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. unless it comes out of
your soul like a rocket,
unless being still would
drive you to madness or

suicide or murder,
don’t do 1it.

unless the sun inside you 1s

burning your gut,
don’t do it. ”

-Charles Bukowski
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ABSTRACT

In this thesis, I show that a single class of unsupervised learning rules that can be inferred
from in vivo data learns neuronal representations consistent with a wide range of datasets.
Recurrent neuronal networks endowed with learning rules of this class represent memories
as qualitatively different spatiotemporal attractors (i.e. fixed-point attractors, chaotic at-
tractors or transient sequences of activity) depending on the stimuli statistics and learning
rule. They match disparate observations from recordings in different species, brain regions
and memory tasks, suggesting that memories are differentially represented in brain systems.
This thesis provides a unified model for explaining the diversity in neuronal dynamics during

memory retrieval.
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CHAPTER 1
INTRODUCTION

1.1 Neuronal representations

Sensory experiences produce brain-wide activity changes. For example, exposure to narrative
stories produce a semantic structure of activations across multiple cortical regions in humans
(Huth et al. 2016). Exposure to natural images produce a hierarchy of activations in inferior
temporal cortex in primates (Kiani et al. 2007, Kriegeskorte et al. 2008). Hippocampal
neurons of rodents moving in an environment are activated in specific landmarks (O’Keefe &
Dostrovsky 1971, O’keefe & Nadel 1978), while neurons in the entorhinal cortex get activated
whenever the animal position coincides with intersection points on a grid that maps the
environment (Hafting et al. 2005). These are just a few examples of the striking ability of
brains to respond in a structured way to sensory stimulus. A natural question that comes to
mind is if the neuronal responses are in anyway related with the information content of the
sensory stimuli. A popular hypothesis underlying most of contemporary neuroscience is that
salient information about the external world is represented in neuronal activity. In other
words, activity patterns in networks in the brain encode information of the external world
which can be then used for cognitive computations. A useful analogy for the non-expert
reader of this hypothesis is the pointillism, in this painting technique popularized by the
impressionists, complex scenes are painted using dots of different colors in the canvas as the
one presented in Fig 1.1. Analogously to the distributed but structured ensemble of color
dots in Fig 1.1, it is hypothesized that information in the brain is represented by distributed
yet concerted single neuron activity in brain networks. This hypothesis is strongly supported
by decades of neuronal recordings in brains of primates, rodents, cats, birds, fishes and flies
during behavior. How neuronal representations are learned from experience and stored in

brains as memories? This is the matter of this thesis.
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Figure 1.1: A Sunday afternoon on the island of la Grande Jatte (207.6cm x 308cm). Painted
by Georges Seurat on 1884-1886. Currently exhibited at the Art Institute of Chicago. This
painting is a landmark example of the pointillist technique, here small dots of paint with
distinct color are applied in a very large canvas to represent a complex scene. In this
painting Seurat represents a typical Sunday afternoon in the Seine riverbank. Analogous to
the pointillism, the theory of neuronal representations hypothesize that information in the
brain is represented in the concerted activity of ensembles of neurons. As the thousands
small color dots in the canvas that distributed yet coordinated lead to the Sunday afternoon
scene in this painting, in the theory collective neuronal activity distributed in brain networks
represents external (and internal) information.



1.2 Learning and memory of neuronal representations

Past experiences can be recalled on the basis of cognitive needs by brain systems. It has
been hypothesized that when past experiences are recalled, neuronal representations are
reactivated, conveying their past information. The reactivated neuronal representation cor-
responds to the neuronal substrate of a remembered memory. In other words, when a memory
is remembered, patterns of neuronal activity correlated to the ones elicited by the memo-
randum that is being retrieved are reactivated. A large body of experimental data supports
this hypothesis, one compelling example is the activity observed in CA3 hippocampal cells
when rats change environments. Activity in CA3 is highly informative of the identity of the
particular environment when rats are placed in it, even when the environment gets distorted
or the geometry of two different environments is identical. This suggests that neuronal
representations of environments in CA3 can be recalled on the basis of limited information
about the environment (Leutgeb et al. 2004). In humans, semantic memories reactivate in or
nearby areas corresponding to the sensory modalities involved in the recalled concept. It is
believed that the reactivation of brain regions corresponding to different sensory modalities
embodies semantic memories in the process of recalling (Binder & Desai 2011). In primates,
it has been shown that learned categories of objects are represented in the neuronal ac-
tivity of the prefrontal cortex. Stimuli varying its geometry within a given category elicit
similar neuronal activity, suggesting that learned neuronal representations corresponding to
categories are recalled from different but correlated stimuli (Freedman et al. 2001). These
are just three handpicked examples from a large set of experimental work showing that in
different brains and brain regions during retrieval, neuronal representations are reactivated
for its use on cognitive demands.

How memories are learned from experience in brain networks? One of the candidate
scenarios was first envisioned by Richard Semon (Semon 1909) and specifically refined for

neuronal circuits by Donald Hebb (Hebb 1949). In this scenario, experienced items to be
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memorized elicit patterns of activity in brain networks. These patterns of neuronal activity
produce changes in the synaptic connectivity via activity-dependent synaptic plasticity, i.e.
the cellular mechanism by which synaptic connections between neurons change depending
on their activity, generating a distributed pattern of synaptic modifications. Therefore, the
connectivity matrix gets structured according to the interplay between synaptic plasticity
and the spatiotemporal statistics of neuronal activity patterns. The induced traces of synap-
tic modifications correspond to the synaptic memory engram of the stored memorandum.
Analog to the painting shown in Fig 1.2 generated by layers of barrages of strokes in a canvas,
in this theory, when a new item is memorized synaptic modifications change the connectivity
matrix again in top of previous modifications. The overfall of sensory experiences leads to
an online process in which the connectivity is modified continuously for learning new mem-
ories. Synaptic changes create a memory of the corresponding memorandum by fostering
the corresponding neuronal representation in the network dynamics. After learning, upon a
sensory cue correlated with the stored memorandum, the corresponding memory is retrieved
by the activation of its neuronal representation. When no memory is retrieved, neuronal
representations of memories are latent, existing only as synaptic memory engrams in the
network connectivity.

In this thesis, the scenario described above is assumed as the working hypothesis. How-
ever, this synaptocentric scenario for learning and memory is currently a matter of scientific
debate. An interesting complementary scenario is that both synapses and intrinsic single
cell properties change during learning, corresponding in conjunction to a memory engram

(Titley et al. 2017).



Figure 1.2: Convergence (237 cm x 390 cm). Painted by Jackson Pollock on 1952. Currently
at the Albright-Knox Art Gallery. In this painting, Pollock paints a barrage of strokes of
different colors in a canvas one after another in layers. The painting serves as a metaphor for
the hypothetical mechanism of learning in brain networks described in section 1.2. As a set of
the strokes of a particular color, synaptic modifications due to a given memorandum modify
the network connectivity matrix. When a second memorandum is learned, the connectivity
gets again modified adding new changes in top of the previous ones, as the second set of
strokes of different colors in the painting. When more memories are learned, this process
continues structuring the connectivity of brain networks as Pollock’s strokes generate the
final version of Convergence. Then memory engrams get intermingle in the connectivity
matrix, and its information is distributed across the entire network.



1.3 Neurobiology of learning and memory

1.3.1 Synaptic plasticity

There is strong evidence supporting that the main cellular mechanism for learning new
memories in brains is synaptic plasticity in the form of long term potentiation (LTP) and
depression (LTD). LTP has been first studied in the hippocampal excitatory synapses, start-
ing from the observation that a short high-frequency stimulation produced a long-lasting
increase in synaptic strengths (Lomo 1966, Bliss & Lgmo 1973). For almost 50 years scien-
tists have dissected the molecular and cellular mechanisms involving LTP. The basic version
of the mechanism is the following: glutamate, which is a neurotransmitter that is released
from synaptic vesicles by a pre synaptic neuron, binds to both a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid and N-Methyl-D-aspartic acid post synaptic receptors (AMPAR
and NMADR respectively). By binding to AMPAR, the influx of ions depolarizes the mem-
brane potential of the post synaptic neuron, which might contribute to the production of
a post synaptic action potential. On the other hand, by binding to NMDAR an influx of
calcium is produced into the post synaptic neuron (specifically the dendrite). The calcium
activates a massive holeoenzyme called CaMKII (Ca?* /calmodulin-dependent protein ki-
nase II), starting a complex cascade of phosphorylations ending in the increase of AMPAR,
increasing with this the strength of the synapse (see Lisman et al. (2012), Herring & Nicoll
(2016) for a review of the molecular and cellular mechanisms involved). The description
above is an extremely simplified version of a complex phenomenon, which its properties,
as well as its molecular and cellular details, vary across species, brain regions, cell types
and developmental stages. However, a consistent finding is that synapses undergo long time
changes in a post and pre synaptic activity-dependent fashion.

In brain slices experiments, it has been shown that synaptic plasticity depends on the tim-

ing between the pre and post synaptic spikes, not only leads to potentiation but also might



lead to depression, and also depends on firing rates and membrane potentials (Markram,
Libke, Frotscher & Sakmann 1997, Magee & Johnston 1997, Bell et al. 1997, Bi & Poo
1998, Sjostrom et al. 2001, Abbott & Nelson 2000, Artola et al. 1990). Theoretical mod-
els have captured these observations with different degree of detail and biological realism
(Kempter et al. 1999, Pfister & Gerstner 2006, Clopath & Gerstner 2010, Gjorgjieva et al.
2011, Graupner & Brunel 2012). However, it is unclear that the observations in experi-
ments performed in brain slices (i.e. ez vivo) hold in alive animals in behaving conditions.
In a recent work, researches have taken an alternative approach for capturing the activity
dependence of synaptic changes during behavior, developing a statistical method for infer-
ring learning rules from in vivo data (Lim et al. 2015). The inferred learning rules belong
to a class in which the changes in synaptic strength (AJ;;) depend as the product of two

non-linear functions of the pre (r;) and post (r;) synaptic firing rate, i.e.:

Adij o< f(ri)g(rj). (1.1)

In this thesis, this family of learning rules is explored. It is further assumed that f and

g are non-decreasing.

1.5.2 Biological implementation of three classes of learning

Models of learning involving synaptic plasticity can be divided into three classes: supervised,
reinforced and unsupervised. In models of the former class, synapses are updated according
to the activity of the network and a error signal that carries information about the difference
between the current network dynamics and the one that it is expected to learn by the
network. This class of learning is one of the leading theories for learning in the Cerebellum,
and has provided a normative explanation for the anatomical and synaptic organization of
the cerebellar circuitry (Marr 1969, Albus 1971, Brunel et al. 2004, Bouvier et al. 2017).

In models based of reinforcement learning, a reward signal guides learning towards what

7



the network is expected to learn. Reinforcement learning has been a successful theoretical
framework to understand dopamine-mediated learning. A large body of data suggests that
dopamine release neurons encode a reward prediction error, driving synaptic changes in
cortical and sub-cortical regions (Glimcher 2011). Lastly, in the latter class of models learning
occurs solely driven by external inputs. Synapses changes depending on external stimulation
without an error signal. External inputs shape the network connectivity, sculpting the
connections between neurons depending on the statistics of their neuronal responses. These
models have reproduced key aspects data involving learning and retrieval in cortical areas, in
particular, the prefrontal cortex (Amit 1995, Wang 2001, Brunel 2005) and the Hippocampus
(Treves & Rolls 1992). The family of learning rules in Eq. (1.1), considered in this thesis,
corresponds to this class of learning since no error signal is available for driving the synaptic

changes.

1.3.8 Neuronal representations of memories

Persistent activity

How are memories represented in neuronal activity? Delay response tasks in primates have
provided important experimental evidence regarding this question. In early (visual) versions
of this class of experiments (Fuster et al. 1971, Fuster & Jervey 1981, Miyashita 1988), an
image is presented in a screen to a monkey for a short period of time. After the presentation
period, the image is withdrawn from the monkey’s view for a delay period of the order of
seconds. After the delay period, the monkey uses information about the image to perform
a task. For example, deciding whether a second presented image match the previous one.
This task is designed in such a way that for its successful performance information about the
image has to be held in memory. Strikingly, persistent activity has been recorded during delay
periods, i.e. stable elevated activity, in the prefrontal cortex (Fuster et al. 1971, Funahashi

et al. 1989, Romo et al. 1999), parietal cortex (Koch & Fuster 1989b), inferior temporal
8
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Figure 1.3: Persistent, sequential and heterogeneous delay activity. (A) Persistent activity
for three representative neurons recorded in the mice anterior lateral motor cortex during
an auditory delay response task. In this task a 3 or 12 kHz tone is presented to a mouse.
After a delay period, the mouse has to leak a leak-port to the left or right depending on
the frequency of the presented tone. For each trial, the duration of the delay period is
randomly distributed according to an exponential distribution. The first and second rows
show the spike raster plots corresponding to correct right (blue) and left (red) trials sorted
by the delay period duration (ten trials per delay period duration). The last row shows the
mean spike rate for right and left trials. Adapted from Inagaki et al. (2017). (B) Choice
specific sequential activity recorded in the posterior parietal cortex during a navigational
delay response task. In this task, a mouse navigates in a virtual reality maze while neuronal
activity is being recorded using calcium imaging. A color in the landmark cues the mouse
to turn right or left. After a delay period, the mouse has to turn according to the cue.
The left and right columns in the figure correspond to correct left and right trials. The top
and bottom rows correspond to the left- and right- preferring neurons respectively. Each
row in the panels corresponds to the time-course of the normalized fluorescence for a single
neuron. Adapted from Harvey et al. (2012). (C) Four representative neurons recorded in
the prefrontal cortex of a monkey performing an oculomotor delay response task. In this
task, a cue is presented in one of eight radial directions separated by 45°. After a delay
period, the monkey has to saccade in the direction of the cue. Different panels correspond to
different neurons, and different colors correspond to different directions (i.e. 0°, 45°,...; etc).
Adapted from Murray et al. (2017), data from Funahashi et al. (1989) and Constantinidis
et al. (2001).
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cortex (Fuster & Jervey 1981, Miyashita 1988, Nakamura & Kubota 1995a) and other areas
of the temporal lobe (Nakamura & Kubota 1995a). Recently, persistent activity has been
observed during delay response tasks in rodents (Liu et al. 2014, Guo et al. 2014, Inagaki
et al. 2017). It has been proposed that persistent activity constitute the neuronal correlate
of memory (Goldman-Rakic 1995). That is, during retrieval, the neuronal representation of
a memory corresponds to a stable pattern of activity in brain circuits. For an example of

persistent activity see Fig. 1.3A.

Sequential activity

A qualitatively different type of neuronal dynamics, namely sequential activity, has also
been observed relatively recently during delay response tasks. In this activity, neurons are
active transiently for short periods of time in a sequence. An example of this activity
has been observed during a navigational working memory task in the posterior parietal
cortex of mice (Harvey et al. 2012). In this task, the mouse navigates in a virtual reality
maze. During the presentation period, a color cue is presented. After a delay period, the
mouse has to turn left or right depending on the cue. Interestingly, a choice specific set
of neurons present sequential activity, see Fig. 1.3B. In recordings in the CA1 region of
the hippocampus, choice specific sequences have also been observed when a rat runs in a
wheel during delay periods (Pastalkova et al. 2008). Additionally, sequences also have been
observed in tasks involving spatial navigation (Foster & Wilson 2006, Grosmark & Buzséki
2016) and birdsong generation (Hahnloser et al. 2002, Amador et al. 2013, Okubo et al.
2015). It has been hypothesized that sequential activity also corresponds to a neuronal
representation of memories. In this scenario, the information about the memorandum is

hold in memory in the network’s transient activity.
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Heterogeneous activity

Heterogeneous time-varying fluctuations also have been observed during memory tasks in
the prefrontal cortex. It has been reported during delay periods variability across trials for
a single memorandum, strong temporal fluctuations and heterogeneity in the neuronal re-
sponses across neurons (Shafi et al. 2007, Lundqvist et al. 2016, Murray et al. 2017, Lundqvist
et al. 2018) (see Fig. 1.3C for an example of heterogeneity in neuronal responses). It has
been proposed that the observed heterogeneous activity corresponds to a qualitatively dif-
ferent neuronal representation of the retrieved memory from persistent or sequential activity

(Murray et al. 2017, Druckmann & Chklovskii 2012).

1.4 Theoretical models for learning neuronal representations

Spatiotemporal dynamics of a neuronal network and its connectivity are deeply interlinked.
Depending on their connectivity, neuronal networks have a plethora of qualitatively differ-
ent types of dynamics as for example: fixed-point attractors (Hopfield 1982, Amit 1992),
line attractors (Seung 1996), high dimensional attractors (Druckmann & Chklovskii 2012),
chaotic attractors (Sompolinsky et al. 1988), sequential activity (Abeles 1991) and oscilla-
tions (Wilson & Cowan 1972). As discussed in section 1.2, in this thesis the underlying
hypothesis is that neuronal representations of memories correspond to spatiotemporal pat-
terns of activity. Attractor networks (Amit 1992) are one of the first theoretical instantiation
of this idea. These network models have multiple stationary patterns of neuronal activity, i.e.
fixed-point attractors. Each fixed-point attractor is correlated with a single memory, which
corresponds to its neuronal representation. When a partial version of the stored memory
is presented to the network, the state of the network goes to a region in the phase space
where any point in this region evolves toward the fixed-point corresponding to the retrieved
memory. For learning new memories, modifications of the connectivity according a particu-

lar synaptic plasticity rule creates a new fixed-point attractor representing the new memory.
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The Hopfield model (Hopfield 1982) is the landmark model for attractor networks. In this
model neurons are binary, and memories correspond to binary patterns learned using the
covariance rule (Sejnowski 1977). Similar models to attractor networks have been proposed
for learning sequences. In these models patterns of neuronal activity concatenated in time
correspond to the neuronal representation of a memory. When a memory is retrieved, a
partial version of the initial pattern in the sequence ignites the entire sequence of activity.
New memories are learned in these models using an asymmetric version of the covariance
rule (Sompolinsky & Kanter 1986, Kleinfeld 1986). Lastly, Tirozzi & Tsodyks have shown
that chaotic attractors with associative memory properties are present for strong synapses
and large number of patterns in the sparse version of the Hopfield model with analog neurons
(Tirozzi & Tsodyks 1991). Therefore, in this model, chaotic attractors correspond to the

neuronal representations of memories.

1.5 Overview

In the first chapter, I study a recurrent neuronal network endowed with a learning rule
that belongs to the family described in Eq. (1.1) under an external dynamic stimulation. I
show that depending on the stimulus properties, both sequential and persistent activity can
be learned. This suggests that cortical circuits endowed with a single unsupervised learning
rule can learn qualitatively different neuronal dynamics (i.e. persistent vs sequential activity)
depending on the stimuli statistics. This chapter corresponds to a submitted paper which is
currently posted on bioRxiv (Pereira & Brunel 2018b).

In the second chapter, I study a recurrent neuronal network constrained by in wvivo in-
ferior temporal cortex data (Woloszyn & Sheinberg 2012, Lim et al. 2015). The network
presents attractor dynamics without any need for parameter tuning, reproducing landmark
statistical properties of cortical neurons during delay response tasks. Additionally, I show

that learning rules inferred from data (Lim et al. 2015) are close to maximizing the number
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of stored patterns, suggesting that learning rules in ITC are optimized for storing a large
number of memories as attractor states. Finally, I show that in a region of the parameter
space memory states are chaotic, providing with this a new mechanism for explaining the het-
erogeneity observed during delay periods in the prefrontal cortex. This chapter corresponds
to a published paper (Pereira & Brunel 2018a).

In the third chapter, I develop a general theory for the transition to chaos of memory
states, and explore the effect of online learning of memories. I show that memory states
can be fixed-point (newer memories) or chaotic attractors (older memories) depending on its
age, leading to a continuum of different retrieval states with age-dependent spatiotemporal
statistics. This chapter corresponds to a manuscript currently in preparation.

In the fourth chapter, I study a recurrent neuronal network in which sequences of patterns
are learned. In this network, patterns are retrieved sequentially in the order that they were
presented. I develop a theory for patterns with Gaussian statistics, obtaining dynamical
equations for the transient correlation between the network activity and the stored patterns
throughout the sequence. I compute the capacity of the network, that is the number of
sequences that can be stored as a function of network size, and show that it grows linearly
with network size. This result is comparable to that found in networks storing fixed-point

attractors. This chapter corresponds to part of a manuscript currently in preparation.
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CHAPTER 2
UNSUPERVISED LEARNING OF PERSISTENT AND
SEQUENTIAL ACTIVITY

2.1 Contribution

The work presented in this chapter correspond to the submitted publication Pereira & Brunel
(2018b). The authors are Ulises Pereira and Nicolas Brunel. U.P. and N.B. designed the

research. U.P. and N.B. performed the research. U.P. and N.B. wrote the manuscript.

2.2 Introduction

Selective persistent activity (PA) has been observed in many neurophysiological experiments
in primates performing delayed response tasks, in which the identity or spatial location of a
stimulus must be maintained in working memory, in multiple cortical areas, including areas
in the temporal lobe (Fuster et al. 1982, Miyashita 1988, Miyashita & Chang 1988, Sakai &
Miyashita 1991, Nakamura & Kubota 19955, Naya et al. 1996, Miller et al. 19964, Erickson &
Desimone 1999), parietal cortex (Koch & Fuster 19894, Chafee & Goldman-Rakic 1998) and
prefrontal cortex (Fuster et al. 1971, Funahashi et al. 1989, 1990, 1991, Miller et al. 1996b).
More recently, selective persistent activity has also been observed in mice (Liu et al. 2014,
Guo et al. 2014, Inagaki et al. 2017) as well as flies (Kim et al. 2017). It has been hypothesized
that PA represents the mechanism at a network level of the ability to hold an item in working
(active) memory for several seconds for behavioral demands. Theoretical studies support the
hypothesis that persistent activity is caused by recurrent excitatory connections in networks
of heavily interconnected populations of neurons (Amit et al. 1994, Durstewitz et al. 2000,
Wang 2001, Brunel 2005). In these models, PA is represented as a fixed point attractor of

the dynamics of a network that has multiple stable fixed points. The connectivity matrix in
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such models has a strong degree of symmetry, with strong recurrent connections between sub-
groups of neurons which are activated by the same stimulus. This connectivity matrix can
be learned by modifying recurrent connections in a network according to an unsupervised
Hebbian learning rule (Mongillo et al. 2005, Litwin-Kumar & Doiron 2014a, Zenke et al.
2015).

Sequential activity (SA) has been also observed across multiples species in a number of
behaviors such as spatial navigation (Foster & Wilson 2006, Harvey et al. 2012, Grosmark
& Buzsdki 2016) and bird song generation (Hahnloser et al. 2002, Amador et al. 2013,
Okubo et al. 2015). Furthermore, a large body of experimental evidence shows that SA can
be learned throughout experience (Okubo et al. 2015, Grosmark & Buzsdki 2016). Several
theoretical network models have been able to produce SA (Abeles 1991, Amari 1972, Kleinfeld
& Sompolinsky 1988, Diesmann et al. 1999, Izhikevich 2006, Liu & Buonomano 2009, Fiete
et al. 2010, Waddington et al. 2012, Cannon et al. 2015). In these models, the connectivity
contains a feed-forward structure - neurons active at a given time in the sequence project
in a feed-forward manner to the group of neurons which are active next. From a theoretical
stand point, the mechanism to generate SA is fundamentally different from the one that
generates PA. While SA usually corresponds to a path in the state space of the network, PA
is identified as a fixed point attractor. Thus, SA has an inherent transient nature while PA
is at least linearly stable in a dynamical system sense.

The question of how sequential activity can be learned in networks with plastic synapses
has received increased interest in recent years. The models investigated can be roughly
divided in two categories: models with supervised and unsupervised plasticity rules. In
models with supervised plasticity rules, the synapses are updated according the activity of
the network and an error signal that carries information about the difference between the
current network dynamics and the one that it is expected to learn by the network (Sussillo

& Abbott 2009, Memmesheimer et al. 2014, Laje & Buonomano 2013, Rajan et al. 2016).
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In models with unsupervised plasticity rules, sequential dynamics is shaped by external
stimulation without an error signal (Jun & Jin 2007, Liu & Buonomano 2009, Fiete et al.
2010, Waddington et al. 2012, Okubo et al. 2015, Veliz-Cuba et al. 2015). In those models
SA is generated spontaneously, and the temporal statistics of the stimulation shapes the
specific timing of the sequences.

Both experimental and theoretical work therefore suggest that neural networks in the
brain are capable to learn PA and SA. One unresolved issue is whether the learning rules
used by brain networks to learn PA are fundamentally different than the ones used to learn
SA, or whether the same learning rule can produce both, depending on the statistics of the
inputs to the network. Learning rules employed in theoretical studies to learn PA typically
do not contain any temporal asymmetry, while rules used to learn SA need to contain such
a temporal asymmetry.

Here, we hypothesize that a single learning rule is able to learn both, depending on the
statistics of the inputs. We investigate what are the conditions for the plasticity mechanisms
and external stimulation to learn PA or SA using unsupervised plasticity rules. We consider
a model composed of multiple populations of excitatory neurons, each activated by a distinct
stimulus. We consider a sequential stimulation protocol in which each population of neurons
is stimulated one at a time, one after the other. This protocol is characterized by two pa-
rameters, the duration of stimulus presentations and the time interval between stimulations.
This simple setting allows us to explore between the extremes of isolated stimulations with
short or large duration and sequential stimulations close or far apart temporally. We use a
rate model to describe the activity of populations of neurons (Wilson & Cowan 1972). The
connectivity in this model represents the average of the synaptic connections between popu-
lations of neurons, allowing to investigate at a mesoscopic level the learning mechanisms of
PA and SA. This model has the advantage of analytical tractability.

This paper is organized as follows: We first characterize the types of possible dynamics
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observed in network with both feed-forward and recurrent connections, in the space of pos-
sible (fixed) connectivities. We then show that a network with plastic connections described
by a unsupervised temporally asymmetric Hebbian plasticity rule stimulated sequentially
does not stably learn PA and SA. We then explore two types of stabilization mechanisms:
1) synaptic normalization; 2) a multiplicative learning rule. We show that when a synaptic
normalization mechanism is included, PA and SA cannot be learned stably during sequential
stimulation. However, the addition of a modified multiplicative learning rule leads to suc-
cessful learning of PA or SA, depending on the temporal parameters of external inputs, and
the learning can be characterized analytically as a dynamical system in the space of fixed

connectivities parametrized by the stimulus parameters.

2.3 Methods

2.8.1 Networks with fixed connectivity

We first consider three different n population rate models that share in common two con-
nectivity motifs that have been classically considered a distinctive feature of PA and SA
respectively: recurrent and feed-forward connections. The three network models considered
are: 1) n excitatory neurons; 2) n excitatory neurons with shared inhibition; 3) n excitatory
neurons with adaptation. The strength of the recurrent and feed-forward connections are w
and s respectively. We used the current based version of the widely used firing rate model,
which is equivalent to its rate based version (Miller & Fumarola 2012) with three different

nonlinear transfer functions.

Network of excitatory neurons

The network consists in n excitatory populations connected by feed-forward and recurrent

connections with strength w and s respectively as it is shown in Fig C.1A.I. The dynamics
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is given by:

T% = 11 —up +we(uy)
dul- .
T = I; — u; +wo(uy) + so(uj_1) i=2,...,n (2.1)

where [; represents the external input to neuron ¢, 7 is the characteristic time scale for
excitatory populations and ¢(u) is the current to average firing rate transfer function (or f-I

curve). The resulting average firing rates are denoted by r; = ¢(u;).

Network of excitatory neurons with shared inhibition

The network consist in n excitatory populations connected as in section 2.3.1, and a single
inhibitory population fully connected with the excitatory populations. A schematic of the
network architecture is shown in Fig C.1A.Il. Assuming a linear inhibitory transfer function,

the dynamics of the network is given by:

d
T% = Il_ul +U)¢(ul)—wEIuI
d .
7’% = I —u; +wo(u;) + sop(uj_1) —wgruy i=2,...,n
d n
TI% = _uI—i_wIE,Zl(b(uj)’ (2.2)
]:

where wgy is the average inhibitory synaptic strength from inhibitory to excitatory popu-
lations, wyg the average inhibitory synaptic strength from excitatory to inhibitory popula-

tions and 77 the characteristic time scale of the inhibitory population. When 77 < 7, then
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ur X wWrg le\il ¢(u;) and Eq. (2.2) becomes

duq wy n
T = I —up +woluy) — - Z:lgb(uj)
j:
du; wr &
rd—t’ = I —uj +wo(u;) + sop(uj—1) — 71 Z d(uj) i=2,...,n, (2.3)
j=1

where w;y = nWgWrg. See Fig. 2.12 in the Supplementary Material for the agreement

between the full model described in Eq. (2.2) and its approximation in Eq. (2.3).

Network of excitatory neurons with adaptation

This network consist in n excitatory populations connected as in sections 2.3.1 and 2.3.1
plus an adaptation mechanism for each population. A schematic of the network architecture

is shown in Fig C.1A.IIl. The dynamics of the network is given by:

d

dt

d.

T% = Ii—ui—i-w(b(ui)—i—sqﬁ(ui_l)—ai 1=2,...,Mn

da; .
ot = wi—fa; i=1....n (2.4)

where 7, is the characteristic time scale of the adaptation mechanism, and [ measures the

strength of adaptation.

2.3.2  Transfer functions

For the fixed connectivity part of this study we used three different families of transfer

functions. The sigmoidal transfer function is described by

(1 + tanh[a(u + b)]) . (2.5)

N | —

P(u) =
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This is a saturating monotonic function of the total input, and represents a normalized firing

rate. This transfer function has been widely used in many theoretical studies in neuroscience

(Gerstner et al. 2014, Ermentrout & Terman 2010), and have the advantage to be smooth.

Furthermore, we have recently shown that such transfer functions provide good fits to in

vivo data (Pereira & Brunel 2018a).

The second transfer function considered is piecewise linear:

This is a piecewise linear approximation of the sigmoidal transfer function.

0 if0>u
viu—=0) if0<u<u (2.6)
v(ue —0) ue < u.

Using this

transfer function, the nonlinear dynamics of a network with a sigmoidal transfer function

can be approximated and analyzed as a piecewise linear dynamical system.

The third transfer function used in this work is piecewise nonlinear (Brunel 2003)

0 if 0> u

~ u_é 2 . ~ ~

I/(a _é> if 0 <u <, (2.7)
2% ;—fé—i fe < .

This transfer function combines several features that are present in more realistic spiking

neuron models and/or real neurons: a supralinear region at low rates, described by a power

law (Roxin et al. 2011), and a square root behavior at higher rates, as expected in neu-

rons that exhibit a saddle node bifurcation to periodic firing (Ermentrout & Terman 2010).

Examples of these three transfer functions are shown in Fig 2.1.
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Figure 2.1: Transfer Functions. Piecewise linear (PL), sigmoidal (S) and piecewise non-
linear (PNL) transfer functions. Parameters are the same as the ones used in Fig C.1.

2.3.8  Temporally asymmetric Hebbian plasticity rule

When a temporally asymmetric Hebbian plasticity rule is included (see sections 2.4.1-2.4.4

in Results), the dynamics of excitatory-to-excitatory connectivity obeys

dW; ; Winaz f [T (t)]g[rj (t—D)] — Wi

T (0T ) I 2

where f(r) and g(r) are sigmoidal functions given by
g(r) = % (1 + tanh [apre(r — bpre)]) (2.9)
Fr) = 5 (1+ tanh [apost(r — bpost)]) (2.10)

They describe the dependence of the learning rule on post and presynaptic firing rates,
respectively (i.e. their dependence on ¢(u;) and ¢(u;)), and are bounded by zero for small
or negative values of the population synaptic current, and by one for large values (see Fig 2.4
A and B). Here wyqz is the maximal synaptic efficacy; D is a temporal delay; and 7, is an

activity-dependent time constant of the plasticity rule. The learning time scale is given by
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Tw([ri(t), 7j(t = D)] = Tpost[ri(D)]7pre[r;(t = D], (2.11)

where

o0 if r <y
Tpre(r) = Tpost (1) = (2.12)

VT, ifry <7
Here ry and T, are the plasticity threshold (see dashed line in Fig 2.4A-C) and time
scale respectively. The time scale Ty, is chosen to be several order of magnitude slower
than the population dynamics (see Table 2.3). When pre and/or post-synaptic currents are
below a plasticity threshold r,, the activity-dependent time constant 7,, becomes infinite,
and therefore no plasticity occurs. When both are above ry,, then the activity-dependent
time constant 7, is equal to Tj,, and plasticity is ongoing. Thus, with this rule strong,
long and/or contiguous in time enough stimuli produce lasting modifications in the synaptic

weights. Otherwise, no learning occur.

2.3.4  Synaptic normalization

When a synaptic normalization mechanism is included (see section 2.4.2 in Results), in
addition to the Hebbian plasticity rule described in section 2.3.3, in our network simulations,
at each time step we subtracted the average synaptic change to each incoming synapse to a
given neuron. This average is taken over all the incoming synapses to a particular neuron.
This simulation scheme ensures that the sum of the incoming synaptic weights to each neuron

remains constant, i.e.

n
W =C  i=12....n (2.13)
j=1
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2.8.5  Multiplicative homeostatic plasticity rule

We implement a modified version of the multiplicative homeostatic rule proposed in Renart
et al. (2003), Toyoizumi et al. (2014) (see sections 2.4.3 and 2.4.4 in Results). The rule is
implemented in addition to the Hebbian plasticity rule described in the section 2.3.3. In
this rule an homeostatic variable H; slowly controls the firing rate of neuron i by scaling its

synaptic weights multiplicatively. The synaptic weights will be given by

Wi’j(t) = Hi(t)WZ’J(t). (2.14)

The variable W; ; (t) is governed by the Hebbian plasticity rule described by Eqgs (2.8-2.12).

The dynamics for H; is given by

7; ()

ro

ryH; = (1 - ) H; — H?, (2.15)

where rg = ¢(ug) is a parameter that controls the average firing rate of population ¢ and
Th is the characteristic time scale of the learning rule. Note that because of the quadratic
term in the r.h.s. of Eq. (2.15), this rule does not in general keep the firing rates at a fixed
value, and therefore this rule is not strictly speaking homeostatic. However, we keep this
terminology due to the similarity with the standard homeostatic rule that does not include

this quadratic term.

2.3.6  Learning dynamics under noisy stimulation

In the last section of the Results, we include noise in the population dynamics in order to
asses the robustness of the learning process (see section 2.4.4 in Results). The equations
used to describe the dynamics of the network with Hebbian and homeostatic plasticity are

given by
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n

n
. Wi
Tu; = on; +1I; + Z HiWi,jTj — T Z gb(uz)

J=1 i=1
v, . — Wmaflri(®))]glr;(t — D) — Wi
0, Tw(ri(t),r;(t — D))
mtl = (1 - m}(t)) H; — HY, (2.16)
0
where 7;(t) = ¢(u;(t)) for i = 1,2,...,n and 7; is a Gaussian white noise.

2.3.7 Sequential stimulation

During the learning protocol excitatory populations are stimulated sequentially once at a
time for a period T" and a time delay A. The stimulation can be implemented as a sequence
of vectors presented to the entire the network (i.e. 1€, I€5,. .., I€y), each vector corresponds
to the canonical base in R scaled by a stimulation amplitude 1. This sequence of stimulation
is repeated k times. To prevent a concatenation between the first and the last population
stimulated, the period between each repetition £ is much longer than 7" and A and any time
constant of the network. Each stimulus in the sequence has the same magnitude, that is
larger than the learning threshold (i.e. 7y < I). A schematic diagram of the stimulation

protocol is shown in Fig 2.5 A.

2.4 Persistent and sequential activity in networks with fixed

connectivity

To better understand the dependence of PA and SA generation on network connectivity,
we consider first a simple n population rate model with fixed feed-forward and recurrent
connectivity (see Fig C.1A). This architecture possesses the two connectivity motifs that

have been classically considered the hallmarks of PA and SA — recurrent and feed-forward
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connections — in a space of parameters that is low dimensional enough to be suitable for
full analytical treatment. In this model, the dynamics of the network is characterized by the
synaptic inputs u; to each population of the network (i = 1,...,n) whose dynamics obey
the system of ordinary differential equations in Eq. (2.1). Note that we use here the current
based formulation of the firing rate equations, that has been shown to be equivalent to the
rate based formulation (Miller & Fumarola 2012).

In this model, we identify the regions in the connectivity parameter space where SA,
PA or decaying sequences of activity (dSA) are generated. We start with a piecewise linear
transfer function with slope v, and compute the bifurcation diagram that gives the boundaries
for qualitatively different dynamics in the parameter space (see Fig C.1B and section 2.6.2
in the Supplementary Material for mathematical details). We find that robust SA can be
generated provided recurrent connections are smaller than the inverse of the slope v, and
the feed-forward connections are strong enough, w < 1/v < w + s. For large values of w
(w > 1/v), the dynamics converge to a fixed point where 0 < p < n populations are in a high
rate state, where p depends on the initial conditions. When both recurrent and feed-forward
connections are weak enough (i.e. w+ s < 1/v) the activity decays to zero firing rate fixed
point, after a transient in which different populations are transiently activated - a pattern
which we term decaying sequence of activity or dSA.

This picture is qualitatively similar when other types of nonlinear transfer functions are
used (see Methods and Fig 2.1 for the transfer functions used in this paper). The saturation
nonlinearity of the transfer function is key to generate long lasting (non-attenuated) SA
even when the number of populations is large. In a linear network, sequential activity would
increase without bound for an increasing number of populations participating in the SA (see
Fig C.1B, dashed lines and section 2.6.2 in the Supplementary Material for mathematical
details). During sequential activity, each population is active for a specific time interval. We

used the analytical solution of the linearized system (see Eq. 2.22) to show that the duration
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Figure 2.2: PA and SA generation in a network with fixed connectivity. (A)
Three models of recurrent and feed-forward connected populations: (I) pure excitatory, (II)
excitatory with shared inhibition and (III) excitatory with adaptation. (B) Phase diagram
for model (I) using a piecewise linear transfer function (top-left plot) and examples of the
dynamics corresponding to the three phases. Dashed lines correspond to the dynamics for
the same network but using a linear transfer function. (C) SA generation for models (I), (II)
and (III) using sigmoidal (first row), piecewise nonlinear (second row) and piecewise linear
(third row) transfer functions. Parameters used in panels B,C can be found in Table 2.1.
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of this active interval scales as the squared root of the position of the population along the
sequence. This implies that for long lasting SA the fraction of active populations will increase
with time (see Fig C.1B). This feature is not consistent with experimental evidence that
shows that the width of the bursts of activity along the sequence is approximately constant
in time (Hahnloser et al. 2002, Harvey et al. 2012). In the model, we can prevent this
phenomenon by including negative feedback mechanisms to our network architecture, either
global inhibition (see Fig C.1A.II) or adaptation (see Fig C.1 A.III). We found that in both
cases the network robustly generates PA and SA in which the fraction of active populations is
approximately constant in time. These results were also qualitatively similar when different
saturation nonlinearities in the transfer function were considered (see Fig C.1C).

We now turn our attention to the network of excitatory neurons with global inhibition
(Fig C.1 A.II), since inhibition is likely to be the dominant source of negative feedback in
local cortical circuits. Inhibitory interneurons are typically faster than excitatory neurons
(McCormick et al. 1985). For the sake of simplicity we set the inhibitory population dynamics
as instantaneous compared with the excitatory timescale. Our numerical simulations confirm
that this approximation preserves all the qualitative features of the dynamics with finite
inhibitory time constants, up to values of 77 = 0.57 (see Fig. 2.12 in the Supplementary
Material). Using this approximation, the connectivity of the network is equivalent to a
recurrent and feed-forward architecture plus a uniform matrix whose elements are w; =
nwprwrg. We obtained the bifurcation diagram for such a network with a piecewise linear
transfer function (see section 2.6.4 in the Supplementary Material). This new bifurcation
diagram shows qualitative differences with the pure excitatory network bifurcation diagram
(see Fig 2.3). First, a qualitatively different behavior arises, where SA ends in persistent
activity (region SA/PA). Second, the PA region breaks down in n(n + 1)/2 square regions
of size wy/n x wy/n. Each region is characterized by a minimum and maximum number of

populations active during PA. The lower left corner of each squared region is (iy,;y, (%) , 14+
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Figure 2.3: Bifurcation diagram for feed-forward-recurrent connected network of
excitatory populations with shared inhibition. Top left plot: Bifurcation diagram
in the s-w plane, showing qualitatively different regions: dSA (gray), SA (red), SA/PA
(green) and PA (blue). The PA region is divided in sub-regions which are distingushed
by the maximum and minimum number of populations active during PA (see text). The
SA/PA region is also subdivided into sub-regions characterized by a different number of
the maximum number of populations active in PA at the end of the sequence. Regions are
separated by black lines and sub-regions are separated by gray lines. Five plots encompassing
the bifurcation diagram show examples of the dynamics observed in its four qualitatively
different regions. Initial condition: first population active at the maximum rate, while the
rest is silent. The location in the corresponding regions of the parameter space are indicated
with the symbols on the top right of the surrounding plots. Parameters can be found in
Table 2.2.
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Imaz (%)) With 4pim, tmaz = 1,2, ..., n (see Fig 2.3, different regions in graded blue), where
Typin @nd iynqe correspond to the minimum and maximum number of population active during
PA within this squared region when just the first population is initialized in the active state
(Fig 2.3 top and middle right plots). Therefore, the number of possible patterns of PA
increases with the strength of the recurrent connections and decreases with strength of
the feed-forward connections. On the other hand, the SA/PA is divided in n qualitatively
different rectangular regions of size (%L) x [1 — JSA/PA (%L)] with jsa/pa =1,2,....m,
where jgy /PA corresponds to the number of populations that ends in PA after SA elicited
by stimulating the first population in the sequence (Fig 2.3 bottom right plot). Then for

a given strength of the recurrent connectivity w* above 1 + (%), the critical feed-forward

strength s, that separates the PA and SA/PA regions is

se = —L {(w*_l_%)nw, (2.17)

n wr

where [-] is the ceiling function. Similarly, for a given strength of the feed-forward connection

s* above %, the critical recurrent strength separating SA/PA and PA is

w, = Y1 {w} ' (2.18)

n wr

Lastly, we find that the SA region is shrunk compared with the pure excitatory network,

and that the dSA region is wider.

2.4.1 Unsupervised temporally asymmetric Hebbian plasticity rule

Let us consider now a fully connected network of n excitatory populations with plastic
synapses and global fixed inhibition. The plasticity rule for the excitatory-to-excitatory
connectivity is described by Eq. (2.8). Using this learning rule, with fixed pre and post

activity, the connectivity tends asymptotically to a separable function of the pre and post
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Figure 2.4: Unsupervised Hebbian learning rule: (A) Piecewise linear transfer function.
The dashed gray horizontal line indicates the plasticity threshold ry,. (B) Post synaptic de-
pendence on the rates of the stationary connectivity function, f(r). The vertical dashed gray
line indicates the plasticity threshold. (C) Contour plot of the stationary connectivity func-
tion, wmaz f(r;)g(r;). The dashed gray box indicates the plasticity threshold. Parameters
can be found in Table 2.3.

synaptic activity. The functions f(r) and g¢(r) are bounded by zero for small or negative
values of the population synaptic current, and by one for large values (see Fig 2.4 A and B).
This learning rule is a generalization of classic Hebbian rules like the covariance rule (Dayan
& Abbott 2001), with a non-linear dependence on both pre and post-synaptic firing rates.
The delay D in the learning rule leads to a temporal asymmetry (Blum & Abbott 1996,
Gerstner & Abbott 1997, Veliz-Cuba et al. 2015). This delay describes the time it takes
for calcium influx through NMDA receptors to reach its maximum (Sabatini et al. 2002,
Graupner & Brunel 2012). When this learning rule operates and the network is externally
stimulated, the connectivity changes depending on the interaction of the input, the network
dynamics and the learning rule. Due to the relaxational nature of Eq. (2.8), for long times
with no external stimulation the connectivity matrix will converge to a stationary rank-1

. . . * * —bk _ —)* . . .
matrix with entries of the form f(r;)g(r7), where 7™ = ¢(@*) is the stationary firing rate

J
vector, independent of all inputs presented in the past. Therefore, stimuli learned in the
connectivity matrix will be erased by the background activity of the network for long times

after stimulation. To prevent this inherent forgetting nature of the learning rule we introduce
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Figure 2.5: Sequential stimulation and initial synaptic weights dynamics. (A)
Schematic diagram showing stimulation protocol for two populations. Population 1 is first
stimulated for some time 7. Then, after an inter-stimulation A time, population 2 is stim-
ulated for the same duration 7. (B) The weight dynamics is shown for four different stim-
ulation regimes. Top-left: A < D < T top-right: D < A,T; bottom-left: T, A < D;
bottom-right: T'< D < A. Cyan: recurrent connections; Yellow/Green: feed-forward; Blue:
all other connections. Parameters can be found in Tables 2.3,2.4.
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an activity-dependent plasticity time scale in Eqgs. (2.11,2.12). Thus, when pre and/or post-
synaptic currents are below a plasticity threshold ry,, the time scale becomes infinite, and
therefore no plasticity occurs. When both are above 7y, then the time constant is given by
Tw (see equation (2.12) and Fig 2.4). Lastly, the time scale T}, of these changes are chosen
to be several order of magnitude slower than the population dynamics, consistent with the
time it takes (~ 1 minute or more) for plasticity to be induced in standard synaptic plasticity
protocols (see e.g. Markram, Liibke, Frotscher & Sakmann (1997), Bi & Poo (1998), Sjostrom
et al. (2001), but see Bittner et al. (2017)).

Our goal is to understand the conditions for a sequential stimulation to lead the network
dynamics to PA or SA, depending of the temporal characteristics of the stimulus, when
this plasticity rule is introduced. Here we consider a simple stimulation protocol where
each population in the network is stimulated sequentially one population at a time (see
Fig 2.5 A). In this protocol, population 1 is first stimulated for some time 7'. Then, after
an inter-stimulation time A, population 2 is stimulated for the same duration 7. The other
populations are then stimulated one at a time (3, 4, ..., n) using the same protocol. The
amplitude of the stimulation is fixed such that the maximum of the current elicited in each
population is greater than the plasticity threshold of the learning rule. The time interval
between each repetition of the sequence is much longer than 7" and A and any time constant
of the network. When the duration of each stimulation is larger than the synaptic delay (i.e.
D < T), recurrent connections increase, since the Hebbian term driving synaptic changes
(flri(t)]glri(t— D)], where i is the stimulated population) becomes large after a time D after
the onset of the presentation. When the inter-stimulation time is smaller that the synaptic
delay (i.e. A < D), then the the feed-forward connections increase, since the Hebbian
term driving synaptic changes (f[r;41(t)]g[r;(t — D)]) is large in some initial interval during
presentation of stimulus 7 + 1.

As a result, there are four distinct regions of interest depending on the relative values
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Figure 2.6: Runaway instability of the unsupervised Hebbian learning rule. (A)
Population dynamics during 10s of sequential stimulation with 7" = 19ms and A = 10ms.
After about 6s, all populations become active at maximal rates. (B) Synaptic weights
dynamics during stimulation. Color code as in Fig 2.4D. (C) Connectivity matrix at different
stimulation times. From left to right and from top to bottom: 0s, 3s, 6s and 9s. (D) Three
examples of population dynamics during a single sequential stimulation at Os, 5.46s and 7.02s
respectively. Note the buildup of activity preceding each stimulus presentation because of
the build-up in the feedforward connectivity at 5.46s. In A and D the black and gray traces
indicate a scaled version of the stimulus. Parameters can be found in Tables 2.3,2.4.
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of the A and T with respect to the synaptic delay D. When T is larger than the synaptic
delay, and A is smaller than the synaptic delay, both recurrent and feed-forward connections
increase. When T is larger than the synaptic delay and A is much larger than D, only the
recurrent connections increase. When A is smaller than the synaptic delay and T is much
smaller, only the feed-forward connections increase. Lastly, when A is larger and T is smaller
than D no changes in the connectivity are observed. The initial temporal evolution of both
recurrent and feed-forward weights in representative examples of the four regions is presented
in Fig 2.5 B. We chose not to study the region corresponding to 27+ A < D here, which
is a region where ‘feed-forward’ connections involving non-nearest neighbor populations can
also increase during learning.

We found that this learning rule is in general unstable for long sequential stimulation
when both feed-forward and recurrent connections increase during the stimulation (i.e. A <
D < T) to values large enough to produce persistent activity states. This is a consequence of
the classic instability observed with Hebbian plasticity rules, where a positive feedback loop
between the increase in synaptic connectivity and increase in firing rates leads to an explosive
increase in both (Dayan & Abbott 2001). Larger feed-forward and recurrent connections lead
to an increase in number of populations active at the same time during stimulation (see Fig
2.6 A and D) which produce an increase of the overall connectivity by the synaptic plasticity
rule (Fig 2.6 B and C). This leads to an increase in the overall activity producing longer
periods of PA during stimulation until a fixed point where many populations have high firing
rates is reached, and the connectivity increases exponentially to its maximum value (see Fig
2.6 B and C). By increasing the plasticity threshold, it is possible to increase the number of
stimulations (and consequently the strength of the feed-forward and recurrent connections)
where the network’s activity is stable. However, this does not solve the problem, since the
instability on the weights eventually occurs but for a larger number of stimulations and

stronger synaptic weights. In order to prevent this instability, we investigate in the next
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Figure 2.7: Heterogeneous synaptic dynamics for Hebbian plasticity and synaptic
normalization. (A) Population dynamics during 10s of sequential stimulation with 7" =
19ms and A = 10ms. (B) Synaptic weights dynamics during stimulation. Cyan: recurrent
connections; Light Yellow/Green: feed-forward; Red: feed-backward; Blue: feed-second-
forward; Green: feed-second-backward. (C) Connectivity matrix at different stimulation
times. From left to right and from top to bottom: 0s, 13.8s, 27.6s and 41.5s. (D) Two
examples of population dynamics during a single sequential stimulation at Os and 15.8s
respectively. In A and D the black and gray traces indicate a scaled version of the stimulus.
(E) Network dynamics after learning for the initial condition where the first population is
active at high rate and the rest silent. Parameters can be found in Tables 2.3,2.4.

sections two different stabilization mechanisms: synaptic normalization and homeostatic
plasticity. Throughout this paper, for testing whether PA; SA; SA/PA or dSA is learned,
after sequential stimulation we stimulate the first population and then check whether the

network recalls the corresponding type of activity (see Fig 2.3).

2.4.2  Synaptic normalization

The first mechanism we consider is synaptic normalization. This mechanism is motivated

by experimental evidence of conservation of total synaptic weight in neurons (Royer & Paré
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2003, Bourne & Harris 2011). In our model, we enforce that the sum of the incoming
synaptic weights to a given population is fixed throughout the dynamics (see Eq. 2.13 in
Methods). This constraint prevents the growth of all the synaptic weights to their maximum
value during sequential stimulation due to the Hebbian plasticity, as is described in the
previous section. This leads to an heterogeneous dynamics in the synaptic weights where
they strongly fluctuate in time during the stimulation period, see Fig 2.7B. We find that the
network does not reach a stable connectivity structure, and that the connectivity after the
stimulation markedly depends on the specific moment when stimulation ended for a large
range of stimulation parameters.

At the initial stages of the stimulation, feed-forward and recurrent connections grow,
while the rest of the synaptic connections decrease at the same rate (see Fig 2.7 B). When the
feed-forward and recurrent connections are large enough for producing persistent activity, co-
activation between a population(s) undergoing persistent activity and the population active
due to the stimulation (which are not necessarily adjacent in the stimulation sequence, see
Fig 2.7A,D) produce an increase in feed-back and upper triangular connections that are
different than feed-forward and recurrent (see Fig 2.7B). In turn, feed-forward and recurrent
connections decrease due to the synaptic normalization mechanism. This leads to complex
dynamics in the synaptic weights, in which the connections sustaining co-active neuronal
assemblies learned via Hebbian plasticity are depressed due to the interplay between synaptic
normalization and sequential stimulation. This then leads to the formation of new assemblies
due to the interplay of Hebbian plasticity and sequential stimulation.

During stimulation, the feed-forward and recurrent connectivity studied in the first sec-
tion increase first, leading then in a second stage to clustered connectivities with strong
bi-directional connections (see Fig 2.7C). Therefore, neither persistent nor sequential ac-
tivity can be learned consistently after long times (see Fig 2.7E). Moreover, it is not clear

whether neural circuits can use the observed complex synaptic dynamics to store retrievable
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information about the external stimuli. Thus, we find that synaptic normalization is not
sufficient in this case to stabilize learning dynamics and to lead to a consistent retrieval of
PA or SA. We checked that this finding is robust to changes in parameters, in particular the
sum of incoming synaptic weights. In the next section we consider a second stabilization

mechanism, namely Homeostatic plasticity.

2.4.83 Multiplicative homeostatic plasticity

Homeostatic plasticity is another potential stabilization mechanism that has been charac-
terized extensively in experiments (Turrigiano et al. 1998, Turrigiano 2017). The interplay
between homeostatic plasticity and Hebbian plasticity has recently been the focus of multiple
theoreotical studies (Renart et al. 2003, Toyoizumi et al. 2014, Keck et al. 2017). Here, we
study the effect of multiplicative homeostatic and Hebbian plasticity for learning SA and PA.
We consider a model for homeostatic plasticity in which the overall connectivity at each time
W, (t) is given by the multiplication of two synaptic variables with different time scales as is
shown in Eq. (2.14). In this equation, the fast plastic variable W; () (time scale of seconds)
is governed by Hebbian plasticity, see Eq. (2.8). On the other hand, the slow (with a time
scale of tens to hundred of seconds) homeostatic variable H;(t) scales the incoming weights
to population i, ensuring that the network maintain low average firing rates on long time
scales. Its dynamics of the homeostatic variable is given by Eq. (2.15). This is a modification
of the standard homeostatic learning rule (Renart et al. 2003, Toyoizumi et al. 2014), that
does not include the quadratic term in the r.h.s. of Eq. (2.15). The equation proposed in
(Toyoizumi et al. 2014) stabilizes the network’s activity during stimulation, preventing the
runaway of the firing rates and synaptic weights. Scaling down the overall connectivity dur-
ing stimulation prevents co-activation of multiple populations, and lead to stable learning,
see Fig 2.13D and E. However, in the network’s steady state (i.e. when times longer than the

time scale of the homeostatic variable have passed without any stimulation), if the equation
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proposed in (Toyoizumi et al. 2014) is used, then each connection will be proportional to
the factor % multiplied by a number of order one (see section 2.6.5 and 2.6.5 in the
Supplementary Material for a general discussion and the corresponding mathematical de-
tails respectively). This implies that the steady state connectivity after learning will depend
sensitively on the choice of the value of the objective background firing rate (i.e. 79) and the

specific functional form of the transfer function (i.e. ¢(u)). Due to the transfer function non-

¢~ (ro)

- and therefore
0

linearity, small changes in g might produce large values for the factor
very strong connections for the steady state connectivity (see Fig 2.13). This is due to the
fact that steady state large values in the homeostatic variable H scale up the connectivity
learned via Hebbian plasticity in a multiplicative fashion, see Eq. (2.14). In practice, PA is
retrieved almost always independently of the type of stimulation presented during learning,
and in the absence of the quadratic term in Eq. (2.15) no temporal attractor other than PA
can be learned. This problem can be prevented by the introduction of a quadratic term in
the original homeostatic rule (see section 2.6.5 in the Supplementary Material). Note that
with this quadratic term, the homeostatic plasticity rule does not exactly achieve a given
target firing rate, and therefore is not strictly speaking ‘homeostatic’. However, since it is
variant of the classic linear homeostatic rule, we have chosen to stick with this terminology.

We explore the role of this multiplicative homeostatic learning rule for learning both PA
and SA. During sequential stimulation, the average firing rate is higher than the background
objective firing rate rp, and the homeostatic variables decrease to values that are smaller
than 1, see Fig 2.8 A and C. As a result, during sequential stimulation the dynamics of the
homeostatic variable will be dominated by the linear version of the homeostatic learning rule
proposed in (Toyoizumi et al. 2014), since H f < 1. Then, the small values that the home-
ostatic variables take during the sequential stimulation scale down the increasing values of
the recurrent and feed-forward connections due to Hebbian plasticity. This produces a weak

excitatory connectivity during a repeated sequential stimulation (see Fig 2.8 C), prevent-
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Figure 2.8: Learning dynamics in a network with Hebbian and multiplicative
homeostatic plasticity: (A) Top: synaptic weights dynamics during and after stimulation.
Cyan: recurrent; Yellow: feed-forward; Blue: all other connections. Bottom Homeostatic
variables in excitatory populations. neuron ¢. Gray vertical dashed line indicate the end of
the sequential stimulation. (B) Neuron dynamics during stimulation for two different periods
of time. (C) Snapshots of the connectivity matrix W; ;(¢) at the end of the sequential
stimulation (left) and 60s after the end of the sequential stimulation (right). (D) Network
dynamics after learning following an initial condition where the first population is active
at high rate while all others are silent for two different stimulation parameters, for two
stimulation parameters, one that generates SA (left), the other PA (right). Parameters can
be found in Tables 2.3,2.4.
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ing activation of spurious populations during stimulation (see Fig 2.8 B), even though the
strength of recurrent and feed-forward connections learned via Hebbian plasticity are strong
enough to produce PA or SA, since these connections are masked by the homeostatic variable.
When the network returns to the steady state after sequential stimulation, the homeostatic
variables return to values H; ~ O(1) (see section 2.6.5 in the Supplementary Material for the
mathematical details), and the recurrent and feed-forward connections learned via Hebbian
plasticity are unmasked. This mechanism stabilizes learning, allowing the network to stably
learn strong recurrent and feed-forward connections, consistent with SA or PA dynamics (see
Fig 2.8D).

The weakening of recurrent connections during sequential stimulation allows us to derive
an approximate analytical description of the temporal evolution of the synaptic connectivity
with learning. Since the net current due to connections between populations is very small,
each population dynamics is well approximated by an exponential rise (decay) toward the
stimulation current (background current) provided inhibition is weak enough (see Fig 2.9).
By using this approximation we build a mapping that yields the value of the recurrent and
feed-forward synaptic strengths as a function of stimulation number k, stimulation period,
T, and delay, A (see Eqgs. (2.50,2.51) in 2.6.6 of Supplementary Material). This mapping
provides a fairly accurate match of both the dynamics of the synaptic weights and the final
steady state connectivity matrix in the case of weak inhibition (see Fig 2.10A, corresponding
to wy = 1) and a less accurate match for stronger inhibition (see Fig 2.10B, wy = 2). This is
expected since our theoretical analysis neglects the effect of inhibition during learning (see
section 2.6.6 of Supplementary Material). The mapping derived for evolution of the synaptic
weights during sequential stimulation corresponds to a dynamical system in the (s, w) phase
space that depends on the stimulus parameters (A, T") and the initial connectivity. The final
connectivity corresponds to the fixed point of these dynamics (see Eqs. (2.52,2.53) in section

2.6.6 of Supplementary Material).
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Figure 2.9: Analytical approximation of the dynamics of the network with Heb-
bian and multiplicative homeostatic plasticity: (First row) Current dynamics for
the second and third populations in a network of 20 populations during one presentation
of the sequence. The dashed red line shows the analytical approximation for the dynamics
during stimulation (Eq. 2.42 in section 2.6.6 of Supplementary Material). (Second row)
Dynamics of the recurrent synaptic strength within the second population (cyan), and the
‘feed-forward’ synaptic strength from the second to the third population (yellow) during the
same presentation of the sequence. The dashed red line shows the analytical approximation
for the synaptic weight dynamics (Eq. (2.44,2.48) in section 2.6.6 of Supplementary Ma-
terials). (A) and (B) correspond to the first and the fifth presentation of the stimulation
sequence respectively. Parameters can be found in Tables 2.3,2.4.
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Figure 2.10: Changes in recurrent and feed-forward synaptic strengths with learn-
ing, for different sequences with different temporal parameters. (Left) Dynam-
ics of recurrent and feed-forward connections in the (s,w) parameter space during se-
quential stimulation for four different values of A and T. Black circles (SA), plus signs
(PA), hexagons (dSA), and squares (PA/SA) show the simulated dynamics for (T,A) =
{(7,14), (50,40), (5,13), (20,8.5) } (in ms) respectively. Red traces indicate the approximated
dynamics derived in section 2.6.6 of Supplementary Material. (Right) Rates dynamics after
many presentations of the sequence. The first population was initialized at high rates, the
others at low rates. (A) and (B) correspond to w; = 1 and wy = 2 respectively. Parameters
can be found in Tables 2.3,2.4.
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Fig 2.10 shows that depending on the temporal characteristics of the input sequence,
the network can reach any of the four qualitatively different regions of the phase diagrams
in a completely unsupervised fashion. For values of A that are smaller than the synaptic
delay D and T on the order or larger than D, the network generates SA. For values of T
approximately larger than D and for A small enough, the dynamics lead to SA/PA. Lastly
PA is obtained for large enough A and 7. These observations match with the intuition
that stimulations long enough but far delayed in time leads to learning of PA and that
stimulations contiguous in time but short enough leads to SA. Stimulations between these
two conditions (long and contiguous) leads to a combination of both dynamics, i.e. SA/PA,

as shown in Fig 2.10.

2.4.4 Learning and retrieval is robust to noise

Under in vivo conditions neural systems operate with large amount of variability in their
inputs. In order to assess the effect of highly variable synaptic input current during learning
and retrieval, we add a mean zero uncorrelated white noise to the dynamics when both
Hebbian learning and homeoestatic plasticity are included in the network, as described in
Eq. (2.16). We found that both the synaptic weights dynamics during learning and the
retrieved spatiotemporal dynamics after learning are robust to noise (see Fig 2.11), even
when the amplitude of the noise is large (i.e. inputs with values equal to the standard
deviation of the noise lead to a population to fire at 30% of the maximum firing rate). During
sequential stimulation, the learning dynamics is marginally altered for both weak and strong
inhibition (compare Fig 2.11 with Fig 2.10). Importantly, the synaptic weights reach very
similar stationary values compared with the case without noise. After learning, even though
the rates stochastically fluctuate in time, the retrieved spatiotemporal attractors (i.e. PA,
SA, dSA or PA/SA) are qualitatively similar as in the case without noise (compare Fig 2.11

with Fig 2.10). One qualitative difference in the case with external noise, is that in both
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SA and PA/SA dynamical regimes random inputs lead to a repetition of the full or partial
learned sequence. Altogether, this simulations show that the network can robustly learn and

retrieve qualitatively the same spatiotemporal attractors in the presence of external noise.
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Figure 2.11: Learning dynamics under noisy stimulation. Same as in Fig 2.10, but in
the presence of a white noise input current, with mean 0 and standard deviation of 0.3 (i.e.
o =0.31in Eq. (2.16)).

2.5 Discussion

We have shown that under sequential stimulation a network with biologically plausible plas-

ticity rules can learn both PA or SA depending on the stimulus parameters. Two plasticity
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mechanisms are needed: 1) Hebbian plasticity with temporal asymmetry; 2) a stabilization
mechanism which prevents the runaway of synaptic weights while learning. When unsuper-
vised Hebbian plasticity is present alone the network fails to stably learn PA or SA, while
including multiplicative homeostatic plasticity stabilizes learning. For stable learning, we
show that the learning process is described by a low dimensional autonomous dynamical
system in the space of connectivities, leading to a simplified description of unsupervised
learning of PA and SA by the network from external stimuli. Depending on the stimulus
parameters, the network is flexible enough to learn selectively both types of activity by re-
peated exposure to a sequence of stimuli, without need for supervision. This suggests that
cortical circuits endowed with a single learning rule can learn qualitatively different neural
dynamics (i.e. persistent vs sequential activity) depending on the stimuli statistics.

Using the full characterization of the bifurcation diagram in the space of fixed feed-
forward and recurrent connections developed here, we mapped the evolution of the con-
nectivity during stimulation in the bifurcation diagram. We analytically and numerically
showed that the synaptic weights evolve in the feed-forward-recurrent synaptic connections
space until they reach their steady state (when the number of sequential stimulations is
large). The specific point of the steady state in the bifurcation diagram depends solely on
the stimulation parameters — stimulation period T and time delay A— and the connectivity
initial conditions. We found that stimulations with long durations and large delays gener-
ically leads to the formation of PA, whereas stimulations with long enough durations and
short delays leads to the formation of SA. Thus, persistent stimulation leads to persistent

activity while sequential stimulation leads to sequential activity.

2.5.1 Learning of sequences in networks

A growing number of network models have been shown to be able to learn sequential ac-

tivity. Models with supervised learning can reproduce perfectly target sequences through
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minimization of a suitable error function (Sussillo & Abbott 2009, Memmesheimer et al.
2014, Laje & Buonomano 2013, Rajan et al. 2016), but the corresponding learning rules are
not biophysically realistic.

Other investigators have studied how unsupervised learning rules leads to sequence gen-
eration. Early models of networks of binary neurons showed how various prescriptions for
incorporating input sequences in the connectivity matrix can lead to sequence generation
(see Kuhn & van Hemmen (1991)) - or, sometimes, both sequence generation or fixed point
attractors depending on the inputs (Herz et al. 1988). The drawback of these models is
that they separated a learning phase in which recurrent dynamics was shut down in order
to form the synaptic connectivity matrix, and a retrieval phase in which the connectivity
matrix does not change anymore.

Our model removes this artificial separation, since both plasticity rule and recurrent
dynamics operate continuously, both during learning and recall. However, we found that
there needs to be a mechanism to attenuate recurrent dynamics during learning for it to
be stable. The mechanism we propose rely on a modified version of a standard homeostatic
rule. Other mechanisms have been proposed, such as neuromodulators that would change the
balance between recurrent and external inputs during presentation of behaviorally relevant
stimuli (Hasselmo 2006).

The cost of not having supervision is that the network can only learn the temporal order
of the presented stimuli, but not their precise timing. Veliz-Cuba et al (Veliz-Cuba et al.
2015) have recently provided a model which bear strong similarities with our model (rate
model with unsupervised temporally asymmetric Hebbian plasticity rule), but includes in
addition a short-term facilitation mechanism that allows the network to learn both order
and precise timing of a sequence presented in input. However, their mechanisms requires
precise fine tuning of parameters.

Models with temporally asymmetric Hebbian plasticity have also been investigated in
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the context of the hippocampus (Abbott & Blum 1996, Gerstner & Abbott 1997, Mehta
et al. 1997, Jahnke et al. 2015, Chenkov et al. 2017, Theodoni et al. 2017). In such models,
feed-forward connectivity is learned through multiple visits of neighboring place fields, and
sequential activity (‘replays’) can be triggered using appropriate inputs mimicking sharp-
wave ripples. Other models use unsupervised Hebbian plasticity but qualitatively distinct
mechanisms to generate sequential activity. In particular, several studies showed that se-
quences can be generated spontaneously from unstructured input noise (Fiete et al. 2010,
Okubo et al. 2015). Murray and Escola (Murray & Escola 2017) showed that sequences can
be generated in networks of inhibitory neurons with anti-Hebbian plasticity, and proposed

that this mechanism is at work in the striatum.

2.5.2  Stabilization mechanisms

Consistent with many previous studies (Dayan & Abbott 2001), we have shown that a net-
work with unsupervised Hebbian plasticity under sequential stimulation leads to a runaway
of the synaptic weights. This instability is due to a positive feed-back loop generated by the
progressive increase of network activity leading to a progressive increase in average synaptic
strength when PA or SA are being learned. One possible solution for this problem was first
proposed in the context of attractor neural network models (Amit et al. 1985, Amit & Fusi
1994, Tsodyks & Feigel’Man 1988). In these models, patterns are learned upon presentation
during a learning phase where synapses are plastic but there is no ongoing network dynamics.
After the learning phase, the learning of attractors is tested in a retrieval phase, where the
network dynamics is ongoing but synaptic plasticity is not present. Therefore, by compart-
mentalizing in time dynamics and learning, the network dynamics does not lead to changes
in the synaptic weights during retrieval, and conversely, changes in synaptic weights do not
lead to changes in the dynamics during learning. This separation prevents the observed

runaway of the synaptic weights due to unsupervised Hebbian plasticity.
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However, it is unclear whether such compartmentalization exists in cortical networks. In
this work, we explored the alternative scenario, in which both plasticity and dynamics hap-
pen concurrently during learning and retrieval (see also Mongillo et al. (2005), Litwin-Kumar
& Doiron (2014a), Zenke et al. (2015) for a similar approach in networks of spiking neurons).
We found that adding multiplicative homeostatic plasticity to unsupervised Hebbian plas-
ticity leads to stable learning of PA and SA. During sequential stimulation, the increase in
co-activation between multiple populations due to recurrent and feed-forward connections
learned via unsupervised Hebbian plasticity is prevented by suppressing its effect in the
network dynamics. Homeostatic plasticity scales down the overall connectivity producing
a weakly connected network. PA and SA is prevented to occur during stimulation, which
weakens the positive feed-back loop generated by the increase in co-activations of neuronal
populations. After learning, the dynamic variables of the Homeostatic plasticity rule reach a
steady state with values similar of what they where before stimulation (see Fig 2.8 A) and
the connectivity learned via unsupervised Hebbian plasticity can lead to retrieval of PA and
SA upon stimulation (see Fig 2.8 C). The homeostatic variable reaches its steady state at a
value close to one, and the connectivity recovers, unmasking the feed-forward and recurrent
learned architecture. We have also tried other stabilization mechanisms such as inhibitory
to excitatory plasticity (Vogels et al. 2011) instead of homeostatic plasticity. In this case
we found that stable learning of PA and SA is possible, but for distinct sets of network and
stimulation parameters (data not shown).

As explained in Zenke & Gerstner (2017), Zenke et al. (2017), in order to prevent the
runaway of the synaptic weights produced by Hebbian plasticity, the time-scale of any com-
pensatory mechanism should be of the same order or faster than the Hebbian time-scale. For
multiplicative homeostatic plasticity, the time-scale of the homeostatic variable H; is depen-
dent on the firing rate of neuron 7 and the target firing rate (i.e. ¢(u;)/¢(ug)). When the

network firing rate is close to the target firing rate the homeostatic learning rule is slow, and
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the homeostatic mechanism seldom play a role in the dynamics. On the other hand, for high
firing rates the homeostatic plasticity time-scale becomes faster, preventing the runaway of
the synaptic weights. There is currently an ongoing debate about whether the time-scales
of compensatory processes used in theoretical studies, as the ones used here, are consistent

with experimental evidence (see e.g. Zenke & Gerstner (2017), Zenke et al. (2017)).

2.6 Appendix

2.6.1 Parameters values

For the networks with fixed connectivity the parameters used in Fig C.1 and 2.3 are sum-
marized in the Table 2.1 and 2.2 respectively. For networks with plastic connectivity the
parameters used in Fig 2.4-2.10 are summarized in Table 2.3. The sequential stimulation

parameters used in Fig 2.5-2.10 are summarized in Table 2.4.

2.6.2 Bifurcation diagram for a network of excitatory neurons with

recurrent and feed-forward connectivity

Let us consider a network composed of an arbitrary number of excitatory populations. For
tractability we will use the piecewise linear transfer function, see Eq (2.6). We want to study
the conditions for an initial stimulus to the first population to: 1) propagate throughout the
network without decaying; 2) grow until all populations are active at its maximum firing rate;
3) decay. Now consider a stimulus to the network such that all the populations are inactive,
except the first (i.e. < u1(0) < we and u;(0) =0 Vj # 1). For the first population, the

dynamics reads

wrl ) _(Q-w),
e 7 .

wr — 1



Table 2.1: Parameters used in Fig C.1.

(B) [(C)I]|(C)II| (C) III
n 14 20 20 20
w - 0.05 0.35 0.25
s - 0.6 0.6 0.45
T 10ms | 10ms | 10ms 10ms
WET - - 0.08 -
wip | - - 1 -
TI - - oms -
15} - - - 0.8
Ta - - - 80ms
a - 6 6 6
b - -0.25 | -0.25 -0.25
v 1 2 2 2
0 0 0 0 0
Ue 1 0.5 0.5 0.5
1 - 0.8 0.8 0.8
0 - -0.1 -0.1 -0.1
U - 0.5 0.5 0.5

Table 2.2: Parameters used in Fig 2.3. With n = 10 and w; = 2.

dSA | SA [ SA/PA | PA (bottom) | PA (top)
w| 02 |101| 1.3 1.9 1.3
s| 15 | 1.39] 1. 0.7 0.15

Assuming # = 0 and u1(0) = 1, and defining

we first compute the dynamics for the linear range of the transfer function, that is, assuming

that the dynamics elicited is kept within the interval (6, u.) for the first K populations (i.e.

20



Table 2.3: Network parameters used in Fig 2.4-2.10. *Values of all the entries in the

initial matrix W.

Fig 2.4 | Fig 2.5 | Fig 2.6 | Fig 2.7 | Fig 2.8 | Fig 2.9 | Fig 2.10
n 10 10 10 10 10 20 20
wr 1 1 1 1 4.3 1 1
Wmaz 1.5 1.5 2.5 2.5 1.45 24 2.4
Tw - 400ms 400ms 400ms 400ms 400ms 400ms
W; ;(0)* - 0.1 0.1 0.2 0.1 0.1 0.1
apre 10 10 10 10 10 10 10
bpre 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Apost 10 10 10 10 10 10 10
D - 15.3ms | 15.3ms | 15.3ms | 15.3ms | 15.3ms | 15.3ms
Tw 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0 - - - - 0.05 0.01 0.01
TH - - - - 20s 20s 20s
SAWi | - : : 2 : : :
populations k such that £ < K < n). The populations dynamics is given by
T = Y +wruj + svuj_q j<K, (2.19)
which leads to an analytical solution for the dynamics of each population
t /
ug1(t) = be_at/ ug (t) e dt! k< K.
0
Using an inductive argument we obtain that
— (bt)k_l at —
uk+1(t)—(k_1)!e k=1,.. K, (2.20)

and in the limit £k — oo and with the condition a < b, we obtain

bt)k‘—l
Ii t) = e 1 (—.
]

o1



Table 2.4: Stimulation parameters Fig 2.4-2.10.

I | T (ms)|A (ms)
Fig 2.5 (top-left) 1.25 18 8
Fig 2.5 (top-right) 1.8 | 205 80
Fig 2.5 (bottom-left) 1.8 7 9
Fig 2.5 (bottom-right) 1.8 1 50
Fig 2.6 13| 19 10
Fig 2.7 2.2 19 10
Fig 2.8 A-C and D (left) | 3.5 14 7
Fig 2.9 5 40 8
Fig 2.10 (top-left) 5.5 7 14
Fig 2.10 (top-right) 5.5 50 40
Fig 2.10 (bottom-left) 5.5 5 13
Fig 2.10 (bottom-right) | 5.5 20 8.5

Since b > 0, we have that

then

k—1
lim (bt)

k—oo (k — k:%oo

5 (be)!
Zl—=
1=0

lim uy(t) < elatb)t

k—o00

For the sequence to decay away, it is sufficient to impose that

since populations will receive inputs from previous populations that decrease with the
position in the feed-forward connectivity. On the other hand, for w + s,w > =
of 0 < p < n populations depending on the initial condition will grow until they reach an

state in which they are active at their maximum firing rate. However, for w + s > % > w,

1
w+8s < —,
v

the dynamics for first population decays exponentially towards zero
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ui(t) = e,

but for the rest n — 1 populations any input will lead to an increase in their activity since
w4+s > % In this regime, after the stimulation of the first population, the feed-forward input
from the first population to the second transiently decreases, producing a transient increase
in firing rate of the second population. This produces a sequence of transient increase in
activity along the feed-forward connectivity. Importantly, neurons later in the connectivity
will received feed-forward inputs for longer times. To see that, let us consider the fact that
the r.h.s. of Eq. (2.20) always has a maximum. Its maximum is achieved when ¢4, = —k/a.
The value of the maximum is

(k)

Up1 (tmaz) = me

For k — oo we can use the Stirling approximation for the factorial, obtaining

w1 (tmaz) ~ V2rkek(log(kb/(~a))—log(k/e)~1) (2.21)

which is equivalent to

k
b
Ut 1 (tmaz) ~ V21k (—5> for k — oo.

1

Then, for a < 0 and —b/a > 1 (i.e. w+ s > 3 > w) populations whose activities are

in the linear range of the transfer function (i.e. k& < K) present an increasing maximum
activity with its position in the feed-forward connectivity. Which implies an increasingly

stronger feed-forward input with the population’s position. If we standarize the population’s

bk—l
(—a)*
bk*l

ay(t) = u(t)/ <W>’ then an approximation for the time that a population is active in

activity uy(t) with the total area under the dynamics (i.e. [7° dtug(t) = ) defining

the sequence is
53



\//0OO t2ag(t) — </OOO dtak(t)t)2 = —é k= _TW\/E. (2.22)

Therefore, the time that a population is active in the sequence scales with the squared root
of the position of the population in the feed-forward connectivity (i.e. VEk, for k < K ). In
fact, we found that this scaling also holds for populations whose activities are larger than

the upper bound of the transfer function (i.e. u.), see Fig C.1.

2.6.3 Instantaneous shared inhibition approximation

1.05 . .
' 1 "
n

1

-
o
e

——

BIISINIII) -
0.0 100 200 300
Time (ms)

Figure 2.12: Shared Inhibition vs Instantaneous shared inhibition approximation.
In color lines it is shown SA generation for a network of 20 neurons with fixed feed-forward
and recurrent connections and shared inhibition. In grey dashed lines it is shown the instan-

taneous shared inhibition approximation.

2.6.4 Bifurcation diagram for a network of excitatory neurons with
recurrent and feed-forward connections and shared Inhibition
Here we derive the PA-PA/SA, PA-(SA or dSA), and PA/SA-(SA or dSA) boundaries in

the bifurcation diagram of a network of excitatory neurons with recurrent and feed-forward

connections and shared Inhibition. Let us consider Eq. (2.3) on the main text for the
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dynamics of a network of excitatory populations with shared inhibition. In addition, let us
assume a piecewise linear transfer function such that 0 < ¢(u) < 1 and u. = 1. For the
beginning of the analysis let us assume that s = 0 and m populations are in a high rate state,
that is ¢(uy) = 1, whereas all the rest are in the low activity state, i.e. ¢(u;) =0 j # k.
Then if ¢(Ukj) =1 for k1, k9, -+, km, a necessary condition for the high rate state to be a
fixed point is

ukj:w—%n j=1,....m. (2.23)

If we only want to have at most m populations in the high rates state as a fixed point
then
(m+ 1wy

gy =w— <1 j=1...m, (2.24)

which implies
(m +Duwy

14+ M oy <1y
n n

(2.25)

Let us now consider s # 0. If we want to have at most r contiguous populations con-
nected via feed-forward connections in the high rate, a necessary condition is that the first
population in the architecture needs to be able to sustain PA when r populations are active,
ie.

up = w— L, (2.26)
n

The second necessary condition is that the last of the » population down stream in the
recurrent-feed-forward connected architecture does not die out to the low rate state due to
inhibition, when this population is in the low activity state and the population before is in
high rate state, i.e.

(r— Dwy

Upgp]=8— —"—>0. (2.27)
n

If we want at most r populations active, we need to impose that the population right
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after remains in the low rate state

Uy = 5 — —L <0, (2.28)

which is equivalent to

(r=Dwy _ - rwr (2.29)

n n

Then if w fulfills Eq (2.25) and we stimulate all the populations of the network, we have
that at most m populations remain active. On the other hand, if Eqs. (2.26,2.27) hold, and
we stimulate just the first population in the network then at least r contiguous populations
remain active in PA. Lastly if we activate the first population and all the rest are in the low

activity state, and

"I~ (2.30)
n
1+m§w 1+<T+1)'LUI

n n

Consequently, the next r populations go to the high rate activity state. Due to shared
inhibition, the first population decreases to the low rate state, since Eqgs. (2.30) holds and
it is the population that receives less current because it lacks feed-forward inputs. The
decrease in the shared inhibitory input due to the activity decay of the first population leads
to the (r + 2)th population to increase its activity toward a high rate activity state. This
consequently produces that the second population decay to the low rate state due to a new
increase in shared inhibition. This process iterates producing a sequence that stabilizes when
the last population and the r — 1 populations before this one are in the high rate state. We

call SA/PA to this sequential activity that ends in persistent activity.
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2.6.5 Multiplicative homeostatic plasticity

Brief discussion

As is mentioned in the main text, the overall steady state connectivity (i.e. W) is very
sensitive to differences in values of the connectivity learned via Hebbian plasticity (i.e. W)
when a linear version of homeostatic learning rule used in the main text (i.e. Eq. (2.15) on
the main text without the quadratic term in H) is used. This can be intuitively understood
analyzing a one population network with connectivity strength w. When the linear version
of homeostatic plasticity is used the H nullcline is vertical (see Fig 2.13 A). This produces
that slight changes in the connectivity strength of the excitatory population dramatically
change the value of the steady state homeostatic variable (fixed point of the dynamics). If
a quadratic nonlinearity is included in the learning rule, the A nullcline is now a straight
line with slope —ulo and intercept 1 (see Fig 2.13 B). As a consequence, the steady state
homeoestatic variable is close to 1 (i.e. H ~ 1) provided w is not very large (see Fig 2.13 C).
This analysis is generalized for an arbitrary number of excitatory populations undergoing
sequential stimulation in the next section. Therefore, the linear version of the homeostatic
plasticity rule, in general leads to an steady state connectivity uniformly strong disregarding
the sequential stimulation parameters (see Fig 2.13 F'). And even though Hebbian plasticity
ensures non-uniformity in the learned connectivity (see Fig 2.13 D and F), very strong
recurrent and feed-forward connections due high values for the homeostatic variables usually
leads to the retrieval of PA when the network is perturbed from the background state (see
Fig 2.3 main text). Preventing with this that differences in connectivities learned due to
different stimuli to be reflected in different learned dynamics (i.e. PA, SA, PA/SA or dSA).
In practice, PA is initially retrieved almost always independent of the type of stimulation
presented when the linear version of the homeostatic learning rule leads to large values of

the homeostatic variable. Additionally, strong excitatory connectivity due to large values of
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the homeostatic variables might produce spikes on the homeostatic variables and synaptic
weights learned via Hebbian plasticity uniformly shooting down the overall connectivity (see
Fig 2.13 D-F). These phenomena can be interpreted as a forgetting of the stimulus learned
during sequential stimulation via Hebbian plasticity, since is prevented the retrieval of any
temporal attractor other than PA or the background state. If a quadratic term is introduced
(as in Eq. (2.15) on the main text) and: 1) the recurrent and feed-forward connections
learned via Hebbian plasticity are not large; 2) the background activity is within the sub-
linear region of the transfer function. Then H; ~ 1 and the connectivity in the steady state
is approximately the connectivity learned via Hebbian plasticity (i.e. W; ; ~ W, ;). In the

next section we provide a mathematical proof to this assertion.

Mathematical analysis

Let us assume that after r repetitions of the sequential stimulation described in the main
text, there is an increase in the synaptic weights to a final value WEZ) due to Hebbian
plasticity. We will also assume that the sequential stimulation is in the range of parameters
for T and A where only recurrent and feed-forward connections increase due stimulation.
Using the plasticity rule proposed in Toyoizumi et al. (2014) (i.e. linear version of Eq. (9)

on the main text) the fixed points for the network’s dynamics after r sequential stimulation

are given by

uj = ug i=1,....n
= o
P(ug)Wy 1 — wpre(uy)
HZ.(T) = B Z(Lg) 1=2,...,mn
¢(UO)(WM + Wifl’i) - wEIéb(Uj')
up = o(u) + d(ug)nwrp.
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Where the target firing rate is rg = ¢(ug). Then, the connectivity matrix for the excita-

tory populations is given by

1
W(T) _ uo
1,1 (gf)(uo) 1 _ wereur)
W) (o)
1
wi) - ( - ) e i=2....n
’ ¢(u) 14 Wit  wgré(uf)
W) WD (ug)
1
wi ( “0 ) i=2 ... .n
i1 (up) - W wge)
Wz('i)l,i Wz(i)l,i(b(uo)

Considering that

wpro(up) _ wpr ( uo )
w) w) \o(ug) e
2—1,z¢<u0) 1—1,3

__nwpwig (1 oy >
wr) né(up)wrp

- (1_u—}>
wir) no(up)wrg )’

i—1,

and assuming that wgy ~ O (\/Lﬁ) and wrp ~ O (\/Lﬁ), we have that for large n

wprdlug) wy
WEZ)LZ'QS(UO) WZ(C)LZ'

(2.31)
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Which leads to

1
Wi = ()
1= \Glug)) | T
Wit
(n _ (_Ho 1 L
Wiﬂ' = o) 1=2,...,mn
o(ugp) wir
L+ o T )
Wz,z Wi—l,z
(. _ (40 1 .
Wi_u = o) 1=2,...,n.
¢ (uo) wi” w
e 0
i—1,2 Wi—l,z

Assuming that the sequential stimulation parameters are such that the recurrent and

feed-forward connections learned have the same order of magnitude

W
(X O(l),
W
we obtain
(r) (r) uo
WY~ WY~ 0O . 2.32
1—1, 1,1 <¢(UO)> ( )

Therefore, after sequential stimulation the connectivity matrix is weakly dependent of the
synaptic weights learned via Hebbian plasticity and proportional to the quotient of the target
firing rate synaptic input current ug and the corresponding target firing rate rg = ¢(ug). If

we now consider the homeostatic learning rule in Eq. (2.15) on the main text, we have that
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the fixed points for the dynamics of the network are given by

W gt (uo + wgré(ut))

up = : o —wprd(uy) (2.33)
ug + Wl 16(ul)
o (et s Wi o) (w0 + wpre(e)) sy iz (30
up + Wz,z ¢( ) + W’H—l Zgb( — 1)
¢(U[)
1+
pn = TUF (2.35)
peTED
p(uy)
(r) 1+wg El g )
" = - i=2,... N (2.36)
1 +Wz(' o) +W§+)12¢(1f(;1)
up = ¢(up) +wrp Z o (uj). (2.37)
=1

Then, using approximation in Eq. (2.31), the connectivity matrix for the excitatory

populations is

(r) ¢(uo)
wip - ML)
; p(ul)
1 + ng{ 7.1,01
W _ W (e ,
N qb(u:‘) (b(u;k_ ) 1= 4, , N
L+ Wz(,: uQ + Wz(r—i—)l,z UuQ :
(r) P(uo)
W(T)l .= il <1 — M 1=2 n
1+1,0 ) (uy_y) ’ !
1+ WEZ.)—UO + ng)lyi !

For large values of the learned recurrent and feed-forward connections (i.e. W( r) Wm —

1,00 i1

o0), the fixed point for each neuron currents becomes u; =ug i=1,2,...,n, see Eq (2.33).

— oM < o for all 7. Then, when the recurrent and

Assuming that as W /Wz+1 ;

feed-forward connections learned via Hebbian plasticity are large, the overall steady state
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connectivity is approximated by

r) _  up ¢(up)
Wii ~ d(up) (1 g >
WZQ;) ~ n (1 B I¢(U0)) —9.n
) (14 ) “0
(r) ug ¢(uo)>
W/ .. = - —
1+1,0 ¢(UO)(1 —I—Oz(r)) (1 " 2, 1

In this limit, as in the linear version of the homeostatic learning rule analyzed above, the

recurrent and feed-forward synaptic weights learned are scaled by the —2~ quotient. This

P(uo)

means that the final connectivity after learning is not strongly dependent of the history of

stimulation. However, for weak synaptic weights learned (i.e. WZ(-?,WZ@M < (bzgo)) we

have that at the lowest order

" w) (1. ¢uo)
wl) ~ w (1— (b(“O)) —2,...,N
’ bl uO

If we assume that target synaptic input current of the homeostatic learning rule (i.e. u)

is within the sub-linear region of the transfer function, then w ]%%O) < 1. This leads to
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wil o~ wi) (2.38)
WZ(Z) ~ WETZ) 1=2,...,n

) w

i+l W’H—l,z 1=2,...,n

Therefore, we conclude that when recurrent and feed-forward connections learned via

Hebbian plasticity are such that WZ(-?,WZ@” < (ba?o) and the background activity ug is

within the sub-linear region of the transfer function. Then the steady state overall connec-

tivity in a network with both Hebbian and homeostatic plasticity (i.e.W) is approximately

the connectivity learned via Hebbian plasticity (i.e.W).

2.6.6 Approximation for the synaptic weights dynamics during repeated

sequential stimulation

In this section we obtain an approximation for the synaptic weights dynamics during the
sequential stimulation protocol for a network with Hebbian and homeostatic plasticity. First
we will approximate the increase in the synaptic weights after a single stimulation by approx-
imating the time that the neuron’s current u; is above the learning threshold wu,, = ¢_1(rw).
During sequential stimulation protocol the effective connectivity is very weak due to the
homeostatic plasticity (i.e. W; ; = H;W; ; < 1). Then, neglecting the effect of inhibition,

the dynamics of each population can be approximated by

T~ I—u, 1=1,...,n.
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During the stimulation period T" populations dynamics reads
t
wi(t) =1 (1 - e—?> telo,T].

Its final value right after the stimulation is

T
=

ui(T) =I(1—e"7),

and after the stimulation the population current decays as

T
=

t t
u;=uj(T)e T =1(1—e 7)e 7.
Then the approximate time that takes each population to reach the learning threshold

from resting is

Tugauy = —7In (1= “T“’) . (2.39)

On the other hand the approximate time that takes to each population to decay to the

T
learning threshold from its maximum activity after stimulation (umaez = I(1—e™ 7)) is given

by
T Tumaz ,bw
upy=I(1—e"7)e 7 |
which leads to
Tumaz,uw — —T In uw T (240)
I (1 — e_?>

Hence, an approximation for the time that each population spends above the learning
threshold is

Ty = T - Tug, U + TUmazUw (241)

The population dynamics above the plasticity threshold u,, when is stimulated at time

64



t;. can be approximated by:

t—t
ui(t - tk) = (2.42)

T t—t
I1l—e 7)e = t —tr € [T, Tu,)

Let us first consider the increase in the recurrent connections. First define f;, =t — t,

and

€,5(a,0) = flo(ui(a)))lgld(u;(b — D))].
In order to compute the increment in the synaptic weight W; ; we need to solve

dW;;  Q;i(tg, i, — D) — W

Vi _ b (2.43)
dt;. Tw
for
Ek € [D + Tug, Uy T+ Tumaxauw]'
We obtain
- 7t~k7DfTu0’uw 1 {{k thfT'lLO,’U/u)
Wi,i(tk) —e Tw Wi,i(D + TUO,Uw) + 7_— / dtQm‘(tk, U — D)e Tw
R (2.44)
for

'Ek S [D + Tug, Uy T+ TUmax7uw]'

To compute the increase on feed-forward connections after one stimulation, let us define
f}; =1t t}; as the time elapsed after stimulation of neuron 7. Due to the nature of the

sequential stimulation, we have the following relation f;:rl = f}; — T — A. Then in order to
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compute the increment in the synaptic weight W; 1 ; we need to solve the following equation

~ 1 ~e
dWii1; Qi 1, — D) — Wy

eI - , (2.45)
k
for
571;6—1—1 € [Tu07uw7 T+ Tumaxauw]
Bi€ [DAT+AD+T+A+ Ty un)
Considering that the upper boundary for t~§c+1 should be such that:
Max(fe) + T+ A = D =T + Tupun
we obtain _ _
AWis1; Qi@ G+ T+ A= D) = Wigy (2.46)
dl?;;'_l B Tw ’ '
for

~ 1
t,;:— = [TUOauw’ D + TumazUw — A]

We then obtain the following approximation for the dynamics of the feed-forward con-

nections

. _ g TTuoMw
Wir1(t) = e o Wit1i(Tug,u) (2.47)
_E}'j‘l_Tuo,uw £l+1
e Tw k t—Tug,uw
+— dtQi+1’i(t,t+T+A—D)e Tw
T’U_) TuOvu’LU
for

~ 1
t?j— = [Tu07uw’ D + Tumaz Uy A]
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These approximations appear to be accurate for the dynamics during stimulation, as
Fig 2.9 shows. Using Eqs. (2.44,2.48), we can write iterative equations for the final recurrent

and feed-forward synaptic weights for sequential stimulation k + 1 as

t— D_TUO:Uw
Wwhtl [ s gyt t = Dy 0
1,0 o Wk D+Tu0 ww (2 48)
T+rumaz,uw—D—Tuguw i,i o .
e Tw
t— Tuo Uw
k+1 D+Tumaz uw —2 t=Tug,uw
Wi+1,i " fTuO,Uw dtQip1;(t,t+T+ A~ D)e
_ Dtrumag uw —A—Tug,uw i+1, Z o ,
(& Tw
(2.49)

where Wk. and WF are the recurrent and feed-forward connections after sequential

i+1,3

stimulation k. Defining

1 = D+ Tugu
IV = T+ Tupae i
szf = Tuguy
Tl = D47y, — A

and iterating Eqs. (2.48,2.49) we obtain

k(rrec 1“}"60)

WL = e 7W0 (2.50)
I“T‘GC I“T‘EC) 1 I‘ZCC t_F;“ec
Z e o | — At ;(t,t — D)e 7w
Tw Jyee ’
k+1 k(rif_rlff) 0
Wiy, = ¢ v Wil (2.51)
kool -rfh\ ¢ rlf {7
+ > e e dtQy1(t,t+T + A —D)e 7w
l

j=1
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For a large number of repetitions of the sequential stimulation (i.e. & — o) the stationary

recurrent and feed-forward connections are given by

erc_l—x;’ec

1 e w N t—T7ec
WZ(Z) = 7__ [Tec_prec / dtQZ,’L(tat - D)e Tw (252)
w e Trec
1 — € Tw l
ff_pff
) o/ o off
50 1 e Tw u l
R 1
1-— e Tw
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Figure 2.13: Linear and nonlinear multiplicative homeostatic plasticity. (A and B)
Phase plane (u — H plane) of a single population network with fixed recurrent connectivity
(w), fast linear inhibition (wj; = 0.1) and homeostatic plasticity. Red: H nullcline. Green
and purple: u nullcline for w = {0.5,1.2} respectively. Dashed lines show two orbits of the
network’s dynamics for a single initial condition with w = 1.2 and 0.5, respectively. The fixed
points are indicated with solid circles using the same color code. In A, the linear version of the
homeostatic learning rule is used (i.e. Eq. (2.15) main text without the quadratic term on the
r.h.s.). In B, the homeostatic learning rule in Eq. (2.15) of the main text is used (nonlinear
version). Inset of B shows a zoom in the region of the fixed points. (C) Stationary state
value of H (fixed point of the dynamics, i.e. H such that H=0andu= 0) vs w for the single
population network with fixed recurrent connectivity and fast linear inhibition studied in A
and B. Orange: linear version of the homeostatic learning rule; Blue: nonlinear version. (D-
F) Learning dynamics for a network with n = 10 populations, fast linear shared inhibition,
Hebbian plasticity, linear or nonlinear homeostatic learning rule. The network is stimulated
for the first 82s, and then the dynamics freely evolves toward its steady state. (D) Synaptic
weights learned via Hebbian plasticity during stimulation (i.e. W). Cyan: recurrent; Yellow:
feed-forward; Red: feed-backward; Blue: feed-second-forward; Green: feed-second-backward
connections. Solid and dashed lines correspond to a network with Hebbian plasticity plus
the linear and nonlinear version of the homeostatic learning rule respectively. (E) Dynamics
of the homeostatic variable. The color code is the one used in Fig 2.8. Solid and dashed lines
correspond to the linear and nonlinear version of the homeostatic learning rule respectively.
(F) Steady state connectivity matrix corresponding to the connectivity learned via Hebbian
plasticity W (first column) and the overall connectivity W (second column) for the linear
(first row) and nonlinear (second row) version of the homeostatic learning rule.
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CHAPTER 3
ATTRACTOR DYNAMICS IN NETWORKS WITH
LEARNING RULES INFERRED FROM IN VIVO DATA

3.1 Contribution

The work presented in this chapter correspond to the publication Pereira & Brunel (2018a).
The authors are Ulises Pereira and Nicolas Brunel. U.P. and N.B. designed the research. U.P.
and N.B. developed the mathematical theory. U.P. performed the analytical calculations and

numerical simulations. U.P. analyzed the data. U.P. and N.B. wrote the manuscript.

3.2 Introduction

Attractor networks have been proposed as models of learning and memory in the cerebral
cortex (Hopfield 1982, Amit 1992, 1995, Brunel 2005). In these models, synaptic connectivity
in a recurrent neural network is set up in such a way that the network dynamics have multiple
attractor states, each of which represents a particular item that is stored in memory. Each
attractor state is a specific pattern of activity of the network, that is correlated with the state
of the network when the particular item is presented through external inputs. The attractor
property means that the network converges to the stored pattern, even if the external inputs
are correlated to, but not identical, to the pattern, a necessary requirement for an associative
memory model. In many of these models, the appropriate synaptic connectivity is assumed
to be generated thanks to a ‘Hebbian’ learning process, according to which synaptic efficacies
are modified by the activity of pre and post-synaptic neurons (Hebb 1949).

These models have been successful in reproducing qualitatively several landmark observa-
tions in delayed response tasks experiments in monkeys (Fuster et al. 1971, Miyashita 1988,

Funahashi et al. 1989, Goldman-Rakic 1995) and rodents (Liu et al. 2014, Guo et al. 2014,
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Inagaki et al. 2017). In some of the monkey experiments, animals are trained to perform a
task in which they have to remember for short times the identity or the location of a visual
stimulus. These tasks share in common a presentation period during which the monkey is
subjected to an external stimulus, and a delay period during which the monkey has to main-
tain in working memory the identity of the stimulus, which is needed to solve the task after
the end of the delay period. One of the major findings of these experiments is the observa-
tion of selective persistent activity during the delay period in a subset of recorded neurons
in many cortical areas, in particular in prefrontal cortex (Fuster et al. 1971, Funahashi et al.
1989, Romo et al. 1999), parietal cortex (Koch & Fuster 1989b), inferior temporal cortex
(Fuster & Jervey 1981, Miyashita 1988, Nakamura & Kubota 1995a) and other areas of the
temporal lobe (Nakamura & Kubota 1995a). In those neurons, the firing rate does not decay
to baseline during the delay period, but it is rather maintained at higher than baseline levels.
Furthermore, this increase in firing rate is selective, i.e. it occurs only for a subset of stimuli
used in the experiment. Selective persistent activity is consistent with attractor dynamics in
a recurrent neural network, whose synaptic connectivity is shaped by experience dependent
synaptic plasticity (Amit 1995, Wang 2001, Brunel 2005).

The attractor network scenario was originally instantiated in highly simplified fully con-
nected networks of binary neurons (Amari 1972, Hopfield 1982). While theorists have since
strived to incorporate more neurophysiological realism into associative memory models, us-
ing e.g. asymmetric and sparse connectivity (Derrida et al. 1987), sparse coding of memories
(Tsodyks & Feigel’Man 1988, T'sodyks 1988), online learning (Mézard et al. 19864, Parisi
1986, Amit & Fusi 1994), spiking neurons (Gerstner & van Hemmen 1992, Treves 1993,
Amit & Brunel 1997, Brunel & Wang 2001, Lansner 2009), there is still a large gap between
these models and experimental data. First, none of the existing models use patterns whose
statistics is consistent with data. Most models use bimodal distributions of firing rates, with

neurons either ‘activated’ by a stimulus or not, while there is no indication of such a bi-

71



modality in the data. Second, the connectivity matrices used in these models are essentially
engineered (and sometimes highly fine-tuned) such as to produce attractor dynamics, but are
totally unconstrained by data. Third, the attractor network scenario has been challenged by
the observation of a high degree of irregularity and strong temporal variations in the firing
rates of many neurons, which seem hard to reconcile with fixed point attractors (Druckmann
& Chklovskii 2012, Barak et al. 2013, Murray et al. 2017).

A recent study (Lim et al. 2015) provides us with the tools to potentially bridge these
gaps. It used data from experiments in which neuronal activity is recorded in IT cortex
in response to large sets of novel and familiar stimuli (Woloszyn & Sheinberg 2012). The
distribution of neuronal responses to novel stimuli allows the inference of the distribution
of firing rates of neurons in stimuli that are being memorized. This distribution is close to
a lognormal, at odds with bimodal distributions of firing rates used in the vast majority of
theoretical studies (for a few exceptions, see Treves (1990a,b), Festa et al. (2014)). Compar-
ison between the distributions of responses to novel and familiar stimuli allows the inference
of the dependence of the learning rule on post-synaptic firing rates. The inferred learning
rule is Hebbian, but shows two major differences with classic rules such as the covariance
rule (Sejnowski 1977): (1) The post-synaptic dependence of the rule is dominated by depres-
sion, such that the vast majority of external inputs leads to a net decrease in total synaptic
inputs to a neuron with learning, leading to a sparser representation of external stimuli;
(2) The dependence of the rule on post-synaptic firing rates is highly non-linear, as in the
Bienenstock-Cooper-Munro rule (Bienenstock et al. 1982).

These results beg the question of whether associative memory can emerge in networks
whose distributions of firing rates and learning rules are consistent with data. We therefore
set out to study a recurrent network model in which distributions of external inputs, single
neuron transfer function and learning rule are all inferred from ITC data (Lim et al. 2015).

We show that: (1) learning rules inferred from visual responses in ITC lead to attractor
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dynamics, without any need for parameter adjustment or fine tuning; (2) Activity in the
delay period is graded, with broad distributions of firing rates; (3) Learning rules inferred
from data are close to maximizing the number of stored patterns, in a space of unsupervised
Hebbian learning rules with sigmoidal dependence on pre and post-synaptic firing rates; (4)
In a large parameter region, our model presents irregular temporal dynamics during retrieval
states that strongly resembles the temporal variability observed during delay periods. In
this region, retrieval states are chaotic attractors that maintain a positive overlap with the
corresponding stored memory, and the network performs as a associative memory device

with fluctuations internally generated by the chaotic dynamics.

3.3 The model

We model local cortical circuits in IT cortex by a recurrent network composed of ‘firing
rate’ units (Hopfield 1984). The network is composed of N neurons whose firing rates are
described by analog variables r;, where ¢« = 1,2,... N represents the neuron index, as a
simplified model for a local network in ITC (see Fig. 3.1 for a schematic depiction of the

network). Firing rates obey standard rate equations (Grossberg 1969, Hopfield 1984)

N
=it o [ L+ > Jirg | (3.1)

7]
where 7 is the time constant of firing rate dynamics, ¢ is the input-output single neuron
transfer function (or f-I curve), I; are the external inputs to neuron i, and J;; is the strength

of the synapse connecting neuron j to neuron 1.

The connectivity matrix is sparse, and existing connections are shaped by external inputs
(‘patterns’) through a non-linear unsupervised Hebbian synaptic plasticity rule. In this rule,
external synaptic inputs f;u to neuron i during presentation of pattern p (i = 1,2,..., N and

iw=1,2,...,p) are generated randomly and independently from a Gaussian distribution (see

73



Adij o f(9(&))g(0(E5))

Figure 3.1: Learning and retrieval in recurrent neural networks with unsupervised Hebbian
learning rules. (A) When a novel pattern is presented to the network, synaptic inputs to each
neuron in the network (&, for neurons [ = 1,..., N) are drawn randomly and independently
from a Gaussian distribution. Synaptic inputs elicit firing rates through the static transfer
function, i.e. ¢(§). Some neurons respond strongly (red circles), others weakly (white
circles). (B) The firing rate pattern produced by the synaptic input currents modifies the
network connectivity according to an unsupervised Hebbian learning rule. The connection
strength is represented by the thickness of the corresponding arrow (the thicker the arrow the
stronger the connection). (C) After learning, a pattern of synaptic inputs that is correlated
but not identical to the stored pattern is presented to the network. (D) Following the
presentation, the network goes to an attractor state which strongly overlaps with the stored
pattern (compare with panel A), which indicates the retrieval of the corresponding memory.

Fig. 3.1 A,B and Methods). The assumption of independence of the patterns is consistent
with the data (see Fig. 3.2). The external inputs shape the connectivity matrix through
the firing rates ¢(¢;") generated by such inputs, and through two non-linear functions f and
g that characterize the dependence of the learning rule on the post-synaptic rate (f) and

pre-synaptic rate (g), respectively. When p patterns are learned by the network, the final

connectivity after learning gets structured as

Acij < k k
Ty = =237 1 [eeh)] o [oeh)] (3.2)
k=1
where ¢;; is a sparse random (Erdos-Renyi) structural connectivity matrix (¢;; = 1 with
probability ¢, ¢;; = 0 with probability 1—c, where ¢ < 1). This synaptic connectivity matrix

can be obtained by a learning rule that changes the synaptic connectivity matrix by a factor

Aldij < f [¢(§f)} g [qﬁ(ﬁé‘)} when a pattern p is presented to the network, starting from an
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Figure 3.2: Correlations between input currents corresponding to familiar images. Our
theory relies on the assumption that stored patterns are uncorrelated. When correlations
between stored patterns are included, the storage capacity of our network drastically de-
creases. To test this assumption, we computed correlations between input currents corre-
sponding to familiar images. Using the transfer function inferred from novel stimuli (see
Fig. 3.3B), we computed for each neuron the input currents that elicit the firing rate re-
sponses to each of the 125 familiar images. We then computed the correlations between
input currents corresponding to different familiar images. (A) Correlation matrix for the
input currents corresponding to the 125 familiar images across the 14 putative excitatory
neurons considered in this study. (B) Correlation matrix for the input currents correspond-
ing to the 125 familiar images when the identity of the images are randomly shuffied for each
neuron. (C) Histogram of the correlation values for the original correlation matrix in panel
A (red), the correlation matrix from the randomized responses in panel B (blue) and from
a correlation matrix of input currents drawn independently from a Gaussian distribution
with zero mean and unit variance (i.e. Gaussian i.i.d.; green). The diagonal terms were
excluded. (D) Largest 20 singular values for correlation matrices in panel A (red), B (green)
and from the Gaussian i.i.d. input currents (blue). The opaque blue and green shaded areas
correspond to the 95% confidence interval for the singular values across 200 realizations of
the correlation matrices of the randomized responses and the Gaussian i.i.d. input currents

respectively.
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initial tabula rasa J;j = 0, and neglecting the contributions of recurrent connections during
learning. This rule is a generalization of Hebbian rules used in classic models such as the
Hopfield model (Hopfield 1982) or the Tsodyks-Feigel'man model (Tsodyks & Feigel’Man
1988), with two important differences: patterns have a Gaussian distribution instead of
binary; and the dependence of the rule on firing rates is non-linear instead of linear. In the
following, the patterns that have shaped the connectivity matrix will be termed ‘familiar’

while all other random patterns presented to the network will be termed ‘novel’.

3.4 Inferring transfer function and learning rule from data

The model defined by Egs. (4.1,3.2) depends on three functions ¢, f and g that define
the single neuron transfer function and synaptic learning rule, respectively. How to choose
these functions? We used a method that was recently introduced by Lim et al. (2015)
to infer the tranfer function (¢) and the post-synaptic dependence of the learning rule f
from electrophysiological data recorded in ITC (Woloszyn & Sheinberg 2012). The transfer
function ¢ is obtained by finding the function that maps a standard Gaussian distribution
to the empirical distribution of visual responses of neurons to a large set of novel stimuli
(see Methods). The post-synaptic dependence of the learning rule f was obtained from the
differences between the distribution of visual responses to familiar and novel stimuli, under
the assumption that changes in such distributions are due to changes in synaptic connectivity
in recurrent I'TC circuits. Note that only the function f, and not g, can be inferred from
data - this is due to the fact that the mean inputs to a neuron are proportional to f [gb(flk )]
while the function g only appears in an integral (see Methods, Eq. (3.51)). Therefore, the
knowledge of how the mean inputs change with learning as a function of its firing rate allows
us to infer f but not g. As an additional step to the procedure described by Lim et al.
(2015), we fitted the resulting functions ¢ and f using sigmoidal functions (see Methods
and Fig. 3.3, i.e. ¢;(€) = rm/(1 + e PE0)) and f(r) = % [2qf — 1+ tanh(B(r — xf))}
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respectively). These sigmoidal functions provided good fits to the data (see Fig. 3.3A-C,
that shows fits of three representative ITC neurons; and Fig. A.1-A.3 for all neurons in the
data set). This fitting procedure gave us for each neurons three parameters of the transfer
function: the maximal firing rate r, (median: r,, = 76.2Hz), a measure of the slope at the
inflection point S (median: Sy = 0.82), and the threshold (current at the inflection point,
median: hy = 2.46 - see Fig. 3.3D for a boxplot of these parameters). It also gives us for each
neuron three parameters characterizing the function f: the threshold z ¢ (median: 26.6 Hz),
slope at the inflection point 3; (median: 0.28 s) and saturation g (median: 0.83). Finally,
the fitting procedure also gives us the learning rate A (median: 3.55).

A number of features of these fitted functions are noteworthy: First, the vast majority
of the visual responses of neurons are in the supralinear part of the transfer function, and
therefore far from saturation. This is consistent with many studies showing supra-linear
transfer functions at low firing rates, both in vitro (Rauch et al. 2003) and in vivo (Anderson
et al. 2000). Second, this has the consequence that the distribution of visual responses are
strongly right-skewed, and in fact close to lognormal distributions, consistent with multiple
observations in vivo (Hromadka et al. 2008, Roxin et al. 2011, Buzsaki & Mizuseki 2014,
Lim et al. 2015). Third, the function f is strongly non-linear, and the threshold between
depression and potentiation occurs at a firing rate that is much higher than the mean rate,
leading to depression of the mean synaptic inputs to a neuron for the vast majority of shown
stimuli. Fourth, the average of the function f across the distribution of patterns is negative,
which leads to a decrease of the average visual response with familiarity (Lim et al. 2015).

The only parameters that are left unconstrained by data are two parameters character-
izing the function g. In most of the following, we will take those parameters to be identical
to the corresponding parameters of the function f (i.e. zg = xy and By = B¢; note that g is
fixed by the condition that the average of the function g across the distribution of patterns

is zero, see Methods). We will also explore the space of values of x4 and 3, (see below).
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Figure 3.3: Inferring transfer function and learning rule from ITC data. (A) Distributions
of firing rates in response to novel stimuli, for three different ITC neurons. Blue histogram:
histogram of experimentally recorded visual responses. Red: Distribution of firing rates
obtained from passing a standard normal distribution through the sigmoidal transfer function
shown in B. Gray vertical line: average firing rate. Green vertical line: learning rule threshold
zy (see C). (B) Static transfer function ¢ derived from the distribution of visual responses
for novel stimuli (see A), assuming a Gaussian distribution of inputs (see (Lim et al. 2015)
and Methods) for the same three neurons shown in A. The data (blue circles) was fitted using
a sigmoidal function (red line; see Methods, Eq. (3.48)), defined by three parameters: the
current hq that leads to half the maximal firing rate (cyan dashed lines), a slope parameter fSp
(dashed yellow line in top plot), and maximal firing rate r,,. (C) Dependence of the synaptic
plasticity rule on the postsynaptic firing rate as a function of firing rate (i.e. f(r)). The
data (black circles) was fitted with a sigmoidal function (blue line; see Methods, Eq. (3.53)),
defined by three parameters: maximum potentiation ¢ ; threshold z ¢ (see green dashed line);
and slope parameter (¢ (dashed yellow line in top plot). On the right axis is indicated the
maximum potentiation of the fit gy. (D) Boxplot for the fitted parameters r,,, S and hyg
of the transfer function. (E) Boxplot for the fitted parameters « > B¢, gy of the dependence
of the synaptic plasticity rule on the postsynaptic firing rate, and A, the learning rate.
The red line and green triangle indicate the median and the mean of the fitted parameters,
respectively. Gray symbols indicate the parameters of the three neurons shown in A,B,C.
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3.5 Dynamics of the network following presentation of familiar

and novel stimuli

Having specified the model, we now turn to the dynamics of the network described by
Egs. (4.1,3.2), whose parameters are set to the median best-fit parameters according to
the procedure described above. In particular, we ask whether the model exhibits attractor
dynamics. To address this question, we used both numerical simulations of large networks
(see Methods) and mean field theory (MFT - see Methods). For the MFT, we assume
that both the number of neurons and stored patterns are large (i.e. more specifically the
limit p, N — 00), while the number of stored patterns p divided by the average number of
synapses per neuron (Nc¢), « = p/Nc remains of order one. We call a the memory load of the
network. The results of the MFT only depend on N, ¢ and p via this quantity (see Methods).
From our MFT analysis, we obtain mathematical expressions for two ‘order parameters’ that
describe how network states are correlated (or not) with stored patterns. We are specifically
interested here in the situation when the network state is correlated with one of the stored
patterns (e.g. following the presentation of this particular pattern).

The first order parameter describes the ‘overlap’ m between the current state of the
network (described by the vector of firing rates r;, for ¢ = 1,2,..., N) and the pattern
of interest (see methods for the mathematical definition of m). When m is of order 1,
this indicates that the corresponding pattern is retrieved from memory. Consequently, each
pattern stored in memory can be retrieved by initializing the network dynamics with a
configuration that is close to that particular pattern, and letting the network evolve towards
its attractor state. In this case, giving a partial cue to the network leads the dynamics
towards an attractor state correlated with the stored pattern, a signature of associative
memory. The other order parameter M describes the interference due to the other stored
patterns in the connectivity matrix; it is proportional to the average squared firing rates of

the network (see Methods). Equations for the order parameters as a function of «, ¢, f and
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g are given in Methods.

The results of the simulation of a particular realization of a network of N = 50,000
neurons with ¢ = 0.005 (an average of 250 connections per neuron) storing p = 30 patterns
(a = 0.12), and the comparison with the results from MFT are shown in Fig. 3.4. In the
simulations, the network was initialized in a state which was uncorrelated with all the stored
patterns. For these parameters, the network converged to a ‘background’ state in which all
neurons fire at low rates (average 7.98/s, standard deviation 2.92/s). Upon presentation of
a novel stimulus (Fig. 3.4A), neurons were driven to stimulus-specific firing rates, with a
distribution of firing rates that was close to a lognormal distribution (Fig. 3.4C), similar to
experimental observations (Lim et al. 2015). The distribution is close to lognormal because
the distribution of inputs to neurons is Gaussian, and the neuronal transfer function is
close to being exponential at low rates (see Methods). After the end of the presentation
of the stimulus, the network came back to its initial background state (Fig. 3.4A). Upon
presentation of a familiar stimulus (Fig. 3.4D), the statistics of neuronal responses differed
markedly from the response to novel stimuli: a few neurons responded at higher rates,
but the majority of neurons responded at lower rates compared to a novel stimulus. The
distribution of visual responses for familiar stimuli had consequently a lower mean compared
to the distribution of responses for novel stimuli but a larger tail at high rates (compare
Fig. 3.4C and F). These two features were consistent with data recorded in I'TC by multiple
groups (Li et al. 1993, Kobatake et al. 1998, Logothetis et al. 1995, Freedman et al. 2006,
Woloszyn & Sheinberg 2012).

After removal of a familiar stimulus, the network no longer came back to the initial
background state, but rather converged to an attractor state that was strongly correlated
with the shown stimulus (Fig. 3.4D), as shown by the strong overlap between the network
state and the shown pattern (see blue curve in Fig. 3.4E). A small fraction of neurons

exhibited persistent activity at high rates (4.3% of the neurons are above half maximal
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Figure 3.4: Dynamics of the network before, during and after the presentation of novel (top
row) and familiar (bottom row) stimuli, mimicking the initial part of a trial of a delay match
to sample (DMS) experiment. (A) Firing rate of a randomly sampled subset of 100 neurons
of a simulated network before, during and after the presentation of a novel stimulus. Vertical
dashed lines indicate the beginning and the end of the presentation. Note that the firing
rates of all neurons decay to baseline following removal of the stimulus. (B) Dynamics of the
overlaps with the stored patterns. Green traces show overlaps computed numerically from
the network simulation corresponding to each of the stored patterns. The yellow trace shows
the overlap of the network state with the shown novel pattern. (C) Distribution of firing rates
during the presentation (red) and delay (blue) periods. Smooth curves correspond to the
predictions of the MFT, histograms are obtained from network simulations. (D) Similar to
A, except that the shown stimulus is familiar. Note that this time firing rates do not decay to
baseline during the delay period, but to a value that is strongly correlated (but not identical)
to the visual response. (E) Dynamics of overlaps when a familiar stimulus is presented. The
blue trace shows the numerically computed overlap with the pattern presented during the
presentation period. The red trace shows the corresponding overlap computed from MFT.
(F) Distribution of firing rates during the presentation (red) and delay (blue) periods in
response to the presentation of a familiar stimulus. The vast majority of the neurons fire
in the 0-10Hz range. A closer inspection of the tail of the distribution shows a tiny peak
close to saturation in homogeneous networks (full lines), while this peak disappears when
the heterogeneity in maximal firing rates is included (dashed lines).
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rate), but most neurons remained at low rates during the simulated delay period (Fig. 3.4F).
The distribution of firing rates was again similar to a lognormal distribution at low rates, but
the tail of the distribution was shaped by neuronal saturation and therefore exhibited a tiny
peak close to maximal firing rates. Both overlap with presented pattern and distributions
of firing rates could be computed by the MFT and were in close agreement with network
simulations (Fig. 3.4E and F'). When the heterogeneity on the neuronal saturation is included
into our model by randomly selecting maximal firing rates for each neuron from a log-
normal distribution that fits the empirical distribution of the best-fit maximal firing rates (see
Fig. 3.3E), the peak at maximal firing rate disappears. Thus, in a heterogeneous network,
distributions of firing rates during both presentation and delay periods become unimodal
(Fig. 3.4F dashed lines).

Thus, our network behaved as an associative memory when constrained by ITC data,
without any need for parameter variation or fine tuning. Furthermore, in addition to re-
producing the distributions of visual responses for both novel and familiar stimuli seen ex-
perimentally, it also exhibited qualitatively some of the main features observed both during
spontaneous and delay activity in I'T cortex: broad distribution of firing rates in both sponta-
neous and delay period activity, and small fraction of neurons firing at elevated rates during

persistent activity (Miyashita 1988, Nakamura & Kubota 1995a).

3.6 Storage capacity, and its dependence on g

We now turn to the question of the storage capacity of the network, i.e. how many different
patterns can be stored in the connectivity matrix. The calculation of the storage capacity
of associative memory models such as the Hopfield model was one of the first successful
applications of statistical physics to theoretical neuroscience (Amit et al. 1987). One of the
main findings of such models is that the number of patterns that can be stored scales linearly

with the number of plastic connections per neuron, i.e. the maximal value of « is of order
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1. This maximal storage capacity o, has been computed in many variants of the Hopfield
model (see e.g. Amit (1992)). To compute the storage capacity of our network, we found
numerically the largest value of « for which retrieval states (i.e. states with positive overlap
with one of the stored patterns, m > 0) exist. Fig. 3.5A shows how the overlap in retrieval
states m varies as a function of the storage load «, computed using both MFT (solid line)
and simulations (symbols with errorbars) when parameters of the functions ¢ and f are
taken to be the median best-fit parameters, and those of the function g (except g4, that
is set by the balance condition, Eq. 3.56) are taken to be identical to f. It shows that m
gradually decreases with «, due to more ‘noise’ in the retrieval due to other stored patterns,
until it drops abruptly to zero at a value of a. = 0.56. This value is remarkably close to the
maximal capacity of the sparsely connected Hopfield model of binary neurons storing binary

patterns, for which a. = 0.64 (Derrida et al. 1987).
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Figure 3.5: Storage capacity of the network, and its dependence on g. (A) Overlap as
a function of memory load o (number of patterns stored divided by average number of
connections per neuron). Grey: MFT. Red circles: Numerical simulations (average and
standard deviations computed from 100 realizations with N =5 - 104). The overlap stays
positive until o ~ 0.56. Parameters of g are chosen to be identical to those of f. (B)
Capacity vs 8g. The capacity is maximized for 83 ~ B (dashed red line 33 = Bf). (C)
Capacity vs z4. The capacity is close to being maximized for z; ~ x4 (dashed red line
xg = xy). Other parameters as in Fig. 3.4.

We then explored how the capacity depends on the parameters of the function g, that

describes the dependence of the learning rule on the presynaptic firing rate. Fig. 3.5B and
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C show that the capacity is close to being maximized when these parameters match those of
the function f, i.e. zg = zy and 8y = fy. Fig. 3.5B shows that the capacity is non-zero only
when the g is sufficiently non-linear, i.e. S5 > 0.1. It peaks around Sy = Sy, but remains
high in the 8y — oo limit when the function g becomes a step function. Fig. 3.5C shows
that the capacity is non-zero only in a finite range of ¢, between 10 and 30/s. It shows

again that capacity peaks when xg is close to zy.

3.7 Learning rules inferred from I'TC data are close to

maximizing memory storage

The storage capacity of the network with median parameters is in the same range or higher
than the capacity of classic associative memory models of binary neurons - for instance, the
Hopfield model has a capacity of ae ~ 0.14 (Amit et al. 1987), while its sparsely connected
variant has a capacity of a, ~ 0.64 (Derrida et al. 1987). The next question we addressed is
how this capacity depends on the parameters of this learning rule. We have already discussed
above the dependence of the capacity on x4 and ;. Here, we explore the dependence on
the four remaining parameters characterizing the learning rule - A, z¢, 8 and gy. Using
MFT, we explored systematically the space of these four parameters, and plot in Fig. 3.6
all possible cuts of this four dimensional space, in which 2 of the 4 parameters are varied,
while the other 2 are set to the median values. In all these plots, the maximal capacity .
is plotted as a function of two parameters, using a gray scale (white indicate high capacity,
black low capacity). The yellow dashed line indicates the line for which the function f is
‘balanced’ (i.e. its average across the distribution of patterns is zero). It marks the border
between a depression-dominated region, for which learning leads to a decrease in average
responses, and a potentiation-dominated region, for which learning leads to an increase of
such responses. The red cross mark indicates the median parameters, while the dashed red

rectangle indicates the interquartile range.
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Figure 3.6: Inferred learning rules from ITC are close to maximizing memory storage. Con-
tour plots for the capacity of the network as a function of two parameters. In each plot, two
parameters are set to the median best-fit parameters, and the other two are varied. The
yellow dashed line indicates the curve where potentiation and depression are balanced in av-

erage (i.e. [ dgej;2f(¢(§))) = 0). It separates the potentiation (i.e. [ dge\/g;ff(gzﬁ({))) >0

g2
) and depression (i.e. [ dé’e\/é%z f(#(&))) < 0) regions. The parameter region corresponding

to the interquartile range is indicated with a red dashed rectangle. The median best-fit
parameters are shown as a red cross mark. The parameters of g: x4 =z and 8y = Oy.
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Fig. 3.6 shows that the median parameters are close to maximizing storage capacity. In
fact, we found that the maximal capacity over this space is a, ~0.85 (see Fig. 3.7 and 3.8
for details). These figures show also that most (but not all) of the interquartile range lie in
a high-capacity region. It also shows that some parameter variations lead to little changes
in capacity, while others lead to a drastic drop. Decreasing the learning strength A from its
optimal value leads to an abrupt drop in capacity, while increasing it leads to a much gentler
decrease (see Fig. 3.6D-F). A similar effect is observed for the slope of f; decreasing the slope
(i.e. making f more linear) leads to an abrupt decrease in capacity, while increasing it beyond
the median value leads to very little change in capacity (see Fig. 3.6B-D). Thresholds x g for
which high capacities are obtained are much higher than the mean response to novel visual
stimuli (Fig. 3.6A,B and D), leading to a sparsening of the representations of the patterns
by the network. Finally, the optimal offset is close to the ‘balanced’ line, but slightly on the

depression-dominated region, as the median parameter (Fig. 3.6A,C and F).

3.8 A chaotic phase with associative memory properties

Are fixed point attractors the only possible dynamical regime in this network? Firing rate
models with asymmetric connectivity have been shown to exhibit strongly chaotic states
(Sompolinsky et al. 1988, Tirozzi & Tsodyks 1991). Varying parameters of the learning
rule, we found parameter regions in which background and/or retrieval fixed point attractor
states destabilize and the network settle into strongly chaotic states. Fig. 3.9A shows an
example of such chaotic states, obtained for the median parameters as in Fig. 3.4, except
for the learning rate which is three times its median best-fit value (A = 10.65). For such
parameters, the background state is strongly chaotic. Presentation of a familiar stimulus
leads to a transition to another chaotic state, in which all neurons fluctuate chaotically
around stimulus-specific firing rates, such that the mean overlap with the corresponding

pattern remains high (see Fig. 3.9 B). Remarkably, chaotic retrieval states remain strongly
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Figure 3.7 MFT limits and capacity. (A) Overlap vs load « in the limit ¢ — ¢ and
A — oo (see (3.39) and (3.40) on Methods) for p = 0,0.2,0.4,0.6,0.8,1 (p = 1 — ¢q4). In
this limit, the mean field 2(J,quations (see Eq. (20) and (21) in Tsodyks (1988)) with 6y = 0
0

2plog%1/p)_
all p. (B) Capacity vs p for A = 5,6.1,6.95,8, 10, 20, 100, 1000 (see Eq. (3.39) and (3.40)
on Methods). For a fixed A ~ O(1), capacity is maximized in the sparse coding limit (i.e.
p—0). A~6.95and p — 0 leads to the maximal capacity in the A-p plane, with a. ~ 0.85

(see green curve). For A — oo, which implies ]ﬁ < A, the capacity is ae = 1 /7 for all p

(see gray curve and dashed red line) as shown in panel A. (C) Capacity vs A for p = 1073 and
Aq=qg—qy =0,0.02,0.05 (see Eq. (33) and (34) on section 3 of Methods S1). For A, =0

the mean field equations are the same as in panel B with p = 1073, showing the maximal
capacity a. ~ 0.85 at A ~ 6.95. Increasing Ay, which implies qf < qg, produces a rapid
decrease in the capacity (see orange and green curves). For A — oo the capacity decreases
rapidly as a. = 1?/7 (see dashed red lines) as shown on Methods (see Eq. (3.44)). (D)
Capacity vs p for A = 6.95 and Ay = 0,0.02,0.05 (see Eq. (3.37) and (3.38) on Methods).
As in panel C, the capacity decreases rapidly as A, increases. For 0 < A, the maximal
capacity occurs at non-zero p (the capacity curve becomes concave). This is similar to what
is observed for sigmoidal f and g (see Fig. 3.6), where the maximal capacity is obtained for
a finite threshold and therefore a non-zero value of p.

are recovered. o & is not attainable since 6y = 0. The capacity is a. = 1/x for
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Figure 3.8: Maximal capacity in the (z e A) parameter space. Numerical search of the
maximal capacity using the Nelder-Mead algorithm for sigmoidal f and g (see Eq. (3.13)
and (3.13)) with x4 = xy and 3 = B¢. For four representative values of the slope 3¢

(Bf = {0.05 Bf, 0.5,5} where 5 is the median of the best-fit slopes), the maximal capacity
was searched in the (z £14q f) parameter space for fixed values of A in a grid. Starting with the
largest value of A in the grid, we used the previous maximal capacity point (x?mx, q}’mx ) as
the initial condition for searching the maximal capacity of the next value of A. In this way, we
smoothly followed the maximal capacity in the (z,qf, A) parameter space. The maximal
capacity increases monotonically with B¢. (A) Maximal capacity (ac) vs A for different
values of J¢. The maximal capacity approaches asymptotically the value found in Fig. 3.7.B
(i.e. ae =~ 0.85, see dashed red line). The capacity for the median best-fit parameters
(see red square) is smaller but comparable with the maximal capacity in the (x 1 Brar, A)
parameter space. (B) Optimal threshold (z ) vs A. Red square: Median best-fit threshold.
(C) Optimal saturation (qr) vs A. Red square: Median best-fit saturation.
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correlated with the corresponding patterns (see Fig. 3.9B), so that the network can still
perform as an associative memory in spite of the chaotic fluctuations of network activity.
Interestingly, the storage capacity for such parameters is larger than the capacity estimated
from the static MFT (see Fig. 3.9C).

In such chaotic retrieval states, single neuron activity exhibit strong firing rate fluctu-
ations which vary from trial to trial (see thin colored lines in Fig. 3.9D-F showing three
randomly selected neurons), but trial-averaged firing rates show systematic temporal pat-
terns. For instance, the activity of the neuron shown in Fig. 3.9D ramps up in the first
second of the delay period, before this activity plateaus at a rate of about 20/s. The neuron
shown in Fig. 3.9F shows a rapid activity increase during the presentation period, followed
by a trough, followed by a second increase during the delay period. These temporal patterns
of the trial-averaged firing rate, together with a strong irregularity within trials, are remi-
niscent of observations by multiple groups in primate PFC during delay periods (Shafi et al.
2007, Brody et al. 2003, Murray et al. 2017).

To check whether these states are truly chaotic, we computed the temporal evolution of
the distance between two network states with slightly different initial conditions (see Meth-
ods). Fig. 3.9G shows that an initial distance between two initial conditions of 4.5 - 107Hz
exponentially grows and then plateaus to an average of ~ 13Hz. This sensitivity to initial
conditions, and initial exponential growth of the distance between perturbed and unper-
turbed network states is the defining feature of a chaotic system (Guckenheimer & Holmes
2013). The divergence of the network states starts to be noticeable in the single neuron dy-
namics in about ~1s (see Fig. 3.9H). However, the overlap with the stored pattern remains
high in both networks states (see Fig. 3.91). Therefore, despite the growth of the distance
between the two network states, their dynamics keep aligned to the 1-dimensional subspace
(of the full N-dimensional network space) spanned by the retrieved memory, providing a low

dimensional representation of each memory.
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Figure 3.9: Chaotic background and retrieval states, for a network with parameters as in
Fig. 3.4, except for the learning rate (A = 10.65) and memory load (o = 0.48 in all panels
except in C). (A) Firing rate dynamics for a randomly sampled subset of 10 neurons of a
simulated network when a familiar stimulus (i.e. one of the stored patterns) is presented.
(B) Dynamics of the overlaps before, during and after the presentation of a familiar stimu-
lus. Green traces shown all the overlaps computed numerically from the network simulation
corresponding to each of the stored patterns except the one with the presented pattern,
shown in blue. (C) Overlap vs memory load. Gray curve: MFT. Red circles: simulations in
which the dynamics converge to fixed point attractors. Blue square: simulations in which
the dynamics converge to chaotic states. (D-F) Dynamics of the firing rate of three example
neurons in 10 different trials (random initial conditions - transparent traces). Trial-averaged
firing rate (over 20 trials) is shown with an opaque trace. (G) Light gray traces: exponential
initial growth followed by saturation of the distance between pairs of retrieval states corre-
sponding to the same stored pattern but slightly different initial conditions (see Methods).
Red curve: average distance between pairs of retrieval states with slightly different initial
conditions. (H) Firing rate of a single neuron starting from two slightly different initial
conditions (continuous vs dashed). (I) Overlaps with the retrieved pattern (blue) and all
other stored patterns (green) again for a pair of initial conditions (continuous vs dashed).
As in Fig. 3.4, in A, B and D-F vertical dashed lines indicate the beginning and the end of
the presentation period.
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Figure 3.10:  Statistical properties of the chaotic background and retrieval states, for a
network with parameters as in Fig 3.9. (A) Red: background state. Black: retrieval state.
Thick traces: mean autocorrelation (AC) functions across 100 randomly sampled neurons
with mean firing rate between 1Hz and half of the maximal firing rate (low mean firing rates;
dashed) and between half of the maximal firing rate and 65Hz (high mean firing rates; solid).
Light traces: AC function for neurons with the fastest and slowest decays, showing a broad
range of individual AC timescales. (B) Mean cross-correlation (CC) functions across 200
randomly chosen pairs of neurons with high (i.e. high-high), low (i.e. low-low) and with
one neuron high and the other low (i.e. high-low) mean firing rates. Same color code than
panel A. (C) Distribution of mean firing rates during the presentation (red) and delay (blue)
periods for novel (dashed) and familiar (solid) stimuli.
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Across neurons, for both the background and retrieval state, the chaotic fluctuations in
the rates have a distinctive times scale of about 100ms (see Fig. 3.10A). However, there
is a broad diversity of time scales for individual neurons, ranging from about ~ 50ms to
~ 500ms (see Fig. 3.10A, light traces). Neurons are weakly correlated, for both background
and retrieval states (see Fig. 3.10B). Lastly, the distributions of the mean firing rates are
qualitatively similar to the ones described for the fixed-point attractor scenario (compare
Fig. 3.4C and F with Fig. 3.10C), but with a higher proportion of neurons at very low

rates.

3.9 Methods

3.9.1 Static mean field theory

The Model

We consider a network of N neurons with firing rates represented by a vector of analog vari-
ables 7. Standard normal patterns of current {&* }zzl with §f Y (0,1) are imprinted in
the connectivity matrix as the corresponding firing rates elicited by these current patterns,
neglecting contributions of the recurrent connections. Hence, the firing rate patterns corre-
sponding to these current patterns are given by gb(fzk ), where ¢ is the static transfer function
of single neurons. In other words, the stored firing rate patterns are standard normal pat-
terns of current {5k }le passed through the static transfer function ¢. Note that in the limit
where hg is large (see Fig 3.3 B and Eq. (3.48)), these firing rate patterns become dis-
tributed according to a log-normal distribution, since the transfer function is exponential in
that limit. The rate dependent learning rule is given by two firing rate dependent functions:
1) g which characterizes the dependence on the firing rate of the pre synaptic neuron; 2)f
which characterizes the dependence on the firing rate of the post synaptic neuron. With this

learning rule, assuming a linear summation of terms corresponding to the different patterns,
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as in the Hopfield model (Hopfield 1982) and many of its generalizations, the connectivity

matrix is given by
p

> Flo(ENglo(el)], (3.3)
cN
k=1

where ¢;; is a sparse directed Erdds-Rényi structural connectivity with each synapse present
with probability ¢, and the pair of functions f and g define together the learning rule.
This is a generalization of classical Hebbian learning rules such as the covariance (Sejnowski
1977) and BCM (Bienenstock et al. 1982) since the synaptic strength of the connections
between pre and post synaptic neurons is proportional to the product of two functions of
their activities. This feature allows a nonlinear dependence of the synaptic strength with
the pre and post synaptic activity, but maintains the separability of the learning rule. The

operation of f and g under a vector 7, i.e. f(7) or g(7), is element-wise. We assume that

| Pateten =0 (3.4

which ensures that the average change in connection strength due to learning of a single
pattern is zero. This could be enforced by a homeostatic mechanism that controls the mean
changes in the incoming inputs due to learning (Toyoizumi et al. 2014, Vogels et al. 2011).
In our model we assume that both functions f and g are bounded above and below by ¢ /aqg
and ¢r — 1/qg — 1, respectively, where 0 < gy <1, 0 < gy < 1. The constant A in Eq. (3.3)
controls the strength of the changes in the connectivity due to the learning rule.

The firing rate r;(t) of each neuron evolve according to standard rate equations (Grossberg

1969, Hopfield 1984), i.e.

N
T, =—r;+¢ | I; + Z Jerj . (35)
i#]
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Thus, the steady or attractor state for the dynamics is given by

N
Ti:¢ Z‘]ijrj i:1,...,N. (3.6)
7]

Order parameters - delay period

Throughout this chapter, we will perform a mean field analysis of the steady states of the
network in the limits NV, ¢N and p going to infinity, 1 < Nc¢ < N and p = a/cN where «
remains of order 1. We consider exclusively steady states that are correlated with a single
pattern 51 but uncorrelated with all other patterns 5“ for p > 1. States with a non-zero
correlation with one of the patterns are termed ‘retrieval states’, while the state with no
correlation with any of the patterns is termed ‘background state’. The steady state 7 given
by Eq. (3.6) depends on the pattern being retrieved £ (the ‘signal’) but also on two sources
of frozen noise: 1) the disorder due to the random patterns stored in the connectivity; 2)
the disorder given by the structural connectivity C' (where C' is a binary matrix with entries
cij €10,1}). The goal of the mean-field analysis is to compute whether and how the network
state 7is correlated with él, together with other quantities of interest such as the distribution
of firing rates.

The first step in the mean field analysis consists in computing the statistics of the synaptic

inputs,
N

hi =T+ Jyrj, (3.7)
i#]
where the connectivity matrix J;; is given by Eq. (3.3). We first start by the situation in
which there are no external inputs, I; = 0. In a delay match to sample experiment, this
describes the intervals before presentation of the stimulus, and after this presentation (delay
period)

To compute the statistics of synaptic inputs, it is useful to separate the contribution due
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to the first pattern le that the network is trying to retrieve, with the contributions of all

other patterns, which will act as noise on the retrieval of the first pattern,
hi = Af(€] chg )rj+Y; (3.8)

where Y; describes the ‘noise’ term,

Y; CNZZCzjf gl‘ ))

u>1 g

In the large ¢N limit, due to the law of large numbers, the first term in Eq. (3.8) converges

in probability to Af (fil)q, where ¢ is given by

=+ Y g 3.9

q is our first order parameter (recall that c;; and &; are independent). It describes how
correlated the network state is with a non-linear transformation of the stored pattern 52-1,
g(qb({zl)) This is a natural generalization of the overlap defined in classical models (Amit
et al. 1985) for networks with generalized Hebbian learning rules.

It is instructive to consider first the case in which & Lis the only stored pattern in the
connectivity matrix. In this case, the synaptic input to neuron ¢ is uniquely determined
by the learning rate A, the post-synaptic function f taken at the firing rate induced by
the pattern qb(le), and ¢. To compute ¢, we can use Eq. (3.9), replace r; by ¢(h;) where

h; =Af (5})(], and replace 1/N ). by an integral over the distribution of &,

q= / DEG(H(E)H(AF(H(€))a), (3.10)

where D¢ denotes the Gaussian measure dfe‘gg/ 2/\/27. Eq. (3.10) can be solved to obtain
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the possible values of ¢ given f, g and A. Note that ¢ = 0 (corresponding to the background
state) is always a solution to this equation, due to Eq. (3.4).

In the case in which many patterns are stored in the connectivity matrix, we need to
compute the statistics of the noise term Y;. In the large p, N limits, this term becomes
distributed according to a Gaussian distribution with zero mean (since the average of g(¢(€))

over the distribution of s is zero) and a variance given by
Var(Y;) = ayM

where

VEA{[”Da%monlépw%wa» (3.11)

and M is our second order parameter, which is equal to the average squared firing rate over

the network,

1 2
M:NZT’i. (3.12)
1

In this calculation the independence between {; from r; is assumed. The final step is to
compute the order parameters self-consistently. For this, we use the fact that Y; is a Gaussian
random variable with zero mean and variance ayM, replace r; by ¢(qAf (gb(fll)) +Y;) in
Egs. (3.9,3.12) and replace the sums over i by a double integral over the distributions of &;

and Y;, leading to

q:/ffhwmwwwwwwcmm (3.13)

vo= [ Depysaane) + Varty), (3.14)

The overlap m, which corresponds to the correlation between g(¢(€)) and the firing rates
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r, is given by

m = d : (3.15)

(M = R2),/ [%5, Dzg(é(2)?

where R is the mean firing rate in the attractor state given by

- [ O:O / O:O DaDys(gAf(6(2)) + v/ar My). (3.16)

Distributions of firing rates - delay period

To compute the distribution of firing rates, we use the fact that the distribution of synaptic

inputs conditioned on the pattern being retrieved is Gaussian,

p(hle! = =) = N (Af(6(=))g. a7 M) (3.17)

where the order parameters ¢ and M are determined by the self-consistent equations (3.13)
and (3.14).
Using the fact that the transfer function is non-decreasing, we obtain the distribution of

steady state firing rates conditional to the pattern 51 presented during the delay period

(¢_1(r) — Af(Z)Q)2> d¢_1(7”). (3.18)

1
1_ .y _ _
pr(rle” = 2) 2ray M P ( 20yM dr

From this conditional probability distribution, we obtain the marginal distribution of

firing rates at the steady state, r,

(672(r) - Af(Z)CJ)2> W (g

0 1
— Dy~ _
pr(r) /_Oo Z\/Qﬂ'Oé’)/M P ( 20y M dr
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Order parameters and distributions of firing rates - presentation period

A similar analysis can be done in the situation when an external stimulus is presented to
the network. We consider here two scenarios, one in which the presented stimulus is one of
the stored patterns, I; = 521 (a ‘familiar’ stimulus), and the other in which the stimulus is
uncorrelated with the stored patterns (a ‘novel” stimulus).

In the ‘novel’” case, the synaptic inputs are
hi =1;+Y; (3.20)

where the external stimulus {/;} is independently sampled from a normal distribution with

. . wd
mean zero and variance I (i.e. I; ~

(0, ]3)), where [ is the amplitude of the stimulation.
For consistency reasons we use Iy = 1 in all the results shown in this chapter, but show here
calculations for arbitrary Ip. The stimulus Iis independent of all the previous patterns
learned {ék Z:l' Therefore, the synaptic inputs are the sum of two uncorrelated Gaussian
random variables, one with variance Ig, the other with variance ayM. Hence, they are
distributed according to a Gaussian of variance \/]3 + ayM.

Since the stimulus is uncorrelated with all stored patterns, the overlap ¢ is equal to zero,

while the other order parameter M is given by

M = /OO Dz¢>2(\/[g +ayMz). (3.21)

The distribution of firing rates during the presentation period for a novel stimulus is
a distribution of a Gaussian of mean zero and variance ,/]g + ayM passed through the

non-linear function ¢ and is therefore given by

nov (1 _ 1 do~t(r) [ _(”t()?
Ppres(r) \/271(]8 o) I p ( 2(13 - OmM)) : (3.22)
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In the ‘familiar’ case, the synaptic inputs during presentation of the pattern become

hi = Io& + qAf(6(&) + Y (3.23)

where the first term in the r.h.s. of Eq. (3.23) is due to the external input, and the two other
terms are identical to the situation analyzed in the previous section. Again, we use in all
results shown in this chapter I = 1 but show the calculations for arbitrary Ij.

The distribution of the synaptic inputs, conditioned on the pattern 511, has now a mean
Iofil +qAf (qﬁ(fil)), and a variance a-yM. This leads to the following equations for the order

parameters ¢ and M,

¢ = /°° /_OO D=Dyg(é(=)d(loz + AF(S(2))g + v/ar y) (3.24)

M = /OO /_OO DDy (Ipz + Af(d(2))q + /ayMy), (3.25)

while the distribution of firing rates is

am y_ L deTH(r) [ (671 (r) = oz = Af(6(2))0)?
pgres(r) = il dr /OO Dz exp (— 21l > . (3.26)

MFT when f and g are step functions

Here we take f and g to be step functions (i.e. B, Bg — oo) with the same threshold, i.e.:

fn) = (3.27)

and

g(n) = (3.28)



The condition [*°_DEg(¢(£))) = 0 implies that

-1

- /wf ] Ll el
49 = r e .
—00 V 27

The mean field equations simplify to

- {5
Lo (]}
ALt ( )

+qq /_ Dy¢? (A\/_

[ ) +va
( )qwa—My

) (3.30)

where

oo

- ZD& (56©7) | 2e (767) = a0t~ 09) [0~ a9) + (1~ 070

Defining
q
Mo = g gp) (33
My = % (3.32)
A = Arp /A (3.33)
v(z) = %? (3.34)
p = 1—ygqq (3.35)
_ qg(1 — qq)
! \/qfc(l —qg) + (1 —qy) (330
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we obtain

my = O:O Dy (fl [qfnmo + \/oz—MoyD - /O:O Dy (fl [—(1 — qp)nmo + \/Oz—MoyD
(3.37)
My = p o; Dy? (fl [qfnmo + \/Oé—Moy])
+(1 —-p) _o; Dyy? (fl [—(1 —qp)nmo + \/Oé—Moy]) : (3.38)

When ¢y = g4, the mean field equations read

my = /O;DW(A [(1—p)mo+\/a—%y}>—/ZDyw(A [—pmo+\/&—MoyD

(3.39)
My = p/O:ODW? (f_l [(1 —p)mg + \/a—%y])
+(1—p) /_o; Dyy? (fl [—pmo + \/Oé—MoyD : (3.40)

Solutions to this equation are numerically explored in Fig. 3.7C and D.
In the limit A — oo, the function 1(Ax) become a step (Heaviside) function, ¢ (Az) — 1

if x > 0, 0 otherwise. Consequently, the mean field equations become

my = & (_(1;—]\22)”“)) oy ( pfz\(}o) (3.41)
My = pd (%1;—\/_]\1’4)()%) +(1-p)d (f;”_]\%) , (3.42)

where ®(z) = [° de="/2 /v/27. These equations are identical to equations (20) and (21)
derived by Tsodyks (1988) in a sparsely connected network of binary 0,1 neurons (with a
threshold ) storing binary random patterns with coding level p, with 6y = 0. Note that
the full equations derived by Tsodyks can be recovered when the threshold of the transfer
function scales as hg = Afy.
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Using these equations, Tsodyks found that the capacity diverges in the sparse coding
2

L —
2plog(1/p)
p — 0 limit due to the fact that 8y = 0, since hq is a fixed parameter and therefore does

limit as a, ~ Tsodyks 1988). In our network, the capacity cannot diverge in the
not scale with A. However, optimizing the threshold of the transfer function together with
the parameters of the learning rule would allow one to reach the same scaling as the one
obtained by Tsodyks (1988). This would require setting hg = Afy.

To obtain the capacity of our network, i.e. the largest value of o for which we can find
a solution of Egs. (3.41,3.42) with mg > 0, we analyze the Jacobian of the right side of
equations (3.41) and (3.42) in the limit mg — 0T (i.e. when the overlap approaches to zero)

which gives

By you doing a linear expansion around mg = 07, we study the stability of retrieval
states close to capacity. For equations (3.41) and (3.42) to have a stable solution in the limit
mqo — 0, the eigenvalues of the Jacobian have to be less than one. This leads to the maximal
capacity

ae = — =~ 0.318, (3.43)

3 =

for all p.

Since the trace of the Jacobian is zero at the critical point, then the phase transition is
of the second order (see Fig. 3.7 A and B). The parameter p has no effect on the capacity for
this limit and the capacity is much lower than what has been found for the best-fit median

parameters. For qr # qqg, it is straightforward to show that the capacity is
ac= L (3.44)

for all p.
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This is always lower or equal than what is found in Eq. (3.43) since max, f€[071}(77) =1

with argmax, .o, 1] (n)=q9=1-p.

3.9.2  Simulations

For most simulations shown in this chapter, the probability of connections was set to 0.5%
(i.e. ¢ =0.005) and the number of neurons to N = 50000, which implies an average number
of connections per neuron of Nc¢ = 250. The choice of a low connection probability was
motivated by the fact that the MFT is exact in the sparse connectivity limit (see static mean
field theory and Derrida et al. (1987), Kree & Zippelius (1987)). We have also simulated
networks with with various values of N and ¢ (see Fig. 3.11). These simulations show
that our theory gives good quantitative predictions for denser connectivities. The single
neuron time constant was chosen as 7 = 20ms, similar to time constants of single neurons
(McCormick et al. 1985) and synapses (Destexhe et al. 1998), and with the decay time
constant of cortical activity as measured in vivo (Reinhold et al. 2015). Open source built-in
linear algebra methods in scipy and numpy Python packages suited for sparse matrices were
used to generate the connectivity matrix. For simulating the networks dynamics, the Euler
method was used with a time step size of 0.5ms. For a few parameter sets, we checked that
results are unchanged when a smaller value of dt = 0.1ms is used. In the simulations, the
background state was sometimes unstable, and the dynamics in this case converged to one
of the ‘memory states’. This tended to happen in particular for small values of «.

In Fig. 3.9 G-I, the Runge-Kutta fourth-order method with dt = 0.1ms was used. In
Fig. 3.10 the auto- and cross-correlation functions are computed over 100 realizations of a
8s network simulation. For retrieval states, in each realization the input current is given
by the current corresponding to the stored pattern plus a random vector whose entries are
i.i.d. random Gaussian variables with zero mean and S.D. 0.2. For the background state, the

initial condition of the dynamics are the firing rates obtained from passing an i.i.d. standard
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Figure 3.11: Finite size effects. Our MFT is valid in the large population size (N — oo) and
large mean in-degree (N¢ — o) limit, such that the number of neurons is much larger than
the average number of synapses per neuron (1 < Nc¢ < N). Here we explore the effects of
varying the population size (V) and mean in-degree (Nc¢) on the overlap in retrieval states.
(A) Overlap as a function of memory load « for various values of N, at fixed ¢N = 250.
Grey curve: MFT. Symbols: average overlap (computed from 50 realizations) in simulations
with population sizes N = 5000, 25000, 50000, 100000. (B) Overlap as a function of memory
load « for various mean in-degrees, for N = 25000. Grey curve: MFT. Symbols: average
overlap in simulations with average mean in-degrees Nc = 25,100, 250, 500. Parameters for
¢, f and ¢ are chosen as in Fig. 3.5A on the main text.
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normal vector through the transfer function ¢. The first second of simulation is not taken
into account to compute auto and cross-correlation functions. Only neurons with mean firing
rates between 1Hz and 65Hz are selected in order to avoid numerical artifacts arising from
neurons whose mean firing rates stay close to zero or to the maximum firing rate during
most of the simulation.

To measure the sensitivity of the network dynamics to small perturbations, we choose
two slightly different initial conditions and follow the dynamics of the network following
both initial conditions, to investigate whether these two initial conditions converge to the
same state (indicating non-chaotic dynamics), or vice versa diverge exponentially (indicating

chaotic dynamics). These two slightly different initial conditions are generated as follows

7)) = o€ (3.45)

M) = ¢(€") + i (3.46)

where the index k corresponds to one of the p stored patterns (i.e. k € {1,2,...,p}),
§ = 1073 is the distance between the initial conditions and 77 is an independent and identically
distributed Gaussian vector. Thus, 77(1{;1)(0) is the firing rate produced by the k™ stored
pattern, while #2) (0) is a slightly perturbed version of this pattern. We define the distance

between the two network states during the time evaluation of the dynamics by

VN

R e -7

2. (3.47)

This distance gives the typical difference between the firing rates of a single neuron between
two network states produced by slightly different initial conditions at time ¢, for the retrieval

state corresponding to pattern k, and has units of Hz.
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3.9.3 Data analysis

We reanalyze the data recorded by Luke Woloszyn and David Sheinberg (Woloszyn & Shein-
berg 2012) using the method described in Lim et al. (2015). This data consists in trial-
averaged firing rates of individual neurons in ITC (in a time window between 75 ms and 200
ms after stimulus onset) in response to 125 novel and 125 familiar stimuli measured, during
a passive fixation task. We focused on the 30 putative excitatory neurons whose distribu-
tions of visual responses for novel and familiar stimuli were significantly different, using the
Mann-Whitney U test at 5 significance level. In these neurons, the postsynaptic dependence
of the learning rule, was inferred using the method described in Lim et al. (2015). In this
subset of neurons, we focused on 14 excitatory neurons, the ones that show negative input
changes for low firing rates and positive input changes for high firing rates. For these 14
neurons, the transfer function ¢, and the postsynaptic dependence of the learning rule, f,
are inferred using the method described in Lim et al. (2015).

The first step is to infer the transfer function ¢. We assume that inputs to neurons
during presentation of novel stimuli have a Gaussian distribution. The transfer function is
then obtained as the function ¢ that maps a standard Gaussian to the empirical distribution
of firing rates for novel stimuli (Lim et al. 2015). In practice, the function is obtained by
building a quantile-quantile plot between the distribution of firing rates for novel stimuli
and the assumed standard normal distribution of inputs (see Fig. 3.3 A and B; Fig. A.1 and
A.2). The obtained transfer function (blue circles in Fig. 3.3) was fitted with the sigmoidal
function

(2)

'm
®i(§) = - A 3.48
© | 4 e B7 Ehg)) 24

where 7",(,21) is the maximal firing rate, 5(TZ) measures the slope at the inflection point, and hél)
is the location of this inflection point. hg is also the current leading to half maximal firing

rate. These parameters were obtained by minimizing the squared error. We thus obtained
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for each of the 14 neurons the best estimators 7"7(7?, B(Ti) and h(()i) with ¢ =1,2,...,14 whose
statistics are summarized in Fig. 3.3D.

The next step is to infer the postsynaptic dependence of the learning rule, f. For this, we
use the difference between the distributions of visual responses to novel and familiar stimuli

(Lim et al. 2015). In the model, learning of a novel stimulus defined by inputs Sf that leads

to firing rates rf = gzﬁ(ff) leads to changes in recurrent inputs, due to changes in synaptic
inputs
Acij oo kv ok
AJij = C—Nf(ri )9(ry) (3.49)

This leads to a change in total inputs to neurons that is proportional to
1
k ky,.k
Ah; = Af(r; )—CN E cijg(ri)r; (3.50)
J
In the large N limit, Eq. (3.50) becomes
k o
Ahy = A8 [ Daglo(:)6(2) (3.51)
—0o0

where Dz is the standard Gaussian measure, Dz = dze’ZQ/Q/\/ﬂ. Eq. (3.51) give us
the relationship between changes of total inputs to a neuron with learning of a particular
stimulus, and the firing rate of the neuron upon presentation of that stimulus for the first
time. This relationship can be inferred from the data by computing the difference between
the quantile function of visual responses to familiar stimuli and the quantile function of visual
responses to novel stimuli, and by plotting this difference as a function of visual response to
novel stimuli (Lim et al. 2015). We then fitted the input change with a sigmoidal function

given by

. 0) ¢ o . |
ARfT(r) = 02 2 1+ tan(8 (r — )] (3.52)

where C'(0) gives the amplitude of the total changes, qjc measures the vertical offset of the
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curve (for qr = 1, Ah is non-negative at all rates, while for gy = 0 it is non-positive at all

(1)

rates), (@) measures the slope at the inflection point, and x
f f

(i)

point. In the following, we refer to x Joas the threshold since it is typically very close to the

is the rate at the inflection

rate at which Ah changes sign. For each of the 14 neurons, the parameters C’(i), q;i), ,BJ(j)

and :L“Sci) with ¢ = 1,2,...,14 were estimated by minimizing the squared error. The inferred

function f for each neuron is given by
~AR(r)

filr) = =" =

1 i i i
-0 5 [2q( )1 + tanh(ﬁ( )(7“ — x;)))] : (3.53)

f f

The parameter A is then obtained as

A6) _ (1)
% D2g(6(2)d(2)"

(3.54)

where ¢ is the sigmoidal transfer function in Eq. (3.54) whose parameters are the medians

of the fitted parameters. The function g was also chosen to be a sigmoid, given by

1

g(r) = 5 [qu — 1+ tanh(By(r — xg))] , (3.55)

with g4 set such that the average change in connection strength due to learning of a single

pattern is zero, i.e.

/_OO Dzg(¢(2)) = 0. (3.56)

Note that ¢ is unconstrained by data. For most of the paper, we set the slope and the
threshold for g to the median of the fitted parameters for f, i.e. 3y = Bf and zg = 7p. We

also explored how the capacity depends on 34 and x4, as shown in Fig. 3.5.
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3.10 Discussion

We have shown that a learning rule inferred from data generate attractor dynamics, without
any need for parameter adjustment or tuning, except for the condition that the dependence
of the learning rule on the presynaptic rate should be ‘balanced’ (i.e. have a zero average over
the distribution of visual responses, see below). Furthermore, this rule produces a storage
capacity that is close to the maximal capacity, in the space of unsupervised Hebbian learning
rules with sigmoidal dependence on both pre and post-synaptic firing rates. Remarkably,
similar to the learning rules inferred from I'TC recordings, learning rules derived from memory
storage maximization depress the bulk of the distribution of the learned inputs (those that
lead to low to intermediate firing rates) while potentiating outliers (those that lead to high
rates), leading to a sparse representation of stored memories. The attractor states generated
by our model are characterized by graded activity with a continuous range of firing rates
(Treves 1990a,b, Festa et al. 2014). Most of the distribution lies in the low rate region of the
neuronal transfer function, leading to a strongly skewed distribution, with a small fraction
of neurons firing at higher rates. These observations are consistent with the available data
in ITC during delay match to sample experiments (Miyashita 1988, Nakamura & Kubota
19954).

For a range of parameters values consistent with learning rules inferred from data, our
model presents irregular temporal dynamics for retrieval states, similar to the temporal
and across trial variability observed during delay periods in multiple studies (Murray et al.
2017). In this regime, retrieval states are chaotic, yet they maintain non-zero overlap with
the corresponding memories. Thus, the network performs robustly as an associative memory

device, even though strong fluctuations are internally generated by its own chaotic dynamics.
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3.10.1 Distribution of firing rates

Our model naturally gives rise to highly skewed distributions of firing rates, consistent with
those that have been observed during presentation of visual stimuli in ITC (Lehky et al.
2011, Lim et al. 2015) and during delay periods of DMS tasks (Miyashita 1988, Nakamura &
Kubota 1995a). By construction of the model, it also reproduces the decrease in the mean
response with familiarity, and the increase in selectivity with familiarity. Our model shows
for most of the explored parameter space a weak bimodality in the distribution of firing rates
due to neuronal saturation in response to familiar stimuli, with a tiny peak close to neuronal
saturation, when the network is homogeneous. When heterogeneity in maximal firing rates
is implemented in the network, the peak at high firing rates disappears and the distribution

of firing rates becomes unimodal.

3.10.2  Learning rule

The learning rule we have used in our network model was inferred from ITC data (Lim
et al. 2015). It is an unsupervised Hebbian rule, as it only depends on the pre and post-
synaptic firing rates, and it leads to potentiation for large pre and post-synaptic rates. As
other popular examples of Hebbian rules such as the covariance rule (Sejnowski 1977) or
the BCM rule (Bienenstock et al. 1982), it is separable in pre and post-synaptic rates.
Unlike the covariance rule, but similar to other Hebbian rules (Bienenstock et al. 1982,
Senn et al. 2001, Pfister & Gerstner 2006), it is strongly non-linear as a function of the
post-synaptic firing rate. It reproduces some of the phenomenology of the dependence of
synaptic plasticity on pre and post-synaptic firing rates in cortical slices; in particular, large
pre and post-synaptic firing rates lead to LTP (Sjostrom et al. 2001). Large pre-synaptic
firing rate in conjunction with low post-synaptic firing rate, lead to depression, consistent
with ‘pairing’ experiments in which LTD is triggered by pre-synaptic activity, together with
intermediate values of the membrane potential (Ngezahayo et al. 2000). Plasticity at low
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pre-synaptic firing rates could be due to plasticity mechanisms leading to ‘normalization’
or homeostasis. Indeed, our plasticity rule could be written as AJ;; = AJg ebb 4 AJZ-hjom
where AJgebb = Af(ri)(g(r;) —9(0)), AJZ-hjom = Af(r;)g(0). The ‘homeostatic’ component
AJ{Ljom leads to a decrease in the efficacy of all synapses onto a post-synaptic neuron when
the neuron is firing at high rates, while it leads to an increase when the neuron fires at low
rates (since ¢g(0) < 0). Note that such a homeostatic mechanism would also automatically
lead to a ‘balanced’ dependence of the rule of the pre-synaptic firing rate, which is necessary
for the network to be able to store a large nuber of patterns. The analysis described in the
Supplementary Material shows that if ¢ has a non-zero average, then the mean of the noise
term due to other patterns stored in the connectivity matrix would no longer be zero, but
rather scale as acN(g), where (g) is the average of g over the distribution of visual responses.
This has the consequence that the network would be able to store only a finite number of
patterns. A precise balance could be restored by the homeostatic mechanism mentioned
above - for a non-zero (g), this homeostatic term would become AJZ-hjom = Af(r;)(g(0)—{(g)),
which would ensure that the average synaptic strength (and consequently mean firing rate)
onto a neuron remains constant with learning.

The synaptic connectivity matrix we used is assumed to be generated through multiple
presentations of initially novel patterns. The simplest implementation of this plasticity rule
consists in adding a term AJ;; to the current matrix, as described above, but only when a
novel pattern is presented to the network. This would require a novelty detector that would
gate plasticity, perhaps through neuromodulators. An interesting hypothesis is that novelty
detection could be generated by the network itself, through its mean activity (which is
significantly higher for novel than for familiar stimuli). This novelty signal could in principle
then be used to trigger learning.

To derive the learning rule, we used a subset of the data recorded by Woloszyn & Shein-

berg (2012), i.e. excitatory neurons that show negative changes at low rates and positive
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changes at high rates. Those neurons are approximately half (14/30) of the neurons that
showed significant differences between the distributions of visual responses for familiar and
novel stimuli. Out the remaining 16 neurons, 10 showed negative changes for all rates, while
6 showed the opposite pattern of positive changes for all rates. This heterogeneity in inferred
learning rules could be due to a heterogeneity in neuronal properties - for instance, it could
be that the ‘putative’ excitatory neurons recorded in this study form a heterogeneous group
of cells, some of which might actually be inhibitory. Consistent with this, some inhibitory
neuron classes have electrophysiological properties (and in particular, spike width) that are
closer to pyramidal cells that to fast-spiking interneurons. Another possibility is that part of
the apparent heterogeneity stems form the same underlying learning rule, but with hetero-
geneous parameters. For instance, inferred learning rules with negative changes at all rates
are consistent with a sigmoidal post-synaptic dependence f, but with a high threshold x
that lies above the range of firing rates elicited in that particular experiment. Elucidating
which of these scenarios hold in IT cortex will need recordings from more neurons, as well
as recordings of single neurons with more stimuli.

Our approach is complementary to other studies that have inferred learning rules from
in vitro studies, and then shown that these rules lead to attractor dynamics in large net-
works of spiking neurons (Litwin-Kumar & Doiron 20145, Zenke et al. 2015). In contrast
to these studies, we showed that a network with a learning rule inferred from in vivo data
can achieve a high storage capacity, and generate graded distributions of firing rates dur-
ing visual presentation and delay periods. An important difference between the studies of
Litwin-Kumar & Doiron (2014b) and Zenke et al. (2015) is that they used an online learning
rule that is constantly active, while our connectivity matrix is assumed to be frozen following
the learning process. It will be interesting to investigate whether, and in which conditions
spike-timing and voltage based learning rules used in such studies can produce a firing rate

dependence that is consistent with the rule used here.
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3.10.3 Time-varying neural representations

In recent years, the standard attractor network scenario has been challenged by multiple
observations of strong variability and non-stationarity during the delay period in prefrontal
cortex (Compte et al. 2003, Shafi et al. 2007, Barak et al. 2010, Barak & Tsodyks 2014,
Kobak et al. 2016, Murray et al. 2017). Statistical analysis of recordings in this area during
two different working memory tasks has shown that variability observed during delay periods
is consistent with static coding of the stimulus kept in memory (Murray et al. 2017). Various
models have been proposed to account for variability and/or non-stationarity (Barbieri &
Brunel 2007, Mongillo et al. 2008, Lundqvist et al. 2010, Mongillo et al. 2012, Druckmann
& Chklovskii 2012).

Here we propose an alternative mechanism where chaotic attractors with associative
memory properties naturally generate the time-varying irregular activity observed during
delay periods in associative memory tasks. In this state, chaotic attractors correspond to
internal representations of stored memories. Each chaotic attractor state maintains a positive
overlap with the corresponding stored memory. In this scenario, the network performs as an
associative memory device where temporal variability is generated internally by chaos. This
model naturally exhibits the combination of strong temporaly dynamics yet stable memory
encoding which has been demonstrated in PFC by various groups (Druckmann & Chklovskii
2012, Murray et al. 2017). It will be interesting to compare this model to existing data,
using for instance methods used in Murray et al. (2017).

There has been a longstanding debate whether the type of chaotic states seen in firing
rate models can be seen also in spiking network models under the form of ‘rate chaos’. Re-
cent studies indicate that this type of chaos can be observed provided coupling is sufficiently
strong, as in firing rate models Ostojic (2014), Harish & Hansel (2015), Kadmon & Som-
polinsky (2015). Thus, it is reasonable to expect that the type of retrieval chaotic states we

observed in our network can also be realized in networks of spiking neurons.
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3.10.4  Optimality criteria for information storage

Here, we have argued that learning rules that are inferred from electrophysiological record-
ings in ITC of behaving primates are close to optimizing information storage, in the space
of unsupervised Hebbian learning rules that have a sigmoidal dependence on both pre and
post-synaptic firing rates. Such learning rules are appealing because synapses do not need
to know anything beyond the firing rates of pre and post-synaptic neurons to form mem-
ories, two quantities that are easily available at a synapse. However, one cannot exclude
that the dependence of plasticity on neuronal activity takes other forms than the one in-
vestigated here. In particular, a potentially more powerful approach proposed by Gardner
(1987) relies in maximizing the number of attractors in the space of all possible synaptic
matrices. Unsurprisingly, this approach leads in general to a larger capacity than the ones
that can be achieved by unsupervised Hebbian rules, but it turns out that in sparse coding
limit, the covariance rule reaches asymptotically the Gardner bound (Tsodyks & Feigel’Man
1988, Tsodyks 1988). These results have been obtained in networks of binary neurons, and it
remains to be investigated whether similar results could be obtained in networks of analog fir-
ing rate neurons. An additional challenge in comparing the two approaches in such networks
is that the stored attractors are in our case not identical to the pattern that was initially
shown to the network, while in the standard Gardner approach, the two were constrained to
be identical.

Another motivation for considering the Gardner approach is provided by a recent study
that showed that synaptic connectivity in a network of excitatory binary neurons that max-
imizes storage capacity in the space of all possible matrices reproduces a number of basic
experimental facts on cortical excitatory connectivity (Brunel 2016): Low connection prob-
ability (Markram, Liibke, Frotscher, Roth & Sakmann 1997, Sjostrom et al. 2001, Lefort
et al. 2009), in spite of full potential connectivity (Kalisman et al. 2005); And strong over-

representation of bidirectionnally connected pairs of neurons compared to a random Erdos-
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Renyi network (Sjostrom et al. 2001). In contrast with the network studied by Brunel (2016),
the synaptic connectivity of the model proposed here has the unrealistic feature that it does
not obey Dale’s law. One could reconcile the present model with cortical connectivity by
using a connectivity matrix that is a rectified version of Eq. (3.2) - such a connectivity matrix
would then obey Dale’s law, be sparse and be more symmetric than a random Erdos-Renyi
network, making it therefore consistent with slice data. Such a generalization is beyond the
scope of the present paper and will be the subject of a future study.

Altogether, our results strongly reinforce the link between attractor network theory and
electrophysiological data during delayed response tasks in primates. Furthermore, they sug-
gest that learning rules in association cortex are close to maximizing the number of possible

internal representations of memories as attractor states.
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CHAPTER 4
MEMORY AND CHAOS IN NEURONAL NETWORKS

4.1 Contribution

The work presented in this chapter is part of a manuscript in preparation for publication. The
authors are Ulises Pereira, Yonatan Aljadeff and Nicolas Brunel. U.P. and N.B. designed
the research. U.P. and Y.A. performed the mean field theory (MFT) calculations. U.P.
performed the the numerical solutions to the MF'T and the network simulations. U.P. wrote

the manuscript with inputs from Y.A. and N.B..

4.2 Introduction

Attractor networks are an influential theory for memory storage in brain systems (Hopfield
1982, Amit et al. 1985, Amit 1992, Brunel 2005). In this theory, memories correspond to
fixed-point attractors states, which are stable patterns of network activity representing the
stored memoranda. When a memory is learned, changes in the connectivity through synaptic
plasticity driven by an external input to the network produce a distributed connectivity
pattern of synaptic modifications. These changes in the connectivity create a fixed-point
attractor corresponding to the neural representation of the learned memorandum. In the
attractor state, the network activity is correlated with, but not identical to, the original
external input to the network. Upon an external cue correlated with the stored memorandum
that is being retrieved, the network autonomously relaxes to the corresponding attractor
state, and the identity of the memorandum can be easealy decoded by downstream circuitry.

The theory parsimoniously reproduces selective persistent activity (Goldman-Rakic 1995),
i.e. stable elevated activity during delay periods, which is a salient feature observed in neural
recordings in monkeys (Fuster et al. 1971, Miyashita 1988, Funahashi et al. 1989, Goldman-

Rakic 1995) and rodents (Liu et al. 2014, Guo et al. 2014, Inagaki et al. 2017) during delay
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response tasks. However, the role of persistent activity as the activity subserving mnemonic
representations has been recently challenged, and with this the role of attractor networks
as viable theory for memory storage. In prefrontal cortex, during delay periods, it has been
observed high degree of temporal irregularity, variability across trials for single memoranda
and heterogeneity across neurons (Compte et al. 2003, Shafi et al. 2007, Barak et al. 2010,
Barak & Tsodyks 2014, Kobak et al. 2016, Murray et al. 2017). There is an ongoing debate
on whether this kind of activity is consistent with attractor dynamics (Lundqvist et al. 2018,
Constantinidis et al. 2018). Various models have been proposed to account for this extra
variability in attractor networks (Barbieri & Brunel 2007, Mongillo et al. 2008, Lundqvist
et al. 2010, Mongillo et al. 2012, Druckmann & Chklovskii 2012). Recently, we have pro-
posed a new alternative scenario to account for the observed variability in an attractor
network whose learning rules are inferred from in vivo data (Pereira & Brunel 2018a). In
this scenario, chaotic attractors (in contrast to fixed-point attractors as in classical attrac-
tor networks (Hopfield 1982, Amit et al. 1985, Tsodyks & Feigel’Man 1988)) correspond to
neural representations of stored memories. Neural activity presents strong temporal fluc-
tuations that are internally generated by the network’s chaotic dynamics, but maintains a
positive correlation with the stored pattern. Therefore, the network behaves as an asso-
ciative memory device in which chaotic attractors correspond to internal representations of
memories. Using a dynamic mean field theory (DMFT) (Sompolinsky et al. 1988, Crisanti
& Sompolinsky 2018) Tirozzi and Tsodyks predicted the existence of this chaotic associative
memory phase in the sparse version of the Hopfield model (Tirozzi & Tsodyks 1991). The
transition to chaos is extensive, i.e. all fixed-point attractor memory states transition to
chaos at once, which it has been found to be also the case in networks constrained by in
vivo data (Pereira & Brunel 2018a). Furthermore, consistent of what Tirozzi and Tsodyks
predicted for the sparse Hopfield model (Tirozzi & Tsodyks 1991), it has also been found in

this model that the capacity (i.e. the maximum number of memory states the network can
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store) for chaotic attractors is larger than what is predicted by a static mean field theory
(SMFT) for fixed-point attractors as memory states (Pereira & Brunel 2018a). However, a
theory for chaotic memory states in networks constrained by data is lacking.

A well known phenomena in attractor networks is catastrophic forgetting (Amit et al.
1985). It refers to the observation that when the number of stored patterns is larger than the
network’s capacity, all memories are forgotten and consequently no memory can be retrieved
from the network. The basic recipe for catastrophic forgetting is based in the statistical
symmetry between stored patterns: when all patterns are identical and independently dis-
tributed as in classical attractor network models (Hopfield 1982, Amit et al. 1985, Tsodyks &
Feigel’Man 1988) forgetting one pattern is statistically equivalent to forgeting all. For large
networks, their behavior converges to their average behavior, and when one pattern is for-
gotten then all patterns are forgotten at once. The recipe for fixing catastrophic forgetting is
also well known: by introducing a forgetting process the notion of age breaks the statistical
symmetry between patterns and newer patterns are remembered while older patterns are
forgotten in an online process of learning (and forgetting) (Parisi 1986, Amit & Fusi 1994).
Recently, the question of the optimal forgetting process for maximizing capacity have been
explored for networks of binary neurons, and optimal forgetting kernels and bounds for the
memory storage have been derived (Amit & Huang 2010, Huang & Amit 2011, Lahiri &
Ganguli 2013, Benna & Fusi 2016). Importantly, the memory states analyzed in the above
studies are fixed-point attractors, and the effect of online learning for networks endowed with
chaotic memory states is unknown. Furthermore, a theory for attractor networks in such
scenario is lacking.

In this paper we provide general theory for a family of attractor networks with unsuper-
vised Hebbian learning rules as the ones inferred from in vivo data (Lim et al. 2015, Pereira
& Brunel 2018a) and online learning of memories. In section 4.3 we introduce the family

of attractor network models. In section 4.4 we provide a dynamic mean field theory for the
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network’s dynamics. In section 4.5 and 4.6 we derived the general curves for the transition
to chaos and capacity, and show that memory states lay in a continuum of different sta-
tistical properties depending on age. In section 4.7 we recapitulate the results of Tirozzi
and Tsodyks (Tirozzi & Tsodyks 1991), providing numerical solutions for the mean field
equations and contrasting the results with simulations of large networks. In section 4.8, we
show that when forgetting is included in this model memories stored as both fixed point and
chaotic attractors co-exist. Depending on the pattern age, its retrieval state is a fixed-point
(newer patterns) or chaotic attractor (older patterns), leading to a continuum of different
retrieval states. Additionally, we found the optimal forgetting time-scale for an exponential

forgetting kernel.

4.3 The Model

In this model, the network is composed of N neurons whose input current are described by
analog variables h;, where i« = 1,2,..., N represents the neuron index. The instantaneous
firing rates of neurons are given by the the input-output single neuron transfer function (or
f-I curve) ¢. Input currents obey the standard current-based version of the rate equations
(Grossberg 1969, Hopfield 1984) (which are equivalent to the rate-based version, see Miller

& Fumarola (2012))

N
hi = —hi +>_ Jijé(hj). (4.1)

i#]
Here J;; is the strength of the synapse connecting neuron j to neuron i. The connectivity
matrix is sparse, and existing connections are shaped by external inputs (‘patterns’) through
a non-linear unsupervised Hebbian synaptic plasticity rule. In this rule, firing rate patterns

nZH of neuron ¢ during presentation of pattern p (i = 1,2,...,N and pu = 1,2,...,p) are

generated randomly and independently from some distribution p;, (i.e. 77"? id pn(n)). The
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firing rate patterns shape the connectivity matrix through two non-linear functions f and
g that characterize the dependence of the learning rule on the post-synaptic rate (f) and
pre-synaptic rate (g), respectively. Patterns recently learned are strongly imprinted in the
connectivity than older patterns according to a ‘forgetting kernel’, ©(u), in analogy to what
has been proposed in palimpsest models for attractor neural networks of binary neurons
(Mézard et al. 19865, Parisi 1986, Amit & Fusi 1994, Romani et al. 2008, Amit & Huang
2010, Huang & Amit 2011, Dubreuil et al. 2014). The idea is that recent stored patterns
partially erase the traces of older ones in the connectivity matrix, and the function ©(u)
gives to what degree a particular pattern of age p has been forgotten. When p patterns are

learned by the network, the connectivity after learning gets structured as

o P
Jij = %;@(u)f ]9 [n";‘] , (4.2)

where ¢;; is a sparse random (Erdos-Renyi) structural connectivity matrix (c;; = 1 with
probability K/N, ¢;; = 0 with probability 1—K/N). The sparsity in the connectivity models
the low connection probabilities reported in cortical (~10%) (Mason et al. 1991, Markram,
Liibke, Frotscher, Roth & Sakmann 1997, Holmgren et al. 2003, Thomson & Lamy 2007,
Lefort et al. 2009) and hippocampal (~1%) (Guzman et al. 2016) microcircuits. The learning
rule is a generalization of the unsupervised Hebbian rule used in chapter 3 (compare Eq. (4.2)
with Eq. (3.2)) with two important differences: 1) The assumption of starting from an initial
tabula rasa connectivity J;; = 0 is not necessary, and can be dropped. Depending of the learn-
ing kernel, the synaptic connectivity matrix can be obtained by learning a continuous stream
of patterns (i.e. online learning) where recent ones ones can be retrieved and older ones are
forgotten; 2) The distribution of firing rates patterns pj, is left unspecified. The model in
chapter 3 is a particular case when 7 = ¢(¢) and £ is a standard normal random variable (see
section 3.9.3, Eq. (3.48)), and therefore py(z) = (e_(¢_1(x))2/2/\/ﬂ)(dqb_l(x)/dx). Besides
the addition of a forgetting process O(u), further differences with classic models such as the
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Hopfield model (Hopfield 1982) or the Tsodyks-Feigel'man model (Tsodyks & Feigel’Man
1988) are: patterns can have a continuous distribution instead of binary; and the dependence
of the rule on firing rates is non-linear instead of linear.

In chapter 3 we have shown that both the transfer function (¢) and the post-synaptic
dependence of the learning rule f can be inferred from electrophysiological data (see section
3.9.3 and (Lim et al. 2015)). As in chapter 3, we constrain g by the condition that the
average of the function g across the distribution of patterns is zero, i.e. (g(n)), = 0, which
ensures that the average change in connection strength due to learning of a single pattern is
zero. This could be enforced by a homeostatic mechanism that controls the mean changes

in the incoming inputs due to learning (Toyoizumi et al. 2014, Vogels et al. 2011).

4.4 Dynamic mean field theory

In the limit of infinitely large number of neurons (i.e. N — o), synapses per neuron (i.e.
K — o0), and strongly sparsely connected network (i.e. K/N — 0) a dynamical mean field
theory can be developed using functional integration as in Sompolinsky & Zippelius (1982),
Kree & Zippelius (1987), Tirozzi & Tsodyks (1991). In this limit Eq. (4.1) is reduced to

hi(t) = —h(t) + pi + pi(t), (4.3)
where
pi=AY fm"e(mmy, (4.4)
p=1

corresponds to the average input current to neurons 7. As in classical mean field theories
for attractor neuronal network models (Amit et al. 1985, Tsodyks & Feigel’Man 1988) we

define the order parameters
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my = (g(n")o(h)) pyu- (4.5)

Here the average is over the distribution of the synaptic input current h and of the stored
pattern n#. Eq (4.5) corresponds to the overlap between the network state and a non-
linear transformation of the stored pattern. In our theory we assumed that the overlaps
do not depend on time (i.e. my(t) = my), which is trivially true for fixed-point attractor
memory states, and a good approximation for chaotic attractor memory states. These order
parameters are a natural extension for analog neurons and nonlinear learning rules of the
overlaps used in classic attractor neural network models. In our theory the number of re-
trieved patterns s are of order s ~ (1), and therefore just a finite number of patterns have
an non-negligible overlap with neural activity. The variable p;(t) is a random gaussian field

with zero mean and auto-covariance given by

Cov (p;(t), pi(t + 7)) = YA2K(G(h(1))S(h(t + 7)), (4.6)

where
_1ly 62 A7
- ?; (1) (47)

We explore the scenario in which an infinite stream of pattern is presented to the network,
and therefore p — oco. Each pattern is presented once for learning, and then gradually
forgotten due to the learning of the subsequent patterns in the stream. We define the
learning rule dependent constant v = (f2(n))(g?(n)). The dynamics of the field can be

approximated by the following time dependent Gaussian random field

hi = —hi + Af ()0 (m)my + A/yry(t). (4.8)
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Where y(t) is a gaussian random field with auto-covariance function

C(r) = {y@)y(t + 7))y = (G(h(#)¢(h(t +7)))hs (4.9)

which is calculated self-consistently. By defining the local currents w;(t) = h;(t) —

Af(néi)@(u)mu then Eq (4.8), (4.5) and (4.9) can be re-written as

= —u+ Ayyay(t) (4.10)
my = (gme(u(t) + Af(n)O(w)mu))un, (4.11)

and
C(1) = (¢ (u(t) + Af(MO(w)my) ¢ (u(t +7) + Af(0)O(1)mp) yuy- (4.12)

In Eq. (4.10) we assume a translation invariance of the auto-covariance. As in (Som-

polinsky et al. 1988) we introduce the local-field auto-covariance function

A7) = (u(t)ult + 7). (4.13)

Analogous to the derivation in Crisanti & Sompolinsky (2018), Schiicker et al. (2016) we

derive a self-consistent equation for the local-field auto-covariance

dQA(T)

= Ar) = A7), (4.14)

See appendix B for a version of the derivation. Analogously to Sompolinsky et al. (1988),

Tsodyks & Feigel’Man (1988), the auto-covariance in Eq. (4.12) can be written as
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/DnDz [/quﬁ Ao — Az + VA2 + f(0)O(u )muDr, (4.15)

where Dn = p;(n)dn (distribution of the stored patterns). For the proof of this, analogous
equations to Eqs. (B.7,B.8) for u;(t) should be inserted in Eq. (4.12). For the equation above
we further assume that 0 < A(7). We also re-scaled A(7) as A(7) — A2A(7) for ease some
of the algebra. In analogy with Sompolinsky et al. (1988) Eq. (4.14) can be re-written as
d’A IV (A, Ag)

27 0N (4.16)

by defining the following potential

2
V(A, Ag) = 2 A2/D77Dz Vm-cb VAo~ AJz + Az + f)6(u) MD] 7
(4.17)
where ®(z f() dr¢(r). Notice that analogous to my, the auto-covariance of the local
fields A also depends on the age of the retrieved memory p, however we choose to not make

explicit this dependency in order to simplify the notation.

4.5 Transition to chaos

In this section we determine the location in the parameters space where fixed-point attractors
transition to chaotic attractors. We distinguish two qualitatively different attractor states
depending on the overlap with the stored memory: 1) states with order one overlap (i.e.
my, ~ O(1)) we call memory states; 2) states with negligible overlaps (i.e. m;, <1 Vu) we

call the background state.
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4.5.1 Transition to chaos of fixed-point attractor memory states

For fixed-point attractors there are no temporal fluctuations in the input currents. Then the
auto-covariance of the local fields in Eq. (4.13) is equal to the variance of the local currents

at all times (i.e. A(7) = Ap), which leads to

my = | DuDagn)o (A [VBox + Fn)©(wm,) ) (4.18)
8o = [ DuDec? (4[VBgr + f)@(nm,] ). (4.19)

The above equation give the overlap with the memory p for fixed-point attractors. These
fixed-point memory states may become chaotic depending on the parameters. In this sce-
nario, the model presents chaotic dynamics with associative memory properties. Importantly,
in this model the chaotic properties of the attractors depends on the age of the patterns. As
we will discuss in the next sections, recent memory states are fixed-point and older memory
states are chaotic. Analogous to Sompolinsky et al. (1988), to find the transition to chaos
of memory states, it is necessary to find the point in parameter space where the static so-
lution A(7) = Ag becomes unstable. At this point the auto-covariance of the local-field
A(T) transition from stationary to time-depend, and in the large K limit our theory predicts
that the network becomes chaotic. Since the dependence on time of the auto-covariance of
the local fields is ruled by the newton equation in Eq. (4.14), finding the transition point

Aghaos where the potential in Eq. (4.17) changes its

is equivalent to find the critical point
concavity. After this point, solutions for the auto-covariance of the local field starting at A

relax to lim; o0 A(7) = Aq. The transition point is given by

aor [ Dap= {6 (4[VBez + smem) ) = 1. (1.20)

Equation (4.20) in addition to Eqs. (4.18,4.19) describe the curve in the parameter space
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that separates fixed-point from chaotic memory states.

4.5.2  Transition to chaos of the background state

In the background state, all the overlaps with the stored memories are zero, i.e. my, = 0, in
the thermodynamic limit. The critical line in the space of parameters for its transition to

chaos is given by

A27/{/D2 {gb/ <A\/A_Oz> }2 =1 (4.21)
Ay = 7 / Dz¢? (A\/A_0z> (4.22)

4.6 Capacity

4.6.1 Capacity for chaotic memory states

Analogously to the static mean field theory derived in section 3.9.1 of chapter 3, the capacity
of fixed-point attractor states are given by the curve in the parameter space when the overlap
is zero, that is the smaller y in which m,, = 0 is the only solution of Egs. (4.18,4.19). In this
scenario the underling assumption is that memory states are fixed-points. However, in this
model chaotic memory states may undergo a transition to having zero overlap with the stored
pattern. To calculate the capacity for chaotic attractors, we first assume that the network

is in a regime in which the static solution is no longer stable. That is when the potential

o2V

2A 0), and the auto-covariance of the

defined in Eq. (4.17) is no longer convex (i.e.
local currents in Eq. (4.13) are time dependent. Additionally, as is explained in the previous
section, a chaotic solution will have an aperiodic decreasing solution for the potential. This

correspond to the condition lim; 00 V(A(7)) = V(4Ag), which is equivalent to
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A

-5 —/Dan¢>2 (A [\/A_Ox + f(n)@(u)mu]) = —A—%+
/DnDz[/qu) A0—|A1|x+\/mz+f (1) Mmz.

Here A; corresponds to A(t) LmiN Ay. Therefore, V/OA|p_a, = 0, which is equiva-

lent to

Ay = m/DnDz [/quﬁ VAo~ 1A |A1|:L’+s\/m,z+f(n)@(,u)mubr. (4.24)

Lastly, Eq. (4.36) for the overlap also holds. Therefore, Eqs (4.36,4.23,4.24) above give

the overlap curve for chaotic attractors.

4.7 The sparsely connected Hopfield model

In this chapter we will briefly recapitulate the results of Tirozzi and Tsodyks (Tirozzi &
Tsodyks 1991) where they study a sparse version of the Hopfield model for analog neurons.
Using the generating functional method, it can be shown that that in the highly sparse limit
the theory presented in (Tirozzi & Tsodyks 1991) is exact (Kree & Zippelius 1987). The

connectivity in this network is given by

Ac
U Z 7; 77] (4.25)

Here 77;TC € {—1,1} and iid with probability 0.5. The dynamics of the network is given by
Eq. (4.1) with ¢(z) = tanh(z). In this model ©(u) = 1, then
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Figure 4.1: DMFT vs SMFT for sparsely connected Hopfield model. (A) Overlap vs memory
load. Circle and square markers correspond to the average overlap calculated from network
simulations of N = 50000 and N = 160000 neurons. The average was taken over 1000 times
steps. The dashed line corresponds transition to chaos memory load. (B) Ap and Ay vs
memory load. (C) Average overlap vs time for a memory load of o = 0.6 and network sizes
of N = 20000, 40000, 80000, 160000. The average is taken over 12 network realizations but
for N = 160000 which corresponds to just one realization. The displayed dynamics is for
the 500-2500ms time interval. In A-C the sparsity level is ¢ = 1/v/N and A = 5.5.

= lim —Z@Q (4.26)

K—oo K

Furthermore, for this network v = 1. Lastly, the mean field Eq. (4.4) is given by

pi = A&m. (4.27)

Here the index of the pattern u is omitted since when any of the patterns is retrieved it
produces the same mean field. Plugging-in these parameters in the equations of sections 77,
?? and 7?7 we obtain the mean field equations in (Tirozzi & Tsodyks 1991). As in Hopfield
model, when the memory load « increases the overlap m decreases due to the increase in
the number of stored patterns, increasing in turn the variance of the fields A (see Fig 4.1 A
and B respectively). Interestingly, the capacity computed using the SMFT is smaller than
the capacity computed using the DMFT (compare red and black lines in Fig 4.1 A). Since

in the SMFT memory states are assumed to be fixed-points attractors while in the DMFT
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may be both fixed-point and chaotic attracors, the disagreement between the two theories
begins after the transition to chaos (dashed lines in Fig 4.1).The agreement between the
numerical simulations is good for high overlaps (low loads) and deteriorates rapidly close to
the transition to chaos. Increasing the network size and sparsity improves the agreement
between the theory and numerical simulations, suggesting these are finite size effects.

We numerically solved the mean field equations for the transitions described in sections
4.5 and 4.6, obtaining the complete network’s bifurcation diagram (see Fig 4.2). For small
values A (i.e. weak connectivity) there are no memory states (red region in Fig 4.2). For
larger values of A and low memory loads, the background and the memory states are fixed-
point attractors (region bellow the red dashed line and blue region in Fig 4.2 respectively).
When the memory load increases, the background state transition to chaos (region above
the red dashed line in Fig 4.2 ) and memory states are fixed-point attractors (blue region in
Fig 4.2). Larger memory loads lead to the memory states to transit to chaos (green region
in Fig 4.2) reaching a phase when the dynamics is chaotic but the network retains a finite
overlap with the stored memory. Finally, if the memory load further increases the network

reaches its capacity and then memories are forgotten (gray region in Fig 4.2) .

4.8 Fixed-point and chaotic attractors co-exist due to forgetting

Here we consider a scenario in which random binary patterns {nlk }iﬂ are stored by a network
using a Hebbian learning rule, with 7755 € {—1,1} and iid with probability 0.5. We assume

the following forgetting kernel:

I

O(p) = ¢ TN (Nic + 1)a . (4.28)

Here patterns indexes begin at © = 0. We choose this kernel in order to explore mono-

tonically decreasing (¢ < 0) and non-monotonic (0 < a) forgetting scenarios. Notice that
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Figure 4.2: Center: Bifurcation diagram for the sparsely connected Hopfield model. Sur-
rounding plots: Overlaps (top row) and activations (bottom row) for retrieval states of
networks with parameters indicated with markers in the left panel. The rest parameter
values are A = 5.5, N = 50000 and ¢ = 0.005.
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when a = 0 and 7; — oo this model is equivalent to the sparse Hopfield model presented in

the previous section. The connectivity is given by

Ac; H
Jij = ” Zm e TN (Nﬁchl) . (4.29)

The mean field in Eq. (4.4) is given by

U e A a
= Anfe 7T <E+1) my. (4.30)

The auto-covariance function in Eq. (4.7) is given by

2 p
Cov (pi(t), pi(t + 1)) = F Z (4.31)

In the limit N¢ — oo and p — oo we obtain

p 2 _ 2z
1 9 P00 /oo 9
— S — s e'f d f 2 =T1a, 4.32
e 2o 00 2 7 [T T =Ty (43

Notice that here we used the fact that tanh(x) is an odd function and patterns are binary

{—1,1}. Then Eq. (4.8) for this network reads

hi = —h; + Anfe Tf (s+1)"m+ Ay/T'(a,7)y(t). (4.33)

Here s = p/Nc which is the continuous version of p when N¢ — oo. As is described
in section 4.4 (see Eq. (4.9)) y(t) is a gaussian random field with auto-covariance function

given by

= /Dz U Dx¢ (A {\/AO — A(T)z + A1)z + ¢ (s+1)° m} )} 2 , (4.34)
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The potential defined in Eq. (4.17) in this case is given by

2

V(A, Ag) = —%—Ff(a, T)A2/DZ U Dz® (A [msc VA +e (s + 1)am] ﬂ 2.
(4.35)

4.8.1 Transitions

Overlap of fixed-point attractors with memories

For fixed-point attractors Eqs. (4.18,4.19) become

m = /D:ms (A [\/A_ox LT (s +1)° mD (4.36)
Ay = I(a, T)/ngb2 <A {\/A_om b (s+1)" mD .

(4.37)

Notice the overlap curve depends on the age s of the pattern.

Transition to Chaos for Fixed-Point Attractors

Let us write first the second derivative of the potential

—1+4I(a, T)AQ/DZ {/ Dz¢ <A {\/mufc NRete 7T (s + 1)“m} )} 2 (4.38)

For a fixed-point attractor the equation above becomes
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F(a,7)A2/Dz{¢/< [\/_z+e T (5 +1)0 ])}2—1_ (4.39)

As explained in section 4.5, we need to find the value of Ay where the potential changes

from convex to concave. In this case, Eq. (4.20) becomes

/Dz{¢/< {\/_z%—e T (54 1) D}Q:m. (4.40)

Transition to Chaos for Retrieval Fixed-points (0 < m)

For retrieval states the equations for finding the critical line in the space of parameters are

[oefé (al v Tenarn])} = ot
(4.41)

m:/Dx¢< [\/_:He 7 (s+1)" D (4.42)
Ag =D(a,7) / Da¢? (A {\/A_Ox LT (s+ 1)“mD . (4.43)

Transition to Chaos for Background Fixed-point (m = 0)

For the background state (i.e. m = 0) the equations for finding the critical line in the space

of parameters are

(a, T AQ/DZ A\/_z)} = (4.44)
= F(a,T)/ngb A\/A_Oz> (4.45)
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4.8.2  Capacity

Analogous to the capacity calculation in the previous section, in this section we want to

find the pattern age s® where the network cannot work as an associative memory device

Equalizing the potential we obtain

—2 A2 /D @2( [\/_x—l—e 7 (s+1)° ]):—A—%-F
A2 /Dz(/Dz@( { VA)— Az + /A e ij(s+1)amD)2.(4.46)

The derivative of the potential equal to zero becomes

) [ o ([ 020 (4] VB Ve e 7 s}
(4.47)

Notice Eq. (4.47) is zero for A1 = 0 since ¢(x) = —¢(

—z). Then the capacity is given by
Eq. (4.47)

Da,p) = (AR5

5T (4.48)
2| f D20 (A[\/AG2]) - (f D2 (4 [\/BFe]))?]

obtaining

Ae 7T (504 1) /D:qu ]) ~ 1. (4.49)

Then, Eqgs, (4.48,4.49) provide the capacity curve (TJ?, a®, s€)

We numerically solved the mean field equations for the transitions described above, ob-

taining the complete network’s bifurcation diagram (see Fig 4.3). For small value of 7 (i.e
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Figure 4.3: Left: Bifurcation diagram for the sparsely connected Hopfield model with ex-
ponential forgetting. Right: Retrieval states for the 10th, 35th and 112th memories for the
same realization of the connectivity matrix.

fast forgetting) and age s (i.e. newer patterns), memory states are fixed-point attractors (see
the region the below red line in the left panel of Fig 4.3). For example, the 10th stored mem-
ory in Fig 4.3 corresponds to a fixed-point. Older memory states are chaotic, the transition
transition line between fixed-point and chaotic memory states is given by Eqs (4.41-4.43),
see Fig. (4.3) red line. Above this line memory states are chaotic attractors, as for example
the 35th stored memory in Fig 4.3, . When the age of the pattern further increases above the
capacity line given by Eqs. (4.46,4.47) (green line in left panel of Fig 4.2) memories cannot
be retrieved, as for example the 112th memory in Fig 4.3. For larger values of 7 (i.e. slow

forgetting) all memory states are chaotic for this particular value of A.

4.8.3  Optimal forgetting

We study the optimal forgetting time scale 7 for the exponential forgetting kernel exp(—s/7).

Large gain limit

Let us start for the case A — oo making the following approximations
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o(Az) — (4.50)
1 0<z
and
—Ar <0
O(Az) ~ (4.51)
Ax 0<x.
For the SMFT we get the following MF equations:
me_g me_g
m = Y| ——m= |+ — (4.52)
Ay = % (4.53)

2
Here ¢(z) = f;o dz€ \/2—7{2. Applying a derivative to equation (4.52) and setting m = 0

we get

26_$ 4de™ T
=" — — 7=

w/27r% T

Hence, the capacity curve for A — oo is given by

c T T
S (—) . 4.54
And the optimal 7 is given by
ired—mnoi 4
fized=points _ % 47 (4.55)
em

For chaotic attractors we first derivate equation (4.52) and setting m = 0 we get
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2
2e” T

Ag = . (4.56)

By calculating these integrals

o0
/ Dz®?(A\/Ngz) = A2
—o0 :
/ Dx®(A\/Agzr) = AVA)——.
—00

Then Eq. (4.48) becomes

Hence, the optimal 7 for A — oo predicted for chaotic attractors is given by

s¢ = —% log (@) . (4.57)

And the optimal critical 7 is given by

chaos 2

= — =~ 0.64. 4.58
Tmazx e(r — 2) ( )

In Fig. 4.4 the results above are contrasted with numerical solutions of the mean field

equations for finite values of A.

4.9 Discussion

Attractor networks (Hopfield 1982, Amit et al. 1985, Amit 1992) are a class of recurrent

connected networks that have been influential in neuroscience by providing a mechanistic

model for associative memory. In this class of models, memory states correspond to fixed-
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Figure 4.4: Capacity vs Forgetting time-scale. Left: Capacity calculated from the static
MFT, see Eq. (4.36) and (4.40). Right: Capacity calculated from the dynamic MFT, see
Eq. (4.48) and (4.49). In dashed black are the analytical capacity curves for the static and
dynamic MFT, see Eq. (4.54) and (4.57) respectively.
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point attractors in the network dynamics. When a memory is retrieved, the network reaches
a fixed-point attractor and its activity is constant in time and correlated with the retrieved
memory. Randomly connected recurrent networks (Sompolinsky et al. 1988, Van Vreeswijk
et al. 1996, Brunel 2000) have been also influential in neuroscience by providing a network
mechanism for explaining the strong temporal variability observed in cortical networks. In
these networks, the activity fluctuate chaotically, but the scenario in which memories are
stored as chaotic attractors have been seldom explored. Here we connect these two class
of models, showing that in attractor networks memory states can be both fixed-point and
chaotic attractors depending on parameters. Strikingly, we show that when the online learn-
ing scenario is considered, the network presents a continuum of memory states in which

fixed-points and chaotic attractors co-exist.
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CHAPTER 5
UNSUPERVISED LEARNING OF SEQUENTIAL ACTIVITY
WITH TEMPORALLY ASYMMETRIC HEBBIAN LEARNING
RULES

5.1 Contribution

The work presented in this chapter is part of a manuscript in preparation for publication. The
authors are Maxwell Gillet, Ulises Pereira and Nicolas Brunel. M.G., U.P. and N.B. designed
the research. U.P. and M.G. performed the mean field theory and capacity calculations. M.G.
performed the numerical simulations and data comparison. M.G., U.P. and N.B. wrote the

manuscript.

5.2 Introduction

Sequential activity has been observed across multiples species in a number of behaviors such
as spatial navigation (Foster & Wilson 2006, Harvey et al. 2012, Grosmark & Buzsaki 2016)
and bird song generation (Hahnloser et al. 2002, Amador et al. 2013, Okubo et al. 2015).
Experimental evidence shows that sequential activity can be learned throughout experience
(Okubo et al. 2015, Grosmark & Buzsaki 2016). Several theoretical network models have
been able to produce sequential activity (Abeles 1991, Amari 1972, Kleinfeld & Sompolinsky
1988, Diesmann et al. 1999, Izhikevich 2006, Liu & Buonomano 2009, Fiete et al. 2010,
Waddington et al. 2012, Cannon et al. 2015). In these models, the connectivity contains a
feed-forward structure - neurons active at a given time in the sequence project in a feed-
forward manner to the group of neurons which are active next.

As we have described in chapter 2, models for learning sequential activity in networks

with plastic synapses can be roughly divided in two categories: models with supervised and
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unsupervised plasticity rules. In models with supervised plasticity rules, the synapses are
updated according the activity of the network and an error signal that carries information
about the difference between the current network dynamics and the target dynamics (Sussillo
& Abbott 2009, Memmesheimer et al. 2014, Laje & Buonomano 2013, Rajan et al. 2016).
However, it is not clear that in cortex such error signal drives synaptic modifications, and
learning of sequences may occur without supervision by the solely exposure of the network to
sensory inputs. In models with unsupervised plasticity rules, sequential dynamics is shaped
by external stimulation without an error signal (Jun & Jin 2007, Liu & Buonomano 2009,
Fiete et al. 2010, Waddington et al. 2012, Okubo et al. 2015, Veliz-Cuba et al. 2015). In
those models sequential activity is generated spontaneously, and the temporal statistics of
the stimulation shapes the specific timing of the sequences. While these networks possess
a high degree of biological realism, few quantitative results exist governing their storage
and retrieval properties. Here we study a network of rate neurons in which sequences are
learned without supervision from external inputs. In our model, sequential activity is learned
by an asymmetric Hebbian learning rule that transforms temporally ordered random input
patterns into synaptic weight updates. Learned patterns can be sequentially retrieved in the
order that they were presented in an stereotypical and reliable manner. Importantly, during
retrieval the network presents transient sequential dynamics both in its correlation with the
stored patterns and activations. We developed a mean field theory for stored patterns with
Gaussian statistics, obtaining dynamical equations for the transient correlation between
the network activity and the stored patterns throughout the sequence. We compute the
sequential capacity of these networks, that is the number of sequences that can be stored as
a function of network size, and show that it grows linearly with network size, comparable to

that found in networks storing fixed-point attractors.
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5.3 The model

We consider a learning process that converts successive patterns of stimulation into synaptic
weight changes. In our setting the network learns P sequences of S input patterns as we
describe below. At time ¢ an input pattern that belongs to the pth sequence is presented,
eliciting a corresponding pattern of neural activity 5? 1 at neuron i (see Fig 5.1 left column).
At time t41 an uncorrelated input pattern that also belongs to the pth sequence is presented,
eliciting the pattern of neural activity gn 2 (see Fig 5.1 middle column). For each successive
pair of presented inputs in a sequence, the strength .J;; of a synaptic connection from neuron
7 to neuron ¢ is modified according to a temporally asymmetric Hebbian learning rule. In
this rule, synaptic connections are modified according to the product of two functions of the

pre and postsynaptic firing rates:

AJij o< F(EP2)g(elh), (5.1)

see Fig 5.1 right column. As in chapter 3, the functions f and g correspond to the post
and pre synaptic dependence of the learning rule respectively. If the presynaptic neuron
activation is §§7 1 When the first pattern is presented, and the postsynaptic neuron activation
is ff 2 for the the next pattern, then the synapse between neuron ¢ and j is potentiated
(depressed) according to Eq. (5.1) (see Fig 5.1 right column). For simplicity, as in chapter
3, we assume that learning starts from a tabula rasa, i.e. J;; = 0. After learning S sequences

of P patterns each the connectivity is sculptured by the learning process taking the form:

P S
Tii = 5 20 0 FE ). (5:2)

p=1p=1
Here ¢;; is a Bernoulli random variable with probability ¢ encoding the presence or
absence of a synaptic connection, /N is the number of neurons and Ne¢ represents the av-

erage in-degree of a neuron. We are agnostic about the source of these patterns. They
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may originate from external inputs projecting to the network, or from internally-generated

fluctuations. As in chapter 2, firing rates obey standard rate equations

dr;
d_tz =—r;+0¢ Z Jijrj . (5.3)
el

When the network is initialized with the first pattern in a given sequence, it presents
a transient sequential dynamics. Interestingly, single neurons take approximately the same
sequence of values that the learned patterns throughout the dynamics. For example, as shown
in Fig 5.2a, neuron i takes values that are often close ff’l, ff’Q, e ,5?’5 when the network is
initialized with pattern {PJ. The transient dynamics elicited is robust against perturbations
in the initial conditions (see Fig 5.2b). The correlations between the network activity and the
learned patterns (i.e. overlaps) throughout the sequence also depict a transient sequential
dynamics. Unlike the dynamics of single neuron, the sequential dynamics of the overlaps
is characterized by the rise of one overlap after another in a stereotyped sequence (see
Fig 5.2¢). This is consistent with the fact that single neurons take approximately the same

corresponding values of the learned patterns throughout the sequence.

5.4 Gaussian patterns

5.4.1 Mean field theory

In this section we will derive a mean field theory for a network where stored patterns are
Gaussian and the learning rule is linear, i.e. f(z) =z and g(y) = y. As is described above,

after learning the connectivity matrix is given by

P S
Gy P, A1 op,
Jj=m 2 2 a4t (5:4)

p=1p=1

Here p corresponds to the index of a particular concatenated pair of patterns, i.e.
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Figure 5.1: Learning and retrieval in recurrent neural networks with asymmetric unsuper-
vised Hebbian learning rules. At time ¢ a novel pattern is presented to the network, synaptic
inputs to each neuron in the network (511, for neurons [ = 1,..., N) are drawn randomly and
independently from a Gaussian distribution. Some neurons respond strongly (yellow circles)
and other weakly (white circles). At the next time ¢ + 1 a different pattern with the same
statistics is presented to the network, and a different assembly of neurons than at time ¢ is
activated. Activity that is contiguous in time produced by the synaptic input currents mod-
ifies the network connectivity according to an asymmetric unsupervised Hebbian learning
rule. Connections between neurons that are activated contiguously in time get modified (see
red arrows). The connection strength is represented by the thickness of the corresponding
arrow (the thicker the arrow the stronger the connection).
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Figure 5.2: Sequence retrieval. a,b. Representative sample of single unit activity. Solid lines
represent the trajectory of single unit activity in time. Discrete points correspond to stored
sequential patterns. c. Overlap of network activity with each stored pattern. Light-colored
lines show activity in response to a perturbation at the start of the trial.
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ff o +1§§ #while p corresponds to the index of a particular sequence of concatenated pat-

terns of length S, i.e. 5%7’255’1 + ff’gfé?g + -+ ff’s+1§§’s. The patterns are identically
and independently distributed (i.i.d.) as Sf o tid N(0,1). The input current to neuron i at

a given time t is given by the synaptic currents contributed by all the connected neurons:

hi(t) =) Jijrj(t). (5.5)
J#i
In this analysis we assume the dynamics starts with an initial condition that is correlated

with the first pattern of sequence p, i.e. Epﬂ. The input current can be re-written as

S N
1
hilt) = ;sg‘“’pm;%fﬁw +Yi(t) (5.6)

where Y; describes the ‘noise’” term,

P S N
1 l !
Yilt) = 5o 20 D&MD e (o), (5.7)
I#p p=1 J#i

In the large ¢N limit, due to the law of large numbers, the first term in Eq. (5.6) converges

in probability to

S
S etah), (5.8)

where the qﬁs are given by

p _ 1 a Hsp
D) = D€, 59)
j=1

Here {qﬁ(t)}ﬁzl are our first S order parameters. They described how correlated the
network state is with the stored patterns f_l’p ,5_2’1’ I ,55’1) respectively. We assume that

the network state is uncorrelated with the rest of stored patterns since qL(t) ~ O(1/V'N)
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for [ # p. Then the ‘noise term’ Y; has mean zero and variance

Var (Y;) = aM(t), (5.10)

where the sequential load is defined by

Q
Il
ik

(5.11)

=

Cc

and M, the mean of the squared firing rate, is an additional order parameter defined by

1 N
M(t) = > i) (5.12)
j=1

In this theory we assume that the number of stored patterns is much larger than the
number of patterns in a sequence, i.e. s < aNc. Then, we can approximate the dynamics

in Eq. (5.3) as

, s
% =it [ D&M g + Vad Dy | - (5.13)

u=1

Since all sequences are statistically equivalent we dropped the index p corresponding
to the particular sequence of concatenated patterns. The variable y; corresponds to the
quenched noise produced by the stored patterns that do not belong to the sequence that is
being retrieved (i.e. sequence p). By the central limit theorem the variable y; is approximatly
i.i.d. normally distributed across neurons, i.e. y; o (0,1). For simplicity, we take a static
mean field theory approach, where y; is assumed to be constant in time, and therefore its

auto-covariance is equal to its variance. Using equation (5.9) we get the following dynamical

equations for the overlaps
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S

d
dqtl = —q +/D§ng o [ S Mgty + VaMty | 1=2,...

p=1

where Dz = e*x2/2/\/ 27 and DE = H?ZQ DE. Now we define

qu +04M

kAl

Since the stored patterns are gaussian we write Eq. (5.14) as

dq;
dt

——a+ [ DDl (a0 +ria(0s) 1=2....

.S, (5.14)
(5.15)
S, (5.16)

Notice that fl and z are independent standard normal random variables. Using the

transformation

g+

v 2 2
Va1 T
€y —aqy

u =

2 9
V-1t 7

where u and v are also uncorrelated standard normal random variables, equation (5.16)

becomes

dq _
d—tl = —q+q 1 Gld)|5, M) 1=2,...,85

where we define

148

(5.17)



[ Dvvg (v H(f(t)H% + aM)
G(|lg(t)]13, M(t) = - (5.18)
VT3 + adi(t)

Notice that the dynamical equation for the first overlap (i.e. ¢1) is given by

% = —q. (5.19)
Then by defining the ‘delay line’ matrix as
[0 0 0]
1 0
L=10o 1 . . . (5.20)
0
0 - 0 1 0]

We finally can write equation (5.18) in a vectorial form

W —qrGan|3 ML (5.21)

Now we derive an approximate dynamical equation for M. From Eq. (5.3) we obtain

the following two equations:

dr?
% = —2?2-2+2Ti¢ ZJijTj (5.22)
J#
dr;\? 2, 2
% = TZ--|—¢ ZJZ]TJ —2r;0 ZJZJTQ . (5.23)
JFi J#i

Considering the following fact
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1 d27“i2 dr; 2 d2ri
- = —L 24
2 dt? (dt) i (5.24)

and adding-up Eq. (5.22) and Eq. (5.23) we get
1 dQTZ-Q dr? d?r;

2 2
3 a2 + d_tl - 72 =—r;+¢ Z JijT‘j . (5.25)
J#i

From Eq. (5.3) we have that

d27’i TZZ / A .
Tim = —a + 710 Z Jiﬂ’j Z Jijrj- (5.26)
j#i =1

Then Eq. (5.25) becomes

Ldrg | dr} ! S 2, 2
2 g i D diri | D Jigiy =i+t | D Jigr | - (5.27)
JFi j=1 i

By averaging Eq (5.27) similarly as it was done for Eq. (5.21) we obtain

N
1d2M  _dM ) ' -
5ozt —<n~¢ > Jir ZJijrj> :_M+/Dv¢2 <v |yq(t)y|§+@M>.
j#i j=1
(5.28)

By approximating the third term in the l.h.s as the product of independent terms, i.e.

N N
Jj=1 j=1

J#i J#i
we approximate Eq. (5.30) as
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P
1d*M  _dM / — _
2ar o / Dug ( Hq<t>||2+aM) uZlqu(t)qu(t)

-+ [ Dug? (v\/ a3 +aM) -

Our mean field theory gives good quantitative predictions for the dynamics of the overlaps

(5.30)

when it is compared with numerical simulations a large networks (see Fig 5.2a). Interestingly,
the network can stored and successfully retrieve more than one sequence (see Fig 5.2 a). In
the next section, we will calculate the maximum number of sequences that a network can
store and successfully retrieve depending on the network parameters. We call this quantity

sequential capacity.

5.4.2 Sequential capacity

We define the sequential capacity as the maximum number of sequences the network can
store without decaying to zero in the limit of infinitely long sequences (i.e. S — oo) and
time (i.e. t — 00) when the network is initialized with the first pattern in the sequence (as in
Figs 5.2 and 5.3). The intuition for this definition is the following: for very long sequences,
if the network is below capacity, it can be still retrieved after a long time since maintains
finite overlaps with the stored patterns. On the other hand, if the network is above capacity,
the overlaps die away after some time and the retrieval of the sequence is not possible. For
finding the capacity of the network we will study the squared norm of the overlaps ||(t)]|3.
If this quantity is finite, there is a set of overlaps that are also finite. On the other hand,
if this quantity is zero, all the overlaps are also zero. Therefore, the minimal value of the
sequential load o in which [|¢(#)||3 = 0 corresponds to the network capacity, analogous to the
capacity for attractor neuronal networks (Amit et al. 1985). Using Eq. (5.21) and noticing

that for P — oo we have that LT L% = L1, then dynamical equations for the norm read
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d . 4
Sal3 = =203+ G}, M) - (¢ La+ i 17q)

%*TLq = —2¢" Li+ G(|q13, M; ) <ﬂTL2q + qTLTLq)
= —2¢" L+ (|13, M3 0) - (¢ L27 + 113
jt*TL?* = —2¢" L*q+ G(||q|3, M; ) - (*TL?’q +q L'L?g )
2" L2+ G35, Ms ) - (7 LPa+ ' Ld)
CET = g Ly G113 M) - (LA + ¢ LT L)
= 2" L7+ G(I713, M3 0) - (¢ L7+ 7 1°7)

By considering the fact that (I — L)™' = I+ L+ L?+ L3 +---, we then add the above

equations obtaining:

Sa - D)= 2" (1~ D)7+ I3 M o) [267 (1 - 1) Nl + 7 1]

(5.31)

For very long times, the steady state of Eq. (5.31) is given by

G713 M: ) 1713 — 7 L7d) = 24" (1 — 1)7'7 | G713, M3 ) — 1] (5.32)

Since (I — L)~ ! is the lower triangular matrix

10 0
» 11 ... 0
(I—-L) " = ,
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then it is positive definite, which is by definition equivalent to

0<q'(I-L)'q

On the other hand, for a infinitely long sequence we have that

@ LT <713 (5.33)

Therefore, for the equality in Eq. (5.32) to hold if
G(IqI3, M3 o) < 1, (5.34)

then ¢ = 0. In other words, if Eq. (5.34) holds then sequences decay after some finite
time, and therefore the network is above capacity. Then the capacity curve is given by
G(0,M;a) = 1. (5.35)

At capacity the critical load a. is given by

[ Dove (vv/acM)
acM

=1 (5.36)

On the other hand, using Eq. (5.30), the value of M is given by

M= / Dug? (v\/ac—M> (5.37)

By solving both Egs (5.36,5.37) we obtain the network capacity a.. Our theory shows a
good quantitative agreement with numerical simulations of large networks (see Fig 5.3b,c).

The agreement is increasingly accurate as the size of the sequences increases (see Fig 5.3c).

154



5.5 Discussion

We have shown that the family of unsupervised Hebbian learning rules previously described
for learning attractors (Pereira & Brunel 2018a) learn sequential activity when a temporal
asymmetry in the learning rule is introduced (i.e. J;; o f(gf’erl)g(S?’s) instead of J;; o
f (ff ) g(§§? **)). This asymmetry naturally arises when a temporal delay as the time it takes
for calcium influx through NMDA receptors to reach its maximum (Sabatini et al. 2002,
Graupner & Brunel 2012) is considered (see Veliz-Cuba et al. (2015), Abbott & Blum (1996),
Gerstner & Abbott (1997), Mehta et al. (1997), Jahnke et al. (2015), Chenkov et al. (2017),
Theodoni et al. (2017), Pereira & Brunel (2018b) for models with temporally asymmetric
Hebbian learning rules). When this delay is much slower than the external stimulus driving
the network dynamics, patterns of activity of pre and post synaptic neurons in delayed times
are approximately uncorrelated, and Hebbian learning rules take an asymmetric form as in
Eq. (5.2).

The asymmetric learning rule analyzed in section 5.4 is well suited for storing sequences,
since its capacity scales with the network size. In contrast, in appendix C we show its sym-
metric version, i.e. the covariance rule, leads to zero capacity for attractor states correlated
with a single pattern. In this case, attractor states are correlated with multiple patterns,
and the retrieval of a single memory is not possible.

This learning rule recapitulates two important features of the sequential activity observed
in cortex: 1) stereotyped cue dependent sequential activity (see Fig 5.2 and 5.3b); 2) robust
to perturbations sequential activity (see Fig 5.2). Remarkably, the network dynamics can
be analyzed by a mean field theory, finding a low-dimensional description for the sequential
dynamics (the dynamics is described by S + 1 degrees of freedom instead of the original
N) in terms of the overlaps with the learned patterns. We show that the overlaps obey
a non-linear feed-forward dynamical system, and the network dynamics is effectively feed-

forward in the linear space spanned by the patterns in the learned sequence (space spanned
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by Ep»l, 579,2, cee EP’S). Using this theory, we compute the sequential capacity of the network,
showing that it grows linearly with network size, comparable to what is found in networks

storing fixed-point attractors.
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CHAPTER 6
CONCLUSIONS

In this thesis, I show that neural representations of memories in brain networks can be
learned as qualitatively different spatiotemporal attractors by a single class of unsupervised
learning rules in recurrent neuronal networks. Depending on the learning rule and the
statistical properties of the inputs, neural representations of memories can be fixed-point
attractors, chaotic attractors or sequences of activity. This model reproduces a wide range
of data sets and provides an unified framework for understanding unsupervised learning of
memories in brain networks. In the next sections, I will discuss outstanding questions and

future directions

6.1 Possible functional relevance of different neuronal

representations

What is the advantage (if any?) of having different representations of memories in brain net-
works? Memory capacity for fixed-point attractors, chaotic attractors and sequences scale
linearly with the average number of synaptic connections. Therefore, in terms of memory
capacity, there is no qualitative difference between the three types of neural representations.
However, memories are encoded differently for fixed-point and chaotic attractors from se-
quences. For fixed-point and chaotic attractors the code is static, that is, the activity of the
network lies in a single linear subspace which corresponds to the optimal decoder sub-space
during retrieval. In the case of sequences, the optimal decoder sub-space changes dynami-
cally, and the network optimally encodes different patterns at different times. Functionally,
the static code is optimal for holding a single item in memory while the dynamic code is op-
timal encoding information concatenated with a certain timing. These different codes might

be more favorable for different functions. For example, for encoding episodic memories a
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static code might be better suited, since the memory needs to be held for a period of time
for cognitive use. On the other hand, for encoding memories of motor actions, a dynamic
code might be a better strategy, since it can encode the specific sequence of actions and the

timing between them.

6.2 Online learning of memories in cortex

Neuronal responses of excitatory neurons to familiar images in the inferior temporal cortex
(ITC) have lower mean firing rates but higher maximum firing rates than to novel (Woloszyn
& Sheinberg 2012). These differences can be accounted by learning in the ITC recurrent
microcircuit (Lim et al. 2015, Pereira & Brunel 2018a). The learning rules are inferred
from neuronal responses to a large number of familiar and novel images (Lim et al. 2015,
Pereira & Brunel 2018a). In these data, for a novel image to become familiar it is shown
to a monkey more than 5000 times. However, is still unknown how the dynamics of the
neuronal responses changes across presentations as well as the underpinning learning rule.
Preliminary data sheds light upon this question showing that learning occurs within 2-4
training sessions (i.e. 70-140 presentations) (Mohan & Freedman 2018). Interestingly, very
recently, similar timescales for learning familiar images in V2 (Huang et al. 2018) have been
observed. I participate in a collaborative research project led by professors Yali Amit, Nicolas
Brunel, and David Freedman with the aim to uncover the multiscale dynamics during visual
recognition and memory in cortical circuits. Our objective is to infer presentation-dependent
learning rules from in vivo recordings in I'TC, similar to the online learning rules proposed in
chapter 4. In these inferred learning rules, patterns presented many times to the network are
gradually learned depending on the number of presentations, becoming progressively familiar
from novel. We plan to implement the inferred online learning rules in an attractor neuronal
network model analogously as in Pereira & Brunel (2018a). The objective is to reproduce

the dynamics of the changes of firing rates across presentations, as well as exploring the
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consequences for learning attractors in a network with online learning rules inferred from

data.

6.3 Diversity of time scales in the prefrontal cortex

In chapters 3 and 4 we have shown that fixed-point attractors transition to chaotic attractors
for strong synapses and high memory loads. They retain the information of the corresponding
stored memories, and the network performs as an associative memory device with internally
generated variability. We have proposed this scenario as an alternative mechanism for ex-
plaining the strong heterogeneity and temporal variability observed during delay response
tasks in the prefrontal cortex (PFC). This scenario is consistent with previous studies show-
ing that the coding of memories in the PFC is static (Murray et al. 2017), as is discussed
in section 6.1. However, a quantitative comparison contrasting this model with available
data is still lacking. Recent data from two different groups have shown that neurons in the
prefrontal cortex show a diversity of time scales (see Fig 6.1) with distributions close to
a log-normal (Cavanagh et al. 2018, Wasmuht et al. 2018). Interestingly, slow timescales
neurons are more infromative about the retrieved memoranda than fast timescale neurons.
Additionally, the coding of the memoranda by slow timescale neurons seems to be a combi-
nation of static and dynamic coding. In the model studied in chapters 3, the distribution of
timescales is skewed similar to a log-normal distributions observed in Cavanagh et al. (2018),
Wasmuht et al. (2018) but with narrower spread (compare Fig 6.1 A and B with Fig 6.1
C). This result is in apparent contradiction with the predictions of the theory in chapter 4,
where the single neuron autocorrelation function is the same for all neuron up to a difference
of order 1/v/N. In fact, we have shown that for the parameters inferred from data used in
chapter 3 the network is in a mixed state in which has a large overlap with the retrieved
memory and very small (but not negligible) overlap with all other stored memories. This

mixed state is a consequence of strong finite size effects, and presents interesting properties
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summarized as following: 1) Much larger capacities than what is predicted by the theory
in chapter 4; 2) Non-self-averaging autocorrelation function (these results are not shown in
this thesis). In the future, I would like to perform a quantitative comparison of the network
model in chapter 3 using similar analyses as in Murray et al. (2017), Cavanagh et al. (2018),
Wasmuht et al. (2018). Additionally, it will be ideal to also perform these analyses for the
delay activity of the same neurons where the learning rules and transfer functions of the

model in chapter 3 are inferred.
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Figure 6.1: Diversity of time scales in PFC and in a chaotic attractor network model. (A)
Distribution of time scales of dorsolateral and ventrolateral PFC neurons, adapted from
Cavanagh et al. (2018). (B) Distribution of time scales in lateral PFC neurons, adapted
from Wasmuht et al. (2018). (C) Distribution of time scales for 200 neurons in the attractor
neuronal network model in chapter 3 for parameters shown in Figs 3.9 and 3.10. Time scales
were computed as in Cavanagh et al. (2018).
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6.4 Reinforcement learning of sequences

In chapter 5 we show that patterns of activity can be learned using an asymmetric unsuper-
vised Hebbian learning rule. Since the stored patterns are random, the neuronal activations
throughout the sequence are unstructured (see Fig 5.1). The sequences match well activ-
ity observed in posterior parietal cortex, hippocampus, and HVC. Nevertheless, when this
model is assigned with the task of matching a particular sequence it fails. The reason is that
in this model learning is unsupervised, therefore no error signal provides information to the
network for precisely matching the target activity sequence. Supervised settings have been
very successful for learning given sequences (Sussillo & Abbott 2009, Rajan et al. 2016).
However the learning rules used (Sussillo & Abbott 2009, DePasquale et al. 2018, Rumel-
hart et al. 1985) are not biologically realistic. Furthermore, most models lack a theoretical
understanding of their capacity and robustness. In numerical experiments, I have explored
introducing arbitrary correlations between patterns in the model discussed in chapter 5 for
matching a particular sequence of activity, with anecdotal success. An interesting scenario
to explore is to combine unsupervised learning as in 5 with reinforcement learning in order
to learn particular sequences of activity. The basic idea is the following: 1) random pat-
terns of activity are learned using the unsupervised learning setting studied in chapter 5;
2) these patterns are then refined in a reinforcement learning setting using neuromodulator
dependent learning rules (Frémaux et al. 2010, Frémaux & Gerstner 2016, Kusmierz et al.
2017) for learning a particular sequence. The advantage of this model is twofold: 1) the
unsupervised and reinforcement learning rules are biologically plausible and it is likely that
the two class of learning happen concurrently in a single microcircuit in the cortex; 2) the
network model is amenable to be theoretically analyzed using mean field techniques as in

chapter 5.
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APPENDIX A
ATTRACTOR DYNAMICS IN NETWORKS WITH
LEARNING RULES INFERRED FROM IN VIVO DATA
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Figure A.1: Inferred static transfer functions. The static transfer function ¢ is derived
from the distribution of visual responses for novel stimuli for 14 different I'TC neurons using
the procedure described in Lim et al. (2015). The data (blue circles) was fitted using a
sigmoidal function (red line; see Methods, Eq. (3.48)). Cyan vertical dashed lines indicate
the parameter hg of the sigmoidal fit. For details, see Methods main text.
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Figure A.2: Distributions of firing rates for novel stimuli. Distributions of firing rates in
response to 125 novel stimuli for 14 ITC neurons. The firing rate histogram (blue) is plot-
ted together with the distribution of firing rates (red line) obtained when standard normal
patterns of current (i.e. & ~ N(0,1)) are transformed using the static sigmoidal transfer
function fitted in Fig. A.1 (i.e. ¢(§); see Eq. (3.48) in Methods). The gray and green vertical
dashed lines indicate the mean of the fitted firing rate distribution and the parameter x ¢ of
the plasticity rule (see Fig. A.3).
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Figure A.3: Inferred dependence on the postsynaptic firing rate of the learning rule. The
dependence of synaptic plasticity rule on the postsynaptic firing rate (i.e. f(r)) is inferred
for 14 ITC neurons. The data is indicated with black circles and the sigmoidal fit with a
blue line. The red line indicates the threshold between long term potentiation (LTP) and
long term depression (LTD). As in Fig. A.2, the gray and green vertical dashed lines indicate
the mean of the fitted firing rate distribution and the parameter z ; of the learning rule.

165



APPENDIX B
LOCAL-FIELD AUTO-COVARIANCE CALCULATION

B.1 Local-field auto-covariance calculation

Let us consider the auto-covariance of the fields in Eq. (4.13)

A(71) = Cov(h(t)h(t + 7)). (B.1)
Using the properties of the auto-covariance we obtain

A(1) = Cov(h(t)h(t + T)). (B.2)

In our dynamic mean field theory, the dynamics of the network is approximated by a

random gaussian field given by Eq. (4.8), i.e.:

hi = —hi + Af(n")O(w)my, + Ayyry(t), (B.3)
where
C(r) = Covy(y(t)y(t + 7)) = Covp,(o(h(t))d(h(t + 7))). (B.4)

Here for simplicity we will set A =1 and O(p) = 1. The later implies that k = a = p/Ne.

By using Eq. (B.3,B.4) we obtain
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A(r) = Covp([=hi(t) + f(ni)m + /ayy()] [=hi(t +7) + f(mi)m + Jayy(t +7)))
= A(7) + Vary(f(n))m® + ayC(r) — mCovy, (hi(t), f(1;)) = mCovy, (hi(t + 1), f (i)
—vayCovp(yi(t + 1), h(t)) — ayCovp(yi(t), h(t + 7))

+mCovp, (y;(t +7), f(n;)) + mCovy,(y;(t), f (1)) (B.5)

In our theory, the random variable y(t) represents the variability in the synaptic input
current. For large networks, the synaptic input currents are uncorrelated with the par-
ticular pattern that is being retrieved. Therefore we have that Covy(y;(t + 7), f(n;)) =
Covy,(y;(t), f(n;)) = 0. On the other hand,

Covp(yi(t + 7). h(1)) = Covy(yi(t +7), /ayy(t) + f(m) — hi(t))

= JayC (1) — Covy(y;(t +7), hi(t)).

Similarly

Covy,(yi(t), h(t + 7)) = Covy(y;(t), Vayy(t +7) + f(mi) — hi(t + 7))

= VayC(r) — Covy(y;(t), hi(t +7)).

Lastly, considering

!/

Covp(yi(t), hi(t + 7)) + Covp(yi(t +7), hi(t) = Covi(yi(t), hilt + 7)) + Covp(yi(t), hi(t — 7))

= Covi(yi(t), hilt + 7)) = Covy(yi(t ), it +7))

= 0,
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then Eq. (B.5) becomes

A(r) = A(7) + Vary(f(n)m® = arC(7) — mCovy(hi(t), f (n;)) — mCovy, (hi(t +7), f(m;)).
(B.6)
In Eq. (B.3) the synaptic input currents h;(t) are described by a gaussian random field,

therefore can be written as

hi(t) = VAo — A7)z + sgn(A(T)VIA(T)]z + f(ni)m (B.7)
hitt+7) = VAo = [A)ly +VIAT)|z + fni)m, (B.8)

where, x,y, z are independent standard normal random variables. This implies

(hi(1)*) = Ag (B.9)
(hit+7)%) = Ay (B.10)
(hi(O)hi(t+ 7)) = A(7). (B.11)
(B.12)

Then Covy,(hi(t), f(1i)) = Covp(hi(t + 7), f(n;)) = mVary(f(n)), obtaining
A(1) = A(1) = Vary(f(n))m* — arC(7). (B.13)

Finally, by doing the following translation A(7) — A(7)—Vary(f(n))m? we obtain Eq. (4.14).
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APPENDIX C
UNSUPERVISED LEARNING OF SEQUENTIAL ACTIVITY
WITH TEMPORALLY ASYMMETRIC HEBBIAN LEARNING
RULES

C.1 Mixed States

Here we show that recurrent networks endowed with the covariance rule (Sejnowski 1977)
learn attractor states correlated with multiple memories (i.e. mixed state) when the stored
patterns are normally distributed. In this state, the retrieval of a single memory is not

possible. This results was first found in the Hopfield model by Amit et al. (1985).

C.1.1 Pure state

We will first start analyzing the case of just one condensed pattern. When the network is in

its steady state the incoming current to neuron ¢ is given by

N p
1 k ok
hi = FCZZCUSZ fjr] (Cl)

j#i k=1
The mean field over the disorder produced by all the patterns and the structural connec-

tivity (i.e. C, 5_2, . ,EP), conditional on the first pattern (i.e. 51 = 7) is given by

Ee (hz-|§ - z) = 2B a1 (5%) . (C.2)

The conditional variance of the field over the disorder produced by all the patterns and

the structural connectivity, conditional on the first pattern is given by

Varg (hilg: Z) = aE¢ a1 (7"2> : (C.3)
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For computing Eq.(C.3) we use the fact that ¢ < 1 to neglect correlations between

neurons. As in the main text, we refer to the parameter a = Nic as the memory load,

which corresponds to the number of pattern per average number of synapses. We define the

following order parameters

m = Eea (¢'(6¢") (C.4)
M = Eg (72(,5,51)). (C.5)

Where m, that we call the overlap, corresponds to the covariance between the first pattern
and the steady state of the network, while M corresponds to the second moment of the steady
state of the network. We compute the order parameters self-consistently by using the mean

Eq. (C.2) and variance Eq. (C.3) of the field

m = /O:O/O:oDszzF(mz+\/a_My) (C.6)
M = /O:O/_O:oDszFQ(mz—i—\/my). (C.7)

.2
Where Dz = dze™ 2 /v/27 and similarly for Dy. By defining the following quantity

b2 = m? + aM these equations simplify to

b = /OO DuvF(bv) (C.8)

M = /OO DuF?(bv). (C.9)

Computing the order parameters m and M can be done as following: first b is calculated
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self-consistently by using Eq. (C.8); second M is calculated by using Eq. (C.9) and finally

m is calculated by

m=\b%—aM. (C.10)

When we compare our mean field equations with numerical simulations we find that
the retrieval of one pattern (i.e. the steady state of the network is correlated with just
one pattern) is not possible for a large parameter exploration. In contrast, our numerical
simulations show that only mized states where the steady of the network is correlated with
a finite number of patterns is prevalent. In Fig. C.1 A it is shown the overlaps dynamics
of a network with two-patterns-stored connectivity. After transients, the steady state of
the network is correlated with both patterns for the four realizations depicted. In the next

section, we will show that this is generic for any realization as it is shown in Fig. C.1 B.

C.1.2  Finite Number of Condensed Patterns

To understand this discrepancy between our previous MFT and the numerical simulations,
we now assume that the steady state of the networks is correlated with the ¢ first pattern
learned with ¢ finite i.e. mj,mg, ..., mg. In other words, we assume that the steady state
of the networks depends on the ¢ first pattern learned, and on the rest uncondensed p — ¢
patterns only depend indirectly through the field i that they produce. Since in our analysis,
the number of patterns is assumed to be large ¢ < p. Then the steady state of the network

in this case is approximated by

r=F(h|t, ... €9). (C.11)

Then, the conditional mean field over the disorder produced by the last (p — ¢) patterns

and the structural connectivity (i.e. C, gatl ,é’p), conditional on the first ¢ pattern (i.e.
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Figure C.1: (A) Numerically computed overlaps vs time for a two-patterns-stored connec-
tivity (i.e. p = 2). Four different realizations of the network are shown in yellow, gray, red
and maroon. In dashed and continuous lines are shown respectively the overlaps with the
fist and second pattern. In these four realizations, after transients, the steady state of the
network is correlated with both patterns. (B) In solid circles, it is shown the numerically
computed overlaps after transients placed in the mq-my plane for one hundred realizations
of the network. Circumferences with the radius given by Eq. C.19-C.21 are the manifolds
where lie the overlaps in the mi-m9 plane predicted by our MFT for a two-patterns-stored
connectivity. In green, blue and magenta solid circles (numerical simulations) and circum-
ferences (MFT) are shown the results for three different parameters used 5 = 10 and hg = 0,
B =5and hg =0 and 8 =5 and hg = 0.15 respectively, with rmax = 1. In yellow, gray, red
and maroon squares are placed in the mi-ms9 plane the overlaps depicted in Fig. C.1 A. For
these simulations the network parameters were ¢ = 0.005 and N =5 - 10°.
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n

= 2o,...,&9=21) is given by

q
Ee (hl-|51:21,...,€ :ﬁ) =3 myek. (C.12)

With the order parameter mj. defined by

mk = E§17...7£q’€(£k7"). (013)

On the other hand, the conditional variance of the field over the disorder produced by

the last (p — q) patterns and the structural connectivity (i.e. C, 5(14'1, o ,gp), conditional
on the first ¢ pattern (i.e. 5_1 =72, 52 =29,.. 5 Z1) is given by
Varg (h &1 = L= ) alM. (C.14)

With the order parameter M given by

M=Eq e (rQ(gl,...,g'J,h)) . (C.15)

Using the central limit theorem, we approximate the distribution of the field over the
disorder produced by the last (p — ¢) patterns and the structural connectivity conditional to

the ¢ condensed patterns to

p(hlel =21 g1 = 29) = <Z z'my, > : (C.16)

with ¢k id N(0,1). By using the fact in the steady state r; = F(h;), we write the

self-consistent mean field equations for the order parameters as following
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m, = B eq (FF(mig! +mog® + -+ mgl? +VaMy)) k=1,...,q (C17)

M = Ba_ eq,(FAmig" +mo€® + -+ mg? + Vay)), (C.18)

where y is a standard normal random variable. These ¢ 4+ 1 equations can be reduced to

three equations given by

1 [ v2
b = E/_oodve_2vF(bv) (C.19)
M L (% e 5 P20 C
= — ve 2 v .20
=/ ) (bo) (C.20)
q
> mi = b —aM. (C.21)
=1

Equations (C.19) and (C.20) are equivalent to equations (C.8) and (C.9) obtained in the
one-condensed-pattern case analyzed in the previous section. On the other hand, Eq. (C.10)
is the one-pattern version of Eq. (C.21). This analysis shows that for the covariance rule,
retrieval states which are correlated with a finite number of patterns exist. Moreover, there is
a continuum of such states, that lie on a manifold described by the surface of the hypersphere
2?21 ml2 = b? — oM. Thus, ‘pure’ retrieval states (i.e. states correlated with just a single
stored pattern) are only marginally stable. In finite networks, numerical simulations find
only mized states, consistent with symmetry breaking that lead to a discrete set of mixed
states as the only possible attractors of the system. Therefore, with this rule retrieval of
a single memory is not possible. In figure Fig. C.1 B it is shown the circumference where
the overlaps are predicted to lie by our MFT (i.e. Eq. C.19-C.21) for a two-patterns-stored
network. There is a good agreement between our theory and numerical simulations for

multiples realizations of the network.
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