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Song of the Grand River sung,

I head resolute for the east,

Having vainly delved in all schools

For clues to a better world.

Ten years face to wall,

I shall make a break-through,

Or die an avowed rebel

Daring to tread the sea.

– ZHOU En Lai, 1917 (translated by Nancy T. Lin)
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ABSTRACT

Membrane proteins carry great importance in cellular functions, such as nutrient uptake,

transport of membrane-impermeable molecules, ion balance, etc. These make membrane

proteins the prime drug targets. In fact, 50% of modern medicines target helical membrane

proteins. However, despite the biological importance, membrane proteins are notoriously

difficult to study. Because it is difficult to obtain high-resolution structures, membrane pro-

teins are greatly under-represented in Protein Data Bank. The scarcity of available structures

makes it even harder to obtain information of the dynamic behaviors of membrane proteins.

The topic lying at the heart of the problem is how transmembrane proteins fold.

Observation of how bacteriorhodopsin (bR) folds in vitro leads to a two-stage thermody-

namic model, which was brought up in 1990. In the first stage, unfolded chain forms helices

on the surface of the membrane and the helices spontaneously insert into the bilayer. In the

second stage, the transmembrane helices assemble into a well-functional tertiary structure.

To study the folding in terms of a thermodynamic model is meaningful because in vivo fold-

ing must proceed within the thermodynamic context. The importance of understanding the

two-stage model is that the two stages are controlled by different forces. The first stage is

driven mainly by the hydrophobic effect, whereas the second stage is mediated by various

weak interactions.

There are several factors that add to the difficulty of studying the folding of transmem-

brane proteins computationally. First, the structures of transmembrane proteins are in nature

complex. Ideally, the transmembrane protein consists of several transmembrane helices, each

of which is hydrophobically stabe and spans the lipid bilayer, such as bR. However, excep-

tions happen all the time. Re-entrant helices enter and exit the bilayer on the same side;

interfacial helices lie on the interface of the membrane; and there are kinks and coils in

the middle of a transmembrane helix. Moreover, sometimes the transmembrane helix is not

hydrophobically stable by itself but via the association with neighboring helices. Second,

the folding and stability of transmembrane proteins are dictated by a delicate balance of

xiii



various weak interactions, such as van der Waals forces, H-bonding, salt-bridge, and weakly

polar interactions. The interplay between the protein and the lipid bilayer also plays an

important role. Besides, multiple functional conformations exist. The energy minimum may

only correlate to one of them. Thus, developing a force field, which describes the balance of

those weak interactions well and is able to distinguish native-like structures from non-native

structures, is the prerequisite for computational study. Third, it is hard to mimic the real-

istic protein/membrane complex, as the complex is highly heterogeneous and composed of

a variety of biomolecules at different concentrations. Lastly, it is usually very expensive to

simulate membrane proteins. The size of the system is typically larger than 100,000 atoms,

including the protein, lipids, ligands, water molecules and ions, and the timescale required

for obtaining physically meaningful results is usually microsecond or longer.

To circumvent these problems or to look at the problem from a different angle, peo-

ple unfold membrane proteins by force and obtain the folding energetics by extrapolating

the applied force back to zero. Experimentally, single-molecule force spectroscopy (SMFS),

such as atomic force spectroscopy (AFM) and magnetic tweezers, allows scientists to ma-

nipulate biomolecules on the single-molecule level. SMFS has proven beneficial in detecting

sparsely populated intermediates and yielding kinetic insights into the unfolding pathways

of membrane proteins.

To put it all together, before my study, Dr. John Jumper in our group has developed

a fast, atomic-level coarse-grained model, Upside, which is capable of de novo folding of

proteins shorter than 100 residues in cpu-hours. Upside is a non-Gõ, physics based model

with five atoms per residue (N, Cα, C, H, O), a side chain bead and with residue- and

neighbor-dependent Ramachandran maps. The energy function includes H-bonds, side chain-

side chain and side chain-backbone interactions (including helix capping), and a solvation

term. At each step, the side chain bead is first decorated to each of the residues. The positions

of the side chain beads are determined based on the joint probability of all side chain beads

which gives the lowest global free energy for all side chains. The force is computed using the

xiv



joint probability. Then, the side chain beads are undecorated while the forces are applied to

the backbone atoms.

I have incorporated Upside with my new knowledge-based membrane burial potential

as the implicit solvent for membrane proteins, which dynamically calculates the degree of

side chain exposure to lipids during the simulations and includes energies for unsatisfied

H-bond donors and acceptors in the membrane. Hence, I am able to perform fast, atomic-

level simulations on membrane proteins. In specific, I choose to study the forced unfolding

of membrane proteins by SMFS.

I have developed an accurate and fast atomic-level simulation that allows me to conduct

hundreds of unfolding simulations to characterize the folding energy surface under force. The

algorithm reproduces many of the experiment features of SMFS studies for the unfolding of

bR and GlpG. I find that the mode of force application alters the perception of the folding

landscape. For GlpG unfolding using a weaker spring to mimic a magnetic tweezers mea-

surement, the force remains nearly constant after the initial unfolding event and few if any

intermediates are observed, as found in experiment. With a stiff cantilever, however, the

force drops to near-zero after each major unfolding event and numerous intermediates are

observed. Notably, the application of constant force, whether intentionally or as a result of

force being applied through a weak spring constant, as with magnetic tweezers or after a

substantial portion of the protein is unfolded, reduces the probability of observing interme-

diates while increasing the apparent unfolding cooperativity as compared to the use of stiffer

cantilevers with short attachment handles. Our method can assist experimental studies by

helping convert force extension curves to structures, pathways, and energies, which can be

challenging. Moreover, our method can be employed to simulate complicated thought exper-

iments beyond current experimental capabilities such as pulling on multiple sites in multiple

directions with different strength springs with either membrane or soluble proteins.

xv



CHAPTER 1

INTRODUCTION

I studied the dynamics of transmembrane proteins using a coarse-grained model with an

implicit membrane force field. There are two main types of architecture of transmembrane

proteins: α-helical bundles and β-barrels. In this thesis, I limit the scope of my study

to transmembrane α-helical proteins. In particular, I am focused on simulating the forced

unfolding of transmembrane helical proteins.

1.1 Motivation of the study

Transmembrane helical proteins play a pivotal role in cell biology, including nutrient uptake,

transport of membrane-impermeable molecules, ion balance, signal transduction, intercellu-

lar communication, immune response. Therefore, they are prime drug targets [1]. Specifically,

more than 50% of modern medicinal drugs target only four key gene families: class I GPCRs,

nuclear receptors, ligand-gated ion channels and voltage-gated ion channels [2].

Despite their biological importance, membrane proteins are greatly under-represented in

structural databases that only∼2% deposited structures in Protein Data Bank are membrane

proteins [3], among which∼85% are integral membrane proteins [4, 5] (the rest are β-barrels).

As a comparison, ∼30% of human genome encodes membrane proteins [6, 7]. The number

of resolved structures has risen from marginally over 100 at the turn of the millennia [8] to

∼200 at 2009 [9] and to over 4000 in Dec. 2018 [10].

The scarcity of available structures stems from the difficulty in obtainning high-resolution

structures experimentally that expression of sufficient amount of membrane proteins for

crystallization is often impeded by toxicity to the host cells or misfolding of the protein [3].

The majority of membrane protein structures is determined by X-ray diffraction, solution

nuclear magnetic resonance (NMR), or more recently, single-particle electron cryomicroscopy

(cryo-EM). However, the proteins are often not in a membrane, but rather, in a crystal lattice
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or in a membrane-mimetic, such as a micelle or bicelle [11], which necessitates the knowledge

of protein-lipid bilayer interaction in order to attain correct comformation of protein in

its native membrane. Moreover, the lack of atomic coordinates makes it even harder to

obtain information of dynamic behaviors, for instance the conformational transitions between

outward-facing and inward-facing states of membrane transporters [3, 12].

Continual efforts have been put into studying transmembrane proteins computationally to

aid the interpretation of experiment and to provide testable predictions for experimentalists.

In terms of predicting the tertiary structures, the computational methods can be categorized

into two complementary classes: (i) static methods to predict 3D structure from primary

sequence, such as homology modeling [13], fold recognition [14, 15], and de novo prediction

[16–21], and (ii) dynamic methods studing comformational change of a protein along a time

trajectory, including all-atom dynamic simulations and coarse-grained models [22–27].

1.1.1 To fold or to unfold?

The central topic of studying transmembrane proteins is how the proteins fold. However, it

is formidable to study the folding of transmembrane proteins computationally.

How do transmembrane proteins fold?

Evidences have shown that the folding of bacteriorhodopsin (bR) is thermodynamically con-

trolled and the lateral interactions among transmembrane helices provide the driving forces

for reaching the native state [28, 29]. Studying how transmembrane proteins fold in terms of

thermodynamic models is of great importance for understanding the in vivo folding process

aided by translocons [30], because the biological process must proceed within the thermody-

namic context [31].

A well accepted two-stage thermodynamic model for the folding of transmembrane pro-

teins in vitro was first proposed by Popot and Engelman in 1990 [29], albeit admittedly

oversimplified, describing the assembly of isolated fragments of bR in lipid bilayers into
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functional form [28]. The model states that stable transmembrane helices form indepen-

dently in stage I, principally due to the hydrophobic effect and the formation of main-chain

hydrogen bonds in the non-aqueous environment, and that transmembrane helices associate

and assemble to form the tertiary structure in stage II [29].

Almost at the same time, Jacobs and White proposed a three-step model [32] based on

observations of the partitioning of small hydrophobic peptides and the spontaneous insertion

of helical hairpins into and across membranes [33]. The three steps are I. the binding of

peptide chain to the membrane interface and the formation of main-chain hydrogen bonds

(interfacial partitioning), II. formation of helices at the interface (interfacial folding), and

III. spontaneous insertion of helices as well as the charged and polar residues connecting the

helices [32]. Later in 1999, White and Wimley combined the abovementioned two models and

proposed a four-step thermodynamic model, describing the folding proceed as: partitioning,

folding, insertion, and association [31].

What makes studying the folding of transmembrane proteins computationally

so difficult?

Besides the aforementioned lack of available atomic structures, there are several factors that

add to the difficulty of studying the folding of transmembrane proteins computationally.

First, the structure and topology of transmembrane proteins are in nature complex. Canon-

ically, multi-span transmembrane proteins consist of a number of transmembrane helices,

each of which is hydrophobically stable and extends over the membrane bilayer. bR is a

good example of such transmembrane protein. However, more complex crystal structures

have reveald a number of structure features that do not follow the cannonical view. For ex-

ample, re-entrant helices (short helices that enter and exit the membrane on the same side),

amphipathic helices (surface-bound), and kinks and coils in the membrane region [1].

Second, the folding of transmembrane proteins is governed by a delicate balance of vari-

ous weak interactions [34, 35]. The hydrophobic effect cannot act as the main driving force
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for the transmembrane helices to associate, distinct to soluble proteins in an isotropic aque-

ous environment. In the two-stage model, while the hydrophobic effect largely leads to the

spontaneous insertion in stage I, it is the weak interactions, such as van der Waals forces (eg.

GXXXG motif [36]), hydrogen bond (eg. Cα hydrogen bond [37]), salt bridge, weakly polar

interactions (eg. cation-π interaction, aromatic-aromatic interaction), that are the main con-

tributors in stage II [38]. Deriving a force field to precisely balance those weak interactions

and to be able to distinguish native-like from non-native structures is challenging.

Third, to accurately mimic a realistic protein/membrane complex is not easy, as bio-

logical membranes are highly heterogenous and composed of a variety of biomolecules with

different concentrations [39]. For all-atom MD simulations, dedicated efforts have been put

into standardizing the preparation for building the protein/membrane complex as well as

continuously adding new types of lipid and ligand molecules into the library [39–41]. How-

ever, the knowledge of membrane composition is required a priori to build such a realistic

model.

To unfold in experiment

Experimentally, single-molecule force spectroscopy (SMFS), such as atomic force spectroscopy

(AFM) and magnetic tweezers, allows scientists to manipulate biomolecules on the single-

molecule level [42]. SMFS has proven beneficial in detecting sparsely populated intermediates

and yielding kinetic insights into the unfolding pathways of membrane proteins [43]. Although

SMFS unfolds membrane protein under non-equilibrium conditions, the energetics of mem-

brane protein folding can be extrapolated back to zero force [44, 45]. This gives people an

opportunity to circumvent the difficulties of folding a membrane protein and to look at the

problem from another perspective.
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1.1.2 All-atom or coarse-grained?

The state-of-the-art MD simulations are capable of exploring membrane protein conforma-

tions and protein-lipid interactions in native-like bilayer environments [39]. Unfortunately,

the computational resources required for performing all-atom MD simulations of transmem-

brane proteins are often prohibitively expensive. The size of the system is usually very large.

The total atoms of the system, including the protein, lipid bilayer, pore water, bulk water,

and counter ions, are typically over 100,000 [40]. On the other hand, the timescale required

for acquiring physically meaningful results is microsecond or longer [3].

Coarse-grained (CG) models address the both the size and timescale issues via simpli-

fication of the representation of the constituent molecules of biomolecular systems [46]. In

specific, there are few conversations between SMFS experiment and computation, partly

due to the demanding computational resources. For example, to fully unfold a bR molecule,

which extended chain is ∼ 80 nm, at an pulling rate of 300 nm/s [43], needs ∼ 0.26 s. This

timescale for simulating a membrane protein is daunting even using CG-MD simulation. CG

models expedite the MD simulations and allow for slower and more realistic extraction veloc-

ities for simulating SMFS experiments [47], therefore increasing the likelihood of observing

transient intermediates.

1.1.3 Concerns of CG models with implicit solvent

To further accelerate the simulation, an implicit solvent model is preferred over an explicit

solvent model with coarse-grained solvent molecules. However, when an implicit solvent

model is used, there are several issues that should be born in mind. First, the distinct physical

ambience of membrane bilayer to the aqueous phase demands the knowledge of the exposure

status of residues, namely to what extent a residue is in contact with the surrounding lipid

molecules. Naturally, only those residues exposed to the lipids should interact with them.

Moreover, charged or polar residues in the cavity or pore of ion channels or transporters add

to the complexity of the problem, because they interact with the water molecules rather than
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lipids. Unfortunately, to determine a residue’s exposure status (in a coarse-grained manner)

is not a readily solvable problem. I will elaborate this point in detail in Chapter 2.

The second issue is the depiction of the atomic details of the membrane bilayer, eg. the

composition of lipids or dynamic changes in membrane curvature due to the interplay of

membrane and transmembrane protein. A full treatment including the effect of membrane

deformation and structure perturbation of the protein would compromise the speed of the

simulation gained by CG model. Sacrificing the atomic details of the bilayer would prevent

us from studying problems such as the mechanisms of ion selectivity, conduction, etc.

1.1.4 Putting it all together

Before my study, Dr. John Jumper in our group has developed a fast, atomic-level CG

model, Upside, which is capable of de novo folding of proteins shorter than 100 residues in

cpu-hours. Upside is a non-Gõ, physics-based model with five atoms per residue (N, Cα, C, H,

O), a side chain bead and with residue- and neighbor-dependent Ramachandran maps. The

energy function includes H-bonds, side chain-side chain and side chain-backbone interactions

(including helix capping), and a solvation term. At each step, the side chain bead is first

decorated to each of the residues. The positions of side chain beads are determined based

on the joint probability of all side chain beads which gives the lowest global free energy for

all side chains. The force is computed using the joint probability. Then, the side chain beads

are undecorated while the forces are applied to the backbone atoms.

Using Upside as the simulation engine, I choose an statistical approach to derive a poten-

tial that can be integrated with Upside as the implicit solvent for transmembrane proteins.

Statistical approaches have been demonstrated successful in assessing the residue-specific en-

ergies of insertion of helical transmembrane proteins into lipid bilayers. The potential serves

as an membrane bilayer averaged over lipid membranes from different species and organelle

locations. The potential is determined by the position of a residue embedded in the bilayer

and its exposure status with respect to the surrounding environment.
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Then, to simulate the forced unfolding of transmembrane proteins, I implement a force

function in Upside that can apply force. Because Upside does not have an explicit time

(i.e. the timescale has to be estimated via comparison of the folding rate in Upside folding

simulations against that of all-atom MD simulations), I set a recorder for integration steps

in order to excute the constant velocity pulling.

1.2 Contributions of this thesis

This dissertation contributes to studying the dynamics of transmembrane helical proteins

using a coarse-grained model with an improved implicit membrane burial potential.

In Chapter 2, we advanced a new statistical membrane burial potential that incorpo-

rates some new features. Our potential is referenced to the interface region, rather than the

bilayer center, to better capture the physiochemical properties of this region. In addition,

we include a penalty for the presence of unsatisfied hydrogen bond donors and accepters in

the lipid bilayer. Third, we address challenges inherent in devising implicit solvent models

of properly accounting for the exchange of protein-lipid interactions for protein-protein in-

teractions upon protein contact. Lastly, we integrated the membrane burial potential with

our Upside algorithm. The combination offers a computationally efficient, flexible tool that

lays the groundwork for a variety of simulations of membrane protein dynamics.

In Chapter 3, we developed an accurate and fast atomic-level simulation that allows

us to simulate single-molecule force spectroscopy (SMFS) experiments to characterize the

unfolding energy surface. We first conducted a variety of tests of our implementation of

force in the Upside simulations before moving on to membrane protein systems. Then, we

simulated hundreds of unfolding events of two model membrane proteins: bacteriorhodopsin

(bR) and GlpG. In the simulations of bR, We reproduced the characteristic experimental

features, including even the back-and-forth unfolding of single helical turns, and identified

similar intermediate states. For GlpG, we explored different modes of force application and

found that how force is applied alters the perception of the energy landscape. We observed
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multiple-step unfolding in diverse pathways starting from either terminus or the center of

GlpG, when pulling laterally on the protein using a stiff cantilever which allows for restora-

tion of springs after an unfolding event, emulating an AFM experiment. We also observed

cooperative unfolding in a few or single all-or-nothing step of GlpG, when pulling laterally

with a constant force, mimicking a magnetic tweezers measurement. Hence, the mode of

force application strongly affects the observed unfolding cooperativity and identification of

intermediates, important issues that should be considered when interpreting unfolding data

and designing experiments. Our method can be employed to devise complicated gedanken

pulling experiments that are as-yet impossible.

Chapters 2 and 3 are intended for publication, so they contain redundancies with other

parts of the thesis.

Finally, Chapter 4 concludes with future works that build on the methods and perspec-

tives developed in this work. Future applications to membrane protein dynamics and SMFS

are presented.
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CHAPTER 2

A MEMBRANE BURIAL POTENTIAL WITH H-BONDS AND

APPLICATIONS TO CURVED MEMBRANES AND FAST

SIMULATIONS

This material presented in this chapter has appeared in Z. Wang, J. M. Jumper, S. Wang,

K. F. Freed, and T. R. Sosnick, A membrane burial potential with h-bonds and applications

to curved membranes and fast simulations, Biophys. J., 115:1872-84, 2018 [48]. Copyright

from Biophysical Journal, doi:10.1016/j.bpj.2018.10.012 (2018).

We use the statistics of a large and curated training set of transmembrane helical proteins

(TMH) to develop a knowledge-based potential that accounts for the dependence on both the

depth of burial of the protein in the membrane and the degree of side chain exposure. Addi-

tionally, the statistical potential includes depth-dependent energies for unsatisfied backbone

hydrogen bond donors and acceptors, which are found to be relatively small, ∼2 RT. Our

potential accurately places known proteins within the bilayer. The potential is applied to

the mechanosensing MscL channel in membranes of varying thickness and curvature, as well

as to the prediction of protein structure. The potential is incorporated into our new Upside

molecular dynamics (MD) algorithm. Notably, we account for the exchange of protein-lipid

interactions for protein-protein interactions as helices contact each other, thereby avoiding

overestimating the energetics of helix association within the membrane. Simulations of most

multimeric complexes find that isolated monomers and the oligomers retain the same orien-

tation in the membrane, suggesting that the assembly of pre-positioned monomers presents

a viable mechanism of oligomerization.

2.1 Introduction

Helical transmembrane proteins perform numerous cellular functions, including uptake of nu-

trients, transport of membrane-impermeable molecules, ion balance, signal transduction, in-
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tercellular communication, immune response, making helical transmembrane proteins prime

targets for drug activity [1]. Despite their biological importance, membrane proteins are

greatly under-represented in structural databases. Only ∼2% of the deposited structures in

the Protein Data Bank (PDB) are membrane proteins [3], for which ∼85% are helical trans-

membrane proteins [4, 5]. By comparison, ∼30% of the human genome encodes membrane

proteins [6, 7]. This scarcity results from the relative difficulty in obtaining high-resolution

structures experimentally, making it even more challenging to obtain information regarding

dynamic behaviors, for instance, of conformational transitions between outward-facing and

inward-facing states of membrane transporters [3, 12].

Considerable effort has been devoted to studying helical transmembrane proteins compu-

tationally [3] using static methods for predicting 3D structures from sequence, e.g. homology

modeling [13], fold recognition [14, 15], and de novo prediction [16–21]. Dynamical methods

including all-atom simulations and coarse grained (CG) models have been applied as well

[22–27]. Energy functions are essential prerequisites for properly discriminating native from

non-native models and for characterizing the interactions between proteins and their sur-

rounding environment (Fig. 2.1). Scoring functions may be developed either on physics-

[16, 24, 49–55], learning- [25, 56–58], or knowledge-based considerations [59–72]..

Statistical approaches enjoy success in assessing the residue-specific energies of insertion

of helical transmembrane proteins into lipid bilayers. Their use traces back to the first study

in the 1980s of the distributions of positively charged residues in bacterial inner membranes

[61]. Later, with more available structures, statistical potentials derived from empirical amino

acid (AA) distributions have described experimentally observed trends, for example, the pref-

erence of positively charged residues in the cytoplasm [73], the snorkeling of Trp and Tyr to

the membrane surface [74], and the bias of small side chains to reside at the helix-helix in-

terfaces [75]. Statistical potentials have been used in analyzing for hydropathy [65], orienting

proteins in membrane [65, 68–71], discriminating protein-protein interaction sites [69], char-

acterizing topology of different types of membrane-associated peptides [70], recapitulating
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Figure 2.1: The major steps for the transfer of a residue into the lipid bilayer.
The U, HB in the subscripts of the ∆G’s refer to unfolded, and H-bonded, respectively; w,
int, @Z stand for water, interface, and at depth Z, respectively. Copyright from Biophysical
Journal.

experimental data for the effects of mutation on dual-topology of proteins [70], estimating

membrane bilayer thickness [71], and refining models for helical transmembrane proteins

[71].

The present study focuses on deriving an improved knowledge-based potential for burial of

proteins and on employing this potential for curved membranes and for molecular dynamics

simulations. Energies are determined from the statistics of a large training set of proteins

(curated for lipid exposure) and account for both the depth in the membrane and the level

of side chain exposure to the lipid, i.e. E(Z, exposure) ∝ ln(frequency) (Fig. 2.2AB).

We also incorporate depth-dependent energies for unsatisfied backbone H-bond donors and

acceptors within the bilayer (Figs. 2.1 and 2.2C). Validation of the potential is based on

its ability to locate proteins within the bilayer at the same position as that determined using

the Orientations of Proteins in Membranes (OPM) approach, which employs an implicit

solvation model of the lipid bilayer [76]. Our new statistical potential, named UChiMemPot,

outperforms prior statistical potentials because of the use a better curated training set,
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inclusion of a dependence on membrane exposure and thickness, and the introduction of

energies for the burial of unsatisfied hydrogen bonding groups. UChiMemPot may be used

to rank and place homology models, to identify the membrane thickness and curvature, and

thereby to provide the lowest insertion energy for a given protein conformation. For example,

we find that the closed state of the MscL mechanosensitive channel [77] always has a lower

insertion energy than the open state, but the difference is reduced in thinner membranes.

We conclude with the incorporation of the membrane burial potential in our new molecu-

lar dynamics (MD) algorithm Upside, that can reversibly fold soluble proteins containing up

to 100 residues without the use of fragments or homology [78, 79]. In order to apply Upside

to helical transmembrane proteins, the lipid-protein interactions within the membrane are

updated dynamically to avoid the inclusion of protein-lipid interactions when these interac-

tions are displaced by protein-protein interactions (Fig. 2.2E). An analysis of the position of

isolated monomers from multimeric complexes suggests that their docking provides a viable

assembly strategy for many helical transmembrane proteins. However, monomers from some

ion channels experience larger movement, and their assembly may involve conformational

changes, possibly by an induced-fit mechanism.

2.2 Derivation

2.2.1 Training set & test set

Structures and bilayer thickness are obtained from the OPM website [76] and used in fitting

data and training parameters. The dataset includes all proteins in the helical polytopic

superfamilies as of January 2017 [4] and is culled by resolution (≤ 3 Å) and sequence identity

(≤ 25%) using PISCES [80], resulting in the retention of 171 helical transmembrane proteins.

The proteins are ordered according to size and partitioned into five equal groups, with four

used for training (140 proteins) (Fig. 2.3A) and one as the test set (31 proteins). The chain

length distributions in the test and the training sets are similar, as are the number of residues
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Figure 2.2: Features of the UChiMemPot potential.
(A) Our statistical potential (left) is referenced to lipid headgroup interface (z=0) rather
than the center of the membrane bilayer (left). We separate the proteins halves and moved
them apart in order to align to the interfaces (right). Our profiles are derived separately
for the outer and the inner leaflets and concatenated in the middle to ensure continuity.
(B) Protein burial status illustrated with the SWEET transporter 4qnd.pdb). The lipid-
exposed and protein-buried alanines are depicted with larger blue spheres and smaller red
van der Waals spheres, respectively. (C) We include unsatisfied backbone H-bond donors and
acceptors in the potential, highlighted with the sensor domain of potassium channel KvAP
(1ors.pdb) using the VMD definition. Hydrogen bonds are shown using dashed red lines.
Unsatisfied hydrogen bond donor and accepters, NH (UNH, blue) and CO atoms (UCO,
red), often are in loops or kinks. (D) A schematic of planar and spherical bilayers. (E) To
apply the Upside MD package, we include lipid-protein interactions and energies of backbone
exposure within the membrane, and do so in a dynamic manner to remove the energies of
protein-lipid interactions as helices come together. The residue indices of UNHs and UCOs
are as follows. UNH, 22 residues: 0,1, 2, 4, 5, 16, 29, 31, 34, 61, 63, 64, 65, 67, 71, 72, 75,
79, 81, 97, 130, 131. UCO, 27 residues: 0, 2, 3, 15, 25, 26, 27, 29, 30, 31, 57, 60, 61, 62, 65,
68, 69, 72, 73, 77, 92, 93, 126, 127, 128, 129, 130.
Copyright from Biophysical Journal.
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in each of the 5 groups.
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Figure 2.3: Bilayer thickness and side chain burial status employed in our statis-
tical potential. (A) Hydrophobic thickness distribution of 140 TMHs in the training set.
30 Å is the most probable hydrophobic thickness, supporting the previous choice of 30 Å as
the invariant hydrophobic thickness for referencing residue positions to the bilayer center.
However, the variance argues that the statistical potential should allow for a variable hy-
drophobic thickness, using the bilayer surface as the reference depth. (B) The burial status
of a given residue is calculated as the number of heavy atoms (from the non-neighboring
residues) buried in the hemisphere located at the Cβ atom and is pointing along Cα-Cβ
(illustrated with 1ors.pdb). Copyright from Biophysical Journal.

2.2.2 Feature extraction

Incomplete and missing side chains are added to the backbone using the VMD plugin, Psfgen

[81]. The residue properties that are extracted from the protein structure include the residue

type, secondary structure (SS), residue burials, solvent accessible surface area (SASA), H-

bonds, and atomic coordinates of Cα, Cβ , and backbone N and O, features that are included

in data fitting and training. The computation of SS and SASA use methods in the Python

library, MDTraj [82].
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Residue burial

The residue burial is defined in terms of the number of heavy atoms in a hemisphere with

an 8 Å radius, centered at the Cβ and directed along the Cα-Cβ vector [83] (Fig. 2.3B).

Upside provides the computing engine for calculate residue burial. The strong correlation

between our metric and the standardly used SASA, supports our procedure for identifying

exposure levels (Fig. 2.4). A residue is considered to be buried in the protein core when its

burial exceeds a residue-determined value, chosen empirically, such that ∼25% of the Arg,

Asn, Asp, Gln, Glu, and Lys residues and ∼50% of the other residues are assigned as buried.

The high correlation between the residue burial method we employ (counting nearby heavy

atoms) and SASA validates our procedure for identifying whether a residue is exposed to

the surround solvent or buried in the protein interior.

We used Upside as the computing engine to calculate the residue burial, which precise

definition is excerpted directly from Dr. John M. Jumper’s PhD thesis as follows.

We define a count of surrounding residues in a similar manner to [83] but modify the

construction so that it is differentiable.

The main component of the environment interaction is to count the number of side chains

beads within a fixed radius of the Cβ atom in a hemisphere above the atom. We define

bi =
∑
j

pχj (φj , ψj)sigmoid

( |xji| − 8Å

1Å

)
sigmoid

(
d
Cβ
i ·x̂ji + 0.1

1.0

)
(2.1)

xji = xSCj − xCβi (2.2)

Where x
Cβ
i is the position of the Cβ on residue i and d

Cβ
i is the corresponding Cα-Cβ

bond vector. The sigmoid parameters are chosen to approximately maximize distinctiveness

of the bi burial distributions for different residue types. In a well-formed definition of burial,

the burial distribution for a hydrophobic residue like valine should be very distinct from the

burial distribution of a charged residue like aspartic acid.
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Figure 2.4: Correlation between SASA and residue burial for each type of amino
acid. For each subplot, the x-axis and the y-axis stand for the residue burial and the SASA,
respectively. The white dashed line marks the empirically chosen threshold for residue burial,
above which the residue is considered buried in the protein core. Copyright from Biophysical
Journal.

The side chain probability pχj (φj , ψj) appearing in the definition Eq. 2.1 is the prior

probability of the side chain bead, not the marginal probability from belief propagation. The

derivative of the marginal probabilities with respect to the side chain positions are complex,

much moreso than the derivative of the free energy with respect to the side chain positions.

Furthermore, for intellectual self-consistency, the side chain rotamers ensemble should ac-

count for burial interactions. Unfortunately, belief propagation is not defined for many-body

interactions, such as would arise from a nonlinear function of the burial bi. It would be possi-

ble to extend belief propagation to handle many-body terms at a lower level of approximation,

although it is not clear how accurate such an approximation would be and whether it would be

guaranteed to converge. Due to the derivative difficulties of using the marginal probabilities
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without perturbing for burial and the intellectual difficulties of extending belief propagation

to handle many-body terms, we simply avoid the issues by using only the prior probabili-

ties to define the environment interactions. The precise probabilities used to define burial

are unlikely to compromise the ability of the bi to distinguish hydrophobic and hydrophilic

residues.

The burial calculation is implemented in the EnvironmentCoverage class of Upside.

H-bond

The energy function includes a contribution from the energetics of burying unsatisfied hy-

drogen bond donors and acceptors in the membrane. The hydrogen bonds (hydrogen donor-

acceptor contacts) are classified into four categories:

(i) backbone-backbone -NH. . .O=C-,

(ii) backbone-side chain -NH. . .O-,

(iii) sidechain-backbone -H. . .O=C-,and

(v) side chain-side chain -H. . .O- (Table 2.1).

Two common definitions of the H-bonding geometry are compared (Fig. 2.5), namely,

the Baker-Hubbard definition (distance(H-A) < 3.5 Å and ∠DHA > 90.0◦) [84] and the VMD

definition (distance(D-A) < 4.0 Å and ∠DHA > 90.0◦) [81], where H, D, and A denote the

hydrogen, the donor, and the acceptor, respectively. Both methods assign NH and OH as

donors, and the acceptors are O and N. The distributions of distance(H-A), distance(D-A),

and ∠DHA for the two definitions are similar, therefore we choose the VMD definition for

the convenience in visualizing the H-bonds in VMD. Based on the distributions obtained at

loose distance and angle cutoffs, we reinforce strict cutoffs: dist(D-A) < 3.5 Å and ∠DHA

> 105.0◦ (Figs. 2.5, 2.6, 2.7, 2.8).
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Table 2.1: Possible donors and acceptors in each type of amino acid.

aa donor acceptor

ALA H O
ARG H, HE, HH11, HH12, HH21, HH22 O
ASN H, HD21, HD22 O, OD1
ASP H O, OD1, OD2
CYS H O
GLN H, HE21, HE22 O, OE1
GLU H O, OE1, OE2
GLY H O
HIS H, HD1, HE2 O, ND1, NE2
ILE H O
LEU H O
LYS H, HZ1, HZ2, HZ3 O
MET H O
PHE H O
PRO O
SER H, HG O, OG
THR H, HG1 O, OG1
TRP H, HE1 O
TYR H, HH O, OH
VAL H O

Atoms are selected following the topology file definition of the CHARMM force field
top all27 prot lipid.inp [85].
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120~180

H-bonding Geometry

Figure 2.5: H-bond definitions. The Baker-Hubbard definition accepts an H-bond when
dist(H-A) < distance cutoff and ∠DHA > angle cutoff and that VMD accepts an H-bond
when dist(D-A) < distance cutoff and ∠DHA > angle cutoff. The donors considered by both
methods are NH and OH, and the acceptors considered are O and N. Note: VMD uses
hydrogens other than NH and OH as the donors. Copyright from Biophysical Journal.
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Figure 2.6: Distributions of dist(H-A), dist(D-A), and ∠DHA of donor-acceptor
contact pairs recognized by the Baker-Hubbard definition. Here, we use loose dis-
tance and angle cutoffs: dist(H-A) < 0.35 nm and ∠DHA > 90.0◦. Copyright from Biophys-
ical Journal.
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Figure 2.7: Distributions of dist(H-A), dist(D-A), and ∠DHA of donor-acceptor
contact pairs recognized by the VMD definition. Here, we use loose distance and angle
cutoffs: dist(D-A) < 0.40 nm and ∠DHA > 90.0◦. Copyright from Biophysical Journal.
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Figure 2.8: Distributions of dist(H-A), dist(D-A), and ∠DHA of donor-acceptor
contact pairs recognized by the VMD definition with strict cutoff. Here, we use
strict distance and angle cutoffs: dist(D-A) < 0.35 nm and ∠DHA > 105.0◦. Copyright from
Biophysical Journal.

2.2.3 Energy form & data fitting

The residue locations are defined in terms of the positions of the Cβ (HA2 for Gly) atoms

and are collected into 2 Å bins along the membrane normal z. Because individual helical

transmembrane proteins may be embedded in bilayers with different hydrophobic thicknesses,

residues with the Cβ atoms lying in the range [0, +∞] and in (-∞, 0) are referenced to the

interface of the outer leaflet and the inner leaflet, respectively (Fig. 2.2A).

A depth-dependent potential profile for each type of AA with the residue burial ≤ the

according threshold (Table 2.2) is derived first through Eq. 2.3 to Eq. 2.6, in which

naa(z) is the number of a given type of amino acid in the bin [z-1, z+1] Å. In case there is

no data point in the bin, value is extrapolated from neighboring bins. The raw histogram is

smoothed first by cubic spline interpolation and then filtered with Savitzky-Golay filter [86].

In addition to standard AA interactions, we incorporate z-dependent energies for unpaired
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NH and CO, which are termed as UNH and UCO. The 20 standard AA terms and the 2

unpaired H-bond terms are normalized separately.

Table 2.2: Residue burial threshold for each type of amino acid.

aa Residue burial threshold aa Residue burial threshold

ALA 4.0 LEU 4.0
ARG 6.0 LYS 6.0
ASN 6.0 MET 5.0
ASP 6.0 PHE 5.0
CYS 5.0 PRO 4.0
GLN 6.0 SER 5.0
GLU 6.0 THR 4.0
GLY 4.0 TRP 6.0
HIS 4.0 TYR 6.0
ILE 4.0 VAL 4.0

P aa(z) = naa(z)/
∑
z

naa(z) (2.3)

P ref (z) =
∑
aa

naa(z)/
∑
aa

∑
z

naa(z) (2.4)

Propaa(z) = P aa(z)/P ref (z) (2.5)

Eaahistogram(z) = −ln[Propaa(z)] = −ln
[ naa(z) ·

(∑
aa

∑
z n

aa(z)
)

(∑
z n

aa(z)
)
·
(∑

aa n
aa(z)

)] (2.6)

Then, one Gaussian and one sigmoid are employed to fit the potential on each side. As

the potential indicates the free energy difference in transferring a residue from the aqueous

phase to the lipid bilayer, the potential profile is forced to be 0 at |z| = thickness/2 + 20 Å,

where it is considered far away enough from the membrane.

Lastly, the potential profiles on two sides are concatenated at z = 0 Å to ensure continuity

at the origin (Figs. 2.9, 2.10, 2.11). The potential profile of each AA is described by

7 parameters on each side through Eq. 2.7 to Eq. 2.13. We used the limited-memory

BFGS method [87] provided by the Python library Scipy [88] to fit the parameters and L2
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regularization [89] to prevent overfitting. The derivative calculation in fitting was handled

with Theano framework [90].

The inner and outer energy profiles are merged at z = 0 Å to ensure continuity at the

origin. The number of residues of each type of AAs are listed in Table 2.3.

sigmoid(z;E,m, s) = E/
[
1 + exp

(
|s|(z −m)

)]
(2.7)

gaussian(z;E,m, s) = E·exp
(
− |s|(z −m)2

)
(2.8)

sig(z; p, forcezero) = sigmoid(z; p[0], p[1], p[2])− sigmoid(forcezero; p[0], p[1], p[2]) (2.9)

gau(z; p, forcezero) = gaussian(z; p[3], p[4], p[5])− gaussian(forcezero; p[3], p[4], p[5])

(2.10)

pot oneside(z; p, forcezero) = sig(z; p, forcezero) + gau(z; p, forcezero)− ln|p[6]| (2.11)

dpot = pot oneside(−0.5·thickness; pout, 20)− pot oneside(0.5·thickness; pin,−20) (2.12)

pot twoside(z; pout, pin, thickness) =


pot oneside(z − 0.5·thickness; pout, 20), z≥0

pot oneside(z + 0.5·thickness; pin,−20) + dpot,

z < 0

(2.13)
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Table 2.3: Number of residues of each type of AA involved in the potential derivation.

aa In. exp. In. bur. In. total Out. exp. Out. bur. Out. total

ALA 1533 3193 4726 1569 2919 4488
ARG 2040 150 2190 830 104 934
ASN 1070 285 1355 1103 239 1342
ASP 1057 189 1246 1055 102 1157
CYS 151 295 446 150 296 446
GLN 902 184 1086 908 206 1114
GLU 1360 190 1550 1066 141 1207
GLY 1502 2585 4087 1633 2505 4138
HIS 398 453 851 477 445 922
ILE 1333 2351 3684 1461 2192 3653
LEU 2439 3718 6157 2306 3269 5575
LYS 1780 100 1880 748 49 797
MET 657 821 1478 616 703 1319
PHE 1862 1273 3135 1778 1493 3271
PRO 1112 742 1854 1112 935 2047
SER 1478 1205 2683 1370 1195 2565
THR 876 1554 2430 1040 1537 2577
TRP 990 152 1142 1057 155 1212
TYR 1132 386 1518 1382 312 1694
VAL 1455 2351 3806 1461 2174 3635
total 25127 23122

In. and Out. stand for the inner leaflet and outer leaflet of the membrane bilayer,
respectively. Exp. and bur. are short for exposed to the surround solvent and buried in the
protein core, respectively.

23



E
ne

rg
y 

(R
T)

Lipid bilayerWater

Depth in membrane (Å) 

A

Depth in membrane (Å) 

E
ne

rg
y 

(R
T)

Lipid bilayer Water
B

Figure 2.9: Comparisons of raw histogram, smoothed histogram, and fitting curve
of statistical potential profiles. (A-B) For each amino acid and unsatisfied H-bond
term, the raw histogram, smoothed histogram, and the fitting curve of potential profile on
the cytoplasmic and periplasmic side are plotted. Copyright from Biophysical Journal.
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Figure 2.10: Membrane burial potential profiles of the 20 amino acids. Potential
profiles of 20 amino acids and unsatisfied backbone H-bond donors (UNH) and acceptors
(UCO). The potential profile at thickness = 30.0 Å is plotted. Dashed vertical lines delineate
the inner and outer water-lipid interfaces. Copyright from Biophysical Journal.

Depth in membrane (Å) 

En
er

gy
 (R

T)

Lipid 
bilayer

Water 
(outer)

Water 
(inner)

Figure 2.11: Thickness dependence of potential profiles. For each amino acid, potential
profile at thickness = 26.0 Å, 28.0 Å, 30.0 Å, 32.0 Å, 34.0 Å, and 36.0 Å are plotted. Dashed
vertical lines delineate the water-lipid interfaces on the two sides, which colors are in line
with those of the potential curves. We can see how the potential profiles of 20 amino acids
and unsatisfied backbone H-bond donor and acceptor change in accordance to the change of
bilayer thickness. Copyright from Biophysical Journal.
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2.3 Potential profiles

The bilayer thickness and position of most membrane protein structures are unknown be-

cause the structures are not determined in a native, biologically relevant bilayer. To obtain

this information, we adopt the common practice of specifying both the protein position and

the bilayer thickness with values providing the lowest insertion energy from the OPM website

[76]. The method has been validated experimentally [91] and serves as our standard of na-

tiveness for these two quantities. The OPM database treats the lipid bilayer as an anisotropic

solvent in which the rigid protein floats in a hydrophobic slab of adjustable thickness [52].

The calculated lipid boundaries in OPM are located ∼5 Å from the phosphate groups at the

level of the carbonyl groups of the lipid molecules (Fig. 2.2B).

We adopt the convention where the lipid head group boundary is used as z=0 reference

point to define the burial depth (Figs. 2.2A, 2.12). This convention differs from the stan-

dard definition where the bilayer center defines the z = 0 point. We believe referencing to

the bilayer boundary better accounts for variable bilayer thickness, as side chains are more

sensitive to the distance from this boundary, where the physiochemical properties rapidly

change, than to the distance from the relatively homogeneous center of the bilayer (e.g.,

placing a residue 1 or 5 Å from the boundary often produces a larger energetic difference

than placing the residue 1 or 5 Å from the center of the bilayer). As a result, our potential

exhibits sharper features near the boundary (Fig. 2.2A). Because the potential is a measure

of the energy difference in transferring a residue from the aqueous phase to the lipid bilayer,

the potential is defined with E = 0 at |z| = thickness/2 + 20 Å, which is considered to be

far enough from the bilayer to be considered to be in bulk solvent.

The frequency of occurrence of each residue type as a function of depth in the bilayer

and exposure to lipids are used to calculate the 2D cross-membrane distribution of Cβ atoms

(Fig. 2.12). The potential energy is calculated according to E = -RTln(frequency) using

only the lipid-exposed side chains. The potentials for the inner and outer leaflets are fit

separately to the sum of a Gaussian and a sigmoid (four functions in total). Additionally,
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Figure 2.12: Distributions of 20 amino acids. The distribution of each amino acid (Cβ
position, HA2 for Gly) is calculated separately for the periplasmic and cytoplasmic leaflets.
Dashed vertical line in each subplot marks the water-lipid interface; dashed horizontal line
in each subplot separates the exposed from the buried residues, a difference used in the
derivation of the potential. Copyright from Biophysical Journal.

the frequency distributions of unpaired amide and carbonyl groups are converted to energies

irrespective of whether they are buried inside the protein or exposed to lipid.

The overall trends in the amino acid distribution are similar to previously observed

distributions. Hydrophobic residues, such as Ala, Gly, Ile, Leu, Met, Phe, and Val, have

a strong preference to be buried in the lipid bilayer. When Gly, Ala, Ser (and Thr to a

lesser degree) are located below the bilayer boundary, they are more likely than other amino

acids to be buried inside the protein than exposed to lipids. The bias for Gly and Ala may

be due to their small size which facilitates more intimate contact between transmembrane

helices. For instance, GxxxG motifs often play an important role in mediating interhelical

interactions in helical transmembrane proteins [36]. Arg and Lys have higher tendencies than

other hydrophilic residues to be situated near the membrane surface. This tendency reflects

the ability of longer normally-charged side chains to snorkel towards the head group and
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aqueous phase [92].

The charged states of the acidic and basic residues (Arg, Asp, Glu, and Lys) are generally

unspecified from the structure alone. Inherently, residue-level statistical potentials are ag-

nostic on this issue, being only sensitive to the location of the residues. When the two acidic

residues (pKa ∼4 in solution) are deeply buried in the membrane, charge neutralization by

protonation is likely, as the energetic cost of an upward pKa shift and protonation is less

than the cost of burying a charged group [93]. A similar argument holds for Lys [94], but the

high pKa of Arg (∼14) may result in this side group remaining charged [95]. According to

our statistical potential, it costs only 2-2.4 RT to transfer any of these four normally-charged

residues from water to the center of a lipid bilayer. These values are much lower than those

calculated even using sophisticated treatments of the cost of charge burial [96], and they are

similar in magnitude. These observations support the proposal that these four amino acids

have substantial pKa shifts and are charge neutral when buried deep in the membrane.

The transfer energy for an Asn is less than half that for an Asp (∼1 RT versus ∼2

RT). The transfer of a Gln is nearly the same as Glu (∼2 RT). Because few charged and

polar residues lie within the lipid bilayer, the statistical error is higher for these residues.

However, their burial energies do not contribute much to the overall burial energy because

they are infrequently buried. The potential profiles indicate that each unpaired NH (UNH)

and unpaired CO (UCO) in the middle of lipid bilayers has a burial penalty of ∼2 RT (Fig.

2.10).

Both Trp and Tyr exhibit pronounced snorkeling in which a side chain extends towards

the solvent, although Trp penetrates deeper into the lipid bilayer than Tyr. Exposed pheny-

lalanines exhibit a mild asymmetric preference for the inner leaflet. The majority of cys-

teines are buried in the protein core forming disulfide bonds. Histidines are asymmetrically

distributed, being depleted on the cytoplasmic side but enhanced on the periplasmic side.

This difference is mainly due to metal ligation in respiratory and photosynthetic proteins

[70].
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2.4 Positioning into a flat membrane

To assess the ability of UChiMemPot to reproduce the orientations in OPM, grid searches in

tilt and burial depth are performed to find the lowest energy orientations for the 31 proteins

in the test set (Fig. 2.13). Although a variety of knowledge-based burial potentials exist,

we only compare ours to the relatively recent asymmetric Ez-3D Cβ statistical potential

[70] because other potentials are derived in a similar manner and the increase in the size

of the training set likely accounts for much of the improvement in accuracy. UChiMemPot

on average predicts a very similar orientation as OPM (Fig. 2.14A, B). The standard

deviations from the OPM orientation for the tilt and shift for 31 test cases are 5.3◦ and

1.2 Å, respectively, which are similar to the precisions of OPM (4.0◦ and 2 Å, respectively)

[97]. When the unsatisfied H-bond (UHB) terms are included in UChiMemPot, the standard

deviations are 3.0◦ and 1.4 Å, respectively. As a comparison, the standard deviations of tilt

and shift for using the asymmetric Ez-3D potential are larger, 6.5◦ and 2.0 Å, respectively.

Rotation around Z

Shifting along ZTilting around X

Lipid 
bilayer

Water

Water

Figure 2.13: Protocol of performing grid search. A schematic of grid search protocol
using voltage-sensor domain of phosphatase (PDB: 4g80). To conduct the grid search, the
helical transmembrane protein is sequentially rotated around the z-axis, tilted away the x-
axis, and shifted along the z-axis. The search is carried out exhaustively in a discrete manner
and the insertion energy is calculated at each position with the energy denoted as E(rotation,
tilt, shift). The global energy minimum is chosen as best orientation. The OPM orientation
is used as the initial position. Copyright from Biophysical Journal.
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Figure 2.14: Protein positions with the lowest membrane insertion energies. Tilt
and shift distributions of the lowest energy orientations for the 31 proteins in the test set.
The three potentials applied are: the UChiMemPot potential (A) with or (B) without
UHB penalties, and the (C) asymmetric Ez-3D Cβ potential. Non-zero values are colored
for visualization purposes. (D) An illustration of the relative shift and tilts from the native
z-axis. Copyright from Biophysical Journal.

Because UChiMemPot uses a training set nearly twice as large as that of the asymmetric

Ez-3D Cβ potential, it is expected to outperform the older potential (Fig. 2.14C). The

asymmetric Ez-3D Cβ potential predicts five inverted orientations, whereas UChiMemPot

without the UHB terms predicts six. The asymmetric Ez-3D potential does not fare as well

for tilt angles; two cases yield deviations in excess of 20◦, compared to none from UChiMem-

Pot. Upon addition of the UHB terms, the quality of UChiMemPot further improves the

prediction of the tilt and asymmetry, with only two cases having a deviation in the tilt angle

exceeding 5◦, although the number of inverted orientations remains at five. An examination
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of the energy landscape indicates that the flipped conformations are nearly isoenergetic with

the correct conformation (Fig. 2.15).

Figure 2.15: Energy landscape produced by grid search. (A-E) Energy surfaces with
two basins representing up and down orientations calculated with our potential plus the
UHB effect. Two energetic basins are observed for each of the pseudo energy landscape,
one located at the OPM-defined orientation and the other at the flipped orientation. The
global minimum energy state is represented by the red dot in the upper basin; the red dot
in the lower basin representing the local minimum energy state. Copyright from Biophysical
Journal.
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2.5 Bilayer thickness with lowest insertion energy

The lowest insertion energy is used to distinguish the optimal hydrophobic thickness of the

bilayer for a given protein. As a first example, UChiMemPot identifies the lowest energy

of the 518-residue GLUT3 glucose transporter (4zw9A) occurring at a bilayer thickness of

33.8 Å, similar to OPMs value of 32.8±1.4 Å. Table 2.4 presents ten more comparisons

which generally agree with OPM predictions (average difference is 1.9 Å, with only one

protein (4od4A) differing by more than 3 Å from OPMs value). Our identification of the

membrane thickness producing the lowest insertion energy does not imply that any given

membrane/lipid composition actually adopts this thickness.

Table 2.4: Prediction of optimal bilayer thickness based only on insertion energy.

PDB name PDB id UChiMemPot (Å) OPM(Å)

GLUT3 glucose transporter 4zw9A 33.8 32.8±1.4
Protease GlpG

(Haemophilus influenzae)
2nr9A 25.4 28.2±1.6

Bile acid sodium symporter ASBT 3zuxA 25.8 27.8
Biotin transporter BioY 4dveA 29.6 31.8±1.2

Nickel/cobalt transporter CbiM 4m58A 28.4 29.8±0.9
C-C chemokine receptor type 5 4mbsA 34.0 34.4±1.5

Protease GlpG (E. coli) 4njnA 25.6 28.6
4-hydroxybenzoate oc-

taprenyltransferase
4od4A 30.8 27.4

Protein YetJ 4pgrA 31.4 29.8±2.0
Rhodopsin I 5awzA 30.2 32.4±2.2

ECF transporter, S-component 5d0yA 30.4 29.8±1.8

Error bars shown when provided by OPM website.
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2.6 Identification of decoys in structure prediction

Here we test whether UChiMemPots insertion energy can be used to select more native-

like decoys (lower Cα-RMSD) generated by modern structure prediction methods. We begin

with the example of the GLUT3 glucose transporter (4zw9A), containing 12 transmem-

brane helices. The recent Area-Under-Curve or AUC-maximized DeepCNF method utilizes

evolutionarily-determined contacts that are identified from sequence covariation [98, 99] and

produces a best model that is quite good with a TM-score = 0.74 [100], a Cα-RMSD = 6.0

Å (Fig. 2.16), and the lowest membrane insertion energy, although higher than the native

structure. Individual residues have similar burial energies in the best model as in the native

protein.

To broaden the test, we generated additional decoys of poorer quality by randomly re-

moving a fraction of the pairwise contacts (between 10 and 100%) and replacing them with

an equal number of randomly chosen contacts. This decoy set yields a strong correlation

between RMSD and burial energy (Pearson correlation coefficient = 0.944). Ten additional

cases are summarized in Figs. 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26.

In general, the native structure has a low or the lowest insertion energy compared to pre-

dicted models, and lower Cα-RMSD correlates with lower insertion energy. These promising

results suggest that UChiMemPot (or another burial potential) could be incorporated in the

future as part of the DeepCNF energy function in order to produce better models.
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Figure 2.16: Decomposition of residue burial energies for the known 518-residue
human GLUT3 glucose transporter structure (4zw9A) and models predicted
by DeepCNF. (A, B) Plots of residue position versus membrane burial energy using
UChiMemPot. Residues buried in the protein interior have zero value and are plotted on the
x-axis. Vertical dashed lines delineate the boundary of membrane bilayer after insertion. (C)
Structural comparison between the native structure (in blue) and the best predicted model
(in red). (D) Correlation in the burial energy between residues in the native structure and
the best predicted model. Numbers in the parenthesis are the numbers of residues in that
category (e.g., there are 51 hydrophobic residues located outside the membrane). (E) Total
insertion energy of predicted models versus Cα-RMSD. The horizontal dashed line is the
insertion energy of the native structure. The contact map is predicted using AUC-maximized
DeepCNF and used to generate models. Fifty additional decoys for testing are obtained by
removing a random fraction from 10-100% of the pair-wise contacts and replacing them
with an equal number of randomly chosen contacts (five models are generated at every 10%
increment). Copyright from Biophysical Journal.
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Figure 2.17: Energetic decomposition for the known native 2nr9A and models pre-
dicted by DeepCNF. 2nr9A is Protease GlpG that has 192 residues and 6 transmembrane
helices. The best model predicted by AUC-maximized DeepCNF has TM-score 0.770 and
Cα-RMSD 4.47. The Pearson correlation coefficient between the RMSD and the insertion
energy is 0.906. Copyright from Biophysical Journal.
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Figure 2.18: Energetic decomposition for the known native 3zuxA and models
predicted by DeepCNF. 3zuxA is Bile acid sodium symporter ASBT that has 308 residues
and 10 transmembrane helices. The best model predicted by AUC-maximized DeepCNF has
TM-score 0.731 and Cα-RMSD 4.22. The Pearson correlation coefficient between the RMSD
and the insertion energy is 0.858. Copyright from Biophysical Journal.
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Figure 2.19: Energetic decomposition for the known native 4dveA and models
predicted by DeepCNF. 4dveA is Biotin transporter BioY that has 189 residues and 6
transmembrane helices. The best model predicted by AUC-maximized DeepCNF has TM-
score 0.505 and Cα-RMSD 4.26. The Pearson correlation coefficient between the RMSD and
the insertion energy is 0.813. Copyright from Biophysical Journal.
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Figure 2.20: Energetic decomposition for the known native 4m58A and models
predicted by DeepCNF. 4m58A is Nickel/cobalt transporter CbiM that has 227 residues
and 7 transmembrane helices. The best model predicted by AUC-maximized DeepCNF has
TM-score 0.529 and Cα-RMSD 6.62. The Pearson correlation coefficient between the RMSD
and the insertion energy is 0.810. Copyright from Biophysical Journal.
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Figure 2.21: Energetic decomposition for the known native 4mbsA and models
predicted by DeepCNF. 4mbsA is C-C chemokine receptor type 5 that has 346 residues
and transmembrane helices. The best model predicted by AUC-maximized DeepCNF has
TM-score 0.435 and Cα-RMSD 12.18. The Pearson correlation coefficient between the RMSD
and the insertion energy is 0.476. Copyright from Biophysical Journal.
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Figure 2.22: Energetic decomposition for the known native 4njnA and models pre-
dicted by DeepCNF. 4njnA is Protease GlpG that has 182 residues and 6 transmembrane
helices. The best model predicted by AUC-maximized DeepCNF has TM-score 0.579 and
Cα-RMSD 7.38. The Pearson correlation coefficient between the RMSD and the insertion
energy is 0.685. Copyright from Biophysical Journal.
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Figure 2.23: Energetic decomposition for the known native 4od4A and models
predicted by DeepCNF. 4od4A is 4-hydroxybenzoate octaprenyltransferase that has 275
residues and 9 transmembrane helices. The best model predicted by AUC-maximized Deep-
CNF has TM-score 0.748 and Cα-RMSD 3.83. The Pearson correlation coefficient between
the RMSD and the insertion energy is 0.888. Copyright from Biophysical Journal.
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Figure 2.24: Energetic decomposition for the known native 4pgrA and models
predicted by DeepCNF. 4pgrA is Protein YetJ in the closed conformation that has 207
residues and 7 transmembrane helices. The best model predicted by AUC-maximized Deep-
CNF has TM-score 0.552 and Cα-RMSD 8.30. The Pearson correlation coefficient between
the RMSD and the insertion energy is 0.474. Copyright from Biophysical Journal.
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Figure 2.25: Energetic decomposition for the known native 5awzA and models
predicted by DeepCNF. 5awzA is Rhodopsin I that has 235 residues and 7 transmembrane
helices. The best model predicted by AUC-maximized DeepCNF has TM-score 0.723 and
Cα-RMSD 4.63. The Pearson correlation coefficient between the RMSD and the insertion
energy is 0.943. Copyright from Biophysical Journal.

43



Figure 2.26: Energetic decomposition for the known native 5d0yA and models
predicted by DeepCNF. 5d0yA is ECF transporter that has 155 residues and 6 trans-
membrane helices. The best model predicted by AUC-maximized DeepCNF has TM-score
0.639 and Cα-RMSD 2.93. The Pearson correlation coefficient between the RMSD and the
insertion energy is 0.915. Copyright from Biophysical Journal.

44



2.7 Insertion into intrinsically curved membrane

2.7.1 Introduction

The calculation of protein-membrane interactions and the determination of the lowest energy

conformation of the combined bilayer-protein system is a very challenging task [101–103]. The

shape of the membrane affects the position and conformation of the embedded membrane

proteins [101, 102] and conversely, the membrane proteins can play a pivotal role in altering

membrane shape and local properties [102, 104]. Furthermore, membrane thickness can vary

around the protein as the lipids adjust to the hydrophobic pattern of the proteins surface

[27, 101, 102]. A complete solution to this problem requires considering all these factors,

which is beyond the scope of the present study.

Statistical potentials can provide an estimate of the differences in insertion energy into

bilayers of different thicknesses or geometries for a given protein conformation, or of the

insertion of proteins with different conformations into a bilayer of given thickness, or of a

combination of the two. Although these calculations do not include the energy required to

curve the membrane, change its thickness, or the proteins conformation, they can be used to

identify whether bilayer thickness or curvature can have a significant effect on the relative

insertion energies.

Applications to curved membranes introduce the added complexity of calculating the

effective depth of a residue. The depth is the shortest distance between the residue and a

middle hypersurface, halfway between the inner and outer surfaces (Fig. 2.2D). Because

we reference to the bilayer interface, determining the burial depth is trivial.

As an illustration of our ability to study curved membranes of variable thicknesses, we

examine the opening of the mechanosensitive channel MscL. This channel adopts open and

closed conformations depending on multiple factors, including the membrane composition

which affects thickness, curvature, line tension and lateral pressure [77, 105–107]. Experi-

ments find that a hydrophobic mismatch and a thinner membrane lowers the activation free

45



energy of MscL and promotes the open state. By itself, however, the mismatch is insuffi-

cient to open the channel because the open state has a larger cross-sectional area, which is

normally disfavored due to lateral membrane pressure by 19 RT [105]. However, an increase

in membrane curvature in a manner that reduces the pressure helps trigger the gating and

open the channel.

2.7.2 Mathematical models

For a curved membrane, the bilayer thickness and the embedded depth of residues can be

different from those in a planar bilayer. The bilayer thickness can be considered as the dis-

tance between the interfaces of two monolayers. Assuming a middle hypersurface in between

the two monolayers, the embedded depth is the normal distance of the residue to that middle

hypersurface, and the bilayer thickness is the distance between the two monolayers. Using

the basic knowledge from basic differential geometry, we can calculate the normal distance

to an arbitrary surface analytically for any point in the space [108].

Consider an isosurface in E3:

Sconst = {(x, y, z)|F (x, y, z) = const} 6= Ø (2.14)

∇F (P ) = (Fx, Fy, Fz)(P ) 6= ~0(∀P∈Sconst) (2.15)

→ Sconst is a surface.

Let (x(t), y(t), z(t)) be a curve on Sconst, we have:

F (x(t), y(t), z(t)) = const (2.16)

Fx·x′(t) + Fy·y′(t) + Fz·z′(t) =
〈
(Fx, Fy, Fz), (x

′(t), y′(t), z′(t))
〉

(2.17)

Therefore, ∇F is Sconst’s normal vector and TP0(x0,y0,z0)S is the tangent plane of S that
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passes P0 on S (Eq. 2.18).

TP0(x0,y0,z0)S : Fx(P0)·(x− x0) + Fy(P0)·(y − y0) + Fz(P0)·(z − z0) = 0 (2.18)

Consider the middle hypersurface is an isosurface in E3 (Eq. 2.19), and there are N

residues, P0 v PN−1, in the system, the problem can be phrased as ∀i ∈ {0, 1, . . . , N − 1},

find Qi ∈ S0 such that
−−→
QiPi ⊥ TQiS0, where TQiS0 is the tangent plane of S0 that passes

Qi. From Eq. 2.14 to Eq. 2.18, Qi can be solved from Eq. 2.20.

S0 = {(x, y, z)|F (x, y, z) = 0} (2.19)

 F (Qi) = 0

∇F (Qi) ‖
−−→
QiPi

,∀i ∈ {0, 1, . . . , N − 1} (2.20)

We calculated the insertion energy of MscL into the following shapes of bilayers. Here,

r =
√
x2 + y2; t is the bilayer thickness at (x, y) = (0, 0); R is the radius of the sphere.

Concentric circular sphere, fig. 2.27

Outer sphere, r2 +

[
z +

(
R +

t

2

)]2
= (R + t)2 (2.21)

Inner sphere, r2 +

[
z +

(
R +

t

2

)]2
= R2 (2.22)

Middle hypersurface, r2 +

[
z +

(
R +

t

2

)]2
=

(
R +

t

2

)2

(2.23)

Embedment depth =

∥∥∥∥(r0, z0)−
(

0,−
(
R +

t

2

))∥∥∥∥− (R +
t

2

)
=

∥∥∥∥(r0, z0 +R +
t

2
)

∥∥∥∥− (R +
t

2

) (2.24)

Bilayer thickness = t (2.25)
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Symmetric convex sphere, fig. 2.28

Outer sphere, r2 +

[
z +

(
R− t

2

)]2
= R2, z +

(
R− t

2

)
≥ 0 (2.26)

Inner sphere, r2 +

[
z −

(
R− t

2

)]2
= R2, z −

(
R− t

2

)
≤ 0 (2.27)

Middle hypersurface, z = 0 (2.28)

Embedment depth = z (2.29)

Bilayer thickness = 2 ·
∣∣∣∣√R2 − r2 −

(
R− t

2

)∣∣∣∣ (2.30)

Symmetric concave sphere, fig. 2.29

Outer sphere, r2 +

[
z −

(
R +

t

2

)]2
= R2, z −

(
R +

t

2

)
≤ 0 (2.31)

Inner sphere, r2 +

[
z +

(
R +

t

2

)]2
= R2, z +

(
R +

t

2

)
≥ 0 (2.32)

Middle hypersurface, z = 0 (2.33)

Embedment depth = z (2.34)

Bilayer thickness = 2 ·
∣∣∣∣−√R2 − r2 +

(
R +

t

2

)∣∣∣∣ (2.35)

Concentric cylindrical sphere, fig. 2.30

Outer sphere, y2 +

[
z +

(
R +

t

2

)]2
= (R + t)2 (2.36)

Inner sphere, y2 +

[
z +

(
R +

t

2

)]2
= R2 (2.37)

Middle hypersurface, y2 +

[
z +

(
R +

t

2

)]2
=

(
R +

t

2

)2

(2.38)

48



Embedment depth =

∥∥∥∥(y0, z0)−
(

0,−
(
R +

t

2

))∥∥∥∥− (R +
t

2

)
=

∥∥∥∥(y0, z0 +R +
t

2
)

∥∥∥∥− (R +
t

2

) (2.39)

Bilayer thickness = t (2.40)

External convex sphere + internal plane, fig. 2.31

Outer sphere, r2 +

[
z +

(
R− t

2

)]2
= R2, z +

(
R− t

2

)
≥ 0 (2.41)

Inner sphere, z = − t
2

(2.42)

Middle hypersurface, r2 + (2z +R)2 = R2 (2.43)

Embedment depth = sign
(−→
QP
)
· dist, dist = argmin

(∥∥∥−→QP∥∥∥) ,∃Q ∈ S (2.44)

Bilayer thickness =

(√
R2 − r2 −R +

t

2

)
+
t

2
=
√
R2 − r2 −R + t (2.45)

External concave sphere + internal plane

Outer sphere, r2 +

[
z −

(
R +

t

2

)]2
= R2, z −

(
R +

t

2

)
≤ 0 (2.46)

Inner sphere, z = − t
2

(2.47)

Middle hypersurface, r2 + (2z −R)2 = R2 (2.48)

Embedment depth = sign
(−→
QP
)
· dist, dist = argmin

(∥∥∥−→QP∥∥∥) ,∃Q ∈ S (2.49)

Bilayer thickness =

(
−
√
R2 − r2 +R +

t

2

)
+
t

2
= −

√
R2 − r2 +R + t (2.50)
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2.7.3 Results

We have calculated the difference in energies for insertion of the closed and open states of

MscL for several different classes of curved membranes and varying radii (Fig. 2.27, 2.28,

2.29, 2.30, 2.31). The thickness of a planar bilayer with the lowest insertion energy is ∼28

Å for the closed state but is below 22 Å for the open state (the lower limit of our thickness

calculation). However, the insertion energy for the closed state always is lower (preferred)

than the insertion energy for the open state at all thicknesses (e.g., E
open
insert > Eclosedinsert at

22 Å thickness). A membrane thickness of 22 Å provides the best option for stabilizing the

open state relative to the closed state and minimizes the penalty for hydrophobic mismatch

in adopting the open state (Fig. 2.27G). This finding supports the experimental proposal

that hydrophobic mismatch (e.g., by altering the lipid composition to change the bilayer

thickness) and an increase in curvature combine to promote conformational transitions to the

open state of the channel (the curvature also helps reduce line tension, which also promotes

the open state [77]).
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Figure 2.27: Insertion of MscL into flat or spherical membranes. The insertion energy
is calculated at different bilayer thicknesses and curvatures. The thickness refers to the
distance between the cytoplasmic and periplasmic interfaces at (x, y) = (0, 0). (A, D)
Illustration of the insertion of the open state and closed state. The curvature of the bilayer
is exaggerated for illustration purposes. (B, E) Insertion energy profile as a function of
bilayer thickness and radius. (C, F) Insertion energy profile as a function of sphere radius
at different bilayer thicknesses. (G) Difference of insertion energies between the closed and
the open states indicates that thicker bilayers are more likely to trap the protein in the closed
state. Note the cost of altering the membrane curvature is not included in the calculation
but must be accounted for when determining the total energy of the protein/bilayer system.
Copyright from Biophysical Journal.
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Figure 2.28: Insertion into curved membranes in the shape of convex sphere.
When embedded in convex bilayers, the insertion energy is lower for open state in thinner
bilayers with minimal curvature, which resemble a planar bilayer, as well as by thick bilayers
with high curvature (B-C). From another perspective, thick bilayers must be bent in
order to reduce the bilayer thickness at the edge of the protein to better accommodate the
hydrophobic mismatch. On the other hand, thin bilayers already hydrophobically match the
hydrophobic surface of the protein, and bending is counterproductive. Similar to the open
state in bilayers with a convex shape, the closed state can be stabilized by a thin bilayer
with small curvature and thick bilayers with high curvature, though the stabilizing effect
of the thick curved bilayers is less pronounced with the closed state (E-F). For the closed
state, the lowest insertion energy is similar with a medium thick bilayer (∼32 Å) having a
small curvature and a thick bilayer (∼38 Å) having high curvature (F). Thus, the closed
state is stabilized relative to the open state for a medium thick flat bilayer or a thick bilayer
with a convex shape and high curvature (G).

When considering the equilibrium between the open and closed states, we find that thin
convex bilayers reduce the insertion energy of the open state relative to the closed state with
an increasing curvature enhances this stabilization of the open state (G).
Copyright from Biophysical Journal.
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Figure 2.29: Insertion into curved membranes in the shape of concave sphere.
The difference of the insertion energy profiles implies that it is energetically unfavorable to
open the channel in the bilayer of concave shape compared to the convex shape. Because
higher curvature results in thickened bilayer at the edge of the protein for the membrane
bilayer in a concave shape, the open state tends to be stabilized at decreasing curvature.
When embedded in concave bilayers, optimal curvatures exist in thin bilayers for the closed
state but the minimum is a flat bilayer for the open state. The minimum insertion energy
obtained for thin bilayer (∼22 Å) with high curvature is lower than the energy obtained at
a flat bilayer. Copyright from Biophysical Journal.
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Figure 2.30: Insertion into curved membranes in the concentric cylindrical shape.
Similar to the concentric circular shape, insertions into curved membranes in a concentric
cylindrical shape are universally unfavorable than flat membranes for the open and closed
states. Copyright from Biophysical Journal.
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Figure 2.31: Insertion into curved membranes in the shape of external convex
sphere and internal plane. Calculations of asymmetric bilayers were also carried out.
The stabilizing or destabilizing effect is not as pronounced as that of a symmetric bilayer
due to the curvature of membrane on only one side. Copyright from Biophysical Journal.
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2.8 Integration with Upside

2.8.1 Implementation

The environment coverage and H-bond are evalutated for each residue.

Cβ positions are used to compute the side chain energy for 20 normal type of amino acids.

A sigmoid function of the environment coverage, defined by a midpoint and sharpness, is used

to modulate the Cβ energy. Fully-exposed residues have full side chain energies. Positions of

backbone H-bond donors and acceptors are used to compute the UHB terms. The H-bond

is given by a probabilty inferred by Upside. Therefore, the UHB energy is computed by

multiplying with one minus that probability.

The membrane burial potential is implemented in the MembranePotential class in Upside.

2.8.2 Dynamic orientaions

To illustrate the integration of UChiMemPot with the Upside algorithm, we have run MD

simulations for a variety of multimeric helical transmembrane proteins as well as for their

monomeric units using the UChiMemPot and the asymmetric Ez-3D method applied only to

the lipid-exposed residues. Energies for the contributions from unsatisfied hydrogen bonds

(UHB) are assigned to all residues with an unpaired backbone H-bond partner, regardless of

the exposure status for residues located within the bilayer. Proteins are restrained as quasi-

rigid bodies such that only minimal internal movements are allowed (short strong springs

placed between backbone atoms allow atomic vibrations).

The simulations begin from the OPM position and bilayer thickness, and the distribu-

tion of conformations in the trajectory is analyzed (Fig. 2.32). Regardless of the applied

potential, the proteins, on average, execute small deviations from the orientation of the na-

tive state (the standard deviation of the relative shift and tilt on average are ∼1 Å and

∼2◦, respectively, for the multimers). When UHB energies are incorporated, UChiMemPot

produces a tighter angular distribution than asymmetric Ez-3D.
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Figure 2.32: Comparison of the distributions of the shift and tilt from Upside
simulations for multimers and monomers for 3 potentials. Averaged distributions
of relative shift and tilt from the initial orientation for 23 multimers / monomers with
different membrane potential applied. The three potentials applied are: Asymmetric Ez-3D
Cβ potential (denoted as Asym Ez-3D), our potential without UHB terms (UChiMemPot
w/o UHB), and our potential with UHB terms (UChiMemPot with UHB). The x-axis stands
for the deviation of shift and the y-axis the deviation of tilt from the native z-axis. Copyright
from Biophysical Journal.
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We have investigated the effects of oligomerization on the position within the membrane.

Specifically, we compared the positions of the constituent monomers in the complex to the

position they would have if they were isolated (but with the same protein conformation).

For most complexes, we find the isolated monomers retain a very native-like orientation in

the membrane, both for depth and tilt. This observation suggests that docking of properly

positioned monomers is a viable assembly strategy (Fig. 2.33).

However, monomers from some ion channels experience larger movements due to the ex-

posure of charged and polar residues normally solvated and lining the channel cavity. These

channels include the potassium channel KcsA (tetramer, 1r3j), formate transporter FocA

(pentamer, 3kcu), calcium-gated potassium channel MthK (tetramer, 3ldc), NaK potassium

channel (tetramer, 3ouf), sodium pumping rhodopsin NaR (dimer, 3x3b), and nitrite trans-

porter NirC (tetramer, 4fc4). This implies that the assembly of these helical transmembrane

proteins may involve a partial induced-fit mechanism. We are unaware of experimental stud-

ies of isolated subunits, so these results should be considered testable predictions.
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Figure 2.33: Distributions of relative shift and tilt from Upside simulations for
multimers and monomers. For each of the oligomers, the contour maps of the distribution
of the relative shift and tilt of the multimer (blue) and monomer (red) are plotted. The 1D
projections of the tilt angles are plotted to the right of each plot on a scale normalized from
0 to 1. Proteins shown in VMD’s New Cartoon representation are obtained from the website
of OPM. Monomeric units have different colors. Multimeric complexes in general have small
movements in the simulation, retaining their native orientations, as opposed to some of the
monomeric units. In the 2D projection of the residue burial of Cα atoms on the XY-plane
(top), some residues in or near the cavity in the tetramer become exposed to lipid in the
monomer (green circle becomes a red circle). The 3D structure illustrates that the tilt angle
of the monomer and multimer can be different. Copyright from Biophysical Journal.
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2.9 Discussions

We advance a new statistical potential for the burial into membranes of amino acids and

hydrogen bond donors and acceptors that incorporates several new features. First, posi-

tions within bilayer are referenced to the lipid head group interface, which more accurately

integrates data from systems with variable bilayer thicknesses (Figs. 2.2A, 2.11). This ref-

erencing is important since helical transmembrane proteins come from different species and

organelle locations, and the thicknesses vary widely (e.g., from 26 to 38 Å for the 9 organelle

locations in 74 species for the 140 helical transmembrane proteins in the training set). Never-

theless, the use of a thickness of 30 Å suffices as a reasonable compromise for most purposes

(Fig. 2.3A). Our ability to employ bilayers with a range of different thicknesses also permits

calculating the membrane thickness and curvature that provides the lowest insertion energy.

Second, our statistical potential excludes contributions from the residues buried within

the protein, in contrast to most previous methods that retain all residues located within

the bilayer region [65, 66, 68–71]. A very recently published method [72] takes advantage

of a recent automated method implemented in Rosetta, mp lipid acc [109], to distinguish

lipid-accessible and lipid-inaccessible residues in the derivation of the potential for helical

transmembrane proteins and β-barrels. Unlike our procedure, a potential profile for lipid-

inaccessible residues is considered as part of the total insertion energy.

Third, we take into consideration the presence of unpaired backbone H-bonding groups.

The free energy of transferring a peptide group containing an amide proton and carbonyl

oxygen from water to liquid alkane is estimated to be 13 RT [31, 38, 110]. This magnitude

is considerably larger than our statistical potentials value of ∼4 RT. Support for the lower

cost is the consistent with our values for the transfer of Gln, Arg, and Asn side chains

from solvent to inside the bilayer, 2.0, 2.0 and 1.0 RT, respectively, or 3.5, 3.5 and 2.5 RT

higher than the value for transferring an alanine. Fleming and coworkers obtained similar

values for the change in folding free energy at the center of the bilayer for a β-barrel upon

substitution of a Gln, Arg or Asn with an alanine, 2.4, 3.6, or 2.3 RT, respectively [111,
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112]. The smaller energies in the statistical potential and experiment for burying an amide

side chain, compared to transfer studies, suggests that other factors stabilize the burial of

peptide groups in membrane proteins. These factors could include residual solvent in the

bilayer and interactions with nearby backbone and other side chain atoms, resulting in only

partial exposure to the lipids [113]. As a result of carefully treating the bilayer boundary

position, lipid exposure and inclusion of hydrogen bonding, our statistical potential is able

to accurately reproduce the optimal thickness and position determined recently by the OPM

implicit bilayer method [59, 76].

None of the current statistical potentials have been employed in MD simulations to the

best of our knowledge. Likewise, all coarse-grained models employing implicit lipids typically

over count protein-lipid and protein-protein interactions. This is partly due to the difficulty

of determining the burial status of residues during simulation with implicit solvent methods.

For example, the AWSEM-membrane model (a learned potential) can fold some helical

transmembrane proteins at modest resolution [25], although a residue embedded in the lipid

bilayer always retains the membrane burial potential irrespective of its exposure to lipids.

2.9.1 Use of statistical potentials and other limitations of the approach

Although widely used, the interpretation of a statistical potential obtained using the Boltz-

mann relationship has been debated [70, 114, 115]. Some believe that the use of statistical

potentials implies the presumption that the observed distributions reflect the average of indi-

vidual free energies for each element. However, context along with structural and functional

requirements also can contribute to the preference for a location, thereby reducing the va-

lidity of the connection between energy and frequency of each component. Generally, the

relationship between statistical potentials and basic statistical mechanics can be uncertain

[115–117]. Some statistical potentials have been derived using only probability theory, but

the defining relations are generally the same [118–121].

Statistical potentials typically neglect explicitly non-additive many-body interactions
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both to greatly facilitate practical computations and because of a gross paucity of train-

ing data [115, 118]. Studies using continuum/implicit membrane models [103] as well as

atomistic work [122, 123] have found that non-pairwise terms are important for multiple

charged or polar residues in the membrane. For example, the translocation of Arg through

the hydrocarbon core of a lipid bilayer proceeds by the formation of a water-filled defect that

keeps the Arg hydrated even at the center of the bilayer. In this case, adding additional Arg

residues to the water defect causes only a small change in free energy [122, 123].

Errors associated with neglecting many-body interactions in statistical potentials can be

minimized by using conditional probabilities. In membrane burial potentials, lipid exposure

and burial depth implicitly include the impact of some many-body effects while retaining the

benefits of additivity. In the end, the utility of a statistical burial potential for membrane

proteins should be judged by its the correlation with experimental hydrophobicity scales [68]

and success in a number of applications [65, 68–71].

Our method contains some issues. First, we deliberately include the exposed polar or

charged residues in the pores or cavities, so as to be compatible with the implementation of

the statistical potential in our MD simulations. This deficiency arises because the identifi-

cation of whether a residue is lipid exposed is not a readily solvable problem (Fig. 2.34).

A proper evaluation requires the complete knowledge of the entire structure to determine

whether a residue is in contact with lipids or lines an internal cavity or channel. Consequently,

results for systems with charged or polar residues in solvated pores are compromised in this

regard. Generally, however, there are few solvent-exposed polar or charged residues in pores

in the training set so their exclusion would have minimal effect on the derivation of our

potential. For simulation purposes, this problem can be resolved when the solvated residues

are known a priori, as the Upside code has the option of excluding their burial energies.

Our model is not suitable for studies that require atomic details of the lipid bilayer, such

as the composition of lipids or dynamic changes in the membrane curvature. As discussed

above, we are limited to considering insertion energies that are evaluated assuming a specific
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membrane curvature or protein conformation and ignoring the energy required to alter the

membranes geometry or the proteins conformation. A full treatment should include both the

energy of deforming a membrane and perturbing the protein structure [102]. A good example

of this inclusion is in work by Panahi and Feig who have developed an implicit membrane

model allowing for local bilayer deformation in response to the insertion of transmembrane

proteins and have employed the potential in MD simulations [27].

Figure 2.34: Top view of ATP synthase (PDB id: 3v3c) and a model lacking one
of the chains. The native version has a aqueous pore whereas the defect allows for the
entry of lipids. We do not exclude the exposed polar or charged residues in the pores or
cavities on purpose so as to be compatible with employing the statistical potential in our
MD simulations. Furthermore, determining whether a residue is lipid exposed is not a readily
solvable problem with an implicit membrane. As shown in the figure below, one must know
the entire structure to know whether a channel contains lipids. Currently, we do not know
how to incorporate this complexity into a fast MD algorithm. In the end, since there are few
exposed polar or charged residues in pores in the training set, their exclusion doesnt make
much difference.
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2.10 Conclusions

We provide an updated statistical potential for the burial of proteins in membranes. Our

potential is referenced to the interface region, rather than the bilayer center, to better cap-

ture the physiochemical properties of this region. In addition, we include a penalty for the

presence unsatisfied hydrogen bond donor and accepters, finding that the penalty for each

is about 2 RT, which is lower than many prior estimates. We address challenges inherent

in devising implicit bilayer models of properly accounting for the exchange of protein-lipid

interactions for protein-protein interactions upon protein contact. Our model cannot yet fold

membrane proteins from an extended solvated chain, especially for those requiring insertion

by the translocation (very hydrophobic proteins tend to form collapsed globules in solution).

Nonetheless, when our membrane burial potential is integrated with our Upside algorithm,

the combination offers a computationally efficient, flexible tool that lays the groundwork for

a variety of simulations of membrane protein dynamics.

A web server is available to insert helical transmembrane protein models into membranes

and run Upside simulations of the inserted model as rigid body to generate an ensemble of

orientations: http://sosnick.uchicago.edu/serverlinks.html.
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CHAPTER 3

FAST SIMULATIONS AND THE INTERPRETATION OF

UNFOLDING MEASUREMENTS OF MEMBRANE PROTEINS

UNDER FORCE

This material presented in this chapter has appeared in [124].

We simulate 100’s of unfolding events using our new Upside MD algorithm. For bac-

teriorhodopsin, the major experimental features are reproduced down to the level of the

back-and-forth unfolding of single helical turns. When pulling laterally on GlpG, a variety

of pathways are seen with multiple unfolding steps starting from either terminus. The mode

of application of force alters the perception of the folding landscape. For GlpG unfolding

using a weaker spring to mimic a magnetic tweezers measurement, the force remains nearly

constant after the initial unfolding event and few if any intermediates are observed, as found

in experiment. In contrast when using a stiff cantilever, the force drops to near-zero after

each major unfolding event and numerous intermediates are observed. Hence, the mode of

application of force strongly affects the observed unfolding cooperativity and identification

of intermediates, important issues that should be considered when designing experiments

and interpreting unfolding data.

3.1 Introduction

Single-molecule force spectroscopy (SMFS) is a powerful tool to investigate the dynamics

of biomolecules. Among the ever-expanding repertoire of single-molecule manipulation tech-

niques, atomic force microscope (AFM), optical tweezers (OT), and magnetic tweezers (MT)

are the most common [125]. They have been proven beneficial in detecting sparsely popu-

lated intermediates and elucidating unfolding pathways of soluble [126–128] and membrane

proteins [43, 129–131], including bacteriorhodopsin and GlpG.

Bacteriorhodopsin (bR), a light-driven proton pump with seven transmembrane (TM)
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helices, is a paradigm for membrane proteins, which forced unfolding has been extensively

studied by both experiments [43, 129, 132–135] and MD [47, 136]. GlpG, a rhomboid in-

tramembrane protease from E. coli, comprises six TM helices and cleaves a specific peptide

bond near the membrane. Because of its functional importance and detailed structural infor-

mation available in the Protein Data Bank (PDB), GlpG has come forth as essential model

for studying the folding and stability of helical transmembrane proteins by chemical biology

[34, 137, 138], magnetic tweezers [130], and MD simulations [139, 140].

Simulations have aided the experimental SMFS studies by revealing the complexity of the

unfolding and refolding processes [47, 136, 141–143]. Despite increased computing capacity,

simulating the forced unfolding of macromolecules with all-atom methods remains difficult

[136]. Coarse-grained (CG) models enable more extensive sampling and allow for slower,

more realistic pulling velocities and lower forces [47], both better matching the experimental

studies and increasing the likelihood of observing transient intermediates.

A major challenge in coarse-graining is to find the right balance between accelerating

the simulations and retaining the critical features of the system. We have addressed this

challenge with our new Upside model, which is capable of de novo folding of proteins shorter

than 100 residues in cpu-hours [78, 79]. To this physics-based model which has six atoms per

residue and realistic Ramachandran maps, we have incorporated our new knowledge-based

membrane burial potential that dynamically calculates the degree of side chain exposure

to lipids during the simulations (i.e., we correct for the loss of lipid-protein interactions as

helices come together) [48]. The membrane potential also includes energies for unsatisfied

H-bond donors and acceptors in the membrane. By allowing for these unsatisfied H-bonding

groups, helices fold and unfold within the bilayer in an energetically plausible manner during

the unfolding simulations.

We perform 100’s of forced unfolding simulations of bR and GlpG, first to test our ability

to reproduce the experimental data and then to investigate the effects of pulling under various

protocols, including different cantilever (spring) stiffness, and operating in constant velocity
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Figure 3.1: Idealized forced unfolding results for bR and GlpG highlighting how
different pulling protocols influence the observation of intermediates. The red
virtual springs apply force by moving perpendicular or parallel to the bilayer surface at
a constant velocity. Panel a, b. A drop in force, δF, occurs with a stiff spring when the
unfolded chain length increases by δl increasing the probability that an intermediate will
be observed. Panel c. When the transmission of force is applied with a very soft spring,
force is maintained as δForce = - δl·kcantilever ∼ 0, effectively resulting in a force clamp.
The timeline of secondary structures (TSS) depicts the change of secondary structure of all
residues versus time. GlpG’s two small interfacial helices are not shown.

or force mode (Fig. 3.1). For bR, our simulations largely match experimental AFM data, for

example, observing many of the same intermediates [43]. For GlpG, we conduct a principle

component analysis [144] that identifies that unfolding can occur from either terminus or the

middle of the protein. This observation is in apparent disagreement with the experimental

observation where only the C- to N-terminal route was identified [130]. We propose that

this experiment did not observe the other routes because of the experimental protocol. We

conclude with an analysis of how different SMFS modes explore different parts of the energy

surface and how this property can influence the interpretation of the folding behavior.
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3.2 Implementation

Upside is a non-Gõ, physics-based model with five atoms per residue (N, Cα, C, H, O), a

side chain bead and with residue- and neighbor-dependent Ramachandran maps [145]. The

energy function includes H-bonds, side chain-side chain and side chain-backbone interac-

tions (including helix capping), and a solvation term. The energy function is trained using

contrastive divergence. The side chains are represented by multi-position, amino acid- and

directional-dependent beads. Their positional probabilities are given by the probability dis-

tribution having the lowest global free energy for all side chains (minimize G = E - TS). The

use of an instantly equilibrated probability distribution calculated at every MD step is novel

and greatly smooths the energy surface and enables Upside simulations to be extremely fast.

Force is applied to the chosen Cα, based on the virtual cantilevers spring constant (κ)

and position, which may be moved with at pulling velocity v. The applied force is computed

by κ·(tip position - Cα position).

An initial time is needed in the input. A time step counter is set in the function in order

to record the integration times and thus to compute the position of the tip and the applied

force. The tip position is computed by initial tip position + v · time, where the time is given

by initial time + Upside time step · counter. All heavy atoms in Upside have a mass of 1.

The AFM function is implemented in the AFMPotential class in Upside (in bond.cpp).

The tension function used in the force clamp simulation is implemented in the TensionPo-

tential class in bond.cpp. Its implementation is simpler because there is no need to estimate

the time and store the tip position and residue position.
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3.3 Usage

In addition to the standard configuration for running Upside folding simulation of small

soluble proteins [78, 79], we implement our membrane burial potential, which dynamically

accounts for the degree of side chain exposure to lipids [48] and pulling function in the

simulations.

3.3.1 Configurations of gradual pulling simulations

(1) Prepare the initial protein structure in a pickle file format as the input.

python PDB_to_initial_structure.py \

pdbname.pdb pdbname \

--allow-unexpected-chain-breaks \

--record-chain-breaks \

--disable-recentering

(2) Prepare the H5 file for the simulation, which includes all the simulation parameters.

python upside_config.py \

--output pdbname.h5 \

--fasta pdbname.fasta \

--initial-structure pdbname.initial.pkl \

--hbond-energy $(cat UPSIDE_param_dir/ff_1/hbond) \

--dynamic-rotamer-1body \

--rotamer-placement UPSIDE_param_dir /ff_1/sidechain.h5 \

--rotamer-interaction UPSIDE_param_dir ff_1/sidechain.h5 \

--environment UPSIDE_param_dir/ff_1/environment.h5 \

--rama-sheet-mixing-energy $(cat UPSIDE_param_dir/ff_1/sheet) \

--rama-library UPSIDE_param_dir/common/rama.dat \

--reference-state-rama UPSIDE_param_dir/common/rama_reference.pkl \
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--membrane-thickness membrane_thickness \

--membrane-potential membrane_potential_fpath \

--ask-before-using-AFM AFM_fpath \

--AFM-time-initial 0

AFM fpath is the path to the file that defines the pulling residue, tip position, spring

constant and pulling velocity. One or more residues can be pulled. In Upside, the unit of the

energy is kBT: 1 kBT ≈ 4.114 pN·nm at T = 1.0 (≈ 298 K). The unit of the spring constant

is kBT/Å2: 1 kBT/Å2 ≈ 41.14 pN/Å. 1 Upside time step ≈ 0.1 ns, so the pulling velocity

0.001 Å/Upside time step ≈ 106 nm/s, the same as the extraction velocity in the CG-MD

simulations [47].

(3) Run Upside.

upside pdbname.h5 \

--seed random_seed \

--temperature temperature \

--frame-interval frame_intvl \

--duration duration \

--disable-recentering

3.3.2 Configurations of force clamp simulations

The only difference with the configuration above is in the preparation of the H5 file. A

tension file is supplied to Upside instead of an AFM file, which defines the pulling residue

and pulling force. One or more residues can be pulled.

python upside_config.py \

--output pdbname.h5 \

--fasta pdbname.fasta \

--initial-structure pdbname.initial.pkl \
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--hbond-energy $(cat UPSIDE_param_dir/ff_1/hbond) \

--dynamic-rotamer-1body \

--rotamer-placement UPSIDE_param_dir /ff_1/sidechain.h5 \

--rotamer-interaction UPSIDE_param_dir ff_1/sidechain.h5 \

--environment UPSIDE_param_dir/ff_1/environment.h5 \

--rama-sheet-mixing-energy $(cat UPSIDE_param_dir/ff_1/sheet) \

--rama-library UPSIDE_param_dir/common/rama.dat \

--reference-state-rama UPSIDE_param_dir/common/rama_reference.pkl \

--membrane-thickness membrane_thickness \

--membrane-potential membrane_potential_fpath \

--tension tension_fpath
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3.4 Validating correct physics

3.4.1 Worm-like chain model and the analytical solution of contour length

Protein and DNA behavior under force is usually described by the worm-like chain (WLC)

model and its variants for polymer elasticity [130, 146, 147]. According to the WLC model

[146], the force (F) and the extension (x) of the unfolded protein has the following relation,

where kB is the Boltzmann constant, T is the temperature, Lp = 0.4 nm is the persistent

length of unfolded polypeptide (which corresponds to chain spatial memory), and Lc is the

contour length (total length) of the unfolded polypeptide.

F =
kBT

Lp

[
1

4

(
1− x

Lc

)−2
+

x

Lc
− 1

4

]
(3.1)

Let α = kBT
Lp

, λ = 1− x
Lc

, ω = 4F
α − 3 substitute them into Eq. 1, we have

4λ3 + ωλ2 − 1 = 0 (3.2)

.

According to Cardanos method [148], any cubic equation can be solved analytically.

ax3 + bx2 + cx+ d = 0(a 6= 0, a, b, c, d ∈ R)

Let x = y − b
3a ⇒ y3 +

(
− b2

3a2
+ c
a

)
y +

(
2b3

27a3
− bc

3a2
+ d
a

)
= 0

Let

 P = − b2

3a2
+ c
a

Q = 2b3

27a3
− bc

3a2
+ d
a

⇒ y3 + Py +Q = 0.

Let ∆ =
(
P
3

)3
+
(
Q
2

)2
and

 S =
(
−Q2 +

√
∆
)1

3

T =
(
−Q2 −

√
∆
)1

3
,

we have three roots:


y1 = S + T

y2 = βS + β2T

y3 = β2S + βT

,

where β = −1+i
√
3

2 and β2 = −1−i
√
3

2 are the two complex cubic roots of -1.
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Here, ∆ is the discriminant of the cubic equation.

If ∆ > 0, there is only one real root y1 and two complex roots y2 and y3.

If ∆ = 0, if P = Q = 0 all three roots are equal to 0, otherwise there are three real roots

and two of them are equal.

If ∆ > 0, there are three unequal real roots with the following relation:
x1 + x2 + x3 = − ba
1/x1 + 1/x2 + 1/x3 = − cd
x1 · x2 · x3 = −da

, where xi = yi − b
3a , i = 1, 2, 3.

Now, back to Eq. 3.2, let

λ = y − ω

12
(3.3)

, we have

y3 +
−ω2

48
y +

(
ω3

27 · 32
− 1

4

)
= 0 (3.4)

and

∆ =

(
−ω2

48 · 3

)3

+

(
ω3

27 · 64
− 1

8

)2

=
1

64

(
1− ω3

27 · 4

)
(3.5)

In a normal SMFS experiment of unfolding bR, the force F is between 0 and 500 pN. At

T = 298 K, kBT = 4.114 pN · nm. Only when F < 19.96 pN is ∆ > 0; otherwise ∆ ≤ 0.

Therefore, Eq. 3.2 has only one real root mostly (F ≥ 20 pN, ∆ > 0), which is the solution

to our problem. When ∆ < 0, we have


λ1 + λ2 + λ3 = −ω4 < 0

1/λ1 + 1/λ2 + 1/λ3 = 0

λ1 · λ2 · λ3 = 1
4 > 0

(3.6)

Assuming λ1 ≤ λ2 ≤ λ3, we have λ1 < λ2 < 0 < λ3 and λ3 is the root we want.

In summary, Lc can be solved analytically given force and extension.
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3.4.2 Calibration of virtual cantilever using thermal fluctuations.

Knowledge of the interaction forces between surfaces gained through AFM is crucial in a

variety of applications and necessitates a precise knowledge of the cantilever spring constant.

Thermal fluctuation measurement is a good way to validate the cantilever spring constant

in experiment [149].

To test whether our spring constant, κ, functions as intended, we compared the observed

thermal fluctuations of the cantilever to those expected from the equipartition theorem,

〈z2〉 = kbT/κ [149]. We used the first 3, 10, 20, 50 residues of bR and ran simulations with

the first residue attached to the virtual cantilever and the rest of the segment restrained as

a rigid body. In this case, we can measure the thermal fluctuation of the tip of the cantilever

via the fluctuation of the residue (Fig. 3.2a). The square root of the mean fluctuations has

a linear relation with the reverse of the square root of the spring constant (Fig. 3.2b) [149].

74



0.4

0.2

0

0.6

Pr
ob

ab
ili

ty20

0

-20

Z 
(Å

)

Peptide length: 3

0.4

0.2

0

0.6

Pr
ob

ab
ili

ty20

0

-20

Z 
(Å

)
Peptide length: 10

0.4

0.2

0

0.6

Pr
ob

ab
ili

ty20

0

-20

Z 
(Å

)

Peptide length: 20

0.4

0.2

0

0.6

Pr
ob

ab
ili

ty

Z (Å)

20

0

-20

Z 
(Å

)

0 100 200 -20 0 20
Upside time steps / 100

Peptide length: 50

a

1/ K� (Å/ kT� )

%&'
�

	(Å
)

b

Figure 3.2: Calibrating our virtual cantilever: Stiffness, thermal fluctuations, and
the equipartition theorem. a. Thermal fluctuations and their distributions. A 3-50 residue
segment of bR is attached to the tip of the cantilever and the fluctuations of the residue
attached at the end to the cantilever are measured (i.e., same location, but with varying mass
only). b. According to the equipartition theorem, the square root of the mean fluctuations
should be equal to the inverse of the square root of the spring constant. This is observed in
our simulations.
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3.4.3 Calibration of the contour length per amino acid in Upside

simulations

Earlier experimental [150] and simulation [142] studies found that Lc per amino acid may

be different. The discrepancy may affect the identification of the structural content of the

intermediate state.

We ran the simulation of the truncated bR molecules (which are in native orientations as

in the whole bR) (Table 3.4). The truncation points were chosen to match the experimental

intermediates [43]. For example, the truncated bR-A160 has 72 residues, from the C-terminus

to the residue before A160. This truncated version has residues 161-232 unfolded to match

the intermediates where residues 1-160 are folded while 161-232 are unfolded. We can obtain

the Lc of the unfolded segment between the C-terminus and A160 when this truncated bR

is fully extended under force.

For each of the truncated bR species, we fit the FEC with a WLC model Eq. 3.1 of the

end-to-end distance and the applied force using a fixed persistence length (Lp) of 0.40 nm

(Fig. 3.3a, b), to determine Lc values shown as a function of the number of residues (Fig.

3.3c and tables 3.1, 3.2).

We obtained a slope of 0.390 nm in agreement with the experimental estimate of 0.40±0.02

nm from experiment [150]. Note that the average distance between consecutive Cα is 0.38

nm from protein structures in the PDB [142]. This value of 0.390 nm is ∼ 7% larger than

0.364 nm, a value recently obtained by a high precision measurement [43]. Remarkably, for

the truncated bR molecules, our Lc values exhibit the same minor deviations from linearity

as those observed experimentally. The reproduction of these small deviations implies that

they are real. The only reasonable source of the variability is a sequence dependent for Lc,

consistent with experimental [150] and simulation [142] findings. Beyond providing support

for the accuracy of our simulations, the residue dependence should be a useful diagnostic in

identifying the sequence of the segment that is unfolded for a given Lc value (Fig. 3.3c).
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Table 3.1: Contour length (Lc) of bR intermediates.

Truncated
bR

Lc, simulation
(nm) (Fitted with

Lp = 0.4 nm)

Lc predicted
by Σsequence
Lp(AA) (nm)

Lc,
experiment

(nm)
Description

A160 (72) 28.4 27.1 26.9 Top of helix E
T157 (75) 29.2 28.4 6.0
F154 (78) 30.1 29.6 5.0
V151 (81) 30.9 30.6 5.0
I148 (84) 31.5 31.5 4.0
L146 (86) 32.0 32.2 5.0
A143 (89) 32.7 33.5 4.0
A139 (93) 33.7 35.0 6.0
V136 (96) 34.4 36.3 6.0
S132 (100) 35.2 37.6 4.0
V130 (102) 35.7 38.4 4.0 Bottom of helix E
K129 (103) 36.1 38.6 4.0
L127 (105) 37.5 39.4 4.0 Top of helix D
V124 (108) 39.2 40.7 4.0
I119 (113) 42.1 42.7 4.0
V101 (131) 52.0 50.0 4.0 Top of helix C
D96 (136) 53.2 51.8 4.0
P91 (141) 54.3 53.7 4.0
Y83 (149) 56.1 56.7 4.0 Bottom of helix C
P77 (155) 57.0 59.0 4.0
F71 (161) 59.0 61.7 4.0
G63 (169) 62.8 64.6 4.0 Top of helix B
F54 (178) 68.3 68.2 4.0
V29 (203) 80.1 77.8 4.0 Top of helix A
G16 (216) 83.2 82.8 4.0
P8 (224) 84.5 86.1 4.0 Bottom of helix A

The truncated bR is named after the structural position (i.e. residue index) of the inter-
mediate, as defined by the last folded residue. Numbers in parentheses indicate the number
of residues of the truncated bR molecules. For example, A160 has 72 residues, from residue
161 to residue 232, the C-terminus. The Lc of the truncated bR in its fully extended state
in simulation is in the 2nd colunm; the predicted Lc calculated by summing the Lp of each
type of amino acids over the sequence is in the 3rd column; and the Lc of unfolded segment
of the corresponding intermediate in experiment is in the 4th column.

77



Table 3.2: Inferred Lc values (in nm) associated with each residue in helices E to A of bR.

Helix E A160 K159 S158 T157 F156 G155 F154 F153 L152 V151
28.4 28.7 28.9 29.2 29.5 29.8 30.1 30.4 30.6 30.9
Y150 L149 I148 Y147 L146 M145 A144 A143 T142 S141
31.1 31.3 31.5 31.8 32.0 32.2 32.5 32.7 33.0 33.2
I140 A139 W138 W137 V136 F135 R134 Y133 S132 Y131
33.4 33.7 33.9 34.2 34.4 34.6 34.8 35.0 35.2 35.4

V130 K129 T128
35.7 36.1 36.8

Helix D L127 A126 G125 V124 L123 G122 T121 G120 I119 M118
37.5 38.1 38.6 39.2 39.8 40.4 40.9 41.5 42.1 42.6
I117 G116 D115 A114 G113 V112 L111 A110 L109 I108
43.2 43.8 44.3 44.8 45.4 46.0 46.5 47.0 47.6 48.2
T107 G106 Q105 D104 A103 D102
48.7 49.2 49.8 50.4 50.9 51.4

Helix C V101 L100 L99 A98 L97 D96 L95 L94 L93 L92
52.0 52.2 52.5 52.7 53.0 53.2 53.4 53.6 53.9 54.1
P91 T90 T89 F88 L87 W86 D85 A84 Y83 R82
54.3 54.5 54.8 55.0 55.2 55.4 55.6 55.9 56.1 56.2

Linker Y79 I78 P77 N76 Q75 E74 G73 G72 F71 P70
56.7 56.8 57.0 57.3 57.7 58.0 58.3 58.7 59.0 59.5
V69 M68 T67 L66 G65 Y64
60.0 60.4 60.9 61.4 61.8 62.3

Helix B G63 L62 L61 M60 S59 L58 Y57 M56 T55 F54
62.8 63.4 64.0 64.6 65.2 65.9 66.5 67.1 67.7 68.3
A53 I52 A51 P50 V49 L48 T47 T46 I45 A44
68.8 69.2 69.7 70.2 70.7 71.1 71.6 72.1 72.5 73.0
Y43 F42 K41 K40 A39 D38 P37
73.5 74.0 74.4 74.9 75.4 75.9 76.3

Linker D36 S35 V34 G33 M32 G31 K30
76.8 77.3 77.7 78.2 78.7 79.2 79.6

Helix A V29 L28 F27 Y26 L25 T24 G23 L22 G21 M20
80.1 80.3 80.6 80.8 81.1 81.3 81.5 81.8 82.0 82.2
L19 A18 T17 G16 L15 A14 L13 W12 I11 W10
82.5 82.7 83.0 83.2 83.4 83.5 83.7 83.8 84.0 84.2
E9 P8 R7 G6 T5 I4 Q3 A2 E1

84.3 84.5 84.9 85.3 85.7

Lc values obtained directly from the simulations of truncated bR are in red. The Lc value
is for the unfolded segment C-terminal to a residue. For example, the contour length for the
unfolded segment from the C-terminus to K159 (having residues 160 to 232) is 28.7 nm. The
last 4 residues (I4, Q3, A2, E1) are not in 1qhj.pdb.
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Figure 3.3: Calibration of contour length (Lc) per amino acid. a, b. WLC fitting of
the end-to-end distance (extension) and the force using a fixed Lp of 0.4 nm of truncated
bR species A160 and P8, respectively. WLC fitting (curve in red) was performed on the
data points in blue between the vertical black dashed lines. The elasticity of the unfolded
segment is well described by the WLC model. c. Lc of unfolded segment as a function of
number of residues from simulations compared to experiment [43]. In the experiment, the
number of unfolded amino acids is calculated based on naa = (∆L0 + ∆d)/Laa0 , where ∆d
is the vertical distance of the folded structure along the pulling axis in native bR [151] and
Laa0 = 0.366 nm is the Lc per amino acid based the distance between the first intermediate
in the helix pair ED (A160) and the first in the helix A (V29). The same deviations from
linearity are observed in the simulations and experiment. This similarity implies that there
is a similar sequence dependence that both highlights the accuracy of the simulations, and
that the residue dependence could be useful in identifying the sequence of the segment that
is unfolded for a given Lc value.

3.4.4 Obtain the Lc value for unfolded segment of bR associated with each

residue in the sequence.

Lc values associated with each residue were interpolated based on Table 3.1. Therefore,

given the structural position (i.e. residue index), we can infer the Lc value of that unfolded

segment of bR associated with that residue.
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3.4.5 Force clamp simulations of ubiquitin.

We unfolded ubiquitin (1ubq.pdb) to its fully extended state under high force (800 pN)

and ran force clamp simulations with a constant force applied to both ends of the protein

(procedure described in Table 3.7). We replicated all-atom MD results [142] in a few cpu-

hours. Without force, the highly stretched polypeptide contracts considerably but remains

extended under force as low as 10 pN (Fig. 3.4a). The distributions of (φ, ψ) angles and

end-to-end distances at different forces were reproduced those of the all-atom MD study

[142] (Fig. 3.4b, c). Also, we obtained good fitting of the average end-to-end distances and

the applied forces according to the WLC model (Fig. 3.4e). The Lc was determined at the

minimum fitting error (Fig. 3.4d).
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Figure 3.4: Reproduction of the all-atom MD of unfolded ubiquitin. a. End-to-end
distances of the protein under force. b. Distribution of φ, ψ angles of all 76 residues of
the protein over time. c. Distribution of end-to-end distances. d. Fitting error versus fitted
Lc. The minimum fitting error was obtained at Lc = 31.0 nm (red dot). e. WLC fitting of
the average end-to-end distance and the applied force. The error bars show the standard
deviation of the end-to-end distances. When fitting the data to obtain the Lc value, the
value of Lp was fixed at 0.39 nm.
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3.4.6 Force clamp simulations of 76-residue homopolymers.

First, we emphasize that it is the ”chicken or the egg” dilemma for knowing Lp and Lc using

the WLC model (Eq. 3.1) given the applied force and protein extension. Second, We notice

that experimentally measured Lp (0.40 nm) [132] and Lc (0.40±0.02 nm/residue) [150] are

very close (under this condition). Therefore, we assume that the Lp value averaged by the

protein sequence can be approximated by Lc = Lp·N, where N is the number of residues. Lc

= Lp·N is equal to be expressed as Lc = ΣsequenceLp, which means the change of Lc is due

to the removal or induction of residues.

Because we have calibrated the Lc per amino acid in previous section and obtain Lc per

amino acid as 0.390 nm in our simulations, we approximate the Lp value as 0.390 nm in our

simulation. Knowing Lp enables us to obtain Lc of systems other than bR using the WLC

model, given force and extension.

The ”chicken or the egg” dilemma for knowing Lp and Lc can be illustrated by the fol-

lowing 2 steps.

Step 1.

WLC model + experiment Lp (0.40 nm)

Lc per amino acid (0.390 nm) (obtained by simulations of truncated bR molecules)

updated Lp (0.390 nm)

Step 2.

WLC model + updated Lp (0.390 nm)

Lc of other systems, such as 76-residue poly-alanine

Now, we hypothesized that the strong correlation between the Lc values obtained in simu-

lation and experiment (Fig. 3.3c) may result from the dependence on sequence. Accordingly,

for each type of amino acid, we pulled on 76-residue homopolymer to its fully extended state
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and then reduced the force to a constant value (procedure described in Table 3.2). Similar

to ubiquitin (Ub), we obtained good WLC fitting of the average end-to-end distances and

the applied force. We can compute the Lp value for each type of amino acid, denoted as

Lp(AA), using Eq. 3.1 with F = 200 pN, x = end-to-end distance under 200 pN, and the

Lc value of that 76-residue homopolymer.

If Lp is independent of residue type, Lp(AA) should be 0.390 nm regardless of the residue

type. However, we found that Lp ranges from 0.24 nm for Val to 0.567 nm for Asp. Although

Pro76 has the smallest Lc (26.6 nm), Pros Lp is relatively large (0.353 nm). The results are

listed in Table 3.7.

If we add up the Lp(AA) values for the Ub sequence, we obtain 29.3 nm, different

from the Lc(Ub) (31.0 nm) obtained from our simulation (Fig. 3.4e). Therefore, Lc(Ub)

6= ΣUb sequence Lp(AA). On the other hand, we can predict the Lc values of truncated bR

species by summing the Lp(AA) values. The predicted Lc values have in a linear relationship

with the number of residues (Fig. 3.3c and table 3.3).Therefore, Lc(truncated bR)=

Σsequence of truncated bR Lp(AA).

We can see that Lc = Σsequence Lp or equally Lc = Lp·N only works for bR but not for

Ub. The is because the Lp value (0.390 nm) obtained in Step 1 is averaged by the sequence

of bR not by Ub. In other words, if the Lp value updated in Step 1 is obtained by simulations

of truncated Ub molecules, Lc = Σsequence Lp will work for Ub but not bR.

The mild dependence of Lp on amino acid type in a manner that matches experiment

(Fig. 3.3c and table 3.3) suggests that the calibration of Lp should be carried out for each

system if the analysis solely relies on the WLC model. Not calibrating the Lp value or the

Lc value per amino acid may lead to identifying intermediates incorrectly using the WLC

model, because the same force, extension but different Lp will result in different Lc, which

in turn leads to different structural position of the intermediate. The residue-dependence of

the Lp will help identify the boundaries of the unfolded chain segment.
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Table 3.3: Persistence length (Lp) of 76-residue homopolymers.

76-residue homopolymers
Lc

(nm)
Average end-to-end dis-

tance (nm) under 200 pN
Lp(AA) (nm)

Ala76 31.7 28.3±0.2 0.454

Val76 31.4 26.7±0.2 0.240

Ile76 29.9 26.2±0.2 0.345

Leu76 30.1 26.5±0.2 0.369

Met76 30.9 27.3±0.3 0.397

Phe76 31.6 27.5±0.2 0.322

Tyr76 31.7 27.8±0.2 0.352

Trp76 31.5 27.9±0.2 0.414

Arg76 31.3 27.6±0.2 0.384

His76 30.8 27.6±0.3 0.488

Lys76 31.1 27.4±0.3 0.381

Asp76 31.0 27.5±0.3 0.407

Glu76 31.0 27.4±0.3 0.386

Ser76 31.5 27.9±0.2 0.416

Thr76 31.4 27.5±0.2 0.354

Asn76 30.4 27.5±0.3 0.567

Gln76 31.0 27.2±0.3 0.364

Cys76 31.1 27.5±0.3 0.389

Gly76 31.0 27.9±0.2 0.525

Pro76 26.6 23.3±0.2 0.353
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3.5 Unfold Bacteriorhodopsin (bR)

3.5.1 Unfold monomeric bR in an accuracy comparable to experimental

results

Monomeric bR is placed within an implicit membrane bilayer modeled using our new mem-

brane burial potential [48]. Force is applied with a virtual cantilever spring attached at the

C-terminus and is increased by moving the spring at a constant velocity normal to the bi-

layer (z-direction) (Fig. 3.5a). Force typically accumulates to ∼100 pN at which point an

unfolding event occurs that allows the spring to return towards its equilibrium position. The

magnitude of the force change, δF, is proportional both to the length δl of the newly unfolded

segment and the stiffness of the cantilever kcantilver, δForce = -δl · κcantilever. Each such

unfolding event signals the presence of an intermediate or the release of the entire protein

from the bilayer. Repetition of these unfolding events produces a force-extension curve, FEC,

with a sawtooth pattern that recapitulates key features of the experiments, including the

extension of the unfold segments being well described by the WLC model [43, 132, 134].

Because the conformation of the protein is known at every time point in simulation, we

can identify the FEC’s sawtooth pattern as reflecting the sequential unfolding of pairs of TM

helices in the order GF, ED, and CB. The pairwise unfolding of TM helices is a well-known

consequence of the up-down topology of the protein (pulling a single helix out would yield

an energetically unfavorable conformation with an unfolded segment traversing the bilayer).

The first, GF helix pair unfolds relatively quickly because it is connected directly to the

cantilever and because force rapidly accumulates upon movement of the spring. The FEC

for the rest of the trajectory is dominated by the build-up of force as the unfolded segments

are stretched (an entropic tension), punctuated drops in force reflect the unfolding of the

pairs of helices. The final step arises when the A helix is extracted from the bilayer.

Our study sets the velocities of the cantilever and spring constant to 106 nm/s and

0.05 kT/Å2 (0.2 pN/nm at 298 K), respectively, chosen partly to match the experimental
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Figure 3.5: A representative unfolding trajectory of bR. a. Typical species along the
unfolding trajectory. b. The FEC (multi-color trace). The red dashed curves are fit to the
WLC model, using the contour lengths (Lc) of the most populated states identified in panel
c. c. The index of the most C-terminal residue that remains folded obtained from the time
course of secondary structure formation (TSS, panel d). This index is used to identify the
folded regions in helices G to A (black labels at time step zero). The ”X” and associated
number in panels b and c correspond to reference points in the trajectory in panel a that
serve to connect the FEC to the TSS. The red horizontal dashed lines in panel c identify
the most populated intermediates during the unfolding of the ED and CB helix pairs, and
helix A. Computations of secondary structure follow the DSSP convention [152]: coil refers
to either H-bonded turn, bend or loops and irregular elements. Grey vertical dashed lines in
panels c and d define the time points where a given TM helix has completely unfolded. e.
Probability distributions of the Lc obtained from the FEC of the unfolding of bR (as in panel
b) fit with the WLC (Eq. 3.1), and TSS (as in panel c) from direct identification of number
of unfolded residues in a trajectory, followed by simulations of these shorter segments and
fitting to a WLC model (Table 3.2).
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sawtooth pattern obtained by Perkins and coworkers [43]. Their FEC traces are similar

over the wide range of velocities and spring constants of 30-3000 nm/s and 13-58 pN/nm,

respectively. The major intermediate of ED helices exhibits an average unfolding force of

84±3 pN, close to the experimental value of 94±1 pN [43]. Generally, the use of either a

faster pulling speed or weaker spring constant produces a FEC with a shallower sawtooth

pattern as the force has insufficient time or distance, respectively, to relax back to a zero

force condition. For example, altering our speed by a factor of 2 or the spring constant by

a factor of 5 has minimal effect on the depth of our sawtooth pattern (Table 3.4), thereby

assuring the important conditions that the simulations employ sufficiently slow speed and/or

low pulling force to be able to match experiments.

Table 3.4: Comparison of the mean unfolding force (in pN) and the s.e.m. for bR interme-
diates between experiment and simulation.

Major intermediate
in ED helix pair

Major intermediate
in CB helix pair

Major interme-
diate in helix A

Experiment 94±1 (A160) 49±2 (V101) 62.0±0.6 (V29)
k = 0.05, v = 0.001 83.8±2.6 (F153) a 43.3±2.1 (L100) 22.6±1.6 (V29)
k = 0.01, v = 0.001 69.7±1.4 (F153) 41.2±1.0 (L100) 22.5±0.9 (V29)
k = 0.05, v = 0.0005 76.9±2.6 (F153) 40.4±2.5 (L100) 18.8±1.9 (V29)

The spring constant (κ) is in kT/Å2; the pulling velocity (v) is in Å/Upside time step;
and the temperature (T) is in Upside temperature unit (1 ≈ 300 K). The major intermediate
identified in each region is put in the parentheses, as indexed by the last folded residue.
a. The comparison between experimental [43] and simulations is conducted for the most
populated intermediate, which is given in the parentheses; however, we also observe a K159
intermediate in the simulations which corresponds to the major experimental intermediate.

The simulations are conducted without the retinal, which is attached to bR’s G helix

[153] and stabilizes the protein [154]. Hence, presumably more force would be required to

remove the G helix in the holoprotein. However, the G helix is removed first, and, hence,

the rest of the trajectory should be unaffected. As just noted, the average force for the

next unfolding event, the unfolding of the ED helical intermediate, agrees well with the

experiment. In addition to calculating the unfolded lengths using the FEC, the position
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of the last remaining folded residue is identified directly from the simulations and used to

construct a plot highlighting the structure of the intermediates, their boundaries, and the

lengths of the unfolded segments (Fig. 3.5c). The structured regions are plotted as a function

of time to generate a timeline of secondary structure (TSS, Fig. 3.5d).

Figure 3.6: Unfolding trajectories of bR. The trajectories largely support the common
assumption that secondary structures remain intact within the membrane bilayer during the
unfolding process. However, exceptions can be seen in these two TSS: a. Part of a TM helix
may turn into p-helix or unfold in the middle (e.g., Helix C, black box in the TSS plot). b.
A TM helix can unfold from the N-terminal end rather than the C-terminal end (e.g., Helix
C, black box in the TSS plot).
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The contour lengths (Lc) and folded regions are inferred from the FEC. These regions

and those explicitly identified by the TSS are similar (Fig. 3.5e). This agreement supports

the standard assumption that the whole length of the unfolded segment is at the C-terminus

of the protein, while the remaining portion of the protein stays intact, with the helices

remaining stationary within the bilayer [43]. However, the agreement is not absolute as our

simulations find that partially unfolded helices can translate vertically in the bilayer (Fig.

3.5a10), or change from α-helix to 310 helix or π-helix (Fig. 3.6a), and even unfold at the

amino terminus (Fig. 3.6b). These events are likely to be missed in an experiment.

To further examine the agreement between our simulations and experiment, we compare

the populations and structures of the intermediates. Following the procedure employed for

soluble proteins [127], the population distribution of intermediates obtained from the TSS

are fit with multiple Gaussian functions, assuming an uncertainty of one amino acid (Fig.

3.8). We identify 29 intermediates with 15, 11 and 3 having folded-unfolded boundaries in

the ED, CB, and A helices, respectively (Fig. 3.7 and table 3.5). Among this group of

29 intermediates, 11 correspond exactly to one of the 26 experimental intermediates [43]

and another 10 are within one residue of an experimental intermediate. We fail to identify 5

intermediates (3 near the bottom of the E helix, 1 in the middle of the loop connecting the

CB helices, and 1 at the bottom of the A helix) while identifying 8 that are not observed

experimentally (Table 3.5).

The disparity between simulations and experiment in identifying intermediates may re-

flect real differences, such as errors in our energy function, pulling speed, or effective tem-

perature. However, the different protocols - using either experimental FEC or the simulated

TSS - for identifying intermediates, can also affect the determination of the intermediates.

For example, we observe unfolding occurring N-terminal to last folded helix (Fig. 3.6b), a

possibility that is not allowed in the experimental analysis.

An impressive feature of the recent experimental AFM study [43] is the ability to observe

back-and-forth unfolding and refolding of small 2-4 residues units representing half to a full
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Figure 3.7: Unfolding trajectories and intermediates of bR. Time dependent unfolding
trajectories plotted according to the index of the last folded residue (left), the corresponding
population distribution (middle), and the intermediates found in experiment [43] (right). Of
the 90 total trajectories, only the 48 where helix A unfolds by itself are presented (in the
rest of the rest of trajectories, more than 2 TM helices are pulled out of the membrane in
the last observed unfolding event). For the 48 trajectories, the time spent at each position
is histogrammed (blue bars) and fit using multiple Gaussians with standard deviation (σ)
of one residue to identify the number and position of simulated intermediates. Black dashed
lines (left and middle) designate the intermediates found in our simulations. The blue, green
and red solid lines (right) indicate intermediates identified in experiment and also found
within one residue, but not observed in our simulations, respectively.

helical turn. We likewise observe these back- and-forth transitions between micro-states in

all three major regions (ED, CB and A helices) (Figs. 3.5c and 3.7). That Upside captures

these events and identifies most intermediates is a positive indication that we have achieved

a relatively accurate representation of the system, especially in terms of the amount of force

and the loading rate, as well as in the balance of forces such as in having an appropriate

energetic penalty for unfolding portions of helices within the bilayer.
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Table 3.5: Comparison of bR intermediates identified in the 2017 experiment, our simulation
and a 2016 CG study.

2017 experiment [43] Our simulationa 2016 CG studyb [47] Description

160 159 Top of helix E
157 157 156.8
154 155, 153
151 151 150.8
148 149
146 145
143 143
139 139 140.7
136
132
130 Bottom of helix E
129 129
127 127 Top of helix D
124 124
119 118

115
111

101 102, 100 101.4 Top of helix C
96 97 95.4

94
91 92

88 89.0
83 83 Bottom of helix C
77 77 75.7
71
63 62 Top of helix B

57
54 54

33.8
29 29 29.6 Top of helix A

25
21.2, 19.1

16 15
8 Bottom of helix A

a. k = 0.05 kT/Å2, v = 0.001 Å/Upside time step, T = 1.0 ≈ 300 K.
b. See Fig. 5A in ref. [47], the intermediates are taken from the analysis of force peak
groups, which were compared to previous experiments [135, 155, 156]. The position of an
intermediate is given by the last folded residue of that intermediate in the protein.
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3.5.2 Methods

Structure and sequence of bR

The bR structure (1qhj.pdb) and orientation within the lipid bilayer was obtained from the

OPM database [76]. The membrane thickness was set to 30.0 nm as identified by OPM.

Truncated versions of bR (used in the calibration of the contour length per amino acid) were

made from the native structure of bR, which are in the native orientations as in the whole

bR.

Unfolding pathway analysis

For every frame in trajectory, the Lc of already unfolded segment can be determined through

FEC or TSS. Assuming intact secondary structure remains unchanged within the bilayer, Lc

is uniquely determined (labeled as Lc,FEC) given a force and an extension, from which we

can infer how many residues have unfolded. Force was measured and recorded into the H5

file during the simulation, while extension was calculated as the distance that the Cα atom

of the C-terminus has moved.

On the other hand, if the number of unfolded residues is known, Lc can be determined by

mapping the number of unfolded residues to pre-determined Lc value (labeled as Lc,TSS).

Secondary structures were computed by the compute dssp function in MDTraj [82], which

follows the DSSP definition [52]. Then Lc,TSS is obtained after identifying the most C-

terminal residue which remained folded.

Trajectories plotted according to the last (C-terminal) folded residue were smoothed

by a Savitzky-Golay filter [86] in Scipy [88], in which the window length was set to 11,

polyorder 3, mode nearest. Then, the population distribution was histogrammed and fitted

with multiple Gaussian functions to identify the number position of the simulated intermedi-

ates. Amplitudes and positions were fit assuming a width (standard deviation) of one amino

acid, i.e. the positional uncertainty is assumed to be ±1 amino acid. Three major unfolding
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Figure 3.8: Identifying intermediates by fitting with multiple Gaussian functions.
a. For the 48 trajectories shown in Fig. 3.7, the time spent at each position is histogrammed
(blue lines) and fit using multiple Gaussians (red) with standard deviation (σ) of one residue
to identify the number and position of intermediates. The number and initial position of
the Gaussians was manually adjusted to minimize the fitting error; additional Gaussians
were added until the error plateaued. The upper, middle and lower panels refer to unfolding
occurring within the ED, CB or A helices, respectively. The index refers to the last residue
that remains folded, as identified in the TSS, and is listed in Table 3.5. b. Fitting error
as a function of number of intermediates provided the intermediates are evenly distributed
within each unfolding region (blue). The fitting error after manual adjustment of the number
of intermediates and their positions (red dashed).

regions, denoted ED, CB, and A, were fit separately. In general, the more intermediates,

the smaller the fitting error. To prevent over-fitting, we initially assume that intermediates

are evenly distributed within each major unfolding region and obtained the fitting error as

a function of the number of intermediates. Later, by adjusting the number of intermediates

and their initial positions manually, we acquired fewer intermediates with a relatively low

fitting error (Fig. 3.8).
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3.6 Unfold GlpG

3.6.1 GlpG can unfold along multiple routes with well-populated

intermediates.

We repeated the pulling simulations on GlpG using the same pulling velocity and spring

stiffness as used in the bR simulations. Experiments with GlpG [130] can be replicated by

attaching two virtual springs to the N- and C- termini that are on the same side of the bilayer

(Fig. 3.9a). The C-terminal spring is translated horizontally to the membrane surface to

generate force parallel to the surface (the other spring is held fixed, but similar outcomes

are produced when the N-terminal spring moves at the same net velocity and the C-terminal

spring is fixed, Fig. 3.17 and table 3.6).

Figs. 3.9e and 3.12 illustrate the diverse set of pathways that emerge for unfold-

ing beginning at either terminus or, more rarely, starting at the central helices. Unfolding

from the N-terminus (on the N→C Pathway) typically proceeds sequentially for 3 helices,

TM1→TM2→TM3 followed by the unfolding of TM4-6 in any order (Figs. 3.9c, 3.9e left,

29 of 50 trajectories in 3.12a, and 3.10). Unfolding from the C-terminus (C→N Path-

way) typically proceeds sequentially TM6→TM5→TM4→TM3→TM2→TM1 (Figs. 3.9e

middle, 3 of 50 trajectories in 3.12d, and 3.11).

In the FEC plots Fig. 3.9d, the forces generated by both springs are very similar,

indicating that the force had time to equilibrate across the protein, a necessary condition for

making comparisons to minute long experiments where the force loading rate is below 1 pN/s

[130]. The measurement of force at both ends track with each other except an occasional

small lag at one end of the protein when an unfolding event occurs at the other end of the

protein. For instance, when the TM1 helix unfolds first, the force measured at the N-terminus

drops faster than that at the C-terminus (Fig. 3.9d left, at extension ∼5 nm), whereas the

force at the C-terminus drops faster when TM helices close to that end unfold first (Fig.

3.9d middle, at extension ∼10 nm and 20 nm).
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Figure 3.9: Diversity in unfolding pathways and intermediates of GlpG. a, b. Side
and bottom views of GlpG (2xov.pdb) and c. secondary structure and definition of N- and C-
domain. d, e, f. FEC, TSS and PCA plots illustrating unfolding beginning at the N-terminus
(left; 14th trajectory shown in Fig. 3.12a), at the C-terminus (middle, 1st trajectory in Fig.
3.12d), and at the middle of the protein (right, 41st trajectory in Fig. 3.12c). In panel e,
each red strip in the TSS plot represents one helix. Unfolding pathways are defined by the
order of TM helix unfolding. In panel f, the PCA heat map is evaluated from 50 trajectories,
while the red curve depicts the trajectory for a single unfolding pathway from the native state
to the fully extended state. The two blue circles in the middle subplot of panel f replicate
the two experimentally observed unfolding intermediates I1 and I2, formed by the unfolding
of the TM6 and TM5 helices, followed by the TM4 and TM3 helices, respectively, with the
final step being the unfolding of TM2 and TM1 helices [130].
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Figure 3.10: Examples of an N→C unfolding pathway of GlpG. a. Unfolding path-
way connected by representative structures on the PCA plot. The representative
intermediates are chosen such that they are either the cluster center or the structure when
a TM helix unfolds. These structures are considered as the intermediates. We use NN, N1,
. . ., N7, and FE to denote the clusters as well as the intermediates. NN is short for near-
native, and FE fully-extended. b. Clustering analysis of the trajectory. Nine clusters are
identified. c. Snapshots of the representative structures. For the illustrative reasons,
unfolded segments sometimes are not shown in the snapshots when there is no significant
conformational change.
In the NN state, helices rearrange.
In N1, the two interfacial helices H1, H2 unfold and separate.
In N2, TM1(N) unfolds.
In N3, TM1 flips to the other side of bilayer.
In N4, TM4 partially unfolds in its C-terminal.
In N5, TM2 and TM3 unfold.
In N6, the helices in the C-domain rearrange.
In N7, TM6 (C) unfolds, and the C- terminus of TM4 refolds.
In FE, TM5 and TM4 unfold, unfolded TM1 may re-enter the bilayer.
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Figure 3.11: Example of a C→N unfolding pathway of GlpG. a. Unfolding pathway
connected by representative structures on the PCA plot. We use NN, C1, . . ., C9, and
FE to denote the clusters as well as the intermediates. b. Clustering analysis. Thirteen
clusters are identified. c. Snapshots of the representative structures.
In the NN state, helices rearrange.
In C1, the interfacial helix H2 aligns with TM2 and pushes part of TM2 out of the bilayer,
TM2 bends, TM1 (N) and TM6 (C) partially unfold, and H1 unfolds.
In C2, TM6 unfolds one more helical turn, TM2 partially unfolds in its C-term and H1
refolds.
In C3, TM6 unfolds, TM5 comes out of the bilayer, H1 aligns with TM1, and TM1 tilts in
order to accommodate the elongation in its C-term due to the alignment of H1.
In C4, two more helical turns of TM1 unfold, and TM4 and TM5 partially unfold.
In C5, TM5 and TM4 unfold.
In C6, TM3 unfolds, TM1 and TM2 come apart.
In C7, H1 unfolds.
In C8, TM1 and TM2 come further apart.
In C9, H2 unfolds.
In FE, TM2 and TM1 unfold.
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Unexpectedly, the more stable N-terminal domain [137] is more likely to unfold before

the C-terminal domain under force. This counterintuitive observation arises because of the

differential hydrophobicity of the TM helices [157]. The TM2, TM5 and TM1 helices are the

most hydrophobic, while the TM6 helix is the least. Although hydrophobicity promotes helix

insertion into the bilayer, it has the complementary effect of promoting dissociation of helices

from the other hydrophobic helices. In fact, the TM5 helix is completely dissociated from

the other TM helices in the crystal structure of GlpG [34]. The dissociation of the TM1 and

TM2 helices is energetically less costly than the dissociation of the TM6 and TM4 helices,

a process that exposes polar and charged groups (Fig. 3.13a, and the near-native and N1

intermediates in Fig. 3.10c). In addition, the 34-residue segment between the TM1 and

TM2 helices is of sufficient length to allow the TM1 helix to dissociate and remain upright

in the bilayer. However, the linker between TM5 and TM6 has only 10 residues, so TM6

must tilt into the bilayer or the GlpG structure must be distorted for TM6 to dissociate.

As a result, the C→N pathway does not involve the TM6 helix dissociation; rather the ends

of the TM1 and TM6 helices unfold (Fig. 3.13b, C2 intermediate in the C→N pathway in

Fig. 3.11c). These multiple factors explain the preference for unfolding to occur along the

N→C pathway.

A principal component analysis (PCA) is performed to interpret high-variance collective

protein motions observed along the simulated unfolding pathways [144]. Internal coordinates,

such as inter-residue separations, are a poor choice for analysis as very different conformations

can have the same distance, e.g., the N-to-C distance can be the same but very different

structurally depending on whether unfolding begins at the N- or C-terminus. Hence, the

native Cα-Cα contacts are used to derive the principal components (Fig. 3.9f). As observed

in the PCA heat maps, the unfolding pathway can begin from either the N- (Figs. 3.9f left

and 3.12a) or C-terminus (Figs. 3.9f middle and 3.12d) and proceeds along the lower

or upper edge of the heat map, respectively. For unfolding beginning in the middle of the

protein, the pathway traverses the center of the map (Figs. 3.9f right and 3.12c). Beyond
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highlighting the pathway multiplicity, the PCA heat maps also emphasize that unfolding

occurs through about 10 microstates (Figs. 3.10 and 3.11).

3.6.2 Cooperative unfolding of GlpG by force clamping with a weak spring

(MT mode)

The degree of pathway diversity deduced from the simulations discussed in the previous sec-

tion departs with that emerging from magnetic tweezers (MT) measurements that concluded

unfolding initiates from the C-terminus [130]. This conclusion emerged from the identification

of two intermediates lacking the C-terminal helices. The difference between our simulations

and the MT experiments is a result of a difference in force application accentuated by lim-

ited experimental time-resolution. Our unfolding simulations mimic an AFM measurement

in that force builds up as the cantilever is translated, followed by a rapid drop in the force

after each unfolding event as the newly unfolded region provides sufficient slack to allow

the cantilever to relax back towards its equilibrium position: Forceafter = Forcebefore -

δlcantilever ∼ 0. The rapid relaxation of force reduces the probability that any other part

of the protein unfolds in the same kinetic event. Consequently, unfolding occurs in multiple

distinguishable steps and the FEC has multiple corresponding peaks.

The behavior observed with MT produces a different picture. The withdrawal of the

magnets increases the pulling force on the protein until a portion of the protein unfolds.

However, unlike the simulations using a stiff cantilever, the MT measurement maintains the

force for the remaining duration of the trajectory because the magnetic field varies on micron

scale. Even after the bead has relaxed 10’s of nanometers as the unfolded protein segments

extend, the bead still resides in nearly the same magnetic field as before, and hence at the

same force level. Effectively, the MT mode equates to operating with a very weak spring

constant so that Forceafter = Forcebefore - δlcantilever ∼ Forcebefore. The next effect is the

force level present at the beginning of the unfolding event remains nearly constant for the

remainder of the measurement (see Fig. 3a in ref. [130]). At this elevated force, the protein
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Figure 3.12: Unfolding trajectories of GlpG obtained with a stiff cantilever (T =
0.9, κ = 0.05 kT/Å, pulling velocity = 0.001 Å/Upside time step; pulling the C-terminus and
fixing the N-terminus with an equal spring). The heat map is obtained from 50 trajectories.
The red curve of each subplot is the unfolding pathway from the native state to the fully
extended (FE) state for a given trajectory. The trajectories are categorized based on their
unfolding pathways. The title of each subplot indicates the index of the trajectory and its
unfolding pathway. For example, 4: N-2-3-C-(5,4) means that the unfolding pathway of the
fourth trajectory is N→2→C→(5, 4), in which TM5 and TM4 unfold nearly simultaneously
and therefore are put in parentheses. a. Unfolding starts from TM1 (N) and proceeds to the
C-domain when all the TM helices in the N-terminal domain unfold. The pathways traverse
the lower edge of the PCA plots. b. Unfolding starts from TM1, followed by the unfolding
of TM6 (C), leading to zigzag pathways across the PCA plots. c. Unfolding starts from the
middle of GlpG. d. Unfolding starts from TM6 and proceeds to the N-domain when all the
TM helices in the C-domain unfold. In contrast to a the pathways flank the upper edge of
the PCA plots. e. Similar to b, with unfolding starting from TM6, followed by the unfolding
of a TM helix in the N-domain, which results in zigzag pattern through the middle on the
PCA plot. The ratio of unfolding from the N-domain first to unfolding from the C-domain
first is 40:10 (number of panels in a+b+c : number of panels in d+e).
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Figure 3.13: GlpG simulations mimicking a magnetic tweezer measurement. a, b.
Structures and contact maps of the major unfolding intermediate on the N→C and the C→N
pathways. The intermediates selected from the N→C and the C→N pathways correspond
to the near-native (NN) intermediate in Fig. 3.10c and the C2 intermediate in Fig. 3.11c,
respectively. Differences in contacts between the native state and the intermediate used as
the re-starting point are marked by black rectangles and ellipses (along the main diagonal).
The length of the lines near the main diagonal identifies the length of the folded portion
of the helices (e.g., the TM6 helix in the N→C pathway is present in the first intermediate
but is partially unfolded in its counterpart along the C→N pathway). c, d. Extension and
force profiles, along with TSS plots for two of the 20 N→C generated pathways (denoted
MT1 and MT2) and for two of the 20 C→N pathways. After an initial force loading period,
the protein begins to unfold (blue arrows), and the force is held constant for the rest of the
trajectory. For comparison, the extension and force profiles (grey) for the N→C and C→N
trajectories are shown for an AFM- style simulation conducted using a stiff cantilever where
the force is allowed to relax after an unfolding event (Fig. 3.9).
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often is pulled apart in a few or even a single all-or-none process. Hence, at most, only a few

intermediates are observed, and folding appears more cooperative in the MT measurements

than in our simulations that model an experiment with a stiff cantilever. This effect is most

pronounced for ”brittle” proteins where the first unfolding event requires higher force than

the subsequent unfolding events.

Appreciating this difference between the two modes, we mimic the MT experiment by

employing a modified force clamp protocol (Fig. 3.1c). Force is gradually increased until

the first unfolding event occurs, whereupon the force is held constant for the remainder

of the trajectory (Fig. 3.13). The N→C and C→N pathways are investigated in detail

by re-starting 20 simulations from the structure present right at the first rupture point

on each route, which occurs at a force of 65 or 85 pN, respectively. As anticipated, the

unfolding of GlpG appears more cooperative along both unfolding pathways than if the

cantilever was allowed to relax. All the helices unfold almost immediately and together after

the first unfolding event (Fig. 3.13c, d, all red bars disappear at the same time, unlike

the behavior in Fig. 3.9e). Additionally, fewer intermediates are seen and they are more

transient especially along the N→C unfolding pathway. For 20 trajectories conducted on

each of the N→C and C→N pathways, we observe one major intermediate (at ∼ 20.5 nm)

and two major intermediates (at extensions of ∼ 5.5 nm and ∼ 12.5 nm), respectively (Figs.

3.13c, d, 3.14b). This difference between the two styles of experiments are readily apparent

in the PCA heat maps where the MT-style (weak spring) measurement yields only one well

populated intermediate on either the N→C or C→N pathway, and little population appears

elsewhere on the PCA heat map (Fig. 3.17c). In contrast, the AFM-style (stiff spring)

measurement populates dozens of intermediates across the entire map.

The behaviors found for trajectories along the two pathways differ in a manner consistent

with experiments. Intermediates formed on the C→N pathway live longer than those on

the N→C route (Fig. 3.14). The protein unfolds in less than 20k time steps for 19 of 20

simulations along the N→C unfolding pathway, whereas 7 of 20 simulations along the C→N
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unfolding pathway, the protein does not unfold within 50k steps despite the elevated applied

force (Fig. 3.14a). Consequently, the observation of intermediates on the C→N pathway is

more probable despite the fact that the dominant pathway (higher flux) passes though the

N→C route.
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Figure 3.14: Lifetime and position of intermediates in MT mode for 40 simula-
tions. a. Number of trajectories having different lifetimes between the first unfolding event
and the fully-extended state for the 20 unfolding trajectories occurring from either end. b.
Corresponding aggregate time spent at a given extension (intermediate state). Each peak
represents an intermediate (one for N→C, two for C→N). The fully unfolded state has an
extension above 50 nm, which defines the upper limit of the x-axis.

Another consideration in the MT experiment [130] that could result in the unfolding

of GlpG being cooperative with a preference for unfolding beginning from the C-terminus

is the use of a 60 Hz CCD camera [130]. At this relatively slow frame rate, intermediates

populated for less than 16 ms could elude detection. Since the intermediates are longer lived

when unfolding begins from the C-terminus, they are more likely to be detected than those on

the N→C pathway. Thus, the use of a slow camera introduces a bias to observe intermediates

on the C→N route and increases the apparent degree of folding cooperativity.
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3.6.3 Other SMFS modes applied to GlpG

To further explore SMFS modes of unfolding, We performed standard force clamp simula-

tions where the force is rapidly set and held at a constant value throughout the unfolding

trajectory. The values generally are set at a force substantially less than the level where the

first unfolding event occurs when operating under pulling mode with increasing force. We

find that multi-step sequential unfolding from both N→C and C→N are more likely to be

seen under lower force (e.g., 40 versus 60 pN), though the protein tends to unfold more co-

operatively and more quickly at either force compared to the pulling with the stiff cantilever

(Figs. 3.17d, 3.15).

We also pulled in the same manner as in the AFM simulations on bR. Force was applied

with a stiff cantilever orthogonal to the bilayer to either the N- or the C-terminus. As with

bR, we observed the characteristic sawtooth patterns (Fig. 3.16). However, as previously

noted [157], the TM helices of GlpG are not as hydrophobic as bRs, so GlpGs helices were

pulled out at lower force (∼ 60 pN for the first pair of helices versus ∼ 94 pN for bR).

The last TM helix was observed to be pulled out in a distinct event in 3 of 20 and 4 of 20

GlpG trajectories when pulling on the N- and C-terminus, respectively. In the rest of the

trajectories, more than one TM helix is pulled out in the same unfolding event. Moreover,

we observe that the TM6 helix unfolds before the TM5 helix when pulling on the N-terminus

(Fig. 3.16b), a behavior consistent with the TM6 helix being intrinsically unstable within

the bilayer. This inversion in the order of unfolding would be hard to infer from the FEC

as it violates the assumption that the helices unfold according to their sequence order. The

difference between this SMFS mode and the others is well illustrated in the PCA plot,

which displays a series of intermediates going along the edges of the heat map (Fig. 3.17b).

Since no corresponding experiment has yet been conducted with GlpG, these simulations

provide testable predictions. Studies of other SMFS modes and the effects of mutations and

temperature can be found in the supplement.
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Figure 3.15: Sequential and cooperative unfolding pathways of GlpG in force clamp
simulations started from the native structures. Four trajectories under a constant force
40 pN (upper panel) and three trajectories under a constant force 60 pN (lower panel) are
shown. Every trajectory is presented by an extension plot and a TSS plot. Trajectories in the
left column are examples of sequential unfolding pathways (with at least 3 intermediates that
can be identified on the extension plot); those in the right column are examples of cooperative
unfolding pathways (with no more than 2 intermediates identified from the extension plot).
In the 20 simulations under 60 pN, we did not observe any trajectory unfolding from C- to
N-domain sequentially.

3.6.4 Altering the pathway fluxes using mutation, temperature and spring

constant

We also performed unfolding simulations on destabilizing GlpG mutants to examine the

effects the unfolding pathways. Of the investigated residues having an H-bonding side chain

in the N-domain, the E166A mutation is the most destabilizing [34]. This residue is located

near the bottom of the TM2 helix and forms two H-bonds to the backbone nitrogens of Val96
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Figure 3.16: Unfolding GlpG by pulling vertically in AFM, stiff cantilever mode.
a, b. FEC and TSS plots of an example trajectory pulling from the C- and N-terminus,
respectively. 20 simulations were performed in each case. We observed that all TM helices
become completely unfolded in 4 and 3 trajectories of pulling C- and N-terminus, respectively.
After all the protein is pulled out, the extended chain starts collapsing and forms H-bonds
again. This suggests that the pulling rate maybe slow enough. Notably, TM6 unfolds before
TM5 (b), implying that TM6 is not very stable by itself in the lipid bilayer.

and Thr97 on the TM1 helix and two to the side chains of Thr97 on the TM1 and Ser171 on

the TM3 helix [34]. The G261V mutation on helix TM6 is at the center of the GxxxGxxxA

motif that enables the close backbone-backbone association of the TM4 and TM6 helices.

This mutation decreases the Tm by 28.1±0.08 ◦C [34] and increases the probability of

unfolding from the C-domain by 50% (10 to 15 events, of a total of 50) (Fig. 3.17 and

table 3.6). To our surprise, the disruption of the H-bond network at the bottom of the triad

of the three TM helices in the N-domain barely changes the probability of initiating the

unfolding from this end (40 versus 41 events of a total of 50) (Fig. 3.17 and table 3.6).

Unfolding from the N- rather than the C-terminus is 4-fold more probable at 270 K. At

300 K, the ratio is reduced to 1.2. And weakening the spring constant by a factor of 5 further

reduces the ratio to 0.7 (Fig. 3.12 and table 3.6). Even though there are differences, the

fundamental heterogeneous pathway behavior remains (Fig. 3.17a).
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Figure 3.17: Principal component analysis of unfolding trajectories of GlpG under
various simulation protocols. a. Stiff cantilever mode, pulling laterally. Each of the
PCA plots is comprised of 50 trajectories. Despite differences, the fundamental heterogeneous
pathway behavior remains. b. Stiff cantilever mode, force is applied to either the
N- or C-terminus vertically. The PCA plots for pulling the N- and C-terminus contains
20 and 19 trajectories, respectively (the output file of one of the trajectories was corrupted).
Notably, the PCA heat maps obtained in this mode fill in the blanks in the middle of the
heat maps obtained in a. Those may represent structures that largely maintain the tertiary
structure for the region embedded in the membrane, which would be difficult to observe in
mode a because the tertiary structure is disrupted. Besides, pulling the N-terminus produces
deterministically N→C pathways as expected, and vice versa. c. Modified MT mode,
pulling laterally, simulations were re-started at the 1st unfolding event in the
N→C or C→N pathway in a (T=0.9, k=0.05, v=0.001). d. MT mode, pulling
laterally, simulations were started from the native structure. The unfolding is more
cooperative under higher force and in the C→N pathway than the reverse. 20 trajectories
are included in each PCA plot in c and d. N and FE stand for native and fully-extended in
each subplot, respectively.
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Table 3.6: Summary of unfolding pathways of GlpG.

Pulling scheme T κ of F a WT/mutant
N-→C-
domainb

C-→N-
domainc

Pull C-term, fix N-term 1
κ =
0.05

WT 27 23

Pull C-term, fix N-term 1
κ =
0.05

E166A 27 23

Pull C-term, fix N-term 1
κ =
0.05

G261V 22 28

Pull C-term, fix N-term 1
κ =
0.01

WT 21 29

dPull C-term, fix N-term 0.9
κ =
0.05

WT 40 10

Pull C-term, fix N-term 0.9
κ =
0.05

E166A 41 9

Pull C-term, fix N-term 0.9
κ =
0.05

G261V 35 15

Pull C-term, fix N-term 0.8
κ =
0.05

WT 42 8

Pull N-term, fix C-term 1.0
κ =
0.05

WT 32 18

Pull N-term, fix C-term 0.9
κ =
0.05

WT 43 7

Pull C-term, fix N-term 0.9
F =

40 pN
WT 16 4

Pull C-term, fix N-term 0.9
F =

60 pN
WT 13 7

Pull C-term, fix N-term 0.9
F =

80 pN
WT 13 7

Units for κ and v are the same as in Table 3.5.
a. κ or F is listed as relevant to the mode of applying force, gradual pulling or force, respec-
tively.
b. The number of trajectories with an unfolding pathway that is initiated from the N-domain.
For example, in Fig. 3.12, a, b and c are all counted as N- to C-domain unfolding path-
ways.
c. The number of trajectories with an unfolding pathway that is initiated from the C-domain.
For example, in Fig. 3.12, d and e are both counted as C- to N-domain unfolding pathways.
d. The primary data set that is shown in the main text.
e. From the native structure refers to starting the simulation from the native structure
instead of an intermediate at the first unfolding event.
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3.6.5 Methods

Structure and sequence of GlpG and the mutations

The native structure and orientation within the lipid bilayer of GlpG (2xov.pdb) was taken

from the OPM database [76]. The membrane thickness was set to 28.8 nm as predicted

by OPM. Two GlpG mutants were made from the native structure using SWISS-pdbviewer

[158]: E166A and G261V.

Principal component analysis of unfolding trajectories of GlpG

The programs MDTraj [82] and scikit-learn [88, 159] was used to perform the PCA using

the Cα-Cα distances below 8 Å in the native state to define contacts. Structures from

all trajectories under the same set of simulation conditions were included in the PCA. To

derive the principal components, we used the Cα-Cα distances obtained at T = 1.0, spring

constant = 0.05 kT/Å2, and a pulling velocity = 0.001 Å/Upside time step. These principal

components are used for the projection at the other conditions for comparison purposes.

Clustering analysis of unfolding trajectories of GlpG

We chose the Gaussian mixture algorithm implemented in scikit-learn [88, 159] to perform

the clustering analysis performed on the structures in each trajectory. A Gaussian mixture

model is a probabilistic model that assumes all the data points are generated from a mixture

of a finite number of Gaussian distributions, which is good for density estimation. The

number of clusters was estimated and supplied to the program. The corresponding density

for each training point was measured and the point with the maximal density was chosen as

the center to represent the cluster. The cluster centers were considered as the intermediate

states along the unfolding pathway.
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3.7 Summary of simulation details in this chapter

Table 3.7: Simulation details.

System Cantilevera Attachments κ v F T
Number
of sim.

Ubiquitin
(FE)b

Soft
Pull both termini in
opposite direction

0, 10,
30, 50,
100,

250, 800

1.0 1 per F

Truncated
bR species

Stiff
Pull C-term
verticallyc,
fix N-termd

0.05 0.001 1.0
1 per

species

bR Stiff Pull C-term vertically 0.05 0.001 1.0 90
bR Stiff Pull C-term vertically 0.01 0.001 1.0 80
bR Stiff Pull C-term vertically 0.05 0.0005 1.0 60

GlpG Stiff
Pull C-term

laterallyc, fix N-term
0.05 0.001

0.8,
0.9,
1.0

50 per T

GlpG Stiff
Pull N-term lat-
erally, fix C-term

0.05 0.001
0.9,
1.0

50 per T

GlpG
E166A

Stiff
Pull C-term lat-
erally, fix N-term

0.05 0.001
0.9,
1.0

50 per T

GlpG
G261V

Stiff
Pull C-term lat-
erally, fix N-term

0.05 0.001
0.9,
1.0

50 per T

GlpG Stiff
Pull C-term lat-
erally, fix N-term

0.01 0.001 1.0 50

GlpG before
1st rip

Soft
Pull C-term lat-
erally, fix N-term

64.6,
84.5

0.9 20 per Fe

GlpG Soft
Pull C-term lat-
erally, fix N-term

40,
60, 80

0.9 20 per F

GlpG Stiff Pull C-term vertically 0.05 0.001 1.0 20
GlpG Stiff Pull N-term vertically 0.05 0.001 1.0 20

Parameters used in the Upside simulation are summarized in the table. Units for κ, v,
F, and T are the same as in Table 3.6.
a. Soft mode refers to the use of a very soft cantilever to mimic a magnetic tweezers measure-
ment where the force is held essentially constant force after the 1st unfolding event occurs as
the magnetic field varies slowly, on micron length scale, longer than the unfolded segments.
b. The simulations were started from a fully-extended state.
c. The direction is relative to the membrane bilayer.
d. Held with an equally stiff spring.
e. One of the output file is corrupted, so there are only 19 trajectories useful for analysis.
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3.8 Discussion

We have modified our fast Upside MD algorithm to study the forced unfolding of proteins in

a variety of different modes and on membrane proteins by including our new statistical po-

tential [48]. Upside models the polypeptide backbone with 5 atoms with residue-dependent

Ramachandran maps, while the multi-position side chain beads are repacked at every MD

step. The great enhancement in speed afforded by this method allows us to run 100’s of sim-

ulations and conduct principal component analysis to map out the energy surface. Unfolding

of membrane proteins as large as bR are conducted in a single cpu-day with results that are

in good agreement with experimental studies (Figs. 3.5, 3.7) [43].

The mode of force application including the strength of the spring constant strongly af-

fects the observed detail and apparent unfolding cooperativity. Using a force clamp, irrespec-

tive of whether the force is gradually increased or rapidly set to a constant value, the protein

tends to unfold more cooperatively (Fig. 3.17c, d). The force in the constant velocity mode

is maintained to some degree after an unfolding event if the associated chain extension is less

than that needed to bring the system back to its equilibrium position, δl · κ� Forcebefore.

In addition, the applied force can remain high after a rupture if the length of the newly

unfolded segment is sufficiently long that the chain (and whatever handles are used to con-

nect the protein to the instrument) can act as entropic springs thereby reducing the effective

spring constant of the entire system. The effect becomes more pronounced in the later stages

of unfolding, as the length of the unfolded regions becomes increasingly longer with each

unfolding event, thereby reducing the probability of observing late intermediates.

Membrane proteins can be unfolded by either pulling vertically at one terminus or lat-

erally at both ends. Each mode explores different regions of the energy surface. Pulling ver-

tically produces a more deterministic unfolding route as TM helices unfold sequentially and

in pairs, while the remaining portion of the protein largely remains intact. Pulling laterally

tends to break lateral interhelical interactions and can lead to gross structural rearrange-

ments even before any TM helix unfolds.
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Few SMFS simulations have been conducted for membrane proteins, partly due to the

computation resources required. One all-atom MD study [136] identifies a number of key

residues that resist mechanical unfolding in the intermediate states probed by the experi-

ment [43], although the pulling speed (1-50 m/s) precluded observing WLC behavior for the

unfolded segments. A 2016 CG study uses the same pulling rate as ours (∼ 106 nm/s) and

finds FECs with WLC behavior [47]. Although many features are similar between this and

our studies, we observed more intermediates (Table 3.5).

We concur with a recent study of GlpG force-induced unfolding [140] whose major con-

clusion was that the two-stage model [29] is overly simplistic as isolated helices can co-exist

with a multi-helix folded region, and all the helices do not have to be in the bilayer prior to

the initiation of folding. Nevertheless, some technical differences are worth noting:

(i) We explore different parts of the landscape as we explicitly simulate the experimental

pulling protocol by applying force with a moving springs, whereas the other study conducts

umbrella sampling with an energetic bias determined by the N-to-C separation distance.

(ii) We do not restrain the secondary structure and allow the native helices to unfold.

(iii) We observe TM helices go surface-bound and quickly break and become extended.

(iv) We correct for loss of protein-lipid interactions as helices come together in the bi-

layer.

(v) we do not employ a Go model (we only study unfolding) nor stabilize the N-terminus

to promote the C→N pathway. Consequently, we observe unfolding beginning from other

regions than just the C-terminus.

(vi) We use principal components as the reaction coordinates to depict the pathways

instead of the end-to-end distance and the average z-value of all Cα atoms to manifest the

collective conformational change.

Interestingly, the groups earlier study found that folding could occur in either the N→C

or C→N pathways [139] as we observe.

While our method has widespread applications, several issues exist. First, we cannot
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refold the membrane proteins by relaxing the force, as found experimentally [130, 131, 134].

Improvements in our energy function are in progress to address this issue. Also, we assume

an infinite flat membrane bilayer, which is valid for bR, but experimentally, GlpG [130] is

embedded in bicelles, which may not be large enough to accommodate all the states we

generate in our simulations.

3.9 Conclusion

We have developed an accurate and fast near-atomic level method to conduct 100s of unfold-

ing simulations to characterize the energy surface for force-induced unfolding. The method

reproduces many of the experimental features of SMFS studies for the unfolding of bR

[43] and GlpG [130]. The simulations can assist experimental studies by helping convert

force-extension curves to structures, pathways, and energies, which can be challenging. For

example, we identified the more stable amino-terminal domain of GlpG as the more likely

terminus to unfold, but it escaped detection due to the all-or-none unfolding behavior along

this route. The counterintuitive unfolding of this more stable end [137] arises in part from

higher hydrophobicity of the amino terminal TM helices, which highlights a general fold-

ing property for membrane helices: While increased hydrophobicity promotes insertion into

the bilayer, it also enhances dissociation as the lipid bilayer is a good solvent for isolated

hydrophobic helices. In contrast TM helices that bury polar or charged groups upon asso-

ciation tend to remain associated as the cost of exposing their non-hydrophobic moieties to

the bilayer is high.

We find that method of applying the force can significantly alter the region of the energy

surface that is probed. Notably, the application of constant force reduces the probability of

observing intermediates and increasing the apparent unfolding cooperativity, as compared

to the use of stiffer cantilevers that can relax to lower force after an unfolding event which

increases the probability of observing intermediates. The application of constant force can

be intentional, but also can be a consequence of force effectively being applied through a
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weak spring constant, such as that inherent in magnetic tweezers measurements where the

magnetic field varies slowly with distance, or after a substantial portion of the protein is

unfolded and as it acts a weak entropic spring. Our method can be employed to simulate

complicated gedanken pulling experiments beyond current experimental capabilities, such as

pulling on multiple sites in multiple directions with different strength of the springs, and

with either membrane or soluble proteins.
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CHAPTER 4

FUTURE PERSPECTIVES

The previous chapters described a tool for simulating SMFS of transmembrane proteins.

With coarse-grained model Upside and a proper energy function for transmembrane proteins

UChiMemPot [48], I showed that it is possible to obtain useful information about unfolding

pathways of transmembrane proteins [124], often consistent with various experimental and

computational unfolding studies. Additionally, in some cases, unfolding simulations can help

explicate and interpret results from such studies.

Notwithstanding the successful demonstrations of acquiring results with an accuracy com-

parable to experiments, the work described here still remains to be implemented on larger and

more complex systems (eg. multiple domain transmembrane proteins, β-barrels). Although

the topics described henceforth in this chapter is under development and unpublished, I will

present some ideas to extend my work described in this thesis. First, I will present some

ideas for improving the membrane burial potential for broader application. Next, I will show

opportunities for applying our tool to more systems and obtaining more quantitative data

regarding the unfolding kinetics. Last, I will discuss directions for simulating transmembrane

proteins in general.

4.1 Improve the membrane burial potential

4.1.1 Optimize for folding transmembrane proteins

Because the membrane burial potential is only applied to residues exposed to the surrounding

lipid molecules, to which extent a residue is in contact with the lipids is critical in balancing

residue-residue and residue-lipid interactions. In Chapter 2, the midpoints for exposed and

buried were chosen empirically (see Fig. 2.4 and Table 2.2) to position transmembrane

proteins in lipid bilayer while accounting for the paucity of charged residues in the middle

of bilayers. Briefly, a residue is considered exposed to the surround solvent when the residue
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burial ≤ the midpoint; otherwise, it is buried in the protein core and thus is excluded from

the potential application. Because it needs to assure the continuity of all potential functions

in Upside, a modified sigmoid function is used as the coefficient of the membrane burial

potential (Fig. 4.1).
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Figure 4.1: Coefficient of membrane burial potential. The sigmoid function enables
continuous smooth transition from the fully exposed state to the fully buried state.

In this case, the potential profile as well as the choice of the midpoint may not be suitable

for folding transmembrane proteins. Residue-lipid interaction could be traded off for residue-

residue interaction as two or more helices come together (see Fig. 2.2E). In an extreme case

in which all residues are considered exposed (the midpoint is very large), helices will naturally

tend to align in parallel in order to maximize the residue-residue interactions (Fig. 4.2).

The GxxxG motif [36] (in cross shape) would therefore be unattainable.

The contrast divergence technique from machine learning [78] can be used to optimize the

membrane burial potential for folding transmembrane proteins. Because lateral association

of proteins with a single-span TM helix can be treated as a constrained docking of rigid

bodies whose backbone geometry requires mere minor adjustments [160], the dimerization of

those proteins provide training cases. However, there is a caveat that the training set should
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Figure 4.2: Balance between residue-lipid and residue-residue interactions. If losing
the residue-lipid interaction and gaining the residue-residue interaction is more favorable, the
helices will tend to align in parallel to maximize the interhelical contact and the residue-
residue interactions. In this case, the structure in scissors shape is not attainable.

include higher ordered oligomeric TM structures, such as bR and GlpG. Becasue residues in

dimeric single-span TM helices are mostly fully-exposed even in the interhelical interface, the

midpoint for recognizing exposed residues may be over-estimated. In addition, as structural

rearrangements are of functional importance for TM proteins with more helices, it is not

certain that those fold into a single (low-energy) structure (i.e., different conformations for

one protein exist) [161].

4.1.2 Derive new potential for β-barrels

Previous study has shown that amino acid distributions of transmembrane α-helical proteins

are highly correlated with those of the lipid-facing residues in β-barrels [69]. This correlation

suggests that our potential with Upside could be suitable for β-barrels but further testing is

required. Nonetheless, new potential profiles specific for β-barrels would be benificial, after

all the lipid composition of the membranes in which β-barrels are embedded are different

from those of transmembrane α-helical proteins [69, 162].

It may be difficult for our model to simulate the folding or unfolding of β-barrels because
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when the barrel opens it will be hard to differentiate the inward-facing residues from the

outward-facing residues and thus to apply the membrane burial potential. However, it is

possible for us to simulate (i) the dimerization or oligomerization of β-barrels to study the

association and interaction of monomeric barrels, and (ii) the folding, unfolding, and refolding

of the plug domain inside β-barrels under force, for example the mechanical unfolding of the

first 161 residues inside FhuA by AFM [163]. In both cases, structures of the β-barrels need

to be assumed to remain unchanged in the simulation. In other words, the barrels are rigid.

4.2 Apply forced unfolding to more systems

4.2.1 Unfold SOD, a small soluble protein

Our tool for simulating forced unfolding can be easily applied to soluble proteins. The mem-

brane burial potential is not needed and the protein is usually smaller than transmembrane

proteins, so more realistic pulling velocity is allowed. Besides, since Upside is capable of rapid

de novo folding of soluble proteins shorter than 100 residues, we can refold the protein.

For instance, how Cu/Zu-superoxide dismutase 1 (SOD1) folds is of particular interest

because its prion-like misfolding is linked to the disease ALS [127], which is a progressive neu-

rodegenerative disease. SMFS (optical tweezers) has been employed to study the unfolding

and refolding of the most misfolding-prone form of SOD1 [127] to illuminate the mecha-

nism of misfolding. Our preliminary results show that unfolding SOD1 at lower temperature

produces distribution of cumulative contour lengths similar to that obtained in experiment

[127].

4.2.2 Unfold bR from the trimeric state

Preliminary results of the forced unfolding of bR from the trimeric state have shown that

more and longer lived intermediates exist than in the unfolding from the monomeric state.

It would be interesting to investigate the difference that roots in the interaction among the
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monomers of bR, which may shed light on the trimerization of bR molecules. Because we

are able to perform thought experiment that are not yet possible practically, we can remove

one or two monomers from the trimer or mutate certain residues on the protein during the

simulation to detect key interactions responsible for that difference.

4.2.3 Unfold ClC transporter, a two-domain transmembrane protein

The ClC family includes a large number of passive channels and active transporters, vital for

cellular functions such as the maintenance of membrane potential and volume homeostasis

[164]. In particular, the E. coli ClC antiporter, ClC-ec1, is a dimer with a single transport

pathway per subunit [164]. Compared to bR and GlpG, ClC-ec1 is structurally more com-

plicated as each ClC-ec1 subunit is internally pseudo-symmetric, dividing the protein into

two domains with inverted topology [164].

An unfolding study of ClC-ec1 by magnetic tweezers [164] with a protocol similar to

unfolding GlpG [130] shows that the protein can be separated into two stable halves that

unfold independently, in line with an evolutionary model in which the two halves arose from

independent folding subunits that fused together later. We expect to observe more interme-

diates during the unfolding process with the AFM-style unfolding and hence to characterize

the unfolding under close scrutiny.

4.2.4 Construct the energy surface revealed by unfolding simulations

Equilibrium free energy profile can be derived rigorously [45] from repeated non-equilibrium

force measurements on the basis of an extension of Jarzynski’s identity [165] between free en-

ergies and the irreversible work for titin I27 [166] and bR [167, 168]. Particularly, it would be

interesting to construct the energy surface of GlpG revealed by our unfolding simulations,

which will assist understanding of the folding energetics. Standard protocol of construct-

ing the energy surface is expected as part of the workflow in conducting forced unfolding

simulations.
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4.3 Prediction for conformational chage of transmembrane

proteins

Prediction of pathway between stable states can be performed using a variety of techniques,

such as simple morphing methods based on interpolations in Cartesian [169] or internal

coordinates [170, 171], algorithms built on an elastic network model [172] (eg. eBDIMS

[173], ANMPathway [174]), and MD-based approaches (eg. string method with swarm-of-

trajectories [175, 176]). The efficiency and accuracy of these methods are typically strongly

tied to whether it can propose a reasonable initial trajectory for atomic MD. We expect

that Upside with the membrane burial potential will be useful for studying conformational

changes of transmembrane proteins, in elucidating conformational transition pathways diffi-

cult or expensive to sample with all-atom MD, exploring transient intermediate states which

are hard to obtain in experiment, and providing physical meaningful trajectories that help

generate experimentally testable hypotheses.
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[5] G. E. Tusnády and D. Kozma. Statistics from PDBTM as of Jan. 2017: 2638 in-
tegral membrane proteins out of 3006 membrane protein entries, Jan. 2017. URL
http://pdbtm.enzim.hu/.

[6] E. Wallin and G. von Heijne. Genome-wide analysis of integral membrane proteins from
eubacterial, archaean, and eukaryotic organisms. Protein Sci, 7(4):1029–38, 1998.

[7] M. S. Almen, K. J. Nordstrom, R. Fredriksson, and H. B. Schiöth. Mapping the human
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