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“The phrase ‘in the dark,” as I'm sure you know, can refer not only to one’s shadowy
surroundings, but also to the shadowy secrets of which one might be unaware. Every day,
the sun goes down over all these secrets, and so everyone is in the dark in one way or
another. If you are sunbathing in a park, for instance, but you do not know that a locked
cabinet is buried fifty feet beneath your blanket, then you are in the dark even though you
are not actually in the dark, whereas if you are on a midnight hike, knowing full well that
several ballerinas are following close behind you, then you are not in the dark even if you
are in fact in the dark. Of course, it is quite possible to be in the dark in the dark, as well
as to be not in the dark not in the dark, but there are so many secrets in the world that it
is likely that you are always in the dark about one thing or another, whether you are in the
dark in the dark or in the dark not in the dark, although the sun can go down so quickly
that you may be in the dark about being in the dark in the dark, only to look around and
find yourself no longer in the dark about being in the dark in the dark, but in the dark in
the dark nonetheless, not only because of the dark, but because of the ballerinas in the
dark, who are not in the dark about the dark, but also not in the dark about the locked
cabinet, and you may be in the dark about the ballerinas digging up the locked cabinet in
the dark, even though you are no longer in the dark about being in the dark, and so you
are in fact in the dark about being in the dark, even though you are not in the dark about
being in the dark, and so you may fall into the hole that the ballerinas have dug, which is
dark, in the dark, and in the park.”

-Lemony Snicket, A Series of Unfortunate Events: The End
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convolved to include the energy loss and widening of the nonionizing energy loss
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Example set of calibration residuals for a single strip across the 16 time segments.
The points are minimized to have an offset and gain for each time segment to
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ADC channel for the entire experiment. The minimum ionizing peak from the be-
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Distributions of the quadratic calibration equation terms and the corresponding
statistical fitting errors for all usable strips on both front and back of all detec-
tors. The histograms containing the calibration values (top) have some structure,
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Energy corrections applied to the calibrated 8Li alphas to return their energy
values back to their real energy coming out of the ion cloud. The black line is
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A) Difference in energy for all usable strips between the front and back measure-
ments. Events with an energy difference greater than 60 keV are discarded. The
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strips or a poor back strip energy reconstruction across strips. B) Difference in
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kinematically impossible for an alpha double to have a difference in strip number
greater than 8. . . . . . .. L
A subset (a’s in the Top-Bottom detector system, ~50% of the total) of the good-
quality experimental ”triples” data divided into the four possible alpha energy
difference spectra. The “parallel” beta spectra have clear structure and can be
used to measure tensor currents. The “90°” beta spectra have less structure and
are used to test various systematics . . . . . .. ...

Example of the decay from lithium-8 to beryllium-8* final state distribution.
The blue curve is taken from an R-matrix fit to measured lithium-8 data by
Bhattacharya, M. et. al. in 2006 [12]. The grey dashed line is an R-matrix fit to
our lithium-8 data done by Tsviki Hirsh. The peak of the grey line is ~13 keV
lower in energy than the Bhattacharya et al. curve (inset). . . ... ... ...
Comparison of the energy loss in the extra dead layer for the 148Gd and 244Cm
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Energy dispersion of « particles through the A) normal dead layer and B) the
extra dead layer based on impinging angle and « energy used to construct the
detector lineshape. Here, the white dots represent the sigma of a Gaussian fit
to a dead layer simulation in TRIM and the colored plane is a 2-dimensional
polynomial fit to the data. . . . . . . . . . ...
A) Example of a nonionizing energy loss distribution for an « particle in silicon
fit to a F-Distribution (shifted so that the maximum is at 0 to match with the
energy loss correction already applied to the data). The entire distribution will
be flipped from positive to negative before being applied to the lineshape. B)
and C) are quadratic fits to the F-Distribution fitting parameters for 6 different
a energy NIEL distributions. . . . . . . . . . .. ... ... ...
A) Distribution of the average Gaussian ¢’s fit to the precision pulser peaks to
measure electronic noise for all usable strips with B) the corresponding errors for
each strip. . . . . . . . L
The four stages of formulating a lineshape. The first widening factor is the
detector dead layer (red), followed by the nonionizing energy loss distribution
(orange), then the detector Fano factor resolution (green), and then the general
electronic noise from our system measured by a precision pulser. Each stage is a
combination of the previous ones. The combination of all effects is in blue.

A comparison between both 148Gd and 244Cm spectra (blue) with their calculated
lineshape (red). They match very well, except for a low-energy tail that results
from a source dead layer, which is not present in the 8Li o lineshape. . . . . . .
The full Autocad rendition of the BPT trap used for the Geant4 geometry. The
chamber and plastic detectors are also included, but not shown here. A) A
complete version with the silicon detectors and their mounts, B) one where the
detectors and mounts are removed so the stainless steel RF shielding is visible,
and C) one with only the frame and electrodes. . . . . .. ... ... ... ...
An example of an electron’s scattering trajectory. Each of the silicon detectors
and backing plastic detectors are highlighted in color. The trap electrodes and
inner “hood” shields are outlined in white. . . . . . ... ... ... ... ...
The four possible simulated alpha energy difference spectra for the top-bottom
detector system to be used for comparison to the data. The blue lines represent
what a pure tensor-interaction spectra would look like while the black represents
a pure axial vector interaction. . . . . . . . ... ...
Geant4 simulated lithium-8 S~ spectra for A) a silicon detector and B) a plastic
scintillator detector. . . . . . . . ..o

The four individual « energy difference spectra with the (’s hitting one of the
same detectors as the o. Also shown are the fits to simulation with the blue line
as pure tensor example and the black line as a fit of both tensor and axial-vector
interactions. The title abbreviations refer to the detectors that received the a’s
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Combined spectra of the ones seen in the previous figure. The o(7/B)S(B) and
a(L/R)B(R) spectra are added by reversing the energy difference from ap — apg
to ap —ap and ay — ap to ap — ay. The fitting results of this spectra define
the total |Cp/C4|? value along with the statistical error. . . . . . .. ... ..
The four individual « energy difference spectra with the 8’s hitting either of the
detectors not struck by an «. Also shown are the fits to simulation with the blue
line as pure tensor example and the black line as a fit of both tensor and axial-
vector interactions. The title abbreviations refer to the detectors that received
the a’s and the 8. Though these spectra are not useful for determining |C/C'4|?,
they are a good check of the integrity of the spectra and simulation fits.

Randomly generated pulse height defect deviations in keV using Gaussian dis-
tributions of each measured parameter defined by the corresponding error (blue
dots). The uncertainty was defined by the 1o fitted error bands (black)

The number of triples measured over the course of the August 2016 experiment as
a function of the time since the ion cloud was ejected. The cycle begins with 800
ms of background measurement and is followed by 70 ion bunch injections (small
peaks) with 200 ms in between each injection. On a larger scale, the number
of decays as a function of the total cycle time increases until the half-life of 8Li
(~840 ms) causes the decay rate to level out. . . . . .. ... ... ... ...
Comparison between the Top Detector single @ energy spectrum (triple events,
black curve) to a simulated one: blue for the &£1-shifted FSD, and red for the
original Bhattacharya, M. et al. FSD [12]. The shifted FSD residuals indicate a
close match with the data. . . . . . .. .. ... ...
The residual differences (measured in 1o) between the beta distributions across
each detector face for simulation and data. . . . . . . . ... ... ... ... ..

An example data (black) reconstructed cosfy, spectrum. The blue and green
lines represent what a simulated spectra with a 100 shift in j3 would look like.
The discrepancy indicates that this spectrum is indeed sensitive to j3 and could
potentially be used for a successful determination of j3. . . . . . . . . .. .. ..
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ABSTRACT

Nuclear physics remains a powerful tool to search for New Physics by testing the limits of
the Standard Model. The electroweak interaction is well-predicted by a pure vector-axial
vector structure. However, the beta-neutrino correlation coefficient, ag,, which determines
the weighting between emission directions of the 8 and v (W(f03,) = 1 Fag,(v/c) cos(bg,))
in [ decay is sensitive to tensor and scalar currents. Thus, high-precision measurements of
the ag,, have long been used as a means to probe for New Physics. The beta decay of 8Li
is an ideal reaction for measuring ag, due to its high Q-value and delayed alpha emission
of the daughter nucleus. By measuring the kinematics of stopped 8Li ions in a Paul Trap
surrounded with silicon strip detectors backed with plastic scintillators and comparing to
simulation, we can set a limit on tensor contributions from ag,. This work represents the
analysis of a high-statistics 8Li data set obtained in 2016 to extract a value of agy. The
results indicated a value of agy = —0.3346 £ —0.001154 = 0.00244ys at lo uncertainty,
which is consistent with the Standard Model and is the most stringent tensor current limit

yet achieved in the low energy regime.
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CHAPTER 1
INTRODUCTION

As with any scientific endeavor, this story is woven into the grand epic of humanity’s quest
to understand the world they occupy. Not even a century ago, the chapters were told almost
entirely in slow episodes with only a few main characters whose names are all well known
today. Fortunately, with the advent of government-sponsored research, grand multinational
collaborations, and eventually the internet, humans have managed to make astronomical
progress in both observing the world’s mechanisms and developing theories to describe.
There is still much left to be discovered, but this work and anything newly introduced

should build upon what we have already learned.

1.1 The Standard Model

According to our current state of knowledge, all of known physics in the universe can be
divided into three different fundamental interactions. These regimes include: the gravita-
tional interaction, which governs the long-range attraction between bodies of mass (such as
planets and stars), the strong interaction, which explains how the particles in an atomic
nucleus are bound, and the electroweak interaction [5], which is more easily distinguishable
as the electromagnetic interaction, (covers the behavior of charged particles and light) and
the weak interaction (relates to radioactive decay) at low energies. Gravity remains a bit of
a mystery, but the final three interactions can be collectively described by a single theory
in terms of discrete or “quantum” mathematical fields. This theory, known as the Standard
Model of Particle Physics (SM) is the culmination of several decades of work from scientists
around the world and has successfully predicted many experimental outcomes, classified all
known fundamental particles and is currently the best theory mankind has for understanding
elementary physics.

However, as was mentioned earlier, the SM is still very much incomplete. On top of the

1



glaring omission of gravity (which some hope will be solved by the discovery of a “graviton”),
there is an abundance of phenomena that are either unexplained or present theoretical prob-
lems. Cosmological observations indicate that the ordinary matter we interact with only
makes up about 5 percent of the universe’s mass [79]. The rest is delegated to dark matter
and dark energy, both of which are not addressed within the SM. Furthermore, the SM
has trouble explaining even the distribution of its own matter. Why there is so much more
matter than antimatter in the universe and why some of that matter is divided into multiple
hierarchies remains a mystery. Since it was discovered via oscillations that neutrinos have
masses, theorists have managed to add that previously unaccounted for fact into the SM,
but the results are rather clunky. The list of similar issues goes on, but many physicists also
voice complaints (which seem almost picky in comparison) that the SM is ugly and has too
many arbitrary parameters that can be measured but not derived.

To address this fundamental problem, the global community of physicists has employed a
two-pronged approach that directly reflects their natural division of labor. The theorists have
devoted a figurative mountain of literature, developing extensions and alternatives to the SM,
which grows ever higher every year. The equally-industrious experimentalists have similarly
devoted many years of effort to a wide variety of ambitious (and sometimes expensive projects
aimed at finding evidence of anything that contradicts the SM or corroborates one of the
theoretical extensions.

At the moment, all particles described in the Standard Model can be summed up using
the scheme in Figure 1. There are 4 gauge bosons (particles with integer spin) that act
as mediators for the interactions that the SM describes: W and Z bosons (weak), photons
(electromagnetic), and gluons (strong). The newly-observed Higgs boson has 0 spin and
allocates mass to all other particles. Fermions (particles with half integer spin) consist of
leptons and quarks, each with three different generations of matter. The higher generations,
being more massive, only occur in high-energy conditions and subsequently decay to the first

generation. Quarks participate in all interactions, while the leptons only participate in the
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Figure 1.1: The fundamental particles of the Standard Model.
been observed are combinations of these. [70]

All other particles that have

weak and electromagnetic interactions (when charged). Of the particles pictured, the most
commonly encountered are the up and down quarks that form the protons and neutrons
within an atomic nucleus, along with the electron, which orbits around them.

Under some circumstances in the nucleus, an up or down quark can change flavor to the
opposing first generation quark and emit a virtual W boson. Depending on which way the
quarks change flavor, the W boson will decay into either an electron and an anti-neutrino
or a positron and a neutrino. This work focuses on the former process, which is depicted in
Figure 2. On an expanded scale, the quark flavor change would look like a neutron changing
into a proton (or vice versa) within an atomic nucleus, resulting in a decay that changes the
atom’s properties. This entire process is known as beta decay.

Precision measurements of beta decay are often used as a “broad-band” test of physics
beyond the SM (BSM) because the theoretical structure is sensitive to so many of the

different favored SM extensions or alternative mechanisms. Any deviation from the behavior
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Figure 1.2: An example of beta decay in a lithium-8 atom to a beryllium-8 atom via the
emission of a virtual W~ boson, which immediately decays into an electron and an antineu-
trino

that the SM predicts could be an indication of leptoquarks, charged Higgs bosons, composite
models, [46] or even supersymmetry [80]. A brief review of the possible SM extensions or
modifications scalar and tensor currents would indicate is in Table 1.2.1 in section 1.2.1.
Alternatively, if no deviation is found, the same precision measurements can put powerful
boundary conditions on potential contributions from BSM physics. This work presents an
example of a beta-decay precision measurement using the correlation between the electron

and anti-neutrino in lithium-8 beta decay.

1.2 Development of the Beta Decay theory

The history of Beta Decay and its eventual development into a facet of the Standard Model
began well over a century ago in the late 1800’s when Henri Becquerel and the Curies discov-
ered that elements such as uranium, thorium, polonium, and radium all emitted particles.

[4] In 1899, Ernest Rutherford’s research partitioned the emitted particles from radioactive



decay into “alpha rays” and “beta rays.” [17] Thus, the term “beta decay” was born. It was
quickly established that the beta rays were effectively electrons (in the case of 5~ decay) and
that the process resulted in a different element one atomic number away from the parent.
However, for the next 30 years, beta decay was a source of great anxiety for many physicists
attempting to understand how it worked. Unlike their sister “alpha-rays” that were emitted
in discrete energies accounted for by the difference in mass between the original and resulting
nuclei, the beta-particle energies populated a broad continuum. Even more frustrating, the
entire process resulted in energy, momentum, and angular momentum defying conservation
laws.

Wolfgang Pauli finally shed some light in 1930 with a noteworthy letter to a physics
meeting in Tiibingen, Germany, [14] where he suggested that another neutral light particle
contained in the nucleus is emitted alongside the £ particle. A few years later in 1933, one
of the most famous characters in the Story of Science; Enrico Fermi, dubbed this particle
the “neutrino” and published his historical “Theory of Beta Decay” in various Italian and
German physics journals after being rejected by the journal Nature (this should provide
some solace to graduate students everywhere).[33] [34] [32].

Though not translated into English until several decades later [107], Fermi’s theory (with
Pauli’s assistance) solved many of the problems that beta decay had introduced and correctly
predicted a great deal more. The continuous energy spectra of the [ particle could be ex-
plained by the neutrino also taking away some of the energy from the decay. If detected, the
energy and mass of the two particles summed together would equal how much mass/energy
had been lost in the decay, thus allowing energy and momentum to be conserved. In ad-
dition, the angular momentum between the initial and final states of the nucleus remained
unchanged during beta decay since the number of total nucleons (protons and neutrons,
each having intrinsic spin angular momentum 1/2) also remained unchanged. However, the
3 particle also comes away with a 1/2 unit of spin in one direction, which when coupled with

a neutrino carrying a 1/2 unit of spin in the opposite direction would restore angular mo-



mentum conservation. This particular process would later be termed a “Fermi transition.”

Included in Fermi’s theory was also the first Hamiltonian for beta decay:

%— =gCy (1/_1p’7u7'+¢n) (&e%ﬂﬁu) (1.1)

where 1) refers to the wave functions of the particles, 7, is the set of Dirac matrices, and
74+ is the operator that turns a neutron into a proton (or vice versa). Cy/ is a constant that
indicates the relative strength of the vector interaction, which the Fermi interaction requires
(one of 5 available). This Hamiltonian could in turn be used to calculate the transition
probability of a beta decay, which allowed experimentalists to compare their beta energy
spectra to Fermi’s new theory.

Fermi concluded his paper with a derivation of the aforementioned transition probability
and a neutrino mass estimation of either zero or very small compared to the electron mass.
[106] Shortly thereafter, in 1934, the other half of beta decay theory was experimentally
confirmed by none other than Marie Curie’s daughter, Iréne Joliot-Curie and her husband
Frédéric. They observed a 3% decay (a positron and neutrino emission) by bombarding
aluminum with alpha particles to create radioactive phosphorus-30. This discovery won
them the Nobel prize in chemistry in 1935 for producing the first artificially radioactive
nucleus. [21]

Again, though slightly incomplete, Fermi and Pauli were largely correct in all their pre-
dictions concerning beta decay. Their theory was expanded a couple years later in 1936 by
George Gamow and Edward Teller to include transitions where the neutrino and beta parti-
cle are emitted with their spins in the same direction with a net change of 1 unit of angular
momentum. [36] This addition lengthened the beta decay Hamiltonian to include an axial
vector interaction. That said, if one could be added, so could more, since the wave functions

in the Hamiltonian can theoretically be multiplied via all five of the available interactions.

3 = g[Cs(pihn) (Vethy) + (scalar interaction)
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CT@pW/ﬂ)\Til/)n)(lﬁeimﬂ)ﬂﬁy) + (tensor interaction)
CA(ZEpi’yu’%Tid}n)(Zzei’yM’Yg)i/)y) + (axial vector interaction)
C p(z/jp757i¢n)(1/jey5@/zy)} + (pseudoscalar interaction)
h.c (Hermetian Conjugate)

Following the second World War, fundamental research resumed with vigor in the 1940’s
as scientists rushed to make use of the nuclear reactors that had been previously developed
for other purposes. With the rapid parallel development of various spectrometry methods
and the shell model via Maria Goeppert-Mayer, this was a particularly fruitful time for
beta decay. A plethora of previously unavailable beta decay spectra allowed for further
confirmation of Fermi’s beta decay model in addition to revealing less common “forbidden”
transitions where more than 1 unit of total angular momentum change can occur in the
center of mass system. It was these spectra that at the time led researchers to believe that
beta decay was a scalar-tensor (ST) interaction based on the lack of energy dependence in
allowed transitions and a sole measurement of helium-6. [82] It was also amidst all this new
understanding that the next big question of beta decay was raised: Is parity conserved in
the weak interaction?

By 1953, in the high-energy regime, the K-meson beta decay was beginning to hint that
final states with different parities were possible [22]. This discovery caused quite some stress
among those studying low-energy beta decay and in 1956 Tsung-Dao Lee and Chen Ning
Yang published a detailed study of available experimental data in the strong, electromagnetic,
and weak interactions as it applied to parity conservation. Their findings indicated that there
was sound evidence of parity conservation in the first two interactions, but that nobody had
actually looked into whether or not this was the case in the weak interaction.[61] They offered
up some potential experiments to resolve the issue and in the next year, the landmark Cobalt-

60 experiment was conducted by a team of scientists led by Chien Shiung Wu (Columbia
7



University) at the US National Bureau of Standards. The setup required cooled Cobalt-60
nuclei to be aligned in a magnetic field (so that all the spins point in the same direction)
with means to detect the Cobalt-60 beta particle, and then 2 photons from the excited
daughter nucleus. Since the electromagnetic interaction was known to adhere to parity
conservation, if the beta particles were emitted in the same directions as the photons (and
the spin of the nucleus), then parity would be conserved. To everyone’s surprise, most
of the beta particles were emitted in the opposite direction to the gamma rays and there
was clear distinguishability between the “right-handed and left-handed” spin particles. The
phenomenon in turn proved that parity was not only violated, but maximally violated. [110]

This discovery meant that the beta decay interaction Hamiltonian had to be updated

once more to include parity violating interactions. It took the more general form of:

% =g [ Z Oi(i’pAiT:twn)(@z}eAiwu) + Z C; (&pAiTﬂ:@bn)(@EeAiVB@DV)] +h.c

= o[ S Gphimstin) (Fehi(Ci + Cas) )| + e (12

7

where the summation is over the 5 different interactions and A; refers to the corresponding
operations. The original summation includes the “parity-even” interactions while the second
term introduces “parity-odd” couplings (a pseudoscalar changes sign when space is inverted).
Furthermore, parity violation allowed for two more developments to emerge. It was soon
confirmed at various laboratories that the distinguishable spins of the beta particles were
always longitudinally polarized a certain way. ST particles behave as “right-handed screws”
when traveling and 5~ particles behave as “left-handed screws” (the same for anti-neutrinos
and neutrinos, respectively)[109]. This interesting detail prompted the same Lee and Yang
from before (along with a few other theorists) to simplify the theory of the neutrino (assuming
that the neutrino is massless). Since the spin of the neutrino is always parallel to the
momentum, the 4 components that usually describe a wave function could be cut in half,

resulting in what is known as the “2-component theory.” [62]
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Once the parity excitement was over, some researchers also returned to the process of
confirming the interaction structure of beta decay. Then, as now, one of the most powerful
methods of probing interactions was via beta-neutrino correlation. After a more robust mea-
surement of helium-6 and argon-35 (Gamow-Teller and Fermi decay types, respectively) in
1957 at Argonne National Laboratory and the University of Illinois Cyclotron, each transition
was found to be operated predominantly via axial vector and vector interactions, respectively.
[47] [9] The same structure was then confirmed in electron capture via Europium-152 [39],
the decay of a highly polarized neutron beam [18], and in 7+ ST decay [31]. Additionally,
it was observed that the vector and axial vector interactions occur in opposite phase, finally
solidifying what is now known as the V-A interaction. There have since been many similar
measurements limiting scalar and tensor contributions (pseudoscalar terms vanish in a non-
relativistic setting), this one included. However, by 1958, when all of these findings were
being published, the theorists finally caught up with what was happening and updated the
theory of beta decay once more (while pointing out many other positive points of V-A) in
separate papers from Feynman and Gell-Mann([35], and Sudarshan and Marshak. [96]

Drawing from Feynman and Gell-Mann’s paper, the two used Lee and Yang’s 2-component
theory to introduce operators that would transform 4-component spinors into 2-component
spinors (either left or right-handed). These projection operators, defined as a = %(1 —75)
(left-handed) and a = %(1 + 75) (right-handed), could be inserted into equation (1.2) where
Y1, = ay and Yp = a!. In addition, if one assumes that parity is violated maximally and
that the neutrinos are massless, C; = CZ/- for a left-handed neutrino and C; = —C’; for a

right handed neutrino. The result for a 5~ decay, when including the observed orientations

1. Formalism taken from Peskin and Schroeder [78]



specified earlier, is: 2
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Of the 5 interactions, A; and 5 commute in the case of S, T, and P (A;v5 — v5A; = 0) and
anticommute in the case of A and V. (A;75 + 75A; = 0). In addition, since v5v5 = 1, only

the V and A interactions of both terms are nonzero. Thus, we have:

1 - - _
Hy =79] D (UpAv, AT£n)C; <¢»e2<Av,A — Ay, a%5)y + 9e2(Avia — AV,A%)%)] +he

]
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Since the 7+ operator does not change the wave function of the final state3, it can be dropped.
Also, the two constants can effectively be combined since the interaction is the same for both

terms. Thus the final beta decay Hamiltonian is:

‘%ﬂﬁ :gic(i}th(l - 75)1/}71) (&e’m(l — ’Y5)¢y) + h.c (1.3)

The wave functions and Hamiltonian are discussed in greater detail in Appendix A.

There have since been many developments in the Standard Model that have contributed
to the total weak interaction theory, including unification with the electromagnetic interac-
tion at high energies, but we will not discuss them here. The final electroweak interaction

Lagrangian (approximately equal to the Hamiltonian but better suited to the math required

2. The lepton wave functions are displayed in such a way that indicates the annihilation of a neutrino
and the emission of an electron rather than the emission of an antineutrino and an electron

3. More details discussed in Appendix A.
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in the SM) can have up to eight terms after dealing with neutrino masses and the Higgs
field. However, the only term that concerns this work is the charged current, which deals

with a transfer of charge via a W boson. For a standard 8~ decay, the effective Lagrangian

is: [78]
Vi [( - - G 2
Ay = s (Fer (=P (S (L= Ppe) | e amd = Sz (1

where G is the Fermi Constant and is defined as the strength of the weak interaction at
energies much less than my and V4 is the up-down quark entry of the Cabibbo-Kobayashi-
Maskawa (CKM) Matrix. Equations (1.3) and (1.4) are effectively the same.

Though the SM has written off by construction contributions from scalar, tensor, and
pseudoscalar interactions, there are still many questions unanswered. As in the 1950’s, beta-

neutrino correlation measurements continue to be a powerful tool in limiting BSM physics.
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1.2.1 Brief Review of Potential BSM Physics

Model | Via | S/T Explanation
. S Though in the SM they are neutral, in many SM extensions,
g &, charged Higgs bosons are possible in a state of two charged
2 g doublets, which would form a “meson”. In principle, a HF meson
45 é can take the place of any W* boson exchange, such as -decay
¢ it and produces S currents.[42][46]
z
% S/T Leptoquarks (LQs) are hypothetical heavy bosons that allow
= &% coupling between leptons and quarks. Their properties vary
g fjs based on what SM extension is predicting them, but for § decay
; S interactions, they can only have spin 0 or 1 and charge 2/3 or 1/3.
2 i Spin-0 LQ exchanges can result in S, P, and T interactions while
§ spin-1 LQ exchanges only result in S and P interactions.? [46]
5 B
3 d LQM\3) = LQf2\3)
. - S/T | In composite models, quarks and leptons make up “composites”
5-; % of the bound states in other fundamental particles. At
= < mass-scales above 300 GeV, (-decay contact interactions can
8 % occur, for which the reaction Hamiltonian would contain
é % couplings to S, P, and T currents.® [46]
@)
d time Y
= . S/T In MSSM physics, Lepton and Baryon numbers need not be
UJO o conserved and both left and right-handed (L,R) fields may be
= E = used. The addition of R-handed, spin-0 partner particles, such as
E 2 % squarks (d,u), sleptons ([), and neutralinos (x), results in L-R
é i g mixing which would add S and T currents to the interaction
2|5 Hamiltonian. [80]
: | PRI
u 92;; Ve u 5(?/ e

Table 1.1: Brief overview of BSM physics that would introduce scalar (S) and tensor (T)

currents to the -decay interaction.

a. Several more terms with exotic currents are possible if right-handed neutrinos are introduced
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1.3 [ — v Correlation Measurements

If one follows Fermi’s golden rule to derive a transition probability for an allowed beta decay
with a non-oriented nucleus, the results would look something like the equation below (see

Appendix A).

2 2
_ . C mc

P(E)dE, = (2SR \pEL(EBy — E)2dE,¢ (1 + aﬂy% +bfiers g + ) (1.5)
(& 14 e

where p and q are the momentum of the 3 particle and neutrino, respectively. The constant
agy, that determines the level of contribution from the cross term between p and q is known
as the 8 — v correlation coefficient or “little a” for short. The expansion of ag,, taken from

Jackson, Treiman and Wyld is below:4[52]

M 2
[ME? (ICvI? = 1O + 103 = 1C5 %) + BIGLE (jo7 2 = [Ca P + 1052 = |04 )

agy =
(Mg (ICs 12+ 1Cy 2 + |12 + 1C412) + [Marl® (ICAI2 +1CrI2 + 1CY 2 + 1C 2

(1.6)

If we take the previous assumptions of maximal parity violation with left-handed and essen-

tially massless neutrinos (from the 2-component theory), then C; = CZ( . In addition, for a

pure Fermi or Gamow-Teller allowed beta decay, ag, simplifies quite nicely:

_ oy P~ 1Csl?

1|Cp|? — |Cy?
Fermi: ag, = Gamow-Teller: [Crl” — 1C4]

Lhed 8 W bt L ag, = -+ A (1.7)
Cs2 +|Cy 2 3102 + 102

The reader will probably notice that in both the case of pure Fermi and Gamow-Teller
beta decay, if ag, is measured through the transition probability, it can be determined
whether or not either scalar or tensor couplings are contributing to the decay.® Unsurpris-
ingly, many physicists have also noticed this feature and have since designed experiments

around it, though this is not the only way to limit exotic contributions to the electroweak

4. Fermi nuclear matrix element: |Mp|* = |f 1|2, Gamow-Teller nuclear matrix element: [Mgr|” = |f 0'}2

5. Many experiments measuring ag, construct an asymmetry ratio, as shown in Equation 1.7 using recoil
spectra simulated from transition probabilities. In the Gamow-Teller instance, such a renormalization would
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interaction.

In general, all experiments designed to detect scalar or tensor currents fall into one of
two categories: high and low-energy. High-energy experiments at the LHC count events
with high missing transverse energy (MET) to put bounds on new physics, or just search
for new particles that would expand the SM, such as a right-handed W boson. Low-energy
experiments use nuclear properties to put similar bounds on new physics. Though there are
a plethora of ways to limit new physics in the low-energy regime (half-life measurements
or using higher-order coefficients in the transition probability rate), I will only focus on
experiments that use ag, and are directly comparable to this work. Figure 1.3 is a chart
of various limits set by such low-energy experiments on ag,. Each of them will be covered
briefly and this section will conclude with a detailed explanation of my group’s contribution
using the beta decay of lithium-8. In addition, it is also worth delving into the tensor and
scalar limits set at the LHC in the high-energy regime using a survey of their vast data
sets. Their surveys have resulted in limits of relative uncertainty in the 0.1% range, though
nucleus-based measurements are not far behind as they too are beginning to push below the

1% threshold.

1.3.1 High-energy limits of scalar and tensor currents at the LHC

The LHC combined with the experiments it hosts, the Compact Muon Solenoid (CMS) and
A Toroidal LHC Apparatus (ATLAS), have two great strengths when it comes to making
new discoveries or postulating on physics that already exists. These advantages are: ever-

heightening particle collision energies and more data than anyone knows what to do with.

look like this:

Jia Jot F(£ZE)pe(Eo — Be)*ag, £ dE.dQ. asy
agy,(meas) = FoT— = Trb.
T Jot on F(EZEe)pe(Eo — E)2(1+ bpiers /Ee)dEedQ, (1 +brierz(E2))

where the positive and negative p-q terms add in the numerator and cancel in denominator (vice versa with
1 and bfierz)[lo?)] The current high energy bounds on byie,. for both Gamow-Teller and Fermi interactions
are below 1073 [74] with a similar constraint from low-energy measurements [44].
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Limits on Scalar and Tensor contributions to the Standard Model
L. , 8Li (2015)
: ® Pure Gamow-Teller
i ® Pure Fermi
corrected = - - — - - o - ----0 ©He(1963), original ® Mixed
38mK (2005)
, 2Ar (1999)
o 21Na
(2008)
on (2017)
an(eXp)/an(SM)
0.975 0.985 0.995 1.005 1.015 1.025 1.035 1.045 1.055 1.065

Figure 1.3: Comparison of experimental values of ag, determined via nuclear beta decay to
the predicted SM values. Error bars represent uncertainty at 1o. References include: n:[23],

21Na:[102], 32Ar:[7], 38 Kr:[40], OHe:[54], 3Li:[94].

It is generally understood that new physics can be observed at higher energies (which is the
motto of anyone trying to build a bigger and better collider). To that end, the LHC (or
whatever high-energy collider comes after it) will continue to search for new physics that
exist above the current maximum: 13 TeV. In the case of the electroweak interaction, the
most interesting particle that could potentially be found is a right-handed W boson. If such
a particle were found, it would overturn the assumption that the weak interaction only deals
with left-handed particles and new physics would be introduced.

Conversely, given that the LHC has just finished an upgrade without finding any new
interesting particles (yet), we can use their figurative mountain of data to limit new physics.
Experimentalists at the CMS have used pp — e + M ET + X reactions, which are similar to
normal beta decay (ud — e + f1) to search for scalar and tensor interactions in the effective
field theory regime. Their theory suggests that an MET in the TeV range would offset the
extremely small new physics couplings. By counting such events, the corresponding limits
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can be calculated. In the previous 8 TeV regime, using a luminosity of 20 fb~!, the limits
set for scalar and tensor couplings were below 5.8 x 1073 and 1.3 x 1073 at 90% confidence,
respectively. In the new energy regime with 50 fb~1, the collaboration anticipates that these
limits can be cut in half.[74][19][29] Needless to say, these limits pose quite a challenge for
the nuclear physicists working to make a complementary limit in their energy regime.
Though not cleanly within the realm of high-energy physics, another collaboration based
in Switzerland is also posing extremely stringent limits on tensor contributions to the SM.
Thus, by rule of proximity, they will be included in this section as well. Using a stopped
pion beam and the PIBETA large-acceptance Csl calorimeter, they managed to limit tensor

couplings to ep < 1.4 x 10730 at the 90% confidence level. [26] [74]

1.3.2  Neutron Decay (Mized Fermi and Gamow-Teller)

Most early neutron § — v correlation experiments used the recoil energy spectrum of the
daughter proton to determine ag, and were systematically limited to about 5% relative
uncertainty. However, since then, a new “wishbone” technique has been implemented by
the aCORN collaboration (based at NIST'), which resulted in the most precise measurement
of ag, for the neutron to date. Their apparatus and the corresponding “wishbone” data
are shown in Figure 1.4. When a neutron from the beam decays, the proton and electron
are guided to opposite sides of the apparatus. The proton’s time of flight is measured on
one end and the beta’s energy is measured on the other. By calculating the asymmetry
between the branches (the antineutrino and electron’s momentum were correlated so the
daughter protons are faster and anticorrelated so the protons are slower), and comparing
to Monte Carlo simulation, they established a value of ag, =-0.109 4+ 0.0041 (10), (3.5%
relative uncertainty) which examplifies a “mixed” Fermi and Gamow-Teller decay, and is in
good agreement with the current accepted value. They plan to eventually bring their relative

uncertainty down to the 1% range. [23]

6. er is the high-energy formalism equivalent to C'r
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Figure 1.4: A) The apparatus aCORN used to measure the ag, of neutron decay. B) The
“wishbone” plot for neutron decay compared to an inset Monte Carlo simulation. [23]

1.3.8  Sodium-21 Decay (Mized Fermi and Gamow-Teller)

A 2008 measurement of sodium-21 mirror 8 decay (2! Na(3/27) — 2 Ne(3/21)) confirmed
the accepted value of ag, [102] after a previous experiment resulted in a 3.60 discrepancy
from the Standard Model due to molecular contamination [88]. The group obtained their
21 N from the cyclotron at Lawrence Berkeley National Lab and used a magneto-optic trap
(MOT) to hold ions in place while they decayed. The recoiled daughter nuclei and the shake-
off electrons produced from the positron interacting with the electron cloud were both picked
up using microchannel plate detector (MCP). The times of flight of the decay products were
compared to a Monte Carlo simulation to infer ag, (as seen in Figure 1.5-A). The result,
0.5502 + 0.006 (1o) reflects a roughly 1% relative uncertainty measurement, though the
group anticipates they could reduce it by an order of magnitude if they successfully addressed

their chief sources of error, the highest of which was the size and location of the ion cloud.

102]
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Figure 1.5: The analysis methods used to determine ag, in the 21Na and the 32Ar experi-

ments, respectively. A) Time of flight spectrum of the recoiling 21Ne daughter ion compared
to a Monte Carlo simulation with residuals [102], B) Energy spectrum of the delayed proton
emitted from 32Ar fit to another Monte Carlo simulation with residuals. The narrow peak
is from a pulser to demonstrate the energy resolution. [7]

1.3.4 Argon-32 Decay (Pure Fermi)

The first of the pure trasition measurements listed here, the 87 decay of 32Ar was performed
at the Isotope mass Separator On-Line (ISOLDE) facility at CERN in 1999. The group’s
setup only required implanting 32Ar from a general-purpose separator on a carbon foil. In
turn, rather than tracking all the decay products, only the energies of the delayed protons
emitted by the daughter nucleus were measured using p-i-n diode detectors while all the
other products were deflected away using magnets. In the same manner as the two previ-
ously mentioned experiments, the energy spectra of the protons were compared to a Monte
Carlo simulation to determine ag,, (Figure 1.5-B). The final result produced a 0.7% relative
uncertainty with ag,=0.9989 + 0.0065. The experiment itself only took 12 days (though the
analysis took several years) and the error was dominated by statistical uncertainty and the
errors attributed to the mass values of the parent, daughter, and proton.[7] If it were to be

done again today, this experiment also has some merit for constraining ag, even further.
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1.3.5 Potassium-38 Decay (Pure Fermi)

Another high-precision measurement of the pure Fermi ag, was conducted at Canada’s
TRIUMF facility’s Isotope Separator and Accelerator (ISAC) in 2005 using 38K™ . This
particular setup used a combination of 2 MOT’s (as used in the 21Na experiment and shown
in Figure 1.6-A) to reduce background from any other states of potassium-38. When held at
rest, the ions were allowed to decay. The daughter nucleus was accelerated toward another
MCP to measure the time of flight and energy. The positions and energies of shake-off
electrons generated from the 7 particle would be picked up by a silicon double-sided-strip-
detector (DSSD) and backing plastic scintillator. agy was determined using separately the
time of flight of the recoiled daughter nucleus and by reconstructing the angle between the
beta and neutrino while comparing to yet more Monte Carlo simulations (see Figure 1.6-B).
Their results produced a 0.5% relative uncertainty measurement with ag,=0.9981 £ 0.0048.
As one of the most precise low-energy experiments to date, this one’s largest weaknesses
were their understanding of the electric field within their trap and the data calibration. [40]
An upgrade is currently being conducted to further reduce the relative uncertainty to the

0.1% range.

1.3.6 Helium-6 Decay (Pure Gamow-Teller)

helium-6 is a very interesting isotope and is an equal to lithium-8 in terms of studying
pure Gamow-Teller decays. Recently, there has been a surge of activity among a variety of
collaborations to use its decay to measure ag,. Currently, there are setups being developed
and upgraded in Seattle at the University of Washington’s Center for Experimental Nuclear
Physics and Astrophysics (CENPA), at the Weizmann Institute of Science in Rehovot using
the Soreq Applied Research Accelerator Facility, and at the Grand Accelerateur National
d’Tons Lourds (GANIL) in France. However, as of yet, none of them have been able to match
the limit set by a helium-6 measurement done in 1963 at Oak Ridge National Lab [54].

This particular experiment made use of an unusual apparatus pictured in Figure 1.7.A.
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Figure 1.6: A) Double MOT system used at TRIUMF to measure 38mK decay product
kinematics. B) Top: Monte Carlo fit to the daugher Ar time of flight spectrum. Bottom:
reconstructed angle between the 5 and v, Monte Carlo fit, and residuals. [40]

After irradiating a fine BeO powder at the Oak Ridge Research Reactor, the resulting helium-
6 was swept away using water vapor through various cold and hot volumes designed to remove
the moisture. The then mostly-pure helium-6 was allowed to decay in a large conical volume.
In turn, a small fraction of the recoiling daughter lithium-6 emerged through the tip of the
cone to be eventually detected by a secondary-electron multiplier. Their counting rate and
energy spectrum of the daughter 9Li was compared to a derived counting rate and energy
spectrum to obtain a final value.

The results of this experiment set ag, at -0.3343 £+ 0.003, a 0.9% relative uncertainty
measurement. The group cited their chief sources of error as “random variations in the
spectra and efficiency curves”, possibly from the 12 different data sets they used in combi-
nation to make their measurement. [54] However, in 1998, the experiment was revisited by
a theorist: Gliick, who took into account radiative corrections in the daughter recoil that
had previously been unaccounted for. This adjustment pushed ag, a full 1o higherthan the
original measurement, to -0.3308 + 0.003 now a 0.8% relative uncertainty measurement.|38]

For its time, this experiment proved to be quite a landmark in precision. An even more
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Figure 1.7: A) Apparatus used in the 1963 helium 6 ag, measurement. B) Comparison
between measured recoiled Li recoil energy spectrum (circles) vs the theoretically calculated

spectrum for ag, = —% (line) [54]
precise measurement of ag, using helium-6 should not be so far away given the attention

the isotope is currently receiving.

1.4 The Argonne Lithium-8 Experiment

This work represents the third iteration of the Argonne lithium-8 beta-neutrino correlation
experiment. The first experiment was performed in 2010 and published in 2013 by Gang Li
[64]. Much of the hardware, beam delivery system, and original development of the trap can
be attributed to his work. With only 20,000 full “triple” events, Li was able to constrain the
relative uncertainty to about 3% with ag, = —0.3307 £ 0.009. The second iteration com-
prised of data taken in 2011 (about 300,000 full events) and was published in 2015 by Matt
Sternberg, who considerably reduced systematic sources of error and updated the detector-
data acquisition system. The result of his efforts was an ag, value of -0.3342 4 0.0039, a 1%
relative uncertainty measurement.[94] Though the listed error bar on ag,, itself for the 2015
paper was higher than the adjusted 1963 helium-6 experiment, Gliick’s corrections resulted
in a higher sensitivity to tensor currents. Comparing the two |Cp|?/|C4|? ratios (what is
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actually measured in the experiment and used to infer ag, ), at 1 sigma the lithium-8 exper-
iment limited tensor currents to 0.6% compared to the helium-6’s 0.8% [38], resulting in the
first improvement on the low-energy limit to tensor currents in over 50 years. This work will

further reduce that number.

1.4.1 The Decay of Lithium-8

The isotope lithium-8 itself can actually be credited a nontrivial portion of the success
from the previous experiments given how many useful features it brings both in terms of
convenience of measuring and theoretical sensitivity. Beginning in a 24 ground state and
decaying into a broad, low-lying 2+ excited state of beryllium-8, the isospin change from
1 to 0 requires a Gamow-Teller transition. The nearest 2+ 3Be state that could produce
a Fermi interaction is 13.3 MeV away, so mixing is very unlikely. Calculations performed
in-house using the ab-initio Green’s function Monte Carlo method by R. B. Wiringa and S.
C. Pieper indicate that “very unlikely” means less than 10~% intensity. [108] Thus, for all
intents and purposes, lithium-8 decays purely via a Gamow-Teller transition. The Q-value
of the original 3 decay to 8Be* is on the order of 12 MeV, which results in daughter nucleus
recoiling energies larger than in the previously listed experiments and thus easier to measure.
In turn, almost instantaneously (approximately 1x1072! s), the 8Be* ion falls apart into two
alpha particles, each with its own recoil energy of about 1.5 MeV. In addition, if both the
particle and the two a’s are detected, they produce a “triple” event that is nearly impossible

to arise from a background event. The full decay scheme is pictured in Figure 1.8.

1.4.2 B —a—v Correlation

With the addition of 8Li’s delayed alpha emission, the transition probability becomes a bit
more complicated than the one given in equation 1.5 due to the correlations between each
of the leptons and the additional alpha. A full expansion of the transition probability was

done by Barry Holstein in 1974 [49]. The complete equation can be found in Appendix B
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a+a

Q=16.004 MeV, t,,,=0.84 s

Figure 1.8: The lithium-8 decay schematic including total Q-value and half-life. The entire
decay actually consists of two separate decays: 8Li — 8Be* + ¢~ + v and 8Be* = a + a.

along with more details about each of the terms, but the equation containing the largest

contributions is:

P(E.)dE. o pEe(Ey—E 2dE< FCAL ((p Pa)(q-Pa) 1 ..
( 6) e p 6( 0 6) e gl 92|Ee||EV| 912 |Ee||Ey| 3|Ee||EV|
(1.8)
where g1, go, and g19 are defined in Appendix B. In the events where one of the a’s and
the g particle are emitted in roughly the same direction, the g19 term can be approximated

as a beta neutrino correlation term, except up to 2x larger than go. In the case of 8Li’s

transition from 2+ — 27 — 0T, g19 can be written in terms of:

Cr|?2 = |C4)?
g2 _|O7]" —[Cal” _ o092 _ 4

— 1.9
g |CrEH|CaE ~ Sgi v (1.9)

In summary, thanks to the additional correlation terms introduced by beryllium-8’s alpha
emission, we have a factor of 3 higher sensitivity to ag, than other decays would. Again, for

more details, see Appendix B.
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1.4.8 FExperimental implementation

Both of the lithium-8 experiments discussed previously were conducted at the Argonne Tan-
dem Linac Accelerator System (ATLAS) Facility.” Using a neutron stripping reaction via
lithium-7 provided by the accelerator and a deuterium gas target, lithium-8 was created and
transferred to the Beta decay Paul Trap or “BPT” hereafter. The 8Li ions that decayed while
trapped were picked up by a set of silicon double-sided-strip-detectors (DSSD’s, 16x16 strips
in 2010 and 32x32 strips in 2011) and in the case of the 2011 experiment, backing plastic
scintillator detectors (see Figure 1.9). Thus, if all the decay products were detected, a full
kinematic reconstruction of the decay would be possible. In this way, an energy spectrum of
the recoiling daughter alphas (see Figure 1.10 and the reconstructed angle between the beta
and the neutrino (compared as in many other experiments to a Monte Carlo simulation)
could be used to determine ag,. Though the reconstructed 63, was never actually used to
establish |Cp|?/|C4|?, the recoil spectra were specifically chosen using beta particles that
had hit the same detector as one of the alphas (relative angles between the two particles
were less than 50 degrees). Thus, as was discussed in the previous section, sensitivities to

agy and the 8Be* recoil energy were maximized .

1.5 Outline

The following chapters will roughly correspond to the chronology of this experiment, begin-
ning with the production and transfer of the lithium-8 ions used for this measurement at the
ATLAS facility. Chapter 3 will continue with a description of the BPT, our detectors, and
the data acquisition system. Chapter 4 will cover my calibration and further data processing.
Chapter 5 will address the simulations my group and I have developed for comparing to the
data and how we calculate ag, from both. The remaining chapters will be populated with

results, an analysis of our errors and systematics, followed by conclusions. The more adven-

7. The tandem has since been removed and they are searching for a new acronym. Contact Guy Savard
if you have a good idea.
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RF Shields

Figure 1.9: The BPT setup used in the 2011 experiment with an illustration of what a
“triple” event would look like. The backing plastic scintillators did not produce high enough
quality data to use. [95]
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Figure 1.10: Recoil spectrum depicting the difference in energy of the 2 back to back a with
the A hitting the same detector as one of the a’s. This way, the recoil energy of the 8Be* is
most discernable and sensitivity to ag, is increased. Picture taken from the 2015 8Li paper.
[94]
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turous reader may venture further into the appendices for more theory than likely should be

in an experimental thesis.
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CHAPTER 2
LITHIUM-8 PRODUCTION AND TRANSFER

Since this experiment effectively starts at the ANL ATLAS Accelerator, it is fitting to also
start this thesis with the same. Beginning with the ion source, a high temperature oven is
used to evaporate and ionize’Li. Extending ~100 meters through the Physics 203 building,
there are a series of magnets and niobium split-ring resonators that accelerate and steer the
8Li beam to where the BPT is housed. This experiment marks the third time this beamline
had been utilized for a set of runs meant to produce 8Li. As there have been minimal changes
since the previous iteration, this chapter will be meant only as a summary of the production
and transfer methods. More details can be found in the dissertations of my two predecessors,
Matt Sternberg [95] and Gang Li [65].

We utilize the ATLAS facility at Argonne National Lab to produce ‘Li and have 4
main stages of processing before the 8Li product is delivered to the BPT. A schematic of
the production beamline can be seen in Figure 2.1. The 24 MeV “Li beam impinges on
a deuterium (2H) gas target and via a neutron pickup reaction, a small percentage of the
particles become 8Li while scattering off the gas. Immediately following the gas target is a
large superconducting bore magnet used to re-focus the wide-angled beam into something
vaguely linear. The beam eventually passes through a thin metal window and into a gas
catcher!. There, the ions thermalize in high purity helium while still maintaining their
charge, are condensed into a beam, and escorted out using a DC gradient. The ions are
insulated from the sides of the gas catcher using an RF carpet, which will be discussed in
greater detail in section 2.2.

Once the 8LiT ions are extracted from the gas catcher, they are fed into a RF-quadrupole
ion guide (RFQ, a linear Paul trap with conventional cylindrical electrodes). There, the ions
are briefly trapped and ejected, resulting in a bunched beam. These 8Lit bunches are

periodically fed into the Advanced Penning Trap (APT) where any lithium molecules are

1. Designed by the dark and twisted mind of Dr. Guy Savard.
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Figure 2.1: An overview of the beamline used to create and transfer 8Li to the BPT

broken up and contaminants are discarded. Upon ejection from the APT, a final, pure
8Lit bunched beam is delivered to the BPT. More technical details about each stage of the

processing are found in the subsequent sections.

2.1 The Reaction

The original “Li beam is produced by ATLAS via heating a solid stable source in a commercial
oven and collecting the evaporated, ionized particles. The beam is then accelerated to 24
MeV and directed to Experimental Area II where the gas target and our production beamline
are located. The gas target, pictured in Figure 2.2.A, is 4.5 cm long and holds 550 Torr of
liquid nitrogen-cooled deuterium gas. The 2 faces of the cylinder are covered by 1.3 mg/ cm?
titanium windows. The 7Li(d,p)3Li reaction has a total cross section of about 75 mb. [58]
The particles that emerge from the target can roughly be divided into three different
categories. The first set, which consists of un-reacted and mostly un-scattered 'Li with

angles of less than ~59 is halted by a beamstop made of tantalum mounted on an aluminum
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Figure 2.2: A) The target used to form 8Li. The cylindrical space is enclosed by titanium
windows and holds about 550 torr of deuterium gas at -180°C. B) The 1 T, 60 cm diameter
bore magnet used to focus the scattered products of the 8Li neutron pickup reaction.

rod. The remaining two sets of particles: 8Li reaction products and Coulomb-scattered 7Li,
make it around the beamstop and must be separated so that only the 8Li is directed into
the gas catcher. This process is accomplished via a large bore magnet (as seen in Figure
2.2.B), which serves as a focusing lens for the scattered particles.? The relationship between

the focal length and magnetic rigidity (momentum divided by charge) is below:

1 62/ 2

— =— | B4z

foap2) "
2,22

where p, = yv*m*“v% is the momentum along the axis of the solenoid and B, is the magnetic
field in the same direction [59].

Since the charges on both isotopes of lithium are the same, the magnet’s separation
works best when the discrepancy between 8Li’s and "Li’s momentum is large. Figure 2.3
shows the momentum distributions based on the outgoing angle. There is clearly a much
wider distance in the isotope’s momentum when backward center of mass (COM) angles

are selected. Unfortunately, based on angular distribution measurements done by Schiffer et

2. In the previous 2 experiments, a degrader foil was used to further decrease the particles’ energy before
entering the magnet but has since been removed.
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Figure 2.3: Outgoing momentum distribution for 8Li and scattered "Li in the Lab frame
with the incident beam energy equal to 24 MeV. The top (bottom) branches correspond to
a forward (backward) angle in the center of mass frame. [65] Slightly downstream from the
target is a beamstop that halts all particles within 5 degrees of the normal beam trajectory.

al. using 12 MeV deuterons on 7Li, the reaction cross section for backward COM angles is
nearly an order of magnitude less than for forward angles less than 20°.[87] However, based
on previous production runs, if the forward COM angle products are selected and focused,
there is not enough separation between the 2 isotopes to prevent significant amounts of “Li
from going into the gas catcher. If there are too many ions entering the gas catcher, the
ionization transfer with the helium gas will be too high and the resulting He™ ions will shield
the desired 8Li ions from being directed out by the DC fields, resulting in saturation. Thus,
despite the lower cross section, this experiment utilizes the lower momentum branches in

Figure 2.3 to extract and focus 8Li from the solenoid magnet into the gas catcher.

2.2 The Gas Catcher

After the solenoid has collected and separated the 8Li, a helium-filled gas catcher (pictured in
Figure 2.4) is utilized to return the fast-moving and widely dispersed particles into something
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Figure 2.4: A) Radial cross section of the gas catcher installed after the magnet. B) Close-
up of the cone section. C) A schematic of a fully assembled gas catcher with a zoomed-in
diagram of the RF Carpet (adapted from [86]).

resembling a normal beam again. The particles enter through a thin aluminum window (~3
mg/ ch) that contains the helium gas within the chamber and decreases the SLi’s energy
to below 2 MeV. Once inside, the 8Li ions are slowed to a near halt, thermalized within the
helium, and guided toward the exit nozzle while being condensed into a beam using a DC
gradient.

The high-purity helium within the gas catcher is held at 65 torr, which roughly corre-
sponds to the pressure needed to produce a 8Li stopping length of less than the length of
the gas catcher (~70 cm). In the process of thermalizing, the 8Li ions stay within their +1
charge state unless they interact with a contaminant (most likely water). To prevent this,
the helium goes through three stages of purification. The first stages flow the helium through
two activated cold traps: the first immersed in liquid nitrogen and the second cooled to less
than 24 K by a cyro cooler. Finally, the helium is fed through a commercial activated getter
system, which brings the level of water contamination to below 1 ppb. This purity is enough
to keep the ion lifetime well above 10 ms, which is about how long the 8Li stays in the gas
catcher. The dominant form of 8Li leaving the gas catcher in the experiment used for this
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thesis was SLIOHT.

Four different voltages are applied to the gas catcher to provide a DC gradient for the
ions to follow. Beginning at the aluminum window and ending at the cone where the ions
leave the gas catcher, the DC gradient values are 100, 56, 54, and 1 V. To prevent the ions
from interacting with the electrodes and chamber of the gas catcher, an RF carpet (also
called an RF wall or RF cone) is applied to the electrodes. A schematic can be seen in
Figure 2.4).C with a close-up of the stacked electrodes in the cone section shown in Figure
2.4).B. By applying an alternating RF (~ 5 MHz) potential to the electrodes, an effective
field is generated close to the electrodes that pushes the ions away. The effective force of the

field in cases of high pressure is given by [27].

V2 r
Foor— —my 2 RE (_)
cff i 7’8 0

where 4 is the mobility of the ions and rq is the half-distance of the electrodes. The physics
of this operation will be discussed in further detail in the next chapter since an RF carpet
is effectively an unfolded Paul trap and the same principles are used to trap in the BPT.
Far from the electrodes, the field averages to 0 and the applied DC gradient dominates.
The spokes (seen in Figure 2.4.A) serve to help distribute the DC gradient throughout the
chamber. Because of the low mass (which results in a lower Fis ;) and the limitations of RF
field applied to electrodes by the breakdown voltage of the gas, the final efficiency of the gas
catcher for transferring Li from the aluminum window to the exit nozzle is between 0.1 and
1% (though the efficiency depends deeply on the quality of the beam itself as well). Previous
studies indicate that our gas catcher can handle about 10% incident ions per second before

saturating [93].
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Figure 2.5: Axial and radial cross sections of one portion of the RFQ ion guide. The axially
segmented electrodes used to form a DC gradient can be seen on the right.

2.3 Bunching via RFQ ion guide

Upon exiting the gas catcher, the 8Li ions enter the RFQ (radio frequency quadrupole) ion
guide. The RFQ is divided up into 3 sections and serves to remove the majority of helium
gas that is extracted with the ions from the gas catcher, do some rough mass selection, and
“bunch” the 8Li beam into small packets of ions that are accelerated and cycled through
the remainder of the beamline. One of the sections is pictured in Figure 2.5. The RFQ
electrodes themselves consists of 19 mm diameter steel rods arranged axially with 14 mm
of space between the outermost edges. The electrode segments are each 20 mm long and
are separated by ceramic insulators. They provide the DC gradient and RF fields that both
linearly confine the ions and accelerate them down the beamline. There are two diagnostic
detector sets (silicon with a biased foil and MCP for each: one placed after the first section
and the second at the end of the RFQ) that are designed to detect radioactivity, monitor
what compounds of 8Li come out of the gas catcher, and assist with the mass selection. In
addition, the end of each RF(Q section is outfitted with a differential pumping apparatus to
remove residual helium from the gas catcher (about 20 torr of pressure by the end of the
RFQ sections).

The first RFQ section serves simply to transfer ions from the gas catcher to the next RFQ
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section and has no special properties. One of the diagnostic detector sets is placed after this
section to determine the quantity of ions coming out of the gas catcher. Because of its short
half-life, 8Li is easy to identify. After going around a 90 degree bend, the beam enters the
second RFQ section and is subjected to the first mass filtering process (though this feature
was not used in the run that produced the data for this experiment). Again, the physics of
the quadrupole/Paul trap will be discussed in the next chapter, but the combination of DC
and RF fields applied to the trap results in the stability of only a narrow range of masses.
Thus, by applying a DC offset, only one mass can be selected to continue on to the next
section. In this 8Li experiment, the mass selection in section 2 of the RFQ was tuned to the
pure 8Li ion.

The final section of the RFQ is devoted to bunching the beam and accelerating it toward
the APT. The last three electrodes of the RFQ have a potential well applied to them to
briefly confine and cool the particles in about 10~ Torr of purified helium gas. At a rate
of 25 Hz (every 40 ms), the downstream electrodes are lowered which ejects the bunched
ions from the trap and accelerates them downstream with 1.5 keV of energy. After the mass
selection in the previous section, enough of the beam should be filtered to prevent too many
ions from reaching the buncher, which results in the particles pushing themselves out of the
trap via charge repulsion.

After exiting the RFQ, the bunched beam is sent along the beamline to the triangle
room where the APT and BPT both reside. Another MCP/Si diagnostic detector before
the APT is used to determine the time of flight of the various lithium compounds coming
out of the RF(Q compared to when they were ejected. By deflecting the beam except in time
ranges where the desired mass resides, we can further filter the beam for a desired mass with
resolution of about 2 u. For the data used in this experiment, mass 25 (*LiOHT) was chosen

based on high abundance (over 50% of the available molecular forms).
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2.4 Advanced Penning Trap Isotope Separator

After exiting the RFQ, the bunched ions are injected into the Advanced Penning Trap (APT).
Though the beam had already been filtered for other masses, any remaining contaminants
were removed and the SLiOHT ions broken up into pure 8Lit. This thesis primarily relies
heavily on a Paul Trap. However, an ion trapping thesis would be incomplete without a
brief venture into how the Penning trap works as well. What follows is a brief summary of
the physics behind Penning traps. For a complete derivation of the equations of motion, see
Matt Sternberg’s thesis [95], a thorough theory paper by Brown and Gabrielse [15] or any

of the work done by my colleagues at the Canadian Penning Trap (CPT)[101][75].

2.4.1 Penning Trap Dynamics

The basic Penning traps consist of a set of electrodes that apply a static quadrupole electric
field and a uniform magnetic field (symbol: B, often from a solenoid magnet, ~2.5 T for
the APT). Two different configurations of electrodes can be seen in Figures 2.6.A and B.
The APT follows the configuration of B, but has 9 electrodes instead of 3. The quadrupole
electric field serves to confine ions along the axis of the magnetic field and creates a hyperbolic
harmonic motion with frequency w,. The magnetic field provides confinement in the radial
place and induces a cyclotron motion w. around the axis of the magnetic field. If the
equations of motion are solved for the Penning trap, w. is actually the sum of 2 other
frequencies (magnetron frequency: w—, and modified cyclotron frequency: w4 ) that represent
the two remaining modes of harmonic particle motion. The motion of all three modes can

be seen in Figure 2.6.C and the equations for each of the frequencies are below.

qB qUy 1
we =" wzzy/mdg wizi(wci\/wg—ng)

35



(B) (C)

»
End-cap
<
o
fis]
3
. m
Ring =
I
©
o
End-cap

Figure 2.6: A) Basic electrode configuration for a traditional Penning trap. The CPT utilizes
7 electrodes instead of 3 to correct for the hole needed to inject and eject ions. B) Basic
electrode configuration for a cylidnrical Penning trap. The APT utilizes 9 electrodes rather
than 3. C) Above: motion of an ion in a Penning trap with the 3 eigenmotions labeled.
Below: the summation of the 3 motions. [76]

where U, is the potential difference between the end-cap and ring electrodes and d? =
% (zg + %(2)) 3. Each of the three modes can be excited at their resonance by applying dipole
fields at the corresponding frequency to the appropriate electrodes. The end-caps are used
to excite w,. The ring of each Penning trap is also segmented into 4 radial pieces so that
both dipole and quadrupole fields can be used to excite w+. Such manipulations can be used
to remove contaminants from the trap or make precision mass measurements via scanning
for the resonant we.

Though the CPT is operated at high vacuum, the APT is used with ~3 pTorr of purified
helium gas inside. At such pressures, the resident ions collide with the helium and lose
energy. The energy of an ion with quantum numbers n,, n4, and n_ in a trap is defined by
84]:

Enon_ny = (ng + 3) + hwz(nz + §) = hw(n + 3)

The reduced cyclotron and z harmonic motion are both positive terms, so the amplitudes
of both decrease as the ions interact with the helium and E decreases. In contrast, the

magnetron orbit (a negative term) increases in size as E decreases. An example of the

3. po is the inner ring radius and zq is the distance from the center of the trap to the bottom of the closest
end-cap electrode in Figure 2.6.

36



(A)

Figure 2.7: Taken from [84]. The cross and circle in both represent a normal magnetron
orbit radius with no interactions with a buffer gas. A) The trajectory of an ion in a gas filled
trap. Both the magnetron orbit increases and the modified cyclotron orbits decrease as the
ion loses energy to the buffer gas. B) The same as (A) except with a quadrupole excitation
at we. The ions still lose energy to the buffer gas, but they are directed towards the center
of the trap as they cool.

motion can be seen in Figure 2.7.A. Left unchecked, an ion with this motion will eventually
hit one of the electrodes of the trap. If a quadrupole excitation from the ring electrode at
we (which corresponds to the desired mass) is applied, then both the reduced cyclotron and
magnetron motions become coupled. The smaller orbit loses energy faster than the larger

and collectively drags both motions toward the center of the trap (Figure 2.7.B).

2.4.2  Advanced Penning Trap Operation

We utilize a combination of the two different motions in Figure 2.7 to clean the APT of
contaminants for each injection and break up the SLiOHT compounds into pure 8Lit. First,
a dipole excitation of the w_ corresponding to SLIOHT is applied to the trap. This energizes
the SLIOHT and causes it to interact more with the helium gas and eventually be torn apart
by the collisions. In addition, the excitation begins driving any other contaminant ions out
of the trap. A quadrupole excitation of the w,. corresponding to the desired mass (8LiJr in
our case) in turn drives the selected mass 8 ions toward the center of the trap while any

contaminants and the broken hydroxyl groups continue their outward trajectory until they
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Figure 2.8: A) The isotope separator beamline enclosed by a 2.5 T superconducting magnet.
B) Axial view of the electrodes of the Advanced Penning Trap.

leave the trap. The cleaning process typically takes less than 50 ms and the quality of our
magnetic field, electronics, etc allow for a mass separation resolution of about 10~%. The
molecule breakup efficiency is close to 100%. The 2.5 T solenoid magnet is pictured in Figure
2.8.A and the APT itself with the electrodes visible (separated by ceramic insulators) is seen
in 2.8.B.

In sequence with the RFQ buncher, ions are injected into the APT every 40 ms by
lowering the upstream electrode and quickly raising it again (> 2 us) 5 bunches of ions are

sent to the APT for cleaning before injecting them into the BPT (every 200 ms).

2.5 Successful Experiments

I led the campaign that resulted in the data for this experiment, which took place in August
2016, spanned two weeks, and resulted in 2.3x10% raw triple events (both « particles and
the 3 particle from 8Li were detected) Of the 2.3x 108, 3x10° events had to be discarded at
the beginning of the run due to heavy noise contamination from the liquid nitrogen pump
attached to the BPT, resulting in 2x10% usable raw triples. Even with the discarded events,
the resulting statistics were over an order of magnitude larger than our previous experiment.

Leading up to the August 2016 experiment, a production run and data campaign were

performed in 2015, resulting in about 5x 10° raw triples. The data set was compromised by a
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higher level of RF noise pickup from the BPT and remains unused. In addition, a production
run in preparation for the aforementioned high statistics campaign was performed in June
of 2016. 7x10° raw triples were collected. However, the top silicon detector began to fail
at the start of the experiment and could not be properly biased, resulting in more noise
contamination.

Of the experiments listed, the 2x 109 triples from August 2016 remain the highest quality
and largest data set produced so far. All the results of this thesis are drawn from the

aforementioned data.
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CHAPTER 3
THE BETA DECAY PAUL TRAP

After being ejected from the APT, the 8Li ions are transferred to the Beta decay Paul
Trap (BPT), which is a radio-frequency (RF) quadrupole ion trap specifically designed for
precision studies of nuclear decay [89]. Utilizing a DC gradient and the oscillating RF electric
field, the 8Li or any unstable ion of interest can be held in a small 1-2 mm3 volume at the
center of the trap until it decays essentially at rest. In turn, the decay products can then
propagate outward with little interference from the electrodes and fields to ideally hit one of
the surrounding detectors. For this particular experiment, the alpha energy, direction, and
beta direction were determined using a set of silicon double sided strip detectors (DSSD’s),
which were backed by a set of plastic scintillator detectors for gathering the beta energy.
However, those detectors could be swapped out for a variety of others (MCP, germanium,
etc) if a different experiment required it.

This chapter will serve as a summary of the BPT system. It will cover the physics of
Paul traps, features of the BPT in particular, including the detection system used in this
experiment, some of the noise challenges, and an explanation of how signals are processed

by the data acquisition system.

3.1 The Physics of Paul Traps

The radio-frequency quadrupole ion trap was originally designed by Wolfgang Paul, from
whom its shortened name is derived. Due to the extreme versatility of such a trap, Paul
was given a Nobel Prize in 1989 for his design, which featured hyperbolic-shaped electrodes.
Though the BPT itself utilizes thin planar electrodes, which distort the electric field close
to the metal, the field within 1 cm of the center of the trap follows the potential produced
by the usual hyperbolic electrodes quite closely. For simplicity, the physics and fields that

pertain to hyperbolic electrodes will be discussed here. A diagram of the coordinates and
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Figure 3.1: Axial view of a linear Paul Trap with hyperbolic electrodes. A voltage of j:% is
applied to opposing electrodes. The closest point between each of the electrodes is 2ry.

electrodes can be found in Figure 3.1.
Beginning with the hyperbolic potential and corresponding electric fields in the x-y di-

rection, borrowed from Paul’s Nobel lecture, we have: [6]

00 ) )
o= 2—2(x2 —?), Ep= ——z, and Ey=—y
7o 70 7o

where +®(/2 is the potential applied to the opposing electrodes. The result is a system
that pushes positive ions towards the center of the trap along the x direction but away from
the center in the y direction. If the potential is allowed to oscillate with voltage V' around
a DC offset U, then ® is replaced with U + V cos(wt). The equations of motions can be

constructed by summing forces:

e
—= (U —=Vecoswt)r =0, and m—5 — —= (U —Vcoswt)y =0 3.1
mr(%( ) dt2 mr(z)( )y (3.1)

where m and e are the mass and charge of the ion in the trap, respectively. If one defines a
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few different variables to insert into the equations:

27 4elU 2eV
t=—, ap=-—-ay=—>5—, and = —qy = —— 3.2
w v Y mr%wQ e 1 mr%wQ (32)

and divides out the m, then the Mathieu equations are produced.

dx _ d d?y _
2 + (ag,j — 2@y cos 27‘)$ =0, an 2 + (ay — 2qy cos 27’)9 =0 (3.3)

Fortunately for our purposes, the Mathieu equations are well-known and can be solved
exactly for the trajectories of ions within the trap!. According to [24], the solutions are
expressed independently for each direction (x, y) as:

d2
dr

N

0.0} 0.}
= —(a—2qcos2r)u  with u=ael” Z Cone®™T 4+ o/l ™HT Z Cope ™27

n=—oo n=—oo

[\

(3.4)
o’ and o' are integration constants that depend on the ions’ initial position, velocity, and 7.
C9y, and 1 are both constants and are dependent on the properties of the trap itself (a, and
qu), but not the initial conditions. Naturally, for an ion trap system, the desired trajectories
would be stable and not increase to infinity. The constant p defines the stability of the ion’s
trajectory and must be a purely imaginary non-integer (i) in order for the ion to remain
in the trap. The boundaries of stability for a, and ¢, are defined by the integer imaginary
values. If u is real or a complex number, the real exponential components will cause the
ion’s trajectory to diverge. If one were to solve (3, for a and ¢ (not attempted here), the
result would be approximated in its simplest form as: § = \/m. Figure 3.2.A shows
the numerical space a, and g, can occupy in order to have a stable trap. Plugging u = i

into equation 3.4, we can simplify a bit and pull out the real part, which represents the ions’

1. The Mathieu equations can be solved exactly in the “regions of stability” which will be discussed
shortly.

42



a o.30
(B)
X stable region
0.25
=0
0.20 By |
1
|
1
0.15 | 1
1 1
1 1
N i i
o -
0.10 W | | B.=1
Iy 1 1
e"S‘\ ! 1
o® i !
0.05 I 1
1 1
1 1
qmil'l J qmax
Y stable region . . : . .
0.0 0.2 0.4 0.6 0.8 q

qx = -Qy

Figure 3.2: A) The first four stability regions (shaded) for the z and y directions in a Paul
Trap as defined by a and ¢. B) A zoomed-in image of the lowest order stability region.
Mass-selective traps can use the trap voltages and RF along the operation line to only select
masses that fall within g, and g¢mnaee with the corresponding a values. (Calculated using
Mathematica.)

motion.
u=a Z Copp (2 +B)T Z Cope 2n+0)T (3.5)
n=—oo n=—oo
o0
U(real) = (o +a” Z Cop, cos (2n + B)1 (3.6)
n=—00

Most ion traps are operated in the lowest overlap region of stability (a < ¢ or @ = 0 and
qu < 0.908). For mass-selective ion traps, one can use an operation line such as the one
pictured in Figure 3.2.B to only trap masses between the corresponding ¢; and g9 values.
In the regime where a < ¢ and ¢, <1, the two first modes of equation (3.6) dominate the
ion’s motion. An example of an ion’s stable 1D motion can be seen in Figure 3.3.

If the two modes are represented by u = A(ng) + B(n1), we can assume that A > B,

27 4°B

% < ‘fﬁ and f Gz = 0, which from Figure 3.3 is not unreasonable. By applying these
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Figure 3.3: Example 1D solution of the Mathieu equation for « = 0 and ¢ = 0.1. The
ion’s motion is dominated by a harmonic macromotion with a much smaller high frequency
oscillation most easily seen at the peaks. (Calculated using Mathematica.)

assumptions to equation (3.4), we can obtain an approximation of the smaller oscillation, B:

— = —(a—2qcos27)A (3.7)

Since we have already assumed a < ¢, equation (3.7) can be integrated twice to obtain a

new representation of B that can in turn be substituted into u = A(ng) + B(nq):

B =

cos2T7  which gives u= A — q7 cos 2T

2
Putting all this back into the right side of 2712‘ in (3.4), we get:

d>u  d?A N d’B
dr2  dr? = dr?

Z
= —aA+ % cos 2T + 2qA cos 2T — q2A cos® 27

If we average over 1 RF period (27), then from our previous assumption that the acceleration

of the small oscillations over 1 period of the RF is 0, 65723 drops out along with all of the

44



G
SR

ALIAIAL
el
%q&&*

Qﬁ
K08

RRIE A
%0, ""’f‘n’l.’l XA

Figure 3.4: With settings a = 0 and ¢ < 1, the radial potential of the trap can be approxi-
mated as a harmonic potential when averaged over an RF cycle.

single cosine terms on the right side, leaving:

d2 A 2 ¢ d2 A 2 2
— = —(a+ %)A then, substituting with 7 = %, 7= —wz(a q2
If for simplicity, we assume a = 0 (which is the case for the BPT and RFQ ion guides), ¢

from equation (3.2) can be substituted in to get a new differential equation that contains

our approximate potential .

d?A e2V2 d2A dd dd eV?2
LV 4 suchthat mis — —e&" where = - ¢ 4 .
02 2m2r‘01w2 suc at m T edA where ) 2mr§w2 (3.8)

Remembering that « = A + B and integrating A from 0 to u, we obtain a well of depth:

~ 6‘/2 2

O(u) = ———=u 3.9
() 4m7‘61w2 (3.9

for the 1D approximate ion trap potential. [66] [24] Thus, with the appropriate conditions
and assuming the macro oscillation dominates as in Figure 3.3, a Paul trap can be approx-
imated as having a simple static harmonic potential in the radial direction when averaged

over the RF period (Figure 3.4).
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3.1.1 Buffer Gas Cooling

The BPT system and the RFQ buncher also use a small amount of high-purity helium ( ~
ImTorr in the RFQ and ~15uTorr in the BPT) as a buffer gas to cool the ions and reduce
some of their potential energy from the beam injection. As the 3Li ions move about the
trap, some of their momentum is transferred to the helium gas until the system comes to
thermal equilibrium. The buffer gas can be modeled in the Mathieu equations by adding a
damping term to equation (3.1): % = —%%—? +eFE.

du du e

mo g + QKE + (ay — 2qycos27)u =0 with k=

(3.10)

mKw

Here, k is calculated from the ion mobility (K'), which is the proportionality constant between
an ion’s drift velocity in a gas and the electric field strength (v; = KE). [68] If we make the
substitution v = ue *7, then

d2U 9

) + (dy — 2qycos27)v =0 where dy = ay — K (3.11)
-

From a practical standpoint, looking back at equation (3.4), a solution is now a function
of elH=r), Thus, as 7 approaches infinity, the trap can stay stable until < x, which

significantly expands the regions of stability.

3.2 BPT Design and Features

Some alternatives to using an ion trap for high-precision kinematic measurements include
using ion implantation in foils or the detectors themselves, or using neutral atom magneto-
optical traps (MOTs). In the case of ion implantation, understanding the implantation
itself well enough to achieve a low systematic error can be extremely difficult. MOTs were
successfully used in both the sodium-21 and potassium-38 measurements from section 1.3.

They avoid using magnetic fields and electric fields which could alter the trajectories of any
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decay products, and despite having very low trapping efficiencies (~ 1%), still hold a high
density of particles without having to deal with Coulomb repulsion. However, MOTS come
at the cost of being very ion-specific and require laser-heavy experimental setups, which can
prove both expensive and cumbersome.

In contrast, ion traps have close to 100% efficiency and can easily trap a range of different
isotopes by varying frequency and voltages. Unfortunately, despite the high efficiency, only
about 104 ions/ mm? can be trapped before the repulsion forces become overpowering. In
addition, the previously mentioned electric fields and in the case of Penning traps, magnetic
fields, can indeed become a systematic error in their own right. Fortunately, in the BPT, the
impacts of the RF and DC fields on the decay products’ trajectories are less than 1 keV, in
contrast to the average beryllium-8 « energy, which is 1.5 MeV and are thus well below our
current levels of sensitivity (see section 6.2.9). Even with the high statistics data set used
for this experiment, such effects are still beyond our sensitivity. The recoiling beryllium-8
also decays too quickly (~ 70fs) for the electric fields to change the trajectory noticeably.

Though most Paul traps utilize hyperbolic or cylindrical electrodes, the BPT uses thin
planar electrodes (separated by 2rg = 3.4 cm and pictured in Figure 3.5) to minimize any
scattering of the decay products and increase the solid angle available for detectors to occupy.
The planar electrodes were simulated using SIMION software to ensure the approximate
harmonic potential in the trap center was preserved. Within 1 cm of the center of the trap,
the resulting potential closely matches what would be produced by hyperbolic electrodes with
radius ~ 1.3r¢. The highest voltage that the electrodes can safely carry is about 1kV,. To
separate the remainder of the trap and detectors from the high voltage, the electrodes are
also segmented in the radial direction to leave a 2 mm gap. They are held in place using a
ceramic brace that can be seen in the upper part of Figure 3.5.B.

The BPT RF was operated at w = 27 x 1.33 MHz with 400 V,,, for lithium-8 with the
axially segmented electrodes carrying DC’s of 10, -50, and 10 V going from upstream to

downstream. Using SIMION modeling, the depth of the harmonic potential ends up being
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~3V/ cm? when both the DC gradient from the segmented electrodes in Figure 3.5.B and the
RF are taken into account. Supplying such a strong RF and DC at the same time required
a custom circuit box constructed by our RF engineer, Tony Levand. The circuit consisted
of a center-tapped coil for each segmented electrode set (3 total) coupled across a variable
capacitor used for tuning and wound around a common primary coil. The opposite ends of
the center-tapped coils provided the opposite RF phases to the radially-adjacent electrodes.
The circuit was also equipped with RF chokes designed to keep the RF from feeding into
the DC power supplies. The resulting configuration allowed for unique DC offsets on each
of the 3 segments of the trap alongside the required 2 RF phases that could be operated at
or above the 1kVp, level. The DC offsets could also be pulsed (either of the end electrode
sets lowered) for both injection and ejection of ions from the trap as discussed at the end of
Chapter 2.

To maintain the stability of the trap for several times longer than the lifetimes of the
ions inside, everything in the BPT chamber was designed to ultra-high vacuum standards
to reduce possible interactions of the lithium-8 ions with other atoms that might provoke
neutralization. However, a small amount of buffer gas (described in section 3.1.2) with high
ionization potential, namely ultra-pure helium, was added to the trap to effectively provide
a low temperature bath for the hot ions and improve the trapping capability. In addition,
while in operation, the trap frame has liquid nitrogen pumped through it to both help cool
the buffer gas and ions (to ~90 K), substantially reduce the residual gas (mostly water), and
improve the performance of the silicon detectors. The trap itself rests on 4 quartz spheres to
thermally isolate it from the rest of the chamber. With liquid nitrogen cooling but without
the buffer gas, residual pressure in the chamber can reach 5%1079 Torr. Before cooling
with liquid nitrogen, the chamber is pumped down to below 1x10~7 Torr to ensure minimal
condensation buildup from gas contaminants on the silicon detectors.

Trapping lifetimes for lithium-8 in the BPT are estimated to be longer than 30 seconds.

It takes injected ions about 30 ms to be cooled and reach equilibrium with the other trap
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Figure 3.5: A) Radial view and B) axial view of the BPT frame and electrodes. The three
axially segmented electrodes that provide the DC well can clearly be seen in B.

occupants. Data recorded before the 30 ms after an ion bunch is injected are not used. [89]

3.3 Detector System

The BPT system is outfitted with 2 sets of detectors: 4 32x32 double sided silicon strip detec-
tors (DSSD’s), which were the primary workhorse of this experiment, and 4 plastic scintillator
detectors that backed the silicon detectors. The plastic detectors were used as a means to
limit beta scattering systematics and calibrate a portion of another experiment to measure
the beta spectrum of rubidium-92. The DSSD’s collect information on the beryllium-8 o’s
energy and direction, and the lithium-8 3 direction while the plastic detectors collected the
[ energies. Portions of both detector sets can be seen in Figure 3.6. The individual detectors
are referred to as Top, Bottom, Left, and Right based on what orientation they have in the

direction of the beam. In Figure 3.6, upstream to downstream runs from right to left.

3.3.1 Double-Sided Silicon Strip Detectors

Part of a larger category of semiconductor detectors (which also includes germanium detec-
tors), silicon crystal detectors are often thin wafers that are operated as a reverse-biased

p-n junction, which are commonly found in circuit diodes. This configuration requires 2
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Figure 3.6: The BPT chamber with the trap inside. Two plastic detectors are mounted on
each side of the chamber to back the left and right silicon detectors. The top silicon detector
can be seen mounted on the trap in the middle of the chamber.

layers of silicon: one doped to produce a “p-type” crystal with an excess of valence band
electron holes, and another doped to produce a “n-type” crystal with a surplus of electrons.
A “depletion zone” between the 2 layers is created when spare electrons from the edge of the
“n-type” side flow into electron holes on the opposite side of the barrier, such that at the
interface between the two, there are no charge-carriers and an electric field is created which
prevents further movement of ions. When reverse bias is applied (cathode to p-side and
anode to n-side), the depletion zone is widened, which further prevents leakage current from
passing between the 2 crystals. When charged particles pass through the depletion zone, the
liberated electron and hole pairs drift to their respective electrodes, which creates a current
that is approximately proportional to the energy deposited by the impinging particle. The
current is collected and sent as a signal to be amplified and shaped by subsequent electronics.

Our set of DSSD’s were custom-made by Micron Semiconductors Ltd (UK) [1] with
design number BB7(DS) 7P/2M and again, are used for collecting the trajectory directions
of the o’s and f’s along with the energy of the a’s. When mounted, they cover about 25%
of the total solid angle available to the ions at the center of the trap. A picture of one of the

detectors mounted on its ceramic board can be seen in Figure 3.7.A, with the strips running
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Figure 3.7: A) Double sided silicon strip detector mounted on a ceramic board. B) shows
a cartoon of the surface profile. Each of the 32 strips are bookended by a deep implanted
“extra” dead layer containing an aluminum strip used for charge collection and biasing the
detector. There is a 25 pum gap between each strip. (not to scale)

horizontally. Within a tolerance of ~ 4%, each detector is 1 mm thick? and has a 100 nm
layer of inactive silicon material called a “dead layer” (discussed with more detail in sections
4.2.2 and 6.2.2). The strips are each 2 mm wide, which covers a span of about 2°. A profile
of what a strip segment would look like is shown in figure Figure 3.7.B. [104]

According to Micron, on each edge of the strip there is a 30 pm wide and 300 nm thick
ribbon of aluminum used for biasing and charge collection from events. The aluminum
ribbon is implanted on 500 nm of inactive silicon that is 50 ym wide. Our characterization
of this “extra” dead layer produced energy losses different from what Micron had specified.
Characterization of the two dead layers is covered in Chapter 4. Each strip is separated by
a 25 um gap. Events that enter this gap will not have the charge fully collected by the front
face of the detector, so the back and front measurements of the detector will not match within
a range for an event to be considered “real,” and are thus discarded. During the experiment,
the detectors are cooled to liquid nitrogen temperatures to reduce the leakage current and

thus improve the possible resolution. The bias voltage was -180 V for all detectors.

2. With 1 mm thickness, 8’s passing through the detector deposit ~300 keV of energy, which is well-
separated from the main a energy peak.
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3.3.2  Plastic Scintillator Detectors

Scintillator detectors are fairly common in physics experiments to either measure time-of-
flight or the direct energy of particles (for our case, the lithium-8 5 energy). When a particle
is incident on a scintillator detector, it ideally deposits all of its energy in the scintillation
medium if a complete energy measurement is to be made. The scintillation medium absorbs
the energy and emits light, which is then detected by a photodiode or photomultiplier tube
(PMT) and converted into an electrical signal proportional to the light emitted.

The scintillator detectors in this experiment used organic plastic scintillator media (polyvinyl-
toluene) manufactured by Eljen Technology (model EJ-200) that were 6.2” in diameter and
6” in length. Organic plastic scintillator detectors are ideal for having a fast timing (rise
time of 1 ns and decay time 2 ns for EJ-200) and high output for the light they produce.
The volume was selected to provide sufficiently large coverage to collect all betas that pass
through the DSSD’s and ideally ensure full energy collection. The light from the scintillators
was collected using a Hamamatsu R877-100 PMT, which was operated at -1300 V. [45] The
plastic detectors were held under a low vacuum (~5 mTorr), which was separated from the
ultra-high vacuum of the chamber by a thin kapton window. In the preparation stage of the
2016 experiment, I spent a great deal of effort helping to mount them, building the vacuum
system around them, and then assembling a portion of the DAQ to collect their data. A
schematic of the detectors can be viewed in Figure 3.8. Photos of an unmounted plastic
detector and then the top and right mounted on the BPT chamber can be found in Figure
3.9.

3.4 Data Acquisition System

The signals taken from the DSSD’s 256 channels are amplified separately by a set of 8 Mesytec
MPR-16 preamplifiers (Figure 3.10.B), each capable of taking 32 channels. The amplified

signals are then passed via twisted pair ribbon cables to a set of 16 Mesytec MSCF-16-
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Figure 3.8: Inside schematic of the plastic scintillator detectors used in this experiment.|[45]

Figure 3.9: A) Unmounted plastic scintillator detector B) The top plastic detector mounted
on the BPT chamber.
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Figure 3.10: The 32 channel preamplifier (B) and shaper (A) used for the silicon strip
detectors in the BPT system.

F shapers (Figure 3.10.A), each capable of processing 16 channels. The shapers were made
with a custom chip to allow triggering on the leading edge of the shaped output signal rather
than using the usual shaper settings for constant fraction discriminators (CFD’s). CFD’s
operate by quickly finding the maximum of the incoming signal to use for the trigger logic
and are extremely useful for precision timing. However, in this experiment, the pre-shaped
signals are sometimes corrupted by RF picked up by the silicon detectors, which distort
the shape of the signal. A high-precision timing is less desirable in this experiment than an
uncorrupted trigger, so the trigger is taken from the signals after they have been shaped over
a few us. Alternative chips can be swapped out for the custom chips to return the shapers
to a normal CFD operation. All of the Mesytec electronics were procured specifically for the
BPT beta-neutrino correlation experiments.

From the shapers, the DSSD signals are transferred via more twisted pair ribbon cables to
a mirror set of Philips 7164H peak-sensing ADCs, which are housed in two CAMAC crates.
Similar to the DSSD’s, the olastic detector signals are put through a preamplifier (Ortec 113
preamp with 1000 pF input capacitance via BNC cable), a Tunnelec TC 244 shaper, and
then again through a LEMO cable to a Philips 7164 ADC housed in one of the CAMAC
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crates. Other modules used for data acquisition alongside the ADC’s are two LeCroy 4208
TDC’s that measured the timing between events picked up by the DSSD’s, three scalar
modules (LeCroy 2551), which recorded the state of the trap (empty or filled), the number
of injections, and provided a simple 1 Hz clock. Each event is triggered by any viable signal
from any of the 8 front side Mesytec DSSD shapers, which then opens a 15 us gate for data
collection from all modules in the two CAMAC crates. Any events that occur whilst the
system is injecting or ejecting ions are rejected to prevent collection of “fake” events due to
noise. The data collection and gates are controlled by a driver package, developed in-house
by Kenneth Teh of the ANL Physics Division. The package, called SCARLET, also records

the data into a readable hex format and archives them on the local computer. [98]

3.5 RF Noise Suppression

Keeping the RF fields required to trap the lithium-8 from being picked up by the highly-
sensitive DSSD’s has been a challenge since the inception of this experiment. Each person
who has assumed responsibility of the BPT has contributed in some way to decreasing the
RF pickup and the resulting accumulation of modifications allowed for this experiment to
be the first without any RF broadening in the resulting data.

The signature of RF pickup in the data is very distinct from all other noise (such as
electronic and mechanical vibrations) picked up by the DSSD’s. Unless the RF pickup is
exceptionally large, usually only the highest energy signals are heavily affected. As the pulse
from the DSSD currents are input into the shapers alongside any 1.33 MHz sinusoidal signal
from the RF, the peak height and thus the recorded energy is affected by what position on
the phase of the RF the peak appears (the rise and fall time of the current pulse is ~10x
smaller than the period of the RF). As a result, the calibration source peaks could appear
to be much broader and potentially at lower energy rather than a sharp peak at the correct
energy. An extreme example can be seen in Figure 3.11. RF pickup can also be measured

via peaks input by a precision pulser (Ortec 448) through the preamplifiers that span the
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Figure 3.11: A) Example of a data spectrum, including the two mono-energetic peaks from
the calibration alpha sources, that has been heavily corrupted by RF pickup. B) For com-
parison, what the data spectrum in A) would look like with no RF broadening.

full ADC range.

A variety of methods were implemented by my predecessors to reduce the RF pickup on
the DSSD’s. The current electrodes in use in the trap are updated ones from a previous
version. The axial segment of each electrode that actually carries the RF field was shortened
such that the field was kept as close to the center of the trap as possible, with the radially
outer part of the electrode kept at ground. Later, two layers of stainless steel shielding
(pictured in Figure 3.12) were added to serve as a rough Faraday cage. The full Mesytec set
of electronics were purchased for all detectors so that their increased shaping ability would
filter out more of the pickup. All of the cabling mounted on the trap frame which carries
the RF to the electrodes is twisted together so that opposite phases are carried together,
reducing the potential of the RF field being picked up by the cabling. In addition, some of
the cables that carry the signals from the DSSD’s to the wall of the vacuum chamber are
twisted together for the same purpose. All of these modifications accumulated to only half
of the front strips on both of the left and right detectors being heavily impacted by the RF
pickup.

To free the remaining front strips from RF and thus increase the amount of available
statistics available to use, in collaboration with Phil Wilt from the ANL Physics Division

supporting engineers and Jeffery Klimes, then a masters student at the University of Chicago,
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Figure 3.12: A) Inner stainless steel shielding used to prevent RF pickup on the silicon
detectors. B) Stainless steel “hoods” attached to the aluminum detector covers also used to
reduce RF noise. C) AutoCad schematic (radial cross-section) of the RF shielding placement
within the trap. The stainless steel shields are highlighted in blue.

I implemented a set of 128 tunable notch filters on all of the front strip channels for the 4
detectors at a point between the detectors and the preamplifiers. Each filter was designed
to filter only frequencies close to the one used for the RF field. The small tunable capacitor
was set in place to adjust each of the strips filter to maximize the filtering capabilities for
each strip’s individual impedance. Eight filter circuits were housed on a small board that
could be easily added or removed from a larger circuit board that carried all 32 channels
for a detector’s front face. A schematic of the circuit, along with pictures of each of the
boards can be found in Figure 3.13. Though cumbersome to tune and not versatile in terms
of changing frequencies, the filters successfully removed all traces of RF pickup from the
data, which allowed us to use a much larger fraction of the statistics that were collected
and ensured no systematic uncertainty was introduced because of the RF pickup. Because
the rise and fall times of the detector signals were so much smaller than the RF period, the
filters had no impact on the data itself either.

There were hopes that the filters would open the opportunity to remove some stainless

steel RF shielding in the trap, which is a large contributor to lithium-8 beta scattering during
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Figure 3.13: A) Simple schematic of the notch filter used for this experiment. B) Photo of
the board used to house 8 of the 32 channels for 1 detector. C) Photo of the notch filter
boards mounted to the BPT chamber before the preamps. Each large board contains 32
channels corresponding to one face of a silicon detector.

measurements. However, when tested, the boards proved not strong enough to cancel the
heightened RF pickup that resulted from removing the shielding. In addition, when the
shielding was entirely removed, RF pickup was visible on both the front and back faces of
the detector (rather than just the front). However, the detector bias (180 V) is applied to
the back side and because notch filter components that can withstand such high voltages
do not exist on such a small scale, the same circuits cannot be implemented for the back
channels. Currently, some of our colleagues are testing a possible digital data acquisition

system where the RF pickup could be removed from signals in post-processing.
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CHAPTER 4
CALIBRATION AND DATA PROCESSING

Once all the lithium-8 data have been obtained, they must be calibrated and cleaned before
they can be compared to simulation. A high-quality and precise calibration is invaluable
for the success of this experiment. We estimate that our calibration is accurate to about 5
keV depending on the strip it corresponds to, which is more than sufficient for the precision
level of this measurement. However, since we take the difference between alpha energies
in our final spectra, if a calibration mistake is made on all detectors, effects on the final
result are suppressed. Over the course of the August 2016 run, there were almost 160 hours
of consecutive data-taking where the results were of sufficient quality to be used. After
performing an Allan-Variance calculation (to maximize statistics for a fit while minimizing
fluctuations between time segments), that total was divided into 16 segments of 10 hours
each. Each of the 16 time segments were calibrated independently. It took me 6 months of
dedicated effort to complete the full calibration to the precision we desired, as almost every
aspect of the calibration from previous experiments had to be re-examined or discarded.
The first sections of this chapter will cover the steps taken to convert ADC channel values
to real energies in keV and the corrections that were made to the resulting values. The re-
maining sections will explain how the data set is sorted and what cuts are applied to eliminate

noisy data and background events that could skew the beta-correlation measurement.

4.1 Alpha Calibration Sources

Two mono-energetic alpha sources serve as the centerpiece of our energy calibration. They
provide two known anchors to the energy spectrum and serve as a monitor of the system’s
drift over the course of the experiment. The isotopes are comprised of gadolinium-148 and

curium-244 and their energies are given in the table below. [90] [§]
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Isotope Energy (keV) Intensity Half-life
H8Gd  3182.690(24)  100% 74.6 y

240m 5804.77(5) 76.90% 1811y
240m  5762.64(3) 23.10% 1811y

Table 4.1: Calibration source isotopes, a decay energies, and half lives

4.1.1  Sources and Placement

In previous lithium-8 experiments, the calibration sources we utilized were made in-house
by John Greene in the Target Lab using dissolved radioactive material dried on a piece of
foil. Though they served us well during the previous experiments, the sources came with a
deep dead layer and caused some trouble with Health Physics when it became apparent that
they were leaking onto other material in the chamber. Before the August 2016 experiment,
our group opted to invest in spectroscopy-grade commercial alpha sources. These were
purchased from Eckert and Ziegler Isotope Products and were created using electrodeposition
onto platinum. The sources themselves were slated to have spectra with less than 20 keV
FWHM peak widths. However, the actual width may be much smaller, since strips with
low noise indicate a resolution of 20 keV FWHM from the same peaks when all dispersion
factors are taken into account (more details discussed in section 5.1.2). Four total sources
were purchased (two Gd and two Cm) and those in turn were each cut into four pieces
and mounted on small stainless steel squares as seen in Figure 4.1.A. Each stainless steel
square housed one Gd source and one Cm source. Combined, our complete set included
eight stainless steel source mounts: two for each detector. Two squares were mounted on
each outer RF shield as pictured in Figure 4.1.B. so that they could illuminate the opposing
detector (almost) completely in between the electrodes in the center of the trap. Axial and
radial projections of the sources’ illumination of the detectors within the trap can be seen
in Figure 4.2. On all detectors, either all or most of the front strips are illuminated by both
the Gd and Cm sources. Back strips 9 through 32 on all detectors are illuminated, leaving

back strips 1-8 in shadow as a result of the RF hoods. Each front strip receives alphas from
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Figure 4.1: A) The Gd and Cm sources are mounted on small stainless steel squares which are
screwed into (B) the outer RF shield. There are two of each isotope sources that illuminate
each detector, for a total of sixteen alpha sources.

each source at a rate of ~0.5 Hz.

4.1.2  Spectra Fitting

Examples of the spectra of each of the sources for a single peak can be seen in Figure
4.3 (the smaller peak to the left of the main Gd peak is from the “extra” dead layer. In
order to extract a consistent “center-point” of each peak to use as the energy value, a fit
was performed on each source spectra of the illuminated strips (both front and back). The
function utilized for the fits is an elaborate skewed Gaussian defined by Bortels and Collars in
1987 [13] which includes two different exponential tails. If the spectra in 4.3 were visualized
using a logarithmic y scale, the two differing exponential tails would be clearly visible. The
fits and corresponding residuals of both peaks are also featured in Figure 4.3. The fits were
performed with an automated fitting routine written in the programming library ROOT [16],
which was originally developed at CERN for handling large packages of data.

Both peaks were fit using spectra with one channel per bin. The fitting functions for

both the Gd and Cm peaks are below.
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Figure 4.2: The sources are represented by the blue circles and the blue triangles are their
projected illumination. A) Radial view of the source placement along with an example
illumination of one of the detectors. B) Axial view of the source placement and illumination.
8 of the back strips are prevented from being illuminated by the RF hood shields.
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Figure 4.3: A) gadolinium-148 and B) curium-244 alpha energy spectra with a fit to the
“Bortels” function. Residuals are below each of the fits. The “x” axis is in units of ADC
channels (2 keV/channel). The small “extra” dead layer peak can be seen to the left of
the main Gd peak. A similar “extra” dead layer peak exists in the Cm spectra but are not
visible to the untrained eye.
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To stabilize the fit, the extra dead layer was incorporated into the fit of the Gd peak. The

extra dead layer could not be resolved from the Cm peak and was left untouched. Some
constant background was allowed in each of the fits to loosely account for lithium-8 alpha
backgrounds. The fitting range was from 15 bins above the bin with the highest number of
counts to 70 and 35 bins below for gadolinium and curium, respectively.

Once fit, the maximum of each curve was considered the “center-point” of the peak.
This point was chosen (over the high-energy FWHM and the actual fitted center of the
peak) because it is the easiest to compare to when matching the detector response function
or “lineshape” in the simulation (more details in chapter 5). The error of each maximum
was taken by sampling 10,000 different fitting curves generated by sampling a Gaussian
distribution of each fitting parameter with the sigma representing the error for each fit
parameter. The resulting standard deviation of the 10,000 maximums became the fitting
error on the maximum of the curve. Distributions of both the x2’s and errors for the fitted
maximum can be seen for both Cm and Gd in figures 4.5 and 4.4 respectively. A strip was
only considered usable if it was possible to resolve the two Cm peaks, which are separated

by ~40 keV and only the “good strips” are included in these distributions.
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Figure 4.4: A) Errors on all usable gadolinium fits for the position of the peak. The “x
axis is in units of ADC channels (2 keV /channel). B) The reduced x? distribution of usable
gadolinium peak fits.
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Figure 4.5: A) Errors on all usable curium fits for the position of the peak. The “x” axis is
in units of ADC channels (2 keV/channel). B) The reduced x? distribution of usable curium
peak fits.
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The maximum of the error distributions is about 0.1 channels for Gd (about 0.2 keV)
and 0.2 channels for Cm (about 0.4 keV). The high-error tails on the ends of each of the
distributions are due to spectra that were not noisy enough to cut completely, but still
have some aberrations that the fit was unable to account for. These slight failures could
be attributed to high electronic noise or some faster-than-average drifting in the system

electronics.

4.2 Energy Calculations

Before the natural energies of the Cm and Gd shown in the previous table can be matched to
the maximum of each fit, they must be corrected for a few real effects. The point is to make
it such that the energy matches what the silicon detector “sees,” so that the calibration is
as accurate as possible and corrects for any non-linear effects. In order of the effects felt by
the alphas as they exit the source, they are impacted by a source dead layer, the detector
dead layer, the nonionizing energy loss in the detector, and then a pulse height defect. Once
all of these effects have been accounted for, the energy calibration forms a line with a very
small quadratic contribution as a result of the ADC’s. This correction was handled using
a minimization routine rather than a correction due to the loss of our linearity data. More
details are discussed in section 4.4 and a combined plot of all the corrections except for the

source dead layer can be found in section 4.5.

4.2.1 Source Dead Layer

While developing the detector response function for our simulations, it became clear that the
sources were at least slightly affected by a source dead layer. To account for this, an offline
measurement using a passivated implanted planar silicon (PIPS) detector was performed
on 2 of the 8 stainless steel square source mounts (4 sources total: 2 Gd and 2 Cm). The

measurement and analysis in the following section was performed by Louis Varriano with
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detector sources

Figure 4.6: Multiple angles of the setup used to measure the dead layer of our calibration
sources. The PIPS detector and angle-adjusting mount are both pictured. The other rings
that are not labeled were used for a parallel experiment. Photos taken by Louis Varriano.

guidance from myself and Dr. Guy Savard. Several measurements over a couple weeks were
taken of each source mount with the angle of the source mount normal to the detector at 0,
45, and 60 degrees in a vacuum chamber. The setup can be seen in Figure 4.6. Once the data
were taken, the shift as a result of the source dead layer was calculated using a convolution
process similar to how the detector lineshape was constructed in chapter 5. From the sources,
Louis found that a skewed “step” function as seen in the black curve of Figure 4.7 matched
the data the closest. Accounting for that activity distribution in the source caused the
maximum of a Bortels fit to the data to be shifted lower in energy by approximately 4 keV
depending on the angle and the electronic noise (all of which was accounted for when making
corrections in the calibration). Fortunately, since we are using trapped lithium-8, there is
no source dead layer for those alphas to contend with. Thus, this correction is exclusively
for the Gd and Cm sources. For the calibration, the calculated energy values of Gd and
Cm held only errors attributed to the source dead layer: 0.2 keV for Gd and 0.45 keV for
Cm. The remainder of the corrections are simply added back to the data later and their

systematic effects are examined separately.
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Figure 4.7: Steps for the convolution of a gadolinium source spectrum. Black: energy
spectrum of particles emitted from the source before hitting the detector taking into account
a skewed depth source dead layer. Red: black spectrum convolved to include widening
and energy loss from the detector dead layer. Blue: red spectrum convolved to include
the energy loss and widening of the nonionizing energy loss in the detector. Green: blue
spectrum convolved with the electronic noise and Fano factor resolution to produce a final
spectra. The Green spectrum is closest to what we would expect to see in our data. Graph
created by Louis Varriano.
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Figure 4.8: Comparison between data taken of the curium-244 and gadolinium-148 by the
PIPS silicon detector for the source dead layer measurement compared to fit using the Bortels
function (blue) and what the expected convoluted function for the source would look like.
All three are in good agreement.
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4.2.2  Detector Dead Layer

The next obstruction for the Gd and Cm alphas is a ~100 nm inactive layer of silicon doped
with aluminum on the surface of the silicon detectors. When the alphas pass through this
layer, they lose energy through ionization that cannot be collected like the rest of the energy
deposited in the active silicon. Based on the angle of incidence and the stopping power of
alpha particles in silicon, the energy lost in the dead layer can be reconstructed.

The dead layer was originally measured during an offline experiment with several more
in-house made alpha sources. However, since the measurement was performed before we
became aware of the extra dead layer, the resulting numbers were in effect the average
of the normal dead layer and extra dead layer. This time, the dead layer was measured by
exploiting the incident angle difference across the face of the detector (25 degrees from center
to edge) using a calibrated lithium-8 alpha spectrum (sans alpha’s used to make the agy
measurement) with all other corrections but the detector dead layer applied compared to the
same simulated spectrum. The 2 between the two spectra was taken for 64 4-pixel segments
with corrections for dead layers of varying thicknesses. The dead layer values for each detector
that corresponded to the lowest average X2 of the 64 segments was considered the “correct”
dead layer value. This technique was used with two different final state distributions in the
simulation with the same results coming out of each, which lends some confidence to this
method. The Left detector proved a bit too noisy to extract good values from, but it was
grown in the same set as both the Bottom and Right detectors, which should imply the
same dead layer thickness. The results from this measurement indicated thicknesses of 97
+ 5 nm (Top), 98 + 5 (bottom), and 111 + 7 nm (right). Taking the weighted average
of these returns the manufacturer’s dead layer thickness value of 100 nm with a weighted
uncertainty of 3.5 nm. The systematic uncertainties associated with the detector dead layer
are discussed in section 6.2.2. The relative uncertainties between the individual detector
dead layers are not a consequential source of error compared to the uncertainty introduced
if all four detectors are either larger or smaller than 100 nm.
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The dead layer energy loss calculations were performed by calculating the secant of
the angle between the normal of the source and the normal of the surface of the silicon
detector and multiplying it by the measured dead layer thickness and the stopping power
of alpha sources in silicon at the energy of the incident alphas. The stopping power was
determined using the program SRIM (the Stopping and Range of Tons in Matter) [111] and
was confirmed with full Monte Carlo calculations in TRIM (TRansport of Ions in Matter),
which is a program contained in SRIM. A graph of the energy correction needed for alphas
in a 100 nm silicon dead layer as a function of energy can be seen in Figure 4.18. The
energy loss for alphas in 100 nm of silicon is about 19 keV and 13 keV for 148Gd and 244Cm

respectively.

4.2.8 Nonionizing Energy Loss

Once the alpha particles enter the detector, not all of the energy they contain is collected in
the liberated electron-hole pairs. Some of it is lost through various mechanisms, the most
dominant of which is interactions with the silicon nuclei. The distribution of energy lost from
mono-energetic alphas can be modeled in TRIM for any alpha energy and most materials.
For alphas in silicon at Gd and Cm energies, the spectra of nonionizing energy loss (NIEL)
of several thousand alphas would resemble a f-distribution function (something similar to a
skewed Gaussian with the tail extending to higher energy). When correcting for NIEL, in
order to best match with simulation, the maximum of the NIEL spectra for each energy (Gd:
~ 3159 keV and Cm: ~ 5787 keV after previous corrections) simulated in TRIM were used
as the energy corrections for each source energy. The idea behind this choice was that we
can use the lineshape of the detector in the simulation to spread out the distribution from
the maximum of the peak. A graph of the maximum of the NIEL spectra as a function of
energy can be seen in Figure 4.18. The NIEL corrections for 148Gd and 2*4Cm were ~ 6
keV and 7 keV respectively. As discussed in section 4.5.1, the lithium-8 o’s have their NIEL

energy loss (and other energy-dependent corrections) added back after the calibration to
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return their energies to what they were when the a was emitted from the beryllium-8.

4.2.4 Pulse Height Defect

The last correction that must be accounted for is known as the pulse height defect. It has
been well-established that the energy of alpha particles that impinge upon a silicon detector
do not create pulses of current that are directly proportional to their energy. This is in part
because it takes slightly less energy to create an electron-hole pair in a region where one
has already been created. A simple model described by Lennard et al. in a 1986 paper [63]
matches all current data that has compared known alpha energies with detector responses.
The function for his model is below, where N(Ej) is the relative number of electron-hole

pairs produced by projectile of incident energy Fy and dFE/dx is the stopping power of the

Eo dE
N(Ep) = /0 ¥ k(dE/dx) (4.1)

projectile in silicon.

The same model has been used to calculate the pulse height defect correction for both the
Gd and Cm sources. A graph that also includes the pulse height defect correction as a
function of energy can be seen in Figure 4.18. The final corrected energy values of Gd and
Cm that the detector “sees” are ~ 3215 keV and ~ 5874 keV respectively. The systematic
uncertainties introduced by the energy corrections to the calibration are discussed in section

6.2.2.

4.3 Lithium-8 DSSD Beta Spectrum

To anchor the silicon detector calibrations in the low-energy regime, the lithium-8 beta
minimum ionizing spectrum was used as a known energy point.1 Alongside the two mono-

energetic alpha peaks, the three peaks provided an essentially complete coverage of the

1. Events where an electron scattered and deposited energy over multiple DSSD strips are reconstructed
by adding the energy across the affected strips and choosing a single incident strip randomly from the ones
containing 3 energy
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Figure 4.9: Comparison between a lithium-8 8~ spectrum that was calibrated using cosmic
muons and a Geant simulation of our lithium-8 5~ spectrum

lithium-8 alpha energy spectrum. This option only became possible for the August 2016 run
due to simply having enough beta particle statistics to form spectra that would fit with a low
error. The calibration was performed by fitting the beta particle spectra to a simple Landau
function (more details below) and comparing the mirror simulations in Geant4 [28] with
an identical fit. This method was only used after a calibration was first performed using
cosmic muons in the Top-Bottom detector system as a low-energy anchor and comparing
that to simulated muons (generated using Cosmic Ray shower generator (CRY) [43] and
propagated through Geant4). This method was developed by one of our former postdocs,
Dr. Tsviki Hirsh, and is documented in [48]. When correcting for the varying thicknesses of
the detectors and comparing simulation to data, the muon-calibrated data spectrum closely
matched the Geant4-generated lithium-8 beta spectrum. An example can be seen in Figure
4.9. The fitted Landau peak centers of the muon-calibrated beta spectrum and Geant4 beta
spectrum matched within error as well.

This calibration was performed at first using only the original beta spectrum. A better
calibration with lower errors from the Landau fits was also completed by angle-correcting the
energy of the beta spectrum in both the data and Geant4 spectra. In the following section,

the process and results of the Landau fits from both calibrations are discussed.
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Angle-corrected 8Li B-Spectra with Landau Fit
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Figure 4.10: Calibrated and angle-corrected lithium-8 S~ minimum ionizing spectrum with
a Landau function fit.

4.8.1 Fit Function and Results

As previously mentioned, all minimum ionizing spectra of the lithium-8 betas passing through
the silicon detectors were fit using a Landau function (below). The distribution was originally
developed and named by Lev Landau for the energy loss of “fast” particles that would obey
ionization theory as they pass through a thin layer of material, which exactly describes the

lithium-8 betas passing through our silicon detectors. [60]

o) = L [ s (1(£22) 1 g (1) ) as

The fits were performed using an automated routine in ROOT (similar to the routine used

for the Gd and Cm sources), where p in the equation above was the desired parameter. The
histogram spectra were created with the data occupying bins of 10 channels and were fit
from 70 bins below to 180 bins above the position of the bin with the highest number of
counts. An example of a beta spectrum and fit can be seen in Figure 4.10. The results of
the fits from all “good” strips can be seen in Figure 4.11. To complete the angle-corrected

calibration, the beta spectrum calibrated using the original method was modified such that
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Figure 4.11: A) v2 distribution of fits on all usable strips to both the original lithium-8 5~
minimum ionizing peak (black) and the angle-corrected version (blue). B) Distribution of all
fitted Landau peak parameter uncertainties. Each uncertainty was applied to the minimum
ionizing peak channel value when calculating the calibration.

each beta particle’s energy was divided by the secant of the impinging angle. The new,
more narrow peak was then fit to a Landau function with more successful results, as can
be seen in the blue curves in Figure 4.11. Using the calibration functions from the previous
round, the p and error values could then be returned to units of channels and used in a new
calibration. This method was also performed in the same manner using Geant4 simulations
for each strip to obtain the reference energy. The resulting fitted u errors were about 2.2
keV (1.1 channels) from the uncorrected data, and 2 keV (1 channel) from the corrected
data. For fits to the Geant4 simulations, both angle-corrected and uncorrected, the fitting

error was ~ 0.3 keV (semi-infinite statistics are available in simulations).

4.4 Full Calibration

Once fits to all three known points and the corrected energies were obtained for each strip, a
final calibration was performed. A figure of the full energy spectrum from a silicon detector
can be seen in Figure 4.12.

Under normal circumstances, the final calibration applied to each strip would have been

corrected for the slight quadratic response of the ADC’s using linearity data obtained by
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Figure 4.12: Full energy spectrum of events collected by the silicon detectors. At low energy
is the minimum ionizing spectrum of the 8Li betas that pass through the detectors (the
threshold between (’s and «’s is set at 700 keV), followed by the broad peak of the 8Li
alphas then moving to higher energy with the calibration sources 18Gd and 244Cm, and the
small 249Pu peak, which is the daughter of 2440,
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Example spectrum of Linearity Data
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Figure 4.13: Example of the 12 peak precision pulser spectrum spans the full lithium-8 «
energy spectrum and is used to determine the quadratic response of the ADC’s as well as the
electronic noise of the system. The four clustered peaks at the lowest part of the spectrum
correspond to the 1.5 MeV lithium-8 « peak, where the linearity must be the most accurate.
The “X” axis is in ADC channels, with a conversion to keV=2xCh

applying 12 signals of varying magnitude from a precision pulser to the preamplifiers every
10-12 hours over the course of the experiment. An example of the spectrum can be seen in
Figure 4.13. The centers of the peaks could then be fit to a quadratic to account for the
response of the electronics. In previous data campaigns, the results of the quadratic fits
were always stable compared to the usual gain drifts of the system electronics. However, the
pulser data taken during the August 2016 experiment demonstrated changes over time that
were ~3x as large as the gain drifts of the system and were in turn discarded. The point of
failure was attributed to the pulser itself, it having been recently repaired (unsuccessfully)
and not to any other malfunction of the electronics. Since this method of calibration using
the linearity data was last performed successfully for the most recent data-taking experiment
(boron-8 in 2014) with muons, shown in [48], we took it upon ourselves to soldier on with
a slightly different method. The linearity data itself is easily removed from the data using
a simple cut on the event multiplicity across strips (pulser signals are applied across all 32

strips at once).
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Figure 4.14: A demonstration of the linearity data stability from the 2014 8B experiment
before our pulser was damaged. Effectively the standard deviation of all the terms in the
quadratic fit for each of the 10 times the linearity was measured is on the order to the actual
average error for each term over the 10 data sets. The constant distributions are about 1%
of the actual constant values, with the linear term errors at 0.1% and the quadratic terms
at 10%

4.4.1 Method and Linearity

Going from the linearity data taken in the boron-8 experiment in 2014, over 10 samples, the
standard deviations each of the 10 quadratic fits for each strip are on the order of magnitude
of the actual fit errors themselves (see Figure 4.14). In addition, since the quadratic response
is an intrinsic part of the ADC, we came to the conclusion that the quadratic ADC response
is constant over the course of an experiment.

With that assumption, the gain drifts that happen to each of the peaks over the course
of our 16 time segments (an example can be seen in Figure 4.15) are moving along the same
quadratic function for each strip. Thus, the desired results from a strip calibration using
the 3 points from each time segment (48 total if the strip has no noise over the course of
the entire experiment) would be a constant and linear term for each time segment and then
a gain and quadratic common across all time segments to account for the ADC response (a
total of 32+ 2 = 34 unknown variables). With such a high ratio of known points to unknown
variables, a minimization of this system could easily be performed and be well-constrained.
The offset that would have been included in the ADC response was folded into the individual
time segment’s constant term to stabilize the minimization.
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Figure 4.15: Drift in the positions of the mono-energetic alpha sources over the course of the
run for an example strip with the fitting uncertainty serving as the error bars. The higher
energy values experience the gain drift more drastically than the lower energy values.

The minimization itself was performed by applying ROOT’s Minuit2 package (written
using C++ but based on the original Fortran Minuit package [53]) to the least squares
method for each strip, both front and back. Front strips 1 and 32 as well as back strips
1 through 8 and 32 were excluded. The calibration was performed in 2 rounds. The first
round excluded points from strip-time segment combinations that were considered noisy and
eliminated strips entirely if there were less than 5 time segments that were not too noisy.
The resulting functions were taken as the final calibrations for the strips and time segments
that were included in the minimization. A second round of minimizing included all the strips
and time segments was used to establish calibrations for the previously excluded data. An
example of the residuals of one strip’s calibration over the 16 time segments can be seen in
Figure 4.16. For the back strips 1-8 where no illumination from the sources was possible,
a rough calibration was done by matching front lithium-8 alpha energies to the back ones

using the technique described in section 4.9 of Matt Sternberg’s thesis. [95]
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Figure 4.16: Example set of calibration residuals for a single strip across the 16 time seg-
ments. The points are minimized to have an offset and gain for each time segment to account
for drift, but have a common gain and quadratic that are intrinsic to the ADC channel for
the entire experiment. The minimum ionizing peak from the betas has the widest peak
and less counts than the two alpha sources, which results in larger fitting uncertainties. Of
the alpha sources, with two peaks included in the fit, the curium-244 also has more fitting
uncertainty than the gadolinium-148.

4.4.2 Results and Errors

The results from the minimization calibration for all the usable strips are in Figure 4.17.
The fitted errors for all three terms in the quadratic allow for an calibration systematic error
that is over 10x smaller than our largest systematic uncertainty. The distributions of the
actual calibration values do not form a simple Gaussian shape because each individual set
of 16 channels within an ADC has its own signature distribution. The calibration values
of the back strips are also noticeably different than the front strips, in part because of the

difference in charge collection.

4.5 Data Processing

Once a calibration has been completed, it can be applied to the lithium-8 data using a sorting
routine that was developed to convert the hex files generated by our DAQ into something

easy to manipulate, i.e., ROOT files. Our data were first sorted without a calibration to
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Figure 4.17: Distributions of the quadratic calibration equation terms and the corresponding
statistical fitting errors for all usable strips on both front and back of all detectors. The
histograms containing the calibration values (top) have some structure, as each set of 16
strips corresponding to a single shaper has its own distinct distribution center.
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simply get channel values of the data to perform the calibration. Subsequent sorting was
done with a completed calibration applied to the data. To make the sorting easier, some
rudimentary cuts to the data were applied inside the routine with more stringent cuts applied
later. All of the data-processing steps described in the next two sections were done with the
goal of creating a data set of lithium-8 alphas and betas that match what our simulation
would be able to create while cleaning it of all background and noisy events that would

increase our final systematic errors.

4.5.1 Sorting

The sorting code we use performs a variety of functions after converting data from hex
format and applying a calibration. It takes the 1-hour run files taken over the course of the
experiment and combines them into the 16 time segments and creates a final ROOT file with
data sorted into beta and alpha events. The energy threshold defined as the upper endpoint
of the betas and the lower endpoint of alphas was chosen to be 700 keV. Though there is
some crossover between the two, 700 keV is at a relative minimum where there are few of
each particle (see Figure 4.12).

For alpha particles, an event is considered “real” by the sort code if both the front and
back of the detector read an event within the same time gate window and the energies read
by the front and back are within 300 keV of each other. A more stringent cut is applied
after the sort code to further eliminate noise and background. For events where some of
the energy is dispersed across several back strips, the code will search for nearby strips with
energy depositions that sum to something within 300 keV of what was measured by the
front. If the code is successful, the reconstructed event will be retained and will join others
like it to make up 10% of events used in the final analysis.

Once an event has been constructed, the alpha particle energies are returned from what
the detector “sees” to what the energy would have been before the alpha hit the detector.

This adjustment is completed by correcting the energy in the reverse order of the corrections
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Figure 4.18: Energy corrections applied to the calibrated 8Li alphas to return their energy
values back to their real energy coming out of the ion cloud. The black line is the sum of
the three individual corrections.

applied to the calibration energies. First, the pulse height defect is removed, then the
nonionizing energly loss correction, and finally the dead layer energy loss. A graph of all
three corrections as they are applied to the data as a function of the original energy can be
seen in Figure 4.18 where the black curve is the combined energy correction of all three. In
addition, the calibration files include a rating of each front and back strip based on whether
they were either usable or too noisy 2Z for that particular 10-hour time segment. A “final”
energy of each event is prescribed based on the quality of the strips that the particle hit. If
in the event a front strip is considered too noisy and the back strip is not, the back energy
will be taken instead of the front energy. If both strips are too noisy to be used, the entire
event is discarded.

The beta particles are treated slightly differently, since they do not deposit all their
energy within the silicon. As a beta can pass between both the front and back interstrip
gap and cause scattering within the detector, the code attempts to do a reconstruction using

energy deposited in both neighboring front and back strips. After the energy summing has

2. Strips where the two curium-244 peaks could not be resolved, so the resolution was below 20 keV, were
considered too noisy and discarded.

81



been performed, a lower threshold of total energy is taken to be 200 keV, which contains the
minimum ionizing peak within the spectra while still cutting out any low-energy noise. No
noise-based strip selecting is performed on the beta particle since the distribution is a wide
one and the location information is more important than a precise energy.

From there, the events can be divided into four different categories: “singles,” where

all recorded alphas are defined as a standalone event, “doubles,”

events where two opposite
detectors each have an alpha hit them within a single time gate window, “triples,” doubles
events in coincidence with a beta event being picked up by any detector, and “backscattered
events”, or triple events where two opposite detectors record a beta event in coincidence.
The primary data used to measure ag, are triples. Backscattered events are used to set
benchmarks for comparing our Geant4 scattering simulation to data.

For triple events, the sorting algorithm also attempts to reconstruct the kinematics of
the event, i.e., the final energy of the beta particle and both the energy and direction of the
antineutrino. Each of the four outgoing particles has 4 degrees of freedom, though one DOF
for each particle can be constrained using principles of energy and momentum conservation.
Given that we directly measure the energy and direction of both alpha particles and the
direction of the beta particle in the silicon detectors for a triple event, that leaves only 4
degrees of freedom that need to be determined for the system to be reconstructed via energy
and momentum conservation. With the addition of the plastic detectors directly measuring
the beta energy, the system becomes over-constrained. My predecessor, Gang Li included a
full calculation of the kinematic reconstruction in chapter 4 of his thesis, which the reader
may explore if they wish. [65] The reconstruction algorithm includes a check to see if the

solution to the reconstruction is plausible and conveys a status to the reconstructed event

based on this check that is included with the sorted ROOT data.
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4.5.2  Selection and Cluts

Once the data have been calibrated, corrected, sorted, cleaned, and reconstructed, some
final cuts are applied to the data to make sure only real events are measured and that the
background is as low as possible. The list below contains all the major cuts performed post-
sorting as well as a brief explanation. All the same applicable cuts are also applied to the

simulated data.

e The difference in numbering of front strips and back strips between the two alpha
particles must be less than 8 (the difference corresponding to the maximum angle that
is allowed by kinematics). Any coincidence greater than 8 would be attributed to a

coincidence with some background particle (See Figure 4.19.B).

e The difference in final energy between the two alpha particles must be less than 600
keV. The entire alpha difference spectra is well-contained within 600 keV and anything
outside of that range would again be attributed to a background coincidence (See Figure

4.20).

e The difference in energies measured by the front strips and back strips must be less
than 60 keV for the a’s and 110 keV for the ’s. As Figure 4.19.A shows, most of
the data are well-contained within 50 keV, though there is a tail from reconstructed
back strip events that are lower in energy than their front strip counterparts. This cut
ensures the integrity of an event and were chosen based on how well the distribution

of particles matched that of the simulation.

e Events recorded within 30 ms after an ion bunch has been injected into the BPT
chamber are rejected to ensure that the ion cloud has a chance to cool down and
return to its normal size before events are recorded again. 30 ms was recommended
by [89], though calculations using the strip difference spectra from the August 2016

experiment indicate that a 15 ms cut would be sufficient.
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e Alpha events that occur on the edge strips: front strips 1 and 32 and back strips 1 and

32 are rejected due to potential incomplete charge collection.

e Events where the § and an « both hit either the same back strip or front strip on the
same detector are discarded in the event that the DAQ can’t easily distinguish which

particle was which.

e Any event where there is more than one beta measured in coincidence with a double
is discarded from the triples set because it is unclear which beta actually belonged to
the decay that occurred. (Depending on the nature of these events, some are sorted
into alternate trees to compare with simulation when establishing [-scattering bench-

marks.)

e Alpha events with energy above 7 MeV are discarded. This is just to have a consistent

upper threshold. This resulted in ~10 rejected events.

e Events with the 8 energy below 200 keV are discarded. At lower energies, noise-related

events begin to dominate.

Upon passing the final cuts, data can then be parsed into spectra that are useful for
determining ag,. As was mentioned in the introduction, we have had the most success in
terms of sensitivity when using the spectra containing the difference in energy between the
two alpha particles in a triple event. Examples of these spectra for the Top-Bottom detector
system (similar results for the Left-Right system) with the beta particle going into each of
the four detectors are exhibited in Figure 4.20. To obtain the additional sensitivity to ag,
imparted to us by the delayed alpha emission decay rate (discussed in section 1.2.4), we must
use events where the beta and one of the alphas are emitted in roughly the same direction.
More intuitively, the weight for the beta-neutrino correlation in events can be simplified to

something like the equation below:

vB : 1 1
W(bg,) =1+ gy~ cos(fg,) Axial-Vector: ag, = —3 Tensor: ag, = 3 (4.3)
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Figure 4.19: A) Difference in energy for all usable strips between the front and back mea-
surements. Events with an energy difference greater than 60 keV are discarded. The tail on
the right hand side is due to incomplete charge collection on the back strips or a poor back
strip energy reconstruction across strips. B) Difference in strip number between the two
alphas when they hit opposite detectors. It is kinematically impossible for an alpha double
to have a difference in strip number greater than 8.

If the interaction is axial vector, then it is more favorable for the beta and antineutrino to
be emitted in opposite directions. If the interaction is tensor, then the leptons are most
likely to be emitted in the same direction. For this reason, if both leptons are emitted in
the same direction, the resulting “kick” to the recoiling nucleus would show up most clearly
in the alpha difference spectra if the leptons were also emitted in the same direction as one
of the alphas. You can already see the “kick” imparted by the beta particle in the skewed
shapes of the parallel beta spectra in Figure 4.20. It is the parallel beta spectra that we
compare to simulation for determining a final value of ag,. For spectra shown in the results
section, they are often combined versions of the spectra seen below. This is accomplished by
simply swapping the energy subtraction on one of the spectra to make the shape match the
other and summing the two. A total energy difference spectra for the beta hitting the same
detector as an alpha can be obtained by summing both the Top-Bottom detector system and
Left-Right detector system spectra.

It is also possible to determine ag, using a spectra containing the reconstructed angles

between the beta and antineutrino. However, since the reconstructed kinematics are highly
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Figure 4.20: A subset (a’s in the Top-Bottom detector system, ~50% of the total) of the
good-quality experimental "triples” data divided into the four possible alpha energy differ-
ence spectra. The “parallel” beta spectra have clear structure and can be used to measure
tensor currents. The “90°” beta spectra have less structure and are used to test various

systematics
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sensitive to any error in the ion cloud position and are not always successful, this technique

is not nearly as powerful.
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CHAPTER 5
SIMULATIONS

Once the data set has been calibrated and cleaned, it can be compared to simulation so a
value for ag, can be extracted. Given that this is a high-statistics precision measurement, it
is of the utmost importance that the simulation takes into account every relevant detail of the
decay and detector system. This goal is accomplished using two different simulation stages.
The actual decay and the resulting products with energies and trajectories are created using a
Monte Carlo Event Generator code. From there, the generated 3~ particles are propagated
through a full material model of the BPT and chamber to account for scattering. The
simulations are run in both a pure axial vector mode and a pure tensor mode (details
discussed in appendix B). Once an alpha difference spectra is constructed for each, splines
are fit to each of the spectra and a linear combination of the two splines are fit to the data.
The resulting tensor fraction of the total contribution becomes |Cp/C A|2 and can in turn

be plugged into the formula for ag,,.

1|Cal* = |Cp[?

-4 5.1
T3P T IO o

5.1 p-Decay Event Generator

The S decay Event Generator is the cornerstone of our simulation software and includes all
of the necessary components for dealing with the 8Be* « particles. It was originally written
by one of our former postdocs, Dr. Nick Scielzo (who is now a staff member at Lawrence
Livermore National Lab) for the 2!Na MOT experiment discussed in section 1.3.3 [88]. It has
since been modified for the mass-8 system and upgraded from C to C++ by Aaron Gallant,
one of our postdoc collaborators currently working under Dr. Scielzo.

The event generator code goes through a series of steps to include all possible physics

into the generation of the a’s, 57, and v particles. It begins by first choosing an excitation
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energy from the broad 8Be* 21 state. This step is completed using a final state distribution
(FSD, from a 8Li decay, specifically) that must be included in the event generator. The one
we use is taken from an R-Matrix fit to the spectrum of summed 8Li « energies. The FSD
itself is discussed in further detail in the next section.

Once an excitation energy has been selected, there are two possible types of decays that
should be accounted for. The first is a normal 8~ decay that is constructed using a simple
Monte Carlo rejection method. The directions for the 7, 7 and a breakup axis are randomly
generated on a unit sphere (in the rest frame of the recoiling nucleus). The « energies are
taken from the resulting 8Be* decay Q value with the chosen excitation energy and the 8~
energy is chosen at random from a range of 0 to the endpoint energy (also calculated from
the excitation energy of the 8Be*). Finally, the 7 energy is determined from conservation
of energy and momentum. Once everything has a direction and energy, they are boosted
into the lab frame and the resulting phase-space amplitude is calculated using Holstein’s
decay rate expansion for a g decay with delayed a emission where the § and v energy and
momentum are known [49]. The amplitude is compared to the maximum of the phase space
over all parameters and either kept or rejected based on the likelihood of it being a real
event.

The second possible decay is one where a photon (bremsstrahlung radiation) is emitted
from the B~ particle as it exits the charge radius of the atomic 8Be*. This process occurs in
about ~6.5% of the total decays and can be accounted for by having a set fraction of events
with photon emission and using an alternate recoil expansion. The steps for adding photon
emission to a Monte Carlo event generator and the corresponding decay rate expansion is
described in Gliick’s 1997 paper [37]. More details on the full decay rate expansion from
Holstein’s paper and Gliick’s bremsstrahlung radiation expansion can be found in Appendix
B.

For pure axial-vector events, the correlations within each of the decay rate remains as

described by both Holstein and Gliick. To simulate pure tensor events, we collectively swap
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the signs () of each term containing a correlation between the § and v. This method
has been roughly verified through conversations with Holstein. In addition, based on our
previous study, the tensor interaction contributes less than 1% to the total events, so only
the leading-order terms are important.

Once the decay has either been accepted or rejected based on the phase space, it can be
applied to a theoretical rendition of the actual trap and detector setup. The decay’s location
is assigned based on a random generation using a 3 dimensional Gaussian (determined by
comparing « strip difference spectra to simulation). The meV level thermal energies of the
8Li particles are not included as they are much smaller than the 20 keV sensitivity we strive
for in our system. The particle trajectories are then used to determine whether or not any of
the particles hit a silicon detector. The location of the hits on silicon detectors are recorded
based on strip number. At this point, a detector response function or “lineshape” is applied
to the alpha particles to take into account a variety of real factors that would spread out
the a energy distribution. The code also takes into account whether or not an « hits a strip
that would be considered too noisy to use and rejects events based on that criteria as well.
More details can be found in section 5.1.2.

The final product of the event generator is a ROOT file filled with information similar
to what the sort code would output for the data. This file can then be funneled through a

Geant4 simulation to incorporate any effects from S~ scattering.

5.1.1 Final State Distribution

The final state distribution (FSD) is a crucial component to the Event Generator simulation
as it eventually defines what the single o energy spectrum will look like. In previous works,
we have used an R-Matrix fit from a paper in 2006 by Bhattacharya, M. et. al [12]. Their

8Li FSD (blue curve) can be seen in Figure 5.1 (they also performed a similar fit to the $Be*

90



FSD for a 8B decay). An example of an R-Matrix fitting function is below.

‘ IENTA 2

)\)\EI

+| 9GT AN
ANE-E,

‘1 — [Si(Ex) — By +iP(Ez)] Yo SAV—AE

Ntl )

F(Ex) = (Ez) P (Ey) %

(5.2)

where P; is the penetrability factor, S; is the shift factor, B; is the boundary condition,
gr.cr is the Fermi or Gamow-Teller matrix element, v is the partial width, £y is the energy
level, and FE, is the excitation energy.

The 2006 FSD served us well until this experiment, where there were enough statistics to
show a discrepancy. At this point, the Bhattacharya, M. et. al. FSD resulted in simulated «
energy spectra with a peak ~6 keV higher in energy than the data (£; ~ 12 keV higher for
the FSD peak center). However, the error on the 2006 R-matrix & peak fit was ~10 keV.
In addition, a similar measurement had been done at IGISOL in Finland in 2012 for 8B that
produced a & FSD peak 10 keV lower in energy than the 2006 paper [81]. Bearing that in
mind, we came to the conclusion that the 2006 8Li FSD was not sufficiently precise to use for
our simulations. Since it is the lepton correlation that primarily concerns our measurement,
we opted to perform our own R-matrix fit to the high-statistics 8Li data. This fitting is
being done by Dr. Tsviki Hirsh alongside his own R-matrix fit of our 2014 ®B data and is
still in progress. For the moment, we are utilizing a modified R-Matrix fit from [12] with the
&1 term shifted 12 keV lower, which we project will be very similar to the final R-matrix fit.
The shifted FSD can be seen in the grey curve of 5.1, and the peak is indeed shifted slightly
lower in energy. A comparison of the two single « energy spectra can be found in section
6.2.5. In the end, the difference between tensor contributions when changing between the
two final state distributions was roughly half of our statistical uncertainty (more details are

discussed in section 6.2.5).
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Figure 5.1: Example of the decay from lithium-8 to beryllium-8* final state distribution.
The blue curve is taken from an R-matrix fit to measured lithium-8 data by Bhattacharya,
M. et. al. in 2006 [12]. The grey dashed line is an R-matrix fit to our lithium-8 data done by
Tsviki Hirsh. The peak of the grey line is ~13 keV lower in energy than the Bhattacharya

et al. curve (inset).
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5.1.2 « Detector Response Function

Another key attribute of the Event Generator that I gave a great deal of attention is the
detector response function or “lineshape.” This particular aspect was of great importance
in terms of tying in several real effects on the 8Li data to the simulation. The previous
8Li experiment used a skewed Gaussian to represent the lineshape based on noise and the
energy of the alphas that was based on a guess from comparing to offline measurements
of thin mass-separated 148Gd and 244Cm sources. This time, being aware of the extra
dead layer and having spectroscopy-grade 18G4 and 244Cm alpha sources for comparison
already in the system, we completed a fully calculated lineshape based on known physics
and features within the silicon detectors. This calculated lineshape was in turn added to our
Event Generator.

Going according to the formulation described in E. Steinbauer et. al.’s 1994 paper [92],
a full lineshape convolution has 4 stages: dispersion through the dead layers, dispersion
from nonionizing energy loss (NIEL), and spread from the Fano factor resolution within the
detector as well as the electronic noise of the system. Since the calibration was performed
with the line centers at the maximum of each alpha peak, the lineshapes were also constructed

such that the largest peak of the final convolution had its maximum at 0 keV.

The Extra Dead Layer

The first stage requires fully understanding the normal and extra dead layer (defined in
section 3.3.1, see Figure 3.7 ) dispersion based on both energy and incident angle, as well
as the compositions of each layer. The full lineshape had to include two different peaks to
account for the normal and extra dead layer effects. The percentage of events going into
each dead layer was determined by fitting the 148Gd peak with two Bortels skewed Gaussian
functions (one for each peak) and integrating over each individual function. The fitting was
done over all doubly-illuminated pixels. The center of the Gaussian distribution of each

detector’s extra dead layer percentage (and the corresponding error) was used as the final
93



percentage. Because of the high electronic noise on the Left detector, a precise percentage
value could not be determined. However, since the Left and Right detectors were purchased
together and therefore the crystals were grown at the same time, we use the Right detector
percentage value and error for both detectors. Rudimentary fitting of the Left detector
confirmed this result within the precision that was possible. The percentage of o events that
interact with the extra dead layer (intrinsic for each detector) with the corresponding errors

can be found in table 77.

Detector | Extra Dead Layer Event %
Top 3.132 + 0.017
Bottom 3.287 4+ 0.017
Left /Right 2917 + 0.014

Table 5.1: Percent of measured « events that interact with the extra dead layer by detector
as determined by the Gd source peak.

The thickness of the extra dead layer was determined using a linear regression of the
energy difference between the two Gd peaks (one for each dead layer) vs incident angle over
pixels in the five front strips that were most centrally illuminated by the two Gd sources.!
The results were remarkably consistent across all detectors: for a Gd alpha normally incident
on a detector and factoring in a ~100 nm normal dead layer, the energy loss would be 112 +
4 keV. The extra dead layer thickness that Micron prescribed us (300 nm of aluminum and
500 nm of silicon) would have produced a much higher energy loss. Less precise fits to the
Cm extra dead layer peak corroborated what was found with the Gd peaks. A comparison
of the data to SRIM [111] projections of what the energy loss curve would look like with

different combinations of materials can be seen in Figure 5.2. We settled upon a dead layer

composition with 300 nm of aluminum and 270 nm of inactive silicon with a 3.5% error

1. See Figure 4.2.A. The angle difference between the pixels corresponding to the illuminated edge back-
strips is approximately 37 degrees, see Figure 4.2.B. There are 23 illuminated pixels per strip that can be
used for the linear regression.
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Figure 5.2: Comparison of the energy loss in the extra dead layer for the 1*¥Gd and 244Cm
alpha sources (taking into account a ~100 nm normal dead layer) compared to SRIM [111]
stopping power curves for 3 different potential extra dead layer compositions. The mixture
of silicon and aluminum was chosen because it best matched what Micron claimed we should
have.

(corresponding to 4 keV out of 112). However, in the likely event that our composition
estimates are wrong, Figure 5.2 implies there would be up to a 5 keV discrepancy in either
direction for a pure silicon or pure aluminum extra dead layer. Such a small change on 3%
of the lowest energy events is not a large enough effect for this experiment to be sensitive to
it.2

Once the size and composition of the extra dead layer had been determined, it was
necessary to determine the resulting energy dispersion of alpha energies within each dead
layer based on energy and impinging angle. This was accomplished by running a series of
simulations in TRIM of 10,000 mono-energetic alphas passing through each of the two dead

layers (100 nm of silicon and 300 nm of aluminum with 270 nm of inactive silicon, separately).

2. The composition between silicon and aluminum in the extra dead layer would also have an effect on
potential “channeling,” or a’s passing through potential silicon crystal axes where the electron density is
less, [25] thus depositing less energy for a small percentage of events. However, the silicon implants are the
same material as the normal dead layer and no channeling was observed through the normal dead layer.
This issue is discussed in further detail in section 6.2.9
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Figure 5.3: Energy dispersion of « particles through the A) normal dead layer and B) the
extra dead layer based on impinging angle and « energy used to construct the detector line-
shape. Here, the white dots represent the sigma of a Gaussian fit to a dead layer simulation
in TRIM and the colored plane is a 2-dimensional polynomial fit to the data.

40 simulations for each dead layer were run: 10 different values of energy spanning 700 keV to
7 MeV with 4 different thicknesses: the original thickness with 106%, 112%, and 118% of the
original thickness to simulate different impinging angles. The resulting standard deviations
of a Gaussian fit to the energy loss for each 10,000 alphas simulations are plotted in Figure
5.3. The 40 values were fitted to a 2D polynomial, which was incorporated into the lineshape
construction.

Thus, the first stage of the lineshape construction was completed by using a random
number generator compared to the extra dead layer percentage to determine which dead
layer the alpha would “hit.” Depending on which dead layer was chosen, the event generator
would then determine what the resulting spread from the dead layer using the 2D polynomials
with respect to the energy and impinging angle of the alpha. The combined systematic error
brought to the detector lineshape from the dead layers was roughly half of the statistical
uncertainty, with the extra dead layer thickness being the largest contributor. More details

can be found in section 6.2.7.
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Nonionizing Energy Loss

After passing through a dead layer, the alpha also loses energy from various interactions
within the silicon detector that aren’t picked up in the total energy measurement and are
primarily from collisions with the silicon nuclei. TRIM is also capable of simulating energy
lost through nuclear collisions, thus 6 more simulations of 30,000 « particles implanting in
silicon were run at 6 different energies that spanned the 8Li v spectrum. These 6 curves were
then fit to a modified F-Distribution function (a function that is often found in statistics).
The modifications were imposed such that the resulting function would be the right width,
and with the peak centered at 0. An example of the fit can be seen in Figure 5.4, though
it was flipped from positive to negative when applied to the lineshape convolution. It is in
part the nonionizing energy loss that gives the skewed Gaussian from the Bortels function

its skew. The modified function itself is below:

m™/2p"2(E X — 0.818)7/2~1
(m+ n(EaX — 0.818))" 2B (1n, L)

(p—1D!(g—1)!
(p+q—1)!
(5.3)

f(Eq) = Y< > with: B(p,q) =
where n = 10000.0 and m = 9.0. Over the 6 simulations that were run, the X and Y
scaling factors were allowed to vary when fitting the resulting nonionizing energy loss curve.
The two factors were then fit to a quadratic (also seen in Figure 5.4). The shape of the
nonionizing energy loss curve did not noticeably change across the alpha energies. However,
whatever small effect there was, it was taken into account and the resulting F-distribution

function was convoluted with the Gaussian from the dead layer dispersion.

Fano Factor Resolution

Alongside the nonionizing energy loss, there is some spread attributed to the number of
electron-hole pairs created when mono-energetic alphas are measured by silicon detectors,

which is loosely known as the Fano factor resolution. This spread is also Gaussian with a
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Figure 5.4: A) Example of a nonionizing energy loss distribution for an « particle in silicon
fit to a F-Distribution (shifted so that the maximum is at 0 to match with the energy
loss correction already applied to the data). The entire distribution will be flipped from
positive to negative before being applied to the lineshape. B) and C) are quadratic fits to
the F-Distribution fitting parameters for 6 different a energy NIEL distributions.

standard deviation of: [30]

OFF =V wEaF (54)

where F is the Fano factor, measured to be 0.134 + 0.007 [92], E is the energy of the «
particle and w is the average energy required to create an electron-hole pair. This simple

Gaussian distribution is also convoluted into the final lineshape.

Electronic noise

The final component of our lineshape is the individual electronic noise picked up by each
strip, both front and back. This “ambient” noise is a result of the cumulative racket that
our system makes, both electronically and vibrationally during the course of an experiment.
Roughing and turbo pumps must run and be fed power, liquid nitrogen must be pumped
through the trap, and various electronics are required to actually perform the measurement.
The final result is yet another Gaussian spread to the data that must be incorporated into the
lineshape. As it happens, our precision pulser linearity data were still useful for this purpose,

if not for actually measuring the linearity. By applying 12 pulses of different energies to the
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Figure 5.5: A) Distribution of the average Gaussian ¢’s fit to the precision pulser peaks to
measure electronic noise for all usable strips with B) the corresponding errors for each strip.

strips, it was possible to measure the electronic noise spread directly by fitting the pulser
peaks to Gaussian fits, and taking the average o over all 12 pulser peaks. The error for each
sigma was either the standard deviation of the 12 ¢’s or the highest of the 12 errors on the
o in the Gaussian fit, whichever was larger. Distributions for the electronic noise ¢’s and
the corresponding errors can be found in Figure 5.5. In principle, as long as the resolution
of the strip is not too compromised, as long as the electronic noise (or the peak widths of
the Gd and Cm sources) between the simulation and strip match, the electronic noise does
not contribute significantly to the systematic uncertainty (more details in section 6.7.2).
The event generator will choose an electronic noise based on which strip it projects the
alpha has hit (while also choosing randomly between the 16 time segments, which each have
individual noise contribution to account for fluctuations in time). Mirroring the sort code,
if either front strip in the a double is found to be too noisy from the input electronic noise
values, it will choose the corresponding back strip noise . If both the front and back are

too noisy, the event is rejected.
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Lineshape Formulation
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Figure 5.6: The four stages of formulating a lineshape. The first widening factor is the
detector dead layer (red), followed by the nonionizing energy loss distribution (orange), then
the detector Fano factor resolution (green), and then the general electronic noise from our
system measured by a precision pulser. Each stage is a combination of the previous ones.
The combination of all effects is in blue.

Final Lineshape

In the event generator, the final spread “value” is selected by choosing between the two dead
layers using the detector’s percentage value, and then adding together a random number
generated from the dead layer Gaussian distribution, the nonionizing energy loss, and then
the combined Fano factor and electronic noise Gaussians. A step-by-step look at what a
resulting lineshape would look like for a normal dead layer can be seen in Figure 5.6. For the
extra dead layer, a similar pattern would be evident, though the distribution would be wider
and centered at the energy and incident-angle dependent negative offset that corresponds to
the extra energy lost in the thicker dead layer.

When all is calculated and compared to the spectroscopy-grade alpha sources, the results
are very consistent. An example lineshape compared to a Gd and a Cm spectrum is seen in
Figure 5.7. The high-energy side of each spectra is well-matched, as is the position and size

of the extra dead layer peak. The discrepancies between the lineshape and the lower-energy
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Figure 5.7: A comparison between both 148Gd and 244Cm spectra (blue) with their calculated
lineshape (red). They match very well, except for a low-energy tail that results from a source
dead layer, which is not present in the 8Li « lineshape.

tails in the spectra are the result of a small source dead layer, as was determined by Louis

Varriano in the experiment discussed in section 4.2.1. Since the trapped 3Li ions have no

source dead layer, it is not necessary to add a source dead layer to the lineshape.
Depending on the needs of the simulation, the lineshape can be either applied within the

event generator or after a simulation has been completed.

5.2 Geant4 Scattering Simulation

The second stage of simulation is a Geant4 28] program seeded with the 5~ particles created
by the Event Generator which takes into account scattering off material in and around the
trap. As the « particles are simply stopped by any material, their properties remain the
jurisdiction of the Event Generator and are unchanged after the Geant4 simulation. The (3
particles and their energies are fed into the Geant4 simulation as a “beam” and propagated
through a full geometry of the trap and chamber. Geant4 registers any scattering that
happens to the 8’s and records any interactions with both the silicon and plastic scintillator
detectors. In addition, the simulation is used to determine both detector sets’ responses to

[ interactions and includes a kinematic reconstruction program identical to the one in our
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data sort code. From comparing simulation to data, it is estimated that between 85-80% of
betas are direct hits to the silicon detector, while the remaining percentage is impacted by
some type of scattering. Since our previous experiment, Geant4 has become a much more
complete and powerful program for dealing with ion propagation and has been able to keep
up with our high-statistics data set. An updated version from the original code used in the
2015 experiment was compiled by Dr. Aaron Gallant for the 8Li August 2016 data analysis
and the upcoming high-statistics 8B analysis. The upgraded code included the most recent

version of Geant4 (10.03) and corrected some multithreading errors.

5.2.1 Geometry

In order to accurately take into account the scattering, a complete model of the trap and
chamber material is required. The model was constructed in Autodesk Inventor utilizing the
original engineering designs of the BPT itself for simulations in the 2015 8Li PRL experiment.
3 different views of the model can be seen in Figure 5.8.

Before use, one of the most important components: the distance between detectors was
precisely measured to 0.001” after the model’s construction. The measurements matched the
Autodesk model to within 0.003” for the Top/Bottom and 0.021” for the Left/Right detector
systems, which do not cause a problem for the « difference spectra, but are incorporated into
the kinematic reconstructions. In addition, rather than being precisely machined, the RF
shielding was cut and folded from stainless steel sheets, which could lead to discrepancies of
up to 2 mm between the model and actual trap. None of the cabling surrounding the trap or
small screws were included either. However, by observing the S-scattering in Geant4 directly,
the vast majority of redirected (3’s result from interactions with the RF shielding. Similarly,
comparing a simulation taking into account scattering to a simulation without, the correction
to |Cp/C A|2 only changes by <0.02 for each detector system. Thus, a potential discrepancy
of 2 mm on some of the shielding should not pose a problem. (’s that are scattered into a

detector are usually already heading in the direction of a detector and therefore the scattering
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Figure 5.8: The full Autocad rendition of the BPT trap used for the Geant4 geometry. The
chamber and plastic detectors are also included, but not shown here. A) A complete version
with the silicon detectors and their mounts, B) one where the detectors and mounts are
removed so the stainless steel RF shielding is visible, and C) one with only the frame and
electrodes.

itself will not have such a large effect.
A complete chamber and the new plastic detectors were added to the model later for
the August 2016 run by Dr. Aaron Gallant. The Autodesk file was converted to a Geant4-

friendly file format (gdml) using open-source software. [2]

5.2.2  Physics Package

The number of physics packages available for use in the low-energy regime (8 energy from
250 eV to 1 GeV) has expanded since our previous experiment from three to over a dozen.
The most widely used packages of the current low-energy electromagnetic physics packages
are the default, Livermore, PENELOPE, and Options 1 through 4 packages. There is also
a DNA physics package primarily used for biological purposes that is not applicable to this
research and will not be discussed.

For the purposes of determining which package to use in the updated Geant4 version, Dr.
Gallant ran a series of small simulations to measure the scattering fraction in a hemisphere of
several relevant materials (stainless steel, silicon, and gold) at the range of energies required
for this experiment. The results indicated that the Livermore, PENELOPE, option3, and

optiond packages converged for all materials and thus, any would suffice for our analysis.
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These results were confirmed using similar scattering fractions discussed in the next section:
no statistically significant discrepancy in the scattering fractions between the four models
was discernible. Of the four, we opted to use the option3 package, due to being the most
simple package available while still having all the necessary physics.

The reason for all of the physics lists having converging results is that elastic Coulomb
scattering itself is what dominates the effects that we're looking for and all four use the
same Geant4 Urban multiscattering model [51]. This particular model has its foundations in
Lewis theory [41] and uses a new “Goudsmit-Saunderson” model that relies on a database of
total and transport cross sections of positrons and electrons generated by the ELSEPA code
[83]. This database allows for fast sampling of positron and electron angular distributions
to find deflections from neutral atoms to model the scattering. [55]. The addition of this
new technique allowed Geant4 to become a much more powerful tool for modeling low-
energy electron and positron scattering and the accuracy has been well tested in a variety of
mediums ([56], though Geant4 keeps a full validation data archive here: [3]). Currently, the
best benchmark for backscattering pins accuracy to be within 16% [67]. A variety of other
physical processes that do not contribute significantly to our § scattering but are still taken
into account in the option 3 package are bremsstrahlung radiation, ionization, and Compton
scattering.

The Option 3 physics list comes with a few tunable parameters that have been incor-
porated into the code, though changing them from the default values has not shown any
noticeable change in the results of our simulation. Two parameters: Fp is the “range fac-
tor” and F(; is the “geometry factor” are used to determine the maximum number of steps

the scattering simulation may take (L).

L = Min(Fg * Max(R, \), D/ F¢)

Here, R is the particle range in the material, and A is the inverse cross section (both are
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Figure 5.9: An example of an electron’s scattering trajectory. Each of the silicon detectors
and backing plastic detectors are highlighted in color. The trap electrodes and inner “hood”
shields are outlined in white.

dependent on the energy of the particle), and D is the distance to the geometrical boundary.
However, if we choose to use the option “fUseDistanceToBoundary” command, (which gives
the most accurate results from Option 3) the terms are set to values of Fp = 0.04 and

Fg =25. [51].

5.2.83  Scattering Quality-Checks

In order to ensure that the Geant4 simulation is outputting quality data that is directly
comparable to the actual data, a variety of quality-checks or “benchmarks” are used. Some

have already been discussed. For this experiment, they include:
e Energy deposited in the silicon detectors
e Fraction of 5 — o — « coincidences to o — «v coincidences, or the “triples fraction”

e Fraction of triples where a 3 is backscattered from one silicon detector to an opposite
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silicon detector
e Distribution of § particles in triple events across each detector
e Fraction of triple events where plastic data is measured above threshold
e Stability of the simulation when adjustable parameters are changed

The energy deposition spectrum of the §’s passing through the silicon detector was al-
ready discussed in the previous chapter, given that the spectrum itself needed to be thor-
oughly vetted for its integrity using a similar muon spectrum and data before use in the
calibration.

The triples fraction and backscattered fraction are both fairly straightforward to calculate
for the simulation, though some background (muons, betas from other decays where the
alphas aren’t detected, etc.) needs to be taken into account when doing the calculations
for the data. In the previous experiment, there were not enough statistics to actually use
the backscattered fraction as a true benchmark. However, with the current data set, the
backscattered fraction in the data can be known to within 16%, which is well within the
capabilities of Geant4’s accuracy. All of the fractions from both the simulation and data are
included at the end of this section.

The distribution of 5’s over each silicon detector is possibly the best way to determine the
quality of the Geant4 simulations as it has the most sensitivity to any significant discrepancies
between the model and the actual trap. A simple X2 calculation over the detector’s pixels can
be used to determine the integrity of the scattering simulation. The final systematic error
prescribed to 3 scattering was calculated using artificial changes to the simulation scattering
distribution.

In contrast, the plastic detectors are much less reliable in terms of being used as a
benchmark. Their calibration is determined by the Geant4 simulation itself rather than
independent alpha sources. Thus, the fraction of triples with plastic data vs the total is very

much dependent on what threshold defines a plastic event and the quality of the calibration.
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Benchmark Simulation Data
Triples Fraction 0.2602 £ 0.0005 0.259 + 0.001
Backscattered Fraction | 0.000229 4 0.000007 | 0.00019 £ 0.00003

Plastic Fraction 0.69 0.74

Table 5.2: Quality benchmarks for scattering in the Data vs the Geant4 simulation.

That said, for posterity, the “plastic fraction” from both the simulation and data is also
included at the end of this section.

In previous experiments, the stability of the triples fraction when the adjustable param-
eters were changed was considered a benchmark. However, since upgrading to a more recent
version of Geant4, the triples fraction has in fact not budged at all across all adjustable
parameters in acceptable ranges, though we could see that the speed of the simulation was
clearly being affected by the changes. This new Geant4 “feature” now lends some confidence

to our final simulation results.

5.3 Comparison to Data

Once the simulations have been generated, the events are cut using the same applicable

criteria as the data. This includes:

e The difference in numbering of front strips and back strips between the two alpha

particles must be less than 8 (the maximum difference that is allowed by kinematics).

The difference in energy between the two alpha particles must be less than 600 keV.

Alpha events that occur on the edge strips: front strips 1 and 32 and back strips 1 and

32 are rejected.

Alpha events with energy above 7 MeV are discarded.

Events with the 3 energy below 200 keV are discarded.
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The other cuts to the data: energy differences between the front and back faces of the
detector and the trap cycling are not simulated, and therefore not included in the simulation
cuts.

Once the cuts are applied, the simulated triples are distributed into the same « energy
difference spectra as the data is. Examples of what this would look like for pure axial-vector
and pure tensor interactions can be seen in Figure 5.10. There is a very distinct shape
difference between the two, which gives us the sensitivity we require to define ag,. Since
this is a precision measurement, it is unwise to compare the data to simulations any less
than 10x as large as the data. Differences between the two detector systems’ spectra can be
attributed to geometry: some strips are rejected (mostly based on noise) on the Left-Right
are not rejected on the Top-Bottom system and vice versa.

Though the simulated Geant4 spectra aren’t directly used for the measurement of ag,,
they serve a variety of other purposes (calibration, nailing down systematics, etc.). The
two Geant4 simulated spectra: a beta spectrum through a silicon detector and then a plastic
scintillator detector are seen in Figure 5.11. The threshold for a plastic event to be considered

“real” is 700 keV.
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Figure 5.10: The four possible simulated alpha energy difference spectra for the top-bottom
detector system to be used for comparison to the data. The blue lines represent what a
pure tensor-interaction spectra would look like while the black represents a pure axial vector
interaction.

A) Geant4 8Li B~ Silicon Detector Spectrum. B) Geant4 8Li B- Plastic Detector Spectrum.
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Figure 5.11: Geant4 simulated lithium-8 5~ spectra for A) a silicon detector and B) a plastic
scintillator detector.
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CHAPTER 6
RESULTS AND SYSTEMATICS

6.1 « Energy Difference Spectra

Once the data processing is complete and an accurate simulation has been assembled, the
two can be compared to extract a value of [C7/C4|?. As has been mentioned previously, we
use only data where both 8Be* o’s and the 8Li 3 are detected. In addition, we require that
the 8 hits one of the same detectors as an «. Going by the rough weighting of the § — v
correlation, W(flg,) = 1 + ag,(v/c) cos(fg,), where ag, = —1/3(+1/3) for an axial-vector
(tensor) interaction, it is clear that tensor interactions favor the 5 and 7 being emitted in
the same direction. Intuitively, such an interaction would give an extra “kick” of momentum
that would be very obvious in the « energies for events where the beta is measured to have
gone in roughly the same direction as the a’s. Furthermore, as was discussed in Appendix
B.2, we gain a factor of 3 in sensitivity to ag, when we use this requirement.

Thus, we use the “parallel” 3, a energy difference spectra from both the data and sim-
ulation to extract ag, via |C’T/C'A|2. This process begins with fitting separate « energy
difference spectra of pure tensor and pure axial vector simulated events to cubic splines.
A linear combination of the resulting functions are then fit to spectra generated from the
data: (cgSpliney + cpSpliner) using ROOT’s Minuit minimization package with the least
squares method [53]. From the fit parameters ¢4 and ¢ the |Cp/C4|? value is calculated
from (cp)/(cq + cr). More details can be found in Appendix B.

Examples of each of the possible parallel 3, « energy difference spectra can be found
in Figure 6.1. The detectors each of the particles were measured on are abbreviated as T
(Top), B (Bottom), L (Left), and R (Right). The blue lines indicate what the pure tensor
simulated spline would look like while the black line is the linear combination of interaction

splines fit result. A table containing the extracted |Cp/C4|?’s and uncertainties is below.
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Spectra 1O/ C 42 x2/NDF
a(T/B)B(T) | -0.0104 £ 0.0026 | 1.13
a(T/B)A(B) | 0.0039 £ 0.0027 | 1.06
a(L/R)B(L) | 0.0092 £ 0.0030 | 1.16
a(L/R)B(R) | -0.0116 + 0.0029 |  1.29

Table 6.1: Fitted |C/C 4|?’s for each parallel beta o energy difference spectrum.

The relatively large but reversed magnitudes of |Cp/C 4|? is attributed to a calibration
offset between the two Left/Right detector spectra, likely due to the back face energies
collected by the silicon detectors being slightly lower than their front counterparts. Due to
issues with electronic noise, a substantial number of a events on the Left detector use the
back energies. However, when the two spectra are summed together, the large |Cp/C4|?s
resulting from the offset cancel out and render the calibration offset a non-issue. This
insensitivity has been corroborated by numerous systematic tests with the calibration. A
similar argument can be made for the Top/Bottom detector system, though on a smaller
scale.

In order to obtain a single fit and final statistical error, we can combine the four spectra
in Figure 6.1 by reversing the a energy subtraction of two right-skewed spectra and adding
each of the data and simulation spectra together before fitting to a spline. The individual
simulation spectra are already intrinsically scaled to the data spectra, which is passed to the
splines used to fit the total combined data. Figure 6.2 contains the combined spectrum with
the fitting results. Despite attempting the analysis in multiple different ways and throughout
the process of correcting errors, the inflection in the residuals at ~-150 in Figure 6.2 has
remained stubbornly resilient. Thus, the final statistical error has been inflated by X72"e d
to account for the poor fit. The resulting fitted |Cp/C4|? and adjusted statistical error are

below.

C/Ca? = —0.0019 £0.0016 or ag, = —0.3346 = 0.0011 (6.1)
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Figure 6.1: The four individual « energy difference spectra with the £’s hitting one of the
same detectors as the a. Also shown are the fits to simulation with the blue line as pure
tensor example and the black line as a fit of both tensor and axial-vector interactions. The
title abbreviations refer to the detectors that received the o’s and the f.
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Figure 6.2: Combined spectra of the ones seen in the previous figure. The a(T'/B)5(B) and
a(L/R)B(R) spectra are added by reversing the energy difference from ap —apg to ag — ap
and ay — ap to ap — ay. The fitting results of this spectra define the total |Cp/C 4| value
along with the statistical error.

Finally, it is possible to perform a similar fit to the remaining triples: where the g did not
hit the same detector as one of the a’s. For completeness, the results are shown in Figure
6.3. The sensitivity to ag, is 4 times smaller than for the parallel 3 spectra. However, these
spectra are useful to use as a cross-check for the quality of the simulation-data comparison

and some systematics.

6.2 Systematics

Once a value of |Cp/C A|2 and a corresponding statistical uncertainty are defined, the system-
atic uncertainty must also be calculated. Everything that was used to create the calibration,
process the data, construct each simulation, and account for the various physical attributes

of the trap comes with its own uncertainty that factors into the final systematic error bar.
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Figure 6.3: The four individual « energy difference spectra with the §’s hitting either of the
detectors not struck by an a. Also shown are the fits to simulation with the blue line as
pure tensor example and the black line as a fit of both tensor and axial-vector interactions.
The title abbreviations refer to the detectors that received the a’s and the 5. Though these
spectra are not useful for determining |Cp/C A|2, they are a good check of the integrity of

the spectra and simulation fits.
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All known contributions to the systematic uncertainty of this experiment are covered in the

remaining sections of this chapter, with a table summarizing the results at the end.

6.2.1 Calibration

The calibration systematic uncertainty was taken into account on a strip-by-strip basis. As
each of the silicon front strips and back strips have their own independent quadratic cal-
ibration with independent errors on all three of the peak reference points, it was deemed
unrealistic to require all strips to have the same error offsets across an entire detector or
detectors. Other effects on the calibration, such as the dead layer estimate and other energy
corrections are collected in a separate systematic uncertainty in the next section. As such,
the calibration systematic error specifically corresponding to the fitting and statistical un-
certainty was calculated by generating 5 alternate sets of calibrations for each of the 16 time
segments. These alternate sets contained calibration values that were created by generating
random, Gaussian distributed numbers with the center at each original calibration value (a,
b, and ¢ from Energy = a+b(Channels)+c(Channels)? with a o corresponding to the fitted
statistical uncertainty on each calibration parameter. These adjusted calibrations were then
applied back to the data. Each set produced a shift in |Cp/C4|? compared to a fit using
the original calibrated data, which are listed in the table below. To err on the conservative
side, the maximum absolute value of A|Cp/C A\Q was taken as the total systematic error
contributed by the calibration. Though not listed in the table, the Top/Bottom system
produced a calibration A|C/C4|? of 5 x 107> and the Left/Right system, 4 x 10~4. The
Left /Right system was much more noisy than the Top/Bottom system, which contributed to
higher uncertainties in each of the strip calibrations. Fit together, the maximum A|Cp/C4|?

was 1.4 x 1074
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Calibration Set | A|Cp/C4?
1 3.0 x 107
9 —1.0x 1074
3 6.0 x 107
4 ~1.6 x 1077
5 ~1.3x 1074

Table 6.2: A|Cp/C4|*’s for 5 different randomly generated calibration sets based on the
strip-by-strip error of each quadratic term.

6.2.2 « Energy Adjustments

Some adjustments are applied to each « energy in the calibration based on real effects from
the silicon detectors and then subtracted again after the calibration to return the a energy
to its value when it was emitted from the 8Be*. These corrections include the normal
dead layer, the pulse height defect and the nonionizing energy loss. More details on the
nature of the effects can be found in Chapter 4. These corrections are applied collectively
to all the data instead of strip-by-strip like the calibration itself, which was covered in the
previous section. The systematic uncertainties introduced by each adjustment are covered in
the subsequent subsections with the normal dead layer being the largest contribution. The

combined uncertainty of the three effects is 1.17 x 1073.

Normal Dead Layer

The normal dead layer! systematic was calculated by applying a combined (Top/Bottom and

Left/Right) 1o shift in normal dead layer thickness for each of the possible combinations

and simply taking the maximum of the resulting A|C/C4|?’s. The 1o shifts were applied

both to the calibration and the energy adjustment made to the « energies after in order

1. The ~100 nm-thick layer of inactive silicon which covers about 96% of the surface of our DSSD’s. The
extra dead layer covers about 3% of the DSSD surface and is located on the edges of each strip
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to maximize accuracy. The possible shift combinations for each detector set (with “D1”
referring to the Top/Left detector and “D2” to the Bottom/Right detector) are: both D1
and D2 shifted up 1o in thickness, both D1 and D2 shifted down, D1 shifted up with D2
shifted down, and D1 shifted down with D2 shifted up. Each of these combinations must
be applied to both detector systems, for a total of sixteen permutations. The weighted
uncertainty for the detector normal dead layers was o = 3.5 nm. The A|C/C 4|? results for
each permutation can be found in the table below, with each detector abbreviated by its first
letter. The final normal dead layer systematic uncertainty was taken from the permutation

where all the detectors were given a normal dead layer thickness 10 more than was measured,

which produced a A|Cp/C 4% of 1.08 x 1073 (listed in bold on the table).

T4B} T4BJ TIB} TIBJ

LtRT | 1.08 x 1073 63x107* 6.1x107* 21x10°¢
LR, | 4.6 x 1074 3x107° —5x1070 —44x10*
LIRT| 39x107% —6x107° —8x107°> —5.0x10~*

LIR) | —1.6 x107* —63x107* —63x10"% —1.04x1073

Table 6.3: A|Cp/C4|?*s for all possible combinations of normal dead layer shifts of 1o for
each of the detectors.

Pulse Height Defect

The pulse height defect was originally modeled by Lennard et al. [63] and defines the
nonlinearity between the number of electron-hole pairs created by an incident « (and other
heavy particles) in a silicon detector vs the a’s energy. Lennard’s model was confirmed in the
same paper [63] for 'H, 4He, "Li and 160, and then again by Bauer et. al for electrons and
a’s at using multiple methods at various energies [11] Everything agreed to within statistical
uncertainty and both experiments were able to determine a value of k from their data. Many
experiments that utilize silicon-detector energy measurements have since used the pulse

height defect model to successfully calibrate their data. The function itself (equation 4.1)
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Pulse Height Defect Fitted 1o Error Bands
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Figure 6.4: Randomly generated pulse height defect deviations in keV using Gaussian dis-
tributions of each measured parameter defined by the corresponding error (blue dots). The
uncertainty was defined by the 1o fitted error bands (black)

requires the input of three parameters: k, €, and the stopping power of an « in silicon. The
stopping powers are already well-established by SRIM/TRIM with uncertainties of ~3.5%
for a’s in silicon at our energy range [111]. Thus, the pulse height defect errors are dominated
by the uncertainties on k and ¢g. Thus far, the best measurement of k was done by Bauer
et. al. [11] with k& = (2.8 = 0.3) x 10~% nm/electron-hole pair. The measurement currently
used for € is 3.67 £ 0.02 eV from [77]. A distribution of 100,000 randomly generated pulse
height defect points with the standard deviations of each measured factor taken into account
was fit to an upper and lower sigma band to define the error functions as seen in Figure
6.4. The uncertainty of the pulse height defect ranges from about 1 keV at the lowest 8Li
energies to 4 keV at the highest energies. Applying each of the error-band functions to the

calibration and then the data resulted in an average A|Cp/C 4|2 of 4.3 x 1074,

118



Nonionizing Energy Loss

The nonionizing energy loss function was taken from a series of TRIM simulations of energy
lost to recoiling atoms at energies from 700 to 7000 keV in increments of 100 keV. Each
energy loss distribution was fit to a f-distribution to find the maximum. The error for each
fit was about 1% of the maximum value. Similarly, the discrepancy in maximum value
between the most accurate full cascade TRIM calculation vs the faster Kinchin-Pease [57]
analytic solution was about 2%. Combined with fluctuations when fitting to a polynomial
function, a very conservative 5% estimated error for the nonionizing energy loss adjustment

was applied to the data with a resulting A|Cp/C4|? of 1.6 x 1074,

6.2.3 FEnergy Cuts

A number of cuts are applied to the data in order to decrease the level of background and
address potential systematics. The cuts themselves are listed in section 4.5.2. Many of them,
such as the cut on the difference in strip number and the time since injection introduce no
systematic errors by adjusting the threshold within an appropriate range. However, the
energy threshold cuts on the o and [ energies with the energy cut between the front and
back face of the detectors both reduce systematic errors in terms of background and noise,
but also can introduce their own systematic errors if |C/C 4|? changes depending on where
the cuts are placed.

Based on the Geant4 simulation, the « energy spectrum extends from ~ 400 keV to
~ 7800 keV and the 8 DSSD energy spectra, from just above 0 keV to over 3000 keV. We
set a lower threshold of 200 keV for the [ spectrum, with a 700 keV upper threshold for
the data we use. Similarly, the lower and upper energy thresholds we set for our o data
are 700 keV and 7000 keV. Adjusting the 700 keV threshold between a’s and f’s 200 keV
higher (where there are roughly half as many (’s as there are at 700 keV) resulted in a
A|C7/C4)? of 7.7x10~% and adjusting the 700 keV threshold lower by 100 keV (half as

many a’s as there are at 700 keV) produced a A|C/C4|? of 9.8x107%. The 200 keV 3
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threshold is in an optimal spot to within 100 keV, so will not be adjusted for a A|C/C 4]?.
200 keV is positioned at another relative minimum, where going any lower will result in
noise contributing false events. ~300 keV is where the peak of the nonionizing energy loss
spectrum is located. For the upper a energy threshold, removing it completely only returns
less than 10 additional events and moving it lower by 500 keV similarly does nothing to
Cr/Cal*.

As is pictured back in Figure 4.19, the vast majority of o events have measured DSSD
front and back energies within 50 keV of each other (with the exception of a tail where
poorly reconstructed back strip events are lower in energy than their front counterparts). A
60 keV difference threshold was chosen based on a x2 minimization calculation of the triples a
distribution across the face of the detector compared to simulation vs the cut threshold. The
difference between the measured front and back energies distribution for the g is effectively
the same as the « spectrum (this time with a 110 keV difference threshold also applied based
on a similar calculation), except with tails on both sides of the distribution, since both front
and back strips are used to reconstruct events, (again, sometimes poorly). Changing these
two thresholds (independently) by 15 keV (a ~1% increase in the x2) produced an average
A|C7/C 4|2 of 5.5%x10™% for the o’s and 7.2x10~% for the 3’s. Adding all these contributions

in quadrature results in a total energy cut systematic uncertainty of 1.25x 1073.

6.2.4 Background

Over the course of an experiment, the BPT operates on a cycling basis. Ion bunches are
injected from the APT every 200 ms a number of times and eventually the entire cloud
is ejected from the trap. After the ejection, the BPT sits idle for some amount of time
before ions are again injected. During this trap-empty period, any triple coincidences that
are measured and make it past cuts must be a result of untrapped 8Li, which can seriously
impact the integrity of the ag, measurement. Though it is difficult to foresee where such

events would originate, the most logical guess for an untrapped event that would pass the
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applicable cuts would be one where an 8Li ion is implanted on one of the silicon detectors,
thus the actual a energy difference and [ direction would not be severely impacted. Other
potential background events, such as where a lithium-8 ion might be stuck to an electrode,
would most likely not pass the a double-event criteria and then, would be even less likely to
pass the strip difference cut.

However, for the 2015 PRL experiment, the trap was mistakenly left empty for too short
a time per cycle (120 ms), which meant a reliable limit on the number of untrapped 8Li
measured over the course of the experiment could not be defined. An upper limit of 230
triple events from decays via untrapped ions was estimated with a potential A|Cp/C A|2 of
1.1 x 1073, For the August 2016 experiment, the trap-empty cycling time was increased to
800 ms (see Figure 6.5). During this time, a total of 29 triple coincidences were measured
(after cuts), which scales to 451 £ 84 over the course of the entire run. Compared to the total
number of triple coincidences that were available to use after cuts (both 90° and parallel
B's: 1.1x106 events), this estimate amounts to about 0.04% of the total events, an order of
magnitude less than the 2015 PRL estimate and below the sensitivity of this experiment.
Thus, the background systematic error is eliminated for this work.

Though it does not impact the systematic errors, there are several other sources of back-
ground, namely, random single 8Li s and f’s in coincidence with either calibration source
o’s or non-8Li B’s. The most likely combination of background is a random 3 in coincidence
with two 8Li o’s. It is estimated that about 800 of these events were detected over the course
of the entire run, which, when scaled by the number of double events, is 3x less than what
was measured in the previous 8Li experiment. The background had no noticeable effect on
|C/C 4]? when simulated on a larger scale in the previous experiment, so a similar negligible

effect is inferred for this one.
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Figure 6.5: The number of triples measured over the course of the August 2016 experiment
as a function of the time since the ion cloud was ejected. The cycle begins with 800 ms of
background measurement and is followed by 70 ion bunch injections (small peaks) with 200
ms in between each injection. On a larger scale, the number of decays as a function of the
total cycle time increases until the half-life of ®Li (~840 ms) causes the decay rate to level
out.

6.2.5 Final State Distribution

The 8Be* Final State Distribution used to sample the excitation energy for our Event Gen-
erator is a key component when determining both of the resulting « energies. If there is a
discrepancy in the shape of the a energy spectrum between simulation and data, that error
can propagate to the actual o energy difference spectra used for determining ag,, particu-
larly if the discrepancy is where the slope is the steepest, close to the peak. The a energy
spectrum from 8Li can be seen in Figure 6.6. Currently, we are using a FSD that was created
by shifting the R-matrix peak position fitting parameter (£1) from the 2006 Bhattacharya,
M. et. al. paper [12] 12 keV lower to match what the data shows (red curve vs blue curve
in Figure 6.6). Given that the £ parameter error in [12] has an uncertainty of 10 keV,
using a shifted FSD is not unreasonable. Currently in process via one of our collaborators
(Dr. Tsviki Hirsh), is a full R-Matrix fit to this high-statistics 8Li data, which will give an

even more accurate FSD. In parallel, the uncertainty on &; for fits Dr. Hirsh has already
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o Energy: Data vs Simulation (shifted FSD) o Energy: Data vs Simulation (original FSD)
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Figure 6.6: Comparison between the Top Detector single o energy spectrum (triple events,
black curve) to a simulated one: blue for the £;-shifted FSD, and red for the original Bhat-
tacharya, M. et al. FSD [12]. The shifted FSD residuals indicate a close match with the
data.

done to the 8B data set taken in 2014 (which is 10x smaller than the 2016 8Li data set) are
already a factor of two smaller than the fit uncertainties from the 2006 R-matrix fit. When
the new 3Li FSD R-Matrix fit becomes available, this systematic will be calculated using
the uncertainties from the resulting parameters. However, for now, the A|Cp/C4|? from
changing between the original 20061 FSD and our current, shifted one, is 8 x 10~%, which is
not a substantial amount for so large a shift in £;. Until the new FSD is finished and can

be tested properly for its uncertainty, we will neglect the FSD systematic error.

6.2.6 Radiative Corrections and Recoil Order Terms

The 8Li decay rate within the Event Generator comes with its own set of error contributions.
In Holstein’s decay rate expansion for a normal decay, there are several experimentally
measured terms, second class currents, and form factors, each with their own uncertainties
that must be taken into account. A complete list of these terms and (when available) their
error bars can be found in Appendix B. Furthermore, when applying the decay rate for

the bremsstrahlung radiation, the expansion that Gliick provides [37] does not take into
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account the delayed alpha emission of 8Be*. This incomplete expansion also introduces
some uncertainty.

The terms that primarily contribute to the uncertainty in the Holstein expansion are the
second-forbidden form factors in the axial vector current (jo and j3), the weak magnetism
term (b), the induced tensor current (d, a result of the delayed « strong force and separate
from what we are measuring) and the second-forbidden form factors in the vector current
(f and g). Most of these terms were measured experimentally in the mass-8 system by
Sumikama, T et. al. [97]. Their effects on |C7/C4|? were determined by running two
simulations (with 80x the number of triples in the data) for each term: shifted +1o and
—1lo from the original value. These simulations were in turn compared to the |Cp/C 4>
measured by a simulation with no shifts of the same size. The simulations for f and g were
combined into one because g is calculated from f (g = —\/%(QM f/Ep)), where Ej is the
endpoint energy of the 8 and M is the reduced mass of the 8Li and ®Be* [69]). The resulting
A|C7/C 4)%’s of these simulations are shown in the table below. The induced pseudoscalar
form factor (h) and the 8Li nuclear radius shifts to |Cp/C4|? were not simulated because

their total effect on the decay rate expansion is below our sensitivity (< 0.001%).

2nd-class currents & form factors Value A|Cp/C4)?
Weak magnetism term, b 60.3 £ 1.5 5.9 x 1074
Induced tensor current, d 40 £ 14 1.22 x 1073

ond-forbidden A form factor, jo | -31000 £ 4000 | 4.7 x 10~*
ond-forbidden A form factor, j3 | -63000 & 18000 | 3.01 x 1073
2nd-forbidden V form factor, f 8§+24 5.3 x 1074

Total . 3.30 x 1073

Table 6.4: A|Cp/C AP’S corresponding to the uncertainty of all non-negligible decay rate
recoil order terms.

The largest recoil-order term contributors to the systematic error are clearly j3 and d. If
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one references the decay-rate expansion in Appendix B, the reader will quickly notice that
73 and d are well-separated in all the g; terms that they appear in, thus suggesting that they
are not correlated. The most likely terms to be correlated are b and d, and then j9 and j3.
However, since the systematic error contributions of both b and jo are 5-6x smaller than j3,
no simulations were attempted to establish the extent of their correlation on A|Cp/C 4%
A full explanation of our treatment of the hard bremsstrahlung radiation in the decay
rate can be found in Appendix B. However, in order to account for the o — 5 —  correlation,
the g3 — g15 terms from the Holstein expansion are scaled to the Gliick expansion using the
leading order terms (g1 ) from each rate. This pseudo-decay rate is most likely a mistreatment
of what the actual expansion would look like. In order to take into account the resulting
uncertainty, a simulation with the explicit Gliick rate without the o« —  — U correlation
was compared to a simulation with the hard bremsstrahlung pseudo-decay rate (the one
we normally use, both with ~80x the number of data triples). The |C7/C4|? difference
between the two was 6.0 x 1074 and is added in quadrature with the total second class
current uncertainty to obtain a final radiative and recoil uncertainty of 3.36 x 1073. The
relatively small error contribution from the hard bremsstrahlung treatment can be attributed
to the emitted photon having no effect on the recoiling 3Be* nucleus and the majority of
photons having low-energy with a preferred emitted direction in line with the direction the

S is already going.

6.2.7 « Silicon Detector Lineshape

The simulated silicon detector lineshape systematic error was calculated by running a 100
million triple simulation with no lineshape applied in the Event Generator. The results of
the simulation were then run through a post-processing lineshape application identical to the
one used in the Event Generator before having cuts applied. This allowed us to compare a
variety of lineshape adjustments very quickly. A “normal” lineshape with no errors applied

was run 20 times in order to establish a clear center of the original |Cp/C4|? distribution.

125



The resulting center was then compared to the simulation results with lineshapes containing
either +10 or —1o errors of all applicable uncertainty contributions. The average absolute
value of A|C7/C4|? from the +1¢ shifted lineshape was taken as the partial error for each
contribution. The total uncertainty was calculated by summing all the partial errors in

quadrature. Results from each lineshape uncertainty and the total are shown in the table

below.
Detector Lineshape Uncertainty | A|Cy/C4)?
Electronic noise 6.7 x 107
Fano factor resolution 1.2x 1074
Nonionizing energy loss fit 42 %1079
Extra dead layer percentage 7.8 x 107
Extra dead layer thickness 5.6 x 1074
Normal dead layer thickness 2.3x107%
Total 6.3 x 1074

Table 6.5: A|Cp/C A|2’S for the uncertainty corresponding to each component of the o DSSD
lineshape in the event generator.

The electronic noise A|Cy/C4|? was obtained by running 5 lineshape simulations, each
with an independent set of files that describe the electronic noise of each strip. The five sets
of noise files were generated by adding a random Gaussian-distributed number (centered at
0, with 1o being the electronic noise error for each strip) to each strip’s electronic noise. The
absolute value of the average of the 5 A|C/C4|?’s was taken as the electronic noise error
contribution.

Taking into account the error on each term in the Fano factor resolution calculation (w,
Eqy, and F from equation 5.4 ), it was found that the error of the measured Fano factor
itself (F') dominated the other uncertainties. The total error on the Fano factor resolution
o was calculated to be 0.25 keV [92], which was in turn applied to two separate lineshape

simulations (+o)
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The nonionizing energy loss error was calculated using the fitting errors of the “X”
scaling factor from the F-Distribution fit (equation 5.3). The “Y” scaling factor errors were
found to be negligible and were ignored. A +o function for the “X” scaling factor was
calculated by randomly generating points along the quadratic fit to the “X” scaling factor’s
a energy dependence with the 410 and then —1o uncertainty applied. Assuming a Gaussian
distribution about the center of the quadratic, the +10 were fit to similar quadratics and
applied to the lineshape simulation separately.

Each of the dead layer errors were taken into account by applying +o to both the Top
and Left detectors and then separately applying o0 to the Bottom and Right detectors.
Again, the resulting absolute value average of A|Cp/C4|? was taken as the uncertainty

contribution.

6.2.8 [(-Scattering

According to our simulations, about 20% of the 8Li (’s that we measure as triple events are
a result of scattering and therefore must be very accurately simulated in order to make a
valid comparison to data. The integrity of our Geant4 ( scattering simulation has already
been briefly covered in sections 5.2.3 and 4.3. To recap, after using cosmic muons to perform
a calibration of the top and bottom detector, the resulting 8Li 8 spectra closely matched the
Geant4 simulated 8Li 3 spectra for the DSSD’s (see Figure 4.9). Thus, the matching data and
simulated [ spectra were used as a low-energy calibration point for all strips. In addition, the
more robust scattering benchmark fractions: the triples fraction and backscattered fraction
match within 1o uncertainty even with such high statistics (1o is 0.4% for the triples fraction
and 16% for the backscattered fraction, see section 5.2.3). Finally, the 8Li A hitmap across
the pixels of each silicon detector (in comparison to simulation) is also a good gauge for
Geant4’s accuracy. The results of such a comparison can be seen in Figure 6.7. Though there
is slightly more simulated (3’s on the low front strip vs high front strip side on each detector,

the statistical error of each bin is on the order of 5% of the bin’s total contents (~16 counts),
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Figure 6.7: The residual differences (measured in 1o) between the beta distributions across
each detector face for simulation and data.

which is a trivial percentage when scaled to the total number of events. It is also very likely
that the calibration may be the cause of the discrepancy rather than the scattering. Edge
strips are not well-illuminated by the calibration « sources, which often produces a poor
calibration and in turn may not match well to the opposite face measurement, resulting
in lost events. In order to calculate the [ scattering systematic error and in turn take
into account the discrepancy described above, a set of randomly collected scattered events
corresponding to the magnitude of a 1o shift from the triples fraction (taken from the data)
were removed and then separately added (from a different simulation). This process was also
performed for 20 and 3o shifts. The resulting changes in the tensor fractions indicated that
adding up to 30 worth of extra random scattering events did not change |Cp/C4|> more than

1x10~%. Taking away scattered events did have a noticeable effect, which increased with

128



each additional . When 30’s worth of scattered events (~1.5% of the total number of triples
and 7.5% of the scattered events) was removed, the |Cp/C4|? shift was 5.0x10~4, which we

will take as a conservative estimate for the systematic error contributed by [ scattering.

6.2.9 Miscellaneous

Though there are undoubtedly more small effects on the sensitivity of this measurement, the
most significant known systematics have been covered already in this chapter. However, there
are several other real effects that do not affect the current 5 — v correlation measurement

that are worth mentioning for the purposes of future experiment and completeness.

Ton Cloud Size and Location

One key component of the ion trapping that later must be incorporated into the simulation
is the ion cloud size and position. These quantities can be very accurately determined using
the difference in strip number between the two SLi o’s. An example of a strip difference
spectrum is in Figure 4.19. For this experiment, the ion cloud size (FWHM) was determined
within 0.01 mm to be 1.28, 1.26, and 1.96 mm for the radial (x,y) and axial (z) directions,
respectively. The corresponding ion cloud center (within 0.001 mm) is 0.053, 0.031, and
0.331 mm in the same order of directions. Both the widths and center are stable to within
4% across the 70 ion injections per cycle.

In the previous ®Li experiment, no impact on |Cp/C4|? whatsoever was observed be-
tween changing the FWHM of the entire cloud size from 0 to 3 mm (in 0.2 mm steps). A
similarly robust study was not attempted for this experiment due to the heightened cost of
computation that comes with having more statistics, but no statistically significant change
in |Cp/C4|? was found when compared to an 80 million triple simulation with ion cloud size
(FWHM) of 3 mm. This phenomenon is in part because no cuts requiring the kinematics to
make sense is applied to the a energy difference spectra. When we do use our full kinematic

data either to determine some of the recoil order terms or make a separate measurement
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of ag,, the ion cloud size and position will then become highly sensitive parameters with

corresponding systematic uncertainties.

Magnetic Field

Due to the close proximity of the APT, which requires a superconducting magnet to operate,
there is a ~20 Gauss magnetic field aligned along the axis of the BPT that has a very slight
effect on the trajectory of the 8Li decay products, particularly the 8. At its lowest possible
energy (~1.5 MeV), the [ could potentially be displaced about 0.7 mm across the face of
the detector. However, this potential effect decreases to 0.2 mm at the 5 MeV [ energy
peak and continues lower as the 3 energy increases. Given that our strips are only 2 mm
across and the a energy difference |C7/C 4% is not impacted at all by the ion cloud size,
this particular contribution to the particle trajectories can for now be ignored. For further
studies to determine any recoil order terms or ag, from the kinematic reconstruction, the
effects of the magnetic field will need to be simulated. The trajectory impact on the a’s

would be ~ 10x smaller, due to their higher mass-to-charge ratio.

RF Field and Thermal Energy

It is estimated that the RE' amplitude was about 400 Vj, during this experiment, which
implies that even if the a’s carried 42 charge, the most energy they could collect from the
RF field would still be less than a keV. The same argument applies for a § particle. In
addition, it is worth noting that the thermal energy carried by the trapped 8Li ions is on
the order of 10 meV, which is far below our level of sensitivity. Thus, the thermal energy of

8Li and the RF field contributions to our systematic uncertainty can also be neglected.
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Channeling

Briefly touched on in section 6.2.7, channeling is when a particle, (in this case, an « particle)
passes through an axis of the silicon crystal that contains less electron density, and thus
deposits less energy in a small percentage of events at certain incident angles. Since all «
particles are fully stopped by the 1 mm-thick silicon detectors in this experiment, the only
potential source of bias would be if less energy were lost in the normal dead layer. However,
a thorough examination of the mono-energetic gadolinium-148 « peak on every single pixel
(~2 degree angle change across a single pixel) on each detector revealed no additional higher
energy peak structure that would be associated with a percentage of the a’s channeling
through the normal dead layer. The incident angles of the lithium-8 «’s span 0 to about 35
degrees, while the incident angles from the sources span 14 to 35 degrees. Thus, with a large
fraction of the non-perpendicular angles revealing no signs of channeling, it is reasonable
to assume that if channeling is occurring, it is not something we are sensitive to. The lack
of channeling could be attributed to a high concentration of aluminum doping within the

silicon of the normal dead layer.

6.3 Summary

A compilation of all the non-negligible systematic uncertainties discussed in this chapter can
be found in Table 6.6 at a 1o confidence level. The total systematic error was calculated
by adding all the individual errors in quadrature, since the six categories were selected in
order to minimize correlation between them. Combining the a energy difference fit with the
statistical and systematic uncertainties we obtain a final result of |Cp/C4|> = —0.0019 +

0.00165¢0t £ 0.00365ys or ag, = —0.3346 = —0.00115¢4s £ 0.0024ys.
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Systematic Uncertainty A|Cr/C4?

Calibration 1.4 x 1074
« energy corrections 1.17 x 1073
Cuts to the data 1.25 x 1073

Radiative and recoil order terms | 3.36 x 1073

a Si detector lineshape 6.3 x 1074
[ Scattering 5.0 x 1074
Total 3.62 x 1073

Table 6.6: Summary of systematic errors at 1o with the total. Contributions from back-
ground and the 8Be* FSD used in the Event generator were deemed negligible and not
included.
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CHAPTER 7
CONCLUSION AND FUTURE ENDEAVORS

7.1 Summary

The final results of this experiment are well within the bounds of the Standard Model and
represent a 33% improvement on our previous lithium-8 § — v correlation measurement.
However, there is still substantial room for improvement, particularly in the realm of sys-
tematic errors. Though there are a number of enhancements this collaboration can make
to both the BPT and our analysis method, we will require a great deal of help from both
theorists and other experimentalists to reach further precision.

This experiment is the most precise beta-neutrino correlation measurement ever per-
formed for a Gamow-Teller decay. Our results set the most stringent low-energy limit on
tensor currents in the weak interaction to date. In addition, this measurement is sensi-
tive to theoretical corrections that could have been neglected in the analysis of previous
experiments. At this point, the largest limitation on our precision are the uncertainties
associated with the various second forbidden form factors and second class currents within
the theoretical decay rate expansion. Fortunately, this issue is something that we ourselves
can potentially address, especially with the upcoming high statistics boron-8 data analysis.
However, help from other collaborations (both theoretical and experimental) is always wel-
come, particularly when it comes to cross-checking results. Given the resiliency of the main
residual feature at ~ -150 keV in Figure 6.2 (that was also present, but less visible in the
final « difference spectrum from our previous lithium-8 study [94], despite the analysis and
calibration being performed very differently), there is reason to question whether or not the
issue is related to the simulation decay rate or something in that realm. Having theoretical
help to confirm that the second class currents from the Sumikama paper [97] are roughly
what was expected and that all approximations are below our level of sensitivity would be

invaluable as we attempt proceeding to greater sensitivity. Furthermore, a complete theoret-
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ical treatment of hard bremsstrahlung radiation in a delayed alpha-emission system would
have the potential to completely eliminate one of our systematic uncertainty contributions.
Simply having less uncertainty associated with the measured terms of the pulse-height defect
as well as the stopping power of a’s in silicon from SRIM would be an immense help as well.

Outside of this collaboration, there are several more low-energy 8 — v correlation ex-
periments focused on helium-6 currently in development in France, Israel, and Washington
State that will attempt measurements very similar to this one with likely many of the same
sources of systematic uncertainty. Furthermore, some of our collaborators at the University
of Notre Dame are in the process of developing a Paul trap of their own to measure the
Fermi to Gamow-Teller mixing ratio in mirror nuclei via § — v correlation as well. This
list is by no means comprehensive and there will surely be more experiments to follow. As
the low-energy physics community continues to chase the limits of precision into the regime
that was previously only accessible through high-energy physics, issues we and eventually
they encounter will undoubtedly reach the attention of other researchers able to potentially

address them.

7.2 System Upgrades and Improvements

Though there are a number of things that we do not currently have the ability to improve on
without outside help, there is a still greater list of tasks that we ourselves can do to lower the
systematic errors from this experiment. Many of these projects are well underway and there
is even another tentative lithium-8 data-taking campaign scheduled for 2019 to increase our

store of statistics.

7.2.1 The High-Statistics Boron-8 Measurement

Though it has already been alluded to multiple times in this thesis, it is worth spending some

time explaining the boron-8 effort in detail. A much smaller data set of 8B 8 — v correlation
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data was collected at the BPT in 2014. The analysis is nearing completion and will lead to
both a measurement of the neutrino spectrum (useful for astrophysical purposes) as well as
ag,. Another data-taking campaign is loosely scheduled for the winter of 2018-19. A number
of earlier beamline upgrades have been implemented that have since increased the yield of
8B. In addition, there is also the (limited) possibility of having a molecule breakup section of
the beamline installed and operational before the winter campaign. This would allow pure
8B to be passed to the BPT rather than a boron-water quasi-molecule and would further
increase our transmission efficiency. The same RF-reducing filters (fitted to the frequency
required by 8B) would be applied to the BPT as well.

Once this data set is collected and analyzed, the comparison between our two mirror high-
statistics § — v correlation measurements would be immensely useful for either continuing
the search for new physics, or more urgently, to limit our own systematic uncertainties that

stem from the decay rate expansion.

7.2.2  Silicon Detector Dead Layer Measurement

One particular curse that seems to follow this experiment is that a precise measurement of
the normal dead layer thickness on each silicon detector is always just slightly out of reach.
My predecessor, Matt Sternberg, performed his own measurements of the normal dead layer
for his set of detectors with a resulting uncertainty of 10 nm for the thickness values. 1
in turn performed a better dead layer measurement for him to use for his 2015 PRL with
uncertainties of 4 nm though with a thicker value. A short while later, we learned of the
“extra” dead layer and came to the conclusion that my thicker value for the normal dead
layer thicknesses was in fact likely an average of the two dead layers. A re-analysis of the
second dead layer data set was attempted, though at that point one of the detectors that
had been measured was replaced, making the option of performing yet another measurement
become more desirable.

As of yet, no new measurement has been performed, as it was long hoped that the
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calibration data from the 2016 experiment would be sufficient to determine the dead layer
values alongside the 8Li o’s. However as this analysis comes to a close, it is clear that again,
a proper normal dead layer measurement (that takes into account the extra dead layer) will
be necessary for future analysis. The spectroscopy-grade alpha sources will be an invaluable
tool, as high-precision characterization of the extra dead layer can also be obtained at the

same time.

7.2.8 Digital Data Acquisition System

Another project currently underway in our collaboration is a digital data acquisition system.
A decent portion of the hardware and pre-development has already been done and our
colleagues in Israel are eagerly awaiting for one of our DSSD’s to be shipped over for testing.
This hardware will likely not be implemented for another year at least and it will undoubtedly
come with its own set of issues. However, when the digital DAQ is implemented, the option
to remove limited RF pickup from our data post-processing will become available. Such
a technique could be used in lieu of the notch filters if we needed to change the trapping
frequencies by more than a few kHz. Or, provided the pickup does not saturate preamplifiers,
(either with the aid of the filters or not) we could potentially remove some or all of the
stainless steel shielding that covers the inside of the trap, which causes a great deal of our

scattering headaches.

7.3 Further Areas of Study

Especially with the opportunity to collect more statistics and then when paired with a
high statistics data set of boron-8, the data from this experiment will certainly not be left
neglected post-ag,. There are still quite a few other opportunities for exploration that can
either limit tensor currents in alternative ways or further limit the systematic errors on our

current ag, measurement.
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7.3.1 Reconstructed cos 8, Spectrum

Though the reconstructed cos g, spectrum has about 4x less sensitivity to tensor currents
than the « energy difference spectra, it is still possible to extract a value of ag,. This alter-
native measurement is particularly useful for checking systematics, since the reconstruction
spectrum has less sensitivity to some of the things the « energy difference spectrum is sensi-
tive to, such as errors in the energy calibration. However, the trade in sensitivity goes both
ways, as reconstructing the kinematics requires having a very precise knowledge of the ion
cloud size and location, while simulations of the « energy difference spectrum indicate no
sensitivity whatsoever to this quantity. Either way, the reconstructed cos g, spectrum will
undoubtedly be explored in further studies as it shows the true § — v correlation and other
reconstructed angles may required to address some uncertainties from the recoil order terms

in the decay rate expansion.

7.8.2  Recoil Order Terms in the Decay Rate Expansion

As the sensitivity of this work is now largely limited by the uncertainties from Sumikama et
al’s [97] measurements of the second forbidden form factors and second class currents (listed
in Table B.1, found in the appendices), we can also explore the possibility of using a portion
of the data from this experiment (that was not used to measure agy, i.e., the 90° f triples)
to perhaps define some smaller errors on the more dominant terms.

At the moment, j3, a second forbidden axial vector form factor, is by far the largest
contributor of the decay rate recoil order uncertainty and the total uncertainty (in part
because its error is 30% of the total j3 value), so therefore is of the most interest. Even a slight
improvement on the j3 error would have a direct impact on the systematic uncertainty of this
experiment. A survey of Holstein’s decay rate expansion (found in Appendix B) indicates
that terms which contain correlation between the o and 7 have the highest contributions
from j3 in terms of magnitude. Thus, it could potentially be possible to use the reconstructed

cos 0y spectrum to extract a value of j3 with a smaller uncertainty. Figure 7.1 shows what
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Potential j; Measurement via the reconstructed Cos(6,,)
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Figure 7.1: An example data (black) reconstructed cosfq, spectrum. The blue and green
lines represent what a simulated spectra with a +100 shift in j3 would look like. The
discrepancy indicates that this spectrum is indeed sensitive to j3 and could potentially be
used for a successful determination of j3.

this spectrum looks like with examples of simulations containing decay rates with j3 shifted
+100. With enough simulations to compare to, a simple X2 calculation between each of the
comparing spectra could indicate what value of j3 is true for our system. In this instance, j3
would be sensitive to all of the same systematics as an ag, extracted from the reconstructed
cos g, .

Alternatively, though they do not contribute to our uncertainty on such a large scale,
defining better b and f/g terms can also be explored when the high-statistics boron-8 data
set becomes available. Each of these terms contribute differently to the decay rate based on
the type of beta decay (Bi). By comparing spectra sensitive to each of the terms between
the two data sets (similar to Sumikama), it should be possible to extract our own values of
each of those terms as well, though f/g are small enough that measuring them would test

the limits of our sensitivity.
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7.3.3 The Fierz Interference Term

Another potential use for this data is searching for left-handed tensor currents through the
Fierz interference term (bpjer,). Fortuitously, this particular term is a by-product of the
ag, derivation found in Appendix A, so the adventurous reader can venture there for more

information on its origin. The full expansion of bp;,., can be seen below.

b 2(CsCy [ 1P+ Cacr|f o) -
e — .
(s 1oy R) [f12 + (16l + 0nP) | [ o

By Standard Model conventions, bpj.,., would be 0, but if there were tensor currents present,

the term would contribute to the ag, measurement with this relationship:

aﬁy

a =
( I+ bFierz%:

meas)

where a is the value that we're actually measuring (a better expansion is in section

meas)
1.3). If there were a tensor current, bpj.,,, would also be nonzero, though it scales to Cp
linearly. Pulling from the simple decay rate result from Appendix A:

(P-q)c mc’

I'(E.)dE, = (2m3Ph") "¢ (1 Sy Toni bfierzm)pE(Eo — E)%dE (7.2)
14

one could probe for bp;,,., directly by simply adding in the appropriate term to the simulated
decay rate while keeping the [ — v correlated terms as they are. Such probes for tensor

currents in this manner are well within our levels of sensitivity.
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APPENDIX A
DERIVATION OF THE g — v CORRELATION COEFFICIENT

Since this work is dedicated to limiting exotic contributions in the f—v correlation coefficient,
the writer would be negligent if there was no explanation of where the term comes from.
This appendix is dedicated to a comparatively simple derivation of ag, and by association,
the Fierz interference term, bpje,,.0 We will begin with the building blocks of an interaction

theory:

e The Dirac equation: describes the behavior of relativistic fermions,
(E+ca-p+ ﬁch)w =0 (A.1)

e The Dirac matrices: introduced in the Dirac equation and used throughout this deriva-
tion. They are normally expressed in 4x4 matrices as: v, = —ifa; (kK = 1,2,3),

v4 = —f, and v5 = iy17Y273V4, With the components defined below.2

10 10 0o o0
1: s /B: s o = s g =

01 0 -1 o0 0o
e Fermion wave functions: four-component spinors that solve the Dirac equation and will
eventually be used for the neutron, proton, antineutrino, and electron wave functions.
p and E are the momentum and energy of the particle, respectively.

v i(p-r— F 1 0
U(r,t) = exp <w> where u,v = a +5b and (a> 4+ %> =1)

U 0 1

1. Hereafter, a bold symbol will denote a vector.

2. 1 is a shorthand notation for the identity matrix and can be 2x2 as in the defining equation or 4x4 by
inserting 1 into itself. In addition, we will also frequently make use of the 2x2 Pauli matrices, which are the

01 0 —i 10
3 components of . They are: o, = [1 O] , Oy = [z O} ,and o, = {0 1}.
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e The weak interaction Hamiltonian: to eventually be used for calculating § — v. This

was first established by Fermi in his “Theory of Beta Decay” [33] and later expanded.

Both the wave functions and Hamiltonian require some extrapolation in order to perform
this derivation. Beginning with Fermi’s beta decay Hamiltonian, the format was constructed
by drawing from an already-in-use Hamiltonian for electromagnetic interaction. In principle,
a nucleus emitting a beta and neutrino is not so different from the same nucleus emitting a
gamma-ray photon. The two different processes and interactions are compared side by side

in equation A.3 using relativistic formalism.

(A, Z2) — (A, Z2)+~ vs. (A 2)+v— (A Z+1)+5"

H, = —ei(@Z_)va/)p)AM vs. (%ﬂﬁ, =gCy (@/_)pvuT—i—wn) (@/_)e%ﬁbu) (A.3)

Here, (A, Z)* denotes the excited state of the parent nucleus and a beta decay is imagined
as the annihilation of a neutrino followed by a S~ emission (and vice versa with their
antiparticles) rather than the emission of both a = and antineutrino. This makes the beta
decay interaction much easier to visualize. Both Hamiltonians are summed over . 3 was

obtained from J#y by making 3 changes.?

1. Ay is the vector potential that can either create or annihilate a photon. For the beta
decay interaction, it was exchanged for the bilinear wave equations of the beta particle

and neutrino: i(@[jeyuwy) for 5~ decay.

2. The electric current: i(@pfyuwp) is replaced by the weak current,(&p’mnrwn) where T+
changes the neutron into a proton (or vice versa), but does not change the spatial or

spin state of the nucleon.

3. e, the electric charge, is swapped for a vector coupling constant, which for reasons

described later, is called CY,.

3. S is the Hamiltonian density and is related to the actual Hamiltonian by ¢ = w}H ¥; (where f and
¢ are final and initial states, respectively)
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However, the beta decay Hamiltonian that Fermi introduced postulated only a “vector”
interaction (ergo the Cy/), but there is no reason to not allow any of the 5 possible Lorentz-
invariant interactions (scalar, vector, tensor, axial vector, and pseudoscalar) to contribute.

Thus, the most general Hamiltonian for beta decay is:

% =49 [OS(IZPQM)(@/_@%) + CV(QZpVMQﬁn)(l/_JeWTﬁV) + CT(&piWV)\l/)n)(iZeiW%lﬁu) (A4)

+ CA(Wpivurstn) Weivuvsty) + Cp(dpystn) (Vevsty)] + h.c

where h.c is the Hermitian conjugate and the ~’s are the Dirac matrices defined above.

To simplify the next few steps of the derivation, we will assume that the beta decay
Hamiltonian is Lorentz, time reversal, and space inversion invariant. Lorentz invariance
implies that the Hamiltonian is the same between coordinate frames moving at constant
velocity between each other, which is reasonable. Time reversal non-invariance has not yet
been completely ruled out, as people are still working to limit its contribution (similar to
this work). That said, the most recent limit placed on time reversal symmetry breaking
contributions is on the order of 0.01% [73]. If the derivation were to include time reversal
symmetry breaking, we would add complex conjugates to the derivation. Conversely, space
inversion or parity invariance is maximally violated in beta decay. However, to maintain
simplicity, this derivation will not include the parity-nonconserving coupling constants C’Z{ ,
though they can be easily reintroduced to the derivation at the end simply by exchanging
1C;]? with |Cy)? + ]C£|2. [109] If |C;]2 + ]C£|2 were introduced, as was discussed in the
introduction C; =~ :I:CZ{ assuming a nearly massless neutrino and depending on the helicity
of said neutrino. Furthermore, to make better use of the matrices defined above (and their
identities), we will move into the “isospin formalism” where the adjoint wave function 1) =
zﬂﬂ, and @/)T is the Hermitian conjugate. And finally, despite having just introduced it,

for the remainder of this derivation, we will be dropping 7+ since the Hamiltonians would
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effectively be the same without them.

t oy (O] 0 i
wpﬁrwn = (wp,()) = %%
00 Un

The final result of all these assumptions and adjustments is an equivalent beta decay

Hamiltonian that we can work with.

5 = g[CoWhBun)WEBun) + Cv [(wfuon) (i) — (Bhon) (Wlowy)] (A5)
+ Cr[(WhBon) (Wipowy) + (WhBan) (wipany)]
+ Cal(hovn) (Wlown) — Whsin) W)
+ Cp(UhBrstn) (WL BY5Yw)] + huc

The other puzzle piece that is needed to set up this derivation is a set of wave functions
for each of the particles involved. The general form of these wave functions was defined in
equation (A.2), but there are a few more details that need to be worked out.

We’ll begin with the wave functions for the nucleons. To get rid of some extra variables,

we'll insert equation (A.2) into the Dirac equation (A.1):

v i(p-r— Et
(E+ca-p+ ﬁmc2) exp <%) = 0. Subtracting E1) and canceling exp(r):
u
(
0 o-p 9 I 0 v v
c + mc =-F . Performing the matrix algebra:
o-p 0 0 -1 u U
{
vme? + cu(o - p) v
=—-F . If we choose the lower equation and positive E
cv(o - p) — umc? u
—co-p s 2
v = ————5u and assume the nucleons are nonrelativistic (£ ~ Mc"):
E +mc
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_0'DPn

the nucleon wavefunctions become: @ZJ}; = < — —02- ]\f P u};, u;[,) and v, = 2Mc Un (A.6)
c
Un

For the lepton wave functions, we cannot assume that the particles are nonrelativistic.
Furthermore, there are a great many calculations of the ) wqﬂ matrix forthcoming. Thus,
we will take a different approach and turn the previous matrix into a projection operator.

In more detail:

Sowevh =Di and Y uyl =Dy

o, F
where 1+ refers to the wave functions for positive or negative energy states. The D4

operators will satisfy these conditions:
Diypy =4y, Dyypy_ =0, D_oy_=v_, D_yy =0, and D:Qt =Dy
This operator can be constructed from the Dirac equation if we take H = —(ca-p + Bmc2),

1
so that 4+ Fvy4+ — Hy+ = 0, or with some strategic algebra: 4 = 3 (1 + E) (IR

(ca - p + Bmc?)
|E]

1
Hence, the operator is D4 = 3 (1 F ) and meets the specified conditions:

. 2
D+¢+=1(1—<6a p+ﬁmc)>¢+ ( ED%M:@M

2 |E]
1 (ca- p + Bmc?) 1 |E| B B
D+w—§(1— T )w—ﬁ(l—a)w—o (% B = Hox )

Finally, if we assume that the energy of our leptons is positive, our operators are defined
below for an electron and a antineutrino (where the mass of the antineutrino is considered

negligible). To change the operator to a positron, one would swap the sign on the Bmc?
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term.

De = %(1 _ (ear- p|g|ﬁmc2)) and D, = %(1 - (Cg'yf)) (A7)

where q is the momentum of the antineutrino

Now that everything has been defined, we can calculate ag, using Fermi’s golden rule,
I(E)dE, = 2%|Hfi|2£—£). Here, I'(E)dE is the probability of transition per unit time,
Hyp; = i Hp drydry...dr 4, and j—ﬁ) is the density of final states with respect to the endpoint
energy (Eg = E + E,). Briefly, (jd—ﬁ) can be calculated by taking the product of the number
of final states of the antineutrino and electron in momentum space (assuming 1 particle per
unit volume) using Eg — F = Ey, = cp, — (cdpy = dEy) and ¢?pdp = EdE from Einstein’s

equation to obtain:

dn dnedny, 4rpPdp 47rp,2/dp,/ 1 4.6 5\ —1 9
= = = (47"h E(Ey— E)°dE A8

dE,  dEp ((27rh)3 @rh) )am, ~ W e pE(Ey — E) (A.8)

However, for our purposes, [H ¢; \2 is the term that will eventually unearth ag,, but requires
substantially more effort to get there. To start, we will simplify equation (A.5) using some
of the assumptions we have already made and then some new selection rules, all of which
%

will lead to a more workable |H i~ First, we have already assumed that the protons and

neutrons are not relativistic (v/c ~ 0.1), thus the terms with a can be neglected:

. 0 o —ZPn,y,
foy — (= TPoE 2t | L Py P
Ypoin ( 2Me up,up> o 0 u Me | Me
n
O -Pn
¢T5a¢ _ —o-'ppuTuT I 0 0 o —S0eUn %&_p_n
4 " 2Me PP Mc Mec
0 -1 o0 U,

Using the same math, one can see that none of the pseudoscalar terms (1/1]];751%) contribute
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either. Taking away all the negligible terms, we have a simplified Hamiltonian.

Hy = g[Co(whBn) WEBY) + Oy (hun) () (A.9)
+ Cp (W Bovn)WiBo) + Cafovn) Wow,)] + hc

However, this is still a bit of a debacle. When we take the square of Hy; and account for
the 3 components of o, we end up with several dozen different terms to deal with. We can
reduce the number of terms by writing the full nucleon side of the Hamiltonian complete
with quantum numbers. If the operating matrices are defined as Aj, then we can use the
Wigner-Eckart theorem to represent Hy; in terms of the already defined Clebsch-Gorban

coefficients:

Hyi = [ oludr = [0l 0 Aparggdr = (i L Mg M| g MpUSIA)

Here, L is the rank of Aj,. L =0 for $ and 1, or “Fermi” interactions, while L = 1 for fo
and o, or “Gamow-Teller” interactions. M refers to the magnetic quantum number. When
L=0,M=0and for L =1, M = {-1,0,1} where g = 0, and 041 = :F\/g(ax +ioy)

|2, define A and A’ as the operators, sum

Moving on, if we evaluate a generic term of |H t;
over the final states, and average the initial states (assume the nucleons are not oriented),

then:

|Hyi? 2 Y (L LM; M| Jp My)(J; L' M M| Jp My) o< 81,108 310
M;M;

where (L M|L' M") = 67 7/033 - Drawing from the kronecker delta terms, we can eliminate
any |H fi|2 terms where L # L’ (i.e, Fermi and Gamow teller terms cannot mix). In addition,
terms where M # M’ can also be eliminated. We are now limited to just 12 terms that must

be calculated. With all the simplification mostly done, we can now start to directly calculate
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['(Ee)dE, = 2%|Hfi|2ddTn‘ If we write |Hf2~|2 explicitly:

Hyil? = 2> S CrCiwlabwe) (wialve)( / UhAtbdr ) / UhAndr)” (A10)

kel OesOu
At this point, it is useful to define the nuclear matrix elements and reduce the integral
terms in equation (A.10). Using the assumption that the nucleons are nonrelativistic once
more, we can assume that both % terms are small compared to the other pure spinor term
in 9 from equation (A.6). In addition, since u, and u;, are normalized, we end up with these

matrix properties:

. o-p
if — Jo = Q< 1 then: / Whibndr = / <quj,,u})>

Qnu
e dr:/u};undr:/l
Un,

I 0 Q
/w;ﬁﬁwndr: / (quj];,u;[y) i dr:/—u;undr: —/1
0 -1 Up
0 Q
/Qﬂ;gagbndr = / (qu;;,u};) ? niin dr = /u;ga'undr = /0'
0 o Up,
/¢pﬁa¢ndr = / (qup,up) dr :/—upaundr = —/a
0 —0o Up,

(A.11)

where we define [ 1 as the Fermi nuclear matrix element and [ o as the Gamow-Teller nuclear
matrix element. In addition, we’ll play some matrix tricks with the lepton summation terms
in (A.10) as well to use the infrastructure we’ve already defined and make life a bit easier.

If we take

Hyil? oo Y @EAR ) (wialyy) = 3 wiaby,pfalye

OeOv OeOvp

and define A = wl, and B = AlwywlAgwe, then AB (a number) is not commutable as itself,
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(BA is a 4x4 matrix) but the trace* of AB is:
AB =Ti(AB) =Y ) AyBy,; = Tr(BA).
vk

Since wygbl and @/}ezbl are summed over all states we can exchange these terms with the
operators that we defined in equation (A.7). Hence, the lepton component version of |H fi|2

that we will be using is:
|Hyil? o Tr(BA) = Tr(AF g, f Alye]) = Te(ALD, A D,)

All that is left to do is compute the non-vanishing terms of |H ch-|2 to calculate the
transition probability. For future use, it is worth pointing out that the trace of 8, a (or «;),
o (or 0;), and all products of odd numbers of these matrices vanish. We'll begin with the

pure scalar term:

3l = CsP 150,00 ([ whovnar) ([ whpunar)

From (A.11), the integrals simplify to ([ —1)(f —1)* = | [ 1|?> and the trace can be calcu-

lated. Only the 85 and aax terms have nonzero traces.

Tr(BDy D) = 1Tr(ﬁ<1 B (Ca-p+ﬁm02)>5<1 ~ (cor- q)>)

4 |E] |Ey|
1 (B - p)(Bex - q)c2>
= -Tr +
R
1 10 2 0 o-p 0 o-q
=g T BB,
0171 —o-p 0 —og-q 0

4. The trace of a matrix is formally defined as Tr(©) = >, ©;;, which is the sum of the diagonal compo-
nents of ©
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T 4 —(o-p)(o-q) 0
tller) T 0 —(o-p)(o-q)
:1_(U'p)(U'Q)C2

|E||Ey|

Using a standard o commutation relation, we can rearrange (o-p)(o-q) to (p-q)+i(o-qxp).

Since the trace of o is 0, the second term drops out and we have for our total scalar term:

oo (1~ Fe)

Next is the pure vector term, which will be similar to the pure scalar term.

2

(A.12)

Hyif? = |CV,2Tr(DVDe)(/¢;wndr)(/%%d,r)*

The nucleon integrals simplify in a similar fashion to the scalar term: ([1)(f1)* =| [ 12
and the lepton trace is again, calculated along the same lines. The only nonzero terms are
the identity and aa and since there is no [ matrix, the o - p terms are positive instead of
negative. In addition, we can use the same o commutation relation as the scalar term to

get the final trace in terms of p - q.

Tr(DyDe) = iTr((l _ (capt ﬁm02)> (1 _(ca-q) q)))

|E| |Ey|
1 (a'p)(wq)CQ)
=-Tr|{ 1+
4 ( |E||Ey|
10 o- o- 0
_ Lo L2 (c-p)lo-q)
4 |E||Ey|
017 0 (0-p)(o-q)
(p-q)c?
=14
|E||Ey|
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Which makes our final pure vector term defined as:

2
(A.13)

The final Fermi interaction term that must be done is the cross term between scalar and
vector. Because we are still assuming that time reversal invariance is not broken, C; = C7.

With the appropriate integrals already substituted in:

’Hfi‘2:CVC'5<T1"(6D,/D€)(/_1>(/1)*+Tr(DV6D6)</1)</_1)*)

The integrals again simplify to ([ 1)([ —1)* = —| [ 1|?. The trace is calculated below. The

only non-vanishing terms in both traces are 38mc2.

Te(8Dy De) + Tr(Dy3De) :iTr (5<1 (cap+ ﬁmc2)> (1 (e q)>)

|E| |Ey|
1 (ca-p+ 6mc2) (ca-q)
+ZTY((1_ ] )o(1- By ))
1 BBmc? B —2mc?
=1 (-2 ) =

The negatives on the trace and integrals cancel out and final cross term between vector and

/1

Now we move on to the Gamow-Teller interactions, which are more important for this

scalar is:

2 2 2
Cvcsﬁ

7 (A.14)

work. We can begin with the axial vector terms.

3 *
[Hpif? = |Cal> 3 Tr(oiDyoiDe) ( / vhoindr) ( / Uhostudr)
=1

Due to the selection rules derived from the quantum numbers earlier, the integrals become:

([oi)([o;) = | [ o;]>. To get the Gamow-Teller matrix element, we can define: | [ o|? =
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| [ozl>+ | [oyl?+|[a:l?or | [o;]? = %| [ &|? To calculate the traces, we will perform a

few more matrix tricks. as with the scalar calculation, all the terms except for 0,0, and aa

vanish.
5 1 5 (ca - p + Bmc?) (ca - q)
izlel"(UZ’DVOZ'De) = ZTr<izzlai <1 - ‘E‘ )Ui<1 - ’EV’ ))
(s (0ix - p) (i - )
:ZTI(;QUI'—I— E|[Ey| >

For the time being, we will ignore the neutrino momentum and only look at o, - po;. Since
p is only a vector, we’ll pull it out and examine what happens if you have o;ao;. For the x

component of a:

3 or 0 0 o op 0 gy 0 0 o oy 0
Zaiozxai: +
i=1 0 oy oy O 0 o 0 oy or O 0 oy
oy 0 0 o o, 0
+
0 o, or O 0 o,
01 op 0 0 —i0, oy 0 10y o, 0
= + +
0 o 0 —og 0 —og
= + +

= Oy — Oy — Qg

(A.15)

If we do the same matrix multiplication on the other components, we get similar results. In
this way: ) ; 0,0, = —a, or ), 0ja-po; = —(a-p). Resuming the derivation, exchanging

o;o; for 1, and noticing that the second term in the trace is effectively the same as was
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calculated in the pure vector instance, we have:

3 2
1 —(o-p)(a-g)c )
Tr(o;Dypo;De) = =Tr| 3+
2 T DyvoiDe) = 5 ( EIIE,|

—(p-q)c?
_ (3 L =(p-g)e )
|EJ[Ev|
Adding the trace to the rest of the axial vector term the result is:
2
—(p- 1
42 (3 . M) 1 ' / -
AP Tt )3

’ 2

2
(A.16)

Moving on to the pure tensor component of |H f£il”, we shall employ some similar tricks

as the axial vector:
3 b3
Hpif? = Cr 2 Y 15(60:Dy 50D ([ whdoswndr)( [ whsoinr)
=1

For the integrals, we know from equation (A.11) and the axial vector calculation that
([ Boi)([ Boy)* = ([ —oi)([ o))" = | [o:]*> = &| [&|?. For the tensor trace, in a sim-
ilar fashion to the axial vector trace, all the terms except for the fofo and aa vanish,

leaving only 2 terms.

gTr(ﬂaiDyﬁoiDe) = iTr(gﬁai(l  (ca-p+ 6mc2))ﬁai<1 _ M))

|E] | Ev|
— 1TT<§:BO"/6(T- + (BO'Z‘OC 'p)(ﬁgia ) q)C2>
i\ & [E]|E|
In this case, the matrices we are working with now are:
10 o; 0 o; 0 10
Bo; = = , and fo;fo; = =1
0—1 0 o 0 —o; 01
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The matrix algebra used to achieve Z?:l o;aq0; in the axial vector derivation is the same
here, except the signs for each term will be flipped, producing +a instead of —a. In this

way, we end up with:

(o p)(a- q)c?
|E||Ey| )

_ <3 (P q)62>
|El|Ev|
Which, after plugging in the integrals and (. terms, makes the total pure tensor contribution

e (s )3 ’/

The final term we must calculate is the mixed tensor and axial vector contribution. We’ll

3
1
> Tr(0;Dyo;De) = T (3 +
=1

to |Hf2’2

(A.17)

begin in the same way as all the others, except with the integrals already simplified:

3
1
[Hyil? = CACT<ZTT(502‘D1/UZ'D€) + Tr(aiDyﬁaiDe)) ( -3 ’/a
1=1

The trace calculation is similar to the scalar-vector cross term. All of the products in the

trace vanish except for the fo o term, which we already know to be the identity matrix.

3
> Tr(Bo;Dyo;De)+Tr(0;DyB0; De) =

i=1 Tr<5<71< B (ca'PJFBmCQ))oZ‘(l - e q)>)

Mw
| =

2 7] B
1 (ca - p + Bmc?) (ca - q)
+1Tr(%.(1_ e L ()

51 Bo;Bomc?
:Eé(“(‘ )

_—6mc2
1B
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Plugging everything in, the final cross term between tensor and axial vector is:

CACr——=r

= (A.18)

With all calculated, we can now find the transition probability. Collecting equations

(A.12) to (A.18), the total |Hfi|2 is

2
i =2 (e +1evP) | 1] + |0A|2+|0T|2) ] / o
. 62
2D (-1 |2+|Cv|
2
/ g )]

|El|Ey
If we rearrange a bit and define £ = (|Cg|> + [Cy|?) | [ 1}2 +(|Ca?+1C7)? | S 0‘|2 then:

2

a2+ [Cr? \ [e

)

2mc?

+ CqC
|E|(SV

+ CyCr

mc

2_ 2 (p-q)c” Q) ’

(—1CsP+10vP) [J1P + (= 1CaP+1CrP) |f ol
(ICsP +1Cv2) [[ 1+ (ICal +1CrP) | [ o

ag, = (A.20)

2(CsOv [[1 + CaCr|f o)
(ICsi2 +1cv ) [f1]* + (ICal + 1) |f o

And so, we have what we sought out to derive, the Sv correlation coefficient (aﬂy).

bFierz = (A'Zl)

To finish calculating the transition probability, which will appear at other points in this

document, one simply substitutes equation (A.8) and (A.19) into Fermi’s golden rule.

2

2
_ pP-q)c mc
[(E.)dE. = (23R 1¢ <1 + aﬁyﬁ + bfierzm)pE(EO —E)2dE  (A22)
14

At this point, it is worth reminding the reader that this is a very simplified derivation that

ignores a great deal of known and potential physics. A full expansion including parity non-
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conservation, time reversal non-invariance, proper wave functions for the leptons, Coulomb
interactions with the nucleus, and a vast list of other effects is beyond this work and best

left to experts such as Barry Holstein, as will be seen in subsequent appendices. [72][109]
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APPENDIX B
THE TRANSITION PROBABILITY EXPANSION OF

LITHIUM-8

The 8Li beta decay results in the emission of delayed alpha’s, so the resulting transition
probability expansion has quite a few additional terms to account for the correlation between
the alphas, beta, and neutrino. The complete expansion can be found in section IV.C of

Barry Holstein’s 1974 Review of Modern Physics [49] and is copied below:

7 G2 cos? 0, 9 P
d'T =F%(Z, B)—2—=(Ey — E)°pE dEdQedQ,dQp x | g1(E) + g2(E) | = - k
2(2r) E
2 2 N
jal ]_ n -
+ g3(E) K% : k) —~ 5%} +01(B, v 7y (L)) [Tp

+52(E,’U*,TJ/,J//(L)) |:ﬁ )
+ 84 (B, 0%, 7y (L)) [n L k:] 1T J//(L)T(Q)(ﬁ){ g10(E)[p/E, p/E]

P
E
+911(E)[p/E, p/E] (% ' k> +912(E) [p/E. k] + g13(E) [p/ E. k] (— ' k)

+ 08 (E, v 7 gn(L) TS () [p/ B, p/ B, k] + 89 (E,v*, 71 (L)) TS (1) [p/ B, k, k]

+ %wﬂ,J”(L)T@)(ﬁ){925(3) [p/E.p/E,p/E,k] + g26(E)[p/E,p/E. k. k]

+ g26(E) [p/E, k, k, k] }) (B.1)

The top(bottom) sign of the & or F corresponds to the 3~ (31) decay. Holstein gives
detailed explanations of the d; and g; terms in his paper. This discussion will only include
the simplified, “final” versions of these terms. Useful numbers and some defined terms are

found in the chart below.
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Name Variable Value Ref
e~ energy E ~1-13 MeV [99]
Endpoint of e~ energy spectrum Ey ~13 MeV*? [99]
e~ mass mg 0.511... 4+ 3.1x107? [71]
e~ momentum (vector, magnitude) p, p ~1-13 MeV [99]
Reduced mass (Mgr; + Mspg,+)/2 M ~7466 MeV“ [105]
Mass Difference A ~ 13.1 MeV? [105]
8Li Nuclear Radius R 0.0119 =+ 0.0002 MeV~! | [10]
8Be* Spin J! 2 [99]

a Spin J" 0 -

a angular momentum L 2 -

a direction unit vector n - -

a velocity in 8Be* COM frame Uk - -

v direction unit vector k - -

1st Order GT matrix element c1 1 -
2nd Order GT matrix element 2 <0.025 [100]
Weak magnetism term b 60.3 £ 1.5 [97]
Induced tensor current d 40 + 14¢ [97]
2nd forbidden V form factor f 8 + 2.4 [97]
2nd forbidden V form factor g ~-3800% [69]
Induced pseudoscalar form factor h ~11000 [50]
2nd forbidden A form factor Jo -31000 £ 4000 [97]
2nd forbidden A form factor J3 -63000 £+ 18000 [97]
Fine structure constant « 0.007297... 4+ 1.7x10712 | [71]

Table B.1: Variables and terms used in the lithium-8 decay rate expansion.

a. Varies depending on the excitation energy of Be*
b. ¢1 is normalized to 1 in our Monte Carlo Event Generator

c. The induced tensor current is actually broken down into a first and second class current d = dj + djj.
dy is the number listed, while d;; has been measured to be 0 with uncertainty below that of d;.[20]
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B.1 The Monte Carlo Event Generator d'T’

The construction of the Monte Carlo Event generator that was used to simulate 8Li decay
(both tensor and axial-vector) in this experiment rested heavily upon the decay transition
in equation B.1. The fully expanded terms (alongside approximate magnitudes) are listed
below. For the actual simulation, all the terms containing co (with intensities on the scale
of 1077 — 10_8) are deemed negligible and dropped. In addition, for simplicity, all the
(A/2M)h terms were dropped for similar reasons.

The Monte Carlo simulation can be used to generate both axial vector and tensor events.
Because we only use betas emitted in roughly the same direction as the alphas and there
are correlations between the beta, neutrino, and alphas in all of the terms except for g1, we

simply multiply said terms (go_15) by -1 to make a simulated decay via the tensor interaction.

g1 term:
2
2Rec] m 2F
e1? + =55 (11m3 + 2028 — 2— By — 20E2) — —DReci(eg +d £ b)
10-8 0.1
2
E m3 ) Ey—E
+337 [Reci‘(Bcl + 2b)l—m [2\cl| + Rec] (d + 2b) — Recih 0 )
a.rl 18:4
2
804’61‘2]% Qmﬁ
——— |28F — Ey + ——
R 0T
103
go term

* 2FE) 4F
“pja (mf +8EEy —8E?) + SooRedi (c1 + d 4 b) — go-Recf (e £)

J S

R v~

10-7 0.1 0.1
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g3 term:
E 4 EEy — E? 1] p?
(B ot Yo
—_— ~-
1073 1078
g1o term:

E 1\ F 3 Ehy—F .
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3 /5 .. 2EFEy+ 5E?
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g1l term:

E? 1
%
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2c9 2y Fo
2EFEy —2F +
{ Rec] (01+ (mﬁ + 0 ) — Wi —(c1 +d b)

vl (.

E3

-

10~2

22 (cos Gﬂa —1/3)

(cos Qﬁa —1/3)cos g,

2
E ma A
—(3c1ibz—gM2 <1+2M>h>

i

108 01

2 2

10~2 1075

1 Ey - 2E
—\/pReci ( £3/=5= %15
14 ecl( =5 Va? 202

—J2

—E§ +8EE) — 8% + m}
—

[\

10-°

103

160

1073



2 2 2
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10-2 107
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01 term:

d9 term:

03 term:

d4 term:

0g term:

dg term:

The reader may notice that gig, 917, and g=29. The g~9og terms were not included in the
simulation and are currently proving to be a puzzle for both us and a growing community

of theorists. They will be discussed separately in section B.4. Both g1 and g7 are collec-

4(Ey — E)c?

X % cos O3

—2¢2 Ey—E
B+ =)
Mux ( + 10

18Bc3  p?
00 us < B2 OO O cOs b,

—2c2 2
1 ((EO —F+ 1](0)_E> X €08 0oy

18(Epy — E)c? —
(0 )C1<E+EO E
30 Mo 10

4B p?

X

=

Mux
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tively multiplied by the imaginary component of ¢;. Because we assume that time reversal

invariance is not violated, Im(c1)=0 and thus g16=¢17=0.

B.2 Extracting |C7|?/|C4|* from d'T

Of the terms listed above, go comes the closest to the traditional ag, that was derived in
Appendix A. However, this experiment is particularly powerful because the additional terms
governing correlations with the delayed « emission offer an opportunity for extra sensitivity.

Of the above listed terms, the 3 that have magnitude closest to 1 are:

g2

g1 912
1 ahry 1
‘61’2—§‘61’2%C08951/ _ ‘61’2%@089@5 cos 0oy — gcoseﬂy) (BQ)

By definition, ag, = go/g1 = —1/3. However, if the data is selected in such a way that the
B’s are emitted in the same direction as an «, then the cos g cosfq, factors in gj2 can be
approximated as cosf,5 ~ 1 and cosfqy ~ cosfg,. Under these circumstances, equation

(B.2) becomes:

n /1_% ,2_% 0 g2 + 912
p p
e1]? = Sler]® 5 cos g, — Zler|* T cosbg, = [er]* = Jer[* costy, (B.3)

Thus, with the combination of g9 and g1, this experiment has a 3x higher sensitivity to

agy, than others without the delayed alpha.

_1CrP —1Cal> _ g2 +g12
Y |CrP+Cal g1

3a5 (B.4)

The actual |Cp|?/|C 4|? fraction is calculated by fitting a linear combination of a pure tensor
spectra and pure axial-vector spectra to the data. The fraction of the contributions from

each spectrum then becomes |Cp|?/|C4|? and can be inserted into equation (B.4).
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B.3 Bremsstrahlung Radiation

In the event that the § emits a bremsstrahlung photon, the relationship between the [
and the recoiling nucleus is altered and must be taken into account in the simulation. Ad-
justments for such events are introduced in the Monte Carlo event generator via a method
described in detail by Gliick in his 1997 Computer Physics Communications Paper [37] using
calculations made by Sirlin. [91] More details about the actual implementation can be found
in Chapter 5. There are two different kinds of adjustments that must be made to the g;
terms above, depending on what kinds of photons were emitted.

The first correction deals with virtual and soft bremsstrahlung photons. Virtual photons
are emitted and then reabsorbed into the reaction, while soft photons are emitted throughout
the reactions, but their energy is small enough to either not be detected or to not have a
significant impact on the recoiling particles. The corrections are defined by equations 2.12,
3.2, 3.9, and 3.10 in [37]. They are implemented in our Monte Carlo simulation via two

different functions.

a3, My N 2w N 2 [ 28 3

2
af®—1 )
T p 3 N with 9(1,corr) = glx(1+ZVS+ZM) and 9(i#1,corr) = gi;«élx<1+zVS)

where 3 = /1 —m2/E?, N = %ln((l + B)/1 — ), and L is the Spence function. g and
gi+1 refer to the Holstein expansion terms listed in section B.1. As described by equation
2.12 and 3.1 in [37], the 2y g correction is applied to all the g; terms used in our Monte Carlo
and i is applied only to g1.

The second correction pertains to when a high-energy bremsstrahlung photon is emitted
and is applied very similarly to the virtual, soft corrections above. The necessary terms can
be found in equations 4.4-4.8 in [37] and their expanded form is below. Here (in contrast

to Holstein’s equation above, but keeping with Gliick’s notation), K and k refer to the
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bremsstrahlung photon’s energy and momentum respectively. The neutrino energy is in

turn defined as: £, = Fg— F — K.

m2
HO:E,,[—(E+K)<%+ (EK —p- k)2 _K(E;}?p-kz))Jr (EKf(p-k)}
m2
lepy-pK%Jr (EK —p - k)2 _K(E;?p'k)>+ (EK—lp-k)}

n K E+ K B m?
Pro®IK(EK —p k) (EK —p-k)?

Both of these terms are multiplied by the Fermi function, F'(5E) and #K E,N(EK —p-k)
to complete the transition probability. In addition, HO is multiplied by —% to account
for ag,. The remaining g;~o terms are handled by scaling them to H0. This is only an
approximation, since what happens in the hard bremsstrahlung emission for beta decay has
only been calculated for the most dominant gq 9 terms by theorists. The error associated

with this uncertainty is discussed in chapter 5.

B.4 The g9, g9, and go7 Mystery

One as yet unresolved problem has to do with the g95, g2, and go7 terms. Under most
circumstances, it isn’t unreasonable to assume that higher order terms are on average smaller
than their predecessors. However, in the case of this expansion, such an assumption may
or may not be valid. In the eyes of our research group, the problem lies in the ambiguous
definition of the factor 7, which only appears in the offending terms. Holstein calls 7,—9 y—2
term with no reference to an angular momentum (L) that is necessary to calculate it in the
g~90 terms. If we assume the o angular momentum L = 2 that was used to calculate the

better-defined tau in the remainder of the terms, then for u = v:

—10

Tu=2,v=2 — m

1
(2u+5)(2u —3) = —75 (equation 55a in [49])
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If this is the case, then the combined contribution of the 3 terms below is about 3x the size
of the leading order term (with magnitude 1) and obviously has a significant impact on the
simulated spectrum. As can be seen from Figure B.1, the results have virtually no agreement
with the data. Given that simulations with the g-o( set to zero match the data quite nicely,
this presents a bit of a conundrum.

go5 term:

C35E2\ p?
(TQ’QReci‘jg m) 5 <cos3 00, €08 O

—% ( 08 03 €08 oy + cos by, cos? 9a5> + % cos Qﬁy)

gog term:

35(EEy — E?) ([ p? 1
7272Rec>{j3 ( 2]\042 ) (%) |:COSZ Qaﬂ cos? Oy — - ( cos? O

1
+4 cosbg,, cos b5 cos oy + cos? 9@6) + 35 (1 + 2 cos? 9@,)]

go7 term:

m9.2Rec]j3

35E3 — T0EE) + 35E (p
E

e —) {cos Gaﬂ cos> O

3

— < cos g, c0s? Oay + €08 Oy cos 9@5) + % ( cos Qﬁyﬂ

One solution that our group has proposed is that 7 could simply be misinterpreted. The
7 in Holstein’s equation 55a is defined in terms of the 8Be* spin (J'), the « spin (J”), and
the o angular momentum (L) and reads 7y _j#(L). However, when 7 is called in the g-o
terms as 7y, u and v refer to the spins of 8Be* and 8Li, respectively. If we instead assume
the unspecified L refers to either of the previous nuclei, then L = 0 and 7y, = 0, thus

effectively removing the problem.
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Figure B.1: A comparison between the « difference spectrum (with the 5 hitting one of the
same detectors as the a’s) produced by the 8Li data and a simulation in which go5, go6,
and go7 are allowed to be nonzero with the value of m99(L = 2) = —15/7 input into the

calculation. The residuals of 8Li data - Simulation are below the histograms. There is clearly
a vast discrepancy between the two spectra.

We have reached out to a number of theorists in hopes of reaching some form of closure
to this problem. The most committed few at the Soreq institute have implied that Holstein’s
expression is complete, but that there may be some mixing with a Fermi transition. Since
the closest Fermi transition is 13 MeV away, it seems very unlikely that such mixing would
result in a 300% deviation. Even some communication with Barry Holstein himself did not
put the issue to rest. However, given the clear disagreement with our data, the go5, gog, and

go7 terms will all be set to zero for this work.
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