformation function

in a form that is differentiable with respect to the latent variable so that we can use the

gradient to either directly update the latent variable or update the model parameters in the

spatial transformer modules.

49

4.4.2 Parametrization of Image Deformation

As we mentioned in the previous section, if we want to use the gradient to update the latent

variables, we need to parametrize the image transformation in a form that is differentiable

with respect to the latent variable z. In this section, following the idea introduced in [1] and

[38], we describe the general framework for the parametrization of image deformations.

Let us consider the image domain D as a continuum. An image can be defined on the

domain D by F (xs), where xs ∈ D. One can introduce a smooth deformation function

φ, mapping from D to D. Therefore, a deformed image associated with the deformation

function φ can be expressed as F̃ (xt) = F (xs) = F (φ(xt)), where xt = φ−1(xs) ∈ D. In

this case, for any point xs in the original image F , φ−1 will deform it to the corresponding

position xt in the image F̃ .

Now let us assume the deformation function φ is parametrized by z. We can provide a

kernel function defined on the domain of the prototype image to get a smooth version of

F̃ (xt). Specifically, we can approximate the value of F̃ (xt) as follows:

F̃ (xt) =

∫
y∈D

F (y)K(φ(xt, z), y) dy (4.5)

Note that if K(φ(xt, z), y) = δ(φ(xt, z) − y) where δ(x) is the Dirac delta function, we

have F̃ (xt) = F (φ(xt)) = F (xs). We can calculate the gradient of F̃ (xt) with respect to xs

as follows:

∂F̃ (xt)

∂xs
=
∂F̃ (φ−1(xs, z))

∂xs
=
∂
∫
y∈D F (y)K(xs, y) dy

∂xs
=

∫
y∈D

F (y)K ′(xs, y) dy (4.6)

In SPN [38], the authors use the bilinear sampling kernel as K and denote D as the image

50

Figure 4.2: Model architecture for deep learning with optimal instantiations.

grid, then Equation(4.5) can be expressed as follows:

F̃ (xt) =
∑
y∈D

F (y) max(0, 1− |xs0 − y0|) max(0, 1− |xs1 − y1|) (4.7)

where (xs0, x
s
1) and (y0, y1) are the coordinates for xs and y. The gradient with respect to

the coordinate of the original image,
∂F̃ (xt)
∂xs , can also be easily derived from Equation(4.6).

To calculate
∂F̃ (xt)
∂z , the gradient with respect to z, we can apply the chain rule

∂F̃ (xt)
∂z =

∂F̃ (xt)
∂xs

∂xs

∂z . We need to explicitly define a deformation function φ that has xs = φ(xt, z), and

then calculate ∂xs

∂z by
∂φ(xt,z)
∂z . In this paper, we use 2D affine transformation and thin plate

spline transformation [9] as the two parametrizations for φ. The gradient of xs with respect

to z can be easily derived from the definitions of the transformation parametrizations.

4.4.3 Model Architecture

We put all the pieces together and show the model architecture in Figure 4.2. It includes

three parts: a module for spatial transformation using latent variables, a regular deep neural

network, and a module with class scoring functions. Given an input image x, our framework

first produces the optimal latent value zj for each class j, and creates the corresponding

51

transformed image Tzj(x). The different transformed versions of the image are then passed

to the weight-shared networks for feature extraction. Then the feature representation of the

input Φθ(Tzj(x)) under each class j is passed to the last module to get the class scores. The

label of the example can be determined by selecting the class that has the highest score.

Depending on which approach we use to obtain z, the module for spatial transformation

marked as the red region in Figure 4.2 involves a different structure and procedure. For

MSPN the input will be passed to separate localization networks to predict latent values.

For ES, GD and ESGD, a different procedure is used: the model transforms the input based

on some initial values of z, then passes the transformed input to the rest of the network

to calculate the class scores or gradients so that the the latent values of z can be adjusted

accordingly. This procedure will be repeated multiple times before the module finds the

optimal latent values.

4.5 Experiments

We implement our model and perform experiments on the mnist-rot dataset, the CIFAR-10

dataset and the rotation angle estimation task for the Google Earth dataset.

4.5.1 The mnist-rot Dataset

The mnist-rot dataset is a variant of the MNIST dataset [46] that consists of images from

the original MNIST rotated by a random angle from 0◦ to 360◦. The dataset contains 12000

training images and 50000 testing images.

We set the angle of rotation as the latent variable. We choose a CNN architecture

which can be trained to achieve a competitive result on the MNIST dataset. We initialize

the weights of the CNN model by training it on a subset of the original MNIST dataset

(first one hundred training image of each class). Then we train the CNN model with optimal

instantiations on the mnist-rot training data. We experiment with three different approaches

52

Figure 4.3: Correct the image rotations using the latent rotation angles estimated by three
optimization approaches.

to optimizing over the latent variable including MSPN, ES and ESGD. In ESGD, we optimize

the latent variable z in parallel to avoid getting stuck on local optimum, where z is initialized

at eight different rotations, and each is optimized for ten iterations using gradient descent.

We choose the value of z that produces the highest score.

In Figure 4.3, we show some example images of rotated digits and their unrotated versions

corrected using the latent rotation angles estimated by the three approaches. Compared to

MSPN, the ES and ESGD achieve better estimates of the rotated angles. The exhaustive

search approach is more constrained since it can only search for a limited amount of rotations

(in this case every 45 degrees). The gradient descent approach can adjust the rotation

with an arbitrary angle, creating better rotation-corrected images. In Table 4.1, we show

the error rate achieved by different models. When using class-specific spatial transformer

modules to optimize over the latent variables (MSPN), we are able to achieve an error rate

of 2.64%, significantly improved from 5.71% achieved by the conventional SPN. Our best

result is achieved with ESGD, reaching an error rate of 1.25%. The state-of-art result 1.2% is

achieved by TI-Pooling [45], where 24 explicitly rotated versions of the images are presented

to the model for training and testing.

Our training framework allows the model to compare optimal instantiations of the image

under different classes and expand the margin between the score of the target class and the

highest score of non-target classes. To show why this is important, we conduct the following

53

Model Error (%)
TIRBM [72] 4.2

original CNN Model 4.1
Spatial Transformer Network (FCN) 5.71

TI-POOLING (24 rotations) [45] 1.2
CNN with MSPN 2.64

CNN with ES (8 rotations) 2.31
CNN with ESGD (8 initial rotations) 1.25

Table 4.1: The experiment results on the mnist-rot dataset.

experiment: We first train a traditional CNN model on 60000 training images of upright

digits from the original MNIST dataset with multi-class hinge loss. Then the trained model

can be plugged into our framework, and without additional training, we can use it to find

the latent rotation angles of the rotated digits under each class. We compare this approach

with the CNN model trained with optimal instantiations. In Figure 4.4, we can see that

although the optimal latent rotation angles under the correct class labels captured by the

two approaches are similar, the CNN trained using our framwork effectively suppresses non-

target class scores. While in the examples generated by the conventional CNN, we observe

some undesired spikes of the scores for the non-target classes, which will lead to incorrect

classifications. This approach achieves an error rate of 11.04%, which is far worse than any

result we showed in Table 4.1.

Figure 4.4: Examples of rotation-corrected images for ten separate classes using a conven-
tional CNN trained on upright digits (bottom) and a CNN trained on rotated digits using
our framework (top). For each rotation-corrected image, the corresponding class scores are
shown on the right.

54

Model Error (%)
CNN 3.17
SPN 4.9

CNN with GD (Thin Plate Spline) 2.00

Table 4.2: The experiment result on MNIST-100.

4.5.2 MNIST

We then train our model on the original MNIST dataset [47]. In order to limit the trans-

formation invariance that can be learned from the data, we only use the first 100 images

of each class from the training dataset (called MNIST1000). In order to capture the local

deformations of the data, we use the thin plate spline transformation as the latent variables.

Similarly, we first initialize the CNN model by training it on MNIST1000 dataset and then

train the model using our framework. In this experiment, we only use gradient descent (GD)

to optimize over the latent variables.

In Figure 4.5, we show the optimal images transformed by the thin plate spline transfor-

mation for different classes, where some of the transformed images look like instantiations

of other digit classes. As shown in Table 4.2, we are able to achieve an error rate of 2.0%

using our framework, which is a major improvement compared to results with the original

CNN or with SPN.

Figure 4.5: Examples of optimal images deformed by the thin plate spline transformation
for different classes. The original images are shown in the first column.

55

4.5.3 CIFAR-10

Table 4.3: Experiment Result on CIFAR-10(400)

Model Description Architecture Error, %

DCGAN (semi-supervised approach) [61] 26.2(±0.4)

Exemplar-CNN (semi-supervised approach) [19] 64c5-128c5-256c5-512f 24.6(±0.2)

Exemplar-CNN (semi-supervised approach) [19] 92c5-256c5-512c5-1024f 23.4(±0.2)

Steerable-CNN [16] 14 layers, 4.4M params 24.56

CNN Baseline
64c3-64c3-128c3-128c3-

28.43
256c3-256f, 1.6M params

CNN with ESGD (Rotation)
64c3-64c3-128c3-128c3-

27.9
256c3-256f, 1.6M params

CNN with GD (Translation, Scale)
64c3-64c3-128c3-128c3-

25.53
256c3-256f, 1.6M params

We apply our model on the CIFAR-10 dataset [42]. We train our model using the first

400 images of each class from the training dataset (called CIFAR-10(400)) and test on the

original CIFAR-10 test dataset. A five-layer CNN model can achieve 28.43% test error after

4000 epochs of training. We choose a CNN with the same architecture for our framework.

We initialize the network by first training the CNN model on CIFAR-10(400) for 2000 epochs

and then train it using our framework for another 2000 epochs. We explore two experiments

under this setting: one with the angle of rotation as the latent variable for the model and the

other with translation and scale as the latent variables. In Figure 4.6, we show the optimal

transformation via translation and scaling for the objects in the images from CIFAR-10.

We show a 2.9% increase of model performance using a CNN with latent translation and

scaling, which is even comparable with some of the semi-supervised approaches reported in

the literature that use a large complementary unlabeled training set.

56

Figure 4.6: Top: Example images from the CIFAR-10 dataset; Bottom: Images translated
and scaled by our model.

4.5.4 Google Earth Dataset

We then train our model on the Google Earth dataset [30], which contains aerial photos

of streets with bounding boxes around the vehicles. Henriques et al. [31] also add angle

annotation for each vehicle as a supplement of the dataset. The dataset contains 697 vehicles

in 15 large images, where the first ten images are used for training and the rest for testing.

The task of this dataset is to estimate the rotation parameter for each vehicle in the images.

(a) (b) (c)

Figure 4.7: (a): An example of training images from the Google Earth dataset. (b) and (c)
are examples of car images (car front point to the right) and background images we use for
training a detection model for horizontal cars.

We first learn a horizontal car detection model by training a classical CNN model to

discriminate between horizontal car images and background images. In Figure 4.7, we show

some image examples for training the detection model. We use this model as initialization to

the ESGD training method, which further trains the model using images of rotated vehicles

57

Figure 4.8: Histogram of rotation errors when estimating the rotation angles between −180◦

to 180◦.

cropped from the training images. Then we can use the trained latent variable model to

estimate the rotation angles of the vehicles by finding the latent rotation parameters that

give the maximal values for the score function.

We also build a baseline 3-layer CNN model following the description in [32], where the

last layer of the network contains one node to regress the target rotation angles of the vehicles

(in radians). The results are shown in Table 4.4. We find that the CNN model with optimal

instantiations outperforms the baseline model by a big margin, and most of the rotation

errors are contributed by the cases where the car fronts are mistaken for the car rears. More

specifically, as we show in Figure 4.8, 77% of the data are predicted with less than 15◦ of

rotation error while 22% are predicted with more than 150◦ of rotation error. If we ignore

the difference between the front and the rear of the car and relax our problem by estimating

the rotation angles between −90◦ to 90◦, we achieve an average test rotation error of 4.87◦.

Note that the CNN for regression result from [32] shown in Table 4.4 uses a different

approach to calculate the rotation errors. Let us denote by αi, α̂i ∈ (−π, π) the ground

truth and the predicted value of the angle respectively for example i. Henriques et al. [32]

define the rotation error as ei = π
2 −
∣∣∣|αi mod π

2 −α̂i mod π
2 |−

π
2

∣∣∣. We believe a better metric

would be ei = π−
∣∣∣|αi−α̂i| mod 2π−π

∣∣∣ if αi, α̂i ∈ (−π, π), and ei = π
2−
∣∣∣|αi−α̂i| mod π− π

2

∣∣∣
58

if αi, α̂i ∈ (−π/2, π/2). We provide the error result of the CNN for regression based on our

calculation.

Model Description Average rotation error (degree)

CNN for regression [32] 28.87

Warped-CNN [32] 26.44

CNN for regression (−180◦ to 180◦) 63.7

CNN for regression (−90◦ to 90◦) 43.1

CNN with ESGD (−180◦ to 180◦) 37.8

CNN with ESGD (−90◦ to 90◦) 4.87

Table 4.4: The average rotation errors of different models.

4.6 Recover the Support Masks for Objects

In this section, we describe how we can use deep learning with optimal instantiations to

recover the support masks for the image objects. Such masks can be used for image de-

cluttering.

4.6.1 Intuition and Method

As we described in the previous sections, latent variables can be introduced to the deep neural

networks to effectively remove the nuisance transformations in the data. We parameterize

the image deformation in a form that is differentiable with respect to the latent variables so

that we can use the gradient to update the latent variables to obtain a reference pose for the

object that is being classified.

As an example, in Figure 4.9, we show the comparison between the mean images of the

original handwritten digits and the pose-adjusted handwritten digits recovered by the thin

plate splines (TPS). As nuisance transformations in the data are removed to obtain the

reference pose of the object, it is clear that the mean images of the pose-adjusted digits are

59

much sharper than the mean images of the original digits.

Figure 4.9: Mean images of handwritten digits (bottom) and pose-adjusted handwritten
digits (top).

As we show in Figure 4.9, the reference poses recovered by this approach are well aligned

and we can obtain the support map of each object class by taking the mean images of the

pose-adjusted objects. In the following, we will show how we can apply the support maps

to remove clutter from images.

4.6.2 Robust to Clutter

In this section, we want to investigate if our approach is robust to different types of clutters,

which are not observed in the training data. Assume we train a CNN model with optimal

instantiations using the MNIST training data, we explore if this model can successfully

recover the reference poses for the test image objects when one of the following two type of

clutters exists in the images:

Flanking digits: We put two digits on the two sides of the original digit and crop the

image, so we have parts of the flanking digits as clutter. This kind of clutter is very

common when dealing with digit sequence detection.

Random clutter: We randomly select small image patches and put them around the

original digits. These patches contain digit parts such as strokes and curvatures.

We show some examples of images with the two different clutter types in Figure 4.10. Note

that nearby clutter will not touch or overlap with the original digit in the center.

60

Figure 4.10: Sample images of two different types of clutters: flanking digits (top) and
random clutter (bottom).

We first show the reference poses recovered by our approach for images with flanking

digit clutter in the first two rows of Figure 4.11. Only the reference poses of the images

under the correct class labels are shown here. Although the model is not able to completely

remove the clutter around the target digits, the model adjusts the center digits to obtain

the preferred poses. It is worth noting that, the digits in our training data have the same

size as the digits in the test data. Therefore, the size of the pose-adjusted test digits should

remain the same, and our model is not able to remove the nearby clutter by zooming in on

the center digits in the images. If the model is trained on images with rescaled objects that

occupy the entire canvas without any padding, then the model is able to zoom in on the

center digits and remove the surrounding clutter in the test images.

Figure 4.11: Examples of the original images with flanking digit clutter are shown in the first
row. The corresponding recovered reference poses under the correct class labels are shown
in the second row. The decluttered images extracted by applying object class support are
shown in the third row using a decluttering approach described in Section 4.6.3.

We then show the reference poses recovered by our approach for images with random

clutter surrounding the target objects in the first two rows of Figure 4.12. Similarly, the

61

model can adjust the pose of the target object in the center regardless of the surrounding

random clutter that the model does not observe in the training data. It is worth noting that

the reference poses captured for the objects with surrounding random clutter are different

from those captured for the objects with flanking digits. As we will discuss in the following

section, we will show some evidence to prove that our approach is less robust to random

clutter and the reference poses captured here are not perfect.

Figure 4.12: Examples of the original images with random clutter are shown in the first
row. The corresponding recovered reference poses under the correct class labels are shown
in the second row. The decluttered images extracted by applying object class support of the
correct class are shown in the third row using a decluttering approach described in Section
4.6.3.

4.6.3 Declutter Images with Object Class Support Map

As we showed in the last section, although the reference poses are obtained using our ap-

proach, the surrounding clutter still exists as our approach is not able to zoom in on the

center digits in the images and remove the clutter. In this section, we show that we can

obtain decluttered images using the support maps of the corresponding object classes.

When the reference poses of the image objects within the same class are well aligned, as

we show in Figure 4.9, the mean images of pose-adjusted objects can be used to calculate

the support map of the reference pose for each class. As the mean images of pose-adjusted

objects are much sharper, we are able to obtain support maps that are more precise. If the

object labels of the images are known, we can apply the support maps of the correct classes

62

to the pose-aligned images with clutter and obtain the decluttered images, such as shown

in Figure 4.11 and Figure 4.12. Note that this decluttering step is naturally achieved with

the pre-trained model without any supervision. This is very useful when dealing with tasks

where the objects in the training images have clean background while the objects in the

testing images are surrounded by clutter.

Note that in Figure 4.12, we observe that some parts of the objects are cut out by the

support masks (For example, digit 9 in the seventh column and digit 7 in the eighth column).

The shapes of the recovered reference poses cannot completely match with the support masks

of the corresponding class, indicating that the surrounding clutter makes our approach less

stable.

4.6.4 Classify the Decluttered Images

We now show how decluttering images with object class support masks can be incorporated

into our framework to solve classification tasks for images with clutter. Intuitively, it would

be ideal if we can remove the clutter in the images before we classify them. As we showed

above, we are able to obtain the support maps for each object class and use the support

maps to remove the clutter in the images if the labels of the images are known. However,

how can we apply the support maps to declutter a test image when the label of the target

object is unknown?

Recall that in our approach, we optimize over the latent variables to recover the reference

pose for each object, and the latent variables are optimized for each class separately. As a

result, we know which object class the model is optimizing for during the optimization

process. Therefore, for each object, a reference pose under a particular class can be obtained

by our model, and we can then apply the support map of the corresponding class to the

reference pose of the object before passing it to the downstream network to get the output

score for that class. The class output with highest value yields the final classification. When

63

Figure 4.13: We show examples of misclassified digits and the corresponding optimal images
captured for the corresponding images for different classes (in the middle). On the right,
we show the corresponding decluttered images that we feed to the downstream network to
produce class scores for classification.

trained on the MNIST1000 dataset with a clear background and tested on original test

dataset with flanking digit clutter, our approach improves the classification accuracy rate

from 89.82% to 91.07% when we remove the clutter from test images using the support maps.

However, if we test the model on the original test dataset with random surrounding clutter,

the classification accuracy rate drops from 88.59% to 86.91%. This again shows that our

approach is less robust to random surrounding clutter.

We then look into the mistake cases made by our algorithm. In Figure 4.13, we show

examples of misclassified digits using the classification approach we described above. As we

can see from the figure, there are two types of mistakes: First, the subset problem: for some

object classes, the shapes could be similar to some image parts contained in another object

class. For instance, as we can see from the examples in the second row of Figure 4.13, a digit

nine could look like digit zero, digit four and digit seven after we deform it and apply the

support maps. Note that our classification model will produce a class score for each class

separately and label the test example with the class that has the highest score. Therefore,

having decluttered images look like images from a different class other than the target class

during the classification stage would confuse the classifier. Second, some mistakes are caused

by some undesired deformations. For instance, in the examples we show in the first row of

64

Figure 4.13, we observe in the six column that clutter from the nearby region gets pulled

to the digit one in the center to form a new object that looks like a digit five. After we

apply the support map to the image and remove the clutter, this image looks exactly like a

digit five. This is caused by too much flexibility of the deformation allowed in the thin-plate

spline methods, which we can alleviate by regularizing on the degree of deformation allowed

by the thin-plate spline.

4.6.5 Resolving the Subset Problem

We further seek methods to resolve the subset problem. As we discussed above, for each im-

age, we directly feed the decluttered images for different classes to the downstream classifier

for classification. The class scores are produced for each decluttered image separately, and

the class that produces the highest score will be picked to determine the label of the exam-

ple. Since the classification model only observes the decluttered image for a certain class,

without being aware of the decluttered images for other classes or what got masked out in

the original image, the model simply does not have the information on whether a certain

object class can best explain the scene in the original image. Therefore, this architecture is

not able to resolve the subset problem that we experienced above.

To resolve this, we apply a two-step mechanism for training and testing the images. The

first step of our method is the same as our learning mechanism with optimal instantiations,

where the optimal instantiations of each example for separate classes are captured, and we

can apply the support maps of different object classes to obtain the optimally deformed

images for separate classes with the clutter removed. In the second stage, for each example,

we stack the images of its optimal instantiations for the separate classes and train a regular

CNN to classify the label of the example based on the stack of input images - one for each

class. This time, since the model is able to observe the optimal deformed and decluttered

images from all the classes, it has much richer information on what get masked out by the

65

support maps, and it could better resolve the subset problem. By applying this two-step

mechanism to classifying images with clutter, we achieve a classification accuracy of 93.47%

on the test images with flanking digit clutter and a classification accuracy of 91.86% on the

test images with random surrounding clutter, which are 2.3% and 4.95% higher than the

approach without the two-step mechanism.

4.7 Deep learning with Optimal Instantiations for 3D Data

With the recent development of 3D scanning, extra-sensor camera (Kinect, LiDAR laser

scanner, etc.) and other techniques, people are able to collect more 3D Data. Such data

can be useful for vision tasks in the 3D environment, with applications in self-driving cars,

robotics, augmented reality, etc.

One interesting topic is to detect the poses of 3D objects. For example, by knowing the

precise pose of a 3D chair (location, facing), a robot can come up with motions to sit on

the chair. Most research formulates this problem as predicting the object’s class and the 3D

pose based on a 2D or 3D input image (2D image with depth or 3D data in other data types,

described in Section 4.7.1). Several types of approaches have been proposed to solve this

problem. The most traditional approaches are template-based approaches where a template

is scanned across the space and a distance measure is designed to find the best match with

the object and the pose[34, 35]. One can also detect the interest points of objects, describe

them with local features, and then match them with the templates in the database to capture

the object identity and pose [37, 8, 10]. However, most of these approaches assume that the

3D shape of the object instance is known, and they infer the 3D orientation by matching the

shape of the 3D template and the data. OctNet[64] relaxes this setup by assuming only the

object category is known, and learns to regress the orientations using CNNs. However, it is

not able to accurately estimate the 3D orientations when the object category is unknown.

This is expected if the model is trained to regress the 3D orientations without knowing the

66

object class labels since the model might be confused about the orientations of objects from

different classes and the inter-class variance is more difficult to capture in the 3D data.

In this section, we describe how to predict the object classes and the 3D poses when the

volumetric representations of the 3D data are given. Similar to what we have observed in

the 2D cases, we show that we can recover the spatial transformation of the 3D objects while

capturing their class labels by applying deep learning with optimal instantiations.

4.7.1 3D Data Description

There are several data types representing 3D objects, and different approaches of 3D object

detection and pose estimation have been designed for different types of 3D data representa-

tion. We list a few of them below:

RGB-D data: RGB-D sensors are capable of providing depth information for each

pixel. Although the information provided by such a data type is not as rich as real 3D

data where we should have the information of all the observable surfaces, it still provides

more information than traditional 2D images and could lead to better performance.

Lots of RGB-D datasets, as well as corresponding detection algorithms, have been

proposed, including [44, 33, 7, 25].

Point clouds: Usually collected by 3D scanners such as the LiDAR laser scanner,

point cloud data provides richer spatial information for the objects compared to the

RGB-D data. The 3D scanner measures a large number of points on object surfaces

in a three-dimensional coordinate system and outputs a point cloud as the data. Since

the data is represented by an unordered set of points, the data representation is in-

variant to any permutations within the set, and it might lead to some problems in real

applications. Therefore, point-cloud data is usually converted to a voxel-based repre-

sentation for further processing. Recently, a few methods are proposed to resolve this

67

by introducing new data structures to store the point cloud data and have achieved

good performance [62, 41].

Descriptions of composing polygons: This is usually used in computer graphics to

describe a 3D model. A 3D model states the coordinates of the vertices, the groups of

vertices that form the polygons and coloring of the polygons. Although this is sufficient

to describe any 3D data, in general one would convert it to other data types that are

easier to interpret and represent for data modeling.

2D views of 3D objects: One can also create 2D views of 3D objects to describe the

3D objects. For example, the panoramic view is a cylinder projection of 3D objects to

2D images around their central axes. Although such a 3D data representation is not

invariant to 3D rotations, it captures the shape and the texture information of the 3D

object and therefore can be used for 3D object recognition tasks [57, 70, 69]. Similar

to the panoramic view of 3D objects, one can adjust the camera position to capture

multiple views of 3D objects to obtain the information of the objects using 2D images.

A few camera positions are picked, and the views of the 3D objects are captured to

represent the shape and texture information of the 3D objects. Similarly, multiple

2D views of the 3D objects can be combined to represent the 3D objects [73, 39, 60].

Once the 2D views of the 3D objects are obtained, one can use approaches that are

commonly used for the 2D data to resolve the vision tasks for 3D data.

Volumetric representation: The most common way to represent the 3D objects

in the literature is the volumetric representation, which can represent a 3D object

on a 3D voxel grid. Although the volumetric representation is not able to capture

the texture information of the 3D objects and requires voxel grids that have high

resolution to exploit the detailed shapes of the 3D objects, it has gained popularity as

the volumetric representations of the 3D objects can be stored and manipulated with

68

simple data structures. Lots of algorithms have been proposed to resolve the vision

tasks for 3D data using volumetric representation [79, 52, 64, 68, 11, 60].

Figure 4.14: Example images of volumetric representation of 3D objects from the ModelNet
dataset.

In this work, we use the volumetric representation of the 3D object as the data for our model.

In Figure 4.14, we show some examples of volumetric representations of 3D objects.

4.7.2 Method

Similar to the scenario in 2D, we consider a 3D object classification problem where the

input data is the volumetric representation of 3D objects. We design a convolutional neural

network architecture to solve the classification task.

For 2D images, it is common to design a CNN architecture where the filters in each

convolutional layer perform 2D convolutions for the incoming feature maps. It is natural to

extend this approach to the 3D data. We pick one dimension of the volumetric representation

of the 3D object as the “depth” channel (like color channel in 2D images) and feed the 3D

data into a CNN architecture as if they were 2D images.

To understand why such a design makes sense, let us consider a CNN architecture where

the first convolutional layer contains filters of size 1× 1. Intuitively, it acts as a scanner to

perform 3D to 2D projection along the “depth” channel. Therefore, such an architecture

69

can capture the exterior appearance of an object. This is usually sufficient to classify an

object as we normally do not depend on the interior structure of a 3D object to determine

its category (at least not in this work).

Similar to our previous work, we incorporate latent transformation variables to the con-

volutional neural network to enable learning with optimal instantiations. We show the model

architecture in Figure 4.15. As in Section 4.4, a two-step algorithm is required for optimal

instantiation learning. During training, this framework takes the 3D object data as input and

alternates between optimizing over the latent variables to find the optimal instantiations for

each class and optimizing over the model parameters to obtain a better classification model.

During testing, the model passes the input through the network to calculate gradients so

that the latent values can be adjusted accordingly. Eventually, the optimal latent value zj

under each class j together with the corresponding class score of the pose-adjusted 3D object

are captured by the model. The label of the example can be determined by selecting the

class that has the highest score.

We pick a dimension as the “depth” channel and treat the 3D object data as 2D image

data with a long “depth” channel. Therefore, we can again apply the architecture of 2D

convolutional neural network to the 3D object data.

Figure 4.15: The CNN architecture for 3D object data classification.

Note that the module for spatial transformation marked as the red region in Figure 4.15

requires a transformation parameterization that is differentiable. In the next section, we will

70

discuss the parameterization of 3D spatial transformation we use in this work.

4.7.3 Parameterization of 3D Spatial Transformation

In the 2D scenario, we explored the transformation parameterization using an affine trans-

formation matrix and thin plate splines. Such parameterization methods can also be applied

to the 3D scenario. For example, we can parameterize a 3D geometric transformation using

a transformation matrix as follows:



x′

y′

z′

1


=



a b c tx

d e f ty

g h i tz

0 0 0 1





x

y

z

1


It requires 12 latent variables to capture the geometric transformation of a 3D object. In

our work, we implement a 3D spatial transformer layer that uses only three latent variables

to capture the degrees of rotation along each of the three axes. In Figure 4.16, we show how

a voxelized 3D object can be randomly rotated in three axes.

Figure 4.16: Randomly rotated 3d objects.

71

4.7.4 Recover the Reference Poses of 3D Objects

In this section, we explore how our approach can be used to recover the reference poses

of 3D objects while classifying the objects. In this work, we use the ModelNet-10 dataset

[79] that contains orientation-aligned 3D CAD models that belong to 10 different categories.

Some examples of volumetric representations of the objects in the dataset can be found in

Figure 4.14. We randomly rotate the 3D objects in the testing data along each of the three

axes by degrees between −45◦ to 45◦ and we want to see if our approach can recover the

correct reference poses of the objects.

We choose the angle of rotation along each axis as the latent variable. We first initialize

our model by training on the orientation-aligned training data from the ModelNet-10 dataset

and then train our framework with randomly rotated training data. We optimize the latent

variable z in parallel to avoid getting stuck in local optimum, where z is initialized for each

axis at three different rotations (−30◦, 0◦, 30◦), and each is optimized for ten iterations using

gradient descent. The value of z that produces the highest score is chosen as the optimal

value. During testing, similarly, we optimize the latent variable z to produce the highest

score for separate classes.

We show the pose-adjusted objects for different classes in Figure 4.17. The first column

shows some rotated 3D objects, which are randomly rotated from the orientation-aligned

objects that are shown in the second column. Starting from the third column, we show

the recovered poses for different classes and the red square frames indicate the pose-adjust

objects for the target classes. It is clear that our approach is able to recover the poses that

are close to the original orientation-aligned objects.

4.8 Conclusion

In this work, we propose a framework for training deep neural networks with optimal instan-

tiations of the data. By introducing latent variables to parametrize the transformation of

72

Figure 4.17: Recovered reference pose of 3d objects.

the data for each class, our approach is able to better obtain the reference pose for the object

that is being classified. We show such an approach can be easily applied together with any

existing neural network architecture and is compatible with general types of transformations

including rotation, translation, scaling and local deformations.

73

CHAPTER 5

LEARNING FROM 3D CAD MODELS

5.1 Introduction

In the previous chapters, we discussed how to make architectural changes to the existing deep

CNN models to achieve transformation invariance. Although lots of improvements have been

made to allow traditional deep CNN models to capture the transformation variations that

are not observed in the training data, these approaches are still heavily dependent on large-

scale training datasets. Since labeled data is difficult to collect, the performance of deep

CNN models could be limited due to the lack of data.

In this chapter, we want to discuss the possibility of using 3D computer-aided design

(CAD) models to render 2D training images as a data augmentation approach to help train

deep CNN models. Thanks to the development of modern 3D graphics programming, the

3D CAD models become easier to acquire, and they can be used to generate synthetic 2d

images. By generating 2D images from 3D CAD models, we can obtain a more compact

way of representing an object class by rendering images using different postures, camera

positions, material textures and light positions. This allows more transformation variations

in data to be observed when training the models.

Although the synthetic images can capture the shapes of the objects, they usually lack

realism compared to real images. Objects in synthetic images are usually perfectly isolated,

and the texture, poses and lighting are less realistic. Therefore, models trained on such data

usually fail to deliver competitive results. In this work, we explore the performance gap

between the models trained on real images and the models trained on synthetic images, and

we also propose several methods to bridge the gap. We investigate a method for zero-shot

or few-shot learning of the image objects which requires less human-labeled data, and we

explore how much we can improve compared to training with real data.

74

Another effect on the realism of the synthetic images comes from the compatibility be-

tween the rendered object images from 3D CAD models and the background images that

are usually selected from some existing data source. On the one hand, it is not feasible to

manually select background images for all the generated object images since our goal is to

automate the creation of the large-scale synthetic image dataset. On the other hand, if the

background images are randomly selected, they might contain undesired objects or noise

in the image scenes, leading to unrealistic images when combining them with the rendered

objects. In order to resolve this problem and reduce the bias and noise introduced by the

background of the images, we also create a model that can learn to produce support masks

and extract the target objects from the images. By doing this, a classifier trained on the

synthetic images of rendered objects without background can be applied to classifying the

extracted target objects from the real images. We will discuss how this can be applied to

real image classification.

The rest is organized as follows: In Section 5.2, we will discuss some recent work on

generating synthetic images to help improve the performance on vision tasks. We will also

discuss some related work on pixel-wise prediction that can be applied to produce the support

masks for object extraction. After that, we will describe two approaches by using 3D CAD

models to help 2D image classification tasks, including augmenting the training data with

synthetic images and learning to find the support masks for the target objects in the images.

The rationale behind these two approaches and the corresponding methods we use will be

discussed in Section 5.3 and Section 5.4. The details on rendering synthetic images from

3D CAD models are discussed in Section 5.5, and we present the experimental results and

conclusions in Section 5.6 and Section 5.7 respectively.

75

5.2 Related Work

There is plenty of literature on how to create synthetic images from 3D CAD models, explor-

ing different ways of taking advantage of the enormous amount of generated images to help

resolve computer vision tasks. Here we describe the details of some of these methods and dis-

cuss the difference between our approach and the approaches in the literature. In addition,

as we mentioned above, we also seek methods to extract target objects from the real images

so that we can adopt models that are trained on synthetic images without background. This

is related to the image segmentation problem, and we will discuss some possible solutions

for that in the literature.

5.2.1 Exploring the Advantage of Using 3D CAD Models

Thanks to the flexibility of generating synthetic images, one can use it to analyze the trans-

formation invariances of the learned models. In [59], in order to show whether the transfor-

mation invariances can be learned by deep neural networks for object detection, the authors

generate synthetic images under different appearance factors including rotation (azimuth,

elevation), size, occlusion, and truncation. The paper shows that the overall performance

of deep neural networks improves when additional synthetic images are provided as training

data, indicating the advantage of using synthetic images. It shows, however, that the model

underperforms for the truncated, occluded and small objects even when additional synthetic

images are provided, suggesting that structural changes to traditional deep neural networks

are needed for these specific types of data variations.

In a similar vein, Peng et al. [58] analyze the invariance to cues (including object texture,

color, pose and shape) in deep neural networks with the help of 3D CAD models. To see

whether the deep neural network is able to extract the same high-level features despite

different (or missing) cues, the authors design a comparison experiment, where two training

datasets of synthetic images are created, one with a particular cue and the other without. A

76

trained deep neural network is used to extract the high-level features of images from these

two datasets, and the extracted feature maps from both sets are used to train two object

detectors. A similar detection performance between the two detectors would indicate that

the deep neural networks are invariant to this particular cue whereas a less cue-invariant

network will lead to poorer performance. The paper shows that the deep neural networks

are less invariant to these cues when the network is not fine-tuned for a particular task.

Even when the network is fine-tuned, the network shows a significant boost from adding

more variations of shapes, postures and object textures, indicating the model is not entirely

invariant to these factors. By augmenting the real data with synthetic images, the authors

also show a significant performance improvement by using 3D CAD models for detection

tasks in the scenario when zero or few real training examples are available to train the

detectors.

Similarly in [81] and [51], the authors train pedestrian detection models using images

from virtual scenarios 1 and show that the learned detection models can be successfully

applied to pedestrian detection in real images. In a separate line of research, much work has

been using 3D models to render images for the viewpoint estimation task. In [3], the authors

create a large-scale dataset of view-dependent 2D synthetic images from 3D object models.

Given a 2D image, the authors design an approach to find an alignment between the 2D

image and the most similar 3D model rendered at the most appropriate camera viewpoint.

In [74], the authors design a deep CNN for the viewpoint estimation task and show that

training CNN with a large amount of synthetic data is effective for such a task.

In this work, we follow the ideas of augmenting real training images with synthetic images

and investigate how synthetic images could help the classification task when zero or few real

images are available during the training. As we mentioned above, such an approach is not

perfectly applicable since the real photos contain complex environments as background and

1. See Section 5.2.2 for the details of generating synthetic images by this method.

77

they are not easily available in synthetic images. Therefore, we explore the approach of

foreground object extraction to resolve this problem.

5.2.2 Synthetic Image Generation

The first step in the work we described above is to generate synthetic images from 3D

CAD models. In [59], the authors use the PASCAL3D+ dataset[80] for empirical analysis,

which contains aligned 3D CAD model annotations for the 2D images in the PASCAL

VOC 2012 dataset. Three different rendering types of synthetic images are investigated by

the authors, including the wire-frame images, the plain-texture images, and the texture-

transferred images. Each of these types represents a different level of richness of image

detail: Wire-frame images only provide the shape boundaries of the image objects, which

only reflect the shapes of the target objects without showing the textures and backgrounds.

Plain-texture images are generated by rendering programs, where a plain color is applied to

the objects so that the synthetic images do not have realistic textures. Texture-transferred

images are generated with a distribution that is more similar to the real data: Since each

image is annotated with the target object and the corresponding aligned 3D CAD model,

one can replace the existing object with a new 3D CAD model of the same object class

and apply a different texture to it. Therefore, the objects in the generated images will have

different shapes and textures, and the synthetic images are much more realistic.

Similarly, as we mentioned previously, [58] tries to investigate if the deep neural network

is invariant to different image textures and various background. To study this, the authors

generate the synthetic image under different settings, where the target objects can be ren-

dered with real textures or gray textures, combined with different types of backgrounds

(images with real background, white background, and gray background). 3D CAD models

from the desired object categories are selected and downloaded from the 3D Warehouse2,

2. The SketchUp 3D Warehouse is an open source library where people can share 3D models online

78

and the viewpoints of the 3D models are manually selected before rendering the 2D images.

In order to create realistic object textures for the images, the authors extract the textures

of the same objects from real images and stretch them to fit the CAD models. To generate

realistic background scenes, they gather real images of scenes where each object category

is likely to appear, and the selected images are combined with the corresponding rendered

image objects to generate the final synthetic images.

Other approaches are used to generate synthetic images as well. In [81] and [51], the

authors create virtual scenarios from video sequences generated by a video game engine,

including realistic scenes with roads, buildings, vehicles, pedestrians, etc., under different

illumination conditions. Such generated synthetic images are more realistic as they are

captured from the video sequences of some video games. However, it is usually not easy to

add 3D models of desired objects to an existing video game engine, making this approach

less flexible.

5.2.3 Image Foreground-Background Segmentation

As we mentioned earlier, in order to apply a model trained with synthetic images of rendered

objects without background to classifying real images, we need to extract the target objects

from the real images. This problem is equivalent to the semantic segmentation problem if

we only need to label the scene with two categories: the image foreground that contains the

object and the image background.

Over the past few years, much work has been done on the semantic segmentation problem

using deep learning approaches. For example, R-CNN[24] generates region proposals by

selective search [76], and each region is warped to the desired resolution before being sent

to a pre-trained CNN for feature extraction. The computed feature map for each region can

then be used for fine-tuning the CNN and learning object detectors. Bounding-box regressors

are learned to improve the localization performance further. During testing, selective search

79

on the test image is again used to extract region proposals and each proposal is warped and

fed to the CNN to compute class scores. It is then followed by a non-maximum suppression

procedure that is adopted to reject overlapping regions. This is extended in [23] by replacing

the multi-stage training in R-CNN with a single-stage training procedure using a multi-task

loss that can guide the training of the bounding box detection and the object classification.

Later in [63], the R-CNN architecture is further unified with a region proposal network to

compute region proposals instead of generating them by selective search. Note that these

approaches do not directly provide semantic segmentation with arbitrary shapes but rely

on other region proposals such as CPMC [12] to create segmentated regions with arbitrary

shapes. The bounding boxes surrounding these regions are then passed to the network to

achieve the labels of these regions. A recent update of this line of work, Mask R-CNN

[29], allows the network to produce a pixel-wise binary prediction along with the object

classification and the bounding box regression, which decouples the mask prediction and

the class prediction, and it prevents competition among different classes when generating

semantic segmentation. Similarly, in order to produce semantic segmentation while detecting

the objects, [27] employs a bottom-up image segmentation by first generating the region

proposals followed by a region refinement step to create semantic segmentation at a fine

resolution.

Another line of research uses CNN features to provide dense category-level pixel labels.

For example, [49] replaces the fully-connected layers with the convolutional layers in the

CNN and builds a fully convolutional network, and the network will produce a heat map as

the output for the pixel-level prediction. However, due to the pooling and down-sampling

operations in the CNN, the resulting heat map usually has a different resolution compared

to the input. Therefore, the authors propose deconvolutional layers that can be used to

upsample the output heatmap to match the size of the input. In addition to that, skip con-

nections are introduced so that the resulting segmentation maps will have a high resolution.

80

Similarly, [28] proposes to use skip-layers, where the output feature maps of the selected

layers are upsampled to the same resolution before being concatenated together to form a

hypercolumn descriptor for each pixel. The hypercolumn descriptor can later be used to

train a pixel-wise classifier to determine the pixel category. An encoder-decoder architec-

ture can also be adopted [5, 56, 66] to produce the pixel-wise prediction for the semantic

segmentation task.

In this work, we follow the idea in [28] and use the hypercolumn descriptors from the

CNN to produce the pixel-wise prediction for foreground-background segmentation. We will

discuss more details of this approach in Section 5.4.

5.3 Few-shot Learning with Synthetic Images

As we discussed earlier, compared to the limited amount of hand-collected real images,

the richness and compactness of representing an object class using synthetic images are

appealing. One can easily collect 3D CAD models of the desired categories and create views

of these models using rendering programs. Therefore, augmenting the training data with

synthetic images generated from 3D CAD models could allow the model to observe more

transformation variations from the synthetic data that are not readily available from the real

data. In real images, target objects usually appear on particular scenes, and it is crucial for

the model to be robust to various backgrounds while recognizing the target objects in the

images. Note that the rendering program is only able to render the desired object in front

of an empty background unless we have 3D CAD models for the background. Therefore,

in order to make the rendered images more realistic, one also needs to generate realistic

background images in addition to the views of the target objects. We will discuss in detail

on how to generate synthetic images in Section 5.5.

To show how this could help the 2D image classification tasks, we can train a classifier

using synthetic images and see if the trained classifier could be used for classifying the real

81

images. We introduce a scenario when limited amount of real images are available for the

training (few-shot learning), and we investigate if augmenting the real training images with

the synthetic images could help improve the result.

We train a convolutional neural network as the classification model. In Figure 5.1, we

show the model architecture of the convolutional neural network for the input images of

dimension 32× 32× 3. The trained model will be further used to classify the real images.

Figure 5.1: Model architecture of the convolutional neural network we use for classifying
images of size 32× 32.

5.4 Learning Image Object Extraction

5.4.1 Intuition

As we mentioned in the previous section, one of the difficulties in creating synthetic images

is that we also need to generate realistic background images that can not be rendered as they

are not included in the 3D CAD models. Indeed, we can easily collect unlabeled real images

as background images and combine them with the rendered object images to create synthetic

images, yet such an approach is still not able to create very realistic images. It would be

preferable to have a model trained with synthetic images of objects without background

directly apply to classifying real images that have noisy background.

82

One way to achieve this is to design an algorithm to segment the real images into the

foreground regions (target objects) and the background regions and then extract the target

objects from the test images. Once the background regions of the test images are removed, we

can directly apply a model trained with synthetic images with clear background to classify the

target objects extracted from the real images. We want to emphasize that the segmentation

model also needs to be trained on the synthetic images, as we want to keep the supervision

from the real training images at a minimum level.

Such a foreground-background segmentation can be achieved by learning a pixel-to-pixel

prediction model, where a binary prediction is generated for each pixel to form the support

mask. We also want to emphasize that the model is trained to perform the segmentation for

all the objects despite the labels of the objects. We will discuss how we can build a learning-

based system that generates the support masks for the target objects in this section.

5.4.2 Learning the Support Mask via Pixel Classification

We frame the support mask learning problem as learning a function f : X → Y . Given

an image patch x ∈ X , f predicts the category of the center pixel (object or background).

Inspired by the hypercolumn representation approach used in [28], we describe an algorithm

to achieve this in the following.

Figure 5.2: A 2× upsampling operation by bilinear kernel convolution.

83

Similar to [28], we feed the input image to a CNN, and we want to extract the CNN

features of different layers to form a hypercolumn descriptor for each pixel location. Due to

the subsampling and pooling operations that we adopt in the CNN, the feature maps across

different layers might have different sizes compared to the input. Therefore, for feature

maps that have different sizes from the input, we resize these feature maps to the size of

the input using bilinear interpolation. We implement the bilinear interpolation upsampling

using a two-step mechanism: we first upsample the feature map with zero stuffing and

then apply a designed filter to achieve bilinear interpolation (see Figure 5.2 for an example

of 2× upsampling operation using bilinear interpolation). We take the outputs of all the

layers, upscale the feature outputs to have the same resolution with the input using bilinear

interpolation, and append all the upscaled feature outputs together to be the hypercolumn

descriptor for each pixel.

We can train the entire pipeline end-to-end to predict the binary support masks. During

training, we provide the original images and the corresponding binary target maps that have

the same resolution as the input images and targets. We can calculate the logistic loss for

each pixel location and the final loss can be calculated as the mean of the losses across all

the pixel locations in the image. We show the model architecture in Figure 5.3.

Note that we still need to provide synthetic images with real background as the training

images together with the binary target support maps as the labels during training. Since

the synthetic images are generated from 3D CAD models, it is much easier to create target

support maps as we can infer the foreground and background segmentation from the synthetic

images. We will discuss the synthetic image generation procedure more in detail in the next

section.

84

Figure 5.3: End-to-end model architecture for support map prediction.

5.4.3 Discussion

Learning image object extraction is not the goal of this approach; it is rather a preprocessing

step for the test images so that we can directly apply the classification model that is trained

on synthetic object images with clear background. Therefore, three questions need to be

answered: One, for synthetic test images, are we able to get reasonable object support

masks by the pixel-wise prediction based on the hypercolumn descriptors? Two, if we use

real images as the test images, are we still able to get reasonable object support masks even

though the object extraction model is trained on synthetic images? Three, if the answers

to the first two questions are yes, then the third question we need to answer is that: Are

we able to get good classification performance on real images of extracted target objects

(background removed) when the classification model is trained on synthetic object images

with clear backround? We will design some experiments to answer these questions.

Similar to the few-shot learning approach we described in Section 5.3, this approach also

requires us to generate synthetic images with real background images as the training data. It

is therefore interesting to compare the performance between the few-shot learning approach

85

and the approach of classification on the extracted objects. We will discuss the advantage

of each approach respectively in the experiment section.

5.5 Generate Synthetic Images from 3D CAD Models

In this section, we describe how to create synthetic images by generating realistic image

objects using 3D CAD models and selecting real images as the background. We also explore

how we can create object support masks for the created synthetic images.

5.5.1 Render using 3D CAD models

CAD models of different objects are becoming publicly available online. In this work, we

use the ShapeNet dataset [13], a large-scale dataset of 3D shapes that covers 55 common

object categories with more than 50,000 3D models. It is also organized according to the

WordNet hierarchy [53], making it easier to connect with some existing 2D image datasets

such as the ImageNet dataset [67]. With the available 3D models, we use a publicly available

OpenGL-based renderer to create the object images based on the 3D models.

When rendering the object images, we consider the following factors: the horizontal and

vertical axis of rotation (both control the spatial rotation of the object) and the distance

between the viewpoint and the object (controls the size of the rendered object). We set a

proper range for each of these factors to make sure the rendered images look reasonable.

To create random views of an object, we set random values within the proper ranges for

these factors and pass them to the rendering program. In addition to that, we create six

canonical views of the objects including the top, bottom, left, right, front, and back views

while properly setting the distance so that the entire model fits within the canvas.

In Figure 5.4, we show six canonical views of an object as well as some randomly generated

views of the same object. As we will discuss in the following, these generated views of objects

will be combined with selected background images to create the synthetic images.

86

Figure 5.4: Six canonical rendered views (first column) along with randomly generated views
(second column) of a CAD plane model.

5.5.2 Generate Support Maps for 3D objects

As we discussed above, one direction that we are interested in is to create a model to generate

support masks for the target objects in the real images. In order to acquire enough data

to train such a model for real images, it requires lots of human labor to annotate the real

images. One of the advantages of generating synthetic images is that we can achieve the

support masks for the objects without extra effort. When generating the object images, we

set a unique background color that is different from any texture color, and we are able to

get the support masks by capturing the regions that do not have the background color. In

Figure 5.5, for example, we show the support masks for the objects in the synthetic images.

Figure 5.5: Rendered images with clear background (first column) and their corresponding
support masks (second column).

87

5.5.3 Background in Synethetic Images

A realistic object appearance also depends on the background information. Here we describe

how to create background images and then put the rendered image objects in front of the

background to generate the synthetic images.

One source of background images for the synthetic objects are real images of different

scenes we collected as the background images. We download some scene images from the

Google Image website using search keyword such as “sky”, “road”, “sea”, “room”, etc. Such

images downloaded from the Google Image website usually have been post-processed, and

some important image statistics such as saturation, chroma, and contrast have been carefully

tuned to make them more appealing. In order to recover these processes and bring them

closer to natural images, we use the cylinder-coordinate HSV representation of the color

information and adjust the hue coordinate and the value coordinate to match the image

statistics with those of the natural images. Another source of background images is the

Flickr 100k dataset, which consists of 100071 images. For those, we do not need to apply

any post-processing procedure and they can be used directly as the background images for

our image objects.

It is undeniable that there are some correlations between the object classes and their

background: planes and cars usually have outdoor scenes like sky and roads, whereas fur-

niture usually appears in indoor scenes. In our work, we try to eliminate these correlations

when selecting background images for the objects and allow images objects to appear in

some unrealistic scenes (e.g., planes inside a bedroom).

After we select the background images, we need to combine the object images and the

background images to create synthetic images of the target objects. As we already have the

support maps, we can replace the non-background regions of the background images with the

some object images to create synthetic images. Note that some images are selected from the

Flickr dataset using some popular tags, including tags of some real objects like “animals”,

88

“car”, “cat”, “baby” and tags of things that are not objects like “blue”, “summer”, “uk”

and “spain”. Therefore, some of these images may already contain an object in the scene,

which makes it harder to discriminate the target objects in the foreground from the noisy

background. In Figure 5.6, we show the synthetic images generated by putting rendered 3D

CAD models in front of different types of real background images.

Figure 5.6: Examples of synthetic images by combining the rendered 3D objects and real
image background. The background images of these synthetic images come from the Flickr
dataset (top) and the Google Image website (bottom) respectively. As we can observe from
these images, background images from the Flickr dataset usually contain other objects, which
make the background noisier than the images we collected from the Google Image website.

5.6 Experiments

In order to explore the effectiveness of the discussed approaches when applied to real images,

we perform classification experiments on the CIFAR-10 dataset and the ImageNet dataset.

Note that since we only have CAD models for a few object categories, we only select images

of the available objects categories to form subsets of the original datasets. In our case, we

89

create a CIFAR-10 3-class dataset and an ImageNet 9-class dataset, and we evaluate the

performance of our approaches on these two datasets.

5.6.1 CIFAR-10 3-Class Dataset

In this experiment, we want to see how the synthetic images generated by 3D CAD models

can help classify the object images from the CIFAR-10 dataset. As we discussed earlier,

we render synthetic images using the 3D CAD models from the ShapeNet dataset, which

contains more than 50,000 3D models from 55 common object categories. Among these

55 object categories, three object categories also exist in the CIFAR-10 dataset, including

“plane”, “boat”, and “car” . Therefore, we collect the CIFAR-10 images that are from

these three classes and perform a three-class classification task. The training and testing

data partition is the same as the original CIFAR-10 dataset. We then follow the process

described in Section 5.5 to generate synthetic images with background. For each of the three

classes, we collect 30,000 synthetic images by rendering 3D CAD models using randomly

selected camera positions, and we use the first 20,000 images per class as the synthetic

training data and the rest 10,000 images as the synthetic testing data.

To solve the classification task, we build a deep CNN as a classifier and the CNN archi-

tecture is adapted from the VGG-16 model that has shown reasonably good classification

performance on the CIFAR-10 dataset. The detail of the model architecture is shown in Fig-

ure 5.1. We first see how well the model can classify the CIFAR-10 3-class test dataset when

we augment the CIFAR-10 training data with the synthetic data. We show the experiment

results in Table 5.1. By augmenting the CIFAR-10 training data using the synthetic images,

we observe significant improvements on the performances of few-shot learning tasks. When

more and more training data from the CIFAR-10 training dataset is available, we can see

that the improvement from using synthetic images becomes smaller.

Then we take another approach, which is to extract the target objects in the real images

90

Number of training
data from CIFAR-10

With Synthetic Images Without Synthetic Images

0 per class 76.23% N/A
100 per class 83.97% 66.70%
1000 per class 91.80% 89.23%
5000 per class 95.50 % 95.07%

Table 5.1: Classification accuracy on CIFAR-10 3-class test data when limited amount of
real training data is augmented by synthetic data.

Figure 5.7: We show the synthetic image (the first row) and the corresponding target objects
in the image (the second row). We show in the third row the extracted target object produced
by applying the support maps to the original synthetic image.

and remove the background before classifying the images. To see why this is helpful, we

first apply the same procedure to the synthetic test images and investigate the classification

experiments on the synthetic images. We first create synthetic images with real image

background as the training data along with the corresponding support maps as the labels.

A pixel-wise classification model is then trained on the synthetic data, and it is used to

find the support masks of the target objects and remove the background in the synthetic

test images. In Figure 5.7, we show example images of extracted target objects by applying

the support masks for the synthetic images using the pixel classification model. As we can

see from the figure, the algorithm does a good job extracting the target objects from the

synthetic images, and the extracted target objects are almost identical with the ground-

91

Synthetic test images
Synthetic test images
(background removed)

Synthetic test image
without background

Train on synthetic images
without background

92.29% 95.0 % 96.43%

Train on synthetic images
with background

93.57% 95.5% 96.61%

Table 5.2: Classification result on different types of synthetic test images.

truth objects in the images. After we extract the target objects, we can directly apply a

classification model that is trained on synthetic object images without background to classify

the synthetic images of extracted objects. In Table 5.2, we show that by removing the

background, classification accuracy on the synthetic test images is improved from 92.29% to

95.0% when the classification model is trained on the synthetic images without background,

and it is also improved from 93.57% to 95.5% when the model is trained on the synthetic

images with real background. This shows the advantage of removing image background

before classifying the images. We show the accuracy rates when tested on the synthetic

images without background on the third column. Note that if the pixel classification model

can perfectly extract the target objects from the images, the accuracy rates on the second

column should be the same with the third column.

Figure 5.8: We show some CIFAR-10 images examples and the corresponding extracted
target objects produced by applying the support maps to the original images.

92

We then apply the same procedure to classify the real test images from the CIFAR-10

3-class test dataset. Both the pixel classification model and the image classification model

are still trained using the synthetic images, but this time we will test the models on the real

images from the CIFAR-10 3-class test dataset. In Figure 5.8, we show example images of

the extracted target objects by applying the support masks for the real images using the

pixel classification model. As we can see from the figure, although the extracted objects

are not as clean as shown in Figure 5.7 for the synthetic images, the model is still doing

a reasonably good job extracting the target objects from the real images. Of course, some

extracted objects are misleading due to the poor support masks generated by the algorithm,

and these objects can be mistaken for a different category. For instance, in the 10th example

of the top two rows in Figure 5.8, since the support mask does not cover the entire body of

the ship, it could be misclassified as an airplane if we extract the target object by applying

this support mask to the original image.

Since we are able to extract target objects from the real test images, we can classify

these objects using a classification model that is trained on the synthetic images of objects

without background. In Table 5.3, we show the classification accuracies on the CIFAR-

10 3-class test data when we apply different training and testing mechanisms. When the

classification model is trained on the synthetic images without background, we observe a

clear improvement of performance by removing image background before classifying the test

images, as the model trained on the images of objects with clear background is certainly not

Training Data
Original Test Images
(with background)

Original Test Images
(background removed)

Synthetic images
without background

41.83% 63.60%

Synthetic images with
background

76.39% 58.43%

Table 5.3: Classification accuracies on CIFAR-10 3-class test data.

93

robust to the noisy background in the test images. On the other hand, when the model is

trained on the synthetic images with real background, we observe performance degradation

when an object-extraction procedure is applied before classifying the test images. This is

expected due to the noise introduced when extracting target objects from the test images,

and the model trained on synthetic images with background is not able to achieve good

performance when the extracted objects from test images are not clear enough. Also, we

notice that the best classification accuracy is achieved when we train the model using the

synthetic images with real background and test it on the original test images. This is

different from what we observed from the experiment results in Table 5.2 where the best

performance on the synthetic images with real background is achieved when we apply the

object-extraction procedure before classifying the test images. It is possible that the images

of the extracted objects from the real images are not as clear as those extracted from the

synthetic images as we showed in Figure 5.8, and it leads to poor performance when applying

the object-extraction procedure before classifying the images.

5.6.2 Downsampled ImageNet Dataset

In order to show the generality of our approach, we apply our approach to the downsampled

ImageNet dataset. Similar to the experiments in the last section, we use the 3D CAD models

from the ShapeNet dataset to create synthetic images. Each object category among the 55

object categories in the ShapeNet dataset has a unique WordNet ID, and a corresponding

subset of the images from the ImageNet dataset can be accessed using the same WordNet

ID. We select nine object categories (including boat, bus, car, chair, display, gun, plane,

sofa, and table) that have sufficient models in the ShapeNet dataset, and we collect the

corresponding images from the 32× 32 downsampled ImageNet training dataset to form an

ImageNet 9-class dataset. For each category in the ImageNet dataset, we collect 1200 images

where the first 1000 images are used for training and validation, and the rest 200 images

94

Number of training data
from the ImageNet 9-
class training set

With Synthetic Images Without Synthetic Images

0 45.56% N/A
100 per class 59.28% 45.28%
500 per class 70.67% 61.22%
1000 per class 75.17% 68.06%

Table 5.4: Classification accuracy on the ImageNet 9-class test data when synthetic images
are created to augment the real training images.

are used for testing. We also collect 30,000 synthetic images for each class by rendering 3D

CAD models using randomly selected camera positions, where the first 20,000 images per

class are used as training data, and the rest 10,000 images are used as testing data.

Similar to our previous experiment, we first explore how synthetic data augmentation

approach can help improve the classification accuracy on the ImageNet dataset. We build a

deep CNN model for the classification task, and the architecture of the model is shown in

Figure 5.1. In Table 5.4, we observe significant performance improvement in the few-shot

learning experiments when we augment the training data with synthetic images. This is

consistent with what we have seen in the previous experiments.

Figure 5.9: We show some example ImageNet images and the corresponding extracted target
objects produced by applying the support maps to the original images.

95

Training Data
Original Test Images
(with background)

Original Test Images
(background removed)

Synthetic images
without background

16.44% 29.22%

Synthetic images with
background

45.56% 36.11%

Table 5.5: Classification accuracies on the ImageNet 9-class test data.

We then apply the object-extraction procedure to the ImageNet 9-class test images before

classifying them. Similarly, a pixel classification model and an image classification model

are trained using synthetic images. We first show how well the pixel classification model

can extract the target objects from the real test images and remove the background. In

Figure 5.9, we show example images of the extracted target objects by applying the support

maps for the real images from the ImageNet 9-class test dataset. We can then classify the

images of extracted objects using a classification model trained on the synthetic images of

objects. In Table 5.5, we observe a similar performance pattern compared to the experiment

results we presented in Table 5.3: A significant performance improvement is achieved by

applying the object-extraction procedure before classifying the images when the classification

model is trained on the synthetic images without background. As is discussed above, it is

also not surprise to observe a poorer result if we extract the objects from images before

classifying them when the classification model is trained on the synthetic images with real

background. The overall best accuracy rate is achieved when the model is trained on the

synthetic images with background and directly tested on the original test images without

the object-extraction procedure.

5.7 Conclusion

In this work, we study possible methods to take advantage of 3D CAD models to explore the

transformation variations of the image objects that are not easily available in the existing

96

2D image dataset. Data augmentation with synthetic images rendered from 3D CAD models

allows the model to observe data variations that do not exist in the training data, and it

shows significant performance improvement for the classification tasks especially when we

have zero or few training examples.

We also show a foreground-background segmentation model trained on synthetic images

can reasonably extract the target objects from the real images. If the target objects can

be correctly extracted from the real images and the noisy background of the images are

completely removed, then a classification model trained on synthetic images with clear back-

ground can be directly applied to classifying the images of extracted objects. We observe

a significant performance improvement by applying the object-extraction procedure before

classifying the images when the classification model is trained on synthetic images with-

out background. Performance degradation is also observed if we perform classification task

on the extracted object when the classification model is trained on synthetic images with

background. We argue, however, that if such a segmentation model can perfectly extract

the target objects from the real images, applying the object-extraction procedure should

improve the classification result despite the type of training data, as we have already shown

in the synthetic image classification experiment in Table 5.2.

97

REFERENCES

[1] Yali Amit. 2D object detection and recognition: Models, algorithms, and networks. MIT

Press, 2002.

[2] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector ma-

chines for multiple-instance learning. Advances in neural information processing sys-

tems, pages 577–584, 2003.

[3] Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C Russell, and Josef Sivic.

Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad mod-

els. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3762–3769, 2014.

[4] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in

neural information processing systems, pages 2654–2662, 2014.

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-

volutional encoder-decoder architecture for image segmentation. arXiv preprint

arXiv:1511.00561, 2015.

[6] Elliot Joel Bernstein and Yali Amit. Part-based statistical models for object classifica-

tion and detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 2, pages 734–740. IEEE, 2005.

[7] Manuel Blum, Jost Tobias Springenberg, Jan Wülfing, and Martin Riedmiller. A learned

feature descriptor for object recognition in rgb-d data. In Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pages 1298–1303. IEEE, 2012.

[8] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Unsupervised feature learning for rgb-d

based object recognition. In Experimental Robotics, pages 387–402. Springer, 2013.

98

[9] Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of defor-

mations. IEEE Transactions on pattern analysis and machine intelligence, 11(6):567–

585, 1989.

[10] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and

Carsten Rother. Learning 6d object pose estimation using 3d object coordinates. In

European conference on computer vision, pages 536–551. Springer, 2014.

[11] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Generative and

discriminative voxel modeling with convolutional neural networks. arXiv preprint

arXiv:1608.04236, 2016.

[12] Joao Carreira and Cristian Sminchisescu. Cpmc: Automatic object segmentation using

constrained parametric min-cuts. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(7):1312–1328, 2012.

[13] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Re-

port arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota

Technological Institute at Chicago, 2015.

[14] Gong Cheng, Peicheng Zhou, and Junwei Han. Rifd-cnn: Rotation-invariant and fisher

discriminative convolutional neural networks for object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 2884–2893, 2016.

[15] Taco S Cohen and Max Welling. Group equivariant convolutional networks. arXiv

preprint arXiv:1602.07576, 2016.

[16] Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016.

99

[17] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry

in convolutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

[18] Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional

neural networks for galaxy morphology prediction. Monthly notices of the royal astro-

nomical society, 450(2):1441–1459, 2015.

[19] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.

Discriminative unsupervised feature learning with convolutional neural networks. In

Advances in Neural Information Processing Systems, pages 766–774, 2014.

[20] Beat Fasel and Daniel Gatica-Perez. Rotation-invariant neoperceptron. In Pattern

Recognition, 2006. ICPR 2006. 18th International Conference on, volume 3, pages 336–

339. IEEE, 2006.

[21] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object

detection with discriminatively trained part-based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9):1627–1645, 2010.

[22] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural

information processing systems, pages 2537–2545, 2014.

[23] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

[24] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[25] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich fea-

tures from rgb-d images for object detection and segmentation. In European Conference

on Computer Vision, pages 345–360. Springer, 2014.

100

[26] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross modal distillation for super-

vision transfer. arXiv preprint arXiv:1507.00448, 2015.

[27] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous

detection and segmentation. In European Conference on Computer Vision, pages 297–

312. Springer, 2014.

[28] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hypercolumns

for object segmentation and fine-grained localization. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 447–456, 2015.

[29] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv

preprint arXiv:1703.06870, 2017.

[30] Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff to find things.

In European conference on computer vision, pages 30–43. Springer, 2008.

[31] João F Henriques, Pedro Martins, Rui F Caseiro, and Jorge Batista. Fast training

of pose detectors in the fourier domain. In Advances in neural information processing

systems, pages 3050–3058, 2014.

[32] João F Henriques and Andrea Vedaldi. Warped convolutions: Efficient invariance to

spatial transformations. arXiv preprint arXiv:1609.04382, 2016.

[33] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d

mapping: Using depth cameras for dense 3d modeling of indoor environments. In In

the 12th International Symposium on Experimental Robotics (ISER. Citeseer, 2010.

[34] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir Navab, Pascal

Fua, and Vincent Lepetit. Gradient response maps for real-time detection of textureless

objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(5):876–

888, 2012.

101

[35] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt

Konolige, and Nassir Navab. Model based training, detection and pose estimation of

texture-less 3d objects in heavily cluttered scenes. In Asian conference on computer

vision, pages 548–562. Springer, 2012.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

[37] Stefan Holzer, Jamie Shotton, and Pushmeet Kohli. Learning to efficiently detect re-

peatable interest points in depth data. In European Conference on Computer Vision,

pages 200–213. Springer, 2012.

[38] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer net-

works. In Advances in Neural Information Processing Systems, pages 2017–2025, 2015.

[39] Edward Johns, Stefan Leutenegger, and Andrew J Davison. Pairwise decomposition of

image sequences for active multi-view recognition. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 3813–3822, 2016.

[40] Koray Kavukcuoglu, Rob Fergus, Yann LeCun, et al. Learning invariant features

through topographic filter maps. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 1605–1612. IEEE, 2009.

[41] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the

recognition of 3d point cloud models. arXiv preprint arXiv:1704.01222, 2017.

[42] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. 2009.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

102

[44] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-

view rgb-d object dataset. In Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, pages 1817–1824. IEEE, 2011.

[45] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. Ti-pooling:

transformation-invariant pooling for feature learning in convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 289–297, 2016.

[46] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio.

An empirical evaluation of deep architectures on problems with many factors of vari-

ation. In Proceedings of the 24th international conference on Machine learning, pages

473–480. ACM, 2007.

[47] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of

handwritten digits, 1998.

[48] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring

their equivariance and equivalence. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 991–999, 2015.

[49] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3431–3440, 2015.

[50] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant

vector field networks. arXiv preprint arXiv:1612.09346, 2016.

[51] Javier Marin, David Vázquez, David Gerónimo, and Antonio M López. Learning ap-

pearance in virtual scenarios for pedestrian detection. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 137–144. IEEE, 2010.

103

[52] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for

real-time object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 922–928. IEEE, 2015.

[53] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,

38(11):39–41, 1995.

[54] Lian Huan Ng, Gustav Larsson, Jiajun Shen, and Yali Amit. Stacked statistical models

with rotatable features. In Technical report, 2014.

[55] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W Koh, Quoc V Le, and Andrew Y

Ng. Tiled convolutional neural networks. In Advances in neural information processing

systems, pages 1279–1287, 2010.

[56] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network

for semantic segmentation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1520–1528, 2015.

[57] Panagiotis Papadakis, Ioannis Pratikakis, Theoharis Theoharis, and Stavros Perantonis.

Panorama: A 3d shape descriptor based on panoramic views for unsupervised 3d object

retrieval. International Journal of Computer Vision, 89(2):177–192, 2010.

[58] Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning deep object

detectors from 3d models. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1278–1286, 2015.

[59] Bojan Pepik, Rodrigo Benenson, Tobias Ritschel, and Bernt Schiele. What is holding

back convnets for detection? In German Conference on Pattern Recognition, pages

517–528. Springer, 2015.

[60] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J

Guibas. Volumetric and multi-view cnns for object classification on 3d data. In Pro-

104

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

5648–5656, 2016.

[61] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[62] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with sets

and point clouds. arXiv preprint arXiv:1611.04500, 2016.

[63] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. In Advances in neural information

processing systems, pages 91–99, 2015.

[64] Gernot Riegler, Ali Osman Ulusoys, and Andreas Geiger. Octnet: Learning deep 3d

representations at high resolutions. arXiv preprint arXiv:1611.05009, 2016.

[65] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo

Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint

arXiv:1412.6550, 2014.

[66] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 234–241. Springer, 2015.

[67] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[68] Nima Sedaghat, Mohammadreza Zolfaghari, and Thomas Brox. Orientation-boosted

voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351, 2016.

105

[69] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. Exploiting the

panorama representation for convolutional neural network classification and retrieval.

In Eurographics Workshop on 3D Object Retrieval, Lyon, France, 2017.

[70] Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. Deeppano: Deep panoramic

representation for 3-d shape recognition. IEEE Signal Processing Letters, 22(12):2339–

2343, 2015.

[71] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convolutional

neural networks applied to visual document analysis. In ICDAR, volume 3, pages 958–

962, 2003.

[72] Kihyuk Sohn and Honglak Lee. Learning invariant representations with local transfor-

mations. arXiv preprint arXiv:1206.6418, 2012.

[73] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view

convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE

international conference on computer vision, pages 945–953, 2015.

[74] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for cnn: Viewpoint

estimation in images using cnns trained with rendered 3d model views. In Proceedings

of the IEEE International Conference on Computer Vision, pages 2686–2694, 2015.

[75] Damien Teney and Martial Hebert. Learning to extract motion from videos in convo-

lutional neural networks. arXiv preprint arXiv:1601.07532, 2016.

[76] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-

ders. Selective search for object recognition. International journal of computer vision,

104(2):154–171, 2013.

[77] Nanne van Noord and Eric Postma. Learning scale-variant and scale-invariant features

for deep image classification. Pattern Recognition, 61:583–592, 2017.

106

[78] Fa Wu, Peijun Hu, and Dexing Kong. Flip-rotate-pooling convolution and split

dropout on convolution neural networks for image classification. arXiv preprint

arXiv:1507.08754, 2015.

[79] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,

and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1912–1920, 2015.

[80] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for 3d

object detection in the wild. In IEEE Winter Conference on Applications of Computer

Vision (WACV), 2014.

[81] Jiaolong Xu, David Vázquez, Antonio M López, Javier Maŕın, and Daniel Ponsa. Learn-

ing a part-based pedestrian detector in a virtual world. IEEE Transactions on Intelligent

Transportation Systems, 15(5):2121–2131, 2014.

[82] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks.

arXiv preprint arXiv:1701.01833, 2017.

107

