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Abstract 

Circadian rhythms are a remarkable feature found in many disparate organisms across the 

planet, driving 24-hour oscillations in gene expression and behavior to align organism 

physiology with the day-night cycle. Perhaps two of the most fundamental questions in circadian 

biology are: how do these endogenous biological rhythms maintain a robust 24-hour periodicity, 

and what are the consequences if the clock fails to function correctly? To address these basic 

questions, in this work I and my colleagues turn to the model photosynthetic cyanobacterium 

Synechococcus elongatus, which possesses the simplest known circadian clock composed of 

only three proteins, KaiA, KaiB, and KaiC. In the main chapter of this dissertation, I investigate 

how molecular stochasticity impacts the precision of the cyanobacterial clock as a result of 

limited cellular Kai protein copy number, finding that high protein expression is required to 

suppress timing errors due to a noisy negative feedback loop in the oscillator. Additionally, I find 

that the molecular noise inherent in the feedback loop forces a smaller, related cyanobacterium to 

adopt a qualitatively different environmentally-driven timing strategy that is more optimal for a 

lower Kai copy number. The other two studies presented here are those in which I contributed as 

a co-author to investigate how the Kai oscillator maintains period robustness against fluctuations 

in protein stoichiometry as well as how timing mismatch between the clock and environment 

impacts the fitness of individual cyanobacterial cells. Lastly, I present an ongoing project that 

utilizes ancestral protein reconstruction techniques to determine whether the period of the Kai 

oscillator changed over geological time to match the changing period of the Earth’s rotation.  
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Chapter 1: Introduction 

The ubiquity and usefulness of circadian clocks 

 Circadian rhythms drive ~24-hour oscillations in physiology and gene expression that 

allow organisms to anticipate the day/night cycle, and they have been long known to exist across 

multiple kingdoms of life. Humans, insects, plants, and fungi all possess circadian clocks, and 

the fact that many of these timing systems do not share any degree of homology suggests that 

these rhythms evolved through convergent evolution, highlighting the importance of being able 

to tell time endogenously. While in principle it is possible to measure the time of day by resetting 

a daily timer with respect to either sunrise or sunset, circadian rhythms are distinguished from 

such “timer” mechanisms by the fact that they persist in the absence of any cyclic environmental 

stimuli. 

 Bona fide circadian clocks are themselves defined by three hallmark criteria: first, 24-

hour rhythms must be endogenous and persist in constant conditions; second, rhythms must be 

entrainable, i.e. resettable by environmental cues; and third, rhythms must be temperature-

compensated, maintaining correct periodicity across a range of temperatures. Here, I will briefly 

discuss each of these three criteria. 

 The first experiments to demonstrate the presence of endogenous rhythms in any 

organism were performed in the early 1700s, where French scientist Jean-Jacques d’Ortous de 

Mairan noted that leaf movements in the plant Mimosa pudica occurred on a 24-hour cycle even 

when the plants were incubated in constant darkness, shielded from the normal environmental 

light cues indicating day or night (6). More recent experiments demonstrated the same 

endogenous timing characteristic in the physiology of other organisms: in humans and mice, 

sleep patterns persist in constant light or constant dark (7, 8), and in Drosophila, the circadian 
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timing of pupal eclosion also persists in constant conditions (9). The rhythms in these organisms 

are thus termed “free-running”. 

 Like a mechanical watch that only maintains a finite level of precision, the timing of 

biological clocks can drift from the true time of day. It is thus crucial that circadian clocks 

possess some form of entrainment, or a mechanism by which endogenously generated rhythms 

can synchronize with the day/night cycle. Otherwise, the information about the time of day 

captured by the clock would decay over time, and the clock would have no utility for the 

organism. Common cues that have been demonstrated to entrain circadian clocks include light 

(10, 11), temperature (12, 13), or metabolic cues from feeding (14). 

 Lastly, all biological clocks are biochemical in nature. Thus, they are subject to 

Arrhenius’s Law, which predicts that chemical reactions proceed more rapidly at higher 

temperatures. To counter this, circadian clocks have evolved to minimize the impact of 

temperature on the speed of clock reactions, a characteristic known as temperature 

compensation. Temperature compensation is especially critical for organisms that lack self-

regulated temperature in order to cope with the temperature changes associated not only with the 

day/night cycle but also with weather and seasons. A clock that runs faster or slower on warmer 

or colder days would be a poor timekeeper. Temperature compensation is quantified by a 

measure known as Q10, or the fold change in chemical reaction rate given a 10°C change in 

temperature. Many biological reactions double or triple their reaction rates for a 10°C increase 

and thus have a Q10 value of ~2-3 (15), but the periodic frequency of circadian clocks show a 

Q10 value closer to 1, indicating that the circadian period remains close to 24 hours over a range 

of temperatures. Circadian rhythms in leaf movements in Arabidopsis show a Q10 value of 1.0-
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1.1 (16), and circadian rhythms in Drosophila locomotion show a Q10 value of approximately 1 

(17). 

 What utility does a circadian clock provide for an organism? The clock allows an 

organism to optimize its physiology for changes that accompany the day/night cycle. For a plant, 

this might involve increasing expression of genes involved in photosynthesis during the day and 

conserving energy during the night. For mice, the clock regulates sleep/wake behavior, allowing 

the mouse to become active only at night in order to avoid predators. It is even thought that in 

rodent skin cells, the circadian clock regulates the timing of cell division and DNA synthesis 

such that maximum sensitivity to UV-induced DNA damage occurs during the night and is 

avoided during the day (18). 

 

The physical limits of biology: molecular noise 

For many decades, biologists have thought of the inner workings of the cell as a series of 

pathways containing multitudes of genes and proteins that interact in a well-defined and 

deterministic manner. For example, a membrane receptor might bind to its ligand, causing 

phosphorylation of a downstream transcription factor which in turn binds to a further 

downstream gene promoter to induce expression of that gene. However, over the last fifteen 

years, another perspective has emerged that has profound implications for how we think of 

cells—the idea of biological noise. Within a population of genetically identical cells, individual 

cells may express specific proteins in randomly varying amounts, leading to heterogeneity in 

behavior, phenotype, and response to stimuli. We define biological noise as the random 

fluctuations that lead to such heterogeneity. 
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 The landmark study that 

definitely illustrated the effects of 

biological noise in single cells was 

performed by Michael Elowitz, in 

which he designed a strain of E. coli 

to express two different fluorescent 

proteins (CFP and YFP) from 

identical promoters (2). Using time 

lapse fluorescent microscopy, Elowitz 

observed that in individual cells, the 

expression levels of the fluorescent 

proteins were not constant with respect 

to time and in fact fluctuated by a 

significant amount as cells grew and 

divided such that there was a wide 

range of expression ratios between the 

two proteins (Figure 1.1). Closer 

inspection revealed that the noise 

could be classified into two types: 

extrinsic noise and intrinsic noise (Figure 1.2). In this experiment, extrinsic noise was defined as 

being responsible for highly correlated fluctuations in CFP and YFP expression, and intrinsic 

noise was defined as being responsible for the uncorrelated component of these fluctuations. 

Figure 1.1. Schematic of gene expression noise in individual E. 

coli cells expressing two fluorescent proteins (CFP and YFP) 

from two identical promoters.  Noise in gene expression causes 

a population of isogenic cells to express the two proteins in 

heterogenous fashion.  Figure adapted from (2). 

 

Figure 1.2. Quantifying extrinsic vs. intrinsic noise.  

Extrinsic noise causes correlated changes in expression for 

both fluorescent proteins, and intrinsic noise causes 

uncorrelated changes.  Figure adapted from (2). 
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Mechanistically, extrinsic noise can be thought of as arising from non-genetic differences 

between cells that can impact cellular processes such as protein expression. Some examples of 

sources of extrinsic noise include local differences in the microenvironment (e.g. temperature or 

the local concentration of a signaling ligand), the unevenness of biomolecule distribution in 

daughter cells following cell division, or even variation in the number of ribosomes present in 

each cell. Each of these sources can introduce variability into a pool of genetically identical cells 

to produce population heterogeneity. In contrast, intrinsic noise originates from a more 

physically fundamental source, i.e. the randomness of molecular collisions and diffusion. This 

stochasticity is brought to light in the context of single cells, which have only finite copy 

numbers of biomolecules. Molecules present at low cellular copy numbers (e.g. mRNAs, 

measured to be < 10 copies per gene in E. coli (19)) are especially susceptible to intrinsic noise, 

as there are fewer copies over which to average biochemical stochasticity. As a consequence, 

even if it were possible to initialize cells in identical starting conditions (thus eliminating 

extrinsic noise), the biochemical randomness that defines intrinsic noise could set two cells off 

on differing trajectories of gene expression, contributing to population heterogeneity. In practice, 

extrinsic noise and intrinsic noise are not two independently operating phenomena, and in fact 

intrinsic noise can contribute to the amount of extrinsic noise (e.g. randomness of transcription 

factor binding for a cell division gene may lead a cell to divide earlier than its counterparts, 

leading to greater uneven partitioning of ribosomes after division due to a lower overall ribosome 

copy number at cell division). Our categorization of noise into either extrinsic or intrinsic 

sources is thus a convention that can help to organize sources of variability in a population of 

cells. 
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Unlike mechanical watches, circadian clocks operate within a cellular context and are 

composed of a series of biochemical reactions that generate oscillations. Like all other biological 

processes within the cell, circadian clock function is thus subject to the same physical constraints 

of biological noise. Given that the utility of clocks derives from their ability to keep precise time, 

a central question arises: how do biological clocks generate precise, 24-hour deterministic 

rhythms despite being composed of fundamentally stochastic biochemical reactions? 

 

Synthetic biological oscillators and attempts to improve their precision 

 The design and construction of the first biological 

oscillator by Michael Elowitz in 2000 (the so-called 

“repressilator”) highlights the difficulty in designing a 

biological oscillator with a precise and consistent period. This 

“repressilator” is composed of a network of three genes, in 

which each gene represses the expression of another, forming 

a feedback loop with three negatively regulated components 

(1) (Figure 1.3). The network was designed based on 

predictions from mathematical modeling that such a network 

would be capable of generating oscillations. To test the 

prediction, this gene network was constructed on a plasmid 

that was transformed into E. coli, and time lapse fluorescent 

microscopy confirmed that this network could indeed 

generate oscillations in single cells, although with 

complications. Perhaps one of the most obvious 

Figure 1.3. Repressilator 

schematic and behavior.  Top: 

the repressilator oscillator is 

composed of three 

transcription factors that form a 

loop of negative feedback.  

Bottom: oscillations in 

individual cells are highly 

variable in period and 

amplitude.  Figures adapted 

from (1). 
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characteristics of the repressilator was that oscillations in single cells were quite erratic, and that 

significant variation between cells existed in both oscillation amplitude and period (Figure 1.3). 

 Others have since designed and constructed other synthetic biological oscillators with 

varying degrees of precision. The two-gene oscillator network designed by Stricker et al. is 

slightly more reliable than the repressilator, but still falls short of producing the highly precise 

rhythms characteristic of circadian oscillations (4) (Figure 1.4). The mammalian synthetic 

oscillator engineered by Tigges et al. faces similar problems (20). It was not until recently, 

sixteen years after the initial repressilator, that a synthetic oscillator was engineered that could 

maintain an oscillatory period consistent enough to rival circadian oscillators. 

 In 2016, Potvin-

Trottier et al. improved the 

original repressilator 

design, in which they 

systematically analyzed 

sources of molecular 

noise in the 

repressilator and 

eliminated them, improving the timing error per cycle (defined as period standard 

deviation/mean) from 28% to 14% (21). One of the most dominant sources of noise in the entire 

cycle lay within the threshold for negative repression of λ CI by TetR. The λ CI promoter 

switches from a repressed state to a non-repressed state at around only ~5 copies of TetR, 

making it extremely susceptible to low copy number noise effects. To remedy this, the authors 

introduced additional TetR binding sites on the plasmid that served as “sponges” that increased 

Figure 1.4. Two-gene oscillator schematic and behavior.  Left: the oscillator 

is composed of two gene elements.  araC positively regulates itself and lacI, 

while lacI negatively regulates itself and araC.  Right: Oscillations in 

individual cells are variable in amplitude and period (gray traces, with one 

example trace highlighted in red).  Top colorbar shows average fluorescent 

intensity of multiple cells.  Figure adapted from (4). 
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this repressive threshold several-fold to ~20 copies of TetR. This study demonstrates that 

molecular noise can have a significant impact on the precision of biological oscillators, and that 

efforts must be taken to mitigate its impact if precision is an important design criterion. 

 

The cyanobacterial clock is an extremely precise natural oscillator 

 Once thought to be too simple to ever possess something so complex, cyanobacteria 

regulate their physiology with circadian clocks that achieve a level of precision greater than any 

synthetic biological oscillator devised thus 

far (as shown in Chapter 2). The 

cyanobacterial clock is the simplest known 

circadian clock, and the core oscillator 

consists of three proteins: KaiA, KaiB, and 

KaiC. In contrast to every other known 

circadian clock, the core mechanism of the 

cyanobacterial clock is post-translational—

remarkably, the clock reaction can be 

completely reconstituted in vitro with 

recombinant Kai protein (22). In fact, the 

demonstration of all three criteria for 

defining circadian clocks (endogenously 

generated 24-hour rhythms, entrainability, 

and temperature compensation) is 

Figure 1.5. Diagram of the post-translational 

mechanism of the Kai clock cycle.  KaiC encodes the 

time of day through 24-hour rhythmic ordered 

phosphorylation and dephosphorylation on two key 

residues, T432 (green) and S431 (red).  

Unphosphorylated KaiC (U-KaiC) binds to KaiA, 

stimulating KaiC’s autokinase activity.  

Phosphorylated KaiC (P-KaiC) with a sufficient 

amount of S431 phosphorylation binds to KaiB, 

which sequesters KaiA and inhibits its activity.  This 

allows KaiC to undergo its default phosphatase 

activity to return to unphosphorylated KaiC. 
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encapsulated in the biochemistry underlying the three Kai proteins (22, 23). 

 The reconstitutability of the Kai system makes it a powerful platform for dissecting the 

biochemical mechanisms driving the core timekeeping process. Time of day is encoded in the 

hexameric protein KaiC, which undergoes rhythmic 24-hour cycles of autocatalyzed 

phosphorylation and dephosphroylation (Figure 1.5). KaiC’s enzymatic activity is in turn 

modulated by KaiA and KaiB. Initially, unphosphorylated KaiC is competent to bind to KaiA, 

which stimulates KaiC’s autokinase activity. Phosphorylated KaiC then adopts a conformation 

that allows it to bind to KaiB. This newly formed KaiBC complex can sequester KaiA, inhibiting 

its phosphorylation-stimulating activity to form the delayed negative feedback loop of the 

oscillator. This allows KaiC to then undergo its default autophosphatase activity. Once KaiC 

dephosphorylates, it binds to KaiA to start the cycle again. 

 Previous work has demonstrated that entrainment of the cyanobacterial clock can be 

explained by the effect of ATP levels on the Kai system. In cells, the ATP/(ATP + ADP) ratio 

cycles between a relatively high value of ~85% in the light and a lower value of ~40% in the 

dark (24). Simulation of this day/night cycle in the in vitro system (achieved by a buffer 

exchange protocol to alter the ATP ratio) results in the in vitro system entraining to the phase of 

ATP cycling, demonstrating that the capability for entrainment is present within the Kai proteins 

themselves (23). 

 Importantly, the cyanobacterial clock appears to operate independently within single 

cells, and there is currently no evidence of any intercellular communication to enhance the 

precision of the clock period. In fact, experiments demonstrate that physical contact between two 

cells that are in opposite clock phases has no effect on the oscillation phase in either cell (25). 

These results highlight that unlike the circadian pacemaker in higher organisms, in which 
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communication between individual neurons generates a high amplitude and deterministic 

circadian oscillation (26), the circadian clock in cyanobacteria must achieve a high level of 

precision on the single cell level. Experiments presented within this dissertation in Chapter 2 

indicate that the cyanobacterial clock accumulates only ~5% timing error per cycle, well below 

that of the synthetic oscillators mentioned above. This level of timing precision can be observed 

in that a population of cyanobacteria can maintain synchronized oscillations for over two weeks 

(27), an impressive feat considering that each cell acts as an independent oscillator. One of the 

central questions that this dissertation will address is thus: how does the cyanobacterial clock 

overcome molecular noise to create such a precise oscillator, and what constraints does 

molecular noise place on circadian clock design? 

 

Why should clocks be free-running? 

 One of the most outstanding questions in circadian biology is: what benefits does a free-

running clock provide over an environmentally-driven timer in anticipating the day/night cycle? 

A fundamental requirement for rhythms to be considered “circadian” is that they continue to run 

in constant conditions. However, constant conditions almost never occur in nature, and the 

reality is that organisms evolved in the context of the day/night cycle, presumably since the dawn 

of life. Additionally, a biological timer that resets at sunrise or sunset (but does not generate free-

running oscillations) should theoretically also be sufficient to track the passage of time. All of 

these considerations lead to the question of why circadian clocks evolved to become free-

running, and in what conditions they are advantageous. 

 One hypothesis that has only been tested computationally thus far is that free-running 

clocks evolved in response to external noise in environmental entraining cues. Organisms that 
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rely on sunlight to synchronize with the day/night cycle must do so despite the presence of 

weather that may cause fluctuations in light levels. Troein et al. demonstrated in silico that gene 

networks that give rise to free-running oscillations are much more likely to evolve in the 

presence of environmental weather (28). These results suggest that a free-running clock may be 

beneficial by acting as a low-bandpass filter, allowing an organism to filter out the relatively 

high-frequency noise that may come from weather while retaining sensitivity to the low-

frequency stimulus of the day/night cycle, necessary for entrainment. In other words, the internal 

timekeeping mechanism that a free-running clock provides can allow an organism to ignore 

environmental stimuli that do not correlate with the day/night cycle, e.g. avoiding the confusion 

of reduced light levels from a passing thunderstorm as impending nighttime, which timer-like 

systems might be more susceptible to. In addition to the effects of weather, Troein et al. showed 

that free-running oscillations evolved more frequently in the presence of a variable photoperiod, 

as it is in different seasons (e.g. the daylight period is longer in the summer and shorter in the 

winter in the Northern hemisphere). Thus, having an internal timekeeping mechanism may also 

allow organisms to better optimize their physiology for variable onset of day/night. However, 

while some studies have examined the mechanism by which clocks track seasons (e.g. in plants 

(29) and cyanobacteria (23)), the exact mechanisms by which circadian clocks generally measure 

seasonality still constitute an active area of research. 

 The question of why organisms may utilize clocks instead of timers is relevant to the 

work presented in this dissertation: I show that while the well-established model cyanobacterium 

Synechococcus elongatus PCC 7942 possesses a free-running circadian clock, a related 

picocyanobacterium Prochlorococcus marinus MED4 has an environmentally-driven timer. The 

specific questions that I investigate are outlined in the main objectives below. 



12 

 

 

Main objectives 

 What are the consequences for how biological oscillators are designed given the 

constraints from molecular noise, and how do these constraints arise? The work performed to 

investigate this question is elaborated upon in Chapter 2. Specifically, I experimentally test 

whether molecular noise stemming from limited Kai protein copy number is a determinant for 

clock precision in S. elongatus by engineering a strain in which Kai copy number is tunable. I 

then investigate whether a “noise bottleneck” exists in the system, or whether a specific part of 

the clock network is most susceptible to the effects of molecular noise. Lastly, I compare the two 

different Kai systems in S. elongatus and P. marinus to determine the precision of both systems 

with varying amounts of molecular noise and whether noise influences whether it is more 

optimal to keep time with a free-running clock or an environmentally-driven timer. 

 In Chapters 3 and 4, I present two studies on which I am second author. Chapter 3 

explores how two opposing phosphorylation sites on KaiC generate an ultrasensitive switch 

governing KaiB/KaiC binding, ultimately generating robustness with respect to changes in Kai 

protein stoichiometry. Chapter 4 investigates the consequences for organism fitness from 

clock/environment mismatch in Synechococcus on the single cell level. 

 Lastly, in the appendix, I outline efforts to perform ancestral reconstruction of the Kai 

proteins to investigate questions about Kai protein evolution. 
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Chapter 2: Demand for high protein copy number can favor timers 

over clocks in bacteria 

Foreword 

 Here, I present my first author work, currently in submission as of the writing of this 

dissertation.  In brief, I investigate the biophysical constraints that molecular noise imposes on 

the precision of the cyanobacterial clock and conclude that environmentally driven timers are a 

more optimal timekeeping mechanism at low clock protein copy number in cyanobacteria.  A 

discussion and future directions section at the end of this chapter provides further interpretation 

and insight of this work, and it details further experiments that may expand upon the work 

presented here. 
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Abstract 

Circadian clocks generate deterministic 24-hour rhythms to anticipate the day-night 

cycle, and they must accomplish this despite the fact that biological oscillators are based on 

fundamentally stochastic biochemical reactions. The model circadian clock in the 

cyanobacterium Synechococcus elongatus is based on the Kai proteins, a post-translational 

oscillator that can sustain precise rhythms for weeks in a test tube. However, a single bacterial 

cell has far fewer copies of the Kai proteins than a macroscopic reaction, raising the question of 

how bacteria produce deterministic behavior in spite of molecular stochasticity arising from 

finite protein copy number. Here, we show experimentally in S. elongatus that oscillations in 

single cells become erratic at low Kai copy number and that cells must express >10,000 copies of 

the Kai proteins to effectively suppress timing errors. Stochastic modeling shows that this need 

for many protein copies results from noise amplification in the post-translational feedback loop 

necessary for oscillations. We find that the much smaller cyanobacterium Prochlorococcus, a 

minimal photosynthetic cell, expresses only ~600 copies of the Kai proteins and has lost the 

crucial feedback loop, resulting in a timer-like Kai system that no longer free-runs. Information 

theoretic analysis shows that this timer strategy can outperform a free-running clock when 

stochastic effects are important. Thus, bacteria utilize two alternative time-keeping strategies: a 

free-running clock that uses many protein copies to achieve high timing precision, and a non-

free-running timer that is less predictive but can function well when protein copy numbers are 

low. This conclusion has implications for the evolution of circadian rhythms, the design of 

synthetic biological timekeeping systems, and may point to a currently unexplored world of 

timer-like behavior in microbes in dynamic environments, such as the mammalian gut. 

Main Text 
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Circadian clocks are biochemical oscillators that enable organisms to anticipate the day-

night cycle.  Their utility depends on the ability to make accurate predictions about the future 

(30, 31) and thus requires precise, deterministic timing. This precision must be achieved despite 

the fact that biochemical processes are composed of elementary reaction events, each of which 

occurs with stochastic timing. Indeed, most synthetic cellular oscillators produce noticeably 

irregular rhythms (1, 4, 20). In contrast, natural circadian clocks can be extremely precise (27, 

32, 33). It is generally not known how biological clocks create deterministic rhythms from their 

stochastic components, or how the architecture of clock networks responds to the constraints of 

molecular noise. 

 To address these questions, we turned to the cyanobacterial circadian clock. 

Cyanobacteria are a diverse clade of photosynthetic prokaryotes that carry kai clock genes that 

generate daily oscillations in physiology (34-36). The core mechanism of oscillation in the 

cyanobacterial clock is post-translational and can be reconstituted using purified proteins (22). 

KaiA and KaiB modulate the autocatalytic activity of KaiC, producing self-sustaining rhythms of 

multisite phosphorylation on KaiC (37).  

 Because the volume of a bacterial cell is smaller than the volume of a test-tube reaction 

by many orders of magnitude, we suspected that stochasticity due to finite numbers of clock 

proteins might be an important constraint in cells. To study this effect, we engineered a strain of 

the model cyanobacterium Synechococcus elongatus PCC 7942 where the copy numbers of the 

Kai proteins are under experimental control. We replaced the native copies of the kai genes with 

copies containing a theophylline-inducible riboswitch previously shown to modulate 

translational efficiency (38, 39), allowing us to tune Kai protein expression (Fig. 2.1A, 2.1B). In 

this strain, kaiB and kaiC are transcribed from a constitutive promoter and kaiA from an IPTG-



16 

 

inducible promoter (Fig. 2.1A). This system removes the natural transcriptional feedback in the 

system and allows us to focus on the core post-translational oscillator.  

Fig 2.1. Characterization of the Kai copy-number tunable strain. (A) A theophylline riboswitch regulates 

translation efficiency of all three kai genes, and transcriptional regulation of kaiA is controlled by an IPTG-

inducible promoter. Clock state is reported by EYFP-SsrA expressed from the kaiBC promoter. (B) 

Theophylline regulates translation by freeing the ribosome binding site upstream of each kai gene. (C) Kai 

copy numbers as a function of theophylline concentration with 1 μM IPTG (solid line), and Kai copy 

numbers in wild type cells (dotted line). Bars or shaded area indicate standard error of the mean from three 

replicates. (D)  Average oscillations in colonies detected with a bioluminescent reporter in the tunable strain 

with 1 μM IPTG and various theophylline concentrations. 
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Using quantitative western blotting, we found that wild-type cells express ~4,000 KaiA, 

~11,000 KaiB, and ~8,000 KaiC copies per cella stoichiometry similar to that needed to 

support oscillations in vitro (37). We then determined that our engineered strain is capable of 

expressing Kai proteins in a range spanning from 100s up to 10,000s of copies per cell (Fig. 2.1C 

and fig. S2.1). To characterize the ability of this inducible system to produce circadian rhythms, 

we used a luciferase assay to report on population-level gene expression rhythms. We found that 

while high levels of theophylline induction produced wildtype-like rhythms, oscillations at the 

population level weakened or vanished at lower levels of induction even though Kai proteins 

were still expressed (Fig. 2.1D and fig. S2.2). 

 We reasoned that loss of population-level oscillations at lower Kai protein expression 

levels could be explained by two possibilities—rhythms could either be lost in individual cells, 

or they could persist in single cells but with significant desynchronization between cells. To 

distinguish between these scenarios, we used time-lapse fluorescence microscopy to observe 

single-cell rhythms in constant conditions (fig. S2.3). Consistent with previous reports (25, 40), 

we observed that circadian rhythms in single wild-type cells are remarkably precise with < 5% 

timing error per clock cycle (standard deviation / mean of peak-to-peak times). When we 

analyzed our tunable expression strain, we found that single cells in fact maintained high-

amplitude rhythms even at low levels of theophylline (fig. S2.4), but these rhythms 

desynchronized over time between cells in a theophylline-dependent manner (Fig. 2.2A, B). 390 

μM theophylline (~12,000 copies KaiC / cell) produced coherent single-cell rhythms comparable 

to wild-type that maintained synchrony over one week, while 92 μM theophylline (~7,000 copies 

KaiC / cell) led to rhythms that were markedly noisier, and 23 μM theophylline (~2,600 copies 
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KaiC / cell) produced very noisy rhythms where cells in the same microcolony appeared to adopt 

nearly random phases after a few days (Fig. 2.2).  

Fig 2.2. Single cell microscopy reveals desynchronized oscillations at low Kai copy number. (A) Filmstrips 

of YFP oscillations in wild type cells and the copy number tunable strain induced with 1 μM IPTG and 

various theophylline concentrations (brightfield and YFP fluorescence overlaid). Scale bar: 5 μm. (B) 

Single cell oscillator trajectories (gray) with two example cell lineages highlighted (blue and purple). (C) 

Distributions of peak-to-peak times in wild type and copy number tunable cells; n = 536 (wild type), 336 

(370 μM), 455 (92 μM), 616 (23 μM). (D) Cell length vs. timing error (standard deviation/mean of peak-

to-peak intervals) in the 15% shortest cells (triangles), middle 70% cells (circles), and 15% longest cells 

(stars) for each condition. Vertical bars indicate 95% confidence intervals from bootstrapping (5000 

iterations), and horizontal bars indicate standard deviation in cell length. 
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When protein expression level is reduced in these experiments, both protein copy number 

and concentration are reduced. Because the post-translational oscillator is highly robust to 

protein concentration, we expect that copy number changes are the main driver of stochasticity 

(37, 41). To experimentally disentangle these effects, we used natural variability in cell size to 

stratify our analysis and focus on cells with unusually small or large volumes. Since protein 

concentration is relatively constant across cell sizes (42, 43), we used cell volume as a proxy for 

copy number within each induction condition, estimating that longer cells have higher protein 

copy number than the average. We quantified relative peak-to-peak timing errors in these cells at 

different induction levels and found that shorter cells had significantly noisier rhythms compared 

to longer cells (Fig. 2.2D). From these results, we conclude that high copy numbers of the Kai 

proteins are required to effectively suppress stochasticity in the circadian rhythm. 

How does the presence of many copies of the Kai proteins suppress timing errors, and 

what features of the oscillator circuit are most vulnerable to noise at low copy number? To 

address these questions, we constructed a simplified mathematical model of the post-translational 

Kai oscillator based on (44) and (45) (Fig. 2.3A and fig. S2.5). This model incorporates 

experimentally observed Kai protein interactions that lead to oscillatory dynamics: KaiA 

promotes phosphorylation of individual KaiC hexamers, and without KaiA, KaiC 

dephosphorylates (37). When KaiC reaches a critical phosphorylation state, it switches into a 

KaiA-resistant, dephosphorylating mode (46). Because phosphorylation is ordered (37), the 

sequence of states KaiC visits during the phosphorylation phase (yellow box in Fig. 2.3A) is 

distinct from the dephosphorylation phase (blue box in Fig. 2.3A). Finally, the 

dephosphorylating form of KaiC binds KaiB which then captures and inhibits KaiA, forming a 

delayed negative feedback loop. 
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Consistent with previous modeling work (37, 46, 47), these mechanisms can produce 

Fig 2.3. KaiA-dependent negative feedback loop is the noise bottleneck in a stochastic model of the Kai 

system. (A) Model of post-translational oscillator. KaiC hexamers undergo ordered phosphorylation 

(yellow box) and dephosphorylation (blue box). KaiA is required for KaiC phosphorylation, and 

dephosphorylating KaiC binds to KaiB to sequester and inhibit KaiA. (see fig. S5). (B) Simulated stochastic 

single cell trajectories (gray) at various Kai copy numbers with two example traces highlighted (blue and 

purple). (C) Distributions of peak-to-peak time intervals in the stochastic model. (D) Comparison of model 

and experimental data. Vertical bars indicate 95% confidence interval from bootstrapping. Horizontal bars 

indicate standard error of the mean (n = 3). Gray interval indicates the 95% bootstrapping confidence…  
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free-running oscillations in the deterministic limit, corresponding to infinite numbers of protein 

molecules (fig. S2.6). To simulate the circadian clock at copy numbers relevant to single 

bacterial cells, we implemented stochastic simulations of this reaction network. Similar to our 

experimental results, as Kai protein copy number is decreased, oscillations become noisier and 

the timing between cycles becomes variable (Fig. 2.3B, 2.3C). Though many models of the Kai 

oscillator can produce equivalent circadian rhythms when the role of molecular noise is ignored, 

we find that the impact of noise on the oscillator depends on the number of steps in the 

phosphorylation cycle required to switch between phosphorylation and dephosphorylation, with 

five steps giving the best fit (fig. S2.7, Fig. 2.3D).  

At very high copy numbers of Kai proteins, stochastic fluctuations will be suppressed 

because the reaction averages over many molecules. Surprisingly, our results indicate that even 

with 1000s of Kai protein copies, timing error in the model may still be > 10% per cycle. Since 

the negative feedback loop synchronizes individual KaiC hexamers through sequestration of a 

shared pool of KaiA (44, 45), we hypothesized that oscillator timing would be most sensitive to 

molecular noise in complexes that mediate negative feedback. 

To test this, we systematically introduced pulses of molecular noise into the reaction 

network to find molecular species where noise caused the largest changes in oscillator phase. We 

found that the molecular complexes most susceptible to noise contain KaiA, precisely the 

molecules involved in the delayed negative feedback loop (Fig. 2.3E). The vulnerability of the 

oscillator to fluctuations in KaiA-containing complexes can be understood in terms of the 

sensitivity of KaiC phosphorylation rates to the amount of active KaiA. At our low inducer 

(Fig 2.3, continued) interval for the model. (E) Mean phase shift caused by Poisson noise perturbations to 

molecular species in the model (n = 500 trials). Bars indicate 95% confidence interval from bootstrapping. 

(F) Instantaneous KaiC phosphorylation rate vs. fraction of KaiC in KaiABC complexes in the stochastic 

model for NKaiC = 300 hexamers. Shaded area indicates the range over which KaiABC complexes oscillate. 
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conditions, the number of KaiA-sequestering complexes needed to shift the entire reaction from 

phosphorylation to dephosphorylation is only ~10 copies (Fig. 2.3F). These KaiABC complexes 

represent only a small fraction of total KaiC (Fig. 2.3F and (41))—thus the stochastic 

fluctuations from small numbers of KaiABC complexes can be sufficient to cause significant 

fluctuations in KaiC enzymatic rates. Together, these results suggest that the negative feedback 

loop is a dominant source of noise in the post-translational oscillator. 

Although the KaiA-dependent negative feedback loop is the step most vulnerable to 

molecular noise, it also performs the crucial function of synchronizing individual KaiC hexamers 

within a single cell (44). Left uncoupled, individual KaiC hexamers would progress through 

phosphorylation cycles with irregular timing, and the circadian rhythm would rapidly die out. In 

this way, our results suggest that the negative feedback loop is both a strength and a liability: 

while it is needed to sustain free-running oscillations, Kai proteins must be expressed at ~10,000 

copies per cell to suppress the noise amplification inherent in the negative feedback loop and 

keep time accurately over several days. 

This finding has provocative implications. Circadian rhythms are a well-known strategy 

that allows organisms to robustly anticipate future events using internally generated oscillations.  

However, our analysis suggests that there is a minimum biosynthetic investment needed to create 

a reliable oscillator. Microbial cells span a wide range of sizes, and for very small cells, 

expressing many thousands of copies of clock proteins may not be tenable. This suggests that 

tiny cells may use alternative dynamical strategies to keep time. 

To investigate this possibility, we focused on the small cyanobacterium Prochlorococcus 

marinus, whose cell volume is over twenty times smaller than S. elongatus (48). We found that 

P. marinus has ~600 copies of KaiC per cell (Fig. 2.4A), which is in the regime where the S.  
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Fig 2.4. Removing the negative feedback loop creates a noise-resistant environmental timer in a 

Prochlorococcus-like system. 
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elongatus oscillator becomes extremely error-prone (cf. Fig. 2.3D). Expressing 10,000s of Kai 

proteins to achieve noise suppression, as in S. elongatus, may not be feasible in P. marinus given 

that this investment in protein synthesis would represent ~20% of the proteome (see SI).  

The kaiA gene at the heart of the negative feedback loop is missing in P. marinus, 

suggesting a qualitatively different time-keeping mechanism ((49) and Fig. 2.4B). We measured 

KaiC phosphorylation in both light-dark cycles and constant conditions, and found that the Kai 

system in P. marinus functions as an environmentally driven timer—KaiC phosphorylation 

increases in the light and decreases in the dark, but, unlike a circadian rhythm, ceases to cycle 

when the environment is held constant (Fig. 2.4C, compare to fig. S2.9). The lack of self-

sustained oscillations in KaiC phosphorylation is likely the molecular explanation for the lack of 

free-running rhythms in gene expression in this microbe (49). 

Does the alternative strategy of a driven timer without a feedback loop offer resistance to 

molecular noise?  To computationally test this hypothesis, we extended our stochastic model of 

the Kai system, allowing us to vary the strength of the KaiA-dependent negative feedback loop 

to interpolate between a circadian rhythm and an environmentally-driven timer (Fig. 2.4D and 

(Fig 2.4, continued) (A) Comparison of cell volume and KaiC copy number in Prochlorococcus marinus 

vs Synechococcus elongatus. Copy number (inset) determined by quantitative western blot (n = 3). (B) 

Prochlorococcus has a simplified Kai architecture that lacks kaiA. (C) Top: western blot time course 

showing Prochlorococcus KaiC (ProKaiC) phosphorylation in cultures incubated in light-dark cycles 

followed by constant light or constant dark. Bottom: quantification of ProKaiC phosphorylation. (D) 

Comparisons of model architectures corresponding to Synechococcus (left, strong feedback) and 

Prochlorococcus (right, no feedback). (E) Simulations of the strong feedback (left) and no feedback 

(right) Kai systems in light-dark cycles (shaded regions), followed by constant light at high copy number 

(top, 14,400 KaiC copies) and low copy number (bottom, 450 KaiC copies). (F) Mutual information 

between the clock and time of day during light-dark cycles in the presence of environmental fluctuations 

(see SI). Stable oscillations occur for feedback strength above 0.83 (dashed line). (G) Feedback strength 

that maximizes mutual information as a function of KaiC copy number. Above the dashed line, the 

system shows self-sustaining circadian rhythms. Marker colors correspond to the colorbar in (F). 
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fig. S2.5). We modeled the input signal from the environment as the effect of the ATP/ADP ratio 

on KaiC phosphorylation (24). 

To quantify the performance of these systems, we calculated mutual information between 

KaiC phosphorylation and the time of day in an environment with both a regular day-night cycle 

and random input fluctuations simulating weather. At high copy number, mutual information is 

maximized by a strong negative feedback loop that produces free-running oscillations. In 

contrast, at low copy number, the system that maximizes mutual information has a very weak or 

non-existent feedback loop, corresponding to an environmentally-driven timer (Fig. 2.4E-G and 

fig. S2.10). 

 This study reveals that the delayed negative feedback loop that sustains circadian rhythms 

can itself be a liability that amplifies molecular noise. Our experimental and computational 

analyses suggest that an alternative time-keeping strategy can be employed when protein copy 

numbers are low: a timer without a feedback loop can outperform a free-running circadian clock 

when molecular noise is substantial. In this view, the non-free-running Kai system in 

Prochlorococcus is not a degenerate circadian system, but rather an optimal adaptation to low 

protein copy number. 

  This result may be of broad significance to microbial physiology. The classical study of 

circadian rhythms focuses on oscillators that free-run in constant conditions, but our analysis 

suggests that for cells whose internal biochemistry is unreliable, non-free-running systems may 

perform better as time-keepers. This may be of particular relevance in niches with some 

environmental rhythmicity, such as the mammalian gut. Population oscillations have been 

observed in the gut microbiome (50, 51), but there is currently little evidence for free-running 

rhythms in gut microbes themselves. By broadening our perspective away from the precise, free-
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running rhythms of S. elongatus, we may uncover a broader world of environmentally-driven 

timing systems in prokaryotes. 

 

Materials and Methods 

Cloning and strain construction 

The copy number tunable strain was constructed by transforming a kaiABC knockout 

plasmid (pJC003, gentamycin resistance) into the kaiABC locus of wild-type S. elongatus 

carrying either an EYFP-SsrA fluorescence reporter driven by the kaiBC promoter (strain 

MRC1006, reporter first used in (52)) or the luxABCDE cassette driven by the psbAI promoter 

(strain MRC1005, reporter strain first used in (53)), followed by transformation of a plasmid 

carrying the three kai genes and lacI (pJC073-2, spectinomycin resistance) into neutral site I. The 

two versions of the copy number tunable strain carrying the YFP reporter or luciferase reporter 

are denoted as MRC1139 and MRC1138, respectively. 

pJC003 was constructed from a pBSK+ backbone with restriction digest and ligation by 

flanking a gentamycin resistance cassette with sequences upstream of kaiA and downstream of 

kaiC. Specifically, the upstream sequence spans the 331 bp upstream of kaiA up to the start 

codon of kaiA flanked with 5’ HindIII and 3’ SphI sites. The downstream sequence spans from 

the end of the kaiC stop codon to 300 bp downstream, flanked with 5’ BssHII and 3’ BamHI 

sites. 

pJC073-2 was constructed from a pAM2314 backbone through multiple rounds of 

Gibson assembly. The lacI cassette (lacIQ promoter, lacI coding sequence, and terminator) was 

cloned from pAM2991, and the IPTG-inducible trc promoter driving kaiA transcription was also 

cloned from pAM2991. Transcription of kaiB and kaiC are driven by two separate copies of the 
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S. elongatus glnB genomic promoter. The glnB promoter sequence was defined as the 750 bp 

upstream of the putative transcriptional start site of glnB. A synthetic theophylline-inducible 

riboswitch (riboswitch F from (39)) was placed immediately upstream of the start codons of all 

three kai genes. The riboswitch was placed at the transcriptional start sites of their respective 

promoters to reduce the possibility of interference of 5’-UTR sequences with riboswitch 

function. Additionally, a synthetic terminator, Bba_B0015 from the iGEM parts registry, was 

placed downstream of each kai gene (http://parts.igem.org/Part:BBa_B0015). 30 bp randomized 

linker sequences were placed upstream of the glnB promoter sequences for kaiB and kaiC to 

allow for proper Gibson assembly and plasmid sequencing. 

 

Culture conditions 

Synechococcus cultures were grown and maintained at 30°C in BG11 medium 

supplemented with 20 mM HEPES (pH 8.0) with shaking at 180 rpm under constant illumination 

of 75 μmol photons m-2 s-1, and Prochlorococcus cultures were grown and maintained at 22°C in 

Pro99 medium (54) based on natural seawater (Woods Hole, MA) supplemented with 0.59 M 

NaHCO3 under constant illumination of 16 μmol photons m-2 s-1 without shaking. Culture 

conditions for specific experiments are described in their respective sections. 

To guard against potential genetic instability in the copy number tunable strain, all 

experiments were performed on cultures propagated for two weeks or less from the original 

freezer stock. We verified that no genomic loss of our engineered kaiB or kaiC expression 

system was detectable by genomic PCR or western blot in these cultures (data not shown). 

 

Time lapse microscopy 
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To prepare cells for time lapse microscopy, cultures of either wild-type cells expressing 

the YFP reporter (MRC1006) or the copy number tunable cells expressing the YPF reporter 

(MRC1139) were grown in black, opaque 96-well plates and illuminated with custom-build LED 

arrays powered by an Arduino, which delivered 1.33 V across each LED (627 nm wavelength), 

illuminating cells with ~8.8 μmol photons m-2 s-1. The cells were seeded at an initial OD750 of 

0.1 and were entrained with two 12h:12h light/dark cycles. 48 hours after initial seeding, wells 

containing duplicate culture conditions were combined into single tubes. 

After pooling cultures into single tubes, 1 μl of culture was pipetted into individual wells 

of a glass coverslip-bottomed 96-well plate (Mat-tek corporation). For each well, a BG11-agar 

pad (1 mm x 2 mm x 2 mm) was placed on top of each droplet of culture. 225 μl of molten 

BG11-agar cooled to 37°C and containing appropriate concentrations of IPTG and theophylline 

was pipetted into each well and left to cool and solidify.  

Time lapse microscopy was performed with an Olympus IX-71 inverted microscope with 

motorized stage and focus control, and automation of image acquisition was implemented with 

the Micromanager software package. Images were captured with a 100x Olympus oil immersion 

objective and a Luca EMCCD camera (Andor). The microscope was housed in a custom-built 

incubator that maintained temperature at 30°C and insulated the apparatus from external light 

sources. The cells were exposed to a continuous light source of 2 μmol photons m-2 s-1 of light 

(660 nm wavelength), and the illumination condenser was removed in order to widen the light 

beam to sufficiently illuminate multiple wells evenly. Over the course of one hour, the 

microscope imaged 24 unique fields of view with brightfield, chlorophyll, and YFP filter sets 

(exc. 500 nm/20 nm bandpass, emm. 535 nm/30 nm bandpass, dichroic 515 nm long bandpass). 
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Single cell image processing and data analysis 

Cell masks for image processing were obtained using custom-written Python software to 

allow the user to manually draw a “mask estimate” over individual cells in brightfield images. 

Using the estimated masks as initial guesses, the software optimized mask areas to fit the 

underlying cells such that the total pixel intensity was minimized, utilizing the relatively dark 

cell interior to do so. The fitted cell masks from one movie frame were then used as initial 

guesses for cells in the next frame, and any errors were corrected manually. After the cell masks 

were labeled for the duration of the experiment, the CellTracker software suite (55) was used to 

construct cell lineages based on these cell masks to measure cellular YFP fluorescence intensity 

over time for individual lineages. 

Peak to peak intervals were detected using a Python implementation of the Matlab peak 

detection algorithm, and algorithm parameters were tuned to find all local maxima without any 

restrictions on minimum distance between maxima. All cell lineages within a single microcolony 

(i.e. all of the descendants of a single mother cell at the start of the experiment) share varying 

degrees of overlap due to common ancestry, so to avoid counting the same data multiple times, 

we only considered unique peak to peak intervals, defined as intervals that occurred within 

unique pairs of mother/daughter cells or at unique times in the experiment if the peaks occurred 

within the same cell. To prevent peak identification from identifying spurious peaks originating 

from high frequency measurement noise, the lineage data was smoothed with the Savitsky-Golay 

algorithm using a window size of 11 timepoints and third order polynomial fitting before peak 

finding. Statistics were then calculated for the peak to peak distribution mean, standard 

deviation, and coefficient of variation (defined as standard deviation divided by the mean). Error 

bars were estimated as the 95% confidence intervals from 5000 iterations of bootstrapping 
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analysis of the experimental data. Oscillation amplitude was measured by quantifying the 

difference between peaks and the troughs that immediately preceded them (troughs were 

identified using the same peak detection algorithm described above). 

 

Western blotting analysis 

To prepare cells for western blotting to quantify cellular Kai copy number, cultures were 

grown in black 96-well plates illuminated with the Arduino-controlled LED array under constant 

illumination, and cells were not subjected to any prior entrainment protocols before growth in 

96-well plates. Cultures of the copy number tunable strain were supplemented with 1 μM IPTG 

and varying concentrations of theophylline. The cells were seeded at an initial OD750 of 0.3 

with each sample distributed across 12 wells (200 μl culture/well), and they were allowed to 

grow for 48 hours. At this point, 1.75 ml of culture was taken per sample, pelleted at 3000 x g, 

flash frozen in liquid nitrogen, and stored at -80°C. 

To prepare Prochlorococcus cultures for western blotting to quantify cellular KaiC copy 

number, cells were seeded at an initial OD750 of ~0.003, and they were grown to a final OD750 

of 0.09, at which point 22.2 ml cells per sample were pelleted at 3000g, flash frozen in liquid 

nitrogen, and stored at -80°C. 

Frozen cell pellets were resuspended in lysis buffer containing 8 M urea, 20 mM HEPES 

pH 8.0, 1 mM MgCl2, and 0.5 μl benzonase (EMD Millipore). Samples were then lysed with 10 

cycles of vortex bead beating using 0.1 mm glass beads. Complete lysis was verified by 

microscopy (Synechococcus) or flow cytometry (Prochlorococcus). Sample protein 

concentration was measured by Bradford assay, using BSA as a protein standard. Samples were 

then mixed with 3x SDS-PAGE sample buffer (150 mM Tris-Cl pH 6.8, 6% SDS, 300 mM DTT, 
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30% glycerol, 0.1% bromophenol blue) and immediately loaded into polyacrylamide gels for 

SDS-PAGE. 

For quantification of either cellular Kai expression or KaiC phosphorylation dynamics, 

samples were resolved in 4-20% TGX gels or 7.5% Tris-HCl gels, respectively (Biorad). Gels 

were transferred onto PVDF membrane (Biorad) and blocked in 2% milk + TBST (137 mM 

NaCl, 2.7 mM KCl, 20 mM Tris, 0.05% Tween-20, pH 7.4). Membranes were then incubated in 

primary antibody, washed in TBST, and incubated in secondary antibody. Antibody information 

is listed below: 

Table 2.1. Western blot antibody information 

Antibody target Antibody host Dilution 

KaiA Rabbit 1:2500 

KaiB Rabbit 1:500 

KaiC Rabbit 1:5000 

anti Rb Goat 1:10000 

 

Membranes were visualized with SuperSignal West Femto substrate (Thermo Fisher) and 

imaged (Biorad ChemiDoc MP). Bands were quantified by densitometry in ImageJ against 

purified recombinant protein standards, and the intensities of non-specific bands (determined 

from kaiABC null samples) were subtracted. Synechococcus recombinant protein was prepared as 

previously described (47), and Prochlorococcus KaiC was prepared as described below. 

Quantification of recombinant standards was performed by running dilution series of standards in 

SDS-PAGE gels against a BSA standard dilution series followed by staining and imaging with 

SimplyBlue SafeStain (Life Technologies). 

 

Preparation of recombinant Prochlorococcus KaiC 
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Prochlorococcus kaiC was cloned from the MED4 genome with an N-terminal 6X His-

tag followed by a HRV-3C protease site and inserted in between the KpnI and EcoRI restriction 

sites of the pMAL-c5e vector. The addition of the Maltose binding protein (MBP) tag from this 

vector was used to improve solubility of the KaiC protein in E. coli during expression. This 

plasmid was transformed in BL-21 E. coli cells and expressed at 18°C for 48 hours without 

induction. Cells were lysed by high pressure homogenization using an Emulsiflex homogenizer, 

and the lysate was clarified by centrifugation at 30,000g for 1 hour. This clarified lysate was 

applied through a Ni-NTA column and Procholorococcus KaiC (ProKaiC) was eluted with an 

imidazole gradient. HRV-3C protease (ThermoFisher Scientific) was added to eluted fractions 

containing ProKaiC to cleave off the MPB-6X His tags by incubation overnight at 4°C. The 

post-cleavage fractions were concentrated and further purified via size exclusion 

chromatography using a Hiprep 16/60 S300 Column and an elution buffer containing 150 mM 

NaCl, 20 mM Tris pH 8.0 and 1 mM ATP. It was determined by SDS-PAGE that the MPB-6X 

His tags were incompletely cleaved after the size exclusion step. Hence, fractions containing 

Pro-KaiC were again incubated overnight with HRV-3C at 4°C to achieve complete tag 

cleavage. The added HRV-3C protease, which contained a 6X-His-tag, and uncleaved ProKaiC 

was then removed via incubation with Ni-NTA resin. KaiC concentration in the resulting 

supernatant was estimated by gel densitometry. This solution was used as a recombinant protein 

standard for quantitative Western blotting. 

 

Protein copy number measurement 
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Kai protein copy number per cell was quantified by determining the amount of Kai 

protein in cell pellet samples by quantitative western blotting (described above) and dividing by 

the number of cells in the pellet. 

Synechococcus cell counts were determined by pipetting 1 μl of diluted sample into a 96-

well plate and adding an agar pad and BG11-agar as described in the time lapse microscopy 

methods section. The microscope was then programmed to tile the entire well to image all the 

cells by chlorophyll autofluorescence, and the cells were then manually counted in ImageJ. 

Prochlorococcus cells were too small to count reliably on the microscope, and thus absolute cell 

counts were obtained with an Attune Acoustic Focusing Cytometer, which has been previously 

used to quantify cell counts for Prochlorococcus (56, 57). 

Reported values for Kai protein copy numbers are the averages of three independent 

biological replicates for each condition. Uncertainties were calculated as the standard error of the 

mean for each estimate. 

 

Circadian bioluminescence measurements 

Bioluminescence measurements of either the wild-type strain carrying a luciferase 

reporter (MRC1005) or the copy number tunable strain carrying a luciferase reporter (MRC1138) 

were obtained using a PerkinElmer TopCount Microplate Scintillation and Luminescence 

Counter. Black, opaque 96-well plates were prepared by pipetting 250 μl of BG11-agar into each 

well. After the agar solidified, 10 μl of 25x inducer at varying concentrations (IPTG + 

theophylline) was pipetted onto the top of the agar, and the plate was left overnight to allow the 

inducer to diffuse uniformly throughout the agar. Cells were pipetted onto the plate and 

illuminated with the Arduino-controlled LED arrays as described above, and they were subjected 
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to two 12h:12h light/dark cycles followed by release into constant light, at which point the plate 

reader began taking bioluminescence measurements every 30 minutes. Data curves shown for 

each condition and strain represent the average of data recorded from four replicate wells. 

To quantify the period and amplitude of circadian oscillations, the data were first detrended by 

dividing by a best fit line for the duration of the experiment after release into constant light (111 

hours total). This detrended data was then fit to a sinusoid. 

 

Supplementary Text 

Identification of appropriate genomic promoters to drive kaiB and kaiC transcription 

A major design criterion for the copy number tunable strain is to be able to express the 

Kai proteins in an expression range that spans from far below wild-type levels up through wild-

type levels or above. The synthetic riboswitch has been shown previously at maximal induction 

to express genes at only ~25% of the expression levels obtained without the riboswitch (39), 

necessitating the use of a promoter that is stronger than the native kaiBC promoter. Additionally, 

for this study, we wished to investigate the effects of molecular noise on clock function in the 

absence of the transcriptional-translational feedback loop, which has been shown to also 

contribute to clock period robustness (40). 

We identified candidate promoters that met these criteria by combining global 

transcriptomic datasets from (58) and (59), and we examined genes whose mRNA was expressed 

from 4-40 times the expression level of kaiBC mRNA and that were also arrhythmic. To identify 

promoter sequences for these genes, we examined regions 500-750 bp upstream of their 5’-UTR, 

taking care to consider the 5’-UTR of the upstream-most gene if the transcript encoded a multi-
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gene operon. Taking the sequence only upstream of the 5’-UTR ensured that any untranslated 

regions would have minimal effect on the folded structure of the riboswitch. 

As a result of this analysis, we identified six candidate promoters from the following 

genes: Synpcc7942_0065, Synpcc7942_0089, Synpcc7942_1152, Synpcc7942_0321, 

Synpcc7942_0416, and Synpcc7942_1048. To test which of these promoters expressed Kai 

protein at the appropriate levels, we created strains of Synechococcus where kaiA expression is 

under its native promoter but kaiB and kaiC expression is controlled by both the candidate 

promoter and the synthetic riboswitch (in the bioluminescent circadian reporter background). We 

successfully obtained clones carrying promoters Synpcc7942_0321, Synpcc7942_0416, and 

Synpcc7942_0089, and we compared the expression levels of KaiB and KaiC in these strains to 

wild-type levels at either 0 μM theophylline or 2 mM theophylline. From this blot, we identified 

Synpcc7942_0321 (PglnB) as a promoter of the appropriate strength. 

 

Identifying functionally equivalent light levels across experimental setups 

Due to the impact of light levels on overall protein expression in cyanobacteria (and 

therefore Kai copy number), we designed the experiments to ensure that cells were exposed to 

functionally equivalent light levels between the setups used to incubate cells for TopCount, 

western blot, and microscope experiments. Absolutely equal overhead illumination between 

conditions does not necessarily result in functionally equivalent light levels due to physical 

differences in experimental apparatus, such as the absorbance of light by the walls in the black 

96-well plates, or the placement of BG11 agar above cells on the microscope. Additional 

differences may result from whether the cells are incubated in liquid media (western blots) or on 

top of/underneath solid media (TopCount/microscope experiments, respectively). 
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To identify functionally equivalent light levels, we incubated cells in the appropriate 

experimental setups for TopCount, western blot, and microscope experiments as described in the 

methods above. For the TopCount and western blot setups (powered by the Arduino-controlled 

LEDs), we exposed cells expressing YFP under control of the IPTG-inducible trc promoter 

(MRC1036) to varying levels of light while simultaneously incubating cells on the microscope at 

a fixed reference light level. For all experimental setups, cells were maximally induced with 1 

mM IPTG. After 48 hours of incubation, cells were washed off the agar surface (for TopCount 

experiments) or taken directly from liquid culture (for western blot experiments) and placed on 

the microscope and imaged alongside cells grown on the microscope. The average single cell 

intensity under each condition was quantified with the CellProfiler software suite (60), and we 

determined light intensities for the TopCount and western blot setups that gave rise to cell 

fluorescence that matched cells grown on the microscope. The functionally equivalent light 

intensities were ~2 μmol photons m-2 s-1 for cells on the microscope, ~8.8 μmol photons m-2 s-1 

for cells in liquid culture in 96-well black plates (e.g. Western blot cultures), and ~20 μmol 

photons m-2 s-1 for cells on solid media in 96-well black plates (e.g. TopCount experiments). 

These light intensities were used for all subsequent experiments. 

 

Details of model implementation 

The mathematical model we use here (fig. S5) is a simplified model which treats some 

elements of the biochemistry of the system abstractly, but captures known aspects of the Kai 

system that can produce oscillations. It has similarities to previously published models, where 

the functional units are KaiC hexamers (44, 46). First, the sequence of phosphorylation and 

dephosphorylation of KaiC occurs in an ordered fashion, reflected in an initial phase where 
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phosphorylation occurs (yellow box, analogous to Thr432 phosphorylation dominant) until a 

threshold level of peak phosphorylation, after which a dephosphorylation phase initiates (blue 

box, analogous to Ser431 phosphorylation dominant). The ordering of the phosphorylation sites 

prevents the system from crossing between the intermediate states in the yellow and blue boxes. 

Second, KaiC only phosphorylates when bound to KaiA and otherwise dephosphorylates. This 

results in effective phosphorylation rates that depend on the concentration of KaiA, as observed 

experimentally (37). Third, KaiC enters the dephosphorylation phase (blue box), is coincident 

with adopting a state that is bound to KaiB (likely ADP bound in the N-terminal domain of 

KaiC) (61). These KaiBC complexes can bind and sequester KaiA. We assume that binding of 

KaiB is highly cooperative, so that 6 KaiB monomers bind to a single KaiC hexamer, and that 

each of these KaiB monomers is capable of inhibiting one KaiA dimer, and does so with very 

high affinity so that KaiA is not released until that KaiC hexamer exits the dephosphorylation 

phase (62). Additionally, we assume KaiB is present in excess and that KaiBC complex 

formation does not significantly deplete cellular KaiB, and thus we do not explicitly account for 

KaiB amounts in the model. 

We designed the model to be flexible so that the number of reaction steps in the 

phosphorylation cycle 𝑚 can be varied. Each elementary reaction that changes the state of a 

KaiC hexamer occurs with a rate constant k which can then be rescaled so that the oscillatory 

period remains independent of m. For a given value of 𝑚, the deterministic model is defined by 

the ordinary differential equations below. 

 

[𝐶] 
Concentration of KaiC hexamers during phosphorylation cycle that are unbound 

to KaiA 
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[𝐴𝐶] 
Concentration of KaiC hexamers during phosphorylation cycle that are bound to 

KaiA 

[𝐵𝐶] 
Concentration of KaiC hexamers during dephosphorylation cycle that are bound 

to KaiB and unbound to KaiA 

[𝐴𝐵𝐶] 
Concentration of KaiC hexamers during dephosphorylation cycle bound to KaiB 

and sequestering KaiA 

[𝐴] 
Concentration of KaiA dimers with free, unbound KaiA denoted as [𝐴𝑓𝑟𝑒𝑒] and 

total amount of initial KaiA denoted as [𝐴𝑡𝑜𝑡] 

 

A given KaiC hexamer can exist in varying states of phosphorylation, from a minimum 

of 0 to a maximum of 𝑚. Here, 𝑖 represents phosphorylation state during the phosphorylation 

cycle and 𝑗 represents phosphorylation state during the dephosphorylation cycle, and we first 

consider cases where 0 < 𝑖 < 𝑚 − 1 and 0 < 𝑗 < 𝑚: 

 

𝑑[𝐶𝑖]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐶𝑖+1] − [𝐶𝑖]) + 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑖] − 𝑘𝐴𝑜𝑛 ∙ [𝐶𝑖] ∙ [𝐴𝑓𝑟𝑒𝑒] (1) 

𝑑[𝐴𝐶𝑖]

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠 ∙ ([𝐴𝐶𝑖−1] − [𝐴𝐶𝑖]) + 𝑘𝐴𝑜𝑛 ∙ [𝐶𝑖] ∙ [𝐴𝑓𝑟𝑒𝑒] − 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑖] (2) 

𝑑[𝐵𝐶𝑗]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐵𝐶𝑗+1] − [𝐵𝐶𝑗]) − 𝑘𝐴𝐵𝐶 ∙ [𝐵𝐶𝑗] (3) 

𝑑[𝐴𝐵𝐶𝑗]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐴𝐵𝐶𝑗+1] − [𝐴𝐵𝐶𝑗]) + 𝑘𝐴𝐵𝐶 ∙ [𝐵𝐶𝑗] ∙ [𝐴𝑓𝑟𝑒𝑒] (4) 

[𝐴𝑓𝑟𝑒𝑒] = max⁡(0, [𝐴𝑡𝑜𝑡] − ∑[𝐴𝐶𝑖] − 6∑[𝐴𝐵𝐶𝑗]

𝑚

𝑗=1

𝑚−1

𝑖=0

) (5) 

 

For special cases 𝑖 = 0,𝑚 − 1: 
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𝑑[𝐶0]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐶1] + [𝐵𝐶1] + [𝐴𝐵𝐶1]) + [𝐶1](𝑘𝐴𝑜𝑓𝑓 − 𝑘𝐴𝑜𝑛) (6) 

𝑑[𝐴𝐶0]

𝑑𝑡
= −𝑘𝑝ℎ𝑜𝑠 ∙ [𝐴𝐶0] + 𝑘𝐴𝑜𝑛 ∙ [𝐶0] ∙ [𝐴𝑓𝑟𝑒𝑒] − 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶0] (7) 

𝑑[𝐶𝑚−1]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐵𝐶𝑚] − [𝐶𝑚−1]) + 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑚−1] − 𝑘𝐴𝑜𝑛 ∙ [𝐶𝑚−1]

∙ [𝐴𝑓𝑟𝑒𝑒] 
(8) 

𝑑[𝐴𝐶𝑚−1]

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠 ∙ ([𝐴𝐶𝑚−2] − [𝐴𝐶𝑚−1]) + 𝑘𝐴𝑜𝑛 ∙ [𝐶𝑚−1] ∙ [𝐴𝑓𝑟𝑒𝑒] − 𝑘𝐴𝑜𝑓𝑓

∙ [𝐴𝐶𝑚−1] 
(9) 

 

And for 𝑗 = 𝑚: 

 

𝑑[𝐵𝐶𝑚]

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠 ∙ [𝐴𝐶𝑚−1] − 2 ∙ 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ [𝐵𝐶𝑚] − 𝑘𝐴𝐵𝐶 ∙ [𝐵𝐶𝑚] (10) 

𝑑[𝐴𝐵𝐶𝑚]

𝑑𝑡
= −𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ [𝐴𝐵𝐶𝑚] + 𝑘𝐴𝐵𝐶 ∙ [𝐵𝐶𝑚] ∙ [𝐴𝑓𝑟𝑒𝑒] (11) 

 

To interpolate between full strength negative feedback (Synechococcus-like) and no 

negative feedback (Prochlorococcus-like), we make the following modifications to the model. 

First, we introduce an additional state of KaiC in the phosphorylating cycle, 𝐶∗, which can 

phosphorylate in a KaiA-independent manner, consistent with experimental evidence indicating 

that Prochlorococcus KaiC can autophosphorylate in the absence of KaiA (63). KaiC can thus 

transition to one of two states that promote phosphorylation: one in which it binds to KaiA (𝐴𝐶), 

and one in which it does not (𝐶∗). The relative probability of these states is determined by a 

parameter 𝜂 which can take values between 0 and 1. When⁡𝜂 = 1, all phosphorylation is KaiA-

dependent (the Synechococcus-like model). When 𝜂 = 0, all phosphorylation occurs via the 
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KaiA-independent state. Lastly, we introduce environmental input in the form of the cellular 

ATP/(ATP + ADP) ratio, which has been shown to alter KaiC phosphorylation, leading to 

entrainment to metabolic signals (24). Here, we model this effect by allowing the ATP/ADP ratio 

to influence the rate at which KaiC enters a phosphorylation-competent state, and we denote the 

fraction of total (ATP + ADP) that is ATP as 𝑓𝐴𝑇𝑃. This hypothetical mechanism allows 

phosphorylation of Prochlorococcus KaiC to depend on the light-dark cycle through metabolism. 

 

Specifically, the rate at which KaiC enters the KaiA-bound phosphorylating state changes: 

 

𝑘𝐴𝑜𝑛 → 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 

 

Similarly, the total rate at which KaiC switches to the KaiA-independent phosphorylating state 

can be expressed as: 

 

𝑘𝐶→𝐶∗ ∙ (1 − 𝜂) ∙ 𝑓𝐴𝑇𝑃 

 

In total, the entire modified system of equations can be written, modifying equations (1) and (2) 

to produce equations (12) and (13). First, we consider cases where 0 < 𝑖 < 𝑚 − 1 (the reactions 

on the dephosphorylating cycle remain unchanged): 

 

𝑑[𝐶𝑖]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐶𝑖+1] − [𝐶𝑖]) + 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑖] − 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶𝑖] ∙ [𝐴𝑓𝑟𝑒𝑒]

− 𝑘𝐶→𝐶∗ ∙ (1 − 𝜂) ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶𝑖] 
(12) 
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𝑑[𝐴𝐶𝑖]

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠 ∙ ([𝐴𝐶𝑖−1] − [𝐴𝐶𝑖]) + 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶𝑖] ∙ [𝐴𝑓𝑟𝑒𝑒] − 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑖] (13) 

𝑑[𝐶∗𝑖]

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠 ∙ ([𝐶

∗
𝑖−1] − [𝐶∗𝑖]) + 𝑘𝐶→𝐶∗ ∙ (1 − 𝜂) ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶𝑖] − 𝑘𝐶∗→𝐶 ∙ [𝐶

∗
𝑖] (14) 

 

Equations (6)-(9) are rewritten to produce equations (15)-(18) for 𝑖 = 0,𝑚 − 1: 

 

𝑑[𝐶0]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐶1] + [𝐵𝐶1] + [𝐴𝐵𝐶1]) + 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶0] − 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶0]

∙ [𝐴𝑓𝑟𝑒𝑒] + 𝑘𝐶→𝐶∗ ∙ (1 − 𝜂) ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶0] 
(15) 

𝑑[𝐴𝐶0]

𝑑𝑡
= −𝑘𝑝ℎ𝑜𝑠 ∙ [𝐴𝐶0] + 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶0] ∙ [𝐴𝑓𝑟𝑒𝑒] − 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶0] (16) 

𝑑[𝐶𝑚−1]

𝑑𝑡
= 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ∙ ([𝐵𝐶𝑚] − [𝐶𝑚−1]) + 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑚−1] − 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃

∙ [𝐶𝑚−1] ∙ [𝐴𝑓𝑟𝑒𝑒] + 𝑘𝐶→𝐶∗ ∙ (1 − 𝜂) ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶𝑚−1] 
(17) 

𝑑[𝐴𝐶𝑚−1]

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠 ∙ ([𝐴𝐶𝑚−2] − [𝐴𝐶𝑚−1]) + 𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ [𝐶𝑚−1] ∙ [𝐴𝑓𝑟𝑒𝑒]

− 𝑘𝐴𝑜𝑓𝑓 ∙ [𝐴𝐶𝑚−1] 
(18) 

 

Deterministic simulations of the system were implemented by using fourth-order Runge-Kutta 

numerical integration with a step size of 0.01 hours. 

 

To simulate the system stochastically, we reimplemented the reactions shown above using the 

Gillespie algorithm (64), denoting the copy number of a particular species as 𝑁𝑠𝑝𝑒𝑐𝑖𝑒𝑠. Thus, the 

rate at which KaiC binds to KaiA during the phosphorylation cycle can be rewritten: 

 

𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ 𝑁𝐶𝑖 ∙ 𝑁𝐴𝑓𝑟𝑒𝑒 →⁡𝑘𝐴𝑜𝑛 ∙ 𝜂 ∙ 𝑓𝐴𝑇𝑃 ∙ 𝑁𝐶𝑖 ∙ [𝐴𝑡𝑜𝑡] ∙
𝑁𝐴𝑓𝑟𝑒𝑒
𝑁𝐴𝑡𝑜𝑡
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And the rate at which KaiBC binds to KaiA to sequester it during the dephosphorylation cycle 

can be rewritten: 

 

𝑘𝐴𝐵𝐶 ∙ 𝑁𝐵𝐶𝑗 ∙ 𝑁𝐴𝑓𝑟𝑒𝑒 → 𝑘𝐴𝐵𝐶 ∙ 𝑁𝐵𝐶𝑗 ∙ [𝐴𝑡𝑜𝑡] ∙
𝑁𝐴𝑓𝑟𝑒𝑒
𝑁𝐴𝑡𝑜𝑡

 

 

In experiments, changing theophylline concentrations changes copy number but also 

changes concentration of Kai proteins. To reflect this in the stochastic implementation where the 

cell volume remains constant over varying copy numbers, the concentration [𝐴𝑡𝑜𝑡] is scaled by 

the overall Kai copy number relative to wild-type, where wild-type copy number of KaiC is 

specified to be 1200 hexamers (derived from experiments in this study measuring Kai copy 

number to be ~8000). 

A table of simulation parameter values for this study are listed in Table S2.2. Rate 

constants in the model were selected such that their relative magnitudes were reasonably 

consistent with previous findings (e.g. the KaiA binding rate is faster than the disassociation rate, 

and important slow steps in the cycle are reactions within a KaiC hexamer: phosphorylation, 

dephosphoryation, and switching into a KaiB-binding competent state (65)). Values for KaiA-

KaiC stoichiometries for stimulating phosphorylation (1:1 stoichiometry) and for sequestration 

(6:1 stoichiometry) were chosen based on reported literature values (62, 66). As a final step, all 

model rate constants were scaled proportionally such that the period of oscillations was 24 hours. 

 

Determining model timing error 
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To quantify the amount of oscillatory noise in the model at varying copy numbers (as 

shown in Fig. 3), the simulation was first initiated with all KaiC completely dephosphorylated 

and unbound to KaiA (𝐶0). From this initial condition, the simulation was simulated 

deterministically, and the system quickly converged to a limit cycle. To allow the system to 

reach steady state oscillations, the simulation was run for 1000 hours. The relative amounts of 

each KaiC species was then recorded and saved at the KaiC phosphorylation trough most 

immediately before the 1000 hour simulation endpoint. KaiC phosphorylation was calculated by 

summing up the total number of phosphorylated sites on all KaiC molecules in the simulation. 

The save point was then used as initial conditions for all subsequent simulations, and 

concentrations of Kai proteins were converted to absolute copy number assuming a conversion 

factor of 1200⁡molecules/1.56⁡𝜇𝑀. To more closely mimic the experimental data in which 

single cells grow and divide, the simulation was first run for 24 hours (the “mother cell”), at 

which point the simulation state was cloned into two simulations which were left to run 

independently thereafter (as the “daughter cells”). 24 hours later, the simulations were cloned 

and split again into four, and this was repeated for a total of 7 complete “generations”, or 168 

hours of simulation time for each individual simulation lineage. The 24 hour doubling time 

chosen here is consistent with the ~24 hour doubling time in our experiments (data not shown). 

KaiC phosphorylation data over time was compiled for individual lineages, and to facilitate 

further downstream processing, the data were resampled at a time interval of 0.01 h with linear 

interpolation. Peak-to-peak measurements were then obtained in identical manner to that used for 

experimental data (outlined in the Methods and Materials) with the exception that a window size 

of 211 was used for the Savitsky-Golay smoothing filter on the model data before peak finding. 
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This simulation was repeated for varying copy numbers of Kai protein and for varying 

values of m as shown in Fig. S6, with 𝑚 = 5 providing the best fit to the experimental data as 

shown in Fig. 3D. 

 

Noise sensitivity analysis of all molecular species in the model 

We performed a noise sensitivity analysis to determine which molecular species in the 

model were most susceptible to noise. Specifically, we defined noise susceptibility as the 

average magnitude of phase shift induced by an instantaneous single perturbation of molecular 

noise in the amount of a given molecular species. Perturbations were simulated to be Poisson-

like in nature in order to reflect the expected 1/√𝑁 noise scaling behavior, where 𝑁 represents 

the copy number of a given species. Thus, we expected that molecular species that were present 

in smaller amounts should experience greater fluctuations in their amounts. 

To precisely isolate the effect of a single perturbation of molecular noise, the model was 

first initialized from steady state oscillations (specifically after 1994.49 hours of deterministic 

simulation starting from dephosphorylated KaiC) and run deterministically for 24 + ∆𝑡 hours, 

where ∆𝑡 represents a random interval of time picked uniformly between 0 and 24 hours. At this 

point a molecular noise perturbation was introduced by converting the concentration of a given 

molecular species to a discrete copy number (corresponding to 25% wild-type copy number and 

using a conversion factor of 1200⁡molecules/1.56⁡𝜇𝑀), at which point the copy number was 

resampled from a Poisson distribution whose mean was the initial copy number. This resampled 

copy number was converted back into a concentration value, and from here the simulation was 

run deterministically for an additional 48 hours. 
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The phase shift between the pre- and post-perturbation trajectories was calculated by 

taking the absolute value of the difference in the phases obtained from sinusoid fitting to both 

trajectories. 

For each molecular species in the model, we repeated this process a total of n = 500 trials. 

We grouped molecular species into four categories: KaiAC complexes, unbound KaiC, KaiBC 

complexes, KaiABC complexes. For each category, we then calculated the average magnitude of 

phase shift, which is shown in Fig. 3E. 

 

Determining the range of KaiABC complexes that switch KaiC between kinase and phosphatase 

modes 

To calculate the dependence of KaiC net kinase rates on the number of KaiABC 

complexes present at a given moment in time, the average amount of each KaiC species was first 

calculated by averaging KaiC amounts over a 24 hour period sampled at 1 hour intervals. The 24 

hour period over which individual KaiC amounts were recorded ranged from t = 1958.07 h 

(trough of phosphorylation) to t = 1982.07 in a deterministic simulation in which KaiC was 

initialized in the unphosphorylated state and unbound to KaiA. Once the average KaiC amounts 

were calculated, these amounts were used as the initial conditions for subsequent simulation. 

Because the amount of free KaiA available to bind to KaiC depends on the amount of 

KaiABC complex, the simulation was allowed to reach an equilibrium of KaiA-KaiC binding by 

first allowing only the KaiA-KaiC binding/unbinding reactions to run for 20 hours, disabling any 

phosphorylation and dephosphorylation reactions. After KaiA-KaiC binding reached 

equilibrium, the net KaiC kinase rate was calculated by taking the sum of all rate constants for 
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phosphorylating reactions and subtracting the sum of all rate constants for dephosphorylating 

reactions. This process was then repeated for varying amounts of KaiABC complexes. 

The curve shown in Fig. 3F was produced by sampling the net kinase vs. KaiABC 

complex curve in discrete amounts corresponding to incrementing the copy number of KaiABC 

complexes by 1 and calculating the corresponding change in net kinase rate, and this was 

simulated for a KaiC copy number of 1,800. 

 

Calculating clock/environment mutual information for varying feedback loop strengths 

To determine the optimal feedback loop strength at varying Kai copy numbers, we varied 

the feedback loop strength in the presence of environmental fluctuations. Feedback loop strength 

was tuned by varying the parameter 𝜂 to take values between 0 (no feedback loop) to 1 (full 

feedback strength). For each value of 𝜂, the simulation was first run deterministically for 50 

cycles of 12h:12h light/dark cycles without environmental noise to reach steady state, initialized 

from unphosphorylated KaiC not bound to KaiA. Light/dark cycles were emulated by cycling 

ATP levels between 80% (day) and 40% (night), reflecting experimental values observed 

previously. These steady states were then used as the starting points for subsequent simulations. 

For stochastic simulations, the simulations were run at constant concentration, where Kai 

copy number was changed by changing the effective simulation volume (thus cells with smaller 

Kai copy number will have proportionally smaller volumes). This reflects our experimental 

findings that while Synechococcus and Prochlorococcus have vastly different Kai copy numbers, 

the concentrations of Kai proteins are roughly equivalent in both organisms due to their 

difference in volume. The simulations were then run at varying copy numbers for 10 cycles of 

12h:12h light/dark cycles with fluctuations.  
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Environmental fluctuations were simulated by adding fluctuations to a deterministic 

12h:12h light/dark cycle as outlined above. In the case without external fluctuations, ⁡𝑓𝐴𝑇𝑃 is 

80% during the day and 40% at night. When fluctuations are present, we instead generate 𝑓𝐴𝑇𝑃 

via a Markov process where the input signal switches to a new level with a mean waiting time of 

1.33 hours. For each environmental transition, 𝑓𝐴𝑇𝑃 is drawn from a normal distribution centered 

on 80% (day) or 40% (night) with a standard deviation of 10%. An example plot of such ATP 

fluctuations is shown in figure S10. To facilitate downstream data processing, the data from each 

simulation was resampled at a rate of 0.01 hours using linear interpolation. For each copy 

number and value of 𝜂, the simulation was repeated a total of 900 times. 

For mutual information calculations, the data from the last 5 cycles of 12h:12h light/dark 

was used. The multidimensional clock state was projected into 2 dimensions by quantifying the 

total amount of phosphorylation in the phosphorylating half of the cycle (𝑃, yellow box in fig. 

S5) vs. the dephosphorylating half of the cycle (𝐷, blue box in fig. S5). 

Time data was binned into 24 bins, and phosphorylation data was binned into 100 x 100 

bins. Mutual information (𝐼) was calculated for each Kai copy number and value of 𝜂: 

 

𝐼(𝑇, 〈𝑃, 𝐷〉) =∑ ∑ 𝑃𝑟(𝑡, 〈𝑝, 𝑑〉)
〈𝑝,𝑑〉∈〈𝑃,𝐷〉𝑡∈𝑇

∙ log2
𝑃𝑟(𝑡, 〈𝑝, 𝑑〉)

𝑃𝑟(𝑡)𝑃𝑟(〈𝑝, 𝑑〉)
 

 

Here, 𝑇 denotes the entire set of time points, and 𝑡 denotes a specific time point. Similarly, 

〈𝑃, 𝐷〉 denotes the entire set of observed phosphorylation states, and 〈𝑝, 𝑑〉 denotes a specific 

phosphorylation state observation. 𝑃𝑟 denotes the probability function. 
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Determining the bifurcation point where oscillations lose stability as feedback strength 

decreases 

The bifurcation point in Figures 4F-G (denoted by the horizontal dashed line) was 

determined for various values of feedback loop strength 𝜂 and ATP/(ATP + ADP) ratios by the 

following method. For a given, constant ATP ratio and starting at 𝜂 = 1.0, a deterministic 

simulation was run for 1000 hours, and a binary search was executed over varying values of 𝜂 to 

determine the level of 𝜂 where oscillations would disappear or become unstable. Oscillations 

were considered to be stable and present if the amplitude did not drop by more than 2% over the 

last 100 hours of the simulation and if the amplitude over the last 50 hours was greater than 10% 

of the oscillatory amplitude obtained at 𝜂 = 1.0.When the input signal is constant, the 

bifurcation point depends on the ATP ratio value, so in the case of fluctuating environmental 

input, we defined the bifurcation point of the system to be the value of 𝜂 above which 

oscillations were present and stable for all ATP ratio levels between 80% and 40%. 

 

Estimate of the fraction of the total proteome occupied by Kai proteins for Synechococcus-like 

expression levels in Prochlorococcus 

Given a cellular diameter of ~0.5 μm (48), an estimate for the cell volume of 

Prochlorococcus is ~0.1 fl assuming a spherical cell shape, a reasonable assumption based on 

electron micrographs (67). Cellular protein amount was measured to be ~15 fg/cell in 

Prochlorococcus (corresponding to ~150 mg/ml concentration), which was quantified by 

measuring the total protein yield from cell lysate by Bradford assay and dividing by the total 

number of cells in the sample as measured by flow cytometry. Protein concentration was 

estimated by dividing mg/ml by cell volume. 
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Given a protein amount of ~15 fg/cell and assuming an average protein molecular weight of 26.7 

kDa in bacteria (68), we can estimate that there are ~105 copies of proteins/cell in 

Prochlorococcus. Wild-type Synechococcus expresses a total of ~20,000 Kai proteins, which 

would constitute ~20% of the total proteome in Prochlorococcus, a large amount for an already 

minimal photosynthetic organism. 
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Supplemental Figures 

 

Fig. S2.1. Characterization of copy number tunable strain. (A) Representative western blot 

images for data presented in Fig. 1C (n = 3 biological replicates). For each protein KaiA, KaiB, 

and KaiC, cell lysate and recombinant standards were blotted simultaneously on the same 

membrane. Left: cell lysate from wild-type, kaiABC null, or copy number tunable cells incubated 

in 1 μM IPTG and various amounts of theophylline. For KaiA and KaiB western blots, 3 μg total 

protein was loaded per well. For KaiC western blot, 0.75 μg total protein was loaded per well. 

Protein specific bands are highlighted with black arrows, and nonspecific bands are highlighted 

with red arrows. Right: recombinant protein standards were all carried out in a dilution series, 

with the maximum and minimum amounts loaded per standard as follows: 8 ng to 0.16 ng for 

KaiA, 5 ng to 0.10 ng for KaiB, and 12 ng to 0.24 ng for KaiC. (B) Relative stoichiometry of 

KaiC to KaiA cellular copy number using data from (A). Error bars and shaded interval indicate 

the standard error of the mean. (C) Left: cell lysate from wild-type, kaiABC null, or copy number 

tunable cells incubated in 96 μM theophylline and various amounts of IPTG. For both KaiA and  
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(Fig. S2.1 continued) KaiC, 3 μg total protein was loaded per well. Right: recombinant protein 

standards were similarly carried out in a 2-fold dilution series, with the maximum and minimum 

amounts loaded per standard as follows: 8 ng to 0.25 ng for KaiA and 12 ng to 0.38 ng for KaiC. 

(D) Relative stoichiometry of KaiC to KaiA cellular copy number using data from (C). 
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Fig. S2.2. Bulk level oscillation data from the TopCount plate reader assay. (A) Bioluminescence 

traces over time in either wild-type cells (gray) or copy number tunable cells plated on BG11-

agar containing various amounts of inducer (blue). Shown are the averages of data from n = 12 

individual wells for wild-type and n = 4 individual wells for copy number tunable cells. Upward 

trend in bioluminescence is due to cell growth/division over the course of the experiment 
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(Fig. S2.2 continued) (data shown is pre-normalization). (B) Heatmap of oscillation amplitude at 

various levels of inducer. Amplitudes are obtained from fitting data to a sinusoid after 

normalizing data for cell growth/division. White star indicates conditions that approximate wild-

type levels of Kai protein expression. (C) Heatmap of oscillation period relative to wild-type 

cells after similar fitting to sine curves after normalization. Gray areas indicate conditions where 

the oscillation amplitude was too weak to determine period in a satisfactory manner. White star 

indicates conditions that approximate wild-type levels of Kai protein expression. 
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Fig. S2.3. Experimental setup for fluorescent time-lapse microscopy. Cells are incubated in 96-

well plates (only a single well is shown, not drawn to scale) underneath an agar pad with uniform 

illumination. Additional BG11-agar containing inducers is added on top of the agar pad. The 

entire setup is contained within a light and temperature-controlled box held at 30°C. 
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Fig. S2.4. Oscillation amplitude in wild-type cells and in the copy number tunable strain at 

various theophylline concentrations and 1 μM IPTG. (A) Histograms of oscillation amplitudes. 

(B) Quantification of mean oscillation amplitudes shown in (A) with error bars denoting standard 

deviations of amplitude distributions. 
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Fig. S2.5. Model of Kai system. KaiC is either in a phosphorylation-competent mode (yellow 

box) or a dephosphorylation mode (blue box), which corresponds to the ordered steps of 

phosphorylation and dephosphorylation observed experimentally. In the phosphorylation-

competent mode, ground-state KaiC (middle of yellow box) can enter one of two states that allow 

for phosphorylation: KaiA-bound (left) and an equivalent state that is not KaiA-bound (right). 

These two states correspond to the scenario in which the KaiC C-terminal tails are exposed, 

promoting phosphorylation (69). Feedback loop strength η determines the relative rates at which 

KaiC enters the KaiA-bound or KaiA-unbound phosphorylating state. KaiC undergoes a series of 

phosphorylation steps (a total of m steps, m = 6 shown here for illustrative purposes) until it 

becomes fully phosphorylated, unbinding KaiA if previously bound and binding to KaiB. 

Dephosphorylating KaiC can either dephosphorylate as part of a KaiBC complex or it can do so 

as part of a ternary KaiABC complex which sequesters KaiA and forms the oscillator negative  
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(Fig. S2.5 continued) feedback loop. KaiC that becomes completely dephosphorylated unbinds 

KaiB and KaiA if previously bound, and the cycle restarts. 
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Fig. S2.6. Deterministic simulation of model depicted in fig. S5 with parameter m = 5 and 

numerically integrated with the fourth order Runge-Kutta method. The simulation was first 

initialized from 2.0 μM dephosphorylated KaiC hexamers and 2.0 μM KaiA dimers, and it was 

allowed to reach steady state oscillations by running the simulation for 1994.49 hours and saving 

the simulation state at that time. The simulation was then run for an additional 120 hours from 

the saved state, and the resulting trajectory is plotted here. 
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Fig. S2.7. Different values of m (number of phosphorylations on KaiC required to switch from 

phosphorylating to dephosphorylating) show different noise scaling properties. Shown above is 

Kai copy number plotted against the coefficient of variation for various values of m. Shaded 

areas indicate 95% confidence intervals from bootstrapping (5000 iterations). The number of 

peak-to-peak intervals in each data point in each curve ranges from n = ~800 to n = ~1400. 
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Fig. S2.8. Representative western blot image of Prochlorococcus KaiC used for quantifying the 

cellular copy number (n = 3 biological replicates). Left: cell lysate from Prochlorococcus cells 

were loaded in a dilution series with 7.5 μg, 3.8 μg, and 1.9 μg of total protein loaded in each 

well from left to right. Right: purified recombinant standard of Prochlorococcus KaiC with 29 

ng, 15 ng, 7.1 ng, and 3.6 ng loaded in each well from left to right. 
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Fig. S2.9. KaiC phosphorylation dynamics in Synechococcus. Top: western blot time course 

showing Synechococcus KaiC phosphorylation in cultures incubated in light-dark cycles 

followed by either constant light or constant dark. Bottom: quantification of phosphorylated 

KaiC over time by densitometry. 
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Fig. S2.10. Additional data from mutual information calculations. (A) Clock/environment mutual 

information from model simulations at varying feedback strength and Kai copy number. Each 

curve corresponds to a single column in the heatmap in Fig. 4F, and the feedback strengths that 

maximize the mutual information of each curve corresponds to the points plotted in Fig. 4G. (B)  
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(Fig. S2.10 continued) ATP ratio environmental input without fluctuations (top) and with 

fluctuations (bottom). Alternating light and shaded backgrounds indicate 12 hour day-night 

cycle. 
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Supplemental Tables 

Table S2.2. Parameters used in the Kai model.  

 

Category Parameter Value Description 

Common 

parameters 

for all 

simulations 

𝑚 
5⁡unless otherwise 

specified 

Number of 

phosphorylation steps 

𝜂 
1 unless otherwise 

specified, varies from 0-1 

Feedback loop strength 

𝑓𝐴𝑇𝑃 
1 unless otherwise 

specified, varies from 0-1 

Environmental input 

𝑑𝑡 0.01⁡ℎ−1 
Step size for deterministic 

simulation 

Rate 

constants 

𝑘𝑝ℎ𝑜𝑠 2𝑚 ∙ 0.04902⁡ℎ−1 Phosphorylation rate 

𝑘𝑑𝑒𝑝ℎ𝑜𝑠 2𝑚 ∙ 0.04902⁡ℎ−1 Dephosphorylation rate 

𝑘𝐴𝑜𝑛 0.2451⁡𝜇𝑀−1⁡ℎ−1 

Rate of KaiA/KaiC 

binding to switch KaiC to 

phosphorylating state 

𝑘𝐴𝑜𝑓𝑓 0.02451⁡ℎ−1 

Rate of KaiA/KaiC 

disassociation from 

phosphorylating state 

𝑘𝐶→𝐶∗ 0.2451⁡ℎ−1 

Rate of KaiC switching to 

KaiA-independent 

phosphorylating state 

𝑘𝐶∗→𝐶 0.02451⁡ℎ−1 

Rate of KaiC switching 

from KaiA-independent 

phosphorylating state 

𝑘𝐴𝐵𝐶 110.80⁡ℎ−1 
Rate of KaiC binding to 

KaiB to sequester KaiA 

Deterministic 

simulation 

initial 

conditions 

[𝐶0]𝑖𝑛𝑖𝑡 1.56⁡𝜇𝑀 
Initial concentration of 

KaiC hexamers 

[𝐴𝑡𝑜𝑡] 2.0⁡𝜇𝑀 
Initial concentration of 

KaiA dimers 

𝑑𝑡 0.01⁡ℎ 
Step size for numerical 

integration 

Stochastic 

simulation 

initial 

conditions 

scale_factor Varies 

Scaling factor for copy 

number, where 1 indicates 

wild-type-like levels 

𝑛𝐶0𝑖𝑛𝑖𝑡 1200 ∙ scale_factor 
Initial copy number of 

KaiC hexamers 

𝑛𝐴𝑡𝑜𝑡 1200 ∙ scale_factor 
Initial copy number of 

KaiA dimers 
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Table S2.3. Calculated concentrations of Kai proteins in S. elongatus and P. marinus. 

Concentrations were calculated using western blotting copy number estimates and estimated cell 

volumes of 2 fl and 0.1 fl for S. elongatus and P. marinus, respectively. 

 [KaiA] [KaiB] [KaiC] 

Wild-type S. elongatus 3.0 μM 9.0 μM 6.6 μM 

P. marinus N/A n.d. 11.4 μM 

 

Discussion and Future Directions 

Background context of the study 

 Although it has been long established that circadian clocks are able to oscillate with a 

robust, precise 24-hour period, one of the fundamental questions in circadian biology is how 

these biochemical oscillators maintain such consistent periodicity in the face of both 

environmental and internal fluctuations. The work presented here utilizes a combined 

experimental and theoretical approach to probe the effect of molecular stochasticity in the 

cyanobacterial clock by varying clock protein copy number in single cells and observing the 

effect on timing precision. We find that reduction of Kai copy number to below ~10,000 copies 

leads to erratic oscillations, and our modeling suggests that this is due to a noise bottleneck in the 

negative feedback loop necessary for oscillations. While many others have theoretically 

investigated the effects of molecular noise on biological oscillators, there are relatively few 

studies that investigate molecular noise experimentally. 

 One previous study theoretically investigated molecular noise by stochastically 

simulating the mammalian circadian clock (70), which relies on a transcriptional feedback loop 

to sustain oscillations, unlike the cyanobacterial oscillator. A key result from this work was that a 

noise bottleneck in the system occurred at the interface of transcription factors binding to their 
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promoters, consisting of discrete binding and unbinding events. Slow binding and unbinding led 

to greater variability in oscillation period, and increasing the rate of binding kinetics in turn 

decreased timing variability, perhaps due to the fact that more binding events per hour will 

average out noise in binding kinetics to a greater degree. Additionally, increasing the number of 

promoters in the system (reflecting a gene duplication event) also decreased the amount of 

oscillation variability, mirroring the results from our work in which increasing the total copy 

number of molecules suppresses the contribution to noise from the negative feedback loop of the 

Kai oscillator. 

 The effect of increasing gene dosage to reduce oscillatory noise was also observed 

experimentally in the timing of the yeast cell cycle, in which increasing the genomic copy 

number of G1 cyclins (covering 1N/2N/4N ploidy) decreased the variability in timing of G1 

duration, or the period between the initiation of cell division and budding (71). Additionally, the 

variability in G1 duration was observed to decrease by √2 for each doubling of ploidy, indicating 

that noise likely scaled with a 1/√𝑁 dependence, which is consistent with the predicted noise 

scaling if molecular noise was the main driver of noise. 

 The main conclusions of our work are consistent with the findings of these previous 

studies, which together find that molecular noise stemming from finite copy number constraints 

can increase variability in the timing of cellular processes. In addition, our work expands on 

these conclusions by introducing the idea that molecular noise is not only present in biological 

systems but can also present a substantial evolutionary pressure due to the conflict between noise 

suppression from high biomolecular copy number and the biosynthetic cost of synthesizing large 

numbers of molecules. In our work, we do not solely test the theoretical prediction that 

biochemical reactions become more stochastic at low molecular copy number. Our observation 
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that a smaller cyanobacteria possessing a naturally lower Kai copy number also possesses a 

qualitatively different timing system suggests that across the entire range of microbial cell sizes, 

cells may face different biophysical constraints in how to optimally suppress molecular noise. 

This demonstration that molecular noise can have significant consequences for organism 

function will be important for future efforts to engineer synthetic biological oscillators, for 

example, and it may also be relevant to our continued study of the microbiome, especially as we 

investigate how the gut microbiome may anticipate circadian changes in the mammalian gut 

environment. 

 

Study limitations 

 While our work expands upon previous ideas of how molecular noise presents itself in 

biological systems, it is also important to note its limitations. The first to note is that high Kai 

copy number expression almost certainly plays only a partial role in noise suppression in the 

cyanobacterial oscillator. Expression of the kaiBC operon is itself under circadian control, 

forming an additional transcriptional feedback loop on top of the mechanisms driving the post-

translational oscillator. In placing the expression of KaiB and KaiC under control of constitutive 

genomic promoters in this study, we focus on noise in the post-translational oscillator but neglect 

the contribution of the feedback loop to noise suppression. Indeed, one previous study 

demonstrated that the transcriptional feedback loop in the Kai oscillator does make a 

contribution to noise suppression, and that replacement of the kaiBC promoter with a constitutive 

promoter increases the variability in period of the oscillator (40). Our results are consistent with 

this previous study—the copy number tunable strain induced with 92 μM theophylline shows 

much noisier oscillations compared to wild-type cells, despite having a similar copy number of 
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KaiC (~8,000 KaiC/cell in the wild-type vs ~7,000 KaiC/cell in the copy number tunable strain 

at 92 μM theophylline). 

An interesting follow-up study that could be performed is to further dissect the 

mechanism by which the transcriptional feedback loop reduces noise in the oscillator. How many 

extra copies of Kai proteins is equivalent to the presence of transcriptional feedback in terms of 

improving oscillator precision? Perhaps transcriptional feedback is an alternate way to reduce 

oscillatory noise without invoking the extra biosynthetic burden that would accompany 

expression of Kai proteins at a higher level. How does transcriptional feedback reduce clock 

noise exactly? An attractive hypothesis is that perhaps certain points in the oscillator cycle are 

more sensitive to low copy molecular noise, and that increased expression of KaiB and KaiC at 

this point in the cycle effectively buffers these vulnerable points in the cycle against molecular 

noise. Indeed, expression levels of KaiC have been reported to oscillate over a three-fold range 

from ~5,000 copies per cell at the minimum up to a maximum of ~15,000 copies, with the 

maximum expression levels occurring close to the onset of subjective dusk, or CT 12 hours (72). 

One potential time of day when the oscillator may be susceptible to low copy number noise is at 

the time of cell division, which is significant because cell division reduces cellular protein copy 

number by roughly two-fold. The clock has been shown to gate the timing of cell division, and 

under certain conditions in which cells divide roughly once per day, cell division is most likely 

to occur during the period roughly corresponding to increased levels of KaiB and KaiC 

expression (73). It is thus possible that the transcriptional feedback loop buffers the oscillator 

against the reduction in copy number accompanying cell division, meriting further investigation 

both experimentally and theoretically. 
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Another limitation of our study is in identifying the relative contribution of molecular 

noise to oscillatory period variability compared to other sources of noise in the system. In 

addition to molecular noise from low copy number effects, other possible contributors of noise 

include: fluctuations in Kai protein expression, fluctuations in Kai protein stoichiometry, noise in 

the clock output pathway (e.g. the YFP clock reporter), noise in image acquisition, and noise in 

image analysis. While it is possible to measure whether Kai protein expression noise changes 

significantly as theophylline induction is altered in our system (using a strain in which 

expression of a YFP reporter is placed under control of the riboswitch), it is more difficult to 

determine the relative contribution to oscillatory noise from fluctuations in protein expression 

versus biochemical stochasticity of the clock reaction. 

A final limitation of our study lies within our comparison of the Kai systems within 

Synechococcus and Prochlorococcus. Here, we make the assumption that the Kai system in 

Prochlorococcus is responsible for global regulation of gene expression as it is in 

Synechococcus. Currently, this hypothesis is untestable due to the difficulty of performing 

genetics in Prochlorococcus, and it is thus untenable to knock out the kaiBC locus in 

Prochlorococcus to assess the effects on previously reported global rhythms in gene 

transcription. However, the presence of the clock output protein SasA in Prochlorococcus 

suggests that it is still at least plausible that the Kai system continues to influence gene 

expression. The inability to perform genetics in Prochlorococcus (and thus the inability to 

engineer a clock reporter) also precludes us from performing experiments that directly test our 

theoretical predictions that the Prochlorococcus timer-like system can track the time of day 

better at low copy number compared to Synechococcus given that there is minimal or no 
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environmental input fluctuation. These experiments may become possible in the future should 

methods be developed to allow genetic manipulation of Prochlorococcus. 

 

Additional thoughts and interpretations of data 

Although our study is unable to genetically probe the role of the Kai proteins in 

Prochlorococcus, we are the first to document the phosphorylation dynamics of KaiC. One 

previous study established that in Prochlorococcus, transcription of psbA oscillates in light-dark 

cycles but not in constant light (49), but it was unknown whether this reflected gene-specific 

dynamics or whether the clock system itself also behaved as a timer. In showing that KaiC 

phosphorylation dynamics are solely driven by light-dark cycles (phosphorylation in the day and 

dephosphorylation in the dark), our work suggests that KaiC in Prochlorococcus may still 

regulate global gene expression, assuming that the clock output pathway in Prochlorococcus 

functions similarly to that in Synechococcus. Additionally, our work indicates that unlike 

Synechococcus, in which the net phosphorylation and dephosphorylation phases of the cycle 

proceed at roughly comparable speeds to produce a symmetric oscillatory waveform (see Figure 

S2.9), phosphorylation of Prochlorococcus KaiC occurs much more rapidly than 

dephosphorylation (see Figure 2.4C). Indeed, KaiC becomes fully phosphorylated within 6 hours 

in light (and potentially even more rapidly due to the coarse time resolution of the experiment), 

but takes ~12 hours to dephosphorylate from 100% to 50% phosphorylation, and it takes an 

additional ~12 hours to become completely dephosphorylated. This raises an interesting 

question. It may be possible that timers are more adversely affected by environmental noise 

compared to free-running clocks because they lack an internal timekeeping mechanism that helps 

to filter environmental noise, and indeed our information theoretic analysis indicates that free-
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running clocks can track the time of day better in the presence of environmental fluctuations 

(ignoring the effects of molecular noise at the deterministic limit of high protein copy number). 

If this is true, might Prochlorococcus KaiC have evolved to dephosphorylate slowly as a way to 

filter environmental noise during the day, acting as a low bandpass filter? It should be noted that 

the presence of environmental fluctuations in light levels during the day/night cycle is 

asymmetrical—while there may be unexpected pulses of darkness during the day due to weather, 

it is much less likely for there to be unexpected brightness during the night. Could the slow 

dephosphorylation dynamics of Prochlorococcus KaiC ensure that dephosphorylation is only 

initiated when cells undergo an extended period of darkness (indicative of true night and less 

likely to occur from weather), thus preventing cells from spuriously perceiving the onset of 

night? In this view, the asymmetrical phosphorylation dynamics of Prochlorococcus KaiC may 

represent an evolutionary adaptation to filtering out the asymmetrically distributed light 

fluctuations during the day vs. the night given that the cell no longer has a free-running clock. 

Our work also raises the question of how and why Prochlorococcus, specifically P. 

marinus MED4, lost KaiA and thus the ability to sustain free-running oscillations. Phylogenetic 

studies indicate that as the Prochlorococcus clade is traversed from the more basal cyanobacteria 

(which have copies of all three Kai genes) to the more recently diverged cyanobacteria, KaiA is 

gradually truncated from the N-terminus until it is lost entirely in P. marinus MED4 (49). How is 

the loss of KaiA related to the decrease in cell size over evolutionary time? It is thought that 

small cells are part of a cell-wide adaptation to nutrient-deplete waters in order to increase the 

efficiency of nutrient uptake, and the decrease in cell size may be one component of an overall 

process that includes progressive genome streamlining and reduction of genomic GC content to 

decrease cellular demand for nitrogen (48). Interestingly, one of the intermediate species of 



72 

 

Prochlorococcus (MIT9313) has a truncated form of KaiA that retains only the C-terminus (49), 

and its cell size appears to be roughly twice that of MED4 (74). Could the Kai copy number in 

MIT9313 represent the minimum copy number at which a free-running clock is more optimal 

than a timer? To answer this question more fully, more work will be needed to more thoroughly 

catalogue the cell sizes, Kai copy numbers, and KaiC phosphorylation dynamics of these 

intermediate Prochlorococcus species. A complementary approach to the question of how 

Prochlorococcus lost KaiA utilizing ancestral protein reconstruction is also briefly discussed in 

the appendix of this dissertation. 

 

Additional future directions 

 One of the main predictions of this work is that cells with noisy clocks will experience 

fitness defects due to failure to accurately predict the onset of light or dark.  An experiment that 

could be performed to test this prediction is to induce the copy number tunable strain to express 

various copy numbers of Kai proteins while incubating the cells in 12h:12h light/dark cycles.  To 

determine the effects on fitness, cell growth can be measured on the microscope at the single cell 

level, which will additionally provide information on whether individual cells that experience 

growth defects do so because of a clock that is set to the wrong time due to molecular noise.  If 

cells with noisier clocks experience growth defects in a cyclic environment, these findings would 

also confirm the work that is discussed in Chapter 4 of this dissertation, which specifically 

investigates the consequences of clock-environment mismatch on cell fitness in cyanobacteria. 

 The other major theoretical prediction from the work in this chapter is that removal of the 

noisy negative feedback loop in the Kai oscillator will lead to an environmentally driven timer 

that can better track the time of day at low protein copy number.  Testing this prediction 
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experimentally would require tracking the clock state in single Synechococcus cells expressing 

Kai protein at Prochlorococcus-like copy numbers, and comparing the noise in clock output in 

Prochlorococcus itself.  Currently, such an experiment would be difficult to execute, again due 

to the fact that Prochlorococcus is not a genetically tractable organism, making it infeasible to 

track clock state in single Prochlorococcus cells with a genetically-encoded fluorescent clock 

reporter. 

An alternative to genetically engineering Prochlorococcus with a clock reporter is to 

instead transplant the Prochlorococcus Kai system into Synechococcus, replacing the Kai system 

native to Synechococcus. This approach has been attempted in the Rust lab by Gopal Pattanayak, 

and initial experiments appeared successful, producing a strain in which oscillations dampened 

in constant light. However, issues remain regarding the reproducibility of these results, casting 

doubt on the initial observations. In order to successfully transplant ProKai, there are several 

issues that must be dealt with, including finding an appropriate expression level for both proteins 

as well as ensuring that ProKai can interface correctly with the clock output proteins in 

Synechococcus, SasA and CikA. Interestingly, preliminary results indicate that Prochlorococcus 

sasA (ProSasA) can rescue a sasA null Synechococcus mutant (data not shown, experiment 

performed by Gopal Pattanayak), suggesting that transplanting both the ProKai system as well as 

ProSasA might help solve problems that arise if ProKai and Synechococcus clock output proteins 

are found to be incompatible. 
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Chapter 3: Mixtures of opposing phosphorylations within hexamers 

precisely time feedback in the cyanobacterial circadian clock 

 

Foreword 

 Here, I present work published by Jenny Lin and myself (on which I am a second author), 

and all supplementary material can be found in (46).  This work investigates the mechanism by 

which the Kai oscillator can generate oscillations over a large range of protein stoichiometries.  

In brief, we found that the hexameric nature of KaiC combined with the opposing effects of two 

phosphorylation residues can generate an ultrasensitive switch that mediates KaiB-KaiC binding, 

and that this is sufficient to explain the robustness of the Kai system to changes in KaiA/KaiC 

stoichiometry.  Jenny Lin designed and performed all of the experiments and designed and 

implemented the vast majority of the model, and I contributed to modeling in Figure 3.5 that 

further explored the role of ultrasensitivity in generating robustness to changes in protein 

stoichiometry.  This chapter concludes with a “Perspective” section that discusses possible 

implications of this study for the work published in Chapter 2. 

 

Abstract 

Circadian oscillations are generated by the purified cyanobacterial clock proteins, KaiA, 

KaiB, and KaiC, through rhythmic interactions that depend on multisite phosphorylation of 

KaiC. However, the mechanisms that allow these phosphorylation reactions to robustly control 

the timing of oscillations over a range of protein stoichiometries are not clear. We show that 

when KaiC hexamers consist of a mixture of differentially phosphorylated subunits, the two 

phosphorylation sites have opposing effects on the ability of each hexamer to bind to the 
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negative regulator KaiB. We likewise show that the ability of the positive regulator KaiA to act 

on KaiC depends on the phosphorylation state of the hexamer and that KaiA and KaiB recognize 

alternative allosteric states of the KaiC ring. Using mathematical models with kinetic parameters 

taken from experimental data, we find that antagonism of the two KaiC phosphorylation sites 

generates an ultrasensitive switch in negative feedback strength necessary for stable circadian 

oscillations over a range of component concentrations. Similar strategies based on opposing 

modifications may be used to support robustness in other timing systems and in cellular signaling 

more generally. 

 

Introduction 

Circadian clocks are biological timing systems that allow organisms to anticipate and 

prepare for daily changes in the environment. A hallmark of a circadian oscillator is its ability to 

drive self-sustained rhythms in gene expression and behavior with a period close to 24 hours 

even in the absence of environmental cues (75). A general challenge for the biochemical 

machinery that generates rhythms is to precisely define the duration of the day in the face of 

perturbations, including fluctuations in the cellular abundance of the molecular components. The 

importance of maintaining precise circadian timing is underscored by experiments that show that 

mismatch between the clock period and the rhythms in the external environment results in health 

problems and fitness defects (76, 77). 

 Though circadian clocks are found across all kingdoms of life, the Kai oscillator from 

cyanobacteria presents a uniquely powerful model system to study the design principles inherent 

in the molecular interactions that generate rhythms. A mixture of the purified proteins KaiA, 

KaiB, and KaiC results in stable oscillations in the phosphorylation state of KaiC in vitro that 



76 

 

persist for many days and share many of the properties of circadian clocks in vivo (22, 24, 41). In 

particular, the oscillator is able to successfully generate near-24 hour rhythms over a range of 

concentrations of the clock proteins both in vivo and in vitro (78-80), so that fine-tuning of gene 

expression is not needed to support a functional clock. Much has been learned about the behavior 

of the isolated Kai proteins, including the determination of high-resolution crystal structures of 

all three components (81-83). A critical challenge that remains is to understand how the 

properties of the Kai proteins are integrated together in the full system to generate precisely 

timed rhythms. 

 KaiC appears to be the central hub of timing information in the oscillator. Each KaiC 

molecule consists of two AAA+ family ATPase domains which consume the free energy of ATP 

hydrolysis to drive oscillations.  Like many other members of this family, KaiC forms hexamers, 

and the enzymatic active sites are formed at the subunit interfaces where nucleotides are bound. 

The C-terminal, or CII, domain of KaiC has additional phosphotransferase activities that are 

unusual for the AAA+ family: it can phosphorylate and dephosphorylate two residues near the 

subunit interface, Ser431 and Thr432 (84). KaiC autokinase and autophosphatase activities occur 

at the same active site (85, 86). In isolation, KaiC has high phosphatase activity, but the enzyme 

is pushed towards kinase activity by the activator protein KaiA which interacts directly with the 

KaiC C-terminal tail (87, 88). Roughly speaking, kinase activity predominates during the day, 

and phosphatase activity predominates during the night (89). Thus, understanding the feedback 

mechanisms that generate a precise time delay between these modes is crucial to understanding 

timing in the oscillator (69). 

 Inactivation of KaiA and a transition from kinase to phosphatase mode occur when 

KaiB•KaiC complexes form, closing a negative feedback loop by sequestering KaiA in a ternary 
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complex and leaving it unable to act on other KaiC molecules (37, 90). By temporarily removing 

KaiA molecules from their activating role, this molecular titration mechanism can act to 

synchronize the activity of all KaiC hexamers in the reaction (37, 91, 92). Phosphorylation and 

dephosphorylation proceed in a strongly ordered fashion so that, in response to a change in KaiA 

activity, Thr432 is (de)phosphorylated first, followed later by Ser431 (37, 89, 90). It is known 

that phosphorylated Ser431 is important for allowing the formation of KaiB•KaiC complexes. 

However, recent work has made it clear that the binding of KaiB involves both KaiC domains—

in particular, the slow ATPase activity of the N-terminal CI domain, which is not 

phosphorylated, is required for KaiB interaction (47, 93).  

 Because of the importance of precisely timing negative feedback via KaiB•KaiC complex 

formation for generating appropriate rhythms (91), we wanted to understand the role of 

phosphorylation of the KaiC hexamer in controlling this process. The involvement of both KaiC 

domains suggests that information about phosphorylation in CII is communicated allosterically 

through changes in hexamer structure to the CI domain, potentially through ring-ring stacking 

interactions (93, 94). We therefore hypothesized that the KaiC phosphorylation sites on each 

subunit might act as allosteric regulators in the context of a hexameric ring, so that 

phosphorylation of one subunit would alter the ability of all other subunits in the ring to engage 

with KaiA and KaiB, providing a cooperative mechanism to control the timing of these 

interactions.  

We conducted a series of biochemical experiments and perturbations to study the effect 

of altering the status of each phosphorylation site on the KaiC hexamer. We then developed a 

mathematical model to interpret these results analogous to classical models of allosteric 

transitions in multimeric proteins. We constrain the kinetic parameters in this model using 
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experimental measurements of rate constants, allowing us to compare the predictions of the 

model directly with data. We conclude that maintenance of circadian timing over a range of 

protein concentrations requires an effectively ultrasensitive switch in each KaiC hexamer from 

an exclusively KaiA-binding state to a state that can bind to KaiB as phosphorylation proceeds.  

This effect requires that KaiC hexamers consist of mixtures of differentially phosphorylated 

subunits, as would be produced by stochastic autophosphorylation of a hexamer. Ultrasensitivity 

results from opposing effects of phosphorylation on Thr432 and Ser431 in controlling a 

concerted transition within a given KaiC hexamer.  Including this mechanism in the model is 

necessary to explain the experimentally observed tolerance of the system to altered protein 

concentrations. 

 

Results 

KaiC hexamers are composed of subunits in a mixture of phosphorylation states  

To experimentally interrogate the role of phosphorylation in regulating interaction with 

KaiB, we co-immunoprecipitated KaiC bound to KaiB during oscillating reactions, then 

analyzed the phosphorylation state of KaiC using electrophoresis conditions that resolve the 

modification status of Ser431 and Thr432 (Fig. 3.1A). This allowed us to sample a wide range of 

phosphoform abundances as both KaiC phosphorylation and the formation of KaiB•KaiC 

complexes oscillate over time (37, 89). As standards, we prepared mutants of KaiC either where 

a phosphorylation site was mutated to Ala to prevent phosphorylation or to Glu to mimic 

phosphorylation. When prepared as homogeneous hexamers, these mutants interact very strongly 

with KaiB if Ser431 is phosphomimetic, but weakly if not (24, 37, 89, 91). In contrast, in the  
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 Fig. 3.1. KaiB-KaiC interaction favors KaiC hexamers with appropriate mixtures of phosphorylated 

subunits. 
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case of wildtype KaiC hexamers, all forms of the KaiC subunits can be found bound to KaiB, 

including unphosphorylated KaiC and KaiC phosphorylated only on Thr432 (Fig. 3.1A). 

 We interpret these data to indicate that KaiC subunits that do not favor KaiB interaction 

are often co-immunoprecipitated in the context of a hexameric ring that is nevertheless bound to 

KaiB.  This suggests that wildtype KaiC hexamers consist of mixtures of subunits in various 

phosphorylation states. However, because the phosphorylation site mutations indicate that 

Ser431 phosphorylation is required for KaiB interaction, we hypothesized that, although 

wildtype KaiC hexamers may contain subunits in all possible states, the relative abundance of 

(Fig. 3.1 continued) (A) Left: Phosphorylation site mutants in homogeneous hexamers co-IPed by KaiB-

FLAG (grey bars, right axis). Error bars represent standard error of three replicates after 24 h incubation. 

Average amount (n = 4) of each KaiC phosphoform co-IPed by KaiB-FLAG from starting from a highly 

phosphorylated state (white bars, left axis). Error bars represent standard deviation over a 4 h time course. 

Values were determined by gel densitometry as the ratio of the KaiC band intensity to the KaiB-FLAG 

band. Right: a representative SDS-PAGE gel image of the input and elution phosphoform compositions of 

KaiC co-IPed by KaiB-FLAG. ** indicates that  t-tests versus KaiC-EA and KaiC-EE both gave  p < 0.01 

(S1). (B) Enrichment of each KaiC phosphoform in the supernatant relative to the material bound to KaiB-

FLAG in clock reactions. Colored symbols show an average from 7-9 timepoints taken over 24 or 34 h. 

Grey bars indicate averages over all KaiA concentrations and timepoints. (C) Schematic for preparation of 

mixed hexamers and separate hexamers. KaiC phosphomimetics (orange)  and His6-tagged wildtype KaiC 

(His6-KaiC, grey) are monomerized by the replacement of ATP with ADP, and mixed in a 1:1 ratio before 

(“mixed”) or after (“separate”) rehexamerization with ATP. (D) Phosphorylation dynamics of wildtype 

KaiC in clock reactions in the presence of phosphomimetics either as mixed or separate hexamers. (E) 

Amounts of total KaiC co-IPed by KaiB-FLAG during the dephosphorylation phase (6 h-12 h) in clock 

reactions with KaiC-AE and wildtype KaiC (green bars) or during the phosphorylation phase (22 h-28 h) in 

clock reactions with KaiC-EA and wildtype KaiC (red bars). Bar height show averages of 3-4 timepoints. 

Error bars indicate standard deviation. * indicates p < 0.05 by Student’s t-test.  (F) Total amount of KaiC 

co-IPed by KaiB-FLAG as a function of the percentage of KaiC-EA combined with KaiC-AE in either 

mixed or separate hexamer preparations. Points show the averages of three measurements and the error bars 

indicate standard deviation. Dotted lines show fits to Hill functions 𝑦 = ⁡𝑦max
1

1+(
𝐾

%𝐸𝐴⁡
)𝑛𝐻

, with nH = Hill 

coefficient. (G) An allosteric framework for modeling the KaiC hexamer. The phosphorylation state of each 

subunit contributes to the free energy difference between two conformational states of the hexamer: one 

that is competent to bind KaiB and one that is not. Tails extending from the CII domain suggest changes in 

A-loop conformation associated with each conformational state. Arrowheads indicate proposed influence 

of the phosphorylation sites on the stability of the two hexameric states. 
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each phosphorylation state within a hexamer should bias the probability of that hexamer binding 

to KaiB.  

We therefore asked whether there are systematic trends in the enrichment of the various 

possible phosphorylation states of the KaiC that are bound to KaiB. To detect systematic trends 

across many KaiC phosphorylation conditions, we sampled several reactions with different 

concentrations of KaiA at various time points throughout the oscillator cycle. (Fig. S1 in (46)). 

As expected, KaiC phosphorylated only on Ser431 was strongly enriched in the material bound 

to KaiB relative to the unbound material. However, KaiC phosphorylated only on Thr432 was 

preferentially excluded from the KaiB-KaiC interaction, and enriched in the unbound material 

(Fig. 3.1B, S1 in (46)). These results suggest a working hypothesis where the ability of KaiC to 

interact with KaiB indeed depends on the relative abundance of each phosphorylation state 

within a given KaiC hexamer. 

 

Two KaiC phosphorylation sites have opposing effects on the ability of mixed hexamers to 

interact with KaiB 

According to this hypothesis, the phosphorylation state of one subunit will alter the 

ability of the entire hexamer to interact with KaiB through allosteric communication within the 

KaiC ring.  Therefore, experimentally forming mixed hexamers that contain both wildtype KaiC 

and phosphomimetic mutants should alter the ability of the wildtype KaiC to interact with KaiB 

and disrupt the function of the oscillator. In contrast, if each subunit acts independently of its 

hexameric context, producing mixed rings would result in no greater effect than leaving the 

mutant and wildtype segregated into separate hexamers. To distinguish between these 

alternatives, we used an ATP depletion protocol to prepare pools of largely monomeric KaiC 
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S431A;T432E (KaiC-AE, a mimic of pT432-only), KaiC S431E;T432A (KaiC-EA, a mimic of 

pS431-only), and His6-tagged wildtype protein (86). To create mixtures of KaiC mutants and 

wildtype monomers within the same hexamers, we combined pools of monomers together and 

reintroduced ATP to hexamerize the mixture. As a control, we reversed the order of this 

procedure so that the proteins were rehexamerized without mixing before being later combined 

(Fig. 3.1C). This monomerization and rehexamerization procedure does not compromise the 

ability of the wildtype protein to oscillate (Fig. S2 in in (46)). We used the His6 tag on wildtype 

KaiC to verify that our procedure succeeded in creating forced mixtures of mutant and wildtype 

where a large majority of hexamers are composite. When we rehexamerized the pools of mutant 

and wildtype protein separately, they remained largely segregated for at least 48 hours. In 

contrast, our forced mixing procedure succeeded in creating a population of hexamers that was 

largely composite (Fig. S2 in in (46)). 

 To test the oscillator function of these mixed hexamers, we then added KaiA and KaiB to 

initiate clock reactions. Consistent with our hypothesis, oscillations fail when KaiC-AE is forced 

to mix into wildtype hexamers, resulting in highly phosphorylated KaiC, the expected phenotype 

if KaiB cannot act. Mixing KaiC-EA into wildtype hexamers causes oscillations to fail with the 

opposite phenotype—weakly phosphorylated KaiC. However, in both cases, circadian 

oscillations are maintained when the mutants are present but segregated into separate hexamers 

(Fig. 3.1D). These failure modes of the oscillator correspond to disrupted interaction with KaiB 

induced by the mixing of KaiC-AE (or KaiC-AA) into wildtype KaiC hexamers, or enhanced 

interaction with KaiB induced by the mixing of KaiC-EA into wildtype hexamers (Fig. 3.1E, S2 

in in (46)). These results are also consistent with a recently published report from Kitayama et al. 

showing that the activity of KaiC hexamers depends on their subunit composition (95). 
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To quantitatively assess how hexameric mixtures of Ser431- and Thr432-phosphorylated 

subunits regulate binding to KaiB, we prepared hexamers using various percentages of KaiC-AE 

and KaiC-EA phosphomimetics. We found a preparation of hexamers containing a mixture of 

KaiC-AE with KaiC-EA subunits suppressed the total amount of KaiB-KaiC interaction relative 

to a control where the same proteins were present, but segregated into separate hexamers (Fig. 

3.1F, S2 in in (46)).  This indicates that the presence of pThr432 subunits within the same 

hexamer is able to prevent the interaction of pSer431 subunits with KaiB, consistent with the 

correlations we observed in the wildtype oscillator.  

Crucially, hexameric mixtures of pSer431 and pThr432 mimics show a sigmoidal 

dependence of KaiB interaction strength on the fraction of pSer431 mimic present in the mixture 

(effective Hill coefficient ≈ 3.3), an effect which was absent (effective Hill coefficient ≈ 1.2) 

when the two phosphomimetics were kept in separate hexamers (Fig. 3.1F). Because of the 

kinetic ordering of phosphorylation reactions in KaiC, oscillations are characterized by periods 

where either pThr432 or pSer431 alternately dominate in relative abundance (37, 89). 

Considering the switch-like transition in KaiB-KaiC interaction we observed as the balance 

within hexamers is shifted to favor pSer431 over pThr432, we hypothesized that dynamic 

changes in the mixture of phosphorylation states in a hexamer might be key to understanding the 

timing of the transition between the phosphorylation and dephosphorylation phases of the 

circadian rhythm.  

To mathematically model these effects, where the binding affinity of a KaiC hexamer for 

KaiB depends on the mixture of post-translational modifications on all of the KaiC subunits, we 

introduce a simple allosteric framework.  In classical models of allostery in oligomeric proteins, 

such as the Monod-Wyman-Changeux treatment of hemoglobin, it is assumed that each subunit 
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can adopt different conformational states, but that, because breaking the symmetry of the 

molecule is disfavored, all of the subunits in a given oligomer must be in the same 

conformational state at any moment in time. The role of ligand binding is then to bias the free 

energies of the possible subunit conformations, resulting in a cooperative switch in the 

conformation of the oligomers as ligand concentration increases (96). 

We extend this treatment to describe allosteric effects in KaiC, by hypothesizing that 

KaiC hexamers can exist in two conformational states: one that allows interaction with KaiB and 

one that does not. These two conformational states are likely related to changes in the stacking 

interactions between the CII and CI rings and the exposure or burial of the hydrogen-bonded 

network of KaiA-binding activation loops recently identified by structural studies (69, 93, 94, 

97). Consistent with this picture of allostery, recent structural work has identified changes in 

solvent accessibility across both domains of KaiC when it is bound to KaiB (98).    

As in Monod-Wyman-Changeux, we assume that the dynamic interconversion between 

these states are rapid and must be all-or-none within a given hexamer. We take phosphorylation 

of KaiC to play a role similar to that of ligand binding in hemoglobin, so that the free energy 

difference between the subunit conformations, and thus the probability of each state occurring at 

equilibrium, is biased by the pattern of multisite phosphorylation in a given KaiC hexamer (Fig. 

3.1G). In order to describe this effect mathematically, we introduce an energetic cost for the 

conformational interconversion of each subunit that depends on its phosphorylation state. 

Because each subunit has two phosphorylation sites (Ser431 and Thr432), it can exist as 4 

possible phosphoforms. This introduces 4 unknown thermodynamic parameters to our model, 

Δ𝐺𝑈, Δ𝐺𝑝𝑆, Δ𝐺𝑝𝑇 , Δ𝐺𝑝𝑆𝑝𝑇 .Under these assumptions, the total free energy difference between the 

two allosteric states of a hexamer is simply a linear combination ΔGhexamer = ∑ Δ6
𝑖=1 𝐺𝑖. In this 
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model, the ultrasensitivity in KaiB interaction (Fig. 3.1F) arises from the exponential dependence 

of the equilibrium occupancy of each allosteric state on hexamer phosphorylation. We now 

proceed to test the validity of this allosteric framework, and place constraints on the free energies 

associated with the phosphorylation state of a KaiC subunit. 

 

Binding to KaiB is allosterically incompatible with stimulation by KaiA  

Given our data showing that mixtures of KaiC phosphorylation states regulate the ability 

of a KaiC hexamer to interact with KaiB, we speculated that the ability of KaiA to stimulate 

KaiC might also depend on the composite phosphorylation state of an entire hexamer. To 

examine the influence of phosphorylation on the sensitivity of KaiC to KaiA, we prepared wild-

type KaiC in different initial phosphorylation states, then added various concentrations of KaiA 

and measured initial rates of phosphorylation for the unphosphorylated KaiC molecules (Fig. 

3.2A-C, S3 in (46)). In all cases, the effective Michaelis constant for KaiA-stimulated 

autophosphorylation increased with increasing phosphorylation on Ser431, and is more than a 

factor of 4 higher when KaiC is heavily phosphorylated on Ser431 (Fig. 3.2D, S3 in (46)).   

To isolate the allosteric effect of pSer431 on the function of a KaiC hexamer, we then 

measured the ability of KaiA to drive phosphorylation of unphosphorylated wildtype KaiC in the 

presence of varying amounts of the pSer431 phosphomimetic mutant. We observed a dose-

dependent increase in the effective Michaelis constant for KaiA acting on KaiC, similar in 

magnitude to the effects we observed with differentially phosphorylated wildtype protein. 

Importantly, these effects are only present when the pSer431 mimic is mixed into the wildtype 

hexamers and not when it is present as separate hexamers (Fig. 3.2E, S4 in (46), S5 in (46)). This 

mixing-dependent effect indicates that phosphorylation on Ser431 acts allosterically in the KaiC  
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Fig. 3.2. KaiC hexamers with heavy Ser431 phosphorylation are less sensitive to KaiA. 
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hexamer to lower the sensitivity of the other subunits to KaiA. These results are consistent with 

recent observations that high concentrations of KaiA are needed to sustain KaiC phosphorylation 

(99) and that phosphomimetic mutation at Ser431 makes the KaiA-binding “A loops” 

inaccessible to proteolytic cleavage (100).  

Since phosphorylation on Ser431 promotes an allosteric transition towards KaiB binding, 

the increase in Km
eff associated with higher Ser431 phosphorylation levels suggests that KaiA 

selectively binds and activates KaiC in an allosteric state that KaiB cannot bind. In other words, 

activation by KaiA is incompatible with the state of KaiC that triggers KaiB binding. We can 

mathematically describe this effect using a quasi-steady state approximation valid in the limit 

that both interconversion between the allosteric states of KaiC and interaction with KaiA occur 

much faster than changes in phosphorylation. Then the probability of a hexamer being activated 

for autophosphorylation by KaiA is: 
[KaiA]

[KaiA]+⁡𝐾𝑚(1+𝐾𝐴(𝑝𝑆,𝑝𝑇,𝑝𝑆𝑝𝑇))
  where KA is a phosphorylation-

dependent allostery constant (see Supporting Appendix for derivation). Consistent with the data, 

this describes a Michaelis-Menten-like dependence of the autokinase rate on [KaiA] starting 

from a given phosphorylation state, and the higher effective Michaelis constant Km(1+KA) results 

from higher Ser431 phosphorylation which increases KA (Fig. 3.2F).  

 This model further predicts that, because KaiA is stabilizing the kinase-active state, 

sufficient stimulation by KaiA should shift the allosteric equilibrium away from the state that can  

(Fig. 3.2 continued) (A)-(C) Rates of KaiA-stimulated KaiC autokinase activity as a function of [KaiA] for 

various initial phosphorylation states. Fits are to a modified Michaelis-Menten equation with baseline: Vi 

= Vmax [KaiA]/([KaiA] + Kmeff ) + Vdephos, to account for KaiA independent dephosphorylation. (D) 

Same as in (A)-(C) with 1:1 KaiC-EA and dephosphorylated wildtype KaiC (total = 3.5μM), either as mixed 

hexamers or separate hexamers. (E) Cartoon of KaiC kinase activation by KaiA in the allosteric framework: 

KaiA selectively binds and activates KaiC hexamers in the non-KaiB binding state. Changes in the 

phosphorylation state of a hexamer changes KA, the allosteric equilibrium constant, and hence also Kmeff  

= Km (1 + KA). 
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Fig. 3.3. KaiA allosterically stabilizes a KaiC state that KaiB cannot bind. 
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bind KaiB even when the phosphorylation state is held fixed, causing KaiC to resist interaction 

with KaiB (Fig. 3.3A). To test this prediction, we used a mimic of the doubly phosphorylated 

form, KaiC S431E;T432E (KaiC-EE), and measured kinetics of the formation of KaiB•KaiC 

complexes in the presence of various amounts of KaiA. Despite the fact that kinase activation by 

KaiA cannot alter the phosphorylation state of these mutant residues, we found that high 

concentrations of KaiA could disrupt the interaction with KaiB, consistent with a model where 

KaiA is stabilizing an allosteric state of KaiC incompatible with KaiB binding (Fig. 3.3B). The 

very slow (longer than a day) kinetics of binding that result from the antagonistic effect of KaiA 

on this mutant are likely related to the long period transcriptional oscillations that have been 

reported in the KaiC-EE mutant strain (80). Similar results held for the KaiC-EA mutant (Fig. S6 

in in (46)).  

To investigate the structural basis of this effect, we deleted the C-terminal tail of KaiC, a 

manipulation that mimics hyperactivation by KaiA and permanently locks the enzyme into the 

kinase mode (69). As predicted, this mutation causes severe defects in KaiB interaction (Fig. 

3.3C-D). The extent to which KaiB binding is disrupted is correlated with KaiA’s ability to 

stimulate KaiC kinase activity: a CII domain catalytically impaired mutant (E318Q) mutation 

allows KaiC-EE to bind to KaiB even in the presence of KaiA and an N-terminal deletion 

(Fig. 3.3. continued) (A) Cartoon of allosteric state selection by KaiA and KaiB. Stimulation of the kinase 

active mode by KaiA shifts the allosteric equilibrium away from KaiB binding. (B) Timecourse of KaiC-

EE co-IPed by KaiB-FLAG in the presence of various concentrations of KaiA. Normalized co-IP amounts 

were calculated as the ratio of gel densitometry measurements of KaiC-EE to KaiB-FLAG in the eluate. 

Fits (solid lines) are to a first order exponential. (C) Timecourse of KaiB interaction assessed by co-IP with 

KaiB-FLAG for either full-length KaiC-EE (KaiC-EE FL) or a mutant (KaiC-EE 1-487) that mimics the 

KaiA-activated state, in the presence or absence of 1.5 μM KaiA. (D) Normalized co-IP of KaiC by KaiB-

FLAG at 24 h for various KaiC mutants, with or without KaiA. The concentration of KaiA is 5 μM for the 

KaiC-EE case and 1.5 μM for all other reactions. 
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produces hyperactive KaiA that can inhibit the KaiB-KaiC interaction at a lower dosage than 

wildtype KaiA (Fig. S6 in (46)).  

The mutations made here and the known KaiA binding site on KaiC are distant from 

proposed KaiB-KaiC interaction sites (93, 101). Manipulating KaiC kinase activity either 

mutationally or by increasing the KaiA concentration, affects the strength of KaiB-KaiC 

interaction. We thus interpret our results as indicating an allosteric conflict between the action of 

KaiA and KaiB-KaiC binding. However, our data cannot exclude the possibility of an unknown 

mode of interaction where KaiA might physically occlude a KaiB binding site.  

 

Allosteric models constrained by experimental data can reproduce circadian rhythms that adapt 

to altered protein concentrations 

Taken together, our experimental data indicate that a role of the KaiC phosphorylation 

sites is to regulate an allosteric transition in the KaiC hexamer that permits KaiB binding. A 

simpler alternative scenario is that the phosphorylation sites on each KaiC subunit independently 

present a binding surface for KaiB, as in some previously studied mathematical models (37). To 

analyze the consequences of these two possible scenarios and gain insight into the role of each 

phosphorylation site, we constructed two mathematical models: an allosteric model where the 

ability of KaiC to interact with KaiB and KaiA is determined by an allostery constant set by the 

phosphorylation state of a given hexamer (Fig. 3.4A), and an “independent subunits” model 

where each KaiC subunit can interact independently with KaiB with a binding affinity that 

depends on its phosphorylation state.  

In both models, KaiA stimulates KaiC phosphorylation which occurs in an uncoordinated 

fashion once a hexamer is activated. KaiA is subsequently inhibited globally by sequestration  
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Fig. 3.4. The allosteric model predicts the experimentally observed robustness of the oscillator period 

to changes in component concentrations. 
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into KaiA•KaiB•KaiC complexes at a stoichiometry of one KaiA dimer to one KaiC subunit, 

consistent with recent structural work (102). The rate constants for phosphorylation and 

dephosphorylation on each site and for the slow, CI ATPase-mediated assembly of KaiB•KaiC 

are constrained by experimental kinetic studies (37, 47). Thus, our allosteric oscillator model 

shares features with previous treatments of allostery in the KaiABC system (92), but now 

explicitly includes distinct roles for the two KaiC phosphorylation sites and uses experimentally 

derived kinetic parameters to allow us to make direct comparisons with experimental data.   

Because we do not have direct measurements of the influence of each KaiC subunit’s 

phosphorylation state on KaiB binding, we initially left the models agnostic about the influence 

of phosphorylation on protein-protein interaction. In the allosteric model, this is represented by 

unknown free energy contributions, Δ𝐺𝑈, Δ𝐺𝑝𝑆, Δ𝐺𝑝𝑇 , Δ𝐺𝑝𝑆𝑝𝑇, to the allostery constant. In the 

independent subunits model, these are replaced by phosphorylation-dependent binding constants 

for KaiB binding to each subunit. 

To compare the two models, we randomly sampled parameter space for these unknown 

parameters and attempted to optimize each model for its ability to simulate oscillations measured 

(Fig. 3.4, continued) (A) Allosteric multisite phosphorylation clock model: KaiC hexamers switch in a 

concerted fashion between a state competent for KaiB binding and a state that can be activated by KaiA. 

The probability of a given hexamer occupying either state is determined by the thermodynamic equilibrium 

set by a linear combination of phosphorylation-dependent subunit free energies. Phosphorylation on Thr432 

(green) and Ser431 (red) have opposing effects on the allosteric transition. Kinase activation by KaiA 

allosterically stabilizes the non-KaiB binding state. Both allosteric transitions and interaction with KaiA are 

at quasi-steady state relative to the slow phosphorylation changes and CI ATPase-mediated KaiB binding 

reactions. KaiB•KaiC complexes sequester KaiA to drive a global negative feedback loop on KaiA-

dependent phosphorylation. (B) Experimental timecourse of KaiC phosphorylation in purified clock 

reactions with various concentrations of KaiA. (C) Simulated reactions in the optimized allosteric model at 

various concentrations of KaiA. (D) Simulated reactions in an optimized model where KaiC subunits 

interact with KaiB independently, at various concentrations of KaiA. (E) Experimental oscillator period 

estimated from data from this study (black triangles) or data from Nakajima et al. (2010) (purple triangles) 

compared to the optimized allosteric multisite phosphorylation model (green curve) and the optimized 

independent subunits model (red curve). Dashed lines estimate the boundaries where stable oscillations fail. 

Error bars on the experimental period indicate fitting error from least-squares regression to a sinusoid. 
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in the experimental system with a period near 24 hours over a wide range of KaiA 

concentrations, a feature of the system that has been difficult for modeling studies to correctly 

describe (78) (Fig. 3.4B). With appropriate thermodynamic parameters, the allosteric model 

qualitatively recapitulates the tolerance of the system to varying protein concentrations, 

including the increase in the abundance of specific phosphoforms as [KaiA] increases (Fig. 3.4C, 

S7 in (46)).  

Remarkably, the range of protein concentrations over which this model can generate 

circadian rhythms is nearly the same as the experimental system (Fig. 3.4D). The role of KaiA in 

stabilizing the allosteric state that cannot bind KaiB helps to enhance the robustness of the period 

in this model (Fig. S8 in (46)). In contrast, the independent subunits model is only able to 

generate oscillations over a narrow range of conditions, and the period of that model is much 

more sensitive to KaiA concentration than the experimental system (Fig. 3.4E). These 

conclusions still hold when the rate constants in the two models are randomly varied near the 

best-fit values, indicating that the improved robustness of the allosteric model is a property of the 

fundamentally different role for the phosphorylation sites in that model, rather than a 

consequence of a particular choice of kinetic parameters (Fig. S9 in (46)). We conclude that 

models that describe subunit phosphorylation as mediating a concerted allosteric transition in the 

KaiC hexamer are much more successful at recapitulating experimentally observed circadian 

rhythms than models without these mechanisms.  

 

Robust timing requires that the two phosphorylation sites have opposing effects, creating an 

ultrasensitive switch in KaiC activity 
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We then asked if there were common features of the parameter sets in the allosteric 

model that successfully generated circadian oscillations over the range of protein concentrations 

observed experimentally. First we analyzed the values of the free energy parameters from our 

search that produced stable oscillations with a standard deviation in the resulting oscillator 

period of < 10% over a ~3 μM range of KaiA concentrations, as seen in the experimental system.  

Strikingly, these results predict that for robust oscillations, pSer431 must always favor KaiB 

interaction (Δ𝐺𝑝𝑆 < 0)⁡and pThr432 must always oppose it (Δ𝐺𝑝𝑇 > 0). While being opposite 

in sign, these two energetic parameters have the largest magnitudes, hence changes in the 

balance of pSer431-only and pThr432-only subunits, as occurs when the oscillator shifts from 

the phosphorylation phase to the dephosphorylation phase, most critically determine the KaiB-
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binding capacity of the system (Fig. 3.5A). These findings parallel the enrichment and depletion 

Fig. 3.5. Opposing effects of pSer431 and pThr432 on the allosteric equilibrium produces an 

ultrasensitive switch in negative feedback necessary for a robust period. 
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for pSer431 and pThr432 respectively that we observed experimentally for KaiC hexamers 

interacting with KaiB (cf. Fig 3.1B). Further, the median free energy parameters for pThr432 and 

pSer431 that allow the model to meet these criteria have a magnitude on the order of kBT, the 

energy scale of thermal fluctuations, implying that changing a single subunit’s phosphorylation 

state has a large but not overwhelming effect on the allosteric state of the KaiC hexamer.  

 Why do these parameter sets allow the model to work well?  We reasoned that the 

ordered phosphorylation of Ser431 and Thr432 and their opposing effects on KaiC conformation 

could cause an effectively ultrasensitive switch from a KaiA-activated state to a KaiB-binding 

competent state as the degree of the phosphorylation within a hexamer is increased (cf. Fig 

3.1B). The threshold in this switch is crossed after a specific time due to kinetic ordering of 

phosphorylation in KaiC: because Thr432 phosphorylation occurs first, KaiB interaction is 

initially inhibited, and this inhibition is only overcome at late times when Ser431 

phosphorylation has risen enough to cancel out the effect of pThr432. To quantify this effect we 

determined how the amount of KaiB•KaiC complexes changes in the models as KaiC 

phosphorylation increases over time by fitting a simulated time course of KaiB•KaiC complex 

(Fig. 3.5, continued) (A) Box and whisker plot of the free energy (∆G) distribution associated with each 

subunit phosphorylation state for parameter sets that produce oscillations over the experimental range of 

KaiA concentrations with < 10% standard deviation in period and a circadian period (22-29 h) at 1.5 μM 

KaiA. (B) Distribution of the effective Hill coefficient (measure of ultrasensitivity) describing the sigmoidal 

increase in KaiB•KaiC complexes over time in simulated clock reactions in either the allosteric multisite 

model or the independent subunits model. Same criteria as described in (A), except the requirement on the 

standard deviation of the period was relaxed for the independent subunits model. (C) Representative time 

courses of simulated KaiC phosphorylation and the amount of KaiA sequestered in the allosteric multisite 

model (left) and the independent subunits model. Shaded regions show the spread in time delays required 

to achieve inactivation of a three-fold range of KaiA concentrations in both models. (D) Distribution of the 

range of KaiA concentrations that produce stable oscillations from 10,000 randomly sampled free energy 

parameters for allosteric clock models with varying numbers (n) of allosterically linked subunits. (E) 

Dependence of the median standard deviation of the oscillator period (red squares) and the median range 

of KaiA concentrations that support stable oscillations (green diamonds) on the number of allosterically 

linked subunits. 
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formation to a Hill function: 1 (1 +⁄ (
𝐾

𝑡
)
𝑛𝐻
), where nH is a Hill coefficient that quantifies the 

sigmoidal, switch-like character to the kinetics, and nH > 1 indicates ultrasensitivity. The 

parameter sets that allow circadian rhythms over a wide range of KaiA concentrations all show a 

Hill coefficient of at least 2 (Fig. 3.5B).  

 We then sought to understand in qualitative terms why an ultrasensitive dependence of 

the KaiB interaction on phosphorylation state can allow the oscillator to function properly over a 

wide range of conditions. We compared the optimally tuned allosteric model and the independent 

subunits model by simulating a time course of phosphorylation when an oscillator reaction is 

first initiated from the unphosphorylated state. On these plots we overlaid the capacity of the 

pool of hexamers to inhibit various amounts of KaiA by forming KaiB•KaiC complexes (Fig. 

3.5C). In the allosteric model, ultrasensitivity from opposition between the phosphorylation sites 

allows the inhibitory strength of the reaction against KaiA to rise sharply after an initial lag. The 

result is that for different amounts of KaiA, the onset of inhibition happens at a similar time and 

the timing of the oscillation is therefore similar (Fig. S10 in (46)). For the independent subunits 

model, the reaction requires substantially different delays to inhibit different amounts of KaiA, 

resulting in a period of oscillation that changes markedly as [KaiA] increases, and complete 

failure of rhythms outside of a narrow range of conditions. 

 The success of the allosteric model comes from a cooperative mechanism where the 

phosphorylation states of the six subunits in a hexamer are weighed together to compute a single 

functional output manifested as the KaiB-binding state of the entire ring. Because of the 

importance of having all six interacting subunits linked as a concerted allosteric unit, we asked 

how the model would perform if the number of subunits that could interact allosterically was 

altered. We found that the range of KaiA concentrations over which the system shows 
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oscillations grows rapidly as the number of subunits participating in the allosteric switch 

increases (Fig. 3.5D, S10 in (46)), while the spread in period seen over this KaiA range decreases 

(Fig. 3.5E, S10 in (46)). Both of these effects are correlated with increased ultrasensitivity of 

KaiB-KaiC complex formation (Fig. S10 in (46)).  Once hexameric interactions are included, the 

model has the potential to reach the full oscillatory range seen in the experimental data with 

minimal spread in period. The oscillator can function over an even wider range of KaiA 

concentrations if even higher order (unrealistic) oligomeric interactions are present in the model, 

underscoring the importance of coupling between many oligomeric subunits for this mechanism 

(Fig. 3.5D-E, S10 in (46)). 

 

Discussion 

The simplicity of the purified KaiABC oscillator makes it a remarkably powerful model 

system to investigate the mechanistic origins of circadian rhythms and to study the robustness of 

biochemical circuits generally. We wanted to understand which biochemical features of the 

proteins are crucial for generating oscillations with a precisely defined period, with the goal of 

producing a mechanistic mathematical model that can account for the behavior of the purified 

components. 

 The key negative feedback process that allows sustained oscillation in this system is the 

sequestration of the activator KaiA into inactive KaiB-dependent complexes. This kind of 

molecular titration is widely used throughout biology including control of morphogens in 

development (103), regulation of transcription through sigma/anti-sigma interactions (104), and 

microRNA-mRNA buffering (105). The dynamics of stochiometric titration mechanisms are 

typically quite sensitive to the relative concentrations of the components involved, which is why 
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it has been argued that, when they are used in timing systems, tight controls must be placed on 

gene expression (106).  

 Our modeling-based analysis of the KaiABC system shows that one way to make the 

dynamics of such a negative feedback loop less dependent on component concentration is to 

make the ability of molecules that can participate in sequestering the activator an ultrasensitive 

function of their activation state. In other words, if the system abruptly switches from very little 

sequestration to its full capacity, timing can be maintained precisely even if the activator 

concentration is not tightly controlled, extending the range of conditions over which a 

biochemical circuit can function. 

 We found that this ultrasensitivity can only be realized in the hexameric architecture of 

KaiC when the two phosphorylation sites, Ser431 and Thr432, oppose each other’s influence. 

Effectively, each KaiC hexamer acts as a comparator, switching its state when modification on 

Ser431 outweighs modification on Thr432. This helps to explain the role of Thr432 in the clock; 

because Thr432 is quickly phosphorylated after a hexamer is stimulated by KaiA and then favors 

an allosteric state of KaiC that can be further activated, it effectively forms a fast positive 

feedback loop on KaiA activity. Subsequent Ser431 phosphorylation then acts as a dominant 

slow negative feedback loop. This fast positive-slow negative network motif is a common means 

of generating oscillations (107). 

 KaiC is related to the AAA+ ATPases, many of which exhibit strong long-range 

allosteric communication effects, both within a ring when subunits change e.g. their nucleotide-

bound state, and through ring-ring stacking interactions (108). We propose that KaiC has 

evolved to make use of these communication mechanisms to ensure precise timing: antagonism 

between differentially phosphorylated subunits within the CII ring to precisely define timing and 
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then ring-ring stacking interactions to transduce this signal to the CI ring to allow KaiB-

dependent feedback. The result is that while the strength of negative feedback can adapt 

dynamically to accommodate changes in protein concentration, the timing of the response is 

precise. 

 Because of the ease of using opposed post-translational modifications to drive an 

allosteric switch, we suspect that other biological timing circuits may have analogous 

mechanisms to achieve precise timing. In eukaryotic clock systems, the analysis is complicated 

by the presence of many phosphorylation sites. However, it appears that the FRQ protein in N. 

crassa has distinct clusters of phosphorylation sites which have opposing effects on the clock 

period when mutated (109). Allosteric response of protein structure to multisite post-translational 

modification may allow clock proteins to cooperatively communicate the opposing effects of 

phosphorylation sites throughout the protein, effecting an ultrasensitive switch in activity, a key 

mechanism for precise timing that the cyanobacteria have implemented via the KaiC hexameric 

ring structure. 

 

Materials and Methods 

Protein purification and in vitro protein reactions 

All proteins were recombinantly expressed and purified from E. coli, and protein 

reactions were prepared as previously described (47). Unless otherwise specified, all reactions 

were performed using 3.5 μM KaiB and 3.5 μM KaiC at 30 °C in a reaction buffer containing 

10% glycerol, 150 mM NaCl, 20 mM Tris-HCl pH 8.0, 5 mM MgCl2, 50 M EDTA, 5 mM 

ATP. For full details, see the Supporting Appendix. 
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Measuring KaiB-KaiC Interaction  

Clock reactions at varying KaiA concentrations (1-4 μM), 3.5 μM KaiC and 3.5 μM 

KaiB-FLAG were first pre-incubated for 16 hours to allow the initial transient behavior to decay. 

Samples were then taken every 4 hours over a 24 hour cycle by flash freezing in liquid nitrogen. 

For the no KaiA condition, KaiC was first hyperphosphorylated using HA-tagged KaiA which 

was removed by immunoprecipitation prior to adding KaiB-FLAG (37). The input, supernatant, 

and eluate samples from the immunoprecipitation were analyzed by SDS-PAGE electrophoresis 

to resolve each of the four KaiC subunit species. Percentages of each subunit phosphorylation 

state relative to the total KaiC loaded per lane were extracted by densitometry of the scanned 

SDS-PAGE gels. We propagated an estimated 2% absolute error in our gel densitometry 

measurements through the calculation of these enrichment ratios and then excluded points from 

the final average with a relative error > 1.0. For full details, see the Supporting Appendix.  

   

Reactions with artificially mixed KaiC hexamers 

Monomerization of KaiC was carried out following Nishiwaki et al. (86). Briefly, KaiC 

was buffer exchanged into a buffer with 0.5 mM ADP and incubated at 4 °C to disrupt hexamer 

structure. To prepare “mixed” hexamers, monomerized KaiC mutants or wildtype were mixed 

1:1 prior to rehexamerization via the addition of ATP, as detailed in the Supporting Appendix. 

To prepare “separate” hexamers, KaiC mutants or wildtype were first rehexamerized separately 

and then combined.  

Standard clock reactions were prepared with 3.5 μM total of the phosphomimetic and 

wildtype KaiC preparations. Identical reactions with KaiB-FLAG in place of KaiB were sampled 

every 2-6 hours to assay KaiB•KaiC interaction by anti-FLAG immunoprecipitation. To assess 



102 

 

the extent of mixing in these experiments, one of the KaiC mutants or wildtype carried an N-

terminal His6 tag. Mixing was determined as the extent to which untagged KaiC could be 

coprecipitated with tagged KaiC. Detailed protocols for His-tag pulldowns and anti-FLAG 

immunoprecipitation can be found in the Supporting Appendix. 

 

Michaelis constant (Km) determination for KaiA acting on KaiC  

KaiC with various levels of phosphorylation was produced by dephosphorylation of 

hyperphosphorylated KaiC for 33, 9.5, or 4 hours at 30°C (Fig. 2A-C, respectively). Various 

concentrations of KaiA were then reintroduced to a 3.5 μM solution of these partially 

dephosphorylated KaiC samples. Subsequent KaiC phosphorylation was analyzed by SDS-

PAGE. Initial rates of change of unphosphorylated KaiC were determined by linear regression to 

the early portions of the time course (Fig. S3). Initial rates were plotted with respect to KaiA 

concentration and fit to a Michaelis-Menten function with baseline (𝑉𝑖 =

⁡𝑉dephos +⁡𝑉max[KaiA] ([KaiA] +⁡𝐾𝑚
eff⁄ )  to determine the effective Michaelis constant, or 

𝐾𝑚
𝑒ff.⁡Upper and lower error bounds on 𝐾𝑚

𝑒ff were determined by the distribution of fits using 

bootstrapped datasets.  

To determine the effective Km for KaiC mixed with KaiC-EA, wildtype His6-KaiC was 

first fully dephosphorylated by incubation at 30 °C for 36 h, and then prepared as “separate” or 

“mixed” hexamers with KaiC-EA at various molar ratios. The preparations were then diluted to 

3.5μM, mixed with various concentrations of KaiA, and then assayed as described above. We 

assayed degree of mixing by His6-tag copreciptation. Complete details are in the Supporting 

Appendix. 
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Mathematical modeling of the KaiABC oscillator  

A detailed derivation and analysis of the allosteric model and the independent subunits model 

can be found in the Supporting Appendix. Differential equations governing the rate of change for 

each possible KaiC hexamer phosphorylation state were numerically integrated over time using 

the ode45 algorithm in MATLAB. Kinetics rates for KaiB binding, KaiC phosphorylation and 

dephosphorylation were constrained by fits to experimental kinetics as previously reported (37, 

47). Each KaiC subunit state (U, pT, pS, pTpS) was assigned a free energy parameter defining its 

influence on the equilibrium between the two allosteric hexamer states. Negative ∆𝐺 favors the 

KaiB-binding competent state. 

 

Perspective 

 Interestingly, preliminary stochastic simulation of the hexamer model presented here 

(using the Gillespie algorithm) is much noisier than stochastic simulation of the original 

independent monomer model published by Rust in (37) (data not shown).  Previous studies 

suggest that ultrasensitivity can amplify molecular noise in gene networks (110, 111), in which 

small fluctuations in an input signal can be magnified due to the sharply increasing nature of 

ultrasensitive switches.  The major difference between the hexamer model and the independent 

monomer model is that the hexamer model relies on ultrasensitivity to generate sufficient non-

linearity required to drive oscillations.  In fact, as shown above, inclusion of more subunits per 

KaiC ring can increase the robustness of oscillations across different concentrations of KaiA 

because this increases the cooperativity of KaiC switching between a KaiA-binding state and a 

KaiB-binding state. 
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 However, does the increased ultrasensitivity of a concerted hexamer model decrease the 

resistance to molecular noise?  While a sharper switch may increase the robustness of 

oscillations in one dimension (e.g. the total range of KaiA concentrations that supports 

oscillations), it may also amplify molecular noise to a greater degree.  Ultimately, this may 

represent an interesting generalized tradeoff that biological oscillators must contend with.  Like 

the work presented in Chapter 2 in which a simplified clock architecture traded decreased 

robustness to environmental noise for increased robustness to molecular noise, the amount of 

ultrasensitivity present in an oscillatory system may represent a balance between generating 

sufficiently strong oscillations over a wide array of protein stoichiometries vs. minimizing the 

degree to which molecular noise is amplified.  This represents an intriguing future direction that 

should be explored further. 
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Chapter 4: Costs of clock-environment misalignment in individual 

cyanobacterial cells 

Foreword 

 In Chapter 2, I outlined how molecular noise can cause the cyanobacterial circadian clock 

to become inaccurate, making it poor at predicting the correct time of day. What are the 

consequences for having an incorrect clock? While it is a generally accepted idea that the clock 

benefits the organism in anticipating the day/night cycle, this is a hypothesis that lacks rigorous 

exploration of the impact of the clock on fitness. Most research in the field has instead focused 

on elucidating the mechanism of clock function. The only evidence thus far in cyanobacteria that 

demonstrates the benefit of the clock are competition experiments showing that clock period 

mutants or cells lacking a clock suffer from fitness defects in cyclic light/dark environments (30, 

76). These measurements were performed in bulk cultures of mixed populations of cells, and the 

details remained unknown of exactly how the mismatch between the clock and environment 

caused these defects in fitness. Therefore, the work presented in this chapter seeks to investigate 

at the single cell level how failure to correctly predict the time of day impacts cellular fitness. 

Here, I present the work published in (5) on which I am a second author, with a “Perspective” 

afterwards that discusses the relevance to my work in Chapter 2. All supplemental materials may 

be found in (5). The experiments and fitness model were designed by Guillaume Lambert, and 

both Guillaume Lambert and I performed the experiments. Specifically, I performed the 

experiments in which kaiBC-null cells and kaiBC-overexpression cells were subjected to dark 

pulses, after which the growth arrest probability was determined for each strain (results shown in 

Figure 4.3.C). Data analysis was performed by Guillaume Lambert. 
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Abstract 

Circadian rhythms are endogenously generated daily oscillations in physiology found in 

all kingdoms of life. Experimental studies have shown that the fitness of Synechococcus 

elongatus, a photosynthetic microorganism, is severely affected in non-24h environments. 

However, it has been difficult to study the effects of clock-environment mismatch on cellular 

physiology because such measurements require the precise determination of both clock state and 

growth rates in the same cell. Here, we designed a microscopy platform that allows us to expose 

cyanobacterial cells to pulses of light and dark while quantitatively measuring their growth, 

division rate, and circadian clock state over many days. Our measurements reveal that decreased 

fitness can result from a catastrophic growth arrest caused by unexpected darkness in a small 

subset of cells with incorrect clock times corresponding to the subjective morning. We find that 

the clock generates rhythms in the instantaneous growth rate of the cell, and that time of 

darkness vulnerability coincides with the time of most rapid growth. Thus, the clock mediates a 

fundamental trade-off between growth and starvation tolerance in cycling environments. By 

measuring the response of the circadian rhythm to dark pulses of varying lengths, we constrain a 

mathematical model of a population’s fitness under arbitrary light/dark schedules. This model 

predicts that the circadian clock is only advantageous in highly regular cycling environments 

with frequencies sufficiently close to the natural frequency of the clock.  

 

Introduction 

Synechococcus elongatus PCC 7942 (S. elongatus) is a photosynthetic, unicellular 

cyanobacterium that has been extensively used as a model system for the study of circadian 

rhythms (76, 112). Each cell contains a remarkably precise oscillator based on the kai genes 
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(113). KaiA, KaiB, and KaiC work together to generate near-24 hour rhythms in the 

phosphorylation of the core clock protein KaiC, forming a biochemical oscillator that can be 

reconstituted in vitro (37, 114). In the cell, rhythmic changes in KaiC signal through histidine 

kinases to exert genome-wide control of transcription (58, 115, 116) and metabolism (117, 118). 

Much is known about the behavior of this system under conditions of constant 

illumination, where robust cell-autonomous oscillations are easiest to observe (25, 40, 52, 119, 

120). However, under constant conditions, S. elongatus can grow robustly even without a 

functioning clock (30, 120), leading us to suspect that the importance of the clock would be 

revealed by monitoring cellular physiology under conditions that fluctuate between light and 

dark. Landmark work by the Johnson lab established that fitness defects occur in fluctuating 

environments with schedules that do not match the circadian clock period, but the underlying 

mechanisms for these effects are still unclear (30, 76). Because environmental challenges may 

reveal heterogeneous behavior in a population, we designed a microscopy system that allows us 

to quantitatively measure clock state, growth rate, and cell division in individual cyanobacterial 

cells over several days in an environment that fluctuates between light and dark (Fig. 4.1, Movie 

S1 in (5)). Using these single-cell measurements, we then develop a phenomenological model 

where growth rate and the probability of surviving the night are determined by the current clock 

state, which is itself updated following each light-dark transition. This model provides a 

framework to calculate the impact on organismal fitness from a circadian clock driven by an 

arbitrary fluctuating environment. 
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Results and Discussion 

A subset of cells with misaligned clocks do not survive the night 

Some photosynthetic organisms that rely exclusively on light for growth are known to 

halt DNA synthesis and enter a dormant state (121), or even die (122), in the absence of light. 

Since control of gene expression in the dark and consumption of energy metabolites are both 

under active control of the circadian clock in cyanobacteria (117, 118, 123), we hypothesized 

that unanticipated nightfall at clock times when energy reserves are low and metabolic rates are 

high could have deleterious effects. To test this hypothesis, we exposed a mixed-phase 

population (Fig. S1 in (5)) to a period of darkness corresponding to a long night (18 h). 

Surprisingly, we found that a subset of cells experienced a catastrophic growth arrest after the 

Fig. 4.1. Experimental setup. 12 populations were entrained under staggered LD 12:12 regimes and 

combined into a single experiment. A multiplexed measurement of phase shift or growth rate modulation 

was achieved by exposing the mixed-phase population to a single pulse of darkness (scale bar = 5 µm). 

Fluorescence and brightfield micrographs recorded every hour were used to extract every cell’s 

physiological parameters (e.g. length, clock reporter). 
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simulated night: growth of these cells ceased and did not resume even after 36 hours of 

subsequent light exposure (Figs. 4.2A-B, Movie S2 in (5)). Importantly, this effect required 

prolonged darkness—we did not observe arrested cells following 5-hour dark pulses.  

To determine whether the ability to tolerate darkness-induced starvation is influenced by 

the circadian clock, we 

assigned a clock time 

to each cell by 

measuring rhythms in 

a fluorescent reporter 

of clock gene 

expression prior to the 

dark pulse. We found 

that the fraction of 

cells that failed to 

resume growth was 

strongly enriched for 

cells with clock states 

corresponding to the 

early day, when 

nightfall is not 

anticipated. Indeed, the 

probability of dark-induced growth arrest oscillates with clock time, reaching a minimum at 

subjective dusk when nightfall is expected to occur (Figs. 4.2C-D). Thus, the ability of individual 

Fig. 4.2. Clock-dependent growth arrest following unexpected darkness. (A) 

Individual growth curves showing survival (blue) and growth arrest (red) of 

two neighboring cells (* = cell division). (B) Example of cells that entered a 

state of arrested growth following an 18 h pulse of darkness. Cells remained 

dormant after > 36 h in constant light. (C) Average ± std. dev. of the pre-

darkness clock reporter signal for surviving (blue) and arrested (red) 

populations. An arbitrary vertical shift has been added to the 

surviving/arrested sub-populations to assist in comparison.  (D) Phase-

dependent probability of growth arrest for cells grown under constant light 

conditions for 36 h before being subjected to a 18 h pulse of darkness 

(n=2983). The maximal growth arrest probability occurs when a dark pulse 

occurs near subjective dawn (transition between subjective night and day). 

Growth arrest probability is double plotted to illustrate its periodicity. 
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S. elongatus cells to tolerate prolonged starvation is clock-dependent, with cells displaying 

enhanced starvation tolerance when the onset of darkness coincides with subjective dusk. 

 

The clock allows rapid growth early in the day 

In many microbes, stress tolerance is generally anticorrelated with growth rate (124). A 

classic example is the bacterial stringent response to amino acid starvation: mutants that cannot 

mount the stringent response can grow faster than the wildtype as nutrients are being depleted, 

but these mutants cannot survive conditions of prolonged starvation (125, 126). We therefore 

asked whether the rhythmic dark tolerance we observed in cyanobacteria is similarly linked to a 

change in growth rate during the circadian cycle. 

By tracking morphological changes in single cells, we assigned an instantaneous growth 

rate to each cell and identified cell division events. We found that subjective dusk, the time when  
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Fig. 4.3. Clock dependent fitness trade-offs. (A) Elongation rate measurements (mean ±3×s.e.m) for cells 

grown under constant light conditions display a transient decrease at subjective dusk. Inset: Clock-

dependent division rates computed from 4910 individual division events. Elongation and division rate 

measurements are double plotted to illustrate their periodicity. (B) Phenomenological model of the time-

evolution of the circadian fitness trade-off. The subjective circadian time is inscribed inside each datapoint 

to show how a cell’s phenotype cycles between rapid growth and a starvation-protected state. The properties 

of the dusk and dawn phenotypes is marked with a cyan and orange star, respectively. (C)  Growth arrest 

probabilities for wildtype and kaiBC mutant cells following an 18 h pulse of darkness.  (D) Comparison 

between a clock stopped at dusk (cyan) or a dawn (orange). Since no fixed daytime strategy exhibits superior 

fitness at all times, the performance of stopped-clock daytime strategies is lower than a circadian phenotype 

under circadian (LD 12:12) environments. Although we measure the growth-arrest and elongation rates for 

all circadian times, physiological states corresponding to subjective night (circadian times between 12-24 

h) were excluded from this analysis because they are unattainable during the night in cycling LD 12:12 

conditions. Bottom: Cells in a dusk-like phenotypic state grow more slowly but are protected against the 

dark. Cells in a dawn-like phenotypic state grow more rapidly but are vulnerable to darkness. 
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starvation resistance is highest, is also a time of slowed biomass incorporation (Fig. 4.3A).  This 

time of slowed growth approximately coincides with the previously reported (73, 127) clock-

controlled inhibition of cell division (Fig. 4.3A, inset). This reduction in cell growth and division 

is anticorrelated in time with the vulnerability of cells to darkness, suggesting the existence of a 

fundamental trade-off between the capacity for rapid growth, active division, and the ability to 

tolerate starvation (Fig. 4.3B). Interestingly, cells early in the subjective night (i.e. circadian time 

between 14 – 18 h) are able to both grow rapidly and survive prolonged darkness. This indicates 

that darkness protection is not caused entirely by the instantaneous growth rate. One possible 

explanation is that a key determinant of darkness protection is not slow growth per se, but the 

accumulation of starvation-tolerance factors produced at subjective dusk in anticipation of 

prolonged darkness that transiently persist in the cell after rapid growth resumes. A concrete 

example is glycogen storageglycogen has been shown to accumulate during the portion of the 

cycle when we find slowed growth (118), potentially protecting the cell against starvation. This 

proposal is an example of the general phenomenon of phenotypic memory (128), wherein 

previous adaptations are retained to confer an adaptive phenotype after the source of stress or 

stimulus has been removed.  

To determine if these changes in dark tolerance are indeed caused by signaling from the 

circadian clock, we repeated these experiments using cells with either the kaiBC genes deleted or 

overexpressed under the control of an IPTG-inducible promoter. Based on previous studies, we 

expect deletion of kaiBC to result in arrhythmic high expression of dusk-expressed genes and 

elevated glycogen levels, mimicking a dusk-like state (113, 118). Conversely, we expect 

overexpression of kaiBC to cause arrhythmia while repressing dusk genes (129).  
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Consistent with the expectation that their physiology is dusk-like, we find that kaiBC-null 

cells fail to efficiently undergo cytokinesis and some cells exhibit filamentous growth under the 

microscope (Movie S3 in (5)). Further, the kaiBC-null mutant is quite dark-tolerant and shows a 

slightly lower elongation rate but a much higher survival rate, independent of the timing of 

darkness (Fig. 4.3C and Fig S2 in (5)). In contrast, kaiBC overexpression makes cells highly 

vulnerable to a light-dark transition, and the majority of these cells do not survive our dark pulse 

treatment (Fig. 4.3C). When grown on the microscope, kaiBC overexpression leads to some cell 

death prior to the dark pulse, and it also leads to a surprising morphological defect where the 

cytoplasm appears to expand at a rate that is not properly balanced by elongation, causing cells 

to lose their rod-like shape (Movie S4 in (5)). 

We used these growth and survival data to calculate the expected fitness for a simulated 

population of cells with a constant growth rate and constant dark tolerance, according to the 

inverse relationship we observed for the wildtype. This calculation predicts that oscillating 

growth outperforms all fixed daytime growth strategies in 12h:12h light-dark cycles (Fig. 4.3D). 

Recent theoretical work suggests that organisms typically optimize evolutionary trade-offs by 

adopting a compromise phenotype that interpolates between “archetypes” that represent the 

extreme demands on the system (130).  Our findings represent a dynamical version of this 

phenomenon where cyanobacteria are able to achieve higher fitness by cycling between 

incompatible states of growth and starvation protection. 

 

Response of single cells to dark pulses is nearly all-or-none 

Having characterized the impact of a pulse of prolonged darkness on clock-dependent 

growth, we sought to determine how the clock state in single cells is reset by pulses of darkness 
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in order to build a model describing how cyanobacterial cells grow in arbitrary fluctuating 

environments. External cues, such as dark pulses, cause the cell to reset its phase in an attempt to 

bring the clock into alignment with the environment (24, 131). This phenomenon has been 

studied using bulk cultures of cyanobacteria (118, 132, 133), but such population-wide 

measurements may mask important features such as loss of coherence and amplitude attenuation 

because they are based on signals that represent the average of the oscillations coming from 

many independent cells.  

Fig. 4.4. Single cell clock response to dark pulse perturbations. (A-B) Individual traces (PkaiBC::eyfp-ssrA) 

showing phase-shifts caused by weak (2 h dark pulse) and strong (12 h dark pulse) perturbations. (C-D) 

Phase resetting of individual cells grown under constant light conditions for 36 h before being subjected 

to a 2 h (blue) or 12 h (red) pulse of darkness, with specific examples from panels A-B are highlighted (*). 

Two distinct resetting behaviors are observed: a robust response (blue line in panel C) or a full phase reset 

(red line in panel D). (E-G) Density plot showing the phase response to 5 h, 7 h, and 9 h dark pulses, with 

resetting that switches between no response and full-reset (blue and red dashed lines, respectively). Cells 

were grown under constant light conditions for 36 h prior to each dark pulse. In all panels, the location of 

subjective day (night) is marked with a light (dark) gray bar. See also Figure S3 in (5). 
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We thus exposed populations of hundreds of cells in a spectrum of clock states to dark 

pulses of varying lengths and determined the clock phase both before (φ1) and after (φ2) the dark 

pulse. When the dark pulse was brief (2 hours) cells at all clock times were largely resistant to 

the perturbation, and we observed only small phase changes (Fig. 4A, C). In contrast, long dark 

pulses corresponding to the length of the night (12 hours) were capable of effecting nearly a full 

reset where most cells were synchronized to the onset of darkness (Fig. 4.4B, D).  

Surprisingly, dark pulses of intermediate length produced a discontinuous combination of 

these responses. When the clock time was far from subjective dusk, the response of the system to 

a dark pulse was very small (Fig. 4.4E-G, data near the blue 1:1 lines). In a critical range of 

clock times, however, the response changes abruptly so that the system strongly synchronizes to 

the onset of darkness. The range of times when this nearly complete reset occurs grows as the 

dark pulse becomes longer (Fig. 4.4E-G, data near the φ2=π red lines). Biochemical studies of the 

Kai proteins have implicated changes in levels of metabolites during the night, such as the 

ATP/ADP ratio, with the ability of the circadian clock to reset its phase (24, 134). The change in 

resetting behavior we observe here for intermediate-length dark pulses may in part be caused by 

a timescale associated with depletion of key metabolites in the cell.  

This abrupt change from insensitivity to strong sensitivity as clock time progresses may 

represent an optimal strategy for dealing with unexpected fluctuations in the environment, as it 

can ignore short dark pulses at times of day when they are unlikely (Fig. S3B in (5)). This 

behavior would be difficult to detect without high-resolution single-cell measurements, because 

averaging over many cells with slightly different phases would tend to blur out the true sharpness 

of the response (Fig. S3C in (5)).  
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Mathematical model of fitness in fluctuating environments 

We combined our measurements of clock-dependent growth and darkness-induced 

growth arrest (Fig. 4.5A) with darkness-induced clock resetting to build a mathematical model 

(135) of cyanobacteria growing under arbitrary schedules of light and dark. We first asked how 

successfully the circadian clock could synchronize to a 24-hour day (12h L:12h D) if the clock 

period were altered. In particular, the phase resetting information obtained in Fig. 4.4E-G was 

used to generate the mapping for different clock periods. The relationship between φi and φi+1 

was given by the recurrence relation φi+1 = fn
P(φi), where the map fn

P(φi) describes the phase at 

dusk following a dark pulse of duration n subjected to a clock of period P. The precise shape of 

fn
P(φi) was found by interpolating the phase resetting curves by assuming that the effect of a dark 

pulse of the phase scales with the period of the clock (for instance, a 5 h dark pulse would have 

the same effect on a 24 h clock that a 10 h dark pulse would have on a 48 h clock). The shift 

between the phase before (φi) and after (φi+1) was used to construct an expression for fn
P that 

accurately captures the features of the 5 h, 7 h, 9 h, and 12 h dark pulse measurements. In 

particular, we used the following expression to model fn
P: 

 

where A was given by min(n/P, π/4). Plots of this function for various dark pulse lengths are 

shown in Fig. S4 in (5). 

Using this expression for fn
P , we interpolated from our measured dark pulse response 

data to find a stable recurrence relation corresponding to clock entrainment by plotting the 

value(s) of φi which converged for i ≫ 1 for a 12 h dark pulse each clock period. (Fig. 4.5B). 

When the clock period is less than 40 h, the model predicts that the clock will stably entrain to 

the environment, but a period mismatch results in an entrained phase that is generally incorrect 



117 

 

(i.e. subjective dusk 

does not fall near actual 

nightfall). For longer 

periods, entrainment can 

occur to subharmonics 

of the environmental 

period; for still longer 

periods, chaotic 

dynamics can occur.  

We next 

investigated how 

circadian misalignment 

would affect the long-

term fitness of a 

population of cells in the 

model by using the 

growth and survival 

functions measured in 

Figs. 1-2 to extract the 

fitness of a single cells 

under a given light/dark 

regime. By assuming 

that growth occurs only 

Fig. 4.5. Mathematical model of clock-regulated growth under noisy and 

period mismatched schedules. (A) Circadian trade-off between rapid growth 

and stress protection. Each phenotype occupies a specific region of the 

circadian cycle. (B) Map showing phase entrainment, or lack thereof, under 

LD 12:12 for different clock periods. A perfectly entrained clock would 

result in a phase at dusk equal to π. Clock periods longer than 40 h result in 

faulty phase tracking caused by frequency demultiplication and those longer 

than 100 h lead to chaos. (C) Top: Effect of a non-circadian clock period. 

Only the 24-h clock is stable and accurate under LD 12:12 environments: a 

12h clock is robustly entrained but is unable to accurately anticipate 

nightfall, and the entrainment of a 36h clock is unstable and leads to an 

incorrect nightfall prediction 50% of the time. Bottom: The historical fitness 

HP of clock mutants with a period P subjected to a LD 12:12 circadian 

environment for 240h is compared with the historical fitness H24h of a 
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under light conditions and 

growth arrest probability is 

dependent on the phase at 

the onset of darkness, we 

calculated growth and 

survival of cells with a 

range of clock periods and 

find that the model predicts 

that the long-term fitness is highest when the clock period is near 24 hours. This result indicates 

that the measured effects on growth and darkness tolerance may be sufficient selective pressures 

to explain the precision of the circadian clock. However, when the clock period is far from 24 h, 

large fitness costs can occur because the clock synchronizes inappropriately so that the morning 

clock state occurs at nightfall every day (Fig. 4.5C). These model results show similar trends to 

those previously reported from competition experiments by the Johnson lab (30, 76): a long 

period (30 h) clock mutant is severely disadvantaged relative to wildtype in 12:12 LD cycles, 

while a short period (23 h) mutant is more mildly affected. Our model calculation shows an 

asymmetry in fitness as a function of clock period where periods slightly shorter than 24 h 

outperform longer periods. This follows from an asymmetry in the fitness cost associated with 

the window of protection to nightfall. If the clock period is slightly short, the protected window 

arrives early and the cost is unnecessarily slow growth. However, if the clock period is long, the 

protected window is delayed causing the much more severe cost of cell death.  

How does the circadian rhythm optimize the fitness of a cell? In our model, cells must 

grow slowly near nightfall to avoid the possibility of metabolic catastrophe when darkness falls. 

(Fig. 4.5, continued) 24h-clock (relative fitness = 
𝐻𝑃

𝐻24ℎ
). Fitness 

advantage is the greatest when the clock and the environment are in 

constructive resonance (i.e. 24 h and 36 h clocks, which leads to a correct 

nightfall prediction 100% and 50% of the time, respectively) and the 

lowest for destructive resonance (i.e. 18h, 30h, 48h clocks, which results 

in nightfall occurring during subjective morning). (D) Top: Fitness 

under 12 h nights but variable day lengths. Day durations are normally 

distributed with a 12 h average and a variance σ. Bottom: The presence 

of a low level of noise in the day length distribution increases fitness for 

wild-type clocks (region highlighted with a *). As the day length 

becomes more unpredictable (σ > 5 h), an “always-protected” dusk state 

is more beneficial than a circadian phenotype (** region). Fitness is the 

average of 10,000 simulations. 
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The clock enforces this growth slowdown late in the day while allowing cells to grow rapidly in 

the morning. This suggests that the advantages conferred by a circadian clock are a result of a 

finely tuned match with the temporal structure in the environment. Such a strategy might become 

detrimental in unnatural conditions where the environment cycles irregularly between light and 

dark. To test this hypothesis, we simulated cyanobacteria growing in days with random variation 

by selecting the duration of each light period from a normal distribution with a mean of 12 h. 

The model predicts that when the variability in the light-dark schedule exceeds σ = 5 h, an 

arrhythmic, slow-growing strategy similar to deletion of the kaiBC genes becomes more 

successful than the wildtype (Fig. 4.5C). Surprisingly, our model predicts that wildtype cells may 

grow faster and achieve a higher fitness in the presence of some timing variability (Fig. 5C, σ < 

3.75 h) in the duration of the day. 

 

Conclusions 

Despite the ubiquity of circadian clocks, it has remained challenging to pinpoint the 

benefits of rhythmic physiology (136). Our ability to detect the costs and benefits of clock 

function at the single cell level provides a framework to answer these questions. We found that 

considerable fitness penalties result from the failure of cells to correctly predict the withdrawal 

of energy associated with nightfall. We thus conclude that a major function of the cyanobacterial 

circadian clock is to provide a safeguard against darkness-induced starvation, giving the cell 

permission to grow rapidly early in the day.  

A possible explanation for the failure of a subset of cells to survive the night is that these 

cells might have been unable to properly manage their energy consumption over the length of the 

night. Analysis of microarray expression data of S. elongatus (116) provides some mechanistic 
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insight into the origin of clock-dependent starvation tolerance (Supplementary Table I). 

Expression of genes involved in photosynthesis and the biosynthesis of essential compounds 

peaks at clock times corresponding to the early morning, suggesting that the clock tunes 

metabolism to allow rapid growth early in the day. On the other hand, genes involved in DNA 

replication, DNA repair, and metabolism under nutrient limitation, peak late in the day, 

suggesting clock-dependent activation of mechanisms needed to tolerate nightfall. Furthermore, 

we previously found that the clock controls storage and consumption of energy storage 

metabolites, with reserves of glycogen at their lowest near the beginning of the day (118). 

Coupled with gene expression data, our results suggest that proper temporal regulation of energy 

storage and circadian regulation of growth and division in anticipation of dusk may play a 

critical role in allowing the cell to survive the night.  

These results suggest an alternative to the hypothesis that circadian rhythms evolved 

primarily as a means to anticipate and avoid light-induced photodamage, i.e. a “flight-from-

light” scenario. If our experimental conditions approximate the challenges faced by the ancient 

ancestors of modern cyanobacteria, the daily threat posed by an extended time of resource 

limitation during the night may have been a major selective pressure on primordial clock 

systems. That is, a key function of the circadian clock is to direct preparations ahead of nightfall, 

i.e. a “prepare-for-night” scenario. We note that our microscopy growth conditions may well 

intensify the stresses associated with darkness relative to growth in flasks, allowing us to observe 

growth defects following a single light-dark cycle while liquid culture studies have required 

many days before measurable effects emerge (30, 76).   

Our dark pulse experiments show that the circadian clock has robustness properties that 

allow it to track the 24-hour cycle in the environment even in the face of random fluctuations. 
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The flipside of this robustness is a remarkable fragility in environments that fail to have a 24-

hour periodicity. Although such environments are unlikely to occur in nature, poor performance 

of clocks in these conditions may have relevance to other organisms that display a clock control 

of cellular divisions (137, 138) and to the irregular work schedules and patterns of light exposure 

typical of modern society. 

 

Materials and Methods 

Cyanobacterial strains 

The clock phase was tracked using the yfp-ssrA reporter strain wild-type (WT)/JRCS35 

(MRC1006), which carries a PkaiBC::eyfp-ssrA fluorescence reporter. The JRCS35 plasmid 

integrated PkaiBC::eyfp-ssrA into NS2 (neutral site 2) with a kanamycin resistance cassette (12). 

To create the ΔkaiBC strain (MRC1009), the WT/JRCS35 strain was transformed with plasmid 

MR0091, replacing the endogenous kaiBC locus (from the kaiB start codon to ~200 bp upstream 

of the kaiC stop codon) with a gentamicin resistance cassette. The KaiBC overexpression strain 

(MRC1010) was created by transforming the WT/JRCS35 strain with plasmid MR0095, 

integrating kaiBC under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible 

trc promoter into neutral site 1 (NS1). 

 

Culture conditions 

In all the experiments, cyanobacterial strains were grown in BG11 liquid medium 

supplemented with 20 mM HEPES (pH 8.0) at 30 °C. To create the mixed-phase population, 200 

uL of a cell culture grown under continuous illumination (LL) of 75 μmol photons m−2s−1 were 

pipetted into each well of a black (opaque) 96-well plate. For the experiments that included 
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either the kaiBC-null or kaiBC-overexpression strains, these strains were grown in separate wells 

from the wild-type cells within the same plate as to expose them to the same culture and 

illumination conditions. For the kaiBC-overexpression experiment, the media was supplemented 

with IPTG at a final concentration of 1 mM within the plate. A custom-made Arduino driven 

LED array was used to illuminate each well. Each output pin of the Arduino supplied 23 mA of 

current to 8 red LEDs and each pin corresponded to one column of the 96-well plate. The 

Arduino was programmed to generate 2 days of symmetric light/dark conditions (light 

conditions: 10 μmol photons m−2s−1 (23 mA); Dark conditions: 0 mA) preceded by at least 12 h 

of continuous light conditions so that each population was subjected to 2 entrainment cycles. 

Light levels were maintained at ∼10 μmol photons m−2s−1 for an additional 24 h before cells 

were collected for microscopy. Each culture well of the entrained 96-well plate was collected 

and combined into a single test tube. The distribution of phases produced by this protocol is 

broad, but is not precisely uniform. The deviations from a uniform distribution might be caused 

by differential growth of the wells subjected to differently phased cycles, or mild phase shifts 

caused by transferring the cultures to the microscope. 

For experiments that included kaiBC-null or kaiBC-overexpression strains, the cells were 

combined in equal proportions, determined by OD750 measurements after entrainment. This 

provided a mixed population of wildtype and mutant cells within a single experiment. 

 

Timelapse microscopy 

The mixed-phase culture was diluted to an optical density OD750 = 0.1 using BG11 

medium and 1 μL of the cell solution was pipetted onto a glass-bottom 6 well plate (MatTek 

Inc.). A small (1 mm X 1 mm X 0.5 mm) pad of BG11 + 2% low-melting point agarose (LMPA) 
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was placed atop the cell suspension. 10 mL of liquid BG11 + 2% LMPA which had been cooled 

to 37 °C was then poured inside the well to cover the LMPA pad. For the kaiBC-overexpression 

experiment, the BG-11/agar mixture was supplemented with IPTG at a final concentration of 1 

mM before being poured into the well. Once the LMPA solidified, the 6-well plate was then 

moved to a motorized microscope (IX71, Olympus) and fluorescence and brightfield images 

were recorded every 60 minutes.  

Control of the microscope was carried out using micromanager (139). Every 60 minutes, 

a motorized microscope stage (Prior) visited 24 pre-assigned locations containing at least 10 

cells and bright-field (exposure: 100 ms), chlorophyll (exposure: 200 ms; excitation: 501 nm; 

emission: 590 nm) and YFP fluorescence (exposure: 2 s; excitation: 501 nm; emission: 550 nm) 

micrographs were then recorded using an EMCCD camera (Luca, Andor).  

The “simple-autofocus” routine provided by the Micro-manager suite used the 

chlorophyll autofluorescence of the population to identify the focal plane before each set of 

micrographs was recorded. A collimated LED light (Thorlabs; wavelength: 625 nm) was used to 

illuminate the cells throughout the experiment and a microcontroller (Arduino) controlled the 

output level of the LED light (Light conditions: ∼10 μmol photons m−2s−1 (23 mA); Dark 

conditions: 0 mA).  

 

Single-cell analysis and phase information extraction. 

The outline of every cell in the brightfield image was traced using a watershed algorithm 

and the physiological properties of each cell (length and YFP fluorescence intensity) were 

recorded. The celltracker image processing (55) suite was then used to reconstruct the lineage 
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history of each cell, assigning an age to each pole and computing the instantaneous elongation 

rate.  

The complete lineage of every cell present at the onset of the dark pulse was reconstituted 

and the YFP signal of each lineage was then subjected to a Fourier transform. The (complex) 

factor multiplying the 24 h frequency component (henceforth called c24) was computed using the 

last 36 h of data leading to the dark pulse. The phase of the cell before the dark pulse (called φ1 

in the main text) was found by extracting the angle of c24 using the arctan2 branching function – 

ie. φ = arctan2(imag(c24), real(c24)).  

To find the phase of the clock after the dark pulse (φ2), the YFP-intensity of the “old-

pole” lineage (i.e. the lineage which inherited the oldest pole after each division) was extracted 

and the phase information was found by computing the angle of the c24 factor of the YFP signal. 

After the dark pulse, only the first 36 h of data were considered (to ensure that c24 existed). Non-

oscillatory cells (such as the ∆kaiBC and kaiBC-overexpression strains) were identified by 

monitoring intensity traces which varied by less than 30% over the duration of the experiment. 

Since the production and maturation rate of YFP proteins have a finite timescale that is 

determined, among other factors, by the growth rate of the cells, the clock phases we report are 

shifted by 4 h relative to the extracted peak YFP phase information to bring them more closely in 

line with the estimated peak transcriptional activity. This value is similar to other values reported 

in the literature (52). 

 

Growth arrest probability 

“Arrested” cells were identified by tracking the cumulative increase in the total length of 

the cell after the dark pulse. If the total length of a cell and its progeny increased by less than 
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33% after 24 h, the cell was scored as arrested. Because of the altered morphology of the kaiBC 

overexpression strain, we used an alternative test for these cells: if the relative elongation rate 

was less than 1% / hour over the 4 hours following the dark pulse, the cell was scored as 

arrested. 

 

Elongation rate measurements 

The elongation rate was computed from 6 experimental replicates of mixed-phase 

populations grown under constant light conditions. Cells were grown for a total of 36 h under 

constant light conditions and the last 12 h (T=24–36 h) were used to compute the elongation rate. 

The instantaneous elongation rate was found by computing the relative increase in cell size 

between two consecutive frames. Specifically,  

 

The growth rate g(t) was then binned according to the cell’s circadian phase and averaged over a 

1 h window. In Fig. 3B, a 3-pt moving average was used to smooth the data used to derive the 

phenomenological model. 

 

Fitness advantage measurement 

To measure the performance of various clock periods under a sustained LD 12:12 

schedule, it was necessary to compute 1) the probability μ that a cell would enter a state of 

growth arrest following the 12 h dark pulse and 2) the number of cell doublings that happened 

during the 12 h of light. μ was determined using f12h
P to find the phase of the cell at nightfall to 

identify the survival probability at that phase using Fig. 2D (that is, it was assumed for the sake 

of simplicity that growth arrest occurs at the same rate for 12 h and 18 h nights). The number of 



126 

 

cell doublings per day was found by first using f12h
P to identify the phase at the beginning of the 

day. We then advanced this phase variable through the light portion of the day to compute the 

average elongation rate 𝑔̅. The historical fitness (140) was used to quantify the fitness of the 

population at a given period. Historical fitness differs from conventional fitness measurements in 

that it considers the cumulative (or integrated) number of doublings of a single cell over its 

complete life-history. Consequently, the historical fitness of a population will contain two 

factors: (1 − 𝜇)⌊
𝑇

2
⌋
, which accounts for the fraction of the population that enter a state of growth 

arrest during the dark pulse, and 𝑒
𝑔̅𝑇

2 , which tracks the number of cell doublings that happen 

under light conditions. 

The historical fitness for a simulation that lasted for a time T for a given clock period P 

was given by the product of these two factors: 

 

for a simulation that lasted for a time T for a given clock period P. The values of HP were plotted 

relative to H24h.  

 

Perspective 

The results presented here provide insight into the selective pressures that contribute to 

the level of oscillatory precision in single cells presented in Chapter 2.  A noisy clock that 

predicts the time of day poorly is more likely to experience a mismatch between cellular 

physiology and environmental conditions.  The most obvious penalty for a clock-environment 

mismatch as shown here is growth arrest if darkness occurs when the cell expects daytime.  This 

amount of mismatch likely requires an extreme amount of noise in the clock to occur, but fitness 

defects may also arise from smaller clock-environment mismatches.  For instance, cells that 
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predict darkness several hours before the actual onset of darkness may slow growth and division 

at a time when rapid growth is still permissible, falling short of the maximal amount of growth 

that can happen over the day.  In conclusion, the results presented here provide a powerful 

explanation for why such high precision is required in the cyanobacterial circadian clock such 

that Kai proteins are expressed in high amounts to minimize the impact of molecular noise. 
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Appendix: Ancestral reconstruction of the Kai system using 

phylogenetic analysis by maximum likelihood (PAML) 

Introduction 

 Ancestral reconstruction is a recently developed statistical method that utilizes 

phylogenetics to estimate DNA or protein sequences of a given ancestor of a clade of extant, 

modern sequences.  It has been used to successfully investigate the evolution of transcription 

factors in yeast (141), proteins responsible for the rise to multicellularity (142), and ethanol 

tolerance in Drosphila alcohol dehydrogenase (143).  For any reconstruction, the basic workflow 

is as follows (3) (Figure A.1).  First, a set of extant sequences must be obtained, which might be 

a series of homologous protein sequences from related organisms (although in theory the 

reconstruction should also allow for reconstruction of ancestors of protein families that might 

share multiple members within a single organism).  From this set of sequences, a multiple 

sequence alignment should be performed to construct a phylogenetic tree that specifies the 

ancestral relationships between each sequence.  Finally, information from the multiple sequence 

alignment and phylogenetic tree can be combined to estimate the ancestral sequence using 

maximum likelihood methods on a residue-by-residue basis to predict the most likely ancestral 

residue at each site in the reconstructed sequence. 

 My initial efforts to reconstruct the Kai system were aimed at addressing two separate 

questions related to the evolution of the cyanobacterial clock.  First, assuming that the Earth’s 

rotation was much faster in the past, is there a “biological timekeeping fossil” hidden in modern 

cyanobacterial clock sequences that indicate that the ancestral cyanobacterial clock was also 

faster?  Second, how did the abbreviated Kai system in Prochlorococcus evolve?  Here, I will 

first provide background information for the first question followed by the second. 
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Does the ancient cyanobacterial clock hold a record of the Earth’s rotational speed? 

 Physical measurements currently indicate that tidal friction between the oceans and the 

Earth’s surface is causing the Earth’s rotation to slow by approximately 1.8 milliseconds per 

century (144).  This finding is consistent with the fact that the Moon is slowly receding from 

Earth in its orbit by about 3.8 centimeters per year (145) due to the conservation of angular 

momentum.  The observed slowing of the Earth’s rotation thus implies that in the past, the Earth 

rotated much more rapidly.  A quick calculation shows that if the current rate of slowing is 

extrapolated backwards in time by 1 billion years, the rotational period was 18.4 hours instead of 

Figure A.1. Ancestral reconstruction process from (3).  A phylogeny is first constructed from a multiple 

sequence alignment of extant protein sequences, and ancestral reconstruction is performed on a residue-by-

residue basis using maximum likelihood statistical methods.  Finally, reconstructed genes can be assembled 

from oligonucleotides and expressed in vivo. 
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24 hours.  This estimate of the past Earth’s period is consistent with both geological and fossil 

evidence.  Alternating patterns of silt deposition between the spring and neap tides suggest that 

900 million years ago (MYA), the Earth’s rotational period was ~18 hours (146).  Daily 

oscillations in coral growth rates, visualized as growth ring bands, give rise to estimations that 

400 MYA the Earth’s rotational period was ~20 hours (147). 

 The modern clock in S. elongatus has a free-running period close to 24 hours, and the 

earliest fossil evidence of cyanobacteria date to over 2 billion years ago (GYA) (148), meaning 

that the earliest cyanobacteria would have presumably lived in an environment with a day/night 

cycle much shorter than 24 hours.  Competition experiments demonstrate that a clock with a 

period that is mismatched with the environment has negative consequences for organism fitness.  

In a mixed population of cyanobacteria with either a 24-hour wild-type clock or a 20-hour 

mutant clock, the strain that dominates the population after several weeks of growth has a clock 

that matches the period of environmental light/dark cycles (30, 76).  This suggests that there is a 

strong selective pressure to match the period of the clock to the environment.  This inspires the 

question: did ancient cyanobacteria have a circadian clock with a shorter period, and did that 

period lengthen over time as the Earth’s rotation slowed? 

 How confident are we that cyanobacteria were present when the Earth’s rotation was 

faster?  In addition to fossil evidence that suggests an ancient origin for cyanobacteria, other 

studies hypothesize that the origin of cyanobacteria is related to the Great Oxygenation Event, an 

event that occurred roughly 2.5 billion years ago (GYA) as indicated by geological and chemical 

evidence (149).  Cyanobacteria are hypothesized to be the first photosynthetic organisms to 

generate atmospheric oxygen in significant amounts, increasing atmospheric oxygen from 
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negligible amounts to their modern levels.  The timing of the Great Oxygenation Event is thus 

consistent with the idea of an ancient origin for cyanobacteria when the day was much shorter. 

 Thus, the main objective in investigating this question is to ideally reconstruct multiple 

ancestral versions of the Kai system, with the hypothesis that nodes that more ancestral will have 

a faster free-running period.  The results of the efforts to reconstruct the ancient Kai system are 

hereafter described in the Results section.  For now, we move on to the motivating factors for the 

second question that can be investigated with ancestral reconstruction of the Kai system. 

 

How did Prochlorococcus evolve into an environmentally-driven timer? 

 As noted in the dissertation introduction and in Chapter 2, P. marinus has an abbreviated 

Kai system in which the gene for kaiA is completely missing (49), and as a result, KaiC can no 

longer generate autocatalytic rhythms in phosophorylation (shown in Chapter 2).  Instead, 

Prochlorococcus must be incubated in a cyclic light/dark environment to generate 

phosphorylation rhythms in KaiC, with KaiC settling into a hyperphosphorylated state in the 

light and a hypophosphorylated state in the dark.  Previous in vitro studies suggest that 

Prochlorococcus KaiC (ProKaiC) has gained a KaiA-independent autokinase activity (63), 

which is consistent with mutations in the C-terminus of ProKaiC in which the residues necessary 

for burying the A-loop to suppress kinase activity are no longer conserved (49).  While it is 

possible that other factors in Prochlorococcus have supplanted the role of KaiA, the simplest 

model for the Kai system in Prochlorococcus is that the kinase rate of ProKaiC is metabolically 

regulated by ATP/ADP levels in the cell, which change with the day/night cycle. 

 The question of how the Prochlorococcus clock lost free-running capability assumes that 

its ancestor had a free-running clock.  How do we know this?  First, P. marinus MED4 is only 
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one of two cyanobacterial species that do not have kaiA (the other is a tiny symbiotic 

cyanobacteria, UCYN-A) (150).  All other cyanobacteria contain copies of all three Kai proteins.  

Considering that P. marinus is thought to have phylogenetically diverged somewhat recently, 

this makes it extremely unlikely that the kaiA gene evolved independently in all other 

cyanobacteria and that the original, ancient cyanobacterium had a Prochlorococcus-like kaiB and 

kaiC system.  Second, as one traverses the cyanobacterial phylogenetic tree from a relative that 

has all three Kai proteins (Synechococcus WH 8102) towards P. marinus MED4, one finds that 

the kaiA gene gets progressively shorter from the N-terminus until only the C-terminal third of 

kaiA is remaining in Prochlorococcus sp. MIT 9313 and Prochlorococcus sp. MIT 9303 (49).  

This view suggests that the kaiA gene was truncated over evolutionary history as 

Prochlorococcus differentiated into its niche, and that the lack of a kaiA gene in P. marinus is 

the terminal result in a series of piecewise deletions in the kaiA gene. 

 The main question to investigate here is the evolutionary path that the Kai system 

traversed to lose kaiA.  Did the (presumed) original free-running clock become a dampened 

oscillator before losing kaiA entirely, analogous to a continuous decrease in feedback loop 

strength described in the model in Chapter 2?  As kaiA was shortened, what functions did it lose, 

and what functions did it retain?  How did KaiC switch to having a KaiA-independent kinase 

activity?  While ancestral reconstruction can contribute to our investigation of these questions, it 

is also necessary to perform a multitude of biochemical experiments to dissect which residues 

may have contributed to these changes, which requires additional planning from what is 

presented here. 

 I did not focus my ancestral reconstruction efforts towards the evolution of the 

Prochlorococcus system, instead focusing on the first posed question of whether ancestral clock 
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systems had faster periods to match the Earth’s rotation.  As such, all of the following sections 

will focus on the ancestral reconstruction problem with that perspective in mind. 

 

Methods and Results 

 Cyanobacterial protein sequences for all three Kai proteins were downloaded from 

GenBank using the following search term (example shown with KaiA): 

 

(KaiA) AND "cyanobacteria"[porgn:__txid1117] 

 

“KaiA” was substituted with “KaiB” and “KaiC” for their respective sequences.  The sequences 

for each protein were curated by hand to remove irrelevant sequences.  For instance, KaiB 

sequences appeared in the search results for KaiA and vice versa.  Other irrelevant results 

included partial sequences from crystal structures as well as hypothetical proteins and non-Kai 

proteins.  Results date to May 2014; as such, those seeking to continue this work should re-run 

the search as it is likely that more cyanobacterial genomes have been sequenced since. 

 Only organisms that contained all three Kai proteins were considered for reconstruction, 

and a Python program was written to remove species that did not have all three Kai proteins.  For 

organisms with duplicate sequences present, the first sequence in the list for that particular 

organism was taken.  Completion of this step yielded 146 distinct sets of Kai protein sequences.  

As a first step in constructing a phylogenetic tree, the KaiC sequences underwent multiple 

sequence alignment using the MUSCLE algorithm in the MEGA bioinformatics software 

platform.  A phylogenetic tree for KaiC was constructed using PhyML, which constructs 

phylogenetic trees based on maximum likelihood, and a root for the tree was chosen such that 
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Synechococcus sp. JA-3-3Ab and Synechococcus sp. JA-2-3-Ba formed the outgroup for the 

remaining species, which is based on phylogenetics of 16s rRNA sequencing that show the JA-3-

3-Ab and JA-2-3-Ba species as the most basal cyanobacteria out of the 146 cyanobacteria 

sampled. 

 The resulting tree with all 146 sets of KaiC sequences was compared to previous 

phylogenetic studies that used cyanobacterial fossils to calibrate their estimate of the 

evolutionary molecular clock in order to estimate the age of ancestral nodes within the 

phylogenetic tree (151, 152), see Figures A.2 and A.3.  Based on these previous studies, three 

nodes were chosen for ancestral reconstruction that were predicted to span a suitable range of 

times to test whether a trend towards shorter periods existed as nodes became more ancient.  The 

estimated age of these nodes is listed in the table below: 

Table A.1. Ages of selected ancestral nodes 

 Node and age in MYA 

Study Red Yellow Green 

Baca et al. (ML) 2223 ± 145 1031 ± 105 588 ± 38 

Baca et al. (Bayesian) 2583 (2186-2973) 1943 (1372-2524) 1035 (576-1531) 

Dvorak et al. ~2700 ~2300 ~1500 

The red node is the ancestor of most cyanobacteria, the yellow node is the most recent common 

ancestor of S. elongatus and the marine picocyanobacteria (such as Synechococcus WH 8102 and 

P. marinus MED 4), and the green node is the most recent common ancestor of the marine 

picocyanobacterial. 

It should be noted that the following analysis uses only a subset of the sequences for all 

146 species for reasons that are now outdated, and any future analysis should be repeated with all 

146 species as it would increase the amount of information available for reconstruction.  

Originally, the three nodes selected for reconstruction lay entirely within a clade that only 

comprised a small part of the complete tree with all 146 species, and to reduce the complexity of 



135 

 

reconstruction, the phylogenetic tree of 146 species was trimmed to contain only 36 species.  

These 36 species included all species that were descendants of the three original target nodes (19  

 

Figure A.2. Phylogenetic tree constructed from concatenated 16S rRNA and 23S rRNA sequences in 

cyanobacteria, adapted from (16).  Bar indicates 1 substitution per site.  Estimates of node ages were derived 

based on this tree.  The three target ancestral nodes listed in table A.1 are shown in red, yellow, and green. 
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Figure A.3. Phylogenetic tree constructed from 16s rRNA sequencing from (152).  This tree provided an 

alternate estimate of node age.  Targeted ancestral nodes indicated with red, yellow, and green circles.  



137 

 

species), and species in the outgroup (17 species) were selected by hand in a manner that 

represented the remaining cyanobacterial species somewhat equally.  These 36 species were used 

in all subsequent analyses presented below, and the three selected nodes for study were later 

revised to the three presented in the table above, which will also be used in all subsequent 

analyses below. 

 Before obtaining ancestral sequences, multiple sequence alignments were performed for 

the 36 species for each individual set of Kai protein sequences (for KaiA, KaiB, and KaiC), and 

phylogenetic trees were generated again in the manner described above.  The multiple sequence 

alignments and phylogenetic trees were processed by the Lazarus software package developed by 

the Thornton lab (153), which uses the PAML algorithm to infer ancestral sequences based on 

maximum likelihood approaches, and ancestral sequences were obtained for the target nodes.  It 

is important to note that ancestral reconstruction evaluates each residue in a protein sequence 

independently and that PAML treats blank residues in the multiple sequence alignment as 

missing information.  This can be problematic for sites in which one species in particular has a 

unique insertion of an extra residue that does not align to any other species.  Rather than 

assuming that the inserted residue does not exist in other species, PAML instead assumes that the 

corresponding residue is unknown.  To deal with cases like these, the ancestral sequences were 

realigned with the extant sequences, and sites that were unique insertions were manually 

removed from the ancestral sequence.  It is for this reason that the initial 146 species tree was 

trimmed to 36 species, as additional sequences increases the number of spurious insertions that 

will exist in the final ancestral sequences. 

 As a side comment, it is remarkable to note that the degree of conservation of Kai 

sequences across the entire cyanobacterial clade is strikingly high for proteins that originally 
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diverged billions of years ago.  However, despite this overall level of conservation, there are also 

small, specific regions of the Kai proteins that are less well conserved, such as the N- and C-

termini of KaiC.  A lack of conservation could be attributed to a bona fide change in protein 

function (such as the changes in the KaiA-binding part of the C-terminus from S. elongatus to P. 

marinus that are presumably responsible for the constitutive autokinase activity in ProKaiC), but 

it may also indicate that the evolutionary constraints in poorly conserved regions are much 

lower, indicating that the function of the region is less dependent on its specific sequence (e.g. a 

linker sequence). 

 These poorly conserved sites in the Kai proteins present a problem for ancestral 

reconstruction, in that the statistical confidence in the ancestral residues tends to be lower than 

for highly conserved sites.  How should this uncertainty be dealt with?  If only a few sites have 

low statistical confidence, then it may be possible to construct several variants of the protein 

using permutations of the second-most likely residues for each site with confidence below a 

given threshold (e.g. < 85% posterior probability).  However, this approach becomes untenable if 

the number of uncertain sites becomes large.  At this point, some judgement will need to be 

exercised for each uncertain site based on currently available biochemical studies as to whether 

one should simply use the highest confidence estimate or whether the sites should be replaced 

with a modern sequence.  These considerations were used in the approach I took in finalizing 

ancestral sequences for experimental testing. 

 Reconstructing the entire Kai system in vitro for three ancestral nodes is a moderate 

undertaking, involving the purification of nine individual proteins.  Thus, as a first step, I aimed 

to test whether ancestral KaiC could function with modern KaiA and KaiB from S. elongatus, 

reducing the number of proteins for reconstruction to three (see Figure A.4 for phylogenetic tree 
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of KaiC with target nodes highlighted).  In all three ancestral nodes, the site in KaiC that had the 

lowest estimation confidence was the N-terminus, which was highly variable across all 

cyanobacteria.  A scanning mutagenesis study performed by Jenny Lin showed that in general, 

random single residue mutations in the N-terminus (residues 1-16) were less likely to impact 

oscillation amplitude or period than mutations after residue 16, suggesting that the N-terminus is 

poorly conserved because its function is not as strictly dependent on sequence (154).  

Additionally, the vast majority of individual residue changes between the ancestral sequences 

and modern S. elongatus KaiC between residues 1-16 were shown not to have a significant 

Figure A.4. KaiC phylogenetic tree constructed in this study with ancestral target nodes labeled.  Bar 

indicates 0.1 substitutions per site, and numbers at nodes indicate maximum likelihood support numbers 

for each node. 
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impact on oscillation amplitude or period, further decreasing the likelihood that the ancestral 

sequences contained a predicted residue that would greatly impact KaiC function.  Nevertheless, 

as a precaution, the first 16 residues of the ancestral sequences were replaced by those from 

modern KaiC.  The remaining sequence was left as the generated ancestral sequences, and the 

final sequences are listed below (see Figure A.5 for a multiple sequence alignment of modern 

KaiC and the ancestral nodes): 

 

Red node (predicted age ~2200-2700 MYA): 

 

Reconstructed sequence 

MNQPEQQSSNNGPNSAGVQKIRTMIEGFDDISHGGLPVGRTTLVSGTSGTGKTLFAVQF

LYNGITYFDEPGIFVTFEESPTDIIKNASSFGWDLQKLIDEGKLFILDASPDPEGQDVVGNF

DLSALIERIQYAIRKYKAKRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQLGVTTIMT

TERVEEYGPVARFGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITN

NGINIFPLGAMRLTQRSSNVRVSSGVKTLDEMCGGGFFKDSIILATGATGTGKTLLVSKF

LENGCQNGERAILFAYEESRAQLSRNASSWGIDFEELERQGLLKIICAYPESAGLEDHLQI

IKSEIAEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTTDQFMGSHS

ITDSHISTITDTILMLQYVEIRGEMSRAINVFKMRGSWHDKGIREYTITENGPEIKDSFRNY

ERIISGSPTRISVDEKSELSRIVRGVQDKEEEIDE 

 

Sequence with replaced N-terminus from S. elongatus KaiC 

MTSAEMTSPNNNSEHQGVQKIRTMIEGFDDISHGGLPVGRTTLVSGTSGTGKTLFAVQF

LYNGITYFDEPGIFVTFEESPTDIIKNASSFGWDLQKLIDEGKLFILDASPDPEGQDVVGNF

DLSALIERIQYAIRKYKAKRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQLGVTTIMT

TERVEEYGPVARFGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITN

NGINIFPLGAMRLTQRSSNVRVSSGVKTLDEMCGGGFFKDSIILATGATGTGKTLLVSKF

LENGCQNGERAILFAYEESRAQLSRNASSWGIDFEELERQGLLKIICAYPESAGLEDHLQI

IKSEIAEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTTDQFMGSHS

ITDSHISTITDTILMLQYVEIRGEMSRAINVFKMRGSWHDKGIREYTITENGPEIKDSFRNY

ERIISGSPTRISVDEKSELSRIVRGVQDKEEEIDE 

 

Yellow node (predicted age ~1000-2000 MYA): 

 

Reconstructed sequence 

MTQPEQQSPNNNSNLAGVQKIRTMIEGFDDISHGGLPIGRSTLVSGTSGTGKTLFSVQFL

YNGITQFDEPGIFVTFEESPQDIIKNASSFGWDLQKLVDEGKLFILDASPDPEGQDVVGNF

DLSALIERINYAIRKYKARRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQIGVTTVMT

TERIEEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITNH

GINIFPLGAMRLTQRSSNVRVSSGVKRLDEMCGGGFFKDSIILATGATGTGKTLLVSKFV

ENACANKERAILFAYEESRAQLLRNASSWGIDFEEMERQGLLKIICAYPESAGLEDHLQII
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KSEISEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTSDQFMGSHSI

TDSHISTITDTILLLQYVEIRGEMSRAINVFKMRGSWHDKGIREYMITDKGPEIKDSFRNF

ERIISGSPTRISVDEKSELSRIVRGVQEKEPEIEE 

 

Sequence with replaced N-terminus from S. elongatus KaiC 

MTSAEMTSPNNNSEHQGVQKIRTMIEGFDDISHGGLPIGRSTLVSGTSGTGKTLFSVQFL

YNGITQFDEPGIFVTFEESPQDIIKNASSFGWDLQKLVDEGKLFILDASPDPEGQDVVGNF

DLSALIERINYAIRKYKARRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQIGVTTVMT

TERIEEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITNH

GINIFPLGAMRLTQRSSNVRVSSGVKRLDEMCGGGFFKDSIILATGATGTGKTLLVSKFV

ENACANKERAILFAYEESRAQLLRNASSWGIDFEEMERQGLLKIICAYPESAGLEDHLQII

KSEISEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTSDQFMGSHSI

TDSHISTITDTILLLQYVEIRGEMSRAINVFKMRGSWHDKGIREYMITDKGPEIKDSFRNF

ERIISGSPTRISVDEKSELSRIVRGVQEKEPEIEE 

 

Green node (predicted age ~600-1500 MYA): 

 

Reconstructed sequence 

MTQPMQDPSPTNNHLASVQKLPTGIEGFDDVCQGGLPIGRSTLISGTSGTGKTVFSLNFL

YNGIRQFDEPGIFVTFEESPLDILRNAASFGWNLQEMVEQDKLFLLDASPDPEGQDVAGS

FDLSGLIERINYAIRKYKARRVAIDSITAVFQQYDAVSVVRREIFRLIARLKEIGVTTVMT

TERIDEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTVEILKLRGTTHMKGEFPFTMGS

HGISIFPLGAMRLTQRSSNVRVSSGVPRLDEMCGGGFFKDSIILATGATGTGKTLLVSKF

VENACANKERAILFAYEESRAQLLRNATSWGIDFEEMERQGLLKIICAYPESTGLEDHLQ

IIKTEISQFKPSRMAIDSLSALARGVSHNAFRQFVIGVTGYAKQEEIAGFFTNTSEEFMGS

HSITDSHISTITDTILLLQYVEIRGEMARALNVFKMRGSWHDKGIREYIITSNGPEIKDSFS

NFERIISGVPHRINTDERSELSRIVKGVGEDQSLIEE 

 

Sequence with replaced N-terminus from S. elongatus KaiC 

MTSAEMTSPNNNSEHQSVQKLPTGIEGFDDVCQGGLPIGRSTLISGTSGTGKTVFSLNFL

YNGIRQFDEPGIFVTFEESPLDILRNAASFGWNLQEMVEQDKLFLLDASPDPEGQDVAGS

FDLSGLIERINYAIRKYKARRVAIDSITAVFQQYDAVSVVRREIFRLIARLKEIGVTTVMT

TERIDEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTVEILKLRGTTHMKGEFPFTMGS

HGISIFPLGAMRLTQRSSNVRVSSGVPRLDEMCGGGFFKDSIILATGATGTGKTLLVSKF

VENACANKERAILFAYEESRAQLLRNATSWGIDFEEMERQGLLKIICAYPESTGLEDHLQ

IIKTEISQFKPSRMAIDSLSALARGVSHNAFRQFVIGVTGYAKQEEIAGFFTNTSEEFMGS

HSITDSHISTITDTILLLQYVEIRGEMARALNVFKMRGSWHDKGIREYIITSNGPEIKDSFS

NFERIISGVPHRINTDERSELSRIVKGVGEDQSLIEE 
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Figure A.5. Multiple sequence alignment of modern S. elongatus KaiC and reconstructed ancestral KaiC.  

Nodes 40, 43, and 45 correspond to the red, yellow, and green target nodes respectively.  



143 

 

 Next, I examined the reconstructed sequences to determine whether residues known to be 

important for KaiC function were present in the ancestral sequences, and these residues and their 

functions are listed below from (69, 155): 

Table A.2. Residues important for KaiC function 

  Present in ancestral sequence? 

Residue Function Red node Yellow 

node 

Green node 

T432 Clock phosphorylation site Yes Yes Yes 

S431 Clock phosphorylation site Yes Yes Yes 

I497 Terminal residue in A-loop, 

stabilizes buried position of A-

loop 

Yes Yes Yes 

E487 Stabilizes A-loop buried state 

with T495 

Yes Yes Yes 

T495 Stabilizes A-loop buried state 

with E487 

Yes Yes No (T->H) 

I472 Prevents ATP from 

approaching phosphorylation 

site (with D474) 

Yes Yes Yes 

D474 Prevents ATP from 

approaching phosphorylation 

site (with I472) 

No (D->E) Yes No (D->S) 

W331 Thought to stabilize ATP away 

from phosphorylation site 

(W331A leads to 

hyperphosphorylation) 

Yes Yes Yes 

E77 Catalytic carboxylate in CI Yes Yes Yes 

E78 Catalytic carboxylate in CI Yes Yes Yes 

E318 Catalytic carboxylate in CII Yes Yes Yes 

E319 Catalytic carboxylate in CII Yes Yes Yes 

 

Notably, most of these important residues are present in the ancestral sequences, with a few 

exceptions.  Although the effect of the remaining mutations in S. elongatus KaiC are currently 

unknown, the predicted ancestral residues are present in other modern cyanobacterial KaiC 

sequences and are presumed to remain functional in their individual organismal contexts. 

 The ancestral sequences were also compared to known mutations that alter the period of 

oscillation, summarized below from (156): 
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Table A.3. KaiC period mutants 

  Residue present in ancestral sequence 

Mutation Period Red node Yellow 

node 

Green node 

T42S 28 hours T T T 

A251V 46 hours A A A 

S157P 21 hours A A V 

F470Y 17 hours Y Y Y 

R393C 15 hours R R R 

While these comparisons are far from conclusive, it is interesting to note that the F470Y change, 

which shortens the circadian period to 17 hours, is present in all ancestral sequences.  Residue 

S157 is also completely different in all ancestral sequences, but the effect of these mutations is 

unknown.  However, a major caveat is that the period mutants were all characterized in the 

background of wild-type modern S. elongatus KaiC.  Indeed, the residue at position 470 in 

roughly half of the cyanobacteria is a tyrosine, but those species presumably have a 24-hour 

clock, weakening the hypothesis that the tyrosine at position 470 in the ancestral sequences is 

predictive of the ancestral Kai system having a shorter period. 

 The sequences for all three nodes (with replaced N-termini) were ordered from IDT as 

gBlocks, and using Gibson assembly, they were combined with expression plasmid pRSET-B 

which was digested with BamHI and NcoI.  The insertion of the KaiC sequences for the red, 

yellow, and green nodes into pRSET-B generated plasmids pJC074, pJC075, and pJC076.  

Attempts at preparing recombinant ancestral KaiC should follow the Rust lab protocol for 

preparing S. elongatus KaiC, as reported in (37). 

 

Future Directions 

 Expression plasmids for ancestral KaiC at the three target nodes have been constructed; 

the next step is to express and purify recombinant ancestral KaiC and test their function in vitro 
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by incubating ancestral KaiC with modern KaiA and KaiB from S. elongatus.  Two methods for 

assaying clock function include sampling the reaction periodically and running samples in an 

SDS-PAGE gel to resolve KaiC phosphorylation over time, or using fluorescence polarization to 

assay clock state in an automated fashion with high temporal resolution as described in (23).  

While the fluorescence polarization method requires less manual effort, running reaction samples 

on a gel may be more informative if the clock reaction fails to oscillate as the phosphorylation 

state of KaiC will be revealed at each point in time. 

 Many reasons exist for why the clock reaction may fail with ancestral KaiC, including 

intrinsic failure of the protein structure or failure to find correct reaction conditions or protein 

concentrations.  In order to address condition-dependent failures, the fluorescence polarization 

assay is ideal for troubleshooting due to its high-throughput plate reader format.  However, 

failure stemming from a protein sequence or structure level cannot be so easily rectified due to 

uncertainty in which parts of the sequence are problematic.  Additionally, the ancestral 

reconstruction process provides the most likely estimate for each site in the sequence 

independently, ignoring context dependency between different residues.  Hence, it is quite 

possible that multiple residues in the ancestral sequence never actually existed together in the 

same organism and that together they are unable to recapitulate the ancestral phenotype.  To 

assess whether context dependency is important, an information theoretic approach can be used 

to determine the mutual information between residues in the Kai proteins across all known 

sequences, similar to the approach used in (157). 

 Another approach to address uncertainties in the ancestral protein sequences is to 

construct variant sequences that instead use the residues that have the second-highest statistical 

confidence.  If there are many variants, a combinatorial approach may be devised to construct a 
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library, perhaps using some form of combinatorial Quikchange mutagenesis.  It would be a great 

deal of work to test more than a handful of variant sequences in vitro with recombinantly 

purified protein—thus, an approach of this kind would necessitate transforming the variant Kai 

systems into cyanobacteria to perform a high-throughput screening of clock phenotype in vivo.  

A caveat to this approach that must also be considered is that the ancestral Kai proteins may not 

interface with downstream clock output proteins correctly, making it difficult to interpret a result 

that is arrhythmic. 

 Lastly, it is possible that the ancestral Kai proteins are able to interface with each other 

but not with modern variants.  To investigate, an analysis should be performed to compare 

contact residues important for Kai protein binding in the ancestral proteins vs the modern 

proteins.  If it becomes clear that the binding interfaces between Kai proteins have co-evolved 

over time, the entire ancestral Kai system should be reconstructed and tested in vitro, instead of 

testing a mixture of ancestral KaiC and modern KaiA and KaiB as initially presented here. 

 

Acknowledgement of contributions 

 Here, I would like to recognize Haneul Yoo for assisting in finalizing the candidate 

ancestral KaiC sequences presented here.  Haneul performed the KaiC multiple sequence 

alignment, phylogenetic tree building, and ancestral reconstruction.  I provided the Kai protein 

sequence database, chose the nodes for reconstruction, chose which parts of ancestral KaiC to 

replace with modern S. elongatus KaiC, compared residues within the ancestral sequences to 

residues in modern KaiC known to be important for function, and built the expression plasmids. 

 
 
 
 
 



147 

 

References 

1. M. B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. 

Nature 403, 335-338 (2000). 

2. M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene expression in a 

single cell. Science 297, 1183-1186 (2002). 

3. J. W. Thornton, Resurrecting ancient genes: experimental analysis of extinct molecules. 

Nat Rev Genet 5, 366-375 (2004). 

4. J. Stricker et al., A fast, robust and tunable synthetic gene oscillator. Nature 456, 516-519 

(2008). 

5. G. Lambert, J. Chew, M. J. Rust, Costs of Clock-Environment Misalignment in 

Individual Cyanobacterial Cells. Biophys J 111, 883-891 (2016). 

6. M. J. Gardner, K. E. Hubbard, C. T. Hotta, A. N. Dodd, A. A. Webb, How plants tell the 

time. Biochemical Journal 397, 15-24 (2006). 

7. R. A. Wever, Properties of human sleep-wake cycles: parameters of internally 

synchronized free-running rhythms. Sleep 7, 27-51 (1984). 

8. M. H. Vitaterna et al., Mutagenesis and mapping of a mouse gene, Clock, essential for 

circadian behavior. Science (New York, NY) 264, 719 (1994). 

9. R. J. Konopka, S. Benzer, Clock mutants of Drosophila melanogaster. Proceedings of the 

National Academy of Sciences 68, 2112-2116 (1971). 

10. M. P. Myers, K. Wager-Smith, A. Rothenfluh-Hilfiker, M. W. Young, Light-induced 

degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 

271, 1736 (1996). 

11. D. B. Bolvin, J. F. Duffy, R. E. Kronauer, C. A. Czeisler, Dose-response relationships for 

resetting of human circadian clock by light. Nature 379, 540 (1996). 

12. R. K. Barrett, J. S. Takahashi, Temperature compensation and temperature entrainment of 

the chick pineal cell circadian clock. Journal of Neuroscience 15, 5681-5692 (1995). 

13. D. A. Wheeler, M. J. Hamblen-Coyle, M. S. Dushay, J. C. Hall, Behavior in light-dark 

cycles of Drosophila mutants that are arrhythmic, blind, or both. Journal of biological 

rhythms 8, 67-94 (1993). 

14. K.-A. Stokkan, S. Yamazaki, H. Tei, Y. Sakaki, M. Menaker, Entrainment of the 

circadian clock in the liver by feeding. Science 291, 490-493 (2001). 

15. B. A. Reyes, J. S. Pendergast, S. Yamazaki, Mammalian peripheral circadian oscillators 

are temperature compensated. Journal of biological rhythms 23, 95-98 (2008). 



148 

 

16. D. E. Somers, A. Webb, M. Pearson, S. A. Kay, The short-period mutant, toc1-1, alters 

circadian clock regulation of multiple outputs throughout development in Arabidopsis 

thaliana. Development 125, 485-494 (1998). 

17. A. Matsumoto, K. Tomioka, Y. Chiba, T. Tanimura, timrit Lengthens circadian period in 

a temperature-dependent manner through suppression of PERIOD protein cycling and 

nuclear localization. Molecular and cellular biology 19, 4343-4354 (1999). 

18. P. L. Lowrey, J. S. Takahashi, Mammalian circadian biology: elucidating genome-wide 

levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441 (2004). 

19. Y. Taniguchi et al., Quantifying E. coli proteome and transcriptome with single-molecule 

sensitivity in single cells. science 329, 533-538 (2010). 

20. M. Tigges, T. T. Marquez-Lago, J. Stelling, M. Fussenegger, A tunable synthetic 

mammalian oscillator. Nature 457, 309-312 (2009). 

21. L. Potvin-Trottier, N. D. Lord, G. Vinnicombe, J. Paulsson, Synchronous long-term 

oscillations in a synthetic gene circuit. Nature 538, 514-517 (2016). 

22. M. Nakajima et al., Reconstitution of circadian oscillation of cyanobacterial KaiC 

phosphorylation in vitro. Science 308, 414-415 (2005). 

23. E. Leypunskiy et al., The cyanobacterial circadian clock follows midday in vivo and in 

vitro. eLife 6, e23539 (2017). 

24. M. J. Rust, S. S. Golden, E. K. O'Shea, Light-driven changes in energy metabolism 

directly entrain the cyanobacterial circadian oscillator. Science 331, 220-223 (2011). 

25. I. Mihalcescu, W. Hsing, S. Leibler, Resilient circadian oscillator revealed in individual 

cyanobacteria. Nature 430, 81-85 (2004). 

26. A. C. Liu et al., Intercellular coupling confers robustness against mutations in the SCN 

circadian clock network. Cell 129, 605-616 (2007). 

27. S. S. Golden, S. R. Canales, Cyanobacterial circadian clocks--timing is everything. Nat 

Rev Microbiol 1, 191-199 (2003). 

28. C. Troein, J. C. Locke, M. S. Turner, A. J. Millar, Weather and seasons together demand 

complex biological clocks. Current Biology 19, 1961-1964 (2009). 

29. I. Searle, G. Coupland, Induction of flowering by seasonal changes in photoperiod. The 

EMBO Journal 23, 1217-1222 (2004). 

30. M. A. Woelfle, Y. Ouyang, K. Phanvijhitsiri, C. H. Johnson, The adaptive value of 

circadian clocks: an experimental assessment in cyanobacteria. Current biology : CB 14, 

1481-1486 (2004). 



149 

 

31. K. Spoelstra, M. Wikelski, S. Daan, A. S. Loudon, M. Hau, Natural selection against a 

circadian clock gene mutation in mice. Proc Natl Acad Sci U S A 113, 686-691 (2016). 

32. C. H. Lowe, D. S. Hinds, P. J. Lardner, K. E. Justice, Natural free-running period in 

vertebrate animal populations. Science 156, 531-534 (1967). 

33. C. A. Czeisler et al., Stability, precision, and near-24-hour period of the human circadian 

pacemaker. Science 284, 2177-2181 (1999). 

34. V. Dvornyk, O. Vinogradova, E. Nevo, Origin and evolution of circadian clock genes in 

prokaryotes. Proc Natl Acad Sci U S A 100, 2495-2500 (2003). 

35. A. Wiegard et al., Biochemical analysis of three putative KaiC clock proteins from 

Synechocystis sp. PCC 6803 suggests their functional divergence. Microbiology 

(Reading, England) 159, 948-958 (2013). 

36. H. Kushige et al., Genome-wide and heterocyst-specific circadian gene expression in the 

filamentous Cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 195, 1276-1284 

(2013). 

37. M. J. Rust, J. S. Markson, W. S. Lane, D. S. Fisher, E. K. O'Shea, Ordered 

phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809-

812 (2007). 

38. Y. Nakahira, A. Ogawa, H. Asano, T. Oyama, Y. Tozawa, Theophylline-dependent 

riboswitch as a novel genetic tool for strict regulation of protein expression in 

Cyanobacterium Synechococcus elongatus PCC 7942. Plant & cell physiology 54, 1724-

1735 (2013). 

39. A. T. Ma, C. M. Schmidt, J. W. Golden, Regulation of gene expression in diverse 

cyanobacterial species by using theophylline-responsive riboswitches. Applied and 

environmental microbiology 80, 6704-6713 (2014). 

40. S. W. Teng, S. Mukherji, J. R. Moffitt, S. de Buyl, E. K. O'Shea, Robust circadian 

oscillations in growing cyanobacteria require transcriptional feedback. Science 340, 737-

740 (2013). 

41. H. Kageyama et al., Cyanobacterial circadian pacemaker: Kai protein complex dynamics 

in the KaiC phosphorylation cycle in vitro. Molecular cell 23, 161-171 (2006). 

42. X. Y. Zheng, E. K. O'Shea, Cyanobacteria Maintain Constant Protein Concentration 

despite Genome Copy-Number Variation. Cell reports 19, 497-504 (2017). 

43. G. M. Suel, R. P. Kulkarni, J. Dworkin, J. Garcia-Ojalvo, M. B. Elowitz, Tunability and 

noise dependence in differentiation dynamics. Science 315, 1716-1719 (2007). 

44. J. S. van Zon, D. K. Lubensky, P. R. Altena, P. R. ten Wolde, An allosteric model of 

circadian KaiC phosphorylation. Proc Natl Acad Sci U S A 104, 7420-7425 (2007). 



150 

 

45. S. Clodong et al., Functioning and robustness of a bacterial circadian clock. Mol Syst Biol 

3, 90 (2007). 

46. J. Lin, J. Chew, U. Chockanathan, M. J. Rust, Mixtures of opposing phosphorylations 

within hexamers precisely time feedback in the cyanobacterial circadian clock. Proc Natl 

Acad Sci U S A 111, E3937-3945 (2014). 

47. C. Phong, J. S. Markson, C. M. Wilhoite, M. J. Rust, Robust and tunable circadian 

rhythms from differentially sensitive catalytic domains. Proc Natl Acad Sci U S A 110, 

1124-1129 (2013). 

48. A. Dufresne et al., Genome sequence of the cyanobacterium Prochlorococcus marinus 

SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A 100, 

10020-10025 (2003). 

49. J. Holtzendorff et al., Genome streamlining results in loss of robustness of the circadian 

clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. Journal of 

biological rhythms 23, 187-199 (2008). 

50. C. A. Thaiss et al., Microbiota Diurnal Rhythmicity Programs Host Transcriptome 

Oscillations. Cell 167, 1495-1510 e1412 (2016). 

51. V. Leone et al., Effects of diurnal variation of gut microbes and high-fat feeding on host 

circadian clock function and metabolism. Cell Host Microbe 17, 681-689 (2015). 

52. J. R. Chabot, J. M. Pedraza, P. Luitel, A. van Oudenaarden, Stochastic gene expression 

out-of-steady-state in the cyanobacterial circadian clock. Nature 450, 1249-1252 (2007). 

53. S. R. Mackey, J. L. Ditty, E. M. Clerico, S. S. Golden, Detection of rhythmic 

bioluminescence from luciferase reporters in cyanobacteria. Methods Mol Biol 362, 115-

129 (2007). 

54. L. R. Moore et al., Culturing the marine cyanobacterium Prochlorococcus. Limnol 

Oceanogr Methods 5, 353-362 (2007). 

55. G. Lambert, E. Kussell, Quantifying selective pressures driving bacterial evolution using 

lineage analysis. Phys Rev X 5,  (2015). 

56. O. Raveh, N. David, G. Rilov, E. Rahav, The Temporal Dynamics of Coastal 

Phytoplankton and Bacterioplankton in the Eastern Mediterranean Sea. PLoS One 10, 

e0140690 (2015). 

57. E. Rahav, M. J. Giannetto, E. Bar-Zeev, Contribution of mono and polysaccharides to 

heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci Rep 6, 27858 

(2016). 



151 

 

58. H. Ito et al., Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide 

transcriptional control in Synechococcus elongatus. Proc Natl Acad Sci U S A 106, 

14168-14173 (2009). 

59. V. Vijayan, I. H. Jain, E. K. O'Shea, A high resolution map of a cyanobacterial 

transcriptome. Genome Biol 12, R47 (2011). 

60. A. E. Carpenter et al., CellProfiler: image analysis software for identifying and 

quantifying cell phenotypes. Genome Biol 7, R100 (2006). 

61. R. Tseng et al., Structural basis of the day-night transition in a bacterial circadian clock. 

Science 355, 1174-1180 (2017). 

62. J. Snijder et al., Structures of the cyanobacterial circadian oscillator frozen in a fully 

assembled state. Science 355, 1181-1184 (2017). 

63. I. M. Axmann et al., Biochemical evidence for a timing mechanism in prochlorococcus. J 

Bacteriol 191, 5342-5347 (2009). 

64. D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions. The journal of 

physical chemistry 81, 2340-2361 (1977). 

65. X. Qin et al., Intermolecular associations determine the dynamics of the circadian 

KaiABC oscillator. Proc Natl Acad Sci U S A 107, 14805-14810 (2010). 

66. F. Hayashi et al., Stoichiometric interactions between cyanobacterial clock proteins KaiA 

and KaiC. Biochem Biophys Res Commun 316, 195-202 (2004). 

67. S. Giovannoni, U. Stingl, The importance of culturing bacterioplankton in the 'omics' age. 

Nat Rev Microbiol 5, 820-826 (2007). 

68. L. Brocchieri, S. Karlin, Protein length in eukaryotic and prokaryotic proteomes. Nucleic 

Acids Res 33, 3390-3400 (2005). 

69. Y. I. Kim, G. Dong, C. W. Carruthers, Jr., S. S. Golden, A. LiWang, The day/night 

switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. 

Proc Natl Acad Sci U S A 105, 12825-12830 (2008). 

70. D. B. Forger, C. S. Peskin, Stochastic simulation of the mammalian circadian clock. Proc 

Natl Acad Sci U S A 102, 321-324 (2005). 

71. S. Di Talia, J. M. Skotheim, J. M. Bean, E. D. Siggia, F. R. Cross, The effects of 

molecular noise and size control on variability in the budding yeast cell cycle. Nature 

448, 947-951 (2007). 

72. Y. Kitayama, H. Iwasaki, T. Nishiwaki, T. Kondo, KaiB functions as an attenuator of 

KaiC phosphorylation in the cyanobacterial circadian clock system. The EMBO Journal 

22, 2127-2134 (2003). 



152 

 

73. Q. Yang, B. F. Pando, G. Dong, S. S. Golden, A. van Oudenaarden, Circadian gating of 

the cell cycle revealed in single cyanobacterial cells. Science 327, 1522-1526 (2010). 

74. C. S. Ting, C. Hsieh, S. Sundararaman, C. Mannella, M. Marko, Cryo-electron 

tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a 

globally important marine cyanobacterium. Journal of bacteriology 189, 4485-4493 

(2007). 

75. A. T. Winfree, The Geometry of Biological Time.  (Springer-Verlag, New York, ed. 2nd, 

2000), pp. 777. 

76. Y. Ouyang, C. R. Andersson, T. Kondo, S. S. Golden, C. H. Johnson, Resonating 

circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95, 8660-

8664 (1998). 

77. F. A. Scheer, M. F. Hilton, C. S. Mantzoros, S. A. Shea, Adverse metabolic and 

cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106, 

4453-4458 (2009). 

78. M. Nakajima, H. Ito, T. Kondo, In vitro regulation of circadian phosphorylation rhythm 

of cyanobacterial clock protein KaiC by KaiA and KaiB. FEBS Lett 584, 898-902 (2010). 

79. N. Hosokawa, H. Kushige, H. Iwasaki, Attenuation of the posttranslational oscillator via 

transcription-translation feedback enhances circadian-phase shifts in Synechococcus. 

Proc Natl Acad Sci U S A 110, 14486-14491 (2013). 

80. Y. Kitayama, T. Nishiwaki, K. Terauchi, T. Kondo, Dual KaiC-based oscillations 

constitute the circadian system of cyanobacteria. Genes & development 22, 1513-1521 

(2008). 

81. R. Pattanayek et al., Visualizing a circadian clock protein: crystal structure of KaiC and 

functional insights. Mol Cell 15, 375-388 (2004). 

82. S. Ye, I. Vakonakis, T. R. Ioerger, A. C. LiWang, J. C. Sacchettini, Crystal structure of 

circadian clock protein KaiA from Synechococcus elongatus. The Journal of biological 

chemistry 279, 20511-20518 (2004). 

83. K. Hitomi, T. Oyama, S. Han, A. S. Arvai, E. D. Getzoff, Tetrameric architecture of the 

circadian clock protein KaiB. A novel interface for intermolecular interactions and its 

impact on the circadian rhythm. The Journal of biological chemistry 280, 19127-19135 

(2005). 

84. Y. Xu et al., Identification of key phosphorylation sites in the circadian clock protein 

KaiC by crystallographic and mutagenetic analyses. Proc Natl Acad Sci U S A 101, 

13933-13938 (2004). 



153 

 

85. M. Egli et al., Dephosphorylation of the core clock protein KaiC in the cyanobacterial 

KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 51, 

1547-1558 (2012). 

86. T. Nishiwaki, T. Kondo, Circadian autodephosphorylation of cyanobacterial clock 

protein KaiC occurs via formation of ATP as intermediate. The Journal of biological 

chemistry 287, 18030-18035 (2012). 

87. H. Iwasaki, T. Nishiwaki, Y. Kitayama, M. Nakajima, T. Kondo, KaiA-stimulated KaiC 

phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci U S A 99, 

15788-15793 (2002). 

88. I. Vakonakis, A. C. LiWang, Structure of the C-terminal domain of the clock protein 

KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation. Proc 

Natl Acad Sci U S A 101, 10925-10930 (2004). 

89. T. Nishiwaki et al., A sequential program of dual phosphorylation of KaiC as a basis for 

circadian rhythm in cyanobacteria. EMBO J 26, 4029-4037 (2007). 

90. C. Brettschneider et al., A sequestration feedback determines dynamics and temperature 

entrainment of the KaiABC circadian clock. Molecular systems biology 6, 389 (2010). 

91. X. Qin et al., Intermolecular associations determine the dynamics of the circadian 

KaiABC oscillator. Proc Natl Acad Sci U S A,  (2010). 

92. J. S. van Zon, D. K. Lubensky, P. R. H. Altena, P. R. ten Wolde, An allosteric model of 

circadian KaiC phosphorylation. P Natl Acad Sci USA 104, 7420-7425 (2007). 

93. Y. G. Chang, R. Tseng, N. W. Kuo, A. Liwang, Rhythmic ring-ring stacking drives the 

circadian oscillator clockwise. Proc Natl Acad Sci U S A,  (2012). 

94. J. Snijder et al., Insight into cyanobacterial circadian timing from structural details of the 

KaiB–KaiC interaction. Proceedings of the National Academy of Sciences,  (2014). 

95. Y. Kitayama, T. Nishiwaki-Ohkawa, Y. Sugisawa, T. Kondo, KaiC intersubunit 

communication facilitates robustness of circadian rhythms in cyanobacteria. Nat Commun 

5,  (2013). 

96. J. Monod, J. Wyman, J. P. Changeux, On Nature of Allosteric Transitions - a Plausible 

Model. J Mol Biol 12, 88-& (1965). 

97. M. Egli et al., Loop-Loop Interactions Regulate KaiA-Stimulated KaiC Phosphorylation 

in the Cyanobacterial KaiABC Circadian Clock. Biochemistry 52, 1208-1220 (2013). 

98. J. Snijder et al., Insight into cyanobacterial circadian timing from structural details of the 

KaiB-KaiC interaction. Proc Natl Acad Sci U S A 111, 1379-1384 (2014). 



154 

 

99. L. Ma, R. Ranganathan, Quantifying the rhythm of KaiB-C interaction for in vitro 

cyanobacterial circadian clock. PLoS One 7, e42581 (2012). 

100. R. Tseng et al., KaiA Assists the KaiB-KaiC Interaction and KaiB/SasA Competition in 

the Circadian Clock of Cyanobacteria. J Mol Biol,  (2013). 

101. S. A. Villarreal et al., CryoEM and molecular dynamics of the circadian KaiB-KaiC 

complex indicates that KaiB monomers interact with KaiC and block ATP binding clefts. 

J Mol Biol 425, 3311-3324 (2013). 

102. S. A. Villarreal et al., CryoEM and Molecular Dynamics of the Circadian KaiB-KaiC 

Complex Indicates That KaiB Monomers Interact with KaiC and Block ATP Binding 

Clefts. J Mol Biol 425, 3311-3324 (2013). 

103. N. E. Buchler, M. Louis, Molecular Titration and Ultrasensitivity in Regulatory 

Networks. J Mol Biol 384, 1106-1119 (2008). 

104. K. L. Brown, K. T. Hughes, The Role of Anti-Sigma Factors in Gene-Regulation. Mol 

Microbiol 16, 397-404 (1995). 

105. S. Mukherji et al., MicroRNAs can generate thresholds in target gene expression. Nat 

Genet 43, 854-U860 (2011). 

106. J. K. Kim, D. B. Forger, A mechanism for robust circadian timekeeping via 

stoichiometric balance. Molecular systems biology 8,  (2012). 

107. T. Y. C. Tsai et al., Robust, tunable biological oscillations from interlinked positive and 

negative feedback loops. Science 321, 126-129 (2008). 

108. A. Gribun et al., The ClpP double ring tetradecameric protease exhibits plastic ring-ring 

interactions, and the N termini of its subunits form flexible loops that are essential for 

ClpXP and ClpAP complex formation. The Journal of biological chemistry 280, 16185-

16196 (2005). 

109. C. T. Tang et al., Setting the pace of the Neurospora circadian clock by multiple 

independent FRQ phosphorylation events. P Natl Acad Sci USA 106, 10722-10727 

(2009). 

110. S. Hooshangi, S. Thiberge, R. Weiss, Ultrasensitivity and noise propagation in a synthetic 

transcriptional cascade. Proc Natl Acad Sci U S A 102, 3581-3586 (2005). 

111. T. Shibata, K. Fujimoto, Noisy signal amplification in ultrasensitive signal transduction. 

Proceedings of the National Academy of Sciences of the United States of America 102, 

331-336 (2005). 

112. S. Yerushalmi, R. M. Green, Evidence for the adaptive significance of circadian rhythms. 

Ecology letters 12, 970-981 (2009). 



155 

 

113. M. Ishiura et al., Expression of a gene cluster kaiABC as a circadian feedback process in 

cyanobacteria. Science 281, 1519-1523 (1998). 

114. J. Tomita, M. Nakajima, T. Kondo, H. Iwasaki, No transcription-translation feedback in 

circadian rhythm of KaiC phosphorylation. Science 307, 251-254 (2005). 

115. A. Gutu, E. K. O'Shea, Two antagonistic clock-regulated histidine kinases time the 

activation of circadian gene expression. Mol Cell 50, 288-294 (2013). 

116. V. Vijayan, R. Zuzow, E. K. O'Shea, Oscillations in supercoiling drive circadian gene 

expression in cyanobacteria. Proc Natl Acad Sci U S A 106, 22564-22568 (2009). 

117. S. Diamond, D. Jun, B. E. Rubin, S. S. Golden, The circadian oscillator in 

Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc 

Natl Acad Sci U S A 112, E1916-1925 (2015). 

118. G. K. Pattanayak, C. Phong, M. J. Rust, Rhythms in energy storage control the ability of 

the cyanobacterial circadian clock to reset. Current biology : CB 24, 1934-1938 (2014). 

119. M. Amdaoud, M. Vallade, C. Weiss-Schaber, I. Mihalcescu, Cyanobacterial clock, a 

stable phase oscillator with negligible intercellular coupling. Proc Natl Acad Sci U S A 

104, 7051-7056 (2007). 

120. T. Kondo et al., Circadian clock mutants of cyanobacteria. Science 266, 1233-1236 

(1994). 

121. T. Mori, B. Binder, C. H. Johnson, Circadian gating of cell division in cyanobacteria 

growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A 93, 

10183-10188 (1996). 

122. F. Ribalet et al., Light-driven synchrony of Prochlorococcus growth and mortality in the 

subtropical Pacific gyre. Proc Natl Acad Sci U S A 112, 8008-8012 (2015). 

123. S. Takano, J. Tomita, K. Sonoike, H. Iwasaki, The initiation of nocturnal dormancy in 

Synechococcus as an active process. BMC biology 13, 36 (2015). 

124. A. M. New et al., Different levels of catabolite repression optimize growth in stable and 

variable environments. PLoS biology 12, e1001764 (2014). 

125. C. C. Boutte, J. T. Henry, S. Crosson, ppGpp and polyphosphate modulate cell cycle 

progression in Caulobacter crescentus. J Bacteriol 194, 28-35 (2012). 

126. D. Chatterji, A. K. Ojha, Revisiting the stringent response, ppGpp and starvation 

signaling. Current opinion in microbiology 4, 160-165 (2001). 

127. G. Dong et al., Elevated ATPase activity of KaiC applies a circadian checkpoint on cell 

division in Synechococcus elongatus. Cell 140, 529-539 (2010). 



156 

 

128. G. Lambert, E. Kussell, Memory and fitness optimization of bacteria under fluctuating 

environments. PLoS genetics 10, e1004556 (2014). 

129. Y. Nakahira et al., Global gene repression by KaiC as a master process of prokaryotic 

circadian system. Proc Natl Acad Sci U S A 101, 881-885 (2004). 

130. O. Shoval et al., Evolutionary trade-offs, Pareto optimality, and the geometry of 

phenotype space. Science 336, 1157-1160 (2012). 

131. Y. Xu, T. Mori, C. H. Johnson, Circadian clock-protein expression in cyanobacteria: 

rhythms and phase setting. EMBO J 19, 3349-3357 (2000). 

132. Y. B. Kiyohara, M. Katayama, T. Kondo, A novel mutation in kaiC affects resetting of 

the cyanobacterial circadian clock. J Bacteriol 187, 2559-2564 (2005). 

133. O. Schmitz, M. Katayama, S. B. Williams, T. Kondo, S. S. Golden, CikA, a 

bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289, 765-768 

(2000). 

134. Y. I. Kim, D. J. Vinyard, G. M. Ananyev, G. C. Dismukes, S. S. Golden, Oxidized 

quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc 

Natl Acad Sci U S A 109, 17765-17769 (2012). 

135. L. Glass, M. C. Mackey, From clocks to chaos : the rhythms of life. Princeton paperbacks 

(Princeton University Press, Princeton, N.J., 1988), pp. xvii, 248 p. 

136. V. K. Sharma, Adaptive significance of circadian clocks. Chronobiology international 

20, 901-919 (2003). 

137. J. Bieler et al., Robust synchronization of coupled circadian and cell cycle oscillators in 

single mammalian cells. Mol Syst Biol 10, 739 (2014). 

138. C. I. Hong et al., Circadian rhythms synchronize mitosis in Neurospora crassa. Proc Natl 

Acad Sci U S A 111, 1397-1402 (2014). 

139. A. D. Edelstein et al., Advanced methods of microscope control using muManager 

software. Journal of biological methods 1,  (2014). 

140. E. Kussell, S. Leibler, Phenotypic diversity, population growth, and information in 

fluctuating environments. Science 309, 2075-2078 (2005). 

141. C. R. Baker, V. Hanson-Smith, A. D. Johnson, Following gene duplication, paralog 

interference constrains transcriptional circuit evolution. Science 342, 104-108 (2013). 

142. D. P. Anderson et al., Evolution of an ancient protein function involved in organized 

multicellularity in animals. Elife 5, e10147 (2016). 



157 

 

143. M. A. Siddiq, D. W. Loehlin, K. L. Montooth, J. W. Thornton, Experimental test and 

refutation of a classic case of molecular adaptation in Drosophila melanogaster. Nature 

Ecology & Evolution 1, s41559-41016-40025 (2017). 

144. F. R. Stephenson, L. V. Morrison, C. Y. Hohenkerk, Measurement of the Earth's rotation: 

720 BC to AD 2015. Proc Math Phys Eng Sci 472, 20160404 (2016). 

145. A. Zlenko, A celestial-mechanical model for the tidal evolution of the Earth-Moon 

system treated as a double planet. Astronomy Reports 59, 72 (2015). 

146. C. P. Sonett, E. P. Kvale, A. Zakharian, M. A. Chan, T. M. Demko, Late Proterozoic and 

Paleozoic Tides, Retreat of the Moon, and Rotation of the Earth. Science 273, 100-104 

(1996). 

147. J. W. Wells, Coral growth and geochronometry. Nature 197, 948-950 (1963). 

148. J. W. Schopf, A. B. Kudryavtsev, A. D. Czaja, A. B. Tripathi, Evidence of Archean life: 

stromatolites and microfossils. Precambrian Research 158, 141-155 (2007). 

149. S. A. Crowe et al., Atmospheric oxygenation three billion years ago. Nature 501, 535-

538 (2013). 

150. N. M. Schmelling et al., Minimal tool set for a prokaryotic circadian clock. BMC Evol 

Biol 17, 169 (2017). 

151. I. Baca, D. Sprockett, V. Dvornyk, Circadian input kinases and their homologs in 

cyanobacteria: evolutionary constraints versus architectural diversification. Journal of 

molecular evolution 70, 453-465 (2010). 

152. P. Dvorak et al., Synechococcus: 3 billion years of global dominance. Mol Ecol 23, 5538-

5551 (2014). 

153. V. Hanson-Smith, B. Kolaczkowski, J. W. Thornton, Robustness of ancestral sequence 

reconstruction to phylogenetic uncertainty. Mol Biol Evol 27, 1988-1999 (2010). 

154. J. Lin, The University of Chicago, Ann Arbor (2016). 

155. F. Hayashi et al., Roles of two ATPase-motif-containing domains in cyanobacterial 

circadian clock protein KaiC. Journal of Biological Chemistry 279, 52331-52337 (2004). 

156. K. Terauchi et al., ATPase activity of KaiC determines the basic timing for circadian 

clock of cyanobacteria. Proc Natl Acad Sci U S A 104, 16377-16381 (2007). 

157. L. Martin, G. B. Gloor, S. Dunn, L. M. Wahl, Using information theory to search for co-

evolving residues in proteins. Bioinformatics 21, 4116-4124 (2005). 

 


