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Abstract

Circadian rhythms are a remarkable feature found in many disparate organisms across the
planet, driving 24-hour oscillations in gene expression and behavior to align organism
physiology with the day-night cycle. Perhaps two of the most fundamental questions in circadian
biology are: how do these endogenous biological rhythms maintain a robust 24-hour periodicity,
and what are the consequences if the clock fails to function correctly? To address these basic
questions, in this work I and my colleagues turn to the model photosynthetic cyanobacterium
Synechococcus elongatus, which possesses the simplest known circadian clock composed of
only three proteins, KaiA, KaiB, and KaiC. In the main chapter of this dissertation, | investigate
how molecular stochasticity impacts the precision of the cyanobacterial clock as a result of
limited cellular Kai protein copy number, finding that high protein expression is required to
suppress timing errors due to a noisy negative feedback loop in the oscillator. Additionally, I find
that the molecular noise inherent in the feedback loop forces a smaller, related cyanobacterium to
adopt a qualitatively different environmentally-driven timing strategy that is more optimal for a
lower Kai copy number. The other two studies presented here are those in which | contributed as
a co-author to investigate how the Kai oscillator maintains period robustness against fluctuations
in protein stoichiometry as well as how timing mismatch between the clock and environment
impacts the fitness of individual cyanobacterial cells. Lastly, | present an ongoing project that
utilizes ancestral protein reconstruction techniques to determine whether the period of the Kai

oscillator changed over geological time to match the changing period of the Earth’s rotation.
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Chapter 1: Introduction

The ubiquity and usefulness of circadian clocks

Circadian rhythms drive ~24-hour oscillations in physiology and gene expression that
allow organisms to anticipate the day/night cycle, and they have been long known to exist across
multiple kingdoms of life. Humans, insects, plants, and fungi all possess circadian clocks, and
the fact that many of these timing systems do not share any degree of homology suggests that
these rhythms evolved through convergent evolution, highlighting the importance of being able
to tell time endogenously. While in principle it is possible to measure the time of day by resetting
a daily timer with respect to either sunrise or sunset, circadian rhythms are distinguished from
such “timer” mechanisms by the fact that they persist in the absence of any cyclic environmental
stimuli.

Bona fide circadian clocks are themselves defined by three hallmark criteria: first, 24-
hour rhythms must be endogenous and persist in constant conditions; second, rhythms must be
entrainable, i.e. resettable by environmental cues; and third, rhythms must be temperature-
compensated, maintaining correct periodicity across a range of temperatures. Here, | will briefly
discuss each of these three criteria.

The first experiments to demonstrate the presence of endogenous rhythms in any
organism were performed in the early 1700s, where French scientist Jean-Jacques d’Ortous de
Mairan noted that leaf movements in the plant Mimosa pudica occurred on a 24-hour cycle even
when the plants were incubated in constant darkness, shielded from the normal environmental
light cues indicating day or night (6). More recent experiments demonstrated the same
endogenous timing characteristic in the physiology of other organisms: in humans and mice,

sleep patterns persist in constant light or constant dark (7, 8), and in Drosophila, the circadian



timing of pupal eclosion also persists in constant conditions (9). The rhythms in these organisms
are thus termed “free-running”.

Like a mechanical watch that only maintains a finite level of precision, the timing of
biological clocks can drift from the true time of day. It is thus crucial that circadian clocks
possess some form of entrainment, or a mechanism by which endogenously generated rhythms
can synchronize with the day/night cycle. Otherwise, the information about the time of day
captured by the clock would decay over time, and the clock would have no utility for the
organism. Common cues that have been demonstrated to entrain circadian clocks include light
(10, 11), temperature (12, 13), or metabolic cues from feeding (14).

Lastly, all biological clocks are biochemical in nature. Thus, they are subject to
Arrhenius’s Law, which predicts that chemical reactions proceed more rapidly at higher
temperatures. To counter this, circadian clocks have evolved to minimize the impact of
temperature on the speed of clock reactions, a characteristic known as temperature
compensation. Temperature compensation is especially critical for organisms that lack self-
regulated temperature in order to cope with the temperature changes associated not only with the
day/night cycle but also with weather and seasons. A clock that runs faster or slower on warmer
or colder days would be a poor timekeeper. Temperature compensation is quantified by a
measure known as Q10, or the fold change in chemical reaction rate given a 10°C change in
temperature. Many biological reactions double or triple their reaction rates for a 10°C increase
and thus have a Q10 value of ~2-3 (15), but the periodic frequency of circadian clocks show a
Q10 value closer to 1, indicating that the circadian period remains close to 24 hours over a range

of temperatures. Circadian rhythms in leaf movements in Arabidopsis show a Q10 value of 1.0-



1.1 (16), and circadian rhythms in Drosophila locomotion show a Q10 value of approximately 1
).

What utility does a circadian clock provide for an organism? The clock allows an
organism to optimize its physiology for changes that accompany the day/night cycle. For a plant,
this might involve increasing expression of genes involved in photosynthesis during the day and
conserving energy during the night. For mice, the clock regulates sleep/wake behavior, allowing
the mouse to become active only at night in order to avoid predators. It is even thought that in
rodent skin cells, the circadian clock regulates the timing of cell division and DNA synthesis
such that maximum sensitivity to UV-induced DNA damage occurs during the night and is

avoided during the day (18).

The physical limits of biology: molecular noise

For many decades, biologists have thought of the inner workings of the cell as a series of
pathways containing multitudes of genes and proteins that interact in a well-defined and
deterministic manner. For example, a membrane receptor might bind to its ligand, causing
phosphorylation of a downstream transcription factor which in turn binds to a further
downstream gene promoter to induce expression of that gene. However, over the last fifteen
years, another perspective has emerged that has profound implications for how we think of
cells—the idea of biological noise. Within a population of genetically identical cells, individual
cells may express specific proteins in randomly varying amounts, leading to heterogeneity in
behavior, phenotype, and response to stimuli. We define biological noise as the random

fluctuations that lead to such heterogeneity.



The landmark study that
definitely illustrated the effects of
biological noise in single cells was
performed by Michael Elowitz, in
which he designed a strain of E. coli
to express two different fluorescent
proteins (CFP and YFP) from
identical promoters (2). Using time
lapse fluorescent microscopy, Elowitz
observed that in individual cells, the
expression levels of the fluorescent
proteins were not constant with respect
to time and in fact fluctuated by a
significant amount as cells grew and
divided such that there was a wide
range of expression ratios between the
two proteins (Figure 1.1). Closer
inspection revealed that the noise

could be classified into two types:

Fluorescence
A 4

Time
Figure 1.1. Schematic of gene expression noise in individual E.
coli cells expressing two fluorescent proteins (CFP and YFP)
from two identical promoters. Noise in gene expression causes
a population of isogenic cells to express the two proteins in
heterogenous fashion. Figure adapted from (2).
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Figure 1.2. Quantifying extrinsic vs. intrinsic noise.
Extrinsic noise causes correlated changes in expression for
both fluorescent proteins, and intrinsic noise causes
uncorrelated changes. Figure adapted from (2).

extrinsic noise and intrinsic noise (Figure 1.2). In this experiment, extrinsic noise was defined as

being responsible for highly correlated fluctuations in CFP and YFP expression, and intrinsic

noise was defined as being responsible for the uncorrelated component of these fluctuations.



Mechanistically, extrinsic noise can be thought of as arising from non-genetic differences
between cells that can impact cellular processes such as protein expression. Some examples of
sources of extrinsic noise include local differences in the microenvironment (e.g. temperature or
the local concentration of a signaling ligand), the unevenness of biomolecule distribution in
daughter cells following cell division, or even variation in the number of ribosomes present in
each cell. Each of these sources can introduce variability into a pool of genetically identical cells
to produce population heterogeneity. In contrast, intrinsic noise originates from a more
physically fundamental source, i.e. the randomness of molecular collisions and diffusion. This
stochasticity is brought to light in the context of single cells, which have only finite copy
numbers of biomolecules. Molecules present at low cellular copy numbers (e.g. mMRNAs,
measured to be < 10 copies per gene in E. coli (19)) are especially susceptible to intrinsic noise,
as there are fewer copies over which to average biochemical stochasticity. As a consequence,
even if it were possible to initialize cells in identical starting conditions (thus eliminating
extrinsic noise), the biochemical randomness that defines intrinsic noise could set two cells off
on differing trajectories of gene expression, contributing to population heterogeneity. In practice,
extrinsic noise and intrinsic noise are not two independently operating phenomena, and in fact
intrinsic noise can contribute to the amount of extrinsic noise (e.g. randomness of transcription
factor binding for a cell division gene may lead a cell to divide earlier than its counterparts,
leading to greater uneven partitioning of ribosomes after division due to a lower overall ribosome
copy number at cell division). Our categorization of noise into either extrinsic or intrinsic
sources is thus a convention that can help to organize sources of variability in a population of

cells.



Unlike mechanical watches, circadian clocks operate within a cellular context and are
composed of a series of biochemical reactions that generate oscillations. Like all other biological
processes within the cell, circadian clock function is thus subject to the same physical constraints
of biological noise. Given that the utility of clocks derives from their ability to keep precise time,
a central question arises: how do biological clocks generate precise, 24-hour deterministic

rhythms despite being composed of fundamentally stochastic biochemical reactions?

Synthetic biological oscillators and attempts to improve their precision
The design and construction of the first biological
oscillator by Michael Elowitz in 2000 (the so-called

“repressilator”) highlights the difficulty in designing a ‘/ ’&

biological oscillator with a precise and consistent period. This 7\4 Cl _I Lacl

“repressilator” is composed of a network of three genes, in

@ 150
which each gene represses the expression of another, forming §
O 100
7g]
a feedback loop with three negatively regulated components g 50
=)
(1) (Figure 1.3). The network was designed based on - 00" T o0

predictions from mathematical modeling that such a network Time (min)

Figure 1.3.  Repressilator

would be capable of generating oscillations. To test the schematic and behavior. Top:
the repressilator oscillator is
prediction, this gene network was constructed on a plasmid composed of three

transcription factors that forma
loop of negative feedback.
Bottom: oscillations in
individual cells are highly
variable in  period and

A L . amplitude.  Figures adapted
generate oscillations in single cells, although with from (L).

that was transformed into E. coli, and time lapse fluorescent

microscopy confirmed that this network could indeed

complications. Perhaps one of the most obvious



characteristics of the repressilator was that oscillations in single cells were quite erratic, and that
significant variation between cells existed in both oscillation amplitude and period (Figure 1.3).
Others have since designed and constructed other synthetic biological oscillators with
varying degrees of precision. The two-gene oscillator network designed by Stricker et al. is
slightly more reliable than the repressilator, but still falls short of producing the highly precise
rhythms characteristic of circadian oscillations (4) (Figure 1.4). The mammalian synthetic
oscillator engineered by Tigges et al. faces similar problems (20). It was not until recently,
sixteen years after the initial repressilator, that a synthetic oscillator was engineered that could

maintain an oscillatory period consistent enough to rival circadian oscillators.

In 2016, Potvin- a + Arabinose b i B B & P

I 12
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Figure 1.4. Two-gene oscillator schematic and behavior. Left: the oscillator
is composed of two gene elements. araC positively regulates itself and lacl,
while lacl negatively regulates itself and araC. Right: Oscillations in

sources of molecular

noise in the individual cells are variable in amplitude and period (gray traces, with one
example trace highlighted in red). Top colorbar shows average fluorescent
repressilator and intensity of multiple cells. Figure adapted from (4).

eliminated them, improving the timing error per cycle (defined as period standard
deviation/mean) from 28% to 14% (21). One of the most dominant sources of noise in the entire
cycle lay within the threshold for negative repression of A CI by TetR. The A CI promoter
switches from a repressed state to a non-repressed state at around only ~5 copies of TetR,
making it extremely susceptible to low copy number noise effects. To remedy this, the authors

introduced additional TetR binding sites on the plasmid that served as “sponges” that increased



this repressive threshold several-fold to ~20 copies of TetR. This study demonstrates that

molecular noise can have a significant impact on the precision of biological oscillators, and that

efforts must be taken to mitigate its impact if precision is an important design criterion.

The cyanobacterial clock is an extremely precise natural oscillator

Once thought to be too simple to ever possess something so complex, cyanobacteria

regulate their physiology with circadian clocks that achieve a level of precision greater than any

synthetic biological oscillator devised thus
far (as shown in Chapter 2). The
cyanobacterial clock is the simplest known
circadian clock, and the core oscillator
consists of three proteins: KaiA, KaiB, and
KaiC. In contrast to every other known
circadian clock, the core mechanism of the
cyanobacterial clock is post-translational—
remarkably, the clock reaction can be
completely reconstituted in vitro with
recombinant Kai protein (22). In fact, the
demonstration of all three criteria for
defining circadian clocks (endogenously
generated 24-hour rhythms, entrainability,

and temperature compensation) is

U-KaiC

Figure 1.5. Diagram of the post-translational
mechanism of the Kai clock cycle. KaiC encodes the
time of day through 24-hour rhythmic ordered
phosphorylation and dephosphorylation on two key
residues, T432 (green) and S431 (red).
Unphosphorylated KaiC (U-KaiC) binds to KaiA,
stimulating KaiC’s autokinase activity.
Phosphorylated KaiC (P-KaiC) with a sufficient
amount of S431 phosphorylation binds to KaiB,
which sequesters KaiA and inhibits its activity. This
allows KaiC to undergo its default phosphatase
activity to return to unphosphorylated KaiC.



encapsulated in the biochemistry underlying the three Kai proteins (22, 23).

The reconstitutability of the Kai system makes it a powerful platform for dissecting the
biochemical mechanisms driving the core timekeeping process. Time of day is encoded in the
hexameric protein KaiC, which undergoes rhythmic 24-hour cycles of autocatalyzed
phosphorylation and dephosphroylation (Figure 1.5). KaiC’s enzymatic activity is in turn
modulated by KaiA and KaiB. Initially, unphosphorylated KaiC is competent to bind to KaiA,
which stimulates KaiC’s autokinase activity. Phosphorylated KaiC then adopts a conformation
that allows it to bind to KaiB. This newly formed KaiBC complex can sequester KaiA, inhibiting
its phosphorylation-stimulating activity to form the delayed negative feedback loop of the
oscillator. This allows KaiC to then undergo its default autophosphatase activity. Once KaiC
dephosphorylates, it binds to KaiA to start the cycle again.

Previous work has demonstrated that entrainment of the cyanobacterial clock can be
explained by the effect of ATP levels on the Kai system. In cells, the ATP/(ATP + ADP) ratio
cycles between a relatively high value of ~85% in the light and a lower value of ~40% in the
dark (24). Simulation of this day/night cycle in the in vitro system (achieved by a buffer
exchange protocol to alter the ATP ratio) results in the in vitro system entraining to the phase of
ATP cycling, demonstrating that the capability for entrainment is present within the Kai proteins
themselves (23).

Importantly, the cyanobacterial clock appears to operate independently within single
cells, and there is currently no evidence of any intercellular communication to enhance the
precision of the clock period. In fact, experiments demonstrate that physical contact between two
cells that are in opposite clock phases has no effect on the oscillation phase in either cell (25).

These results highlight that unlike the circadian pacemaker in higher organisms, in which



communication between individual neurons generates a high amplitude and deterministic
circadian oscillation (26), the circadian clock in cyanobacteria must achieve a high level of
precision on the single cell level. Experiments presented within this dissertation in Chapter 2
indicate that the cyanobacterial clock accumulates only ~5% timing error per cycle, well below
that of the synthetic oscillators mentioned above. This level of timing precision can be observed
in that a population of cyanobacteria can maintain synchronized oscillations for over two weeks
(27), an impressive feat considering that each cell acts as an independent oscillator. One of the
central questions that this dissertation will address is thus: how does the cyanobacterial clock
overcome molecular noise to create such a precise oscillator, and what constraints does

molecular noise place on circadian clock design?

Why should clocks be free-running?

One of the most outstanding questions in circadian biology is: what benefits does a free-
running clock provide over an environmentally-driven timer in anticipating the day/night cycle?
A fundamental requirement for rhythms to be considered “circadian” is that they continue to run
in constant conditions. However, constant conditions almost never occur in nature, and the
reality is that organisms evolved in the context of the day/night cycle, presumably since the dawn
of life. Additionally, a biological timer that resets at sunrise or sunset (but does not generate free-
running oscillations) should theoretically also be sufficient to track the passage of time. All of
these considerations lead to the question of why circadian clocks evolved to become free-
running, and in what conditions they are advantageous.

One hypothesis that has only been tested computationally thus far is that free-running

clocks evolved in response to external noise in environmental entraining cues. Organisms that
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rely on sunlight to synchronize with the day/night cycle must do so despite the presence of
weather that may cause fluctuations in light levels. Troein et al. demonstrated in silico that gene
networks that give rise to free-running oscillations are much more likely to evolve in the
presence of environmental weather (28). These results suggest that a free-running clock may be
beneficial by acting as a low-bandpass filter, allowing an organism to filter out the relatively
high-frequency noise that may come from weather while retaining sensitivity to the low-
frequency stimulus of the day/night cycle, necessary for entrainment. In other words, the internal
timekeeping mechanism that a free-running clock provides can allow an organism to ignore
environmental stimuli that do not correlate with the day/night cycle, e.g. avoiding the confusion
of reduced light levels from a passing thunderstorm as impending nighttime, which timer-like
systems might be more susceptible to. In addition to the effects of weather, Troein et al. showed
that free-running oscillations evolved more frequently in the presence of a variable photoperiod,
as it is in different seasons (e.g. the daylight period is longer in the summer and shorter in the
winter in the Northern hemisphere). Thus, having an internal timekeeping mechanism may also
allow organisms to better optimize their physiology for variable onset of day/night. However,
while some studies have examined the mechanism by which clocks track seasons (e.g. in plants
(29) and cyanobacteria (23)), the exact mechanisms by which circadian clocks generally measure
seasonality still constitute an active area of research.

The question of why organisms may utilize clocks instead of timers is relevant to the
work presented in this dissertation: | show that while the well-established model cyanobacterium
Synechococcus elongatus PCC 7942 possesses a free-running circadian clock, a related
picocyanobacterium Prochlorococcus marinus MED4 has an environmentally-driven timer. The

specific questions that | investigate are outlined in the main objectives below.
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Main objectives

What are the consequences for how biological oscillators are designed given the
constraints from molecular noise, and how do these constraints arise? The work performed to
investigate this question is elaborated upon in Chapter 2. Specifically, | experimentally test
whether molecular noise stemming from limited Kai protein copy number is a determinant for
clock precision in S. elongatus by engineering a strain in which Kai copy number is tunable. |
then investigate whether a “noise bottleneck™ exists in the system, or whether a specific part of
the clock network is most susceptible to the effects of molecular noise. Lastly, | compare the two
different Kai systems in S. elongatus and P. marinus to determine the precision of both systems
with varying amounts of molecular noise and whether noise influences whether it is more
optimal to keep time with a free-running clock or an environmentally-driven timer.

In Chapters 3 and 4, | present two studies on which I am second author. Chapter 3
explores how two opposing phosphorylation sites on KaiC generate an ultrasensitive switch
governing KaiB/KaiC binding, ultimately generating robustness with respect to changes in Kai
protein stoichiometry. Chapter 4 investigates the consequences for organism fitness from
clock/environment mismatch in Synechococcus on the single cell level.

Lastly, in the appendix, | outline efforts to perform ancestral reconstruction of the Kai

proteins to investigate questions about Kai protein evolution.
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Chapter 2: Demand for high protein copy number can favor timers

over clocks in bacteria

Foreword

Here, | present my first author work, currently in submission as of the writing of this
dissertation. In brief, I investigate the biophysical constraints that molecular noise imposes on
the precision of the cyanobacterial clock and conclude that environmentally driven timers are a
more optimal timekeeping mechanism at low clock protein copy number in cyanobacteria. A
discussion and future directions section at the end of this chapter provides further interpretation
and insight of this work, and it details further experiments that may expand upon the work

presented here.
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Abstract

Circadian clocks generate deterministic 24-hour rhythms to anticipate the day-night
cycle, and they must accomplish this despite the fact that biological oscillators are based on
fundamentally stochastic biochemical reactions. The model circadian clock in the
cyanobacterium Synechococcus elongatus is based on the Kai proteins, a post-translational
oscillator that can sustain precise rhythms for weeks in a test tube. However, a single bacterial
cell has far fewer copies of the Kai proteins than a macroscopic reaction, raising the question of
how bacteria produce deterministic behavior in spite of molecular stochasticity arising from
finite protein copy number. Here, we show experimentally in S. elongatus that oscillations in
single cells become erratic at low Kai copy number and that cells must express >10,000 copies of
the Kai proteins to effectively suppress timing errors. Stochastic modeling shows that this need
for many protein copies results from noise amplification in the post-translational feedback loop
necessary for oscillations. We find that the much smaller cyanobacterium Prochlorococcus, a
minimal photosynthetic cell, expresses only ~600 copies of the Kai proteins and has lost the
crucial feedback loop, resulting in a timer-like Kai system that no longer free-runs. Information
theoretic analysis shows that this timer strategy can outperform a free-running clock when
stochastic effects are important. Thus, bacteria utilize two alternative time-keeping strategies: a
free-running clock that uses many protein copies to achieve high timing precision, and a non-
free-running timer that is less predictive but can function well when protein copy numbers are
low. This conclusion has implications for the evolution of circadian rhythms, the design of
synthetic biological timekeeping systems, and may point to a currently unexplored world of

timer-like behavior in microbes in dynamic environments, such as the mammalian gut.

Main Text
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Circadian clocks are biochemical oscillators that enable organisms to anticipate the day-
night cycle. Their utility depends on the ability to make accurate predictions about the future
(30, 31) and thus requires precise, deterministic timing. This precision must be achieved despite
the fact that biochemical processes are composed of elementary reaction events, each of which
occurs with stochastic timing. Indeed, most synthetic cellular oscillators produce noticeably
irregular rhythms (1, 4, 20). In contrast, natural circadian clocks can be extremely precise (27,
32, 33). It is generally not known how biological clocks create deterministic rhythms from their
stochastic components, or how the architecture of clock networks responds to the constraints of
molecular noise.

To address these questions, we turned to the cyanobacterial circadian clock.
Cyanobacteria are a diverse clade of photosynthetic prokaryotes that carry kai clock genes that
generate daily oscillations in physiology (34-36). The core mechanism of oscillation in the
cyanobacterial clock is post-translational and can be reconstituted using purified proteins (22).
KaiA and KaiB modulate the autocatalytic activity of KaiC, producing self-sustaining rhythms of
multisite phosphorylation on KaiC (37).

Because the volume of a bacterial cell is smaller than the volume of a test-tube reaction
by many orders of magnitude, we suspected that stochasticity due to finite numbers of clock
proteins might be an important constraint in cells. To study this effect, we engineered a strain of
the model cyanobacterium Synechococcus elongatus PCC 7942 where the copy numbers of the
Kai proteins are under experimental control. We replaced the native copies of the kai genes with
copies containing a theophylline-inducible riboswitch previously shown to modulate
translational efficiency (38, 39), allowing us to tune Kai protein expression (Fig. 2.1A, 2.1B). In

this strain, kaiB and kaiC are transcribed from a constitutive promoter and kaiA from an IPTG-
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Fig 2.1. Characterization of the Kai copy-number tunable strain. (A) A theophylline riboswitch regulates
translation efficiency of all three kai genes, and transcriptional regulation of kaiA is controlled by an IPTG-
inducible promoter. Clock state is reported by EYFP-SsrA expressed from the kaiBC promoter. (B)
Theophylline regulates translation by freeing the ribosome binding site upstream of each kai gene. (C) Kai
copy numbers as a function of theophylline concentration with 1 uM IPTG (solid line), and Kai copy
numbers in wild type cells (dotted line). Bars or shaded area indicate standard error of the mean from three
replicates. (D) Average oscillations in colonies detected with a bioluminescent reporter in the tunable strain
with 1 uM IPTG and various theophylline concentrations.

inducible promoter (Fig. 2.1A). This system removes the natural transcriptional feedback in the

system and allows us to focus on the core post-translational oscillator.
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Using quantitative western blotting, we found that wild-type cells express ~4,000 KaiA,
~11,000 KaiB, and ~8,000 KaiC copies per cell—a stoichiometry similar to that needed to
support oscillations in vitro (37). We then determined that our engineered strain is capable of
expressing Kai proteins in a range spanning from 100s up to 10,000s of copies per cell (Fig. 2.1C
and fig. S2.1). To characterize the ability of this inducible system to produce circadian rhythms,
we used a luciferase assay to report on population-level gene expression rhythms. We found that
while high levels of theophylline induction produced wildtype-like rhythms, oscillations at the
population level weakened or vanished at lower levels of induction even though Kai proteins
were still expressed (Fig. 2.1D and fig. S2.2).

We reasoned that loss of population-level oscillations at lower Kai protein expression
levels could be explained by two possibilities—rhythms could either be lost in individual cells,
or they could persist in single cells but with significant desynchronization between cells. To
distinguish between these scenarios, we used time-lapse fluorescence microscopy to observe
single-cell rhythms in constant conditions (fig. S2.3). Consistent with previous reports (25, 40),
we observed that circadian rhythms in single wild-type cells are remarkably precise with < 5%
timing error per clock cycle (standard deviation / mean of peak-to-peak times). When we
analyzed our tunable expression strain, we found that single cells in fact maintained high-
amplitude rhythms even at low levels of theophylline (fig. S2.4), but these rhythms
desynchronized over time between cells in a theophylline-dependent manner (Fig. 2.2A, B). 390
uM theophylline (~12,000 copies KaiC / cell) produced coherent single-cell rhythms comparable
to wild-type that maintained synchrony over one week, while 92 uM theophylline (~7,000 copies

KaiC / cell) led to rhythms that were markedly noisier, and 23 uM theophylline (~2,600 copies

17



KaiC / cell) produced very noisy rhythms where cells in the same microcolony appeared to adopt

nearly random phases after a few days (Fig. 2.2).
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Fig 2.2. Single cell microscopy reveals desynchronized oscillations at low Kai copy number. (A) Filmstrips
of YFP oscillations in wild type cells and the copy number tunable strain induced with 1 uM IPTG and
various theophylline concentrations (brightfield and YFP fluorescence overlaid). Scale bar: 5 um. (B)
Single cell oscillator trajectories (gray) with two example cell lineages highlighted (blue and purple). (C)
Distributions of peak-to-peak times in wild type and copy number tunable cells; n = 536 (wild type), 336
(370 uM), 455 (92 uM), 616 (23 uM). (D) Cell length vs. timing error (standard deviation/mean of peak-
to-peak intervals) in the 15% shortest cells (triangles), middle 70% cells (circles), and 15% longest cells
(stars) for each condition. Vertical bars indicate 95% confidence intervals from bootstrapping (5000
iterations), and horizontal bars indicate standard deviation in cell length.
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When protein expression level is reduced in these experiments, both protein copy number
and concentration are reduced. Because the post-translational oscillator is highly robust to
protein concentration, we expect that copy number changes are the main driver of stochasticity
(37, 41). To experimentally disentangle these effects, we used natural variability in cell size to
stratify our analysis and focus on cells with unusually small or large volumes. Since protein
concentration is relatively constant across cell sizes (42, 43), we used cell volume as a proxy for
copy number within each induction condition, estimating that longer cells have higher protein
copy number than the average. We quantified relative peak-to-peak timing errors in these cells at
different induction levels and found that shorter cells had significantly noisier rhythms compared
to longer cells (Fig. 2.2D). From these results, we conclude that high copy numbers of the Kai
proteins are required to effectively suppress stochasticity in the circadian rhythm.

How does the presence of many copies of the Kai proteins suppress timing errors, and
what features of the oscillator circuit are most vulnerable to noise at low copy humber? To
address these questions, we constructed a simplified mathematical model of the post-translational
Kai oscillator based on (44) and (45) (Fig. 2.3A and fig. S2.5). This model incorporates
experimentally observed Kai protein interactions that lead to oscillatory dynamics: KaiA
promotes phosphorylation of individual KaiC hexamers, and without KaiA, KaiC
dephosphorylates (37). When KaiC reaches a critical phosphorylation state, it switches into a
KaiA-resistant, dephosphorylating mode (46). Because phosphorylation is ordered (37), the
sequence of states KaiC visits during the phosphorylation phase (yellow box in Fig. 2.3A) is
distinct from the dephosphorylation phase (blue box in Fig. 2.3A). Finally, the
dephosphorylating form of KaiC binds KaiB which then captures and inhibits KaiA, forming a

delayed negative feedback loop.
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Consistent with previous modeling work (37, 46, 47), these mechanisms can produce
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Fig 2.3. KaiA-dependent negative feedback loop is the noise bottleneck in a stochastic model of the Kai
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and experimental data. Vertical bars indicate 95% confidence interval from bootstrapping. Horizontal bars
indicate standard error of the mean (n = 3). Gray interval indicates the 95% bootstrapping confidence...
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(Fig 2.3, continued) interval for the model. (E) Mean phase shift caused by Poisson noise perturbations to
molecular species in the model (n = 500 trials). Bars indicate 95% confidence interval from bootstrapping.
(F) Instantaneous KaiC phosphorylation rate vs. fraction of KaiC in KaiABC complexes in the stochastic
model for Nkaic = 300 hexamers. Shaded area indicates the range over which KaiABC complexes oscillate.

free-running oscillations in the deterministic limit, corresponding to infinite numbers of protein
molecules (fig. S2.6). To simulate the circadian clock at copy numbers relevant to single
bacterial cells, we implemented stochastic simulations of this reaction network. Similar to our
experimental results, as Kai protein copy number is decreased, oscillations become noisier and
the timing between cycles becomes variable (Fig. 2.3B, 2.3C). Though many models of the Kai
oscillator can produce equivalent circadian rhythms when the role of molecular noise is ignored,
we find that the impact of noise on the oscillator depends on the number of steps in the
phosphorylation cycle required to switch between phosphorylation and dephosphorylation, with
five steps giving the best fit (fig. S2.7, Fig. 2.3D).

At very high copy numbers of Kai proteins, stochastic fluctuations will be suppressed
because the reaction averages over many molecules. Surprisingly, our results indicate that even
with 1000s of Kai protein copies, timing error in the model may still be > 10% per cycle. Since
the negative feedback loop synchronizes individual KaiC hexamers through sequestration of a
shared pool of KaiA (44, 45), we hypothesized that oscillator timing would be most sensitive to
molecular noise in complexes that mediate negative feedback.

To test this, we systematically introduced pulses of molecular noise into the reaction
network to find molecular species where noise caused the largest changes in oscillator phase. We
found that the molecular complexes most susceptible to noise contain KaiA, precisely the
molecules involved in the delayed negative feedback loop (Fig. 2.3E). The vulnerability of the
oscillator to fluctuations in KaiA-containing complexes can be understood in terms of the
sensitivity of KaiC phosphorylation rates to the amount of active KaiA. At our low inducer
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conditions, the number of KaiA-sequestering complexes needed to shift the entire reaction from
phosphorylation to dephosphorylation is only ~10 copies (Fig. 2.3F). These KaiABC complexes
represent only a small fraction of total KaiC (Fig. 2.3F and (41))—thus the stochastic
fluctuations from small numbers of KaiABC complexes can be sufficient to cause significant
fluctuations in KaiC enzymatic rates. Together, these results suggest that the negative feedback
loop is a dominant source of noise in the post-translational oscillator.

Although the KaiA-dependent negative feedback loop is the step most vulnerable to
molecular noise, it also performs the crucial function of synchronizing individual KaiC hexamers
within a single cell (44). Left uncoupled, individual KaiC hexamers would progress through
phosphorylation cycles with irregular timing, and the circadian rhythm would rapidly die out. In
this way, our results suggest that the negative feedback loop is both a strength and a liability:
while it is needed to sustain free-running oscillations, Kai proteins must be expressed at ~10,000
copies per cell to suppress the noise amplification inherent in the negative feedback loop and
keep time accurately over several days.

This finding has provocative implications. Circadian rhythms are a well-known strategy
that allows organisms to robustly anticipate future events using internally generated oscillations.
However, our analysis suggests that there is a minimum biosynthetic investment needed to create
a reliable oscillator. Microbial cells span a wide range of sizes, and for very small cells,
expressing many thousands of copies of clock proteins may not be tenable. This suggests that
tiny cells may use alternative dynamical strategies to keep time.

To investigate this possibility, we focused on the small cyanobacterium Prochlorococcus
marinus, whose cell volume is over twenty times smaller than S. elongatus (48). We found that

P. marinus has ~600 copies of KaiC per cell (Fig. 2.4A), which is in the regime where the S.
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(Fig 2.4, continued) (A) Comparison of cell volume and KaiC copy number in Prochlorococcus marinus
vs Synechococcus elongatus. Copy number (inset) determined by quantitative western blot (n = 3). (B)
Prochlorococcus has a simplified Kai architecture that lacks kaiA. (C) Top: western blot time course
showing Prochlorococcus KaiC (ProKaiC) phosphorylation in cultures incubated in light-dark cycles
followed by constant light or constant dark. Bottom: quantification of ProKaiC phosphorylation. (D)
Comparisons of model architectures corresponding to Synechococcus (left, strong feedback) and
Prochlorococcus (right, no feedback). (E) Simulations of the strong feedback (left) and no feedback
(right) Kai systems in light-dark cycles (shaded regions), followed by constant light at high copy number
(top, 14,400 KaiC copies) and low copy number (bottom, 450 KaiC copies). (F) Mutual information
between the clock and time of day during light-dark cycles in the presence of environmental fluctuations
(see SI). Stable oscillations occur for feedback strength above 0.83 (dashed line). (G) Feedback strength
that maximizes mutual information as a function of KaiC copy number. Above the dashed line, the
system shows self-sustaining circadian rhythms. Marker colors correspond to the colorbar in (F).
elongatus oscillator becomes extremely error-prone (cf. Fig. 2.3D). Expressing 10,000s of Kai
proteins to achieve noise suppression, as in S. elongatus, may not be feasible in P. marinus given

that this investment in protein synthesis would represent ~20% of the proteome (see Sl).

The kaiA gene at the heart of the negative feedback loop is missing in P. marinus,
suggesting a qualitatively different time-keeping mechanism ((49) and Fig. 2.4B). We measured
KaiC phosphorylation in both light-dark cycles and constant conditions, and found that the Kai
system in P. marinus functions as an environmentally driven timer—KaiC phosphorylation
increases in the light and decreases in the dark, but, unlike a circadian rhythm, ceases to cycle
when the environment is held constant (Fig. 2.4C, compare to fig. S2.9). The lack of self-
sustained oscillations in KaiC phosphorylation is likely the molecular explanation for the lack of
free-running rhythms in gene expression in this microbe (49).

Does the alternative strategy of a driven timer without a feedback loop offer resistance to
molecular noise? To computationally test this hypothesis, we extended our stochastic model of
the Kai system, allowing us to vary the strength of the KaiA-dependent negative feedback loop

to interpolate between a circadian rhythm and an environmentally-driven timer (Fig. 2.4D and
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fig. S2.5). We modeled the input signal from the environment as the effect of the ATP/ADP ratio
on KaiC phosphorylation (24).

To quantify the performance of these systems, we calculated mutual information between
KaiC phosphorylation and the time of day in an environment with both a regular day-night cycle
and random input fluctuations simulating weather. At high copy number, mutual information is
maximized by a strong negative feedback loop that produces free-running oscillations. In
contrast, at low copy number, the system that maximizes mutual information has a very weak or
non-existent feedback loop, corresponding to an environmentally-driven timer (Fig. 2.4E-G and
fig. S2.10).

This study reveals that the delayed negative feedback loop that sustains circadian rhythms
can itself be a liability that amplifies molecular noise. Our experimental and computational
analyses suggest that an alternative time-keeping strategy can be employed when protein copy
numbers are low: a timer without a feedback loop can outperform a free-running circadian clock
when molecular noise is substantial. In this view, the non-free-running Kai system in
Prochlorococcus is not a degenerate circadian system, but rather an optimal adaptation to low
protein copy number.

This result may be of broad significance to microbial physiology. The classical study of
circadian rhythms focuses on oscillators that free-run in constant conditions, but our analysis
suggests that for cells whose internal biochemistry is unreliable, non-free-running systems may
perform better as time-keepers. This may be of particular relevance in niches with some
environmental rhythmicity, such as the mammalian gut. Population oscillations have been
observed in the gut microbiome (50, 51), but there is currently little evidence for free-running

rhythms in gut microbes themselves. By broadening our perspective away from the precise, free-
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running rhythms of S. elongatus, we may uncover a broader world of environmentally-driven

timing systems in prokaryotes.

Materials and Methods
Cloning and strain construction

The copy number tunable strain was constructed by transforming a kaiABC knockout
plasmid (pJC003, gentamycin resistance) into the kaiABC locus of wild-type S. elongatus
carrying either an EYFP-SsrA fluorescence reporter driven by the kaiBC promoter (strain
MRC1006, reporter first used in (52)) or the luxABCDE cassette driven by the psbAl promoter
(strain MRC1005, reporter strain first used in (53)), followed by transformation of a plasmid
carrying the three kai genes and lacl (pJC073-2, spectinomycin resistance) into neutral site I. The
two versions of the copy number tunable strain carrying the YFP reporter or luciferase reporter
are denoted as MRC1139 and MRC1138, respectively.

pJC003 was constructed from a pBSK+ backbone with restriction digest and ligation by
flanking a gentamycin resistance cassette with sequences upstream of kaiA and downstream of
kaiC. Specifically, the upstream sequence spans the 331 bp upstream of kaiA up to the start
codon of kaiA flanked with 5* HindIIT and 3 Sphl sites. The downstream sequence spans from
the end of the kaiC stop codon to 300 bp downstream, flanked with 5° BssHII and 3’ BamHI
sites.

pJC073-2 was constructed from a pAM2314 backbone through multiple rounds of
Gibson assembly. The lacl cassette (laclQ promoter, lacl coding sequence, and terminator) was
cloned from pAM2991, and the IPTG-inducible trc promoter driving kaiA transcription was also

cloned from pAM2991. Transcription of kaiB and kaiC are driven by two separate copies of the
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S. elongatus gInB genomic promoter. The gInB promoter sequence was defined as the 750 bp
upstream of the putative transcriptional start site of gInB. A synthetic theophylline-inducible
riboswitch (riboswitch F from (39)) was placed immediately upstream of the start codons of all
three kai genes. The riboswitch was placed at the transcriptional start sites of their respective
promoters to reduce the possibility of interference of 5°-UTR sequences with riboswitch
function. Additionally, a synthetic terminator, Bba_B0015 from the iGEM parts registry, was
placed downstream of each kai gene (http://parts.igem.org/Part:BBa_B0015). 30 bp randomized
linker sequences were placed upstream of the gIinB promoter sequences for kaiB and kaiC to

allow for proper Gibson assembly and plasmid sequencing.

Culture conditions

Synechococcus cultures were grown and maintained at 30°C in BG11 medium
supplemented with 20 mM HEPES (pH 8.0) with shaking at 180 rpm under constant illumination
of 75 umol photons m s, and Prochlorococcus cultures were grown and maintained at 22°C in
Pro99 medium (54) based on natural seawater (Woods Hole, MA) supplemented with 0.59 M
NaHCO3 under constant illumination of 16 pmol photons m s without shaking. Culture
conditions for specific experiments are described in their respective sections.

To guard against potential genetic instability in the copy humber tunable strain, all
experiments were performed on cultures propagated for two weeks or less from the original
freezer stock. We verified that no genomic loss of our engineered kaiB or kaiC expression

system was detectable by genomic PCR or western blot in these cultures (data not shown).

Time lapse microscopy
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To prepare cells for time lapse microscopy, cultures of either wild-type cells expressing
the YFP reporter (MRC1006) or the copy number tunable cells expressing the YPF reporter
(MRC1139) were grown in black, opaque 96-well plates and illuminated with custom-build LED
arrays powered by an Arduino, which delivered 1.33 V across each LED (627 nm wavelength),
illuminating cells with ~8.8 pumol photons m? s*. The cells were seeded at an initial OD750 of
0.1 and were entrained with two 12h:12h light/dark cycles. 48 hours after initial seeding, wells
containing duplicate culture conditions were combined into single tubes.

After pooling cultures into single tubes, 1 pl of culture was pipetted into individual wells
of a glass coverslip-bottomed 96-well plate (Mat-tek corporation). For each well, a BG11-agar
pad (1 mm x 2 mm x 2 mm) was placed on top of each droplet of culture. 225 pl of molten
BG11-agar cooled to 37°C and containing appropriate concentrations of IPTG and theophylline
was pipetted into each well and left to cool and solidify.

Time lapse microscopy was performed with an Olympus 1X-71 inverted microscope with
motorized stage and focus control, and automation of image acquisition was implemented with
the Micromanager software package. Images were captured with a 100x Olympus oil immersion
objective and a Luca EMCCD camera (Andor). The microscope was housed in a custom-built
incubator that maintained temperature at 30°C and insulated the apparatus from external light
sources. The cells were exposed to a continuous light source of 2 umol photons m st of light
(660 nm wavelength), and the illumination condenser was removed in order to widen the light
beam to sufficiently illuminate multiple wells evenly. Over the course of one hour, the
microscope imaged 24 unique fields of view with brightfield, chlorophyll, and YFP filter sets

(exc. 500 nm/20 nm bandpass, emm. 535 nm/30 nm bandpass, dichroic 515 nm long bandpass).
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Single cell image processing and data analysis

Cell masks for image processing were obtained using custom-written Python software to
allow the user to manually draw a “mask estimate” over individual cells in brightfield images.
Using the estimated masks as initial guesses, the software optimized mask areas to fit the
underlying cells such that the total pixel intensity was minimized, utilizing the relatively dark
cell interior to do so. The fitted cell masks from one movie frame were then used as initial
guesses for cells in the next frame, and any errors were corrected manually. After the cell masks
were labeled for the duration of the experiment, the CellTracker software suite (55) was used to
construct cell lineages based on these cell masks to measure cellular YFP fluorescence intensity
over time for individual lineages.

Peak to peak intervals were detected using a Python implementation of the Matlab peak
detection algorithm, and algorithm parameters were tuned to find all local maxima without any
restrictions on minimum distance between maxima. All cell lineages within a single microcolony
(i.e. all of the descendants of a single mother cell at the start of the experiment) share varying
degrees of overlap due to common ancestry, so to avoid counting the same data multiple times,
we only considered unique peak to peak intervals, defined as intervals that occurred within
unique pairs of mother/daughter cells or at unique times in the experiment if the peaks occurred
within the same cell. To prevent peak identification from identifying spurious peaks originating
from high frequency measurement noise, the lineage data was smoothed with the Savitsky-Golay
algorithm using a window size of 11 timepoints and third order polynomial fitting before peak
finding. Statistics were then calculated for the peak to peak distribution mean, standard
deviation, and coefficient of variation (defined as standard deviation divided by the mean). Error

bars were estimated as the 95% confidence intervals from 5000 iterations of bootstrapping
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analysis of the experimental data. Oscillation amplitude was measured by quantifying the
difference between peaks and the troughs that immediately preceded them (troughs were

identified using the same peak detection algorithm described above).

Western blotting analysis

To prepare cells for western blotting to quantify cellular Kai copy number, cultures were
grown in black 96-well plates illuminated with the Arduino-controlled LED array under constant
illumination, and cells were not subjected to any prior entrainment protocols before growth in
96-well plates. Cultures of the copy number tunable strain were supplemented with 1 uM IPTG
and varying concentrations of theophylline. The cells were seeded at an initial OD750 of 0.3
with each sample distributed across 12 wells (200 pl culture/well), and they were allowed to
grow for 48 hours. At this point, 1.75 ml of culture was taken per sample, pelleted at 3000 x g,
flash frozen in liquid nitrogen, and stored at -80°C.

To prepare Prochlorococcus cultures for western blotting to quantify cellular KaiC copy
number, cells were seeded at an initial OD750 of ~0.003, and they were grown to a final OD750
of 0.09, at which point 22.2 ml cells per sample were pelleted at 3000g, flash frozen in liquid
nitrogen, and stored at -80°C.

Frozen cell pellets were resuspended in lysis buffer containing 8 M urea, 20 mM HEPES
pH 8.0, 1 mM MgClz, and 0.5 pl benzonase (EMD Millipore). Samples were then lysed with 10
cycles of vortex bead beating using 0.1 mm glass beads. Complete lysis was verified by
microscopy (Synechococcus) or flow cytometry (Prochlorococcus). Sample protein
concentration was measured by Bradford assay, using BSA as a protein standard. Samples were

then mixed with 3x SDS-PAGE sample buffer (150 mM Tris-Cl pH 6.8, 6% SDS, 300 mM DTT,
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30% glycerol, 0.1% bromophenol blue) and immediately loaded into polyacrylamide gels for
SDS-PAGE.

For quantification of either cellular Kai expression or KaiC phosphorylation dynamics,
samples were resolved in 4-20% TGX gels or 7.5% Tris-HCI gels, respectively (Biorad). Gels
were transferred onto PVDF membrane (Biorad) and blocked in 2% milk + TBST (137 mM
NaCl, 2.7 mM KCI, 20 mM Tris, 0.05% Tween-20, pH 7.4). Membranes were then incubated in
primary antibody, washed in TBST, and incubated in secondary antibody. Antibody information

is listed below:

Table 2.1. Western blot antibody information
Antibody target Antibody host Dilution

KaiA Rabbit 1:2500
KaiB Rabbit 1:500
KaiC Rabbit 1:5000
anti Rb Goat 1:10000

Membranes were visualized with SuperSignal West Femto substrate (Thermo Fisher) and

imaged (Biorad ChemiDoc MP). Bands were quantified by densitometry in ImageJ against
purified recombinant protein standards, and the intensities of non-specific bands (determined
from kaiABC null samples) were subtracted. Synechococcus recombinant protein was prepared as
previously described (47), and Prochlorococcus KaiC was prepared as described below.
Quantification of recombinant standards was performed by running dilution series of standards in
SDS-PAGE gels against a BSA standard dilution series followed by staining and imaging with

SimplyBlue SafeStain (Life Technologies).

Preparation of recombinant Prochlorococcus KaiC
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Prochlorococcus kaiC was cloned from the MED4 genome with an N-terminal 6X His-
tag followed by a HRV-3C protease site and inserted in between the Kpnl and EcoRl restriction
sites of the pMAL-c5e vector. The addition of the Maltose binding protein (MBP) tag from this
vector was used to improve solubility of the KaiC protein in E. coli during expression. This
plasmid was transformed in BL-21 E. coli cells and expressed at 18°C for 48 hours without
induction. Cells were lysed by high pressure homogenization using an Emulsiflex homogenizer,
and the lysate was clarified by centrifugation at 30,000g for 1 hour. This clarified lysate was
applied through a Ni-NTA column and Procholorococcus KaiC (ProKaiC) was eluted with an
imidazole gradient. HRV-3C protease (ThermoFisher Scientific) was added to eluted fractions
containing ProKaiC to cleave off the MPB-6X His tags by incubation overnight at 4°C. The
post-cleavage fractions were concentrated and further purified via size exclusion
chromatography using a Hiprep 16/60 S300 Column and an elution buffer containing 150 mM
NaCl, 20 mM Tris pH 8.0 and 1 mM ATP. It was determined by SDS-PAGE that the MPB-6X
His tags were incompletely cleaved after the size exclusion step. Hence, fractions containing
Pro-KaiC were again incubated overnight with HRV-3C at 4°C to achieve complete tag
cleavage. The added HRV-3C protease, which contained a 6X-His-tag, and uncleaved ProKaiC
was then removed via incubation with Ni-NTA resin. KaiC concentration in the resulting
supernatant was estimated by gel densitometry. This solution was used as a recombinant protein

standard for quantitative Western blotting.

Protein copy number measurement
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Kai protein copy number per cell was quantified by determining the amount of Kai
protein in cell pellet samples by quantitative western blotting (described above) and dividing by
the number of cells in the pellet.

Synechococcus cell counts were determined by pipetting 1 pl of diluted sample into a 96-
well plate and adding an agar pad and BG11-agar as described in the time lapse microscopy
methods section. The microscope was then programmed to tile the entire well to image all the
cells by chlorophyll autofluorescence, and the cells were then manually counted in ImageJ.
Prochlorococcus cells were too small to count reliably on the microscope, and thus absolute cell
counts were obtained with an Attune Acoustic Focusing Cytometer, which has been previously
used to quantify cell counts for Prochlorococcus (56, 57).

Reported values for Kai protein copy numbers are the averages of three independent
biological replicates for each condition. Uncertainties were calculated as the standard error of the

mean for each estimate.

Circadian bioluminescence measurements

Bioluminescence measurements of either the wild-type strain carrying a luciferase
reporter (MRC1005) or the copy number tunable strain carrying a luciferase reporter (MRC1138)
were obtained using a PerkinElmer TopCount Microplate Scintillation and Luminescence
Counter. Black, opaque 96-well plates were prepared by pipetting 250 ul of BG11-agar into each
well. After the agar solidified, 10 pl of 25x inducer at varying concentrations (IPTG +
theophylline) was pipetted onto the top of the agar, and the plate was left overnight to allow the
inducer to diffuse uniformly throughout the agar. Cells were pipetted onto the plate and

illuminated with the Arduino-controlled LED arrays as described above, and they were subjected
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to two 12h:12h light/dark cycles followed by release into constant light, at which point the plate
reader began taking bioluminescence measurements every 30 minutes. Data curves shown for
each condition and strain represent the average of data recorded from four replicate wells.

To quantify the period and amplitude of circadian oscillations, the data were first detrended by
dividing by a best fit line for the duration of the experiment after release into constant light (111

hours total). This detrended data was then fit to a sinusoid.

Supplementary Text
Identification of appropriate genomic promoters to drive kaiB and kaiC transcription

A major design criterion for the copy number tunable strain is to be able to express the
Kai proteins in an expression range that spans from far below wild-type levels up through wild-
type levels or above. The synthetic riboswitch has been shown previously at maximal induction
to express genes at only ~25% of the expression levels obtained without the riboswitch (39),
necessitating the use of a promoter that is stronger than the native kaiBC promoter. Additionally,
for this study, we wished to investigate the effects of molecular noise on clock function in the
absence of the transcriptional-translational feedback loop, which has been shown to also
contribute to clock period robustness (40).

We identified candidate promoters that met these criteria by combining global
transcriptomic datasets from (58) and (59), and we examined genes whose mRNA was expressed
from 4-40 times the expression level of kaiBC mRNA and that were also arrhythmic. To identify
promoter sequences for these genes, we examined regions 500-750 bp upstream of their 5’-UTR,

taking care to consider the 5’-UTR of the upstream-most gene if the transcript encoded a multi-
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gene operon. Taking the sequence only upstream of the 5’-UTR ensured that any untranslated
regions would have minimal effect on the folded structure of the riboswitch.

As a result of this analysis, we identified six candidate promoters from the following
genes: Synpcc7942_0065, Synpcc7942_0089, Synpcc7942_1152, Synpcc7942_0321,
Synpcc7942_0416, and Synpcc7942_1048. To test which of these promoters expressed Kai
protein at the appropriate levels, we created strains of Synechococcus where kaiA expression is
under its native promoter but kaiB and kaiC expression is controlled by both the candidate
promoter and the synthetic riboswitch (in the bioluminescent circadian reporter background). We
successfully obtained clones carrying promoters Synpcc7942_0321, Synpcc7942_0416, and
Synpcc7942_0089, and we compared the expression levels of KaiB and KaiC in these strains to
wild-type levels at either 0 uM theophylline or 2 mM theophylline. From this blot, we identified

Synpcc7942_0321 (PgInB) as a promoter of the appropriate strength.

Identifying functionally equivalent light levels across experimental setups

Due to the impact of light levels on overall protein expression in cyanobacteria (and
therefore Kai copy number), we designed the experiments to ensure that cells were exposed to
functionally equivalent light levels between the setups used to incubate cells for TopCount,
western blot, and microscope experiments. Absolutely equal overhead illumination between
conditions does not necessarily result in functionally equivalent light levels due to physical
differences in experimental apparatus, such as the absorbance of light by the walls in the black
96-well plates, or the placement of BG11 agar above cells on the microscope. Additional
differences may result from whether the cells are incubated in liquid media (western blots) or on

top of/underneath solid media (TopCount/microscope experiments, respectively).
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To identify functionally equivalent light levels, we incubated cells in the appropriate
experimental setups for TopCount, western blot, and microscope experiments as described in the
methods above. For the TopCount and western blot setups (powered by the Arduino-controlled
LEDs), we exposed cells expressing YFP under control of the IPTG-inducible trc promoter
(MRC1036) to varying levels of light while simultaneously incubating cells on the microscope at
a fixed reference light level. For all experimental setups, cells were maximally induced with 1
mM IPTG. After 48 hours of incubation, cells were washed off the agar surface (for TopCount
experiments) or taken directly from liquid culture (for western blot experiments) and placed on
the microscope and imaged alongside cells grown on the microscope. The average single cell
intensity under each condition was quantified with the CellProfiler software suite (60), and we
determined light intensities for the TopCount and western blot setups that gave rise to cell
fluorescence that matched cells grown on the microscope. The functionally equivalent light
intensities were ~2 pmol photons m™ s for cells on the microscope, ~8.8 pmol photons m? st
for cells in liquid culture in 96-well black plates (e.g. Western blot cultures), and ~20 pmol
photons m s for cells on solid media in 96-well black plates (e.g. TopCount experiments).

These light intensities were used for all subsequent experiments.

Details of model implementation

The mathematical model we use here (fig. S5) is a simplified model which treats some
elements of the biochemistry of the system abstractly, but captures known aspects of the Kai
system that can produce oscillations. It has similarities to previously published models, where
the functional units are KaiC hexamers (44, 46). First, the sequence of phosphorylation and

dephosphorylation of KaiC occurs in an ordered fashion, reflected in an initial phase where
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phosphorylation occurs (yellow box, analogous to Thr432 phosphorylation dominant) until a
threshold level of peak phosphorylation, after which a dephosphorylation phase initiates (blue
box, analogous to Ser431 phosphorylation dominant). The ordering of the phosphorylation sites
prevents the system from crossing between the intermediate states in the yellow and blue boxes.
Second, KaiC only phosphorylates when bound to KaiA and otherwise dephosphorylates. This
results in effective phosphorylation rates that depend on the concentration of KaiA, as observed
experimentally (37). Third, KaiC enters the dephosphorylation phase (blue box), is coincident
with adopting a state that is bound to KaiB (likely ADP bound in the N-terminal domain of
KaiC) (61). These KaiBC complexes can bind and sequester KaiA. We assume that binding of
KaiB is highly cooperative, so that 6 KaiB monomers bind to a single KaiC hexamer, and that
each of these KaiB monomers is capable of inhibiting one KaiA dimer, and does so with very
high affinity so that KaiA is not released until that KaiC hexamer exits the dephosphorylation
phase (62). Additionally, we assume KaiB is present in excess and that KaiBC complex
formation does not significantly deplete cellular KaiB, and thus we do not explicitly account for
KaiB amounts in the model.

We designed the model to be flexible so that the number of reaction steps in the
phosphorylation cycle m can be varied. Each elementary reaction that changes the state of a
KaiC hexamer occurs with a rate constant k which can then be rescaled so that the oscillatory
period remains independent of m. For a given value of m, the deterministic model is defined by

the ordinary differential equations below.

c] Concentration of KaiC hexamers during phosphorylation cycle that are unbound
to KaiA
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[AC]

[BC]

[ABC]

[4]

Concentration of KaiC hexamers during phosphorylation cycle that are bound to
KaiA

Concentration of KaiC hexamers during dephosphorylation cycle that are bound
to KaiB and unbound to KaiA

Concentration of KaiC hexamers during dephosphorylation cycle bound to KaiB
and sequestering KaiA

Concentration of KaiA dimers with free, unbound KaiA denoted as [Afy.] and
total amount of initial KaiA denoted as [A;o¢]

A given KaiC hexamer can exist in varying states of phosphorylation, from a minimum

of 0 to a maximum of m. Here, i represents phosphorylation state during the phosphorylation

cycle and j represents phosphorylation state during the dephosphorylation cycle, and we first

consider caseswhere0 <i<m—1land0<j <m:

TGl emnos ™ (Cort] = [CD + eny [ACT — ki [C] Upree] )

% = kpnos * ([ACi—1] = [AGD) + ka,,, * [Ci] * [Afree] — Ka,,,  [AC] @

@ = Kaepnos * ([BCj41] = [BGD) = kasc * [BG] @)

d[/;liC,-] = Kaepnos - ([ABC11] — [ABG)]) + kagc - B/ - [Arrec] (4)
m-1

[Afree] = max| 0, [Aso] — ; [AC;] 6Z[ABC] (5)

For special casesi = 0,m — 1:
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d[Co]

T = Kaopos * ([C] + [BC.] + [ABCID) + [C1)(Kka = Kay) ©)
d[gf ) epnos ACG] + ke, ~[Col  (Agree] i,y [ACH "
W 1) — gepnos  (BCl = oD + Kty [ACmos] k(G (8)
*[Afreel
% = lphos * ([ACm-2] = [ACm-1D) + kayy, * [Cro] * [Apree] = kayyy  (q)
" [ACm-1]
And for j = m:
d[f; fm] = Kphos * [ACm-1] = 2 * kaepos - [BCm] — kapc * [BCr] (10)
W = —Kaephos  [ABCpm] + ke - [BC] - [Arree] (11)

To interpolate between full strength negative feedback (Synechococcus-like) and no
negative feedback (Prochlorococcus-like), we make the following modifications to the model.
First, we introduce an additional state of KaiC in the phosphorylating cycle, C*, which can
phosphorylate in a KaiA-independent manner, consistent with experimental evidence indicating
that Prochlorococcus KaiC can autophosphorylate in the absence of KaiA (63). KaiC can thus
transition to one of two states that promote phosphorylation: one in which it binds to KaiA (AC),
and one in which it does not (C*). The relative probability of these states is determined by a
parameter n which can take values between 0 and 1. When n = 1, all phosphorylation is KaiA-

dependent (the Synechococcus-like model). When n = 0, all phosphorylation occurs via the
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KaiA-independent state. Lastly, we introduce environmental input in the form of the cellular
ATP/(ATP + ADP) ratio, which has been shown to alter KaiC phosphorylation, leading to
entrainment to metabolic signals (24). Here, we model this effect by allowing the ATP/ADP ratio
to influence the rate at which KaiC enters a phosphorylation-competent state, and we denote the
fraction of total (ATP + ADP) that is ATP as f,p. This hypothetical mechanism allows

phosphorylation of Prochlorococcus KaiC to depend on the light-dark cycle through metabolism.

Specifically, the rate at which KaiC enters the KaiA-bound phosphorylating state changes:

kAon - kAon "N farp

Similarly, the total rate at which KaiC switches to the KaiA-independent phosphorylating state

can be expressed as:

keocr - (L =n)  farp

In total, the entire modified system of equations can be written, modifying equations (1) and (2)
to produce equations (12) and (13). First, we consider cases where 0 < i < m — 1 (the reactions

on the dephosphorylating cycle remain unchanged):

d[C;
% = Kaephos * ([Ci1] = [C]) + Ky, [AC) = Kagy, "1~ farp  [C] - [Afree] (12

—kcocr (X =1)  farp * [Ci]
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d[AC;]
dt

= kphos ) ([ACi—l] - [ACi]) + kAon N 'fATP ) [Ci] ) [Afree] - kAoff ) [ACL'] (13)

d[C”]

T = kphos ~([C*i4] = [CD + keocr (1- 77) * farp [Ci] — keese - [C7] (14)

Equations (6)-(9) are rewritten to produce equations (15)-(18) for i = 0,m — 1:

d[C
% = Kaephos * ([C1] + [BC1] + [ABC1]) + ka, ., * [ACo] — ka,,, "1 * farp * [Co] (15)
: [Afree] +keoer (A =1) - farp - [Co]

d[AC
[dt o] = _kphos ) [ACO] + kAon N farp " [Co] ) [Afree] - kAoff - [ACo] (16)

d[Cp—
[ dt 2 = kdephos ’ ([BCm] — [Cn-aD + kAoff [ACn-1] — kAon "N farp (17)

[Cn-1]- [Afree] +keoer - (A =1)* farp * [Cm-1]

d[AC,,—

% = kphos ’ ([ACm—Z] - [ACm—lD + kAon "N farp " [Cm—l] ) [Afree] (18)

- kAoff ) [ACm—l]

Deterministic simulations of the system were implemented by using fourth-order Runge-Kutta

numerical integration with a step size of 0.01 hours.

To simulate the system stochastically, we reimplemented the reactions shown above using the

Gillespie algorithm (64), denoting the copy number of a particular species as Nsy,c;es. Thus, the

rate at which KaiC binds to KaiA during the phosphorylation cycle can be rewritten:

kAon "N farp* Nci ) NAfree - kAon "N farp 'Nci [Atot] " —=—
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And the rate at which KaiBC binds to KaiA to sequester it during the dephosphorylation cycle

can be rewritten:

kagc - NBcj 'NAfree - Kapc - NBCj “[Ator] -

In experiments, changing theophylline concentrations changes copy number but also
changes concentration of Kai proteins. To reflect this in the stochastic implementation where the
cell volume remains constant over varying copy numbers, the concentration [A;,] is scaled by
the overall Kai copy number relative to wild-type, where wild-type copy number of KaiC is
specified to be 1200 hexamers (derived from experiments in this study measuring Kai copy
number to be ~8000).

A table of simulation parameter values for this study are listed in Table S2.2. Rate
constants in the model were selected such that their relative magnitudes were reasonably
consistent with previous findings (e.g. the KaiA binding rate is faster than the disassociation rate,
and important slow steps in the cycle are reactions within a KaiC hexamer: phosphorylation,
dephosphoryation, and switching into a KaiB-binding competent state (65)). Values for KaiA-
KaiC stoichiometries for stimulating phosphorylation (1:1 stoichiometry) and for sequestration
(6:1 stoichiometry) were chosen based on reported literature values (62, 66). As a final step, all

model rate constants were scaled proportionally such that the period of oscillations was 24 hours.

Determining model timing error
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To quantify the amount of oscillatory noise in the model at varying copy numbers (as
shown in Fig. 3), the simulation was first initiated with all KaiC completely dephosphorylated
and unbound to KaiA (C,). From this initial condition, the simulation was simulated
deterministically, and the system quickly converged to a limit cycle. To allow the system to
reach steady state oscillations, the simulation was run for 1000 hours. The relative amounts of
each KaiC species was then recorded and saved at the KaiC phosphorylation trough most
immediately before the 1000 hour simulation endpoint. KaiC phosphorylation was calculated by
summing up the total number of phosphorylated sites on all KaiC molecules in the simulation.

The save point was then used as initial conditions for all subsequent simulations, and
concentrations of Kai proteins were converted to absolute copy number assuming a conversion
factor of 1200 molecules/1.56 uM. To more closely mimic the experimental data in which
single cells grow and divide, the simulation was first run for 24 hours (the “mother cell”), at
which point the simulation state was cloned into two simulations which were left to run
independently thereafter (as the “daughter cells”). 24 hours later, the simulations were cloned
and split again into four, and this was repeated for a total of 7 complete “generations”, or 168
hours of simulation time for each individual simulation lineage. The 24 hour doubling time
chosen here is consistent with the ~24 hour doubling time in our experiments (data not shown).
KaiC phosphorylation data over time was compiled for individual lineages, and to facilitate
further downstream processing, the data were resampled at a time interval of 0.01 h with linear
interpolation. Peak-to-peak measurements were then obtained in identical manner to that used for
experimental data (outlined in the Methods and Materials) with the exception that a window size

of 211 was used for the Savitsky-Golay smoothing filter on the model data before peak finding.
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This simulation was repeated for varying copy numbers of Kai protein and for varying
values of m as shown in Fig. S6, with m = 5 providing the best fit to the experimental data as

shown in Fig. 3D.

Noise sensitivity analysis of all molecular species in the model

We performed a noise sensitivity analysis to determine which molecular species in the
model were most susceptible to noise. Specifically, we defined noise susceptibility as the
average magnitude of phase shift induced by an instantaneous single perturbation of molecular

noise in the amount of a given molecular species. Perturbations were simulated to be Poisson-

like in nature in order to reflect the expected 1/+/N noise scaling behavior, where N represents
the copy number of a given species. Thus, we expected that molecular species that were present
in smaller amounts should experience greater fluctuations in their amounts.

To precisely isolate the effect of a single perturbation of molecular noise, the model was
first initialized from steady state oscillations (specifically after 1994.49 hours of deterministic
simulation starting from dephosphorylated KaiC) and run deterministically for 24 + At hours,
where At represents a random interval of time picked uniformly between 0 and 24 hours. At this
point a molecular noise perturbation was introduced by converting the concentration of a given
molecular species to a discrete copy number (corresponding to 25% wild-type copy number and
using a conversion factor of 1200 molecules/1.56 uM), at which point the copy number was
resampled from a Poisson distribution whose mean was the initial copy number. This resampled
copy number was converted back into a concentration value, and from here the simulation was

run deterministically for an additional 48 hours.
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The phase shift between the pre- and post-perturbation trajectories was calculated by
taking the absolute value of the difference in the phases obtained from sinusoid fitting to both
trajectories.

For each molecular species in the model, we repeated this process a total of n = 500 trials.
We grouped molecular species into four categories: KaiAC complexes, unbound KaiC, KaiBC
complexes, KaiABC complexes. For each category, we then calculated the average magnitude of

phase shift, which is shown in Fig. 3E.

Determining the range of KaiABC complexes that switch KaiC between kinase and phosphatase
modes

To calculate the dependence of KaiC net kinase rates on the number of KaiABC
complexes present at a given moment in time, the average amount of each KaiC species was first
calculated by averaging KaiC amounts over a 24 hour period sampled at 1 hour intervals. The 24
hour period over which individual KaiC amounts were recorded ranged from t = 1958.07 h
(trough of phosphorylation) to t = 1982.07 in a deterministic simulation in which KaiC was
initialized in the unphosphorylated state and unbound to KaiA. Once the average KaiC amounts
were calculated, these amounts were used as the initial conditions for subsequent simulation.

Because the amount of free KaiA available to bind to KaiC depends on the amount of
KaiABC complex, the simulation was allowed to reach an equilibrium of KaiA-KaiC binding by
first allowing only the KaiA-KaiC binding/unbinding reactions to run for 20 hours, disabling any
phosphorylation and dephosphorylation reactions. After KaiA-KaiC binding reached

equilibrium, the net KaiC kinase rate was calculated by taking the sum of all rate constants for
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phosphorylating reactions and subtracting the sum of all rate constants for dephosphorylating
reactions. This process was then repeated for varying amounts of KaiABC complexes.

The curve shown in Fig. 3F was produced by sampling the net kinase vs. KaiABC
complex curve in discrete amounts corresponding to incrementing the copy number of KaiABC
complexes by 1 and calculating the corresponding change in net kinase rate, and this was

simulated for a KaiC copy number of 1,800.

Calculating clock/environment mutual information for varying feedback loop strengths

To determine the optimal feedback loop strength at varying Kai copy numbers, we varied
the feedback loop strength in the presence of environmental fluctuations. Feedback loop strength
was tuned by varying the parameter 7 to take values between 0 (no feedback loop) to 1 (full
feedback strength). For each value of 7, the simulation was first run deterministically for 50
cycles of 12h:12h light/dark cycles without environmental noise to reach steady state, initialized
from unphosphorylated KaiC not bound to KaiA. Light/dark cycles were emulated by cycling
ATP levels between 80% (day) and 40% (night), reflecting experimental values observed
previously. These steady states were then used as the starting points for subsequent simulations.

For stochastic simulations, the simulations were run at constant concentration, where Kai
copy number was changed by changing the effective simulation volume (thus cells with smaller
Kai copy number will have proportionally smaller volumes). This reflects our experimental
findings that while Synechococcus and Prochlorococcus have vastly different Kai copy numbers,
the concentrations of Kai proteins are roughly equivalent in both organisms due to their
difference in volume. The simulations were then run at varying copy numbers for 10 cycles of

12h:12h light/dark cycles with fluctuations.
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Environmental fluctuations were simulated by adding fluctuations to a deterministic
12h:12h light/dark cycle as outlined above. In the case without external fluctuations, furp IS
80% during the day and 40% at night. When fluctuations are present, we instead generate f,rp
via a Markov process where the input signal switches to a new level with a mean waiting time of
1.33 hours. For each environmental transition, f,rp is drawn from a normal distribution centered
on 80% (day) or 40% (night) with a standard deviation of 10%. An example plot of such ATP
fluctuations is shown in figure S10. To facilitate downstream data processing, the data from each
simulation was resampled at a rate of 0.01 hours using linear interpolation. For each copy
number and value of n, the simulation was repeated a total of 900 times.

For mutual information calculations, the data from the last 5 cycles of 12h:12h light/dark
was used. The multidimensional clock state was projected into 2 dimensions by quantifying the
total amount of phosphorylation in the phosphorylating half of the cycle (P, yellow box in fig.
S5) vs. the dephosphorylating half of the cycle (D, blue box in fig. S5).

Time data was binned into 24 bins, and phosphorylation data was binned into 100 x 100

bins. Mutual information (I) was calculated for each Kai copy number and value of n:

Pr(t,{p,d))
2 Pr(t)Pr((p,d))

I(T,(P,D))=Z Z Pr(t, (p, d)) - log

teT (p,d)e(P,D)

Here, T denotes the entire set of time points, and t denotes a specific time point. Similarly,
(P, D) denotes the entire set of observed phosphorylation states, and (p, d) denotes a specific

phosphorylation state observation. Pr denotes the probability function.
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Determining the bifurcation point where oscillations lose stability as feedback strength
decreases

The bifurcation point in Figures 4F-G (denoted by the horizontal dashed line) was
determined for various values of feedback loop strength n and ATP/(ATP + ADP) ratios by the
following method. For a given, constant ATP ratio and starting at n = 1.0, a deterministic
simulation was run for 1000 hours, and a binary search was executed over varying values of n to
determine the level of n where oscillations would disappear or become unstable. Oscillations
were considered to be stable and present if the amplitude did not drop by more than 2% over the
last 100 hours of the simulation and if the amplitude over the last 50 hours was greater than 10%
of the oscillatory amplitude obtained at n = 1.0.When the input signal is constant, the
bifurcation point depends on the ATP ratio value, so in the case of fluctuating environmental
input, we defined the bifurcation point of the system to be the value of n above which

oscillations were present and stable for all ATP ratio levels between 80% and 40%.

Estimate of the fraction of the total proteome occupied by Kai proteins for Synechococcus-like
expression levels in Prochlorococcus

Given a cellular diameter of ~0.5 um (48), an estimate for the cell volume of
Prochlorococcus is ~0.1 fl assuming a spherical cell shape, a reasonable assumption based on
electron micrographs (67). Cellular protein amount was measured to be ~15 fg/cell in
Prochlorococcus (corresponding to ~150 mg/ml concentration), which was quantified by
measuring the total protein yield from cell lysate by Bradford assay and dividing by the total
number of cells in the sample as measured by flow cytometry. Protein concentration was

estimated by dividing mg/ml by cell volume.
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Given a protein amount of ~15 fg/cell and assuming an average protein molecular weight of 26.7
kDa in bacteria (68), we can estimate that there are ~10° copies of proteins/cell in
Prochlorococcus. Wild-type Synechococcus expresses a total of ~20,000 Kai proteins, which
would constitute ~20% of the total proteome in Prochlorococcus, a large amount for an already

minimal photosynthetic organism.
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Supplemental Figures
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Fig. S2.1. Characterization of copy number tunable strain. (A) Representative western blot
images for data presented in Fig. 1C (n = 3 biological replicates). For each protein KaiA, KaiB,
and KaiC, cell lysate and recombinant standards were blotted simultaneously on the same
membrane. Left: cell lysate from wild-type, kaiABC null, or copy number tunable cells incubated
in 1 uM IPTG and various amounts of theophylline. For KaiA and KaiB western blots, 3 pg total
protein was loaded per well. For KaiC western blot, 0.75 pg total protein was loaded per well.
Protein specific bands are highlighted with black arrows, and nonspecific bands are highlighted
with red arrows. Right: recombinant protein standards were all carried out in a dilution series,
with the maximum and minimum amounts loaded per standard as follows: 8 ng to 0.16 ng for
KaiA, 5 ng to 0.10 ng for KaiB, and 12 ng to 0.24 ng for KaiC. (B) Relative stoichiometry of
KaiC to KaiA cellular copy number using data from (A). Error bars and shaded interval indicate
the standard error of the mean. (C) Left: cell lysate from wild-type, kaiABC null, or copy number

tunable cells incubated in 96 uM theophylline and various amounts of IPTG. For both KaiA and

50



(Fig. S2.1 continued) KaiC, 3 pg total protein was loaded per well. Right: recombinant protein
standards were similarly carried out in a 2-fold dilution series, with the maximum and minimum
amounts loaded per standard as follows: 8 ng to 0.25 ng for KaiA and 12 ng to 0.38 ng for KaiC.

(D) Relative stoichiometry of KaiC to KaiA cellular copy number using data from (C).
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Fig. S2.2. Bulk level oscillation data from the TopCount plate reader assay. (A) Bioluminescence
traces over time in either wild-type cells (gray) or copy number tunable cells plated on BG11-
agar containing various amounts of inducer (blue). Shown are the averages of data fromn =12
individual wells for wild-type and n = 4 individual wells for copy number tunable cells. Upward

trend in bioluminescence is due to cell growth/division over the course of the experiment
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(Fig. S2.2 continued) (data shown is pre-normalization). (B) Heatmap of oscillation amplitude at
various levels of inducer. Amplitudes are obtained from fitting data to a sinusoid after
normalizing data for cell growth/division. White star indicates conditions that approximate wild-
type levels of Kai protein expression. (C) Heatmap of oscillation period relative to wild-type
cells after similar fitting to sine curves after normalization. Gray areas indicate conditions where
the oscillation amplitude was too weak to determine period in a satisfactory manner. White star

indicates conditions that approximate wild-type levels of Kai protein expression.
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Fig. S2.3. Experimental setup for fluorescent time-lapse microscopy. Cells are incubated in 96-
well plates (only a single well is shown, not drawn to scale) underneath an agar pad with uniform
illumination. Additional BG11-agar containing inducers is added on top of the agar pad. The

entire setup is contained within a light and temperature-controlled box held at 30°C.
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Fig. S2.4. Oscillation amplitude in wild-type cells and in the copy number tunable strain at
various theophylline concentrations and 1 uM IPTG. (A) Histograms of oscillation amplitudes.
(B) Quantification of mean oscillation amplitudes shown in (A) with error bars denoting standard

deviations of amplitude distributions.
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Fig. S2.5. Model of Kai system. KaiC is either in a phosphorylation-competent mode (yellow
box) or a dephosphorylation mode (blue box), which corresponds to the ordered steps of
phosphorylation and dephosphorylation observed experimentally. In the phosphorylation-
competent mode, ground-state KaiC (middle of yellow box) can enter one of two states that allow
for phosphorylation: KaiA-bound (left) and an equivalent state that is not KaiA-bound (right).
These two states correspond to the scenario in which the KaiC C-terminal tails are exposed,
promoting phosphorylation (69). Feedback loop strength » determines the relative rates at which
KaiC enters the KaiA-bound or KaiA-unbound phosphorylating state. KaiC undergoes a series of
phosphorylation steps (a total of m steps, m = 6 shown here for illustrative purposes) until it
becomes fully phosphorylated, unbinding KaiA if previously bound and binding to KaiB.
Dephosphorylating KaiC can either dephosphorylate as part of a KaiBC complex or it can do so

as part of a ternary KaiABC complex which sequesters KaiA and forms the oscillator negative
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(Fig. S2.5 continued) feedback loop. KaiC that becomes completely dephosphorylated unbinds

KaiB and KaiA if previously bound, and the cycle restarts.
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Fig. S2.6. Deterministic simulation of model depicted in fig. S5 with parameter m = 5 and
numerically integrated with the fourth order Runge-Kutta method. The simulation was first
initialized from 2.0 uM dephosphorylated KaiC hexamers and 2.0 uM KaiA dimers, and it was
allowed to reach steady state oscillations by running the simulation for 1994.49 hours and saving
the simulation state at that time. The simulation was then run for an additional 120 hours from

the saved state, and the resulting trajectory is plotted here.
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Fig. S2.7. Different values of m (number of phosphorylations on KaiC required to switch from
phosphorylating to dephosphorylating) show different noise scaling properties. Shown above is
Kai copy number plotted against the coefficient of variation for various values of m. Shaded
areas indicate 95% confidence intervals from bootstrapping (5000 iterations). The number of

peak-to-peak intervals in each data point in each curve ranges from n = ~800 to n = ~1400.
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Fig. S2.8. Representative western blot image of Prochlorococcus KaiC used for quantifying the

cellular copy number (n = 3 biological replicates). Left: cell lysate from Prochlorococcus cells
were loaded in a dilution series with 7.5 pg, 3.8 pg, and 1.9 ug of total protein loaded in each

well from left to right. Right: purified recombinant standard of Prochlorococcus KaiC with 29

ng, 15 ng, 7.1 ng, and 3.6 ng loaded in each well from left to right.
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Fig. S2.9. KaiC phosphorylation dynamics in Synechococcus. Top: western blot time course
showing Synechococcus KaiC phosphorylation in cultures incubated in light-dark cycles

followed by either constant light or constant dark. Bottom: quantification of phosphorylated

KaiC over time by densitometry.
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Fig. S2.10. Additional data from mutual information calculations. (A) Clock/environment mutual
information from model simulations at varying feedback strength and Kai copy number. Each
curve corresponds to a single column in the heatmap in Fig. 4F, and the feedback strengths that

maximize the mutual information of each curve corresponds to the points plotted in Fig. 4G. (B)
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(Fig. S2.10 continued) ATP ratio environmental input without fluctuations (top) and with
fluctuations (bottom). Alternating light and shaded backgrounds indicate 12 hour day-night

cycle.
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Supplemental Tables

Table S2.2. Parameters used in the Kai model.

Category Parameter | Value Description
m 5 unless otherwise Number of
specified phosphorylation steps
Common 1 unless otherwise Feedback loop strength
parameters 1 specified, varies from 0-1
forall f 1 unless otherwise Environmental input
simulations ATP specified, varies from 0-1
dt 0.01 h-1 S_tep size for deterministic
simulation
kphos 2m - 0.04902 A1 Phosphorylation rate
kaephos 2m-0.04902 b1 Dephosphorylation rate
Rate of KaiA/KaiC
ka,, 0.2451 uM~t 7t binding to switch KaiC to
phosphorylating state
Rate of KaiA/KaiC
Ka, s 0.02451 b7t disassociation from
Rate phosphorylating state
constants Rate of KaiC switching to
kcocr 0.2451 h71 KaiA-independent
phosphorylating state
Rate of KaiC switching
ke 0.02451 h~1 from KaiA-independent
phosphorylating state
- Rate of KaiC binding to
1
kapc 110.80 o KaiB to sequester KaiA
Initial concentration of
Colini 1.56 uM .
Deterministic [Coline 3 KaiC hexamers
simulation Initial concentration of
initial [Ator] 2.0 uM KaiA dimers
conditions i i
dt 0.01 A Step size for numerical
Integration
Scaling factor for copy
] scale_factor Varies number, where 1 indicates
Stochastic wild-type-like levels
simulation Initial copy number of
Inltla_l _ Coinit 1200 - scale factor KaiC hexamers
conditions o cor of
Ny,.. 1200 - scale_factor Initial copy number o

KaiA dimers
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Table S2.3. Calculated concentrations of Kai proteins in S. elongatus and P. marinus.
Concentrations were calculated using western blotting copy number estimates and estimated cell

volumes of 2 fl and 0.1 fl for S. elongatus and P. marinus, respectively.

[KaiA] [KaiB] [KaiC]
Wild-type S. elongatus 3.0 uM 9.0 uM 6.6 UM
P. marinus N/A n.d. 11.4 uM

Discussion and Future Directions
Background context of the study

Although it has been long established that circadian clocks are able to oscillate with a
robust, precise 24-hour period, one of the fundamental questions in circadian biology is how
these biochemical oscillators maintain such consistent periodicity in the face of both
environmental and internal fluctuations. The work presented here utilizes a combined
experimental and theoretical approach to probe the effect of molecular stochasticity in the
cyanobacterial clock by varying clock protein copy number in single cells and observing the
effect on timing precision. We find that reduction of Kai copy number to below ~10,000 copies
leads to erratic oscillations, and our modeling suggests that this is due to a noise bottleneck in the
negative feedback loop necessary for oscillations. While many others have theoretically
investigated the effects of molecular noise on biological oscillators, there are relatively few
studies that investigate molecular noise experimentally.

One previous study theoretically investigated molecular noise by stochastically
simulating the mammalian circadian clock (70), which relies on a transcriptional feedback loop
to sustain oscillations, unlike the cyanobacterial oscillator. A key result from this work was that a

noise bottleneck in the system occurred at the interface of transcription factors binding to their
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promoters, consisting of discrete binding and unbinding events. Slow binding and unbinding led
to greater variability in oscillation period, and increasing the rate of binding Kinetics in turn
decreased timing variability, perhaps due to the fact that more binding events per hour will
average out noise in binding kinetics to a greater degree. Additionally, increasing the number of
promoters in the system (reflecting a gene duplication event) also decreased the amount of
oscillation variability, mirroring the results from our work in which increasing the total copy
number of molecules suppresses the contribution to noise from the negative feedback loop of the
Kai oscillator.

The effect of increasing gene dosage to reduce oscillatory noise was also observed
experimentally in the timing of the yeast cell cycle, in which increasing the genomic copy
number of G1 cyclins (covering 1N/2N/4N ploidy) decreased the variability in timing of G1

duration, or the period between the initiation of cell division and budding (71). Additionally, the
variability in G1 duration was observed to decrease by /2 for each doubling of ploidy, indicating

that noise likely scaled with a 1/+/N dependence, which is consistent with the predicted noise
scaling if molecular noise was the main driver of noise.

The main conclusions of our work are consistent with the findings of these previous
studies, which together find that molecular noise stemming from finite copy number constraints
can increase variability in the timing of cellular processes. In addition, our work expands on
these conclusions by introducing the idea that molecular noise is not only present in biological
systems but can also present a substantial evolutionary pressure due to the conflict between noise
suppression from high biomolecular copy number and the biosynthetic cost of synthesizing large
numbers of molecules. In our work, we do not solely test the theoretical prediction that

biochemical reactions become more stochastic at low molecular copy number. Our observation
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that a smaller cyanobacteria possessing a naturally lower Kai copy number also possesses a
qualitatively different timing system suggests that across the entire range of microbial cell sizes,
cells may face different biophysical constraints in how to optimally suppress molecular noise.
This demonstration that molecular noise can have significant consequences for organism
function will be important for future efforts to engineer synthetic biological oscillators, for
example, and it may also be relevant to our continued study of the microbiome, especially as we
investigate how the gut microbiome may anticipate circadian changes in the mammalian gut

environment.

Study limitations

While our work expands upon previous ideas of how molecular noise presents itself in
biological systems, it is also important to note its limitations. The first to note is that high Kai
copy number expression almost certainly plays only a partial role in noise suppression in the
cyanobacterial oscillator. Expression of the kaiBC operon is itself under circadian control,
forming an additional transcriptional feedback loop on top of the mechanisms driving the post-
translational oscillator. In placing the expression of KaiB and KaiC under control of constitutive
genomic promoters in this study, we focus on noise in the post-translational oscillator but neglect
the contribution of the feedback loop to noise suppression. Indeed, one previous study
demonstrated that the transcriptional feedback loop in the Kai oscillator does make a
contribution to noise suppression, and that replacement of the kaiBC promoter with a constitutive
promoter increases the variability in period of the oscillator (40). Our results are consistent with
this previous study—the copy number tunable strain induced with 92 uM theophylline shows

much noisier oscillations compared to wild-type cells, despite having a similar copy humber of
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KaiC (~8,000 KaiC/cell in the wild-type vs ~7,000 KaiC/cell in the copy number tunable strain
at 92 uM theophylline).

An interesting follow-up study that could be performed is to further dissect the
mechanism by which the transcriptional feedback loop reduces noise in the oscillator. How many
extra copies of Kai proteins is equivalent to the presence of transcriptional feedback in terms of
improving oscillator precision? Perhaps transcriptional feedback is an alternate way to reduce
oscillatory noise without invoking the extra biosynthetic burden that would accompany
expression of Kai proteins at a higher level. How does transcriptional feedback reduce clock
noise exactly? An attractive hypothesis is that perhaps certain points in the oscillator cycle are
more sensitive to low copy molecular noise, and that increased expression of KaiB and KaiC at
this point in the cycle effectively buffers these vulnerable points in the cycle against molecular
noise. Indeed, expression levels of KaiC have been reported to oscillate over a three-fold range
from ~5,000 copies per cell at the minimum up to a maximum of ~15,000 copies, with the
maximum expression levels occurring close to the onset of subjective dusk, or CT 12 hours (72).
One potential time of day when the oscillator may be susceptible to low copy number noise is at
the time of cell division, which is significant because cell division reduces cellular protein copy
number by roughly two-fold. The clock has been shown to gate the timing of cell division, and
under certain conditions in which cells divide roughly once per day, cell division is most likely
to occur during the period roughly corresponding to increased levels of KaiB and KaiC
expression (73). It is thus possible that the transcriptional feedback loop buffers the oscillator
against the reduction in copy number accompanying cell division, meriting further investigation

both experimentally and theoretically.
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Another limitation of our study is in identifying the relative contribution of molecular
noise to oscillatory period variability compared to other sources of noise in the system. In
addition to molecular noise from low copy number effects, other possible contributors of noise
include: fluctuations in Kai protein expression, fluctuations in Kai protein stoichiometry, noise in
the clock output pathway (e.g. the YFP clock reporter), noise in image acquisition, and noise in
image analysis. While it is possible to measure whether Kai protein expression noise changes
significantly as theophylline induction is altered in our system (using a strain in which
expression of a YFP reporter is placed under control of the riboswitch), it is more difficult to
determine the relative contribution to oscillatory noise from fluctuations in protein expression
versus biochemical stochasticity of the clock reaction.

A final limitation of our study lies within our comparison of the Kai systems within
Synechococcus and Prochlorococcus. Here, we make the assumption that the Kai system in
Prochlorococcus is responsible for global regulation of gene expression as it is in
Synechococcus. Currently, this hypothesis is untestable due to the difficulty of performing
genetics in Prochlorococcus, and it is thus untenable to knock out the kaiBC locus in
Prochlorococcus to assess the effects on previously reported global rhythms in gene
transcription. However, the presence of the clock output protein SasA in Prochlorococcus
suggests that it is still at least plausible that the Kai system continues to influence gene
expression. The inability to perform genetics in Prochlorococcus (and thus the inability to
engineer a clock reporter) also precludes us from performing experiments that directly test our
theoretical predictions that the Prochlorococcus timer-like system can track the time of day

better at low copy number compared to Synechococcus given that there is minimal or no
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environmental input fluctuation. These experiments may become possible in the future should

methods be developed to allow genetic manipulation of Prochlorococcus.

Additional thoughts and interpretations of data

Although our study is unable to genetically probe the role of the Kai proteins in
Prochlorococcus, we are the first to document the phosphorylation dynamics of KaiC. One
previous study established that in Prochlorococcus, transcription of psbA oscillates in light-dark
cycles but not in constant light (49), but it was unknown whether this reflected gene-specific
dynamics or whether the clock system itself also behaved as a timer. In showing that KaiC
phosphorylation dynamics are solely driven by light-dark cycles (phosphorylation in the day and
dephosphorylation in the dark), our work suggests that KaiC in Prochlorococcus may still
regulate global gene expression, assuming that the clock output pathway in Prochlorococcus
functions similarly to that in Synechococcus. Additionally, our work indicates that unlike
Synechococcus, in which the net phosphorylation and dephosphorylation phases of the cycle
proceed at roughly comparable speeds to produce a symmetric oscillatory waveform (see Figure
S2.9), phosphorylation of Prochlorococcus KaiC occurs much more rapidly than
dephosphorylation (see Figure 2.4C). Indeed, KaiC becomes fully phosphorylated within 6 hours
in light (and potentially even more rapidly due to the coarse time resolution of the experiment),
but takes ~12 hours to dephosphorylate from 100% to 50% phosphorylation, and it takes an
additional ~12 hours to become completely dephosphorylated. This raises an interesting
question. It may be possible that timers are more adversely affected by environmental noise
compared to free-running clocks because they lack an internal timekeeping mechanism that helps

to filter environmental noise, and indeed our information theoretic analysis indicates that free-
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running clocks can track the time of day better in the presence of environmental fluctuations
(ignoring the effects of molecular noise at the deterministic limit of high protein copy number).
If this is true, might Prochlorococcus KaiC have evolved to dephosphorylate slowly as a way to
filter environmental noise during the day, acting as a low bandpass filter? It should be noted that
the presence of environmental fluctuations in light levels during the day/night cycle is
asymmetrical—while there may be unexpected pulses of darkness during the day due to weather,
it is much less likely for there to be unexpected brightness during the night. Could the slow
dephosphorylation dynamics of Prochlorococcus KaiC ensure that dephosphorylation is only
initiated when cells undergo an extended period of darkness (indicative of true night and less
likely to occur from weather), thus preventing cells from spuriously perceiving the onset of
night? In this view, the asymmetrical phosphorylation dynamics of Prochlorococcus KaiC may
represent an evolutionary adaptation to filtering out the asymmetrically distributed light
fluctuations during the day vs. the night given that the cell no longer has a free-running clock.
Our work also raises the question of how and why Prochlorococcus, specifically P.
marinus MEDA4, lost KaiA and thus the ability to sustain free-running oscillations. Phylogenetic
studies indicate that as the Prochlorococcus clade is traversed from the more basal cyanobacteria
(which have copies of all three Kai genes) to the more recently diverged cyanobacteria, KaiA is
gradually truncated from the N-terminus until it is lost entirely in P. marinus MED4 (49). How is
the loss of KaiA related to the decrease in cell size over evolutionary time? It is thought that
small cells are part of a cell-wide adaptation to nutrient-deplete waters in order to increase the
efficiency of nutrient uptake, and the decrease in cell size may be one component of an overall
process that includes progressive genome streamlining and reduction of genomic GC content to

decrease cellular demand for nitrogen (48). Interestingly, one of the intermediate species of
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Prochlorococcus (MIT9313) has a truncated form of KaiA that retains only the C-terminus (49),
and its cell size appears to be roughly twice that of MED4 (74). Could the Kai copy humber in
MIT9313 represent the minimum copy number at which a free-running clock is more optimal
than a timer? To answer this question more fully, more work will be needed to more thoroughly
catalogue the cell sizes, Kai copy numbers, and KaiC phosphorylation dynamics of these
intermediate Prochlorococcus species. A complementary approach to the question of how
Prochlorococcus lost KaiA utilizing ancestral protein reconstruction is also briefly discussed in

the appendix of this dissertation.

Additional future directions

One of the main predictions of this work is that cells with noisy clocks will experience
fitness defects due to failure to accurately predict the onset of light or dark. An experiment that
could be performed to test this prediction is to induce the copy number tunable strain to express
various copy numbers of Kai proteins while incubating the cells in 12h:12h light/dark cycles. To
determine the effects on fitness, cell growth can be measured on the microscope at the single cell
level, which will additionally provide information on whether individual cells that experience
growth defects do so because of a clock that is set to the wrong time due to molecular noise. If
cells with noisier clocks experience growth defects in a cyclic environment, these findings would
also confirm the work that is discussed in Chapter 4 of this dissertation, which specifically
investigates the consequences of clock-environment mismatch on cell fitness in cyanobacteria.

The other major theoretical prediction from the work in this chapter is that removal of the
noisy negative feedback loop in the Kai oscillator will lead to an environmentally driven timer

that can better track the time of day at low protein copy number. Testing this prediction

72



experimentally would require tracking the clock state in single Synechococcus cells expressing
Kai protein at Prochlorococcus-like copy numbers, and comparing the noise in clock output in
Prochlorococcus itself. Currently, such an experiment would be difficult to execute, again due
to the fact that Prochlorococcus is not a genetically tractable organism, making it infeasible to
track clock state in single Prochlorococcus cells with a genetically-encoded fluorescent clock
reporter.

An alternative to genetically engineering Prochlorococcus with a clock reporter is to
instead transplant the Prochlorococcus Kai system into Synechococcus, replacing the Kai system
native to Synechococcus. This approach has been attempted in the Rust lab by Gopal Pattanayak,
and initial experiments appeared successful, producing a strain in which oscillations dampened
in constant light. However, issues remain regarding the reproducibility of these results, casting
doubt on the initial observations. In order to successfully transplant ProKai, there are several
issues that must be dealt with, including finding an appropriate expression level for both proteins
as well as ensuring that ProKai can interface correctly with the clock output proteins in
Synechococcus, SasA and CikA. Interestingly, preliminary results indicate that Prochlorococcus
sasA (ProSasA) can rescue a sasA null Synechococcus mutant (data not shown, experiment
performed by Gopal Pattanayak), suggesting that transplanting both the ProKai system as well as
ProSasA might help solve problems that arise if ProKai and Synechococcus clock output proteins

are found to be incompatible.
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Chapter 3: Mixtures of opposing phosphorylations within hexamers

precisely time feedback in the cyanobacterial circadian clock

Foreword

Here, | present work published by Jenny Lin and myself (on which | am a second author),
and all supplementary material can be found in (46). This work investigates the mechanism by
which the Kai oscillator can generate oscillations over a large range of protein stoichiometries.
In brief, we found that the hexameric nature of KaiC combined with the opposing effects of two
phosphorylation residues can generate an ultrasensitive switch that mediates KaiB-KaiC binding,
and that this is sufficient to explain the robustness of the Kai system to changes in KaiA/KaiC
stoichiometry. Jenny Lin designed and performed all of the experiments and designed and
implemented the vast majority of the model, and I contributed to modeling in Figure 3.5 that
further explored the role of ultrasensitivity in generating robustness to changes in protein
stoichiometry. This chapter concludes with a “Perspective” section that discusses possible

implications of this study for the work published in Chapter 2.

Abstract

Circadian oscillations are generated by the purified cyanobacterial clock proteins, KaiA,
KaiB, and KaiC, through rhythmic interactions that depend on multisite phosphorylation of
KaiC. However, the mechanisms that allow these phosphorylation reactions to robustly control
the timing of oscillations over a range of protein stoichiometries are not clear. We show that
when KaiC hexamers consist of a mixture of differentially phosphorylated subunits, the two

phosphorylation sites have opposing effects on the ability of each hexamer to bind to the
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negative regulator KaiB. We likewise show that the ability of the positive regulator KaiA to act
on KaiC depends on the phosphorylation state of the hexamer and that KaiA and KaiB recognize
alternative allosteric states of the KaiC ring. Using mathematical models with Kinetic parameters
taken from experimental data, we find that antagonism of the two KaiC phosphorylation sites
generates an ultrasensitive switch in negative feedback strength necessary for stable circadian
oscillations over a range of component concentrations. Similar strategies based on opposing
modifications may be used to support robustness in other timing systems and in cellular signaling

more generally.

Introduction

Circadian clocks are biological timing systems that allow organisms to anticipate and
prepare for daily changes in the environment. A hallmark of a circadian oscillator is its ability to
drive self-sustained rhythms in gene expression and behavior with a period close to 24 hours
even in the absence of environmental cues (75). A general challenge for the biochemical
machinery that generates rhythms is to precisely define the duration of the day in the face of
perturbations, including fluctuations in the cellular abundance of the molecular components. The
importance of maintaining precise circadian timing is underscored by experiments that show that
mismatch between the clock period and the rhythms in the external environment results in health
problems and fitness defects (76, 77).

Though circadian clocks are found across all kingdoms of life, the Kai oscillator from
cyanobacteria presents a uniquely powerful model system to study the design principles inherent
in the molecular interactions that generate rhythms. A mixture of the purified proteins KaiA,

KaiB, and KaiC results in stable oscillations in the phosphorylation state of KaiC in vitro that
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persist for many days and share many of the properties of circadian clocks in vivo (22, 24, 41). In
particular, the oscillator is able to successfully generate near-24 hour rhythms over a range of
concentrations of the clock proteins both in vivo and in vitro (78-80), so that fine-tuning of gene
expression is not needed to support a functional clock. Much has been learned about the behavior
of the isolated Kai proteins, including the determination of high-resolution crystal structures of
all three components (81-83). A critical challenge that remains is to understand how the
properties of the Kai proteins are integrated together in the full system to generate precisely
timed rhythms.

KaiC appears to be the central hub of timing information in the oscillator. Each KaiC
molecule consists of two AAA+ family ATPase domains which consume the free energy of ATP
hydrolysis to drive oscillations. Like many other members of this family, KaiC forms hexamers,
and the enzymatic active sites are formed at the subunit interfaces where nucleotides are bound.
The C-terminal, or Cll, domain of KaiC has additional phosphotransferase activities that are
unusual for the AAA+ family: it can phosphorylate and dephosphorylate two residues near the
subunit interface, Ser431 and Thr432 (84). KaiC autokinase and autophosphatase activities occur
at the same active site (85, 86). In isolation, KaiC has high phosphatase activity, but the enzyme
is pushed towards kinase activity by the activator protein KaiA which interacts directly with the
KaiC C-terminal tail (87, 88). Roughly speaking, kinase activity predominates during the day,
and phosphatase activity predominates during the night (89). Thus, understanding the feedback
mechanisms that generate a precise time delay between these modes is crucial to understanding
timing in the oscillator (69).

Inactivation of KaiA and a transition from kinase to phosphatase mode occur when

KaiB+KaiC complexes form, closing a negative feedback loop by sequestering KaiA in a ternary
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complex and leaving it unable to act on other KaiC molecules (37, 90). By temporarily removing
KaiA molecules from their activating role, this molecular titration mechanism can act to
synchronize the activity of all KaiC hexamers in the reaction (37, 91, 92). Phosphorylation and
dephosphorylation proceed in a strongly ordered fashion so that, in response to a change in KaiA
activity, Thr432 is (de)phosphorylated first, followed later by Ser431 (37, 89, 90). It is known
that phosphorylated Ser431 is important for allowing the formation of KaiB*KaiC complexes.
However, recent work has made it clear that the binding of KaiB involves both KaiC domains—
in particular, the slow ATPase activity of the N-terminal CI domain, which is not
phosphorylated, is required for KaiB interaction (47, 93).

Because of the importance of precisely timing negative feedback via KaiB+KaiC complex
formation for generating appropriate rhythms (91), we wanted to understand the role of
phosphorylation of the KaiC hexamer in controlling this process. The involvement of both KaiC
domains suggests that information about phosphorylation in CIl is communicated allosterically
through changes in hexamer structure to the Cl domain, potentially through ring-ring stacking
interactions (93, 94). We therefore hypothesized that the KaiC phosphorylation sites on each
subunit might act as allosteric regulators in the context of a hexameric ring, so that
phosphorylation of one subunit would alter the ability of all other subunits in the ring to engage
with KaiA and KaiB, providing a cooperative mechanism to control the timing of these
interactions.

We conducted a series of biochemical experiments and perturbations to study the effect
of altering the status of each phosphorylation site on the KaiC hexamer. We then developed a
mathematical model to interpret these results analogous to classical models of allosteric

transitions in multimeric proteins. We constrain the kinetic parameters in this model using
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experimental measurements of rate constants, allowing us to compare the predictions of the
model directly with data. We conclude that maintenance of circadian timing over a range of
protein concentrations requires an effectively ultrasensitive switch in each KaiC hexamer from
an exclusively KaiA-binding state to a state that can bind to KaiB as phosphorylation proceeds.
This effect requires that KaiC hexamers consist of mixtures of differentially phosphorylated
subunits, as would be produced by stochastic autophosphorylation of a hexamer. Ultrasensitivity
results from opposing effects of phosphorylation on Thr432 and Ser431 in controlling a
concerted transition within a given KaiC hexamer. Including this mechanism in the model is
necessary to explain the experimentally observed tolerance of the system to altered protein

concentrations.

Results
KaiC hexamers are composed of subunits in a mixture of phosphorylation states

To experimentally interrogate the role of phosphorylation in regulating interaction with
KaiB, we co-immunoprecipitated KaiC bound to KaiB during oscillating reactions, then
analyzed the phosphorylation state of KaiC using electrophoresis conditions that resolve the
modification status of Ser431 and Thr432 (Fig. 3.1A). This allowed us to sample a wide range of
phosphoform abundances as both KaiC phosphorylation and the formation of KaiB*KaiC
complexes oscillate over time (37, 89). As standards, we prepared mutants of KaiC either where
a phosphorylation site was mutated to Ala to prevent phosphorylation or to Glu to mimic
phosphorylation. When prepared as homogeneous hexamers, these mutants interact very strongly

with KaiB if Ser431 is phosphomimetic, but weakly if not (24, 37, 89, 91). In contrast, in the
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(Fig. 3.1 continued) (A) Left: Phosphorylation site mutants in homogeneous hexamers co-IPed by KaiB-
FLAG (grey bars, right axis). Error bars represent standard error of three replicates after 24 h incubation.
Average amount (n = 4) of each KaiC phosphoform co-1Ped by KaiB-FLAG from starting from a highly
phosphorylated state (white bars, left axis). Error bars represent standard deviation over a 4 h time course.
Values were determined by gel densitometry as the ratio of the KaiC band intensity to the KaiB-FLAG
band. Right: a representative SDS-PAGE gel image of the input and elution phosphoform compositions of
KaiC co-IPed by KaiB-FLAG. ** indicates that t-tests versus KaiC-EA and KaiC-EE both gave p <0.01
(S1). (B) Enrichment of each KaiC phosphoform in the supernatant relative to the material bound to KaiB-
FLAG in clock reactions. Colored symbols show an average from 7-9 timepoints taken over 24 or 34 h.
Grey bars indicate averages over all KaiA concentrations and timepoints. (C) Schematic for preparation of
mixed hexamers and separate hexamers. KaiC phosphomimetics (orange) and His6-tagged wildtype KaiC
(His6-KaiC, grey) are monomerized by the replacement of ATP with ADP, and mixed in a 1:1 ratio before
(“mixed”) or after (“separate”) rehexamerization with ATP. (D) Phosphorylation dynamics of wildtype
KaiC in clock reactions in the presence of phosphomimetics either as mixed or separate hexamers. (E)
Amounts of total KaiC co-1Ped by KaiB-FLAG during the dephosphorylation phase (6 h-12 h) in clock
reactions with KaiC-AE and wildtype KaiC (green bars) or during the phosphorylation phase (22 h-28 h) in
clock reactions with KaiC-EA and wildtype KaiC (red bars). Bar height show averages of 3-4 timepoints.
Error bars indicate standard deviation. * indicates p < 0.05 by Student’s t-test. (F) Total amount of KaiC
co-1Ped by KaiB-FLAG as a function of the percentage of KaiC-EA combined with KaiC-AE in either
mixed or separate hexamer preparations. Points show the averages of three measurements and the error bars
indicate standard deviation. Dotted lines show fits to Hill functions y = y,,.« +HH with nH = Hill

(%EA)
coefficient. (G) An allosteric framework for modeling the KaiC hexamer. The phosphorylation state of each

subunit contributes to the free energy difference between two conformational states of the hexamer: one
that is competent to bind KaiB and one that is not. Tails extending from the CIlI domain suggest changes in
A-loop conformation associated with each conformational state. Arrowheads indicate proposed influence
of the phosphorylation sites on the stability of the two hexameric states.

case of wildtype KaiC hexamers, all forms of the KaiC subunits can be found bound to KaiB,
including unphosphorylated KaiC and KaiC phosphorylated only on Thr432 (Fig. 3.1A).

We interpret these data to indicate that KaiC subunits that do not favor KaiB interaction
are often co-immunoprecipitated in the context of a hexameric ring that is nevertheless bound to
KaiB. This suggests that wildtype KaiC hexamers consist of mixtures of subunits in various
phosphorylation states. However, because the phosphorylation site mutations indicate that
Ser431 phosphorylation is required for KaiB interaction, we hypothesized that, although

wildtype KaiC hexamers may contain subunits in all possible states, the relative abundance of
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each phosphorylation state within a hexamer should bias the probability of that hexamer binding
to KaiB.

We therefore asked whether there are systematic trends in the enrichment of the various
possible phosphorylation states of the KaiC that are bound to KaiB. To detect systematic trends
across many KaiC phosphorylation conditions, we sampled several reactions with different
concentrations of KaiA at various time points throughout the oscillator cycle. (Fig. S1 in (46)).
As expected, KaiC phosphorylated only on Ser431 was strongly enriched in the material bound
to KaiB relative to the unbound material. However, KaiC phosphorylated only on Thr432 was
preferentially excluded from the KaiB-KaiC interaction, and enriched in the unbound material
(Fig. 3.1B, S1 in (46)). These results suggest a working hypothesis where the ability of KaiC to
interact with KaiB indeed depends on the relative abundance of each phosphorylation state

within a given KaiC hexamer.

Two KaiC phosphorylation sites have opposing effects on the ability of mixed hexamers to
interact with KaiB

According to this hypothesis, the phosphorylation state of one subunit will alter the
ability of the entire hexamer to interact with KaiB through allosteric communication within the
KaiC ring. Therefore, experimentally forming mixed hexamers that contain both wildtype KaiC
and phosphomimetic mutants should alter the ability of the wildtype KaiC to interact with KaiB
and disrupt the function of the oscillator. In contrast, if each subunit acts independently of its
hexameric context, producing mixed rings would result in no greater effect than leaving the
mutant and wildtype segregated into separate hexamers. To distinguish between these

alternatives, we used an ATP depletion protocol to prepare pools of largely monomeric KaiC
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S431A;T432E (KaiC-AE, a mimic of pT432-only), KaiC S431E;T432A (KaiC-EA, a mimic of
pS431-only), and Hiss-tagged wildtype protein (86). To create mixtures of KaiC mutants and
wildtype monomers within the same hexamers, we combined pools of monomers together and
reintroduced ATP to hexamerize the mixture. As a control, we reversed the order of this
procedure so that the proteins were rehexamerized without mixing before being later combined
(Fig. 3.1C). This monomerization and rehexamerization procedure does not compromise the
ability of the wildtype protein to oscillate (Fig. S2 in in (46)). We used the Hiss tag on wildtype
KaiC to verify that our procedure succeeded in creating forced mixtures of mutant and wildtype
where a large majority of hexamers are composite. When we rehexamerized the pools of mutant
and wildtype protein separately, they remained largely segregated for at least 48 hours. In
contrast, our forced mixing procedure succeeded in creating a population of hexamers that was
largely composite (Fig. S2 in in (46)).

To test the oscillator function of these mixed hexamers, we then added KaiA and KaiB to
initiate clock reactions. Consistent with our hypothesis, oscillations fail when KaiC-AE is forced
to mix into wildtype hexamers, resulting in highly phosphorylated KaiC, the expected phenotype
if KaiB cannot act. Mixing KaiC-EA into wildtype hexamers causes oscillations to fail with the
opposite phenotype—weakly phosphorylated KaiC. However, in both cases, circadian
oscillations are maintained when the mutants are present but segregated into separate hexamers
(Fig. 3.1D). These failure modes of the oscillator correspond to disrupted interaction with KaiB
induced by the mixing of KaiC-AE (or KaiC-AA) into wildtype KaiC hexamers, or enhanced
interaction with KaiB induced by the mixing of KaiC-EA into wildtype hexamers (Fig. 3.1E, S2
in in (46)). These results are also consistent with a recently published report from Kitayama et al.

showing that the activity of KaiC hexamers depends on their subunit composition (95).
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To quantitatively assess how hexameric mixtures of Ser431- and Thr432-phosphorylated
subunits regulate binding to KaiB, we prepared hexamers using various percentages of KaiC-AE
and KaiC-EA phosphomimetics. We found a preparation of hexamers containing a mixture of
KaiC-AE with KaiC-EA subunits suppressed the total amount of KaiB-KaiC interaction relative
to a control where the same proteins were present, but segregated into separate hexamers (Fig.
3.1F, S2 inin (46)). This indicates that the presence of pThr432 subunits within the same
hexamer is able to prevent the interaction of pSer431 subunits with KaiB, consistent with the
correlations we observed in the wildtype oscillator.

Crucially, hexameric mixtures of pSer431 and pThr432 mimics show a sigmoidal
dependence of KaiB interaction strength on the fraction of pSer431 mimic present in the mixture
(effective Hill coefficient = 3.3), an effect which was absent (effective Hill coefficient = 1.2)
when the two phosphomimetics were kept in separate hexamers (Fig. 3.1F). Because of the
kinetic ordering of phosphorylation reactions in KaiC, oscillations are characterized by periods
where either pThr432 or pSer431 alternately dominate in relative abundance (37, 89).
Considering the switch-like transition in KaiB-KaiC interaction we observed as the balance
within hexamers is shifted to favor pSer431 over pThr432, we hypothesized that dynamic
changes in the mixture of phosphorylation states in a hexamer might be key to understanding the
timing of the transition between the phosphorylation and dephosphorylation phases of the
circadian rhythm.

To mathematically model these effects, where the binding affinity of a KaiC hexamer for
KaiB depends on the mixture of post-translational modifications on all of the KaiC subunits, we
introduce a simple allosteric framework. In classical models of allostery in oligomeric proteins,

such as the Monod-Wyman-Changeux treatment of hemoglobin, it is assumed that each subunit
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can adopt different conformational states, but that, because breaking the symmetry of the
molecule is disfavored, all of the subunits in a given oligomer must be in the same
conformational state at any moment in time. The role of ligand binding is then to bias the free
energies of the possible subunit conformations, resulting in a cooperative switch in the
conformation of the oligomers as ligand concentration increases (96).

We extend this treatment to describe allosteric effects in KaiC, by hypothesizing that
KaiC hexamers can exist in two conformational states: one that allows interaction with KaiB and
one that does not. These two conformational states are likely related to changes in the stacking
interactions between the Cll and CI rings and the exposure or burial of the hydrogen-bonded
network of KaiA-binding activation loops recently identified by structural studies (69, 93, 94,
97). Consistent with this picture of allostery, recent structural work has identified changes in
solvent accessibility across both domains of KaiC when it is bound to KaiB (98).

As in Monod-Wyman-Changeux, we assume that the dynamic interconversion between
these states are rapid and must be all-or-none within a given hexamer. We take phosphorylation
of KaiC to play a role similar to that of ligand binding in hemoglobin, so that the free energy
difference between the subunit conformations, and thus the probability of each state occurring at
equilibrium, is biased by the pattern of multisite phosphorylation in a given KaiC hexamer (Fig.
3.1G). In order to describe this effect mathematically, we introduce an energetic cost for the
conformational interconversion of each subunit that depends on its phosphorylation state.
Because each subunit has two phosphorylation sites (Ser431 and Thr432), it can exist as 4
possible phosphoforms. This introduces 4 unknown thermodynamic parameters to our model,

AGy, AGys, AG,r, AG,s,r Under these assumptions, the total free energy difference between the

two allosteric states of a hexamer is simply a linear combination AGjexamer = Yo-q A G;. In this
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model, the ultrasensitivity in KaiB interaction (Fig. 3.1F) arises from the exponential dependence
of the equilibrium occupancy of each allosteric state on hexamer phosphorylation. We now
proceed to test the validity of this allosteric framework, and place constraints on the free energies

associated with the phosphorylation state of a KaiC subunit.

Binding to KaiB is allosterically incompatible with stimulation by KaiA

Given our data showing that mixtures of KaiC phosphorylation states regulate the ability
of a KaiC hexamer to interact with KaiB, we speculated that the ability of KaiA to stimulate
KaiC might also depend on the composite phosphorylation state of an entire hexamer. To
examine the influence of phosphorylation on the sensitivity of KaiC to KaiA, we prepared wild-
type KaiC in different initial phosphorylation states, then added various concentrations of KaiA
and measured initial rates of phosphorylation for the unphosphorylated KaiC molecules (Fig.
3.2A-C, S3in (46)). In all cases, the effective Michaelis constant for KaiA-stimulated
autophosphorylation increased with increasing phosphorylation on Ser431, and is more than a
factor of 4 higher when KaiC is heavily phosphorylated on Ser431 (Fig. 3.2D, S3 in (46)).

To isolate the allosteric effect of pSer431 on the function of a KaiC hexamer, we then
measured the ability of KaiA to drive phosphorylation of unphosphorylated wildtype KaiC in the
presence of varying amounts of the pSer431 phosphomimetic mutant. We observed a dose-
dependent increase in the effective Michaelis constant for KaiA acting on KaiC, similar in
magnitude to the effects we observed with differentially phosphorylated wildtype protein.
Importantly, these effects are only present when the pSer431 mimic is mixed into the wildtype
hexamers and not when it is present as separate hexamers (Fig. 3.2E, S4 in (46), S5 in (46)). This

mixing-dependent effect indicates that phosphorylation on Ser431 acts allosterically in the KaiC
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Fig. 3.2. KaiC hexamers with heavy Ser431 phosphorylation are less sensitive to KaiA.
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(Fig. 3.2 continued) (A)-(C) Rates of KaiA-stimulated KaiC autokinase activity as a function of [KaiA] for
various initial phosphorylation states. Fits are to a modified Michaelis-Menten equation with baseline: Vi
= Vmax [KaiA]/([KaiA] + Kmeff ) + VVdephos, to account for KaiA independent dephosphorylation. (D)
Same as in (A)-(C) with 1:1 KaiC-EA and dephosphorylated wildtype KaiC (total = 3.5uM), either as mixed
hexamers or separate hexamers. (E) Cartoon of KaiC kinase activation by KaiA in the allosteric framework:
KaiA selectively binds and activates KaiC hexamers in the non-KaiB binding state. Changes in the
phosphorylation state of a hexamer changes KA, the allosteric equilibrium constant, and hence also Kmeff
=Km (1 + KA).

hexamer to lower the sensitivity of the other subunits to KaiA. These results are consistent with
recent observations that high concentrations of KaiA are needed to sustain KaiC phosphorylation
(99) and that phosphomimetic mutation at Ser431 makes the KaiA-binding “A loops”
inaccessible to proteolytic cleavage (100).

Since phosphorylation on Ser431 promotes an allosteric transition towards KaiB binding,
the increase in Kn®" associated with higher Ser431 phosphorylation levels suggests that KaiA
selectively binds and activates KaiC in an allosteric state that KaiB cannot bind. In other words,
activation by KaiA is incompatible with the state of KaiC that triggers KaiB binding. We can
mathematically describe this effect using a quasi-steady state approximation valid in the limit
that both interconversion between the allosteric states of KaiC and interaction with KaiA occur

much faster than changes in phosphorylation. Then the probability of a hexamer being activated

[KaiA]
[KaiAl+ Km(1+K 4 (pS,pT,pSPT))

for autophosphorylation by KaiA is: where Ka is a phosphorylation-

dependent allostery constant (see Supporting Appendix for derivation). Consistent with the data,
this describes a Michaelis-Menten-like dependence of the autokinase rate on [KaiA] starting
from a given phosphorylation state, and the higher effective Michaelis constant Km(1+Ka) results
from higher Ser431 phosphorylation which increases Ka (Fig. 3.2F).

This model further predicts that, because KaiA is stabilizing the kinase-active state,

sufficient stimulation by KaiA should shift the allosteric equilibrium away from the state that can

87



hexamer =
KA ED-
(E Ds
C
- 0 UM KaiA =¥ 3 puMKaiA
0.8 uM KaiA -~ 5 pMKaiA —— KaiC-EE FL -+ KaiC-EE (1-487)
=+ 1.5 uMKaiA ) ~4- KaiC-EE (1-487) + KaiA
U
2 = A
T o A - A
P @ A
v <
g 3 14
- jo
] o
5 2z
i E »
: S . r v v
v Y
T & * )4 Y 3
~ X _ hd
1 1
0 5 10
Time (h) Time (h)

[ - xaia
41 + KaiA

KaiC Eluted per KaiB-FLAG
N
1

e w171 17

1 1 T T

KaiC-EE (1-487)  KaiC-wt (1-487) KaiC-EA KaiC-EE

Fig. 3.3. KaiA allosterically stabilizes a KaiC state that KaiB cannot bind.

88



(Fig. 3.3. continued) (A) Cartoon of allosteric state selection by KaiA and KaiB. Stimulation of the kinase
active mode by KaiA shifts the allosteric equilibrium away from KaiB binding. (B) Timecourse of KaiC-
EE co-1Ped by KaiB-FLAG in the presence of various concentrations of KaiA. Normalized co-IP amounts
were calculated as the ratio of gel densitometry measurements of KaiC-EE to KaiB-FLAG in the eluate.
Fits (solid lines) are to a first order exponential. (C) Timecourse of KaiB interaction assessed by co-IP with
KaiB-FLAG for either full-length KaiC-EE (KaiC-EE FL) or a mutant (KaiC-EE 1-487) that mimics the
KaiA-activated state, in the presence or absence of 1.5 uM KaiA. (D) Normalized co-IP of KaiC by KaiB-
FLAG at 24 h for various KaiC mutants, with or without KaiA. The concentration of KaiA is 5 uM for the
KaiC-EE case and 1.5 uM for all other reactions.

bind KaiB even when the phosphorylation state is held fixed, causing KaiC to resist interaction
with KaiB (Fig. 3.3A). To test this prediction, we used a mimic of the doubly phosphorylated
form, KaiC S431E;T432E (KaiC-EE), and measured kinetics of the formation of KaiB*KaiC
complexes in the presence of various amounts of KaiA. Despite the fact that kinase activation by
KaiA cannot alter the phosphorylation state of these mutant residues, we found that high
concentrations of KaiA could disrupt the interaction with KaiB, consistent with a model where
KaiA is stabilizing an allosteric state of KaiC incompatible with KaiB binding (Fig. 3.3B). The
very slow (longer than a day) kinetics of binding that result from the antagonistic effect of KaiA
on this mutant are likely related to the long period transcriptional oscillations that have been
reported in the KaiC-EE mutant strain (80). Similar results held for the KaiC-EA mutant (Fig. S6
in in (46)).

To investigate the structural basis of this effect, we deleted the C-terminal tail of KaiC, a
manipulation that mimics hyperactivation by KaiA and permanently locks the enzyme into the
kinase mode (69). As predicted, this mutation causes severe defects in KaiB interaction (Fig.
3.3C-D). The extent to which KaiB binding is disrupted is correlated with KaiA’s ability to
stimulate KaiC kinase activity: a Cll domain catalytically impaired mutant (E318Q) mutation

allows KaiC-EE to bind to KaiB even in the presence of KaiA and an N-terminal deletion
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produces hyperactive KaiA that can inhibit the KaiB-KaiC interaction at a lower dosage than
wildtype KaiA (Fig. S6 in (46)).

The mutations made here and the known KaiA binding site on KaiC are distant from
proposed KaiB-KaiC interaction sites (93, 101). Manipulating KaiC kinase activity either
mutationally or by increasing the KaiA concentration, affects the strength of KaiB-KaiC
interaction. We thus interpret our results as indicating an allosteric conflict between the action of
KaiA and KaiB-KaiC binding. However, our data cannot exclude the possibility of an unknown

mode of interaction where KaiA might physically occlude a KaiB binding site.

Allosteric models constrained by experimental data can reproduce circadian rhythms that adapt
to altered protein concentrations

Taken together, our experimental data indicate that a role of the KaiC phosphorylation
sites is to regulate an allosteric transition in the KaiC hexamer that permits KaiB binding. A
simpler alternative scenario is that the phosphorylation sites on each KaiC subunit independently
present a binding surface for KaiB, as in some previously studied mathematical models (37). To
analyze the consequences of these two possible scenarios and gain insight into the role of each
phosphorylation site, we constructed two mathematical models: an allosteric model where the
ability of KaiC to interact with KaiB and KaiA is determined by an allostery constant set by the
phosphorylation state of a given hexamer (Fig. 3.4A), and an “independent subunits” model
where each KaiC subunit can interact independently with KaiB with a binding affinity that
depends on its phosphorylation state.

In both models, KaiA stimulates KaiC phosphorylation which occurs in an uncoordinated

fashion once a hexamer is activated. KaiA is subsequently inhibited globally by sequestration
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(Fig. 3.4, continued) (A) Allosteric multisite phosphorylation clock model: KaiC hexamers switch in a
concerted fashion between a state competent for KaiB binding and a state that can be activated by KaiA.
The probability of a given hexamer occupying either state is determined by the thermodynamic equilibrium
set by a linear combination of phosphorylation-dependent subunit free energies. Phosphorylation on Thr432
(green) and Ser431 (red) have opposing effects on the allosteric transition. Kinase activation by KaiA
allosterically stabilizes the non-KaiB binding state. Both allosteric transitions and interaction with KaiA are
at quasi-steady state relative to the slow phosphorylation changes and Cl ATPase-mediated KaiB binding
reactions. KaiB+KaiC complexes sequester KaiA to drive a global negative feedback loop on KaiA-
dependent phosphorylation. (B) Experimental timecourse of KaiC phosphorylation in purified clock
reactions with various concentrations of KaiA. (C) Simulated reactions in the optimized allosteric model at
various concentrations of KaiA. (D) Simulated reactions in an optimized model where KaiC subunits
interact with KaiB independently, at various concentrations of KaiA. (E) Experimental oscillator period
estimated from data from this study (black triangles) or data from Nakajima et al. (2010) (purple triangles)
compared to the optimized allosteric multisite phosphorylation model (green curve) and the optimized
independent subunits model (red curve). Dashed lines estimate the boundaries where stable oscillations fail.
Error bars on the experimental period indicate fitting error from least-squares regression to a sinusoid.

into KaiA+*KaiB+KaiC complexes at a stoichiometry of one KaiA dimer to one KaiC subunit,
consistent with recent structural work (102). The rate constants for phosphorylation and
dephosphorylation on each site and for the slow, Cl ATPase-mediated assembly of KaiB+KaiC
are constrained by experimental kinetic studies (37, 47). Thus, our allosteric oscillator model
shares features with previous treatments of allostery in the KaiABC system (92), but now
explicitly includes distinct roles for the two KaiC phosphorylation sites and uses experimentally
derived kinetic parameters to allow us to make direct comparisons with experimental data.

Because we do not have direct measurements of the influence of each KaiC subunit’s
phosphorylation state on KaiB binding, we initially left the models agnostic about the influence
of phosphorylation on protein-protein interaction. In the allosteric model, this is represented by
unknown free energy contributions, AGy;, AGys, AGyr, AGyspr, 0 the allostery constant. In the
independent subunits model, these are replaced by phosphorylation-dependent binding constants
for KaiB binding to each subunit.

To compare the two models, we randomly sampled parameter space for these unknown

parameters and attempted to optimize each model for its ability to simulate oscillations measured
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in the experimental system with a period near 24 hours over a wide range of KaiA
concentrations, a feature of the system that has been difficult for modeling studies to correctly
describe (78) (Fig. 3.4B). With appropriate thermodynamic parameters, the allosteric model
qualitatively recapitulates the tolerance of the system to varying protein concentrations,
including the increase in the abundance of specific phosphoforms as [KaiA] increases (Fig. 3.4C,
S7in (46)).

Remarkably, the range of protein concentrations over which this model can generate
circadian rhythms is nearly the same as the experimental system (Fig. 3.4D). The role of KaiA in
stabilizing the allosteric state that cannot bind KaiB helps to enhance the robustness of the period
in this model (Fig. S8 in (46)). In contrast, the independent subunits model is only able to
generate oscillations over a narrow range of conditions, and the period of that model is much
more sensitive to KaiA concentration than the experimental system (Fig. 3.4E). These
conclusions still hold when the rate constants in the two models are randomly varied near the
best-fit values, indicating that the improved robustness of the allosteric model is a property of the
fundamentally different role for the phosphorylation sites in that model, rather than a
consequence of a particular choice of kinetic parameters (Fig. S9 in (46)). We conclude that
models that describe subunit phosphorylation as mediating a concerted allosteric transition in the
KaiC hexamer are much more successful at recapitulating experimentally observed circadian

rhythms than models without these mechanisms.

Robust timing requires that the two phosphorylation sites have opposing effects, creating an

ultrasensitive switch in KaiC activity
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We then asked if there were common features of the parameter sets in the allosteric
model that successfully generated circadian oscillations over the range of protein concentrations
observed experimentally. First we analyzed the values of the free energy parameters from our
search that produced stable oscillations with a standard deviation in the resulting oscillator
period of < 10% over a ~3 uM range of KaiA concentrations, as seen in the experimental system.
Strikingly, these results predict that for robust oscillations, pSer431 must always favor KaiB
interaction (AG,s < 0) and pThr432 must always oppose it (AG,r > 0). While being opposite
in sign, these two energetic parameters have the largest magnitudes, hence changes in the
balance of pSer431-only and pThr432-only subunits, as occurs when the oscillator shifts from

the phosphorylation phase to the dephosphorylation phase, most critically determine the KaiB-
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binding capacity of the system (Fig. 3.5A). These findings parallel the enrichment and depletion
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Fig. 3.5. Opposing effects of pSer431 and pThr432 on the allosteric equilibrium produces an
ultrasensitive switch in negative feedback necessary for a robust period.

95

0.20

0.15

0.10

0.05

0.00

peaids poliad anneay

A B
6+ 4-
4- I
3_
2_
— —t— = %
@ —I— ? =
X 0 = 2+
e 2
< 5 % % e —
=
74- % D
'6 ) 1 1 1 0 ] ]
AG pspT AG o7 AG g AGy Allosteric Independent Subunits
C Independent Subunits Model Allosteric Model
50+ -4 50+ ~4
= L =
404 33 40- . PT
U e g P>
= 30+ 2 5304 e — pSpT
¢ 1-2 a e -2 a
2 204 T % 204 o = [KaiA] sequestered
_'I 3 _1 3
104 o 104 o
E E
0 T T 0= 0+ T T T 0=
0 10 20 30 40 0 5 10 15 20 25
Time (h) Time (h)
D E
n=2 .
0.2 1 - KaiA Range (uM)
0.0 1 . . . . P Spread in Period _
7 n=3 =
0191 |—|—|—|_|_|_|_‘_|_ o =
[J] - -
0.00 . = E— . , 23 ™ A
- n=6 ; \\\ -./,/
N, - -
000 ] [l 7
0.00 4 T T T T 1 :r: «” h...."‘I"""_-.
n=9 = 14 B
0.14 i . - E
0.0 4 = 0 I I
T 0 5 10 15



(Fig. 3.5, continued) (A) Box and whisker plot of the free energy (AG) distribution associated with each
subunit phosphorylation state for parameter sets that produce oscillations over the experimental range of
KaiA concentrations with < 10% standard deviation in period and a circadian period (22-29 h) at 1.5 uM
KaiA. (B) Distribution of the effective Hill coefficient (measure of ultrasensitivity) describing the sigmoidal
increase in KaiB+KaiC complexes over time in simulated clock reactions in either the allosteric multisite
model or the independent subunits model. Same criteria as described in (A), except the requirement on the
standard deviation of the period was relaxed for the independent subunits model. (C) Representative time
courses of simulated KaiC phosphorylation and the amount of KaiA sequestered in the allosteric multisite
model (left) and the independent subunits model. Shaded regions show the spread in time delays required
to achieve inactivation of a three-fold range of KaiA concentrations in both models. (D) Distribution of the
range of KaiA concentrations that produce stable oscillations from 10,000 randomly sampled free energy
parameters for allosteric clock models with varying numbers (n) of allosterically linked subunits. (E)
Dependence of the median standard deviation of the oscillator period (red squares) and the median range
of KaiA concentrations that support stable oscillations (green diamonds) on the number of allosterically
linked subunits.

for pSer431 and pThr432 respectively that we observed experimentally for KaiC hexamers
interacting with KaiB (cf. Fig 3.1B). Further, the median free energy parameters for pThr432 and
pSer431 that allow the model to meet these criteria have a magnitude on the order of kgT, the
energy scale of thermal fluctuations, implying that changing a single subunit’s phosphorylation
state has a large but not overwhelming effect on the allosteric state of the KaiC hexamer.

Why do these parameter sets allow the model to work well? We reasoned that the
ordered phosphorylation of Ser431 and Thr432 and their opposing effects on KaiC conformation
could cause an effectively ultrasensitive switch from a KaiA-activated state to a KaiB-binding
competent state as the degree of the phosphorylation within a hexamer is increased (cf. Fig
3.1B). The threshold in this switch is crossed after a specific time due to kinetic ordering of
phosphorylation in KaiC: because Thr432 phosphorylation occurs first, KaiB interaction is
initially inhibited, and this inhibition is only overcome at late times when Ser431
phosphorylation has risen enough to cancel out the effect of pThr432. To quantify this effect we
determined how the amount of KaiB*KaiC complexes changes in the models as KaiC

phosphorylation increases over time by fitting a simulated time course of KaiB*KaiC complex
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n
formation to a Hill function: 1/(1 + (g) H), where ny is a Hill coefficient that quantifies the

sigmoidal, switch-like character to the kinetics, and ny > 1 indicates ultrasensitivity. The
parameter sets that allow circadian rhythms over a wide range of KaiA concentrations all show a
Hill coefficient of at least 2 (Fig. 3.5B).

We then sought to understand in qualitative terms why an ultrasensitive dependence of
the KaiB interaction on phosphorylation state can allow the oscillator to function properly over a
wide range of conditions. We compared the optimally tuned allosteric model and the independent
subunits model by simulating a time course of phosphorylation when an oscillator reaction is
first initiated from the unphosphorylated state. On these plots we overlaid the capacity of the
pool of hexamers to inhibit various amounts of KaiA by forming KaiB*KaiC complexes (Fig.
3.5C). In the allosteric model, ultrasensitivity from opposition between the phosphorylation sites
allows the inhibitory strength of the reaction against KaiA to rise sharply after an initial lag. The
result is that for different amounts of KaiA, the onset of inhibition happens at a similar time and
the timing of the oscillation is therefore similar (Fig. S10 in (46)). For the independent subunits
model, the reaction requires substantially different delays to inhibit different amounts of KaiA,
resulting in a period of oscillation that changes markedly as [KaiA] increases, and complete
failure of rhythms outside of a narrow range of conditions.

The success of the allosteric model comes from a cooperative mechanism where the
phosphorylation states of the six subunits in a hexamer are weighed together to compute a single
functional output manifested as the KaiB-binding state of the entire ring. Because of the
importance of having all six interacting subunits linked as a concerted allosteric unit, we asked
how the model would perform if the number of subunits that could interact allosterically was

altered. We found that the range of KaiA concentrations over which the system shows
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oscillations grows rapidly as the number of subunits participating in the allosteric switch
increases (Fig. 3.5D, S10 in (46)), while the spread in period seen over this KaiA range decreases
(Fig. 3.5E, S10 in (46)). Both of these effects are correlated with increased ultrasensitivity of
KaiB-KaiC complex formation (Fig. S10 in (46)). Once hexameric interactions are included, the
model has the potential to reach the full oscillatory range seen in the experimental data with
minimal spread in period. The oscillator can function over an even wider range of KaiA
concentrations if even higher order (unrealistic) oligomeric interactions are present in the model,
underscoring the importance of coupling between many oligomeric subunits for this mechanism

(Fig. 3.5D-E, S10 in (46)).

Discussion

The simplicity of the purified KaiABC oscillator makes it a remarkably powerful model
system to investigate the mechanistic origins of circadian rhythms and to study the robustness of
biochemical circuits generally. We wanted to understand which biochemical features of the
proteins are crucial for generating oscillations with a precisely defined period, with the goal of
producing a mechanistic mathematical model that can account for the behavior of the purified
components.

The key negative feedback process that allows sustained oscillation in this system is the
sequestration of the activator KaiA into inactive KaiB-dependent complexes. This kind of
molecular titration is widely used throughout biology including control of morphogens in
development (103), regulation of transcription through sigma/anti-sigma interactions (104), and
microRNA-mRNA buffering (105). The dynamics of stochiometric titration mechanisms are

typically quite sensitive to the relative concentrations of the components involved, which is why
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it has been argued that, when they are used in timing systems, tight controls must be placed on
gene expression (106).

Our modeling-based analysis of the KaiABC system shows that one way to make the
dynamics of such a negative feedback loop less dependent on component concentration is to
make the ability of molecules that can participate in sequestering the activator an ultrasensitive
function of their activation state. In other words, if the system abruptly switches from very little
sequestration to its full capacity, timing can be maintained precisely even if the activator
concentration is not tightly controlled, extending the range of conditions over which a
biochemical circuit can function.

We found that this ultrasensitivity can only be realized in the hexameric architecture of
KaiC when the two phosphorylation sites, Ser431 and Thr432, oppose each other’s influence.
Effectively, each KaiC hexamer acts as a comparator, switching its state when modification on
Ser431 outweighs modification on Thr432. This helps to explain the role of Thr432 in the clock;
because Thr432 is quickly phosphorylated after a hexamer is stimulated by KaiA and then favors
an allosteric state of KaiC that can be further activated, it effectively forms a fast positive
feedback loop on KaiA activity. Subsequent Ser431 phosphorylation then acts as a dominant
slow negative feedback loop. This fast positive-slow negative network motif is a common means
of generating oscillations (107).

KaiC is related to the AAA+ ATPases, many of which exhibit strong long-range
allosteric communication effects, both within a ring when subunits change e.qg. their nucleotide-
bound state, and through ring-ring stacking interactions (108). We propose that KaiC has
evolved to make use of these communication mechanisms to ensure precise timing: antagonism

between differentially phosphorylated subunits within the CIlI ring to precisely define timing and
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then ring-ring stacking interactions to transduce this signal to the CI ring to allow KaiB-
dependent feedback. The result is that while the strength of negative feedback can adapt
dynamically to accommodate changes in protein concentration, the timing of the response is
precise.

Because of the ease of using opposed post-translational modifications to drive an
allosteric switch, we suspect that other biological timing circuits may have analogous
mechanisms to achieve precise timing. In eukaryotic clock systems, the analysis is complicated
by the presence of many phosphorylation sites. However, it appears that the FRQ protein in N.
crassa has distinct clusters of phosphorylation sites which have opposing effects on the clock
period when mutated (109). Allosteric response of protein structure to multisite post-translational
modification may allow clock proteins to cooperatively communicate the opposing effects of
phosphorylation sites throughout the protein, effecting an ultrasensitive switch in activity, a key
mechanism for precise timing that the cyanobacteria have implemented via the KaiC hexameric

ring structure.

Materials and Methods
Protein purification and in vitro protein reactions

All proteins were recombinantly expressed and purified from E. coli, and protein
reactions were prepared as previously described (47). Unless otherwise specified, all reactions
were performed using 3.5 pM KaiB and 3.5 pM KaiC at 30 °C in a reaction buffer containing
10% glycerol, 150 mM NaCl, 20 mM Tris-HCI pH 8.0, 5 mM MgCl», 50 uM EDTA, 5 mM

ATP. For full details, see the Supporting Appendix.
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Measuring KaiB-KaiC Interaction

Clock reactions at varying KaiA concentrations (1-4 uM), 3.5 uM KaiC and 3.5 uM
KaiB-FLAG were first pre-incubated for 16 hours to allow the initial transient behavior to decay.
Samples were then taken every 4 hours over a 24 hour cycle by flash freezing in liquid nitrogen.
For the no KaiA condition, KaiC was first hyperphosphorylated using HA-tagged KaiA which
was removed by immunoprecipitation prior to adding KaiB-FLAG (37). The input, supernatant,
and eluate samples from the immunoprecipitation were analyzed by SDS-PAGE electrophoresis
to resolve each of the four KaiC subunit species. Percentages of each subunit phosphorylation
state relative to the total KaiC loaded per lane were extracted by densitometry of the scanned
SDS-PAGE gels. We propagated an estimated 2% absolute error in our gel densitometry
measurements through the calculation of these enrichment ratios and then excluded points from

the final average with a relative error > 1.0. For full details, see the Supporting Appendix.

Reactions with artificially mixed KaiC hexamers

Monomerization of KaiC was carried out following Nishiwaki et al. (86). Briefly, KaiC
was buffer exchanged into a buffer with 0.5 mM ADP and incubated at 4 °C to disrupt hexamer
structure. To prepare “mixed” hexamers, monomerized KaiC mutants or wildtype were mixed
1:1 prior to rehexamerization via the addition of ATP, as detailed in the Supporting Appendix.
To prepare “separate” hexamers, KaiC mutants or wildtype were first rehexamerized separately
and then combined.

Standard clock reactions were prepared with 3.5 uM total of the phosphomimetic and
wildtype KaiC preparations. Identical reactions with KaiB-FLAG in place of KaiB were sampled

every 2-6 hours to assay KaiB*KaiC interaction by anti-FLAG immunoprecipitation. To assess
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the extent of mixing in these experiments, one of the KaiC mutants or wildtype carried an N-
terminal Hise tag. Mixing was determined as the extent to which untagged KaiC could be
coprecipitated with tagged KaiC. Detailed protocols for His-tag pulldowns and anti-FLAG

immunoprecipitation can be found in the Supporting Appendix.

Michaelis constant (Km) determination for KaiA acting on KaiC

KaiC with various levels of phosphorylation was produced by dephosphorylation of
hyperphosphorylated KaiC for 33, 9.5, or 4 hours at 30°C (Fig. 2A-C, respectively). Various
concentrations of KaiA were then reintroduced to a 3.5 uM solution of these partially
dephosphorylated KaiC samples. Subsequent KaiC phosphorylation was analyzed by SDS-
PAGE. Initial rates of change of unphosphorylated KaiC were determined by linear regression to
the early portions of the time course (Fig. S3). Initial rates were plotted with respect to KaiA
concentration and fit to a Michaelis-Menten function with baseline (V; =

Viephos + Vinax [KaiA]/([KaiA] + Kgi') to determine the effective Michaelis constant, or

K&, Upper and lower error bounds on K2 were determined by the distribution of fits using
bootstrapped datasets.

To determine the effective K, for KaiC mixed with KaiC-EA, wildtype Hises-KaiC was
first fully dephosphorylated by incubation at 30 °C for 36 h, and then prepared as “separate” or
“mixed” hexamers with KaiC-EA at various molar ratios. The preparations were then diluted to
3.5uM, mixed with various concentrations of KaiA, and then assayed as described above. We
assayed degree of mixing by Hise-tag copreciptation. Complete details are in the Supporting

Appendix.
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Mathematical modeling of the KaiABC oscillator

A detailed derivation and analysis of the allosteric model and the independent subunits model
can be found in the Supporting Appendix. Differential equations governing the rate of change for
each possible KaiC hexamer phosphorylation state were numerically integrated over time using
the ode45 algorithm in MATLAB. Kinetics rates for KaiB binding, KaiC phosphorylation and
dephosphorylation were constrained by fits to experimental kinetics as previously reported (37,
47). Each KaiC subunit state (U, pT, pS, pTpS) was assigned a free energy parameter defining its
influence on the equilibrium between the two allosteric hexamer states. Negative AG favors the

KaiB-binding competent state.

Perspective

Interestingly, preliminary stochastic simulation of the hexamer model presented here
(using the Gillespie algorithm) is much noisier than stochastic simulation of the original
independent monomer model published by Rust in (37) (data not shown). Previous studies
suggest that ultrasensitivity can amplify molecular noise in gene networks (110, 111), in which
small fluctuations in an input signal can be magnified due to the sharply increasing nature of
ultrasensitive switches. The major difference between the hexamer model and the independent
monomer model is that the hexamer model relies on ultrasensitivity to generate sufficient non-
linearity required to drive oscillations. In fact, as shown above, inclusion of more subunits per
KaiC ring can increase the robustness of oscillations across different concentrations of KaiA
because this increases the cooperativity of KaiC switching between a KaiA-binding state and a

KaiB-binding state.
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However, does the increased ultrasensitivity of a concerted hexamer model decrease the
resistance to molecular noise? While a sharper switch may increase the robustness of
oscillations in one dimension (e.g. the total range of KaiA concentrations that supports
oscillations), it may also amplify molecular noise to a greater degree. Ultimately, this may
represent an interesting generalized tradeoff that biological oscillators must contend with. Like
the work presented in Chapter 2 in which a simplified clock architecture traded decreased
robustness to environmental noise for increased robustness to molecular noise, the amount of
ultrasensitivity present in an oscillatory system may represent a balance between generating
sufficiently strong oscillations over a wide array of protein stoichiometries vs. minimizing the
degree to which molecular noise is amplified. This represents an intriguing future direction that

should be explored further.
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Chapter 4: Costs of clock-environment misalignment in individual

cyanobacterial cells

Foreword

In Chapter 2, I outlined how molecular noise can cause the cyanobacterial circadian clock
to become inaccurate, making it poor at predicting the correct time of day. What are the
consequences for having an incorrect clock? While it is a generally accepted idea that the clock
benefits the organism in anticipating the day/night cycle, this is a hypothesis that lacks rigorous
exploration of the impact of the clock on fitness. Most research in the field has instead focused
on elucidating the mechanism of clock function. The only evidence thus far in cyanobacteria that
demonstrates the benefit of the clock are competition experiments showing that clock period
mutants or cells lacking a clock suffer from fitness defects in cyclic light/dark environments (30,
76). These measurements were performed in bulk cultures of mixed populations of cells, and the
details remained unknown of exactly how the mismatch between the clock and environment
caused these defects in fitness. Therefore, the work presented in this chapter seeks to investigate
at the single cell level how failure to correctly predict the time of day impacts cellular fitness.
Here, | present the work published in (5) on which I am a second author, with a “Perspective”
afterwards that discusses the relevance to my work in Chapter 2. All supplemental materials may
be found in (5). The experiments and fitness model were designed by Guillaume Lambert, and
both Guillaume Lambert and | performed the experiments. Specifically, | performed the
experiments in which kaiBC-null cells and kaiBC-overexpression cells were subjected to dark
pulses, after which the growth arrest probability was determined for each strain (results shown in

Figure 4.3.C). Data analysis was performed by Guillaume Lambert.
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Abstract

Circadian rhythms are endogenously generated daily oscillations in physiology found in
all kingdoms of life. Experimental studies have shown that the fitness of Synechococcus
elongatus, a photosynthetic microorganism, is severely affected in non-24h environments.
However, it has been difficult to study the effects of clock-environment mismatch on cellular
physiology because such measurements require the precise determination of both clock state and
growth rates in the same cell. Here, we designed a microscopy platform that allows us to expose
cyanobacterial cells to pulses of light and dark while quantitatively measuring their growth,
division rate, and circadian clock state over many days. Our measurements reveal that decreased
fitness can result from a catastrophic growth arrest caused by unexpected darkness in a small
subset of cells with incorrect clock times corresponding to the subjective morning. We find that
the clock generates rhythms in the instantaneous growth rate of the cell, and that time of
darkness vulnerability coincides with the time of most rapid growth. Thus, the clock mediates a
fundamental trade-off between growth and starvation tolerance in cycling environments. By
measuring the response of the circadian rhythm to dark pulses of varying lengths, we constrain a
mathematical model of a population’s fitness under arbitrary light/dark schedules. This model
predicts that the circadian clock is only advantageous in highly regular cycling environments

with frequencies sufficiently close to the natural frequency of the clock.

Introduction
Synechococcus elongatus PCC 7942 (S. elongatus) is a photosynthetic, unicellular
cyanobacterium that has been extensively used as a model system for the study of circadian

rhythms (76, 112). Each cell contains a remarkably precise oscillator based on the kai genes
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(113). KaiA, KaiB, and KaiC work together to generate near-24 hour rhythms in the
phosphorylation of the core clock protein KaiC, forming a biochemical oscillator that can be
reconstituted in vitro (37, 114). In the cell, rhythmic changes in KaiC signal through histidine
kinases to exert genome-wide control of transcription (58, 115, 116) and metabolism (117, 118).
Much is known about the behavior of this system under conditions of constant
illumination, where robust cell-autonomous oscillations are easiest to observe (25, 40, 52, 119,
120). However, under constant conditions, S. elongatus can grow robustly even without a
functioning clock (30, 120), leading us to suspect that the importance of the clock would be
revealed by monitoring cellular physiology under conditions that fluctuate between light and
dark. Landmark work by the Johnson lab established that fitness defects occur in fluctuating
environments with schedules that do not match the circadian clock period, but the underlying
mechanisms for these effects are still unclear (30, 76). Because environmental challenges may
reveal heterogeneous behavior in a population, we designed a microscopy system that allows us
to quantitatively measure clock state, growth rate, and cell division in individual cyanobacterial
cells over several days in an environment that fluctuates between light and dark (Fig. 4.1, Movie
S1in (5)). Using these single-cell measurements, we then develop a phenomenological model
where growth rate and the probability of surviving the night are determined by the current clock
state, which is itself updated following each light-dark transition. This model provides a
framework to calculate the impact on organismal fitness from a circadian clock driven by an

arbitrary fluctuating environment.
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Fig. 4.1. Experimental setup. 12 populations were entrained under staggered LD 12:12 regimes and
combined into a single experiment. A multiplexed measurement of phase shift or growth rate modulation
was achieved by exposing the mixed-phase population to a single pulse of darkness (scale bar = 5 um).
Fluorescence and brightfield micrographs recorded every hour were used to extract every cell’s
physiological parameters (e.g. length, clock reporter).

Results and Discussion
A subset of cells with misaligned clocks do not survive the night

Some photosynthetic organisms that rely exclusively on light for growth are known to
halt DNA synthesis and enter a dormant state (121), or even die (122), in the absence of light.
Since control of gene expression in the dark and consumption of energy metabolites are both
under active control of the circadian clock in cyanobacteria (117, 118, 123), we hypothesized
that unanticipated nightfall at clock times when energy reserves are low and metabolic rates are
high could have deleterious effects. To test this hypothesis, we exposed a mixed-phase
population (Fig. S1 in (5)) to a period of darkness corresponding to a long night (18 h).
Surprisingly, we found that a subset of cells experienced a catastrophic growth arrest after the
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simulated night: growth of these cells ceased and did not resume even after 36 hours of

subsequent light exposure (Figs. 4.2A-B, Movie S2 in (5)). Importantly, this effect required

prolonged darkness—we did not observe arrested cells following 5-hour dark pulses.

To determine whether the ability to tolerate darkness-induced starvation is influenced by

the circadian clock, we
assigned a clock time
to each cell by
measuring rhythms in
a fluorescent reporter
of clock gene
expression prior to the
dark pulse. We found
that the fraction of
cells that failed to
resume growth was
strongly enriched for
cells with clock states
corresponding to the
early day, when
nightfall is not

anticipated. Indeed, the
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Fig. 4.2. Clock-dependent growth arrest following unexpected darkness. (A)
Individual growth curves showing survival (blue) and growth arrest (red) of
two neighboring cells (* = cell division). (B) Example of cells that entered a
state of arrested growth following an 18 h pulse of darkness. Cells remained
dormant after > 36 h in constant light. (C) Average + std. dev. of the pre-
darkness clock reporter signal for surviving (blue) and arrested (red)
populations. An arbitrary vertical shift has been added to the
surviving/arrested sub-populations to assist in comparison. (D) Phase-
dependent probability of growth arrest for cells grown under constant light
conditions for 36 h before being subjected to a 18 h pulse of darkness
(n=2983). The maximal growth arrest probability occurs when a dark pulse
occurs near subjective dawn (transition between subjective night and day).
Growth arrest probability is double plotted to illustrate its periodicity.

probability of dark-induced growth arrest oscillates with clock time, reaching a minimum at

subjective dusk when nightfall is expected to occur (Figs. 4.2C-D). Thus, the ability of individual
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S. elongatus cells to tolerate prolonged starvation is clock-dependent, with cells displaying

enhanced starvation tolerance when the onset of darkness coincides with subjective dusk.

The clock allows rapid growth early in the day

In many microbes, stress tolerance is generally anticorrelated with growth rate (124). A
classic example is the bacterial stringent response to amino acid starvation: mutants that cannot
mount the stringent response can grow faster than the wildtype as nutrients are being depleted,
but these mutants cannot survive conditions of prolonged starvation (125, 126). We therefore
asked whether the rhythmic dark tolerance we observed in cyanobacteria is similarly linked to a
change in growth rate during the circadian cycle.

By tracking morphological changes in single cells, we assigned an instantaneous growth

rate to each cell and identified cell division events. We found that subjective dusk, the time when
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Fig. 4.3. Clock dependent fitness trade-offs. (A) Elongation rate measurements (mean +£3xs.e.m) for cells
grown under constant light conditions display a transient decrease at subjective dusk. Inset: Clock-
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measurements are double plotted to illustrate their periodicity. (B) Phenomenological model of the time-
evolution of the circadian fitness trade-off. The subjective circadian time is inscribed inside each datapoint
to show how a cell’s phenotype cycles between rapid growth and a starvation-protected state. The properties
of the dusk and dawn phenotypes is marked with a cyan and orange star, respectively. (C) Growth arrest
probabilities for wildtype and kaiBC mutant cells following an 18 h pulse of darkness. (D) Comparison
between a clock stopped at dusk (cyan) or a dawn (orange). Since no fixed daytime strategy exhibits superior
fitness at all times, the performance of stopped-clock daytime strategies is lower than a circadian phenotype
under circadian (LD 12:12) environments. Although we measure the growth-arrest and elongation rates for
all circadian times, physiological states corresponding to subjective night (circadian times between 12-24
h) were excluded from this analysis because they are unattainable during the night in cycling LD 12:12
conditions. Bottom: Cells in a dusk-like phenotypic state grow more slowly but are protected against the
dark. Cells in a dawn-like phenotypic state grow more rapidly but are vulnerable to darkness.
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starvation resistance is highest, is also a time of slowed biomass incorporation (Fig. 4.3A). This
time of slowed growth approximately coincides with the previously reported (73, 127) clock-
controlled inhibition of cell division (Fig. 4.3A, inset). This reduction in cell growth and division
is anticorrelated in time with the vulnerability of cells to darkness, suggesting the existence of a
fundamental trade-off between the capacity for rapid growth, active division, and the ability to
tolerate starvation (Fig. 4.3B). Interestingly, cells early in the subjective night (i.e. circadian time
between 14 — 18 h) are able to both grow rapidly and survive prolonged darkness. This indicates
that darkness protection is not caused entirely by the instantaneous growth rate. One possible
explanation is that a key determinant of darkness protection is not slow growth per se, but the
accumulation of starvation-tolerance factors produced at subjective dusk in anticipation of
prolonged darkness that transiently persist in the cell after rapid growth resumes. A concrete
example is glycogen storage—glycogen has been shown to accumulate during the portion of the
cycle when we find slowed growth (118), potentially protecting the cell against starvation. This
proposal is an example of the general phenomenon of phenotypic memory (128), wherein
previous adaptations are retained to confer an adaptive phenotype after the source of stress or
stimulus has been removed.

To determine if these changes in dark tolerance are indeed caused by signaling from the
circadian clock, we repeated these experiments using cells with either the kaiBC genes deleted or
overexpressed under the control of an IPTG-inducible promoter. Based on previous studies, we
expect deletion of kaiBC to result in arrhythmic high expression of dusk-expressed genes and
elevated glycogen levels, mimicking a dusk-like state (113, 118). Conversely, we expect

overexpression of kaiBC to cause arrhythmia while repressing dusk genes (129).
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Consistent with the expectation that their physiology is dusk-like, we find that kaiBC-null
cells fail to efficiently undergo cytokinesis and some cells exhibit filamentous growth under the
microscope (Movie S3 in (5)). Further, the kaiBC-null mutant is quite dark-tolerant and shows a
slightly lower elongation rate but a much higher survival rate, independent of the timing of
darkness (Fig. 4.3C and Fig S2 in (5)). In contrast, kaiBC overexpression makes cells highly
vulnerable to a light-dark transition, and the majority of these cells do not survive our dark pulse
treatment (Fig. 4.3C). When grown on the microscope, kaiBC overexpression leads to some cell
death prior to the dark pulse, and it also leads to a surprising morphological defect where the
cytoplasm appears to expand at a rate that is not properly balanced by elongation, causing cells
to lose their rod-like shape (Movie S4 in (5)).

We used these growth and survival data to calculate the expected fitness for a simulated
population of cells with a constant growth rate and constant dark tolerance, according to the
inverse relationship we observed for the wildtype. This calculation predicts that oscillating
growth outperforms all fixed daytime growth strategies in 12h:12h light-dark cycles (Fig. 4.3D).
Recent theoretical work suggests that organisms typically optimize evolutionary trade-offs by
adopting a compromise phenotype that interpolates between “archetypes” that represent the
extreme demands on the system (130). Our findings represent a dynamical version of this
phenomenon where cyanobacteria are able to achieve higher fitness by cycling between

incompatible states of growth and starvation protection.

Response of single cells to dark pulses is nearly all-or-none
Having characterized the impact of a pulse of prolonged darkness on clock-dependent

growth, we sought to determine how the clock state in single cells is reset by pulses of darkness

113



in order to build a model describing how cyanobacterial cells grow in arbitrary fluctuating
environments. External cues, such as dark pulses, cause the cell to reset its phase in an attempt to
bring the clock into alignment with the environment (24, 131). This phenomenon has been
studied using bulk cultures of cyanobacteria (118, 132, 133), but such population-wide
measurements may mask important features such as loss of coherence and amplitude attenuation
because they are based on signals that represent the average of the oscillations coming from

many independent cells.
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Fig. 4.4. Single cell clock response to dark pulse perturbations. (A-B) Individual traces (Praisc::eyfp-ssrA)
showing phase-shifts caused by weak (2 h dark pulse) and strong (12 h dark pulse) perturbations. (C-D)
Phase resetting of individual cells grown under constant light conditions for 36 h before being subjected
toa 2 h (blue) or 12 h (red) pulse of darkness, with specific examples from panels A-B are highlighted (*).
Two distinct resetting behaviors are observed: a robust response (blue line in panel C) or a full phase reset
(red line in panel D). (E-G) Density plot showing the phase response to 5 h, 7 h, and 9 h dark pulses, with
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subjective day (night) is marked with a light (dark) gray bar. See also Figure S3 in (5).
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We thus exposed populations of hundreds of cells in a spectrum of clock states to dark
pulses of varying lengths and determined the clock phase both before (¢1) and after (¢2) the dark
pulse. When the dark pulse was brief (2 hours) cells at all clock times were largely resistant to
the perturbation, and we observed only small phase changes (Fig. 4A, C). In contrast, long dark
pulses corresponding to the length of the night (12 hours) were capable of effecting nearly a full
reset where most cells were synchronized to the onset of darkness (Fig. 4.4B, D).

Surprisingly, dark pulses of intermediate length produced a discontinuous combination of
these responses. When the clock time was far from subjective dusk, the response of the system to
a dark pulse was very small (Fig. 4.4E-G, data near the blue 1:1 lines). In a critical range of
clock times, however, the response changes abruptly so that the system strongly synchronizes to
the onset of darkness. The range of times when this nearly complete reset occurs grows as the
dark pulse becomes longer (Fig. 4.4E-G, data near the @>=n red lines). Biochemical studies of the
Kai proteins have implicated changes in levels of metabolites during the night, such as the
ATP/ADP ratio, with the ability of the circadian clock to reset its phase (24, 134). The change in
resetting behavior we observe here for intermediate-length dark pulses may in part be caused by
a timescale associated with depletion of key metabolites in the cell.

This abrupt change from insensitivity to strong sensitivity as clock time progresses may
represent an optimal strategy for dealing with unexpected fluctuations in the environment, as it
can ignore short dark pulses at times of day when they are unlikely (Fig. S3B in (5)). This
behavior would be difficult to detect without high-resolution single-cell measurements, because
averaging over many cells with slightly different phases would tend to blur out the true sharpness

of the response (Fig. S3C in (5)).
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Mathematical model of fitness in fluctuating environments

We combined our measurements of clock-dependent growth and darkness-induced
growth arrest (Fig. 4.5A) with darkness-induced clock resetting to build a mathematical model
(135) of cyanobacteria growing under arbitrary schedules of light and dark. We first asked how
successfully the circadian clock could synchronize to a 24-hour day (12h L:12h D) if the clock
period were altered. In particular, the phase resetting information obtained in Fig. 4.4E-G was
used to generate the mapping for different clock periods. The relationship between @i and @i+1
was given by the recurrence relation gi+1 = fa”(¢i), where the map f."(¢i) describes the phase at
dusk following a dark pulse of duration n subjected to a clock of period P. The precise shape of
fo" (i) was found by interpolating the phase resetting curves by assuming that the effect of a dark
pulse of the phase scales with the period of the clock (for instance, a 5 h dark pulse would have
the same effect on a 24 h clock that a 10 h dark pulse would have on a 48 h clock). The shift
between the phase before (¢i) and after (¢i+1) Was used to construct an expression for f,” that
accurately captures the features of the 5 h, 7 h, 9 h, and 12 h dark pulse measurements. In
particular, we used the following expression to model f,":

if 76”(7;,_9) <1 <% or¢ > L(;ﬁfl)

+ A - sin(¢; — W) otherwise

ff(gb'b) - {;z _ 6r(n—1)

P
where A was given by min(n/P, w/4). Plots of this function for various dark pulse lengths are
shown in Fig. S4 in (5).

Using this expression for f,” , we interpolated from our measured dark pulse response
data to find a stable recurrence relation corresponding to clock entrainment by plotting the
value(s) of @i which converged for i > 1 for a 12 h dark pulse each clock period. (Fig. 4.5B).
When the clock period is less than 40 h, the model predicts that the clock will stably entrain to

the environment, but a period mismatch results in an entrained phase that is generally incorrect
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(i.e. subjective dusk
does not fall near actual
nightfall). For longer
periods, entrainment can
occur to subharmonics
of the environmental
period; for still longer
periods, chaotic
dynamics can occur.
We next
investigated how
circadian misalignment
would affect the long-
term fitness of a
population of cells in the
model by using the
growth and survival
functions measured in
Figs. 1-2 to extract the
fitness of a single cells
under a given light/dark
regime. By assuming

that growth occurs only



Hp under light conditions and

(Fig. 4.5, continued) 24h-clock (relative fitness = - ). Fitness
24h

advantage is the greatest when the clock and the environment are in growth arrest probability is
constructive resonance (i.e. 24 h and 36 h clocks, which leads to a correct
nightfall prediction 100% and 50% of the time, respectively) and the
lowest for destructive resonance (i.e. 18h, 30h, 48h clocks, which results
in nightfall occurring during subjective morning). (D) Top: Fitness
under 12 h nights but variable day lengths. Day durations are normally
distributed with a 12 h average and a variance ¢. Bottom: The presence
of a low level of noise in the day length distribution increases fitness for ~ calculated growth and
wild-type clocks (region highlighted with a *). As the day length

becomes more unpredictable (¢ > 5 h), an “always-protected” dusk state  survival of cells with a
is more beneficial than a circadian phenotype (** region). Fitness is the

average of 10,000 simulations. range of clock periods and

dependent on the phase at

the onset of darkness, we

find that the model predicts

that the long-term fitness is highest when the clock period is near 24 hours. This result indicates
that the measured effects on growth and darkness tolerance may be sufficient selective pressures
to explain the precision of the circadian clock. However, when the clock period is far from 24 h,
large fitness costs can occur because the clock synchronizes inappropriately so that the morning
clock state occurs at nightfall every day (Fig. 4.5C). These model results show similar trends to
those previously reported from competition experiments by the Johnson lab (30, 76): a long
period (30 h) clock mutant is severely disadvantaged relative to wildtype in 12:12 LD cycles,
while a short period (23 h) mutant is more mildly affected. Our model calculation shows an
asymmetry in fitness as a function of clock period where periods slightly shorter than 24 h
outperform longer periods. This follows from an asymmetry in the fitness cost associated with
the window of protection to nightfall. If the clock period is slightly short, the protected window
arrives early and the cost is unnecessarily slow growth. However, if the clock period is long, the
protected window is delayed causing the much more severe cost of cell death.

How does the circadian rhythm optimize the fitness of a cell? In our model, cells must

grow slowly near nightfall to avoid the possibility of metabolic catastrophe when darkness falls.
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The clock enforces this growth slowdown late in the day while allowing cells to grow rapidly in
the morning. This suggests that the advantages conferred by a circadian clock are a result of a
finely tuned match with the temporal structure in the environment. Such a strategy might become
detrimental in unnatural conditions where the environment cycles irregularly between light and
dark. To test this hypothesis, we simulated cyanobacteria growing in days with random variation
by selecting the duration of each light period from a normal distribution with a mean of 12 h.
The model predicts that when the variability in the light-dark schedule exceeds 6 =5 h, an
arrhythmic, slow-growing strategy similar to deletion of the kaiBC genes becomes more
successful than the wildtype (Fig. 4.5C). Surprisingly, our model predicts that wildtype cells may
grow faster and achieve a higher fitness in the presence of some timing variability (Fig. 5C, ¢ <

3.75 h) in the duration of the day.

Conclusions

Despite the ubiquity of circadian clocks, it has remained challenging to pinpoint the
benefits of rhythmic physiology (136). Our ability to detect the costs and benefits of clock
function at the single cell level provides a framework to answer these questions. We found that
considerable fitness penalties result from the failure of cells to correctly predict the withdrawal
of energy associated with nightfall. We thus conclude that a major function of the cyanobacterial
circadian clock is to provide a safeguard against darkness-induced starvation, giving the cell
permission to grow rapidly early in the day.

A possible explanation for the failure of a subset of cells to survive the night is that these
cells might have been unable to properly manage their energy consumption over the length of the

night. Analysis of microarray expression data of S. elongatus (116) provides some mechanistic
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insight into the origin of clock-dependent starvation tolerance (Supplementary Table I).
Expression of genes involved in photosynthesis and the biosynthesis of essential compounds
peaks at clock times corresponding to the early morning, suggesting that the clock tunes
metabolism to allow rapid growth early in the day. On the other hand, genes involved in DNA
replication, DNA repair, and metabolism under nutrient limitation, peak late in the day,
suggesting clock-dependent activation of mechanisms needed to tolerate nightfall. Furthermore,
we previously found that the clock controls storage and consumption of energy storage
metabolites, with reserves of glycogen at their lowest near the beginning of the day (118).
Coupled with gene expression data, our results suggest that proper temporal regulation of energy
storage and circadian regulation of growth and division in anticipation of dusk may play a
critical role in allowing the cell to survive the night.

These results suggest an alternative to the hypothesis that circadian rhythms evolved
primarily as a means to anticipate and avoid light-induced photodamage, i.e. a “flight-from-
light” scenario. If our experimental conditions approximate the challenges faced by the ancient
ancestors of modern cyanobacteria, the daily threat posed by an extended time of resource
limitation during the night may have been a major selective pressure on primordial clock
systems. That is, a key function of the circadian clock is to direct preparations ahead of nightfall,
i.e. a “prepare-for-night” scenario. We note that our microscopy growth conditions may well
intensify the stresses associated with darkness relative to growth in flasks, allowing us to observe
growth defects following a single light-dark cycle while liquid culture studies have required
many days before measurable effects emerge (30, 76).

Our dark pulse experiments show that the circadian clock has robustness properties that

allow it to track the 24-hour cycle in the environment even in the face of random fluctuations.
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The flipside of this robustness is a remarkable fragility in environments that fail to have a 24-
hour periodicity. Although such environments are unlikely to occur in nature, poor performance
of clocks in these conditions may have relevance to other organisms that display a clock control
of cellular divisions (137, 138) and to the irregular work schedules and patterns of light exposure

typical of modern society.

Materials and Methods
Cyanobacterial strains

The clock phase was tracked using the yfp-ssrA reporter strain wild-type (WT)/JRCS35
(MRC1006), which carries a PkaiBC::eyfp-ssrA fluorescence reporter. The JRCS35 plasmid
integrated PkaiBC::eyfp-ssrA into NS2 (neutral site 2) with a kanamycin resistance cassette (12).
To create the AkaiBC strain (MRC1009), the WT/JRCS35 strain was transformed with plasmid
MRO0091, replacing the endogenous kaiBC locus (from the kaiB start codon to ~200 bp upstream
of the kaiC stop codon) with a gentamicin resistance cassette. The KaiBC overexpression strain
(MRC1010) was created by transforming the WT/JRCS35 strain with plasmid MR0095,
integrating kaiBC under control of the isopropyl B-D-1-thiogalactopyranoside (IPTG)-inducible

trc promoter into neutral site 1 (NS1).

Culture conditions

In all the experiments, cyanobacterial strains were grown in BG11 liquid medium
supplemented with 20 mM HEPES (pH 8.0) at 30 °C. To create the mixed-phase population, 200
uL of a cell culture grown under continuous illumination (LL) of 75 pmol photons m2s™* were

pipetted into each well of a black (opaque) 96-well plate. For the experiments that included
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either the kaiBC-null or kaiBC-overexpression strains, these strains were grown in separate wells
from the wild-type cells within the same plate as to expose them to the same culture and
illumination conditions. For the kaiBC-overexpression experiment, the media was supplemented
with IPTG at a final concentration of 1 mM within the plate. A custom-made Arduino driven
LED array was used to illuminate each well. Each output pin of the Arduino supplied 23 mA of
current to 8 red LEDs and each pin corresponded to one column of the 96-well plate. The
Arduino was programmed to generate 2 days of symmetric light/dark conditions (light
conditions: 10 pmol photons m2s™* (23 mA); Dark conditions: 0 mA) preceded by at least 12 h
of continuous light conditions so that each population was subjected to 2 entrainment cycles.
Light levels were maintained at ~10 pumol photons m 2s* for an additional 24 h before cells
were collected for microscopy. Each culture well of the entrained 96-well plate was collected
and combined into a single test tube. The distribution of phases produced by this protocol is
broad, but is not precisely uniform. The deviations from a uniform distribution might be caused
by differential growth of the wells subjected to differently phased cycles, or mild phase shifts
caused by transferring the cultures to the microscope.

For experiments that included kaiBC-null or kaiBC-overexpression strains, the cells were
combined in equal proportions, determined by OD750 measurements after entrainment. This

provided a mixed population of wildtype and mutant cells within a single experiment.

Timelapse microscopy
The mixed-phase culture was diluted to an optical density OD750 = 0.1 using BG11
medium and 1 pL of the cell solution was pipetted onto a glass-bottom 6 well plate (MatTek

Inc.). Asmall (1 mm X 1 mm X 0.5 mm) pad of BG11 + 2% low-melting point agarose (LMPA)
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was placed atop the cell suspension. 10 mL of liquid BG11 + 2% LMPA which had been cooled
to 37 °C was then poured inside the well to cover the LMPA pad. For the kaiBC-overexpression
experiment, the BG-11/agar mixture was supplemented with IPTG at a final concentration of 1
mM before being poured into the well. Once the LMPA solidified, the 6-well plate was then
moved to a motorized microscope (1X71, Olympus) and fluorescence and brightfield images
were recorded every 60 minutes.

Control of the microscope was carried out using micromanager (139). Every 60 minutes,
a motorized microscope stage (Prior) visited 24 pre-assigned locations containing at least 10
cells and bright-field (exposure: 100 ms), chlorophyll (exposure: 200 ms; excitation: 501 nm;
emission: 590 nm) and YFP fluorescence (exposure: 2 s; excitation: 501 nm; emission: 550 nm)
micrographs were then recorded using an EMCCD camera (Luca, Andor).

The “simple-autofocus” routine provided by the Micro-manager suite used the
chlorophyll autofluorescence of the population to identify the focal plane before each set of
micrographs was recorded. A collimated LED light (Thorlabs; wavelength: 625 nm) was used to
illuminate the cells throughout the experiment and a microcontroller (Arduino) controlled the
output level of the LED light (Light conditions: ~10 pumol photons m 2s7* (23 mA); Dark

conditions: 0 mA).

Single-cell analysis and phase information extraction.
The outline of every cell in the brightfield image was traced using a watershed algorithm
and the physiological properties of each cell (length and YFP fluorescence intensity) were

recorded. The celltracker image processing (55) suite was then used to reconstruct the lineage
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history of each cell, assigning an age to each pole and computing the instantaneous elongation
rate.

The complete lineage of every cell present at the onset of the dark pulse was reconstituted
and the YFP signal of each lineage was then subjected to a Fourier transform. The (complex)
factor multiplying the 24 h frequency component (henceforth called c24) was computed using the
last 36 h of data leading to the dark pulse. The phase of the cell before the dark pulse (called ¢1
in the main text) was found by extracting the angle of c24 using the arctan2 branching function —
ie. @ = arctan2(imag(c24), real(co4)).

To find the phase of the clock after the dark pulse (¢2), the YFP-intensity of the “old-
pole” lineage (i.e. the lineage which inherited the oldest pole after each division) was extracted
and the phase information was found by computing the angle of the c24 factor of the YFP signal.
After the dark pulse, only the first 36 h of data were considered (to ensure that c24 existed). Non-
oscillatory cells (such as the AkaiBC and kaiBC-overexpression strains) were identified by
monitoring intensity traces which varied by less than 30% over the duration of the experiment.

Since the production and maturation rate of YFP proteins have a finite timescale that is
determined, among other factors, by the growth rate of the cells, the clock phases we report are
shifted by 4 h relative to the extracted peak YFP phase information to bring them more closely in
line with the estimated peak transcriptional activity. This value is similar to other values reported

in the literature (52).

Growth arrest probability
“Arrested” cells were identified by tracking the cumulative increase in the total length of

the cell after the dark pulse. If the total length of a cell and its progeny increased by less than
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33% after 24 h, the cell was scored as arrested. Because of the altered morphology of the kaiBC
overexpression strain, we used an alternative test for these cells: if the relative elongation rate
was less than 1% / hour over the 4 hours following the dark pulse, the cell was scored as

arrested.

Elongation rate measurements

The elongation rate was computed from 6 experimental replicates of mixed-phase
populations grown under constant light conditions. Cells were grown for a total of 36 h under
constant light conditions and the last 12 h (T=24-36 h) were used to compute the elongation rate.
The instantaneous elongation rate was found by computing the relative increase in cell size

between two consecutive frames. Specifically,

_ ligpa—4y_ dlog(€)
9= "1 dt

The growth rate g(t) was then binned according to the cell’s circadian phase and averaged over a
1 h window. In Fig. 3B, a 3-pt moving average was used to smooth the data used to derive the

phenomenological model.

Fitness advantage measurement

To measure the performance of various clock periods under a sustained LD 12:12
schedule, it was necessary to compute 1) the probability p that a cell would enter a state of
growth arrest following the 12 h dark pulse and 2) the number of cell doublings that happened
during the 12 h of light. u was determined using fi2n” to find the phase of the cell at nightfall to
identify the survival probability at that phase using Fig. 2D (that is, it was assumed for the sake

of simplicity that growth arrest occurs at the same rate for 12 h and 18 h nights). The number of
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cell doublings per day was found by first using fi2n" to identify the phase at the beginning of the
day. We then advanced this phase variable through the light portion of the day to compute the
average elongation rate g. The historical fitness (140) was used to quantify the fitness of the
population at a given period. Historical fitness differs from conventional fitness measurements in
that it considers the cumulative (or integrated) number of doublings of a single cell over its

complete life-history. Consequently, the historical fitness of a population will contain two
T
factors: (1 — ) lEJ which accounts for the fraction of the population that enter a state of growth

arrest during the dark pulse, and egz_T, which tracks the number of cell doublings that happen
under light conditions.
The historical fitness for a simulation that lasted for a time T for a given clock period P
was given by the product of these two factors:
Hp=(1-p)lle’
for a simulation that lasted for a time T for a given clock period P. The values of Hp were plotted

relative to Haan.

Perspective

The results presented here provide insight into the selective pressures that contribute to
the level of oscillatory precision in single cells presented in Chapter 2. A noisy clock that
predicts the time of day poorly is more likely to experience a mismatch between cellular
physiology and environmental conditions. The most obvious penalty for a clock-environment
mismatch as shown here is growth arrest if darkness occurs when the cell expects daytime. This
amount of mismatch likely requires an extreme amount of noise in the clock to occur, but fitness
defects may also arise from smaller clock-environment mismatches. For instance, cells that
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predict darkness several hours before the actual onset of darkness may slow growth and division
at a time when rapid growth is still permissible, falling short of the maximal amount of growth
that can happen over the day. In conclusion, the results presented here provide a powerful
explanation for why such high precision is required in the cyanobacterial circadian clock such

that Kai proteins are expressed in high amounts to minimize the impact of molecular noise.
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Appendix: Ancestral reconstruction of the Kai system using

phylogenetic analysis by maximum likelihood (PAML)

Introduction

Ancestral reconstruction is a recently developed statistical method that utilizes
phylogenetics to estimate DNA or protein sequences of a given ancestor of a clade of extant,
modern sequences. It has been used to successfully investigate the evolution of transcription
factors in yeast (141), proteins responsible for the rise to multicellularity (142), and ethanol
tolerance in Drosphila alcohol dehydrogenase (143). For any reconstruction, the basic workflow
is as follows (3) (Figure A.1). First, a set of extant sequences must be obtained, which might be
a series of homologous protein sequences from related organisms (although in theory the
reconstruction should also allow for reconstruction of ancestors of protein families that might
share multiple members within a single organism). From this set of sequences, a multiple
sequence alignment should be performed to construct a phylogenetic tree that specifies the
ancestral relationships between each sequence. Finally, information from the multiple sequence
alignment and phylogenetic tree can be combined to estimate the ancestral sequence using
maximum likelihood methods on a residue-by-residue basis to predict the most likely ancestral
residue at each site in the reconstructed sequence.

My initial efforts to reconstruct the Kai system were aimed at addressing two separate
questions related to the evolution of the cyanobacterial clock. First, assuming that the Earth’s
rotation was much faster in the past, is there a “biological timekeeping fossil” hidden in modern
cyanobacterial clock sequences that indicate that the ancestral cyanobacterial clock was also
faster? Second, how did the abbreviated Kai system in Prochlorococcus evolve? Here, | will

first provide background information for the first question followed by the second.
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a Infer phylogenetic tree from aligned sequences and determine best-fitting evolutionary modeal

Human CDOCYSFFERAVESACML LI LECEC LI ICHHERENETEHC I OO DA CEH SN FFEENRAVERNMEVADENL.
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Vertobrabe Frog CEGCHAFFENSVEGACMLLI LECECLI I CHHAREYKTCHC IQORACER TOFFEENRAVERMEVAGEXL. .
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Figure A.1. Ancestral reconstruction process from (3). A phylogeny is first constructed from a multiple
sequence alignment of extant protein sequences, and ancestral reconstruction is performed on a residue-by-
residue basis using maximum likelihood statistical methods. Finally, reconstructed genes can be assembled
from oligonucleotides and expressed in vivo.

Does the ancient cyanobacterial clock hold a record of the Earth’s rotational speed?

Physical measurements currently indicate that tidal friction between the oceans and the
Earth’s surface is causing the Earth’s rotation to slow by approximately 1.8 milliseconds per
century (144). This finding is consistent with the fact that the Moon is slowly receding from
Earth in its orbit by about 3.8 centimeters per year (145) due to the conservation of angular
momentum. The observed slowing of the Earth’s rotation thus implies that in the past, the Earth
rotated much more rapidly. A quick calculation shows that if the current rate of slowing is
extrapolated backwards in time by 1 billion years, the rotational period was 18.4 hours instead of
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24 hours. This estimate of the past Earth’s period is consistent with both geological and fossil
evidence. Alternating patterns of silt deposition between the spring and neap tides suggest that
900 million years ago (MYA), the Earth’s rotational period was ~18 hours (146). Daily
oscillations in coral growth rates, visualized as growth ring bands, give rise to estimations that
400 MYA the Earth’s rotational period was ~20 hours (147).

The modern clock in S. elongatus has a free-running period close to 24 hours, and the
earliest fossil evidence of cyanobacteria date to over 2 billion years ago (GYA) (148), meaning
that the earliest cyanobacteria would have presumably lived in an environment with a day/night
cycle much shorter than 24 hours. Competition experiments demonstrate that a clock with a
period that is mismatched with the environment has negative consequences for organism fitness.
In a mixed population of cyanobacteria with either a 24-hour wild-type clock or a 20-hour
mutant clock, the strain that dominates the population after several weeks of growth has a clock
that matches the period of environmental light/dark cycles (30, 76). This suggests that there is a
strong selective pressure to match the period of the clock to the environment. This inspires the
question: did ancient cyanobacteria have a circadian clock with a shorter period, and did that
period lengthen over time as the Earth’s rotation slowed?

How confident are we that cyanobacteria were present when the Earth’s rotation was
faster? In addition to fossil evidence that suggests an ancient origin for cyanobacteria, other
studies hypothesize that the origin of cyanobacteria is related to the Great Oxygenation Event, an
event that occurred roughly 2.5 billion years ago (GYA) as indicated by geological and chemical
evidence (149). Cyanobacteria are hypothesized to be the first photosynthetic organisms to

generate atmospheric oxygen in significant amounts, increasing atmospheric oxygen from
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negligible amounts to their modern levels. The timing of the Great Oxygenation Event is thus
consistent with the idea of an ancient origin for cyanobacteria when the day was much shorter.
Thus, the main objective in investigating this question is to ideally reconstruct multiple
ancestral versions of the Kai system, with the hypothesis that nodes that more ancestral will have
a faster free-running period. The results of the efforts to reconstruct the ancient Kai system are
hereafter described in the Results section. For now, we move on to the motivating factors for the

second question that can be investigated with ancestral reconstruction of the Kai system.

How did Prochlorococcus evolve into an environmentally-driven timer?

As noted in the dissertation introduction and in Chapter 2, P. marinus has an abbreviated
Kai system in which the gene for kaiA is completely missing (49), and as a result, KaiC can no
longer generate autocatalytic rhythms in phosophorylation (shown in Chapter 2). Instead,
Prochlorococcus must be incubated in a cyclic light/dark environment to generate
phosphorylation rhythms in KaiC, with KaiC settling into a hyperphosphorylated state in the
light and a hypophosphorylated state in the dark. Previous in vitro studies suggest that
Prochlorococcus KaiC (ProKaiC) has gained a KaiA-independent autokinase activity (63),
which is consistent with mutations in the C-terminus of ProKaiC in which the residues necessary
for burying the A-loop to suppress kinase activity are no longer conserved (49). While it is
possible that other factors in Prochlorococcus have supplanted the role of KaiA, the simplest
model for the Kai system in Prochlorococcus is that the kinase rate of ProKaiC is metabolically
regulated by ATP/ADP levels in the cell, which change with the day/night cycle.

The question of how the Prochlorococcus clock lost free-running capability assumes that

its ancestor had a free-running clock. How do we know this? First, P. marinus MED4 is only
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one of two cyanobacterial species that do not have kaiA (the other is a tiny symbiotic
cyanobacteria, UCYN-A) (150). All other cyanobacteria contain copies of all three Kai proteins.
Considering that P. marinus is thought to have phylogenetically diverged somewhat recently,
this makes it extremely unlikely that the kaiA gene evolved independently in all other
cyanobacteria and that the original, ancient cyanobacterium had a Prochlorococcus-like kaiB and
kaiC system. Second, as one traverses the cyanobacterial phylogenetic tree from a relative that
has all three Kai proteins (Synechococcus WH 8102) towards P. marinus MED4, one finds that
the kaiA gene gets progressively shorter from the N-terminus until only the C-terminal third of
kaiA is remaining in Prochlorococcus sp. MIT 9313 and Prochlorococcus sp. MIT 9303 (49).
This view suggests that the kaiA gene was truncated over evolutionary history as
Prochlorococcus differentiated into its niche, and that the lack of a kaiA gene in P. marinus is
the terminal result in a series of piecewise deletions in the kaiA gene.

The main question to investigate here is the evolutionary path that the Kai system
traversed to lose kaiA. Did the (presumed) original free-running clock become a dampened
oscillator before losing kaiA entirely, analogous to a continuous decrease in feedback loop
strength described in the model in Chapter 2? As kaiA was shortened, what functions did it lose,
and what functions did it retain? How did KaiC switch to having a KaiA-independent kinase
activity? While ancestral reconstruction can contribute to our investigation of these questions, it
is also necessary to perform a multitude of biochemical experiments to dissect which residues
may have contributed to these changes, which requires additional planning from what is
presented here.

I did not focus my ancestral reconstruction efforts towards the evolution of the

Prochlorococcus system, instead focusing on the first posed question of whether ancestral clock
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systems had faster periods to match the Earth’s rotation. As such, all of the following sections

will focus on the ancestral reconstruction problem with that perspective in mind.

Methods and Results
Cyanobacterial protein sequences for all three Kai proteins were downloaded from

GenBank using the following search term (example shown with KaiA):

(KaiA) AND "cyanobacteria"[porgn:__ txid1117]

“KaiA” was substituted with “KaiB” and “KaiC” for their respective sequences. The sequences
for each protein were curated by hand to remove irrelevant sequences. For instance, KaiB
sequences appeared in the search results for KaiA and vice versa. Other irrelevant results
included partial sequences from crystal structures as well as hypothetical proteins and non-Kai
proteins. Results date to May 2014; as such, those seeking to continue this work should re-run
the search as it is likely that more cyanobacterial genomes have been sequenced since.

Only organisms that contained all three Kai proteins were considered for reconstruction,
and a Python program was written to remove species that did not have all three Kai proteins. For
organisms with duplicate sequences present, the first sequence in the list for that particular
organism was taken. Completion of this step yielded 146 distinct sets of Kai protein sequences.
As a first step in constructing a phylogenetic tree, the KaiC sequences underwent multiple
sequence alignment using the MUSCLE algorithm in the MEGA bioinformatics software
platform. A phylogenetic tree for KaiC was constructed using PhyML, which constructs

phylogenetic trees based on maximum likelihood, and a root for the tree was chosen such that
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Synechococcus sp. JA-3-3Ab and Synechococcus sp. JA-2-3-Ba formed the outgroup for the
remaining species, which is based on phylogenetics of 16s rRNA sequencing that show the JA-3-
3-Ab and JA-2-3-Ba species as the most basal cyanobacteria out of the 146 cyanobacteria
sampled.

The resulting tree with all 146 sets of KaiC sequences was compared to previous
phylogenetic studies that used cyanobacterial fossils to calibrate their estimate of the
evolutionary molecular clock in order to estimate the age of ancestral nodes within the
phylogenetic tree (151, 152), see Figures A.2 and A.3. Based on these previous studies, three
nodes were chosen for ancestral reconstruction that were predicted to span a suitable range of
times to test whether a trend towards shorter periods existed as nodes became more ancient. The

estimated age of these nodes is listed in the table below:

Table A.1. Ages of selected ancestral nodes

Node and age in MYA
Study Red Yellow Green
Baca et al. (ML) 2223 + 145 1031 + 105 588 + 38
Baca et al. (Bayesian) | 2583 (2186-2973) 1943 (1372-2524) 1035 (576-1531)
Dvorak et al. ~2700 ~2300 ~1500

The red node is the ancestor of most cyanobacteria, the yellow node is the most recent common
ancestor of S. elongatus and the marine picocyanobacteria (such as Synechococcus WH 8102 and
P. marinus MED 4), and the green node is the most recent common ancestor of the marine
picocyanobacterial.

It should be noted that the following analysis uses only a subset of the sequences for all
146 species for reasons that are now outdated, and any future analysis should be repeated with all
146 species as it would increase the amount of information available for reconstruction.
Originally, the three nodes selected for reconstruction lay entirely within a clade that only

comprised a small part of the complete tree with all 146 species, and to reduce the complexity of
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reconstruction, the phylogenetic tree of 146 species was trimmed to contain only 36 species.

These 36 species included all species that were descendants of the three original target nodes (19
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Figure A.2. Phylogenetic tree constructed from concatenated 16S rRNA and 23S rRNA sequences in
cyanobacteria, adapted from (16). Bar indicates 1 substitution per site. Estimates of node ages were derived
based on this tree. The three target ancestral nodes listed in table A.1 are shown in red, yellow, and green.
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species), and species in the outgroup (17 species) were selected by hand in a manner that
represented the remaining cyanobacterial species somewhat equally. These 36 species were used
in all subsequent analyses presented below, and the three selected nodes for study were later
revised to the three presented in the table above, which will also be used in all subsequent
analyses below.

Before obtaining ancestral sequences, multiple sequence alignments were performed for
the 36 species for each individual set of Kai protein sequences (for KaiA, KaiB, and KaiC), and
phylogenetic trees were generated again in the manner described above. The multiple sequence
alignments and phylogenetic trees were processed by the Lazarus software package developed by
the Thornton lab (153), which uses the PAML algorithm to infer ancestral sequences based on
maximum likelihood approaches, and ancestral sequences were obtained for the target nodes. It
is important to note that ancestral reconstruction evaluates each residue in a protein sequence
independently and that PAML treats blank residues in the multiple sequence alignment as
missing information. This can be problematic for sites in which one species in particular has a
unique insertion of an extra residue that does not align to any other species. Rather than
assuming that the inserted residue does not exist in other species, PAML instead assumes that the
corresponding residue is unknown. To deal with cases like these, the ancestral sequences were
realigned with the extant sequences, and sites that were unique insertions were manually
removed from the ancestral sequence. It is for this reason that the initial 146 species tree was
trimmed to 36 species, as additional sequences increases the number of spurious insertions that
will exist in the final ancestral sequences.

As a side comment, it is remarkable to note that the degree of conservation of Kai

sequences across the entire cyanobacterial clade is strikingly high for proteins that originally
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diverged billions of years ago. However, despite this overall level of conservation, there are also
small, specific regions of the Kai proteins that are less well conserved, such as the N- and C-
termini of KaiC. A lack of conservation could be attributed to a bona fide change in protein
function (such as the changes in the KaiA-binding part of the C-terminus from S. elongatus to P.
marinus that are presumably responsible for the constitutive autokinase activity in ProKaiC), but
it may also indicate that the evolutionary constraints in poorly conserved regions are much
lower, indicating that the function of the region is less dependent on its specific sequence (e.g. a
linker sequence).

These poorly conserved sites in the Kai proteins present a problem for ancestral
reconstruction, in that the statistical confidence in the ancestral residues tends to be lower than
for highly conserved sites. How should this uncertainty be dealt with? If only a few sites have
low statistical confidence, then it may be possible to construct several variants of the protein
using permutations of the second-most likely residues for each site with confidence below a
given threshold (e.g. < 85% posterior probability). However, this approach becomes untenable if
the number of uncertain sites becomes large. At this point, some judgement will need to be
exercised for each uncertain site based on currently available biochemical studies as to whether
one should simply use the highest confidence estimate or whether the sites should be replaced
with a modern sequence. These considerations were used in the approach I took in finalizing
ancestral sequences for experimental testing.

Reconstructing the entire Kai system in vitro for three ancestral nodes is a moderate
undertaking, involving the purification of nine individual proteins. Thus, as a first step, | aimed
to test whether ancestral KaiC could function with modern KaiA and KaiB from S. elongatus,

reducing the number of proteins for reconstruction to three (see Figure A.4 for phylogenetic tree
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of KaiC with target nodes highlighted). In all three ancestral nodes, the site in KaiC that had the

lowest estimation confidence was the N-terminus, which was highly variable across all
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Figure A.4. KaiC phylogenetic tree constructed in this study with ancestral target nodes labeled. Bar
indicates 0.1 substitutions per site, and numbers at nodes indicate maximum likelihood support numbers

for each node.

cyanobacteria. A scanning mutagenesis study performed by Jenny Lin showed that in general,
random single residue mutations in the N-terminus (residues 1-16) were less likely to impact
oscillation amplitude or period than mutations after residue 16, suggesting that the N-terminus is
poorly conserved because its function is not as strictly dependent on sequence (154).
Additionally, the vast majority of individual residue changes between the ancestral sequences
and modern S. elongatus KaiC between residues 1-16 were shown not to have a significant
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impact on oscillation amplitude or period, further decreasing the likelihood that the ancestral
sequences contained a predicted residue that would greatly impact KaiC function. Nevertheless,
as a precaution, the first 16 residues of the ancestral sequences were replaced by those from
modern KaiC. The remaining sequence was left as the generated ancestral sequences, and the
final sequences are listed below (see Figure A.5 for a multiple sequence alignment of modern

KaiC and the ancestral nodes):

Red node (predicted age ~2200-2700 MYA):

Reconstructed sequence
MNQPEQQSSNNGPNSAGVQKIRTMIEGFDDISHGGLPVGRTTLVSGTSGTGKTLFAVQF
LYNGITYFDEPGIFVTFEESPTDIIKNASSFGWDLQKLIDEGKLFILDASPDPEGQDVVGNF
DLSALIERIQYAIRKYKAKRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQLGVTTIMT
TERVEEYGPVARFGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITN
NGINIFPLGAMRLTQRSSNVRVSSGVKTLDEMCGGGFFKDSIILATGATGTGKTLLVSKF
LENGCQNGERAILFAYEESRAQLSRNASSWGIDFEELERQGLLKICAYPESAGLEDHLQI
IKSEIAEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTTDQFMGSHS
ITDSHISTITDTILMLQYVEIRGEMSRAINVFKMRGSWHDKGIREYTITENGPEIKDSFRNY
ERIISGSPTRISVDEKSELSRIVRGVQDKEEEIDE

Sequence with replaced N-terminus from S. elongatus KaiC
MTSAEMTSPNNNSEHQGVQKIRTMIEGFDDISHGGLPVGRTTLVSGTSGTGKTLFAVQF
LYNGITYFDEPGIFVTFEESPTDIIKNASSFGWDLQKLIDEGKLFILDASPDPEGQDVVGNF
DLSALIERIQYAIRKYKAKRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQLGVTTIMT
TERVEEYGPVARFGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITN
NGINIFPLGAMRLTQRSSNVRVSSGVKTLDEMCGGGFFKDSIHILATGATGTGKTLLVSKF
LENGCQNGERAILFAYEESRAQLSRNASSWGIDFEELERQGLLKIICAYPESAGLEDHLOQI
IKSEIAEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTTDQFMGSHS
ITDSHISTITDTILMLQYVEIRGEMSRAINVFKMRGSWHDKGIREYTITENGPEIKDSFRNY
ERIISGSPTRISVDEKSELSRIVRGVQDKEEEIDE

Yellow node (predicted age ~1000-2000 MYA):

Reconstructed sequence
MTQPEQQSPNNNSNLAGVQKIRTMIEGFDDISHGGLPIGRSTLVSGTSGTGKTLFSVQFL
YNGITQFDEPGIFVTFEESPQDIIKNASSFGWDLQKLVDEGKLFILDASPDPEGQDVVGNF
DLSALIERINYAIRKYKARRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQIGVTTVMT
TERIEEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITNH
GINIFPLGAMRLTQRSSNVRVSSGVKRLDEMCGGGFFKDSIILATGATGTGKTLLVSKFV
ENACANKERAILFAYEESRAQLLRNASSWGIDFEEMERQGLLKIICAYPESAGLEDHLQII
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KSEISEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTSDQFMGSHSI
TDSHISTITDTILLLQYVEIRGEMSRAINVFKMRGSWHDKGIREYMITDKGPEIKDSFRNF
ERIISGSPTRISVDEKSELSRIVRGVQEKEPEIEE

Sequence with replaced N-terminus from S. elongatus KaiC
MTSAEMTSPNNNSEHQGVQKIRTMIEGFDDISHGGLPIGRSTLVSGTSGTGKTLFSVQFL
YNGITQFDEPGIFVTFEESPQDIIKNASSFGWDLQKLVDEGKLFILDASPDPEGQDVVGNF
DLSALIERINYAIRKYKARRVSIDSVTAVFQQYDAASVVRREIFRLVARLKQIGVTTVMT
TERIEEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTIEILKLRGTTHMKGEYPFTITNH
GINIFPLGAMRLTQRSSNVRVSSGVKRLDEMCGGGFFKDSIILATGATGTGKTLLVSKFV
ENACANKERAILFAYEESRAQLLRNASSWGIDFEEMERQGLLKIICAYPESAGLEDHLQII
KSEISEFKPSRIAIDSLSALARGVSNNAFRQFVIGVTGYAKQEEITGFFTNTSDQFMGSHSI
TDSHISTITDTILLLQYVEIRGEMSRAINVFKMRGSWHDKGIREYMITDKGPEIKDSFRNF
ERIISGSPTRISVDEKSELSRIVRGVQEKEPEIEE

Green node (predicted age ~600-1500 MYA):

Reconstructed sequence
MTQPMQDPSPTNNHLASVQKLPTGIEGFDDVCQGGLPIGRSTLISGTSGTGKTVFSLNFL
YNGIRQFDEPGIFVTFEESPLDILRNAASFGWNLQEMVEQDKLFLLDASPDPEGQDVAGS
FDLSGLIERINYAIRKYKARRVAIDSITAVFQQYDAVSVVRREIFRLIARLKEIGVTTVMT
TERIDEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTVEILKLRGTTHMKGEFPFTMGS
HGISIFPLGAMRLTQRSSNVRVSSGVPRLDEMCGGGFFKDSIILATGATGTGKTLLVSKF
VENACANKERAILFAYEESRAQLLRNATSWGIDFEEMERQGLLKIICAYPESTGLEDHLQ
IHKTEISQFKPSRMAIDSLSALARGVSHNAFRQFVIGVTGYAKQEEIAGFFTNTSEEFMGS
HSITDSHISTITDTILLLQYVEIRGEMARALNVFKMRGSWHDKGIREYIITSNGPEIKDSFS
NFERIISGVPHRINTDERSELSRIVKGVGEDQSLIEE

Sequence with replaced N-terminus from S. elongatus KaiC
MTSAEMTSPNNNSEHQSVQKLPTGIEGFDDVCQGGLPIGRSTLISGTSGTGKTVFSLNFL
YNGIRQFDEPGIFVTFEESPLDILRNAASFGWNLQEMVEQDKLFLLDASPDPEGQDVAGS
FDLSGLIERINYAIRKYKARRVAIDSITAVFQQYDAVSVVRREIFRLIARLKEIGVTTVMT
TERIDEYGPIARYGVEEFVSDNVVILRNVLEGERRRRTVEILKLRGTTHMKGEFPFTMGS
HGISIFPLGAMRLTQRSSNVRVSSGVPRLDEMCGGGFFKDSIILATGATGTGKTLLVSKF
VENACANKERAILFAYEESRAQLLRNATSWGIDFEEMERQGLLKIICAYPESTGLEDHLQ
IIKTEISQFKPSRMAIDSLSALARGVSHNAFRQFVIGVTGYAKQEEIAGFFTNTSEEFMGS
HSITDSHISTITDTILLLQYVEIRGEMARALNVFKMRGSWHDKGIREY IITSNGPEIKDSFS
NFERIISGVPHRINTDERSELSRIVKGVGEDQSLIEE
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Figure A.5. Multiple sequence alignment of modern S. elongatus KaiC and reconstructed ancestral KaiC.
Nodes 40, 43, and 45 correspond to the red, yellow, and green target nodes respectively.
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Next, | examined the reconstructed sequences to determine whether residues known to be

important for KaiC function were present in the ancestral sequences, and these residues and their

functions are listed below from (69, 155):

Table A.2. Residues important for KaiC function
Present in ancestral sequence?
Residue Function Red node Yellow Green node
node
T432 Clock phosphorylation site Yes Yes Yes
S431 Clock phosphorylation site Yes Yes Yes
1497 Terminal residue in A-loop, Yes Yes Yes
stabilizes buried position of A-
loop
E487 Stabilizes A-loop buried state Yes Yes Yes
with T495
T495 Stabilizes A-loop buried state Yes Yes No (T->H)
with E487
1472 Prevents ATP from Yes Yes Yes
approaching phosphorylation
site (with D474)
D474 Prevents ATP from No (D->E) | Yes No (D->S)
approaching phosphorylation
site (with 1472)
W331 Thought to stabilize ATP away | Yes Yes Yes
from phosphorylation site
(W331A leads to
hyperphosphorylation)
E77 Catalytic carboxylate in CI Yes Yes Yes
E78 Catalytic carboxylate in Cl Yes Yes Yes
E318 Catalytic carboxylate in ClI Yes Yes Yes
E319 Catalytic carboxylate in ClI Yes Yes Yes

Notably, most of these important residues are present in the ancestral sequences, with a few

exceptions. Although the effect of the remaining mutations in S. elongatus KaiC are currently

unknown, the predicted ancestral residues are present in other modern cyanobacterial KaiC

sequences and are presumed to remain functional in their individual organismal contexts.

The ancestral sequences were also compared to known mutations that alter the period of

oscillation, summarized below from (156):
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Table A.3. KaiC period mutants
Residue present in ancestral sequence
Mutation Period Red node Yellow Green node
node
T42S 28 hours T T T
A251V 46 hours A A A
S157P 21 hours A A V
F470Y 17 hours Y Y Y
R393C 15 hours R R R

While these comparisons are far from conclusive, it is interesting to note that the F470Y change,
which shortens the circadian period to 17 hours, is present in all ancestral sequences. Residue
S157 is also completely different in all ancestral sequences, but the effect of these mutations is
unknown. However, a major caveat is that the period mutants were all characterized in the
background of wild-type modern S. elongatus KaiC. Indeed, the residue at position 470 in
roughly half of the cyanobacteria is a tyrosine, but those species presumably have a 24-hour
clock, weakening the hypothesis that the tyrosine at position 470 in the ancestral sequences is
predictive of the ancestral Kai system having a shorter period.

The sequences for all three nodes (with replaced N-termini) were ordered from IDT as
gBlocks, and using Gibson assembly, they were combined with expression plasmid pRSET-B
which was digested with BamHI and Ncol. The insertion of the KaiC sequences for the red,
yellow, and green nodes into pRSET-B generated plasmids pJC074, pJC075, and pJCQ76.
Attempts at preparing recombinant ancestral KaiC should follow the Rust lab protocol for

preparing S. elongatus KaiC, as reported in (37).

Future Directions
Expression plasmids for ancestral KaiC at the three target nodes have been constructed;

the next step is to express and purify recombinant ancestral KaiC and test their function in vitro
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by incubating ancestral KaiC with modern KaiA and KaiB from S. elongatus. Two methods for
assaying clock function include sampling the reaction periodically and running samples in an
SDS-PAGE gel to resolve KaiC phosphorylation over time, or using fluorescence polarization to
assay clock state in an automated fashion with high temporal resolution as described in (23).
While the fluorescence polarization method requires less manual effort, running reaction samples
on a gel may be more informative if the clock reaction fails to oscillate as the phosphorylation
state of KaiC will be revealed at each point in time.

Many reasons exist for why the clock reaction may fail with ancestral KaiC, including
intrinsic failure of the protein structure or failure to find correct reaction conditions or protein
concentrations. In order to address condition-dependent failures, the fluorescence polarization
assay is ideal for troubleshooting due to its high-throughput plate reader format. However,
failure stemming from a protein sequence or structure level cannot be so easily rectified due to
uncertainty in which parts of the sequence are problematic. Additionally, the ancestral
reconstruction process provides the most likely estimate for each site in the sequence
independently, ignoring context dependency between different residues. Hence, it is quite
possible that multiple residues in the ancestral sequence never actually existed together in the
same organism and that together they are unable to recapitulate the ancestral phenotype. To
assess whether context dependency is important, an information theoretic approach can be used
to determine the mutual information between residues in the Kai proteins across all known
sequences, similar to the approach used in (157).

Another approach to address uncertainties in the ancestral protein sequences is to
construct variant sequences that instead use the residues that have the second-highest statistical

confidence. If there are many variants, a combinatorial approach may be devised to construct a
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library, perhaps using some form of combinatorial Quikchange mutagenesis. It would be a great
deal of work to test more than a handful of variant sequences in vitro with recombinantly
purified protein—thus, an approach of this kind would necessitate transforming the variant Kai
systems into cyanobacteria to perform a high-throughput screening of clock phenotype in vivo.
A caveat to this approach that must also be considered is that the ancestral Kai proteins may not
interface with downstream clock output proteins correctly, making it difficult to interpret a result
that is arrhythmic.

Lastly, it is possible that the ancestral Kai proteins are able to interface with each other
but not with modern variants. To investigate, an analysis should be performed to compare
contact residues important for Kai protein binding in the ancestral proteins vs the modern
proteins. If it becomes clear that the binding interfaces between Kai proteins have co-evolved
over time, the entire ancestral Kai system should be reconstructed and tested in vitro, instead of

testing a mixture of ancestral KaiC and modern KaiA and KaiB as initially presented here.
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