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To Macarena and Sara



“ ... unless it comes out of

your soul like a rocket,

unless being still would

drive you to madness or

suicide or murder,

don’t do it.

unless the sun inside you is

burning your gut,

don’t do it. ”

-Charles Bukowski
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ABSTRACT

In this thesis, I show that a single class of unsupervised learning rules that can be inferred

from in vivo data learns neuronal representations consistent with a wide range of datasets.

Recurrent neuronal networks endowed with learning rules of this class represent memories

as qualitatively di↵erent spatiotemporal attractors (i.e. fixed-point attractors, chaotic at-

tractors or transient sequences of activity) depending on the stimuli statistics and learning

rule. They match disparate observations from recordings in di↵erent species, brain regions

and memory tasks, suggesting that memories are di↵erentially represented in brain systems.

This thesis provides a unified model for explaining the diversity in neuronal dynamics during

memory retrieval.
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CHAPTER 1

INTRODUCTION

1.1 Neuronal representations

Sensory experiences produce brain-wide activity changes. For example, exposure to narrative

stories produce a semantic structure of activations across multiple cortical regions in humans

(Huth et al. 2016). Exposure to natural images produce a hierarchy of activations in inferior

temporal cortex in primates (Kiani et al. 2007, Kriegeskorte et al. 2008). Hippocampal

neurons of rodents moving in an environment are activated in specific landmarks (O’Keefe &

Dostrovsky 1971, O’keefe & Nadel 1978), while neurons in the entorhinal cortex get activated

whenever the animal position coincides with intersection points on a grid that maps the

environment (Hafting et al. 2005). These are just a few examples of the striking ability of

brains to respond in a structured way to sensory stimulus. A natural question that comes to

mind is if the neuronal responses are in anyway related with the information content of the

sensory stimuli. A popular hypothesis underlying most of contemporary neuroscience is that

salient information about the external world is represented in neuronal activity. In other

words, activity patterns in networks in the brain encode information of the external world

which can be then used for cognitive computations. A useful analogy for the non-expert

reader of this hypothesis is the pointillism, in this painting technique popularized by the

impressionists, complex scenes are painted using dots of di↵erent colors in the canvas as the

one presented in Fig 1.1. Analogously to the distributed but structured ensemble of color

dots in Fig 1.1, it is hypothesized that information in the brain is represented by distributed

yet concerted single neuron activity in brain networks. This hypothesis is strongly supported

by decades of neuronal recordings in brains of primates, rodents, cats, birds, fishes and flies

during behavior. How neuronal representations are learned from experience and stored in

brains as memories? This is the matter of this thesis.
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Figure 1.1: A Sunday afternoon on the island of la Grande Jatte (207.6cm ⇥ 308cm). Painted
by Georges Seurat on 1884-1886. Currently exhibited at the Art Institute of Chicago. This
painting is a landmark example of the pointillist technique, here small dots of paint with
distinct color are applied in a very large canvas to represent a complex scene. In this
painting Seurat represents a typical Sunday afternoon in the Seine riverbank. Analogous to
the pointillism, the theory of neuronal representations hypothesize that information in the
brain is represented in the concerted activity of ensembles of neurons. As the thousands
small color dots in the canvas that distributed yet coordinated lead to the Sunday afternoon
scene in this painting, in the theory collective neuronal activity distributed in brain networks
represents external (and internal) information.

2



1.2 Learning and memory of neuronal representations

Past experiences can be recalled on the basis of cognitive needs by brain systems. It has

been hypothesized that when past experiences are recalled, neuronal representations are

reactivated, conveying their past information. The reactivated neuronal representation cor-

responds to the neuronal substrate of a remembered memory. In other words, when a memory

is remembered, patterns of neuronal activity correlated to the ones elicited by the memo-

randum that is being retrieved are reactivated. A large body of experimental data supports

this hypothesis, one compelling example is the activity observed in CA3 hippocampal cells

when rats change environments. Activity in CA3 is highly informative of the identity of the

particular environment when rats are placed in it, even when the environment gets distorted

or the geometry of two di↵erent environments is identical. This suggests that neuronal

representations of environments in CA3 can be recalled on the basis of limited information

about the environment (Leutgeb et al. 2004). In humans, semantic memories reactivate in or

nearby areas corresponding to the sensory modalities involved in the recalled concept. It is

believed that the reactivation of brain regions corresponding to di↵erent sensory modalities

embodies semantic memories in the process of recalling (Binder & Desai 2011). In primates,

it has been shown that learned categories of objects are represented in the neuronal ac-

tivity of the prefrontal cortex. Stimuli varying its geometry within a given category elicit

similar neuronal activity, suggesting that learned neuronal representations corresponding to

categories are recalled from di↵erent but correlated stimuli (Freedman et al. 2001). These

are just three handpicked examples from a large set of experimental work showing that in

di↵erent brains and brain regions during retrieval, neuronal representations are reactivated

for its use on cognitive demands.

How memories are learned from experience in brain networks? One of the candidate

scenarios was first envisioned by Richard Semon (Semon 1909) and specifically refined for

neuronal circuits by Donald Hebb (Hebb 1949). In this scenario, experienced items to be

3



memorized elicit patterns of activity in brain networks. These patterns of neuronal activity

produce changes in the synaptic connectivity via activity-dependent synaptic plasticity, i.e.

the cellular mechanism by which synaptic connections between neurons change depending

on their activity, generating a distributed pattern of synaptic modifications. Therefore, the

connectivity matrix gets structured according to the interplay between synaptic plasticity

and the spatiotemporal statistics of neuronal activity patterns. The induced traces of synap-

tic modifications correspond to the synaptic memory engram of the stored memorandum.

Analog to the painting shown in Fig 1.2 generated by layers of barrages of strokes in a canvas,

in this theory, when a new item is memorized synaptic modifications change the connectivity

matrix again in top of previous modifications. The overfall of sensory experiences leads to

an online process in which the connectivity is modified continuously for learning new mem-

ories. Synaptic changes create a memory of the corresponding memorandum by fostering

the corresponding neuronal representation in the network dynamics. After learning, upon a

sensory cue correlated with the stored memorandum, the corresponding memory is retrieved

by the activation of its neuronal representation. When no memory is retrieved, neuronal

representations of memories are latent, existing only as synaptic memory engrams in the

network connectivity.

In this thesis, the scenario described above is assumed as the working hypothesis. How-

ever, this synaptocentric scenario for learning and memory is currently a matter of scientific

debate. An interesting complementary scenario is that both synapses and intrinsic single

cell properties change during learning, corresponding in conjunction to a memory engram

(Titley et al. 2017).

4



Figure 1.2: Convergence (237 cm ⇥ 390 cm). Painted by Jackson Pollock on 1952. Currently
at the Albright-Knox Art Gallery. In this painting, Pollock paints a barrage of strokes of
di↵erent colors in a canvas one after another in layers. The painting serves as a metaphor for
the hypothetical mechanism of learning in brain networks described in section 1.2. As a set of
the strokes of a particular color, synaptic modifications due to a given memorandum modify
the network connectivity matrix. When a second memorandum is learned, the connectivity
gets again modified adding new changes in top of the previous ones, as the second set of
strokes of di↵erent colors in the painting. When more memories are learned, this process
continues structuring the connectivity of brain networks as Pollock’s strokes generate the
final version of Convergence. Then memory engrams get intermingle in the connectivity
matrix, and its information is distributed across the entire network.

5



1.3 Neurobiology of learning and memory

1.3.1 Synaptic plasticity

There is strong evidence supporting that the main cellular mechanism for learning new

memories in brains is synaptic plasticity in the form of long term potentiation (LTP) and

depression (LTD). LTP has been first studied in the hippocampal excitatory synapses, start-

ing from the observation that a short high-frequency stimulation produced a long-lasting

increase in synaptic strengths (Lomo 1966, Bliss & Lømo 1973). For almost 50 years scien-

tists have dissected the molecular and cellular mechanisms involving LTP. The basic version

of the mechanism is the following: glutamate, which is a neurotransmitter that is released

from synaptic vesicles by a pre synaptic neuron, binds to both ↵-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid and N-Methyl-D-aspartic acid post synaptic receptors (AMPAR

and NMADR respectively). By binding to AMPAR, the influx of ions depolarizes the mem-

brane potential of the post synaptic neuron, which might contribute to the production of

a post synaptic action potential. On the other hand, by binding to NMDAR an influx of

calcium is produced into the post synaptic neuron (specifically the dendrite). The calcium

activates a massive holeoenzyme called CaMKII (Ca2+/calmodulin-dependent protein ki-

nase II), starting a complex cascade of phosphorylations ending in the increase of AMPAR,

increasing with this the strength of the synapse (see Lisman et al. (2012), Herring & Nicoll

(2016) for a review of the molecular and cellular mechanisms involved). The description

above is an extremely simplified version of a complex phenomenon, which its properties,

as well as its molecular and cellular details, vary across species, brain regions, cell types

and developmental stages. However, a consistent finding is that synapses undergo long time

changes in a post and pre synaptic activity-dependent fashion.

In brain slices experiments, it has been shown that synaptic plasticity depends on the tim-

ing between the pre and post synaptic spikes, not only leads to potentiation but also might
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lead to depression, and also depends on firing rates and membrane potentials (Markram,

Lübke, Frotscher & Sakmann 1997, Magee & Johnston 1997, Bell et al. 1997, Bi & Poo

1998, Sjöström et al. 2001, Abbott & Nelson 2000, Artola et al. 1990). Theoretical mod-

els have captured these observations with di↵erent degree of detail and biological realism

(Kempter et al. 1999, Pfister & Gerstner 2006, Clopath & Gerstner 2010, Gjorgjieva et al.

2011, Graupner & Brunel 2012). However, it is unclear that the observations in experi-

ments performed in brain slices (i.e. ex vivo) hold in alive animals in behaving conditions.

In a recent work, researches have taken an alternative approach for capturing the activity

dependence of synaptic changes during behavior, developing a statistical method for infer-

ring learning rules from in vivo data (Lim et al. 2015). The inferred learning rules belong

to a class in which the changes in synaptic strength (�Jij) depend as the product of two

non-linear functions of the pre (ri) and post (rj) synaptic firing rate, i.e.:

�Jij / f(ri)g(rj). (1.1)

In this thesis, this family of learning rules is explored. It is further assumed that f and

g are non-decreasing.

1.3.2 Biological implementation of three classes of learning

Models of learning involving synaptic plasticity can be divided into three classes: supervised,

reinforced and unsupervised. In models of the former class, synapses are updated according

to the activity of the network and a error signal that carries information about the di↵erence

between the current network dynamics and the one that it is expected to learn by the

network. This class of learning is one of the leading theories for learning in the Cerebellum,

and has provided a normative explanation for the anatomical and synaptic organization of

the cerebellar circuitry (Marr 1969, Albus 1971, Brunel et al. 2004, Bouvier et al. 2017).

In models based of reinforcement learning, a reward signal guides learning towards what
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the network is expected to learn. Reinforcement learning has been a successful theoretical

framework to understand dopamine-mediated learning. A large body of data suggests that

dopamine release neurons encode a reward prediction error, driving synaptic changes in

cortical and sub-cortical regions (Glimcher 2011). Lastly, in the latter class of models learning

occurs solely driven by external inputs. Synapses changes depending on external stimulation

without an error signal. External inputs shape the network connectivity, sculpting the

connections between neurons depending on the statistics of their neuronal responses. These

models have reproduced key aspects data involving learning and retrieval in cortical areas, in

particular, the prefrontal cortex (Amit 1995, Wang 2001, Brunel 2005) and the Hippocampus

(Treves & Rolls 1992). The family of learning rules in Eq. (1.1), considered in this thesis,

corresponds to this class of learning since no error signal is available for driving the synaptic

changes.

1.3.3 Neuronal representations of memories

Persistent activity

How are memories represented in neuronal activity? Delay response tasks in primates have

provided important experimental evidence regarding this question. In early (visual) versions

of this class of experiments (Fuster et al. 1971, Fuster & Jervey 1981, Miyashita 1988), an

image is presented in a screen to a monkey for a short period of time. After the presentation

period, the image is withdrawn from the monkey’s view for a delay period of the order of

seconds. After the delay period, the monkey uses information about the image to perform

a task. For example, deciding whether a second presented image match the previous one.

This task is designed in such a way that for its successful performance information about the

image has to be held in memory. Strikingly, persistent activity has been recorded during delay

periods, i.e. stable elevated activity, in the prefrontal cortex (Fuster et al. 1971, Funahashi

et al. 1989, Romo et al. 1999), parietal cortex (Koch & Fuster 1989b), inferior temporal
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Figure 1.3: Persistent, sequential and heterogeneous delay activity. (A) Persistent activity
for three representative neurons recorded in the mice anterior lateral motor cortex during
an auditory delay response task. In this task a 3 or 12 kHz tone is presented to a mouse.
After a delay period, the mouse has to leak a leak-port to the left or right depending on
the frequency of the presented tone. For each trial, the duration of the delay period is
randomly distributed according to an exponential distribution. The first and second rows
show the spike raster plots corresponding to correct right (blue) and left (red) trials sorted
by the delay period duration (ten trials per delay period duration). The last row shows the
mean spike rate for right and left trials. Adapted from Inagaki et al. (2017). (B) Choice
specific sequential activity recorded in the posterior parietal cortex during a navigational
delay response task. In this task, a mouse navigates in a virtual reality maze while neuronal
activity is being recorded using calcium imaging. A color in the landmark cues the mouse
to turn right or left. After a delay period, the mouse has to turn according to the cue.
The left and right columns in the figure correspond to correct left and right trials. The top
and bottom rows correspond to the left- and right- preferring neurons respectively. Each
row in the panels corresponds to the time-course of the normalized fluorescence for a single
neuron. Adapted from Harvey et al. (2012). (C) Four representative neurons recorded in
the prefrontal cortex of a monkey performing an oculomotor delay response task. In this
task, a cue is presented in one of eight radial directions separated by 45�. After a delay
period, the monkey has to saccade in the direction of the cue. Di↵erent panels correspond to
di↵erent neurons, and di↵erent colors correspond to di↵erent directions (i.e. 0�, 45�,..., etc).
Adapted from Murray et al. (2017), data from Funahashi et al. (1989) and Constantinidis
et al. (2001).
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cortex (Fuster & Jervey 1981, Miyashita 1988, Nakamura & Kubota 1995a) and other areas

of the temporal lobe (Nakamura & Kubota 1995a). Recently, persistent activity has been

observed during delay response tasks in rodents (Liu et al. 2014, Guo et al. 2014, Inagaki

et al. 2017). It has been proposed that persistent activity constitute the neuronal correlate

of memory (Goldman-Rakic 1995). That is, during retrieval, the neuronal representation of

a memory corresponds to a stable pattern of activity in brain circuits. For an example of

persistent activity see Fig. 1.3A.

Sequential activity

A qualitatively di↵erent type of neuronal dynamics, namely sequential activity, has also

been observed relatively recently during delay response tasks. In this activity, neurons are

active transiently for short periods of time in a sequence. An example of this activity

has been observed during a navigational working memory task in the posterior parietal

cortex of mice (Harvey et al. 2012). In this task, the mouse navigates in a virtual reality

maze. During the presentation period, a color cue is presented. After a delay period, the

mouse has to turn left or right depending on the cue. Interestingly, a choice specific set

of neurons present sequential activity, see Fig. 1.3B. In recordings in the CA1 region of

the hippocampus, choice specific sequences have also been observed when a rat runs in a

wheel during delay periods (Pastalkova et al. 2008). Additionally, sequences also have been

observed in tasks involving spatial navigation (Foster & Wilson 2006, Grosmark & Buzsáki

2016) and birdsong generation (Hahnloser et al. 2002, Amador et al. 2013, Okubo et al.

2015). It has been hypothesized that sequential activity also corresponds to a neuronal

representation of memories. In this scenario, the information about the memorandum is

hold in memory in the network’s transient activity.
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Heterogeneous activity

Heterogeneous time-varying fluctuations also have been observed during memory tasks in

the prefrontal cortex. It has been reported during delay periods variability across trials for

a single memorandum, strong temporal fluctuations and heterogeneity in the neuronal re-

sponses across neurons (Shafi et al. 2007, Lundqvist et al. 2016, Murray et al. 2017, Lundqvist

et al. 2018) (see Fig. 1.3C for an example of heterogeneity in neuronal responses). It has

been proposed that the observed heterogeneous activity corresponds to a qualitatively dif-

ferent neuronal representation of the retrieved memory from persistent or sequential activity

(Murray et al. 2017, Druckmann & Chklovskii 2012).

1.4 Theoretical models for learning neuronal representations

Spatiotemporal dynamics of a neuronal network and its connectivity are deeply interlinked.

Depending on their connectivity, neuronal networks have a plethora of qualitatively di↵er-

ent types of dynamics as for example: fixed-point attractors (Hopfield 1982, Amit 1992),

line attractors (Seung 1996), high dimensional attractors (Druckmann & Chklovskii 2012),

chaotic attractors (Sompolinsky et al. 1988), sequential activity (Abeles 1991) and oscilla-

tions (Wilson & Cowan 1972). As discussed in section 1.2, in this thesis the underlying

hypothesis is that neuronal representations of memories correspond to spatiotemporal pat-

terns of activity. Attractor networks (Amit 1992) are one of the first theoretical instantiation

of this idea. These network models have multiple stationary patterns of neuronal activity, i.e.

fixed-point attractors. Each fixed-point attractor is correlated with a single memory, which

corresponds to its neuronal representation. When a partial version of the stored memory

is presented to the network, the state of the network goes to a region in the phase space

where any point in this region evolves toward the fixed-point corresponding to the retrieved

memory. For learning new memories, modifications of the connectivity according a particu-

lar synaptic plasticity rule creates a new fixed-point attractor representing the new memory.
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The Hopfield model (Hopfield 1982) is the landmark model for attractor networks. In this

model neurons are binary, and memories correspond to binary patterns learned using the

covariance rule (Sejnowski 1977). Similar models to attractor networks have been proposed

for learning sequences. In these models patterns of neuronal activity concatenated in time

correspond to the neuronal representation of a memory. When a memory is retrieved, a

partial version of the initial pattern in the sequence ignites the entire sequence of activity.

New memories are learned in these models using an asymmetric version of the covariance

rule (Sompolinsky & Kanter 1986, Kleinfeld 1986). Lastly, Tirozzi & Tsodyks have shown

that chaotic attractors with associative memory properties are present for strong synapses

and large number of patterns in the sparse version of the Hopfield model with analog neurons

(Tirozzi & Tsodyks 1991). Therefore, in this model, chaotic attractors correspond to the

neuronal representations of memories.

1.5 Overview

In the first chapter, I study a recurrent neuronal network endowed with a learning rule

that belongs to the family described in Eq. (1.1) under an external dynamic stimulation. I

show that depending on the stimulus properties, both sequential and persistent activity can

be learned. This suggests that cortical circuits endowed with a single unsupervised learning

rule can learn qualitatively di↵erent neuronal dynamics (i.e. persistent vs sequential activity)

depending on the stimuli statistics. This chapter corresponds to a submitted paper which is

currently posted on bioRxiv (Pereira & Brunel 2018b).

In the second chapter, I study a recurrent neuronal network constrained by in vivo in-

ferior temporal cortex data (Woloszyn & Sheinberg 2012, Lim et al. 2015). The network

presents attractor dynamics without any need for parameter tuning, reproducing landmark

statistical properties of cortical neurons during delay response tasks. Additionally, I show

that learning rules inferred from data (Lim et al. 2015) are close to maximizing the number
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of stored patterns, suggesting that learning rules in ITC are optimized for storing a large

number of memories as attractor states. Finally, I show that in a region of the parameter

space memory states are chaotic, providing with this a new mechanism for explaining the het-

erogeneity observed during delay periods in the prefrontal cortex. This chapter corresponds

to a published paper (Pereira & Brunel 2018a).

In the third chapter, I develop a general theory for the transition to chaos of memory

states, and explore the e↵ect of online learning of memories. I show that memory states

can be fixed-point (newer memories) or chaotic attractors (older memories) depending on its

age, leading to a continuum of di↵erent retrieval states with age-dependent spatiotemporal

statistics. This chapter corresponds to a manuscript currently in preparation.

In the fourth chapter, I study a recurrent neuronal network in which sequences of patterns

are learned. In this network, patterns are retrieved sequentially in the order that they were

presented. I develop a theory for patterns with Gaussian statistics, obtaining dynamical

equations for the transient correlation between the network activity and the stored patterns

throughout the sequence. I compute the capacity of the network, that is the number of

sequences that can be stored as a function of network size, and show that it grows linearly

with network size. This result is comparable to that found in networks storing fixed-point

attractors. This chapter corresponds to part of a manuscript currently in preparation.
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CHAPTER 2

UNSUPERVISED LEARNING OF PERSISTENT AND

SEQUENTIAL ACTIVITY

2.1 Contribution

The work presented in this chapter correspond to the submitted publication Pereira & Brunel

(2018b). The authors are Ulises Pereira and Nicolas Brunel. U.P. and N.B. designed the

research. U.P. and N.B. performed the research. U.P. and N.B. wrote the manuscript.

2.2 Introduction

Selective persistent activity (PA) has been observed in many neurophysiological experiments

in primates performing delayed response tasks, in which the identity or spatial location of a

stimulus must be maintained in working memory, in multiple cortical areas, including areas

in the temporal lobe (Fuster et al. 1982, Miyashita 1988, Miyashita & Chang 1988, Sakai &

Miyashita 1991, Nakamura & Kubota 1995b, Naya et al. 1996, Miller et al. 1996a, Erickson &

Desimone 1999), parietal cortex (Koch & Fuster 1989a, Chafee & Goldman-Rakic 1998) and

prefrontal cortex (Fuster et al. 1971, Funahashi et al. 1989, 1990, 1991, Miller et al. 1996b).

More recently, selective persistent activity has also been observed in mice (Liu et al. 2014,

Guo et al. 2014, Inagaki et al. 2017) as well as flies (Kim et al. 2017). It has been hypothesized

that PA represents the mechanism at a network level of the ability to hold an item in working

(active) memory for several seconds for behavioral demands. Theoretical studies support the

hypothesis that persistent activity is caused by recurrent excitatory connections in networks

of heavily interconnected populations of neurons (Amit et al. 1994, Durstewitz et al. 2000,

Wang 2001, Brunel 2005). In these models, PA is represented as a fixed point attractor of

the dynamics of a network that has multiple stable fixed points. The connectivity matrix in
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such models has a strong degree of symmetry, with strong recurrent connections between sub-

groups of neurons which are activated by the same stimulus. This connectivity matrix can

be learned by modifying recurrent connections in a network according to an unsupervised

Hebbian learning rule (Mongillo et al. 2005, Litwin-Kumar & Doiron 2014a, Zenke et al.

2015).

Sequential activity (SA) has been also observed across multiples species in a number of

behaviors such as spatial navigation (Foster & Wilson 2006, Harvey et al. 2012, Grosmark

& Buzsáki 2016) and bird song generation (Hahnloser et al. 2002, Amador et al. 2013,

Okubo et al. 2015). Furthermore, a large body of experimental evidence shows that SA can

be learned throughout experience (Okubo et al. 2015, Grosmark & Buzsáki 2016). Several

theoretical network models have been able to produce SA (Abeles 1991, Amari 1972, Kleinfeld

& Sompolinsky 1988, Diesmann et al. 1999, Izhikevich 2006, Liu & Buonomano 2009, Fiete

et al. 2010, Waddington et al. 2012, Cannon et al. 2015). In these models, the connectivity

contains a feed-forward structure - neurons active at a given time in the sequence project

in a feed-forward manner to the group of neurons which are active next. From a theoretical

stand point, the mechanism to generate SA is fundamentally di↵erent from the one that

generates PA. While SA usually corresponds to a path in the state space of the network, PA

is identified as a fixed point attractor. Thus, SA has an inherent transient nature while PA

is at least linearly stable in a dynamical system sense.

The question of how sequential activity can be learned in networks with plastic synapses

has received increased interest in recent years. The models investigated can be roughly

divided in two categories: models with supervised and unsupervised plasticity rules. In

models with supervised plasticity rules, the synapses are updated according the activity of

the network and an error signal that carries information about the di↵erence between the

current network dynamics and the one that it is expected to learn by the network (Sussillo

& Abbott 2009, Memmesheimer et al. 2014, Laje & Buonomano 2013, Rajan et al. 2016).
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In models with unsupervised plasticity rules, sequential dynamics is shaped by external

stimulation without an error signal (Jun & Jin 2007, Liu & Buonomano 2009, Fiete et al.

2010, Waddington et al. 2012, Okubo et al. 2015, Veliz-Cuba et al. 2015). In those models

SA is generated spontaneously, and the temporal statistics of the stimulation shapes the

specific timing of the sequences.

Both experimental and theoretical work therefore suggest that neural networks in the

brain are capable to learn PA and SA. One unresolved issue is whether the learning rules

used by brain networks to learn PA are fundamentally di↵erent than the ones used to learn

SA, or whether the same learning rule can produce both, depending on the statistics of the

inputs to the network. Learning rules employed in theoretical studies to learn PA typically

do not contain any temporal asymmetry, while rules used to learn SA need to contain such

a temporal asymmetry.

Here, we hypothesize that a single learning rule is able to learn both, depending on the

statistics of the inputs. We investigate what are the conditions for the plasticity mechanisms

and external stimulation to learn PA or SA using unsupervised plasticity rules. We consider

a model composed of multiple populations of excitatory neurons, each activated by a distinct

stimulus. We consider a sequential stimulation protocol in which each population of neurons

is stimulated one at a time, one after the other. This protocol is characterized by two pa-

rameters, the duration of stimulus presentations and the time interval between stimulations.

This simple setting allows us to explore between the extremes of isolated stimulations with

short or large duration and sequential stimulations close or far apart temporally. We use a

rate model to describe the activity of populations of neurons (Wilson & Cowan 1972). The

connectivity in this model represents the average of the synaptic connections between popu-

lations of neurons, allowing to investigate at a mesoscopic level the learning mechanisms of

PA and SA. This model has the advantage of analytical tractability.

This paper is organized as follows: We first characterize the types of possible dynamics
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observed in network with both feed-forward and recurrent connections, in the space of pos-

sible (fixed) connectivities. We then show that a network with plastic connections described

by a unsupervised temporally asymmetric Hebbian plasticity rule stimulated sequentially

does not stably learn PA and SA. We then explore two types of stabilization mechanisms:

1) synaptic normalization; 2) a multiplicative learning rule. We show that when a synaptic

normalization mechanism is included, PA and SA cannot be learned stably during sequential

stimulation. However, the addition of a modified multiplicative learning rule leads to suc-

cessful learning of PA or SA, depending on the temporal parameters of external inputs, and

the learning can be characterized analytically as a dynamical system in the space of fixed

connectivities parametrized by the stimulus parameters.

2.3 Methods

2.3.1 Networks with fixed connectivity

We first consider three di↵erent n population rate models that share in common two con-

nectivity motifs that have been classically considered a distinctive feature of PA and SA

respectively: recurrent and feed-forward connections. The three network models considered

are: 1) n excitatory neurons; 2) n excitatory neurons with shared inhibition; 3) n excitatory

neurons with adaptation. The strength of the recurrent and feed-forward connections are w

and s respectively. We used the current based version of the widely used firing rate model,

which is equivalent to its rate based version (Miller & Fumarola 2012) with three di↵erent

nonlinear transfer functions.

Network of excitatory neurons

The network consists in n excitatory populations connected by feed-forward and recurrent

connections with strength w and s respectively as it is shown in Fig C.1A.I. The dynamics
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is given by:

⌧
du

1

dt
= I

1

� u
1

+ w�(u
1

)

⌧
dui
dt

= Ii � ui + w�(ui) + s�(ui�1

) i = 2, . . . , n (2.1)

where Ii represents the external input to neuron i, ⌧ is the characteristic time scale for

excitatory populations and �(u) is the current to average firing rate transfer function (or f-I

curve). The resulting average firing rates are denoted by ri ⌘ �(ui).

Network of excitatory neurons with shared inhibition

The network consist in n excitatory populations connected as in section 2.3.1, and a single

inhibitory population fully connected with the excitatory populations. A schematic of the

network architecture is shown in Fig C.1A.II. Assuming a linear inhibitory transfer function,

the dynamics of the network is given by:

⌧
du

1

dt
= I

1

� u
1

+ w�(u
1

) � wEIuI

⌧
dui
dt

= Ii � ui + w�(ui) + s�(ui�1

) � wEIuI i = 2, . . . , n

⌧I
duI
dt

= �uI + wIE

n
X

j=1

�(uj), (2.2)

where wEI is the average inhibitory synaptic strength from inhibitory to excitatory popu-

lations, wIE the average inhibitory synaptic strength from excitatory to inhibitory popula-

tions and ⌧I the characteristic time scale of the inhibitory population. When ⌧I ⌧ ⌧ , then
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uI ⇡ wIE
PN

i=1

�(ui) and Eq. (2.2) becomes

⌧
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1

dt
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n
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X

j=1

�(uj)

⌧
dui
dt

= Ii � ui + w�(ui) + s�(ui�1

) � wI

n

n
X

j=1

�(uj) i = 2, . . . , n, (2.3)

where wI ⌘ nWEIWIE . See Fig. 2.12 in the Supplementary Material for the agreement

between the full model described in Eq. (2.2) and its approximation in Eq. (2.3).

Network of excitatory neurons with adaptation

This network consist in n excitatory populations connected as in sections 2.3.1 and 2.3.1

plus an adaptation mechanism for each population. A schematic of the network architecture

is shown in Fig C.1A.III. The dynamics of the network is given by:

⌧
du

1

dt
= I

1

� u
1

+ w�(u
1

) � a
1

⌧
dui
dt

= Ii � ui + w�(ui) + s�(ui�1

) � ai i = 2, . . . , n

⌧a
dai
dt

= ui � �ai i = 1, . . . , n (2.4)

where ⌧a is the characteristic time scale of the adaptation mechanism, and � measures the

strength of adaptation.

2.3.2 Transfer functions

For the fixed connectivity part of this study we used three di↵erent families of transfer

functions. The sigmoidal transfer function is described by

�(u) =
1

2
(1 + tanh[a(u + b)]) . (2.5)
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This is a saturating monotonic function of the total input, and represents a normalized firing

rate. This transfer function has been widely used in many theoretical studies in neuroscience

(Gerstner et al. 2014, Ermentrout & Terman 2010), and have the advantage to be smooth.

Furthermore, we have recently shown that such transfer functions provide good fits to in

vivo data (Pereira & Brunel 2018a).

The second transfer function considered is piecewise linear:

�(u) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if ✓ > u

⌫(u � ✓) if ✓  u  uc

⌫(uc � ✓) uc < u.

(2.6)

This is a piecewise linear approximation of the sigmoidal transfer function. Using this

transfer function, the nonlinear dynamics of a network with a sigmoidal transfer function

can be approximated and analyzed as a piecewise linear dynamical system.

The third transfer function used in this work is piecewise nonlinear (Brunel 2003)
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�˜✓
� 3
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ũc < u.

(2.7)

This transfer function combines several features that are present in more realistic spiking

neuron models and/or real neurons: a supralinear region at low rates, described by a power

law (Roxin et al. 2011), and a square root behavior at higher rates, as expected in neu-

rons that exhibit a saddle node bifurcation to periodic firing (Ermentrout & Terman 2010).

Examples of these three transfer functions are shown in Fig 2.1.
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Figure 2.1: Transfer Functions. Piecewise linear (PL), sigmoidal (S) and piecewise non-
linear (PNL) transfer functions. Parameters are the same as the ones used in Fig C.1.

2.3.3 Temporally asymmetric Hebbian plasticity rule

When a temporally asymmetric Hebbian plasticity rule is included (see sections 2.4.1-2.4.4

in Results), the dynamics of excitatory-to-excitatory connectivity obeys

dWi,j

dt
=

wmaxf [ri(t)]g[rj(t � D)] � Wi,j

⌧w[ri(t), rj(t � D)]
, (2.8)

where f(r) and g(r) are sigmoidal functions given by

g(r) =
1

2

�

1 + tanh
⇥

a
pre

(r � b
pre

)
⇤�

(2.9)

f(r) =
1

2

�

1 + tanh
⇥

a
post

(r � b
post

)
⇤�

. (2.10)

They describe the dependence of the learning rule on post and presynaptic firing rates,

respectively (i.e. their dependence on �(ui) and �(uj)), and are bounded by zero for small

or negative values of the population synaptic current, and by one for large values (see Fig 2.4

A and B). Here wmax is the maximal synaptic e�cacy; D is a temporal delay; and ⌧w is an

activity-dependent time constant of the plasticity rule. The learning time scale is given by
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⌧w[ri(t), rj(t � D)] = ⌧
post

[ri(t)]⌧pre

[rj(t � D)], (2.11)

where

⌧
pre

(r) = ⌧
post

(r) =

8

>

>

<

>

>

:

1 if r < rw

p
Tw if rw  r.

(2.12)

Here rw and Tw are the plasticity threshold (see dashed line in Fig 2.4A-C) and time

scale respectively. The time scale Tw is chosen to be several order of magnitude slower

than the population dynamics (see Table 2.3). When pre and/or post-synaptic currents are

below a plasticity threshold rw, the activity-dependent time constant ⌧w becomes infinite,

and therefore no plasticity occurs. When both are above rw, then the activity-dependent

time constant ⌧w is equal to Tw, and plasticity is ongoing. Thus, with this rule strong,

long and/or contiguous in time enough stimuli produce lasting modifications in the synaptic

weights. Otherwise, no learning occur.

2.3.4 Synaptic normalization

When a synaptic normalization mechanism is included (see section 2.4.2 in Results), in

addition to the Hebbian plasticity rule described in section 2.3.3, in our network simulations,

at each time step we subtracted the average synaptic change to each incoming synapse to a

given neuron. This average is taken over all the incoming synapses to a particular neuron.

This simulation scheme ensures that the sum of the incoming synaptic weights to each neuron

remains constant, i.e.

n
X

j=1

Wi,j = C i = 1, 2, . . . , n. (2.13)
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2.3.5 Multiplicative homeostatic plasticity rule

We implement a modified version of the multiplicative homeostatic rule proposed in Renart

et al. (2003), Toyoizumi et al. (2014) (see sections 2.4.3 and 2.4.4 in Results). The rule is

implemented in addition to the Hebbian plasticity rule described in the section 2.3.3. In

this rule an homeostatic variable Hi slowly controls the firing rate of neuron i by scaling its

synaptic weights multiplicatively. The synaptic weights will be given by

Wi,j(t) = Hi(t)Wi,j(t). (2.14)

The variable Wi,j(t) is governed by the Hebbian plasticity rule described by Eqs (2.8-2.12).

The dynamics for Hi is given by

⌧HḢi =

✓

1 � ri(t)

r
0

◆

Hi � H2

i , (2.15)

where r
0

= �(u
0

) is a parameter that controls the average firing rate of population i and

⌧H is the characteristic time scale of the learning rule. Note that because of the quadratic

term in the r.h.s. of Eq. (2.15), this rule does not in general keep the firing rates at a fixed

value, and therefore this rule is not strictly speaking homeostatic. However, we keep this

terminology due to the similarity with the standard homeostatic rule that does not include

this quadratic term.

2.3.6 Learning dynamics under noisy stimulation

In the last section of the Results, we include noise in the population dynamics in order to

asses the robustness of the learning process (see section 2.4.4 in Results). The equations

used to describe the dynamics of the network with Hebbian and homeostatic plasticity are

given by
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⌧ u̇i = �⌘i + Ii +
n
X

j=1

HiWi,jrj � WI

n

n
X

i=1

�(ui)

Ẇi,j =
wmaxf [ri(t))]g[rj(t � D)] � Wi,j

⌧w(ri(t), rj(t � D))

⌧HḢi =

✓

1 � ri(t)

r
0

◆

Hi � H2

i , (2.16)

where ri(t) = �(ui(t)) for i = 1, 2, . . . , n and ⌘i is a Gaussian white noise.

2.3.7 Sequential stimulation

During the learning protocol excitatory populations are stimulated sequentially once at a

time for a period T and a time delay �. The stimulation can be implemented as a sequence

of vectors presented to the entire the network (i.e. I~e
1

, I~e
2

, . . . , I~en), each vector corresponds

to the canonical base in Rn scaled by a stimulation amplitude I. This sequence of stimulation

is repeated k times. To prevent a concatenation between the first and the last population

stimulated, the period between each repetition k is much longer than T and � and any time

constant of the network. Each stimulus in the sequence has the same magnitude, that is

larger than the learning threshold (i.e. rw < I). A schematic diagram of the stimulation

protocol is shown in Fig 2.5 A.

2.4 Persistent and sequential activity in networks with fixed

connectivity

To better understand the dependence of PA and SA generation on network connectivity,

we consider first a simple n population rate model with fixed feed-forward and recurrent

connectivity (see Fig C.1A). This architecture possesses the two connectivity motifs that

have been classically considered the hallmarks of PA and SA — recurrent and feed-forward
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connections — in a space of parameters that is low dimensional enough to be suitable for

full analytical treatment. In this model, the dynamics of the network is characterized by the

synaptic inputs ui to each population of the network (i = 1, . . . , n) whose dynamics obey

the system of ordinary di↵erential equations in Eq. (2.1). Note that we use here the current

based formulation of the firing rate equations, that has been shown to be equivalent to the

rate based formulation (Miller & Fumarola 2012).

In this model, we identify the regions in the connectivity parameter space where SA,

PA or decaying sequences of activity (dSA) are generated. We start with a piecewise linear

transfer function with slope ⌫, and compute the bifurcation diagram that gives the boundaries

for qualitatively di↵erent dynamics in the parameter space (see Fig C.1B and section 2.6.2

in the Supplementary Material for mathematical details). We find that robust SA can be

generated provided recurrent connections are smaller than the inverse of the slope ⌫, and

the feed-forward connections are strong enough, w < 1/⌫ < w + s. For large values of w

(w > 1/⌫), the dynamics converge to a fixed point where 0  p  n populations are in a high

rate state, where p depends on the initial conditions. When both recurrent and feed-forward

connections are weak enough (i.e. w + s < 1/⌫) the activity decays to zero firing rate fixed

point, after a transient in which di↵erent populations are transiently activated - a pattern

which we term decaying sequence of activity or dSA.

This picture is qualitatively similar when other types of nonlinear transfer functions are

used (see Methods and Fig 2.1 for the transfer functions used in this paper). The saturation

nonlinearity of the transfer function is key to generate long lasting (non-attenuated) SA

even when the number of populations is large. In a linear network, sequential activity would

increase without bound for an increasing number of populations participating in the SA (see

Fig C.1B, dashed lines and section 2.6.2 in the Supplementary Material for mathematical

details). During sequential activity, each population is active for a specific time interval. We

used the analytical solution of the linearized system (see Eq. 2.22) to show that the duration
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Figure 2.2: PA and SA generation in a network with fixed connectivity. (A)
Three models of recurrent and feed-forward connected populations: (I) pure excitatory, (II)
excitatory with shared inhibition and (III) excitatory with adaptation. (B) Phase diagram
for model (I) using a piecewise linear transfer function (top-left plot) and examples of the
dynamics corresponding to the three phases. Dashed lines correspond to the dynamics for
the same network but using a linear transfer function. (C) SA generation for models (I), (II)
and (III) using sigmoidal (first row), piecewise nonlinear (second row) and piecewise linear
(third row) transfer functions. Parameters used in panels B,C can be found in Table 2.1.
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of this active interval scales as the squared root of the position of the population along the

sequence. This implies that for long lasting SA the fraction of active populations will increase

with time (see Fig C.1B). This feature is not consistent with experimental evidence that

shows that the width of the bursts of activity along the sequence is approximately constant

in time (Hahnloser et al. 2002, Harvey et al. 2012). In the model, we can prevent this

phenomenon by including negative feedback mechanisms to our network architecture, either

global inhibition (see Fig C.1A.II) or adaptation (see Fig C.1 A.III). We found that in both

cases the network robustly generates PA and SA in which the fraction of active populations is

approximately constant in time. These results were also qualitatively similar when di↵erent

saturation nonlinearities in the transfer function were considered (see Fig C.1C).

We now turn our attention to the network of excitatory neurons with global inhibition

(Fig C.1 A.II), since inhibition is likely to be the dominant source of negative feedback in

local cortical circuits. Inhibitory interneurons are typically faster than excitatory neurons

(McCormick et al. 1985). For the sake of simplicity we set the inhibitory population dynamics

as instantaneous compared with the excitatory timescale. Our numerical simulations confirm

that this approximation preserves all the qualitative features of the dynamics with finite

inhibitory time constants, up to values of ⌧I = 0.5⌧ (see Fig. 2.12 in the Supplementary

Material). Using this approximation, the connectivity of the network is equivalent to a

recurrent and feed-forward architecture plus a uniform matrix whose elements are wI ⌘
nwEIwIE . We obtained the bifurcation diagram for such a network with a piecewise linear

transfer function (see section 2.6.4 in the Supplementary Material). This new bifurcation

diagram shows qualitative di↵erences with the pure excitatory network bifurcation diagram

(see Fig 2.3). First, a qualitatively di↵erent behavior arises, where SA ends in persistent

activity (region SA/PA). Second, the PA region breaks down in n(n + 1)/2 square regions

of size wI/n ⇥ wI/n. Each region is characterized by a minimum and maximum number of

populations active during PA. The lower left corner of each squared region is (imin
�w

I

n

�

, 1+
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SA/PA
PA

dSA

SA

Figure 2.3: Bifurcation diagram for feed-forward-recurrent connected network of
excitatory populations with shared inhibition. Top left plot: Bifurcation diagram
in the s-w plane, showing qualitatively di↵erent regions: dSA (gray), SA (red), SA/PA
(green) and PA (blue). The PA region is divided in sub-regions which are distingushed
by the maximum and minimum number of populations active during PA (see text). The
SA/PA region is also subdivided into sub-regions characterized by a di↵erent number of
the maximum number of populations active in PA at the end of the sequence. Regions are
separated by black lines and sub-regions are separated by gray lines. Five plots encompassing
the bifurcation diagram show examples of the dynamics observed in its four qualitatively
di↵erent regions. Initial condition: first population active at the maximum rate, while the
rest is silent. The location in the corresponding regions of the parameter space are indicated
with the symbols on the top right of the surrounding plots. Parameters can be found in
Table 2.2.
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imax
�w

I

n

�

) with imin, imax = 1, 2, . . . , n (see Fig 2.3, di↵erent regions in graded blue), where

imin and imax correspond to the minimum and maximum number of population active during

PA within this squared region when just the first population is initialized in the active state

(Fig 2.3 top and middle right plots). Therefore, the number of possible patterns of PA

increases with the strength of the recurrent connections and decreases with strength of

the feed-forward connections. On the other hand, the SA/PA is divided in n qualitatively

di↵erent rectangular regions of size
�w

I

n

� ⇥ [1 � jSA/PA

�w
I

n

�

] with jSA/PA = 1, 2, . . . , n,

where jSA/PA corresponds to the number of populations that ends in PA after SA elicited

by stimulating the first population in the sequence (Fig 2.3 bottom right plot). Then for

a given strength of the recurrent connectivity w⇤ above 1 +
�w

I

n

�

, the critical feed-forward

strength sc that separates the PA and SA/PA regions is

sc =
wI

n

&

�

w⇤ � 1 � w
I

n

�

n

wI

'

, (2.17)

where d·e is the ceiling function. Similarly, for a given strength of the feed-forward connection

s⇤ above w
I

n , the critical recurrent strength separating SA/PA and PA is

wc =
wI

n

&

�

s⇤ � w
I

n

�

n

wI

'

. (2.18)

Lastly, we find that the SA region is shrunk compared with the pure excitatory network,

and that the dSA region is wider.

2.4.1 Unsupervised temporally asymmetric Hebbian plasticity rule

Let us consider now a fully connected network of n excitatory populations with plastic

synapses and global fixed inhibition. The plasticity rule for the excitatory-to-excitatory

connectivity is described by Eq. (2.8). Using this learning rule, with fixed pre and post

activity, the connectivity tends asymptotically to a separable function of the pre and post
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Figure 2.4: Unsupervised Hebbian learning rule: (A) Piecewise linear transfer function.
The dashed gray horizontal line indicates the plasticity threshold rw. (B) Post synaptic de-
pendence on the rates of the stationary connectivity function, f(r). The vertical dashed gray
line indicates the plasticity threshold. (C) Contour plot of the stationary connectivity func-
tion, wmaxf(ri)g(rj). The dashed gray box indicates the plasticity threshold. Parameters
can be found in Table 2.3.

synaptic activity. The functions f(r) and g(r) are bounded by zero for small or negative

values of the population synaptic current, and by one for large values (see Fig 2.4 A and B).

This learning rule is a generalization of classic Hebbian rules like the covariance rule (Dayan

& Abbott 2001), with a non-linear dependence on both pre and post-synaptic firing rates.

The delay D in the learning rule leads to a temporal asymmetry (Blum & Abbott 1996,

Gerstner & Abbott 1997, Veliz-Cuba et al. 2015). This delay describes the time it takes

for calcium influx through NMDA receptors to reach its maximum (Sabatini et al. 2002,

Graupner & Brunel 2012). When this learning rule operates and the network is externally

stimulated, the connectivity changes depending on the interaction of the input, the network

dynamics and the learning rule. Due to the relaxational nature of Eq. (2.8), for long times

with no external stimulation the connectivity matrix will converge to a stationary rank-1

matrix with entries of the form f(r⇤
i )g(r⇤

j ), where ~r⇤ = �(~u⇤) is the stationary firing rate

vector, independent of all inputs presented in the past. Therefore, stimuli learned in the

connectivity matrix will be erased by the background activity of the network for long times

after stimulation. To prevent this inherent forgetting nature of the learning rule we introduce
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Figure 2.5: Sequential stimulation and initial synaptic weights dynamics. (A)
Schematic diagram showing stimulation protocol for two populations. Population 1 is first
stimulated for some time T . Then, after an inter-stimulation � time, population 2 is stim-
ulated for the same duration T . (B) The weight dynamics is shown for four di↵erent stim-
ulation regimes. Top-left: � < D < T ; top-right: D < �, T ; bottom-left: T, � < D;
bottom-right: T < D < �. Cyan: recurrent connections; Yellow/Green: feed-forward; Blue:
all other connections. Parameters can be found in Tables 2.3,2.4.
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an activity-dependent plasticity time scale in Eqs. (2.11,2.12). Thus, when pre and/or post-

synaptic currents are below a plasticity threshold rw, the time scale becomes infinite, and

therefore no plasticity occurs. When both are above rw, then the time constant is given by

Tw (see equation (2.12) and Fig 2.4). Lastly, the time scale Tw of these changes are chosen

to be several order of magnitude slower than the population dynamics, consistent with the

time it takes (⇠ 1 minute or more) for plasticity to be induced in standard synaptic plasticity

protocols (see e.g. Markram, Lübke, Frotscher & Sakmann (1997), Bi & Poo (1998), Sjöström

et al. (2001), but see Bittner et al. (2017)).

Our goal is to understand the conditions for a sequential stimulation to lead the network

dynamics to PA or SA, depending of the temporal characteristics of the stimulus, when

this plasticity rule is introduced. Here we consider a simple stimulation protocol where

each population in the network is stimulated sequentially one population at a time (see

Fig 2.5 A). In this protocol, population 1 is first stimulated for some time T . Then, after

an inter-stimulation time �, population 2 is stimulated for the same duration T . The other

populations are then stimulated one at a time (3, 4, ..., n) using the same protocol. The

amplitude of the stimulation is fixed such that the maximum of the current elicited in each

population is greater than the plasticity threshold of the learning rule. The time interval

between each repetition of the sequence is much longer than T and � and any time constant

of the network. When the duration of each stimulation is larger than the synaptic delay (i.e.

D < T ), recurrent connections increase, since the Hebbian term driving synaptic changes

(f [ri(t)]g[ri(t�D)], where i is the stimulated population) becomes large after a time D after

the onset of the presentation. When the inter-stimulation time is smaller that the synaptic

delay (i.e. � < D), then the the feed-forward connections increase, since the Hebbian

term driving synaptic changes (f [ri+1

(t)]g[ri(t � D)]) is large in some initial interval during

presentation of stimulus i + 1.

As a result, there are four distinct regions of interest depending on the relative values
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Figure 2.6: Runaway instability of the unsupervised Hebbian learning rule. (A)
Population dynamics during 10s of sequential stimulation with T = 19ms and � = 10ms.
After about 6s, all populations become active at maximal rates. (B) Synaptic weights
dynamics during stimulation. Color code as in Fig 2.4D. (C) Connectivity matrix at di↵erent
stimulation times. From left to right and from top to bottom: 0s, 3s, 6s and 9s. (D) Three
examples of population dynamics during a single sequential stimulation at 0s, 5.46s and 7.02s
respectively. Note the buildup of activity preceding each stimulus presentation because of
the build-up in the feedforward connectivity at 5.46s. In A and D the black and gray traces
indicate a scaled version of the stimulus. Parameters can be found in Tables 2.3,2.4.
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of the � and T with respect to the synaptic delay D. When T is larger than the synaptic

delay, and � is smaller than the synaptic delay, both recurrent and feed-forward connections

increase. When T is larger than the synaptic delay and � is much larger than D, only the

recurrent connections increase. When � is smaller than the synaptic delay and T is much

smaller, only the feed-forward connections increase. Lastly, when � is larger and T is smaller

than D no changes in the connectivity are observed. The initial temporal evolution of both

recurrent and feed-forward weights in representative examples of the four regions is presented

in Fig 2.5 B. We chose not to study the region corresponding to 2T + � < D here, which

is a region where ‘feed-forward’ connections involving non-nearest neighbor populations can

also increase during learning.

We found that this learning rule is in general unstable for long sequential stimulation

when both feed-forward and recurrent connections increase during the stimulation (i.e. � <

D < T ) to values large enough to produce persistent activity states. This is a consequence of

the classic instability observed with Hebbian plasticity rules, where a positive feedback loop

between the increase in synaptic connectivity and increase in firing rates leads to an explosive

increase in both (Dayan & Abbott 2001). Larger feed-forward and recurrent connections lead

to an increase in number of populations active at the same time during stimulation (see Fig

2.6 A and D) which produce an increase of the overall connectivity by the synaptic plasticity

rule (Fig 2.6 B and C). This leads to an increase in the overall activity producing longer

periods of PA during stimulation until a fixed point where many populations have high firing

rates is reached, and the connectivity increases exponentially to its maximum value (see Fig

2.6 B and C). By increasing the plasticity threshold, it is possible to increase the number of

stimulations (and consequently the strength of the feed-forward and recurrent connections)

where the network’s activity is stable. However, this does not solve the problem, since the

instability on the weights eventually occurs but for a larger number of stimulations and

stronger synaptic weights. In order to prevent this instability, we investigate in the next
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Figure 2.7: Heterogeneous synaptic dynamics for Hebbian plasticity and synaptic
normalization. (A) Population dynamics during 10s of sequential stimulation with T =
19ms and � = 10ms. (B) Synaptic weights dynamics during stimulation. Cyan: recurrent
connections; Light Yellow/Green: feed-forward; Red: feed-backward; Blue: feed-second-
forward; Green: feed-second-backward. (C) Connectivity matrix at di↵erent stimulation
times. From left to right and from top to bottom: 0s, 13.8s, 27.6s and 41.5s. (D) Two
examples of population dynamics during a single sequential stimulation at 0s and 15.8s
respectively. In A and D the black and gray traces indicate a scaled version of the stimulus.
(E) Network dynamics after learning for the initial condition where the first population is
active at high rate and the rest silent. Parameters can be found in Tables 2.3,2.4.

sections two di↵erent stabilization mechanisms: synaptic normalization and homeostatic

plasticity. Throughout this paper, for testing whether PA, SA, SA/PA or dSA is learned,

after sequential stimulation we stimulate the first population and then check whether the

network recalls the corresponding type of activity (see Fig 2.3).

2.4.2 Synaptic normalization

The first mechanism we consider is synaptic normalization. This mechanism is motivated

by experimental evidence of conservation of total synaptic weight in neurons (Royer & Paré
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2003, Bourne & Harris 2011). In our model, we enforce that the sum of the incoming

synaptic weights to a given population is fixed throughout the dynamics (see Eq. 2.13 in

Methods). This constraint prevents the growth of all the synaptic weights to their maximum

value during sequential stimulation due to the Hebbian plasticity, as is described in the

previous section. This leads to an heterogeneous dynamics in the synaptic weights where

they strongly fluctuate in time during the stimulation period, see Fig 2.7B. We find that the

network does not reach a stable connectivity structure, and that the connectivity after the

stimulation markedly depends on the specific moment when stimulation ended for a large

range of stimulation parameters.

At the initial stages of the stimulation, feed-forward and recurrent connections grow,

while the rest of the synaptic connections decrease at the same rate (see Fig 2.7 B). When the

feed-forward and recurrent connections are large enough for producing persistent activity, co-

activation between a population(s) undergoing persistent activity and the population active

due to the stimulation (which are not necessarily adjacent in the stimulation sequence, see

Fig 2.7A,D) produce an increase in feed-back and upper triangular connections that are

di↵erent than feed-forward and recurrent (see Fig 2.7B). In turn, feed-forward and recurrent

connections decrease due to the synaptic normalization mechanism. This leads to complex

dynamics in the synaptic weights, in which the connections sustaining co-active neuronal

assemblies learned via Hebbian plasticity are depressed due to the interplay between synaptic

normalization and sequential stimulation. This then leads to the formation of new assemblies

due to the interplay of Hebbian plasticity and sequential stimulation.

During stimulation, the feed-forward and recurrent connectivity studied in the first sec-

tion increase first, leading then in a second stage to clustered connectivities with strong

bi-directional connections (see Fig 2.7C). Therefore, neither persistent nor sequential ac-

tivity can be learned consistently after long times (see Fig 2.7E). Moreover, it is not clear

whether neural circuits can use the observed complex synaptic dynamics to store retrievable
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information about the external stimuli. Thus, we find that synaptic normalization is not

su�cient in this case to stabilize learning dynamics and to lead to a consistent retrieval of

PA or SA. We checked that this finding is robust to changes in parameters, in particular the

sum of incoming synaptic weights. In the next section we consider a second stabilization

mechanism, namely Homeostatic plasticity.

2.4.3 Multiplicative homeostatic plasticity

Homeostatic plasticity is another potential stabilization mechanism that has been charac-

terized extensively in experiments (Turrigiano et al. 1998, Turrigiano 2017). The interplay

between homeostatic plasticity and Hebbian plasticity has recently been the focus of multiple

theoreotical studies (Renart et al. 2003, Toyoizumi et al. 2014, Keck et al. 2017). Here, we

study the e↵ect of multiplicative homeostatic and Hebbian plasticity for learning SA and PA.

We consider a model for homeostatic plasticity in which the overall connectivity at each time

Wi,j(t) is given by the multiplication of two synaptic variables with di↵erent time scales as is

shown in Eq. (2.14). In this equation, the fast plastic variable Wi,j(t) (time scale of seconds)

is governed by Hebbian plasticity, see Eq. (2.8). On the other hand, the slow (with a time

scale of tens to hundred of seconds) homeostatic variable Hi(t) scales the incoming weights

to population i, ensuring that the network maintain low average firing rates on long time

scales. Its dynamics of the homeostatic variable is given by Eq. (2.15). This is a modification

of the standard homeostatic learning rule (Renart et al. 2003, Toyoizumi et al. 2014), that

does not include the quadratic term in the r.h.s. of Eq. (2.15). The equation proposed in

(Toyoizumi et al. 2014) stabilizes the network’s activity during stimulation, preventing the

runaway of the firing rates and synaptic weights. Scaling down the overall connectivity dur-

ing stimulation prevents co-activation of multiple populations, and lead to stable learning,

see Fig 2.13D and E. However, in the network’s steady state (i.e. when times longer than the

time scale of the homeostatic variable have passed without any stimulation), if the equation
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proposed in (Toyoizumi et al. 2014) is used, then each connection will be proportional to

the factor ��1
(r0)
r0

multiplied by a number of order one (see section 2.6.5 and 2.6.5 in the

Supplementary Material for a general discussion and the corresponding mathematical de-

tails respectively). This implies that the steady state connectivity after learning will depend

sensitively on the choice of the value of the objective background firing rate (i.e. r
0

) and the

specific functional form of the transfer function (i.e. �(u)). Due to the transfer function non-

linearity, small changes in r
0

might produce large values for the factor ��1
(r0)
r0

and therefore

very strong connections for the steady state connectivity (see Fig 2.13). This is due to the

fact that steady state large values in the homeostatic variable H scale up the connectivity

learned via Hebbian plasticity in a multiplicative fashion, see Eq. (2.14). In practice, PA is

retrieved almost always independently of the type of stimulation presented during learning,

and in the absence of the quadratic term in Eq. (2.15) no temporal attractor other than PA

can be learned. This problem can be prevented by the introduction of a quadratic term in

the original homeostatic rule (see section 2.6.5 in the Supplementary Material). Note that

with this quadratic term, the homeostatic plasticity rule does not exactly achieve a given

target firing rate, and therefore is not strictly speaking ‘homeostatic’. However, since it is

variant of the classic linear homeostatic rule, we have chosen to stick with this terminology.

We explore the role of this multiplicative homeostatic learning rule for learning both PA

and SA. During sequential stimulation, the average firing rate is higher than the background

objective firing rate r
0

, and the homeostatic variables decrease to values that are smaller

than 1, see Fig 2.8 A and C. As a result, during sequential stimulation the dynamics of the

homeostatic variable will be dominated by the linear version of the homeostatic learning rule

proposed in (Toyoizumi et al. 2014), since H2

i ⌧ 1. Then, the small values that the home-

ostatic variables take during the sequential stimulation scale down the increasing values of

the recurrent and feed-forward connections due to Hebbian plasticity. This produces a weak

excitatory connectivity during a repeated sequential stimulation (see Fig 2.8 C), prevent-
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Figure 2.8: Learning dynamics in a network with Hebbian and multiplicative
homeostatic plasticity: (A) Top: synaptic weights dynamics during and after stimulation.
Cyan: recurrent; Yellow: feed-forward; Blue: all other connections. Bottom Homeostatic
variables in excitatory populations. neuron i. Gray vertical dashed line indicate the end of
the sequential stimulation. (B) Neuron dynamics during stimulation for two di↵erent periods
of time. (C) Snapshots of the connectivity matrix Wi,j(t) at the end of the sequential
stimulation (left) and 60s after the end of the sequential stimulation (right). (D) Network
dynamics after learning following an initial condition where the first population is active
at high rate while all others are silent for two di↵erent stimulation parameters, for two
stimulation parameters, one that generates SA (left), the other PA (right). Parameters can
be found in Tables 2.3,2.4.
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ing activation of spurious populations during stimulation (see Fig 2.8 B), even though the

strength of recurrent and feed-forward connections learned via Hebbian plasticity are strong

enough to produce PA or SA, since these connections are masked by the homeostatic variable.

When the network returns to the steady state after sequential stimulation, the homeostatic

variables return to values Hi ⇠ O(1) (see section 2.6.5 in the Supplementary Material for the

mathematical details), and the recurrent and feed-forward connections learned via Hebbian

plasticity are unmasked. This mechanism stabilizes learning, allowing the network to stably

learn strong recurrent and feed-forward connections, consistent with SA or PA dynamics (see

Fig 2.8D).

The weakening of recurrent connections during sequential stimulation allows us to derive

an approximate analytical description of the temporal evolution of the synaptic connectivity

with learning. Since the net current due to connections between populations is very small,

each population dynamics is well approximated by an exponential rise (decay) toward the

stimulation current (background current) provided inhibition is weak enough (see Fig 2.9).

By using this approximation we build a mapping that yields the value of the recurrent and

feed-forward synaptic strengths as a function of stimulation number k, stimulation period,

T , and delay, � (see Eqs. (2.50,2.51) in 2.6.6 of Supplementary Material). This mapping

provides a fairly accurate match of both the dynamics of the synaptic weights and the final

steady state connectivity matrix in the case of weak inhibition (see Fig 2.10A, corresponding

to wI = 1) and a less accurate match for stronger inhibition (see Fig 2.10B, wI = 2). This is

expected since our theoretical analysis neglects the e↵ect of inhibition during learning (see

section 2.6.6 of Supplementary Material). The mapping derived for evolution of the synaptic

weights during sequential stimulation corresponds to a dynamical system in the (s, w) phase

space that depends on the stimulus parameters (�, T ) and the initial connectivity. The final

connectivity corresponds to the fixed point of these dynamics (see Eqs. (2.52,2.53) in section

2.6.6 of Supplementary Material).
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Figure 2.9: Analytical approximation of the dynamics of the network with Heb-
bian and multiplicative homeostatic plasticity: (First row) Current dynamics for
the second and third populations in a network of 20 populations during one presentation
of the sequence. The dashed red line shows the analytical approximation for the dynamics
during stimulation (Eq. 2.42 in section 2.6.6 of Supplementary Material). (Second row)
Dynamics of the recurrent synaptic strength within the second population (cyan), and the
‘feed-forward’ synaptic strength from the second to the third population (yellow) during the
same presentation of the sequence. The dashed red line shows the analytical approximation
for the synaptic weight dynamics (Eq. (2.44,2.48) in section 2.6.6 of Supplementary Ma-
terials). (A) and (B) correspond to the first and the fifth presentation of the stimulation
sequence respectively. Parameters can be found in Tables 2.3,2.4.
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Figure 2.10: Changes in recurrent and feed-forward synaptic strengths with learn-
ing, for di↵erent sequences with di↵erent temporal parameters. (Left) Dynam-
ics of recurrent and feed-forward connections in the (s, w) parameter space during se-
quential stimulation for four di↵erent values of � and T . Black circles (SA), plus signs
(PA), hexagons (dSA), and squares (PA/SA) show the simulated dynamics for (T, �) =
{(7, 14), (50, 40), (5, 13), (20, 8.5)} (in ms) respectively. Red traces indicate the approximated
dynamics derived in section 2.6.6 of Supplementary Material. (Right) Rates dynamics after
many presentations of the sequence. The first population was initialized at high rates, the
others at low rates. (A) and (B) correspond to wI = 1 and wI = 2 respectively. Parameters
can be found in Tables 2.3,2.4.
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Fig 2.10 shows that depending on the temporal characteristics of the input sequence,

the network can reach any of the four qualitatively di↵erent regions of the phase diagrams

in a completely unsupervised fashion. For values of � that are smaller than the synaptic

delay D and T on the order or larger than D, the network generates SA. For values of T

approximately larger than D and for � small enough, the dynamics lead to SA/PA. Lastly

PA is obtained for large enough � and T . These observations match with the intuition

that stimulations long enough but far delayed in time leads to learning of PA and that

stimulations contiguous in time but short enough leads to SA. Stimulations between these

two conditions (long and contiguous) leads to a combination of both dynamics, i.e. SA/PA,

as shown in Fig 2.10.

2.4.4 Learning and retrieval is robust to noise

Under in vivo conditions neural systems operate with large amount of variability in their

inputs. In order to assess the e↵ect of highly variable synaptic input current during learning

and retrieval, we add a mean zero uncorrelated white noise to the dynamics when both

Hebbian learning and homeoestatic plasticity are included in the network, as described in

Eq. (2.16). We found that both the synaptic weights dynamics during learning and the

retrieved spatiotemporal dynamics after learning are robust to noise (see Fig 2.11), even

when the amplitude of the noise is large (i.e. inputs with values equal to the standard

deviation of the noise lead to a population to fire at 30% of the maximum firing rate). During

sequential stimulation, the learning dynamics is marginally altered for both weak and strong

inhibition (compare Fig 2.11 with Fig 2.10). Importantly, the synaptic weights reach very

similar stationary values compared with the case without noise. After learning, even though

the rates stochastically fluctuate in time, the retrieved spatiotemporal attractors (i.e. PA,

SA, dSA or PA/SA) are qualitatively similar as in the case without noise (compare Fig 2.11

with Fig 2.10). One qualitative di↵erence in the case with external noise, is that in both
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SA and PA/SA dynamical regimes random inputs lead to a repetition of the full or partial

learned sequence. Altogether, this simulations show that the network can robustly learn and

retrieve qualitatively the same spatiotemporal attractors in the presence of external noise.

Figure 2.11: Learning dynamics under noisy stimulation. Same as in Fig 2.10, but in
the presence of a white noise input current, with mean 0 and standard deviation of 0.3 (i.e.
� = 0.3 in Eq. (2.16)).

2.5 Discussion

We have shown that under sequential stimulation a network with biologically plausible plas-

ticity rules can learn both PA or SA depending on the stimulus parameters. Two plasticity
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mechanisms are needed: 1) Hebbian plasticity with temporal asymmetry; 2) a stabilization

mechanism which prevents the runaway of synaptic weights while learning. When unsuper-

vised Hebbian plasticity is present alone the network fails to stably learn PA or SA, while

including multiplicative homeostatic plasticity stabilizes learning. For stable learning, we

show that the learning process is described by a low dimensional autonomous dynamical

system in the space of connectivities, leading to a simplified description of unsupervised

learning of PA and SA by the network from external stimuli. Depending on the stimulus

parameters, the network is flexible enough to learn selectively both types of activity by re-

peated exposure to a sequence of stimuli, without need for supervision. This suggests that

cortical circuits endowed with a single learning rule can learn qualitatively di↵erent neural

dynamics (i.e. persistent vs sequential activity) depending on the stimuli statistics.

Using the full characterization of the bifurcation diagram in the space of fixed feed-

forward and recurrent connections developed here, we mapped the evolution of the con-

nectivity during stimulation in the bifurcation diagram. We analytically and numerically

showed that the synaptic weights evolve in the feed-forward–recurrent synaptic connections

space until they reach their steady state (when the number of sequential stimulations is

large). The specific point of the steady state in the bifurcation diagram depends solely on

the stimulation parameters — stimulation period T and time delay �– and the connectivity

initial conditions. We found that stimulations with long durations and large delays gener-

ically leads to the formation of PA, whereas stimulations with long enough durations and

short delays leads to the formation of SA. Thus, persistent stimulation leads to persistent

activity while sequential stimulation leads to sequential activity.

2.5.1 Learning of sequences in networks

A growing number of network models have been shown to be able to learn sequential ac-

tivity. Models with supervised learning can reproduce perfectly target sequences through
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minimization of a suitable error function (Sussillo & Abbott 2009, Memmesheimer et al.

2014, Laje & Buonomano 2013, Rajan et al. 2016), but the corresponding learning rules are

not biophysically realistic.

Other investigators have studied how unsupervised learning rules leads to sequence gen-

eration. Early models of networks of binary neurons showed how various prescriptions for

incorporating input sequences in the connectivity matrix can lead to sequence generation

(see Kuhn & van Hemmen (1991)) - or, sometimes, both sequence generation or fixed point

attractors depending on the inputs (Herz et al. 1988). The drawback of these models is

that they separated a learning phase in which recurrent dynamics was shut down in order

to form the synaptic connectivity matrix, and a retrieval phase in which the connectivity

matrix does not change anymore.

Our model removes this artificial separation, since both plasticity rule and recurrent

dynamics operate continuously, both during learning and recall. However, we found that

there needs to be a mechanism to attenuate recurrent dynamics during learning for it to

be stable. The mechanism we propose rely on a modified version of a standard homeostatic

rule. Other mechanisms have been proposed, such as neuromodulators that would change the

balance between recurrent and external inputs during presentation of behaviorally relevant

stimuli (Hasselmo 2006).

The cost of not having supervision is that the network can only learn the temporal order

of the presented stimuli, but not their precise timing. Veliz-Cuba et al (Veliz-Cuba et al.

2015) have recently provided a model which bear strong similarities with our model (rate

model with unsupervised temporally asymmetric Hebbian plasticity rule), but includes in

addition a short-term facilitation mechanism that allows the network to learn both order

and precise timing of a sequence presented in input. However, their mechanisms requires

precise fine tuning of parameters.

Models with temporally asymmetric Hebbian plasticity have also been investigated in
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the context of the hippocampus (Abbott & Blum 1996, Gerstner & Abbott 1997, Mehta

et al. 1997, Jahnke et al. 2015, Chenkov et al. 2017, Theodoni et al. 2017). In such models,

feed-forward connectivity is learned through multiple visits of neighboring place fields, and

sequential activity (‘replays’) can be triggered using appropriate inputs mimicking sharp-

wave ripples. Other models use unsupervised Hebbian plasticity but qualitatively distinct

mechanisms to generate sequential activity. In particular, several studies showed that se-

quences can be generated spontaneously from unstructured input noise (Fiete et al. 2010,

Okubo et al. 2015). Murray and Escola (Murray & Escola 2017) showed that sequences can

be generated in networks of inhibitory neurons with anti-Hebbian plasticity, and proposed

that this mechanism is at work in the striatum.

2.5.2 Stabilization mechanisms

Consistent with many previous studies (Dayan & Abbott 2001), we have shown that a net-

work with unsupervised Hebbian plasticity under sequential stimulation leads to a runaway

of the synaptic weights. This instability is due to a positive feed-back loop generated by the

progressive increase of network activity leading to a progressive increase in average synaptic

strength when PA or SA are being learned. One possible solution for this problem was first

proposed in the context of attractor neural network models (Amit et al. 1985, Amit & Fusi

1994, Tsodyks & Feigel’Man 1988). In these models, patterns are learned upon presentation

during a learning phase where synapses are plastic but there is no ongoing network dynamics.

After the learning phase, the learning of attractors is tested in a retrieval phase, where the

network dynamics is ongoing but synaptic plasticity is not present. Therefore, by compart-

mentalizing in time dynamics and learning, the network dynamics does not lead to changes

in the synaptic weights during retrieval, and conversely, changes in synaptic weights do not

lead to changes in the dynamics during learning. This separation prevents the observed

runaway of the synaptic weights due to unsupervised Hebbian plasticity.
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However, it is unclear whether such compartmentalization exists in cortical networks. In

this work, we explored the alternative scenario, in which both plasticity and dynamics hap-

pen concurrently during learning and retrieval (see also Mongillo et al. (2005), Litwin-Kumar

& Doiron (2014a), Zenke et al. (2015) for a similar approach in networks of spiking neurons).

We found that adding multiplicative homeostatic plasticity to unsupervised Hebbian plas-

ticity leads to stable learning of PA and SA. During sequential stimulation, the increase in

co-activation between multiple populations due to recurrent and feed-forward connections

learned via unsupervised Hebbian plasticity is prevented by suppressing its e↵ect in the

network dynamics. Homeostatic plasticity scales down the overall connectivity producing

a weakly connected network. PA and SA is prevented to occur during stimulation, which

weakens the positive feed-back loop generated by the increase in co-activations of neuronal

populations. After learning, the dynamic variables of the Homeostatic plasticity rule reach a

steady state with values similar of what they where before stimulation (see Fig 2.8 A) and

the connectivity learned via unsupervised Hebbian plasticity can lead to retrieval of PA and

SA upon stimulation (see Fig 2.8 C). The homeostatic variable reaches its steady state at a

value close to one, and the connectivity recovers, unmasking the feed-forward and recurrent

learned architecture. We have also tried other stabilization mechanisms such as inhibitory

to excitatory plasticity (Vogels et al. 2011) instead of homeostatic plasticity. In this case

we found that stable learning of PA and SA is possible, but for distinct sets of network and

stimulation parameters (data not shown).

As explained in Zenke & Gerstner (2017), Zenke et al. (2017), in order to prevent the

runaway of the synaptic weights produced by Hebbian plasticity, the time-scale of any com-

pensatory mechanism should be of the same order or faster than the Hebbian time-scale. For

multiplicative homeostatic plasticity, the time-scale of the homeostatic variable Hi is depen-

dent on the firing rate of neuron i and the target firing rate (i.e. �(ui)/�(u
0

)). When the

network firing rate is close to the target firing rate the homeostatic learning rule is slow, and
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the homeostatic mechanism seldom play a role in the dynamics. On the other hand, for high

firing rates the homeostatic plasticity time-scale becomes faster, preventing the runaway of

the synaptic weights. There is currently an ongoing debate about whether the time-scales

of compensatory processes used in theoretical studies, as the ones used here, are consistent

with experimental evidence (see e.g. Zenke & Gerstner (2017), Zenke et al. (2017)).

2.6 Appendix

2.6.1 Parameters values

For the networks with fixed connectivity the parameters used in Fig C.1 and 2.3 are sum-

marized in the Table 2.1 and 2.2 respectively. For networks with plastic connectivity the

parameters used in Fig 2.4-2.10 are summarized in Table 2.3. The sequential stimulation

parameters used in Fig 2.5-2.10 are summarized in Table 2.4.

2.6.2 Bifurcation diagram for a network of excitatory neurons with

recurrent and feed-forward connectivity

Let us consider a network composed of an arbitrary number of excitatory populations. For

tractability we will use the piecewise linear transfer function, see Eq (2.6). We want to study

the conditions for an initial stimulus to the first population to: 1) propagate throughout the

network without decaying; 2) grow until all populations are active at its maximum firing rate;

3) decay. Now consider a stimulus to the network such that all the populations are inactive,

except the first (i.e. ✓  u
1

(0)  uc and uj(0) = 0 8j 6= 1). For the first population, the

dynamics reads

u
1

(t) =
w⌫✓

w⌫ � 1
+

✓

u
1

(0) � w⌫✓

w⌫ � 1

◆

e� (1�w⌫)
⌧

t.
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Table 2.1: Parameters used in Fig C.1.

(B) (C) I (C) II (C) III
n 14 20 20 20
w - 0.05 0.35 0.25
s - 0.6 0.6 0.45
⌧ 10ms 10ms 10ms 10ms

wEI - - 0.08 -
wIE - - 1 -
⌧I - - 5ms -
� - - - 0.8
⌧a - - - 80ms
a - 6 6 6
b - -0.25 -0.25 -0.25
⌫ 1 2 2 2
✓ 0 0 0 0
uc 1 0.5 0.5 0.5
⌫̃ - 0.8 0.8 0.8
✓̃ - -0.1 -0.1 -0.1
ũc - 0.5 0.5 0.5

Table 2.2: Parameters used in Fig 2.3. With n = 10 and wI = 2.

dSA SA SA/PA PA (bottom) PA (top)
w 0.2 1.01 1.3 1.9 1.3
s 1.5 1.39 1. 0.7 0.15

Assuming ✓ = 0 and u
1

(0) = 1 , and defining

a ⌘ w⌫ � 1

⌧

b ⌘ s⌫

⌧
,

we first compute the dynamics for the linear range of the transfer function, that is, assuming

that the dynamics elicited is kept within the interval (✓, uc) for the first K populations (i.e.
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Table 2.3: Network parameters used in Fig 2.4-2.10. *Values of all the entries in the
initial matrix W.

Fig 2.4 Fig 2.5 Fig 2.6 Fig 2.7 Fig 2.8 Fig 2.9 Fig 2.10
n 10 10 10 10 10 20 20
wI 1 1 1 1 4.3 1 1

wmax 1.5 1.5 2.5 2.5 1.45 2.4 2.4
Tw - 400ms 400ms 400ms 400ms 400ms 400ms

Wi,j(0)* - 0.1 0.1 0.2 0.1 0.1 0.1
a
pre

10 10 10 10 10 10 10
b
pre

0.7 0.7 0.7 0.7 0.7 0.7 0.7
a
post

10 10 10 10 10 10 10
b
post

0.7 0.7 0.7 0.7 0.7 0.7 0.7
D - 15.3ms 15.3ms 15.3ms 15.3ms 15.3ms 15.3ms
rw 0.6 0.6 0.6 0.6 0.6 0.6 0.6
r
0

- - - - 0.05 0.01 0.01
⌧H - - - - 20s 20s 20s

Pn
j=1

Wi,j - - - 2 - - -

populations k such that k  K  n). The populations dynamics is given by

⌧
duj
dt

= �uj + w⌫uj + s⌫uj�1

j  K, (2.19)

which leads to an analytical solution for the dynamics of each population

uk+1

(t) = be�at
Z t

0

uk(t
0)eat0dt0 k  K.

Using an inductive argument we obtain that

uk+1

(t) =
(bt)k�1

(k � 1)!
eat k = 1, . . . , K, (2.20)

and in the limit k ! 1 and with the condition a < b, we obtain

lim
k!1

uk+1

(t) = eat lim
k!1

(bt)k�1

(k � 1)!
.
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Table 2.4: Stimulation parameters Fig 2.4-2.10.

I T (ms) � (ms)
Fig 2.5 (top-left) 1.25 18 8
Fig 2.5 (top-right) 1.8 20.5 80
Fig 2.5 (bottom-left) 1.8 7 9
Fig 2.5 (bottom-right) 1.8 1 50
Fig 2.6 1.3 19 10
Fig 2.7 2.2 19 10
Fig 2.8 A-C and D (left) 3.5 14 7
Fig 2.9 5 40 8
Fig 2.10 (top-left) 5.5 7 14
Fig 2.10 (top-right) 5.5 50 40
Fig 2.10 (bottom-left) 5.5 5 13
Fig 2.10 (bottom-right) 5.5 20 8.5

Since b > 0, we have that

lim
k!1

(bt)k�1

(k � 1)!
 lim

k!1

k
X

l=0

(bt)l

l!
= ebt,

then

lim
k!1

uk(t)  e(a+b)t.

For the sequence to decay away, it is su�cient to impose that

w + s <
1

⌫
,

since populations will receive inputs from previous populations that decrease with the

position in the feed-forward connectivity. On the other hand, for w + s, w > 1

⌫ the activity

of 0  p  n populations depending on the initial condition will grow until they reach an

state in which they are active at their maximum firing rate. However, for w + s > 1

⌫ > w,

the dynamics for first population decays exponentially towards zero
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u
1

(t) ⇡ eat,

but for the rest n�1 populations any input will lead to an increase in their activity since

w+s > 1

⌫ . In this regime, after the stimulation of the first population, the feed-forward input

from the first population to the second transiently decreases, producing a transient increase

in firing rate of the second population. This produces a sequence of transient increase in

activity along the feed-forward connectivity. Importantly, neurons later in the connectivity

will received feed-forward inputs for longer times. To see that, let us consider the fact that

the r.h.s. of Eq. (2.20) always has a maximum. Its maximum is achieved when tmax = �k/a.

The value of the maximum is

uk+1

(tmax) =
(bk)k

(�a)kk!
e�k.

For k ! 1 we can use the Stirling approximation for the factorial, obtaining

uk+1

(tmax) ⇠
p

2⇡kek(log(kb/(�a))�log(k/e)�1), (2.21)

which is equivalent to

uk+1

(tmax) ⇠
p

2⇡k

✓

� b

a

◆k

for k ! 1.

Then, for a < 0 and �b/a > 1 (i.e. w + s > 1

⌫ > w) populations whose activities are

in the linear range of the transfer function (i.e. k  K) present an increasing maximum

activity with its position in the feed-forward connectivity. Which implies an increasingly

stronger feed-forward input with the population’s position. If we standarize the population’s

activity uk(t) with the total area under the dynamics (i.e.
R1
0

dtuk(t) = bk�1

(�a)k
) defining

ũk(t) ⌘ uk(t)/
⇣

bk�1

(�a)k

⌘

, then an approximation for the time that a population is active in

the sequence is
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s

Z 1

0

t2ũk(t) �
✓

Z 1

0

dtũk(t)t

◆

2

= �1

a

p
k =

⌧

1 � w⌫

p
k. (2.22)

Therefore, the time that a population is active in the sequence scales with the squared root

of the position of the population in the feed-forward connectivity (i.e.
p

k, for k  K). In

fact, we found that this scaling also holds for populations whose activities are larger than

the upper bound of the transfer function (i.e. uc), see Fig C.1.

2.6.3 Instantaneous shared inhibition approximation

Figure 2.12: Shared Inhibition vs Instantaneous shared inhibition approximation.
In color lines it is shown SA generation for a network of 20 neurons with fixed feed-forward
and recurrent connections and shared inhibition. In grey dashed lines it is shown the instan-
taneous shared inhibition approximation.

2.6.4 Bifurcation diagram for a network of excitatory neurons with

recurrent and feed-forward connections and shared Inhibition

Here we derive the PA-PA/SA, PA-(SA or dSA), and PA/SA-(SA or dSA) boundaries in

the bifurcation diagram of a network of excitatory neurons with recurrent and feed-forward

connections and shared Inhibition. Let us consider Eq. (2.3) on the main text for the

54



dynamics of a network of excitatory populations with shared inhibition. In addition, let us

assume a piecewise linear transfer function such that 0  �(u)  1 and uc = 1. For the

beginning of the analysis let us assume that s = 0 and m populations are in a high rate state,

that is �(uk) = 1, whereas all the rest are in the low activity state, i.e. �(uj) = 0 j 6= k.

Then if �(uk
j

) = 1 for k
1

, k
2

, · · · , km, a necessary condition for the high rate state to be a

fixed point is

uk
j

= w � mwI

n
> 1 j = 1, . . . , m. (2.23)

If we only want to have at most m populations in the high rates state as a fixed point

then

uk
j

= w � (m + 1)wI

n
< 1 j = 1, . . . , m, (2.24)

which implies

1 +
mwI

n
 w  1 +

(m + 1)wI

n
. (2.25)

Let us now consider s 6= 0. If we want to have at most r contiguous populations con-

nected via feed-forward connections in the high rate, a necessary condition is that the first

population in the architecture needs to be able to sustain PA when r populations are active,

i.e.

uk = w � rwI

n
> 1. (2.26)

The second necessary condition is that the last of the r population down stream in the

recurrent-feed-forward connected architecture does not die out to the low rate state due to

inhibition, when this population is in the low activity state and the population before is in

high rate state, i.e.

uk+r�1

= s � (r � 1)wI

n
> 0. (2.27)

If we want at most r populations active, we need to impose that the population right
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after remains in the low rate state

uk+r = s � rwI

n
< 0, (2.28)

which is equivalent to
(r � 1)wI

n
 s  rwI

n
. (2.29)

Then if w fulfills Eq (2.25) and we stimulate all the populations of the network, we have

that at most m populations remain active. On the other hand, if Eqs. (2.26,2.27) hold, and

we stimulate just the first population in the network then at least r contiguous populations

remain active in PA. Lastly if we activate the first population and all the rest are in the low

activity state, and

rwI

n
 s (2.30)

1 +
rwI

n
 w  1 +

(r + 1)wI

n
.

Consequently, the next r populations go to the high rate activity state. Due to shared

inhibition, the first population decreases to the low rate state, since Eqs. (2.30) holds and

it is the population that receives less current because it lacks feed-forward inputs. The

decrease in the shared inhibitory input due to the activity decay of the first population leads

to the (r + 2)th population to increase its activity toward a high rate activity state. This

consequently produces that the second population decay to the low rate state due to a new

increase in shared inhibition. This process iterates producing a sequence that stabilizes when

the last population and the r � 1 populations before this one are in the high rate state. We

call SA/PA to this sequential activity that ends in persistent activity.
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2.6.5 Multiplicative homeostatic plasticity

Brief discussion

As is mentioned in the main text, the overall steady state connectivity (i.e. W) is very

sensitive to di↵erences in values of the connectivity learned via Hebbian plasticity (i.e. W)

when a linear version of homeostatic learning rule used in the main text (i.e. Eq. (2.15) on

the main text without the quadratic term in H) is used. This can be intuitively understood

analyzing a one population network with connectivity strength w. When the linear version

of homeostatic plasticity is used the H nullcline is vertical (see Fig 2.13 A). This produces

that slight changes in the connectivity strength of the excitatory population dramatically

change the value of the steady state homeostatic variable (fixed point of the dynamics). If

a quadratic nonlinearity is included in the learning rule, the H nullcline is now a straight

line with slope � 1

u0
and intercept 1 (see Fig 2.13 B). As a consequence, the steady state

homeoestatic variable is close to 1 (i.e. H ⇡ 1) provided w is not very large (see Fig 2.13 C).

This analysis is generalized for an arbitrary number of excitatory populations undergoing

sequential stimulation in the next section. Therefore, the linear version of the homeostatic

plasticity rule, in general leads to an steady state connectivity uniformly strong disregarding

the sequential stimulation parameters (see Fig 2.13 F). And even though Hebbian plasticity

ensures non-uniformity in the learned connectivity (see Fig 2.13 D and F), very strong

recurrent and feed-forward connections due high values for the homeostatic variables usually

leads to the retrieval of PA when the network is perturbed from the background state (see

Fig 2.3 main text). Preventing with this that di↵erences in connectivities learned due to

di↵erent stimuli to be reflected in di↵erent learned dynamics (i.e. PA, SA, PA/SA or dSA).

In practice, PA is initially retrieved almost always independent of the type of stimulation

presented when the linear version of the homeostatic learning rule leads to large values of

the homeostatic variable. Additionally, strong excitatory connectivity due to large values of
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the homeostatic variables might produce spikes on the homeostatic variables and synaptic

weights learned via Hebbian plasticity uniformly shooting down the overall connectivity (see

Fig 2.13 D-F). These phenomena can be interpreted as a forgetting of the stimulus learned

during sequential stimulation via Hebbian plasticity, since is prevented the retrieval of any

temporal attractor other than PA or the background state. If a quadratic term is introduced

(as in Eq. (2.15) on the main text) and: 1) the recurrent and feed-forward connections

learned via Hebbian plasticity are not large; 2) the background activity is within the sub-

linear region of the transfer function. Then Hi ⇡ 1 and the connectivity in the steady state

is approximately the connectivity learned via Hebbian plasticity (i.e. Wi,j ⇡ Wi,j). In the

next section we provide a mathematical proof to this assertion.

Mathematical analysis

Let us assume that after r repetitions of the sequential stimulation described in the main

text, there is an increase in the synaptic weights to a final value W(r)
i,j due to Hebbian

plasticity. We will also assume that the sequential stimulation is in the range of parameters

for T and � where only recurrent and feed-forward connections increase due stimulation.

Using the plasticity rule proposed in Toyoizumi et al. (2014) (i.e. linear version of Eq. (9)

on the main text) the fixed points for the network’s dynamics after r sequential stimulation

are given by

u⇤
i = u

0

i = 1, . . . , n

H
(r)
1

=
u

0

�(u
0

)W(r)
1,1 � wEI�(u⇤

I)

H
(r)
i =

u
0

�(u
0

)(W(r)
i,i + W(r)

i�1,i) � wEI�(u⇤
I)

i = 2, . . . , n

u⇤
I = �(u⇤

I) + �(u
0

)nwIE .
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Where the target firing rate is r
0

= �(u
0

). Then, the connectivity matrix for the excita-

tory populations is given by

W
(r)
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Considering that

wEI�(u⇤
I)
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)
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,

and assuming that wEI ⇠ O
⇣

1p
n

⌘

and wIE ⇠ O
⇣

1p
n

⌘

, we have that for large n

wEI�(u⇤
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i�1,i�(u

0

)
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. (2.31)
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Which leads to
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Assuming that the sequential stimulation parameters are such that the recurrent and

feed-forward connections learned have the same order of magnitude

W(r)
i,i

W(r)
i�1,i

⇠ O(1),

we obtain

W
(r)
i�1,i ⇠ W

(r)
i,i ⇠ O

✓

u
0

�(u
0

)

◆

. (2.32)

Therefore, after sequential stimulation the connectivity matrix is weakly dependent of the

synaptic weights learned via Hebbian plasticity and proportional to the quotient of the target

firing rate synaptic input current u
0

and the corresponding target firing rate r
0

= �(u
0

). If

we now consider the homeostatic learning rule in Eq. (2.15) on the main text, we have that

60



the fixed points for the dynamics of the network are given by

u⇤
1

=
W(r)

1,1�(u⇤
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u
0
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I) (2.33)
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u⇤
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N
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�(u⇤
j ). (2.37)

Then, using approximation in Eq. (2.31), the connectivity matrix for the excitatory

populations is

W
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i = 2, . . . , n.

For large values of the learned recurrent and feed-forward connections (i.e. W(r)
i,i ,W(r)

i+1,i !
1), the fixed point for each neuron currents becomes u⇤

i = u
0

i = 1, 2, . . . , n, see Eq (2.33).

Assuming that as W(r)
i,i /W(r)

i+1,i ! ↵(r) < 1 for all r. Then, when the recurrent and

feed-forward connections learned via Hebbian plasticity are large, the overall steady state
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connectivity is approximated by
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In this limit, as in the linear version of the homeostatic learning rule analyzed above, the

recurrent and feed-forward synaptic weights learned are scaled by the u0
�(u0)

quotient. This

means that the final connectivity after learning is not strongly dependent of the history of

stimulation. However, for weak synaptic weights learned (i.e. W(r)
i,i ,W(r)

i+1,i ⌧ u0
�(u0)

) we

have that at the lowest order
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If we assume that target synaptic input current of the homeostatic learning rule (i.e. u
0

)

is within the sub-linear region of the transfer function, then wI
�(u0)
u0

⌧ 1. This leads to
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W
(r)
1,1 ⇡ W(r)

1,1 (2.38)

W
(r)
i,i ⇡ W(r)

i,i i = 2, . . . , n

W
(r)
i+1,i ⇡ W(r)

i+1,i i = 2, . . . , n.

Therefore, we conclude that when recurrent and feed-forward connections learned via

Hebbian plasticity are such that W(r)
i,i ,W(r)

i+1,i ⌧ u0
�(u0)

and the background activity u
0

is

within the sub-linear region of the transfer function. Then the steady state overall connec-

tivity in a network with both Hebbian and homeostatic plasticity (i.e.W) is approximately

the connectivity learned via Hebbian plasticity (i.e.W).

2.6.6 Approximation for the synaptic weights dynamics during repeated

sequential stimulation

In this section we obtain an approximation for the synaptic weights dynamics during the

sequential stimulation protocol for a network with Hebbian and homeostatic plasticity. First

we will approximate the increase in the synaptic weights after a single stimulation by approx-

imating the time that the neuron’s current ui is above the learning threshold uw ⌘ ��1(rw).

During sequential stimulation protocol the e↵ective connectivity is very weak due to the

homeostatic plasticity (i.e. Wi,j = HiWi,j ⌧ 1). Then, neglecting the e↵ect of inhibition,

the dynamics of each population can be approximated by

⌧ u̇i ⇡ I � ui i = 1, . . . , n.
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During the stimulation period T populations dynamics reads

ui(t) = I
⇣

1 � e� t

⌧

⌘

t 2 [0, T ].

Its final value right after the stimulation is

ui(T ) = I(1 � e�T

⌧ ),

and after the stimulation the population current decays as

ui = ui(T )e� t

⌧ = I(1 � e�T

⌧ )e� t

⌧ .

Then the approximate time that takes each population to reach the learning threshold

from resting is

⌧u0,uw ⌘ �⌧ ln
⇣

1 � uw
I

⌘

. (2.39)

On the other hand the approximate time that takes to each population to decay to the

learning threshold from its maximum activity after stimulation (umax = I(1�e�T

⌧ )) is given

by

uw = I(1 � e�T

⌧ )e� ⌧

u

max

,u

w

⌧ ,

which leads to

⌧u
max

,u
w

= �⌧ ln

0

@

uw

I
⇣

1 � e�T

⌧

⌘

1

A . (2.40)

Hence, an approximation for the time that each population spends above the learning

threshold is

⌧u
w

= T � ⌧u0,uw + ⌧u
max

,u
w

(2.41)

The population dynamics above the plasticity threshold uw when is stimulated at time
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tk can be approximated by:
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Let us first consider the increase in the recurrent connections. First define t̃k ⌘ t � tk

and

⌦i,j(a, b) = f [�(ui(a)))]g[�(uj(b � D))].

In order to compute the increment in the synaptic weight Wi,i we need to solve

dWi,i

dt̃k
=

⌦i,i(t̃k, t̃k � D) � Wi,j

⌧w
, (2.43)

for
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max

,u
w

].
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(2.44)

for

t̃k 2 [D + ⌧u0,uw , T + ⌧u
max

,u
w

].

To compute the increase on feed-forward connections after one stimulation, let us define

t̃ik ⌘ t � tik as the time elapsed after stimulation of neuron i. Due to the nature of the

sequential stimulation, we have the following relation t̃i+1

k = t̃ik � T � �. Then in order to
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compute the increment in the synaptic weight Wi+1,i we need to solve the following equation

dWi+1,i

dt̃i+1

k

=
⌦i+1,i(t̃

i+1
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Considering that the upper boundary for t̃i+1
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We then obtain the following approximation for the dynamics of the feed-forward con-

nections
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These approximations appear to be accurate for the dynamics during stimulation, as

Fig 2.9 shows. Using Eqs. (2.44,2.48), we can write iterative equations for the final recurrent

and feed-forward synaptic weights for sequential stimulation k + 1 as

Wk+1

i,i

e�T+⌧

u

max

,u

w

�D�⌧
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where Wk
i,i and Wk

i+1,i are the recurrent and feed-forward connections after sequential

stimulation k. Defining
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and iterating Eqs. (2.48,2.49) we obtain
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For a large number of repetitions of the sequential stimulation (i.e. k ! 1) the stationary

recurrent and feed-forward connections are given by
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Figure 2.13: Linear and nonlinear multiplicative homeostatic plasticity. (A and B)
Phase plane (u � H plane) of a single population network with fixed recurrent connectivity
(w), fast linear inhibition (wI = 0.1) and homeostatic plasticity. Red: H nullcline. Green
and purple: u nullcline for w = {0.5, 1.2} respectively. Dashed lines show two orbits of the
network’s dynamics for a single initial condition with w = 1.2 and 0.5, respectively. The fixed
points are indicated with solid circles using the same color code. In A, the linear version of the
homeostatic learning rule is used (i.e. Eq. (2.15) main text without the quadratic term on the
r.h.s.). In B, the homeostatic learning rule in Eq. (2.15) of the main text is used (nonlinear
version). Inset of B shows a zoom in the region of the fixed points. (C) Stationary state
value of H (fixed point of the dynamics, i.e. H such that Ḣ = 0 and u̇ = 0) vs w for the single
population network with fixed recurrent connectivity and fast linear inhibition studied in A
and B. Orange: linear version of the homeostatic learning rule; Blue: nonlinear version. (D-
F) Learning dynamics for a network with n = 10 populations, fast linear shared inhibition,
Hebbian plasticity, linear or nonlinear homeostatic learning rule. The network is stimulated
for the first 82s, and then the dynamics freely evolves toward its steady state. (D) Synaptic
weights learned via Hebbian plasticity during stimulation (i.e. W). Cyan: recurrent; Yellow:
feed-forward; Red: feed-backward; Blue: feed-second-forward; Green: feed-second-backward
connections. Solid and dashed lines correspond to a network with Hebbian plasticity plus
the linear and nonlinear version of the homeostatic learning rule respectively. (E) Dynamics
of the homeostatic variable. The color code is the one used in Fig 2.8. Solid and dashed lines
correspond to the linear and nonlinear version of the homeostatic learning rule respectively.
(F) Steady state connectivity matrix corresponding to the connectivity learned via Hebbian
plasticity W (first column) and the overall connectivity W (second column) for the linear
(first row) and nonlinear (second row) version of the homeostatic learning rule.
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CHAPTER 3

ATTRACTOR DYNAMICS IN NETWORKS WITH

LEARNING RULES INFERRED FROM IN VIVO DATA

3.1 Contribution

The work presented in this chapter correspond to the publication Pereira & Brunel (2018a).

The authors are Ulises Pereira and Nicolas Brunel. U.P. and N.B. designed the research. U.P.

and N.B. developed the mathematical theory. U.P. performed the analytical calculations and

numerical simulations. U.P. analyzed the data. U.P. and N.B. wrote the manuscript.

3.2 Introduction

Attractor networks have been proposed as models of learning and memory in the cerebral

cortex (Hopfield 1982, Amit 1992, 1995, Brunel 2005). In these models, synaptic connectivity

in a recurrent neural network is set up in such a way that the network dynamics have multiple

attractor states, each of which represents a particular item that is stored in memory. Each

attractor state is a specific pattern of activity of the network, that is correlated with the state

of the network when the particular item is presented through external inputs. The attractor

property means that the network converges to the stored pattern, even if the external inputs

are correlated to, but not identical, to the pattern, a necessary requirement for an associative

memory model. In many of these models, the appropriate synaptic connectivity is assumed

to be generated thanks to a ‘Hebbian’ learning process, according to which synaptic e�cacies

are modified by the activity of pre and post-synaptic neurons (Hebb 1949).

These models have been successful in reproducing qualitatively several landmark observa-

tions in delayed response tasks experiments in monkeys (Fuster et al. 1971, Miyashita 1988,

Funahashi et al. 1989, Goldman-Rakic 1995) and rodents (Liu et al. 2014, Guo et al. 2014,

70



Inagaki et al. 2017). In some of the monkey experiments, animals are trained to perform a

task in which they have to remember for short times the identity or the location of a visual

stimulus. These tasks share in common a presentation period during which the monkey is

subjected to an external stimulus, and a delay period during which the monkey has to main-

tain in working memory the identity of the stimulus, which is needed to solve the task after

the end of the delay period. One of the major findings of these experiments is the observa-

tion of selective persistent activity during the delay period in a subset of recorded neurons

in many cortical areas, in particular in prefrontal cortex (Fuster et al. 1971, Funahashi et al.

1989, Romo et al. 1999), parietal cortex (Koch & Fuster 1989b), inferior temporal cortex

(Fuster & Jervey 1981, Miyashita 1988, Nakamura & Kubota 1995a) and other areas of the

temporal lobe (Nakamura & Kubota 1995a). In those neurons, the firing rate does not decay

to baseline during the delay period, but it is rather maintained at higher than baseline levels.

Furthermore, this increase in firing rate is selective, i.e. it occurs only for a subset of stimuli

used in the experiment. Selective persistent activity is consistent with attractor dynamics in

a recurrent neural network, whose synaptic connectivity is shaped by experience dependent

synaptic plasticity (Amit 1995, Wang 2001, Brunel 2005).

The attractor network scenario was originally instantiated in highly simplified fully con-

nected networks of binary neurons (Amari 1972, Hopfield 1982). While theorists have since

strived to incorporate more neurophysiological realism into associative memory models, us-

ing e.g. asymmetric and sparse connectivity (Derrida et al. 1987), sparse coding of memories

(Tsodyks & Feigel’Man 1988, Tsodyks 1988), online learning (Mézard et al. 1986a, Parisi

1986, Amit & Fusi 1994), spiking neurons (Gerstner & van Hemmen 1992, Treves 1993,

Amit & Brunel 1997, Brunel & Wang 2001, Lansner 2009), there is still a large gap between

these models and experimental data. First, none of the existing models use patterns whose

statistics is consistent with data. Most models use bimodal distributions of firing rates, with

neurons either ‘activated’ by a stimulus or not, while there is no indication of such a bi-
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modality in the data. Second, the connectivity matrices used in these models are essentially

engineered (and sometimes highly fine-tuned) such as to produce attractor dynamics, but are

totally unconstrained by data. Third, the attractor network scenario has been challenged by

the observation of a high degree of irregularity and strong temporal variations in the firing

rates of many neurons, which seem hard to reconcile with fixed point attractors (Druckmann

& Chklovskii 2012, Barak et al. 2013, Murray et al. 2017).

A recent study (Lim et al. 2015) provides us with the tools to potentially bridge these

gaps. It used data from experiments in which neuronal activity is recorded in IT cortex

in response to large sets of novel and familiar stimuli (Woloszyn & Sheinberg 2012). The

distribution of neuronal responses to novel stimuli allows the inference of the distribution

of firing rates of neurons in stimuli that are being memorized. This distribution is close to

a lognormal, at odds with bimodal distributions of firing rates used in the vast majority of

theoretical studies (for a few exceptions, see Treves (1990a,b), Festa et al. (2014)). Compar-

ison between the distributions of responses to novel and familiar stimuli allows the inference

of the dependence of the learning rule on post-synaptic firing rates. The inferred learning

rule is Hebbian, but shows two major di↵erences with classic rules such as the covariance

rule (Sejnowski 1977): (1) The post-synaptic dependence of the rule is dominated by depres-

sion, such that the vast majority of external inputs leads to a net decrease in total synaptic

inputs to a neuron with learning, leading to a sparser representation of external stimuli;

(2) The dependence of the rule on post-synaptic firing rates is highly non-linear, as in the

Bienenstock-Cooper-Munro rule (Bienenstock et al. 1982).

These results beg the question of whether associative memory can emerge in networks

whose distributions of firing rates and learning rules are consistent with data. We therefore

set out to study a recurrent network model in which distributions of external inputs, single

neuron transfer function and learning rule are all inferred from ITC data (Lim et al. 2015).

We show that: (1) learning rules inferred from visual responses in ITC lead to attractor
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dynamics, without any need for parameter adjustment or fine tuning; (2) Activity in the

delay period is graded, with broad distributions of firing rates; (3) Learning rules inferred

from data are close to maximizing the number of stored patterns, in a space of unsupervised

Hebbian learning rules with sigmoidal dependence on pre and post-synaptic firing rates; (4)

In a large parameter region, our model presents irregular temporal dynamics during retrieval

states that strongly resembles the temporal variability observed during delay periods. In

this region, retrieval states are chaotic attractors that maintain a positive overlap with the

corresponding stored memory, and the network performs as a associative memory device

with fluctuations internally generated by the chaotic dynamics.

3.3 The model

We model local cortical circuits in IT cortex by a recurrent network composed of ‘firing

rate’ units (Hopfield 1984). The network is composed of N neurons whose firing rates are

described by analog variables ri, where i = 1, 2, . . . , N represents the neuron index, as a

simplified model for a local network in ITC (see Fig. 3.1 for a schematic depiction of the

network). Firing rates obey standard rate equations (Grossberg 1969, Hopfield 1984)

⌧ ṙi = �ri + �

0

@Ii +
N
X

i 6=j

Jijrj

1

A , (3.1)

where ⌧ is the time constant of firing rate dynamics, � is the input-output single neuron

transfer function (or f-I curve), Ii are the external inputs to neuron i, and Jij is the strength

of the synapse connecting neuron j to neuron i.

The connectivity matrix is sparse, and existing connections are shaped by external inputs

(‘patterns’) through a non-linear unsupervised Hebbian synaptic plasticity rule. In this rule,

external synaptic inputs ⇠µi to neuron i during presentation of pattern µ (i = 1, 2, . . . , N and

µ = 1, 2, . . . , p) are generated randomly and independently from a Gaussian distribution (see

73



�(⇠i)

�(⇠j)
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�Jij / f(�(⇠i))g(�(⇠j))

(A)

⇠j⇠i
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Figure 3.1: Learning and retrieval in recurrent neural networks with unsupervised Hebbian
learning rules. (A) When a novel pattern is presented to the network, synaptic inputs to each
neuron in the network (⇠l, for neurons l = 1, . . . , N) are drawn randomly and independently
from a Gaussian distribution. Synaptic inputs elicit firing rates through the static transfer
function, i.e. �(⇠l). Some neurons respond strongly (red circles), others weakly (white
circles). (B) The firing rate pattern produced by the synaptic input currents modifies the
network connectivity according to an unsupervised Hebbian learning rule. The connection
strength is represented by the thickness of the corresponding arrow (the thicker the arrow the
stronger the connection). (C) After learning, a pattern of synaptic inputs that is correlated
but not identical to the stored pattern is presented to the network. (D) Following the
presentation, the network goes to an attractor state which strongly overlaps with the stored
pattern (compare with panel A), which indicates the retrieval of the corresponding memory.

Fig. 3.1 A,B and Methods). The assumption of independence of the patterns is consistent

with the data (see Fig. 3.2). The external inputs shape the connectivity matrix through

the firing rates �(⇠µi ) generated by such inputs, and through two non-linear functions f and

g that characterize the dependence of the learning rule on the post-synaptic rate (f) and

pre-synaptic rate (g), respectively. When p patterns are learned by the network, the final

connectivity after learning gets structured as

Jij =
Acij
cN

p
X

k=1

f
h

�(⇠ki )
i

g
h

�(⇠kj )
i

, (3.2)

where cij is a sparse random (Erdos-Renyi) structural connectivity matrix (cij = 1 with

probability c, cij = 0 with probability 1�c, where c ⌧ 1). This synaptic connectivity matrix

can be obtained by a learning rule that changes the synaptic connectivity matrix by a factor

�Jij / f
⇥

�(⇠µi )
⇤

g
h

�(⇠µj )
i

when a pattern µ is presented to the network, starting from an
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Figure 3.2: Correlations between input currents corresponding to familiar images. Our
theory relies on the assumption that stored patterns are uncorrelated. When correlations
between stored patterns are included, the storage capacity of our network drastically de-
creases. To test this assumption, we computed correlations between input currents corre-
sponding to familiar images. Using the transfer function inferred from novel stimuli (see
Fig. 3.3B), we computed for each neuron the input currents that elicit the firing rate re-
sponses to each of the 125 familiar images. We then computed the correlations between
input currents corresponding to di↵erent familiar images. (A) Correlation matrix for the
input currents corresponding to the 125 familiar images across the 14 putative excitatory
neurons considered in this study. (B) Correlation matrix for the input currents correspond-
ing to the 125 familiar images when the identity of the images are randomly shu✏ed for each
neuron. (C) Histogram of the correlation values for the original correlation matrix in panel
A (red), the correlation matrix from the randomized responses in panel B (blue) and from
a correlation matrix of input currents drawn independently from a Gaussian distribution
with zero mean and unit variance (i.e. Gaussian i.i.d.; green). The diagonal terms were
excluded. (D) Largest 20 singular values for correlation matrices in panel A (red), B (green)
and from the Gaussian i.i.d. input currents (blue). The opaque blue and green shaded areas
correspond to the 95% confidence interval for the singular values across 200 realizations of
the correlation matrices of the randomized responses and the Gaussian i.i.d. input currents
respectively.
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initial tabula rasa Jij = 0, and neglecting the contributions of recurrent connections during

learning. This rule is a generalization of Hebbian rules used in classic models such as the

Hopfield model (Hopfield 1982) or the Tsodyks-Feigel’man model (Tsodyks & Feigel’Man

1988), with two important di↵erences: patterns have a Gaussian distribution instead of

binary; and the dependence of the rule on firing rates is non-linear instead of linear. In the

following, the patterns that have shaped the connectivity matrix will be termed ‘familiar’

while all other random patterns presented to the network will be termed ‘novel’.

3.4 Inferring transfer function and learning rule from data

The model defined by Eqs. (4.1,3.2) depends on three functions �, f and g that define

the single neuron transfer function and synaptic learning rule, respectively. How to choose

these functions? We used a method that was recently introduced by Lim et al. (2015)

to infer the tranfer function (�) and the post-synaptic dependence of the learning rule f

from electrophysiological data recorded in ITC (Woloszyn & Sheinberg 2012). The transfer

function � is obtained by finding the function that maps a standard Gaussian distribution

to the empirical distribution of visual responses of neurons to a large set of novel stimuli

(see Methods). The post-synaptic dependence of the learning rule f was obtained from the

di↵erences between the distribution of visual responses to familiar and novel stimuli, under

the assumption that changes in such distributions are due to changes in synaptic connectivity

in recurrent ITC circuits. Note that only the function f , and not g, can be inferred from

data - this is due to the fact that the mean inputs to a neuron are proportional to f
h

�(⇠ki )
i

while the function g only appears in an integral (see Methods, Eq. (3.51)). Therefore, the

knowledge of how the mean inputs change with learning as a function of its firing rate allows

us to infer f but not g. As an additional step to the procedure described by Lim et al.

(2015), we fitted the resulting functions � and f using sigmoidal functions (see Methods

and Fig. 3.3, i.e. �i(⇠) = rm/(1 + e��(⇠�h0)) and f(r) = 1

2

⇥

2qf � 1 + tanh(�f (r � xf ))
⇤
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respectively). These sigmoidal functions provided good fits to the data (see Fig. 3.3A-C,

that shows fits of three representative ITC neurons; and Fig. A.1-A.3 for all neurons in the

data set). This fitting procedure gave us for each neurons three parameters of the transfer

function: the maximal firing rate rm (median: rm = 76.2Hz), a measure of the slope at the

inflection point �T (median: �T = 0.82), and the threshold (current at the inflection point,

median: h
0

= 2.46 - see Fig. 3.3D for a boxplot of these parameters). It also gives us for each

neuron three parameters characterizing the function f : the threshold xf (median: 26.6 Hz),

slope at the inflection point �f (median: 0.28 s) and saturation qf (median: 0.83). Finally,

the fitting procedure also gives us the learning rate A (median: 3.55).

A number of features of these fitted functions are noteworthy: First, the vast majority

of the visual responses of neurons are in the supralinear part of the transfer function, and

therefore far from saturation. This is consistent with many studies showing supra-linear

transfer functions at low firing rates, both in vitro (Rauch et al. 2003) and in vivo (Anderson

et al. 2000). Second, this has the consequence that the distribution of visual responses are

strongly right-skewed, and in fact close to lognormal distributions, consistent with multiple

observations in vivo (Hromadka et al. 2008, Roxin et al. 2011, Buzsaki & Mizuseki 2014,

Lim et al. 2015). Third, the function f is strongly non-linear, and the threshold between

depression and potentiation occurs at a firing rate that is much higher than the mean rate,

leading to depression of the mean synaptic inputs to a neuron for the vast majority of shown

stimuli. Fourth, the average of the function f across the distribution of patterns is negative,

which leads to a decrease of the average visual response with familiarity (Lim et al. 2015).

The only parameters that are left unconstrained by data are two parameters character-

izing the function g. In most of the following, we will take those parameters to be identical

to the corresponding parameters of the function f (i.e. xg = xf and �g = �f ; note that qg is

fixed by the condition that the average of the function g across the distribution of patterns

is zero, see Methods). We will also explore the space of values of xg and �g (see below).
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Figure 3.3: Inferring transfer function and learning rule from ITC data. (A) Distributions
of firing rates in response to novel stimuli, for three di↵erent ITC neurons. Blue histogram:
histogram of experimentally recorded visual responses. Red: Distribution of firing rates
obtained from passing a standard normal distribution through the sigmoidal transfer function
shown in B. Gray vertical line: average firing rate. Green vertical line: learning rule threshold
xf (see C). (B) Static transfer function � derived from the distribution of visual responses
for novel stimuli (see A), assuming a Gaussian distribution of inputs (see (Lim et al. 2015)
and Methods) for the same three neurons shown in A. The data (blue circles) was fitted using
a sigmoidal function (red line; see Methods, Eq. (3.48)), defined by three parameters: the
current h

0

that leads to half the maximal firing rate (cyan dashed lines), a slope parameter �T
(dashed yellow line in top plot), and maximal firing rate rm. (C) Dependence of the synaptic
plasticity rule on the postsynaptic firing rate as a function of firing rate (i.e. f(r)). The
data (black circles) was fitted with a sigmoidal function (blue line; see Methods, Eq. (3.53)),
defined by three parameters: maximum potentiation qf ; threshold xf (see green dashed line);
and slope parameter �f (dashed yellow line in top plot). On the right axis is indicated the
maximum potentiation of the fit qf . (D) Boxplot for the fitted parameters rm, �T and h

0

of the transfer function. (E) Boxplot for the fitted parameters xf , �f , qf of the dependence
of the synaptic plasticity rule on the postsynaptic firing rate, and A, the learning rate.
The red line and green triangle indicate the median and the mean of the fitted parameters,
respectively. Gray symbols indicate the parameters of the three neurons shown in A,B,C.
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3.5 Dynamics of the network following presentation of familiar

and novel stimuli

Having specified the model, we now turn to the dynamics of the network described by

Eqs. (4.1,3.2), whose parameters are set to the median best-fit parameters according to

the procedure described above. In particular, we ask whether the model exhibits attractor

dynamics. To address this question, we used both numerical simulations of large networks

(see Methods) and mean field theory (MFT - see Methods). For the MFT, we assume

that both the number of neurons and stored patterns are large (i.e. more specifically the

limit p, N ! 1), while the number of stored patterns p divided by the average number of

synapses per neuron (Nc), ↵ ⌘ p/Nc remains of order one. We call ↵ the memory load of the

network. The results of the MFT only depend on N , c and p via this quantity (see Methods).

From our MFT analysis, we obtain mathematical expressions for two ‘order parameters’ that

describe how network states are correlated (or not) with stored patterns. We are specifically

interested here in the situation when the network state is correlated with one of the stored

patterns (e.g. following the presentation of this particular pattern).

The first order parameter describes the ‘overlap’ m between the current state of the

network (described by the vector of firing rates ri, for i = 1, 2, . . . , N) and the pattern

of interest (see methods for the mathematical definition of m). When m is of order 1,

this indicates that the corresponding pattern is retrieved from memory. Consequently, each

pattern stored in memory can be retrieved by initializing the network dynamics with a

configuration that is close to that particular pattern, and letting the network evolve towards

its attractor state. In this case, giving a partial cue to the network leads the dynamics

towards an attractor state correlated with the stored pattern, a signature of associative

memory. The other order parameter M describes the interference due to the other stored

patterns in the connectivity matrix; it is proportional to the average squared firing rates of

the network (see Methods). Equations for the order parameters as a function of ↵, �, f and
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g are given in Methods.

The results of the simulation of a particular realization of a network of N = 50, 000

neurons with c = 0.005 (an average of 250 connections per neuron) storing p = 30 patterns

(↵ = 0.12), and the comparison with the results from MFT are shown in Fig. 3.4. In the

simulations, the network was initialized in a state which was uncorrelated with all the stored

patterns. For these parameters, the network converged to a ‘background’ state in which all

neurons fire at low rates (average 7.98/s, standard deviation 2.92/s). Upon presentation of

a novel stimulus (Fig. 3.4A), neurons were driven to stimulus-specific firing rates, with a

distribution of firing rates that was close to a lognormal distribution (Fig. 3.4C), similar to

experimental observations (Lim et al. 2015). The distribution is close to lognormal because

the distribution of inputs to neurons is Gaussian, and the neuronal transfer function is

close to being exponential at low rates (see Methods). After the end of the presentation

of the stimulus, the network came back to its initial background state (Fig. 3.4A). Upon

presentation of a familiar stimulus (Fig. 3.4D), the statistics of neuronal responses di↵ered

markedly from the response to novel stimuli: a few neurons responded at higher rates,

but the majority of neurons responded at lower rates compared to a novel stimulus. The

distribution of visual responses for familiar stimuli had consequently a lower mean compared

to the distribution of responses for novel stimuli but a larger tail at high rates (compare

Fig. 3.4C and F). These two features were consistent with data recorded in ITC by multiple

groups (Li et al. 1993, Kobatake et al. 1998, Logothetis et al. 1995, Freedman et al. 2006,

Woloszyn & Sheinberg 2012).

After removal of a familiar stimulus, the network no longer came back to the initial

background state, but rather converged to an attractor state that was strongly correlated

with the shown stimulus (Fig. 3.4D), as shown by the strong overlap between the network

state and the shown pattern (see blue curve in Fig. 3.4E). A small fraction of neurons

exhibited persistent activity at high rates (4.3% of the neurons are above half maximal
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Figure 3.4: Dynamics of the network before, during and after the presentation of novel (top
row) and familiar (bottom row) stimuli, mimicking the initial part of a trial of a delay match
to sample (DMS) experiment. (A) Firing rate of a randomly sampled subset of 100 neurons
of a simulated network before, during and after the presentation of a novel stimulus. Vertical
dashed lines indicate the beginning and the end of the presentation. Note that the firing
rates of all neurons decay to baseline following removal of the stimulus. (B) Dynamics of the
overlaps with the stored patterns. Green traces show overlaps computed numerically from
the network simulation corresponding to each of the stored patterns. The yellow trace shows
the overlap of the network state with the shown novel pattern. (C) Distribution of firing rates
during the presentation (red) and delay (blue) periods. Smooth curves correspond to the
predictions of the MFT, histograms are obtained from network simulations. (D) Similar to
A, except that the shown stimulus is familiar. Note that this time firing rates do not decay to
baseline during the delay period, but to a value that is strongly correlated (but not identical)
to the visual response. (E) Dynamics of overlaps when a familiar stimulus is presented. The
blue trace shows the numerically computed overlap with the pattern presented during the
presentation period. The red trace shows the corresponding overlap computed from MFT.
(F) Distribution of firing rates during the presentation (red) and delay (blue) periods in
response to the presentation of a familiar stimulus. The vast majority of the neurons fire
in the 0-10Hz range. A closer inspection of the tail of the distribution shows a tiny peak
close to saturation in homogeneous networks (full lines), while this peak disappears when
the heterogeneity in maximal firing rates is included (dashed lines).
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rate), but most neurons remained at low rates during the simulated delay period (Fig. 3.4F).

The distribution of firing rates was again similar to a lognormal distribution at low rates, but

the tail of the distribution was shaped by neuronal saturation and therefore exhibited a tiny

peak close to maximal firing rates. Both overlap with presented pattern and distributions

of firing rates could be computed by the MFT and were in close agreement with network

simulations (Fig. 3.4E and F). When the heterogeneity on the neuronal saturation is included

into our model by randomly selecting maximal firing rates for each neuron from a log-

normal distribution that fits the empirical distribution of the best-fit maximal firing rates (see

Fig. 3.3E), the peak at maximal firing rate disappears. Thus, in a heterogeneous network,

distributions of firing rates during both presentation and delay periods become unimodal

(Fig. 3.4F dashed lines).

Thus, our network behaved as an associative memory when constrained by ITC data,

without any need for parameter variation or fine tuning. Furthermore, in addition to re-

producing the distributions of visual responses for both novel and familiar stimuli seen ex-

perimentally, it also exhibited qualitatively some of the main features observed both during

spontaneous and delay activity in IT cortex: broad distribution of firing rates in both sponta-

neous and delay period activity, and small fraction of neurons firing at elevated rates during

persistent activity (Miyashita 1988, Nakamura & Kubota 1995a).

3.6 Storage capacity, and its dependence on g

We now turn to the question of the storage capacity of the network, i.e. how many di↵erent

patterns can be stored in the connectivity matrix. The calculation of the storage capacity

of associative memory models such as the Hopfield model was one of the first successful

applications of statistical physics to theoretical neuroscience (Amit et al. 1987). One of the

main findings of such models is that the number of patterns that can be stored scales linearly

with the number of plastic connections per neuron, i.e. the maximal value of ↵ is of order
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1. This maximal storage capacity ↵c has been computed in many variants of the Hopfield

model (see e.g. Amit (1992)). To compute the storage capacity of our network, we found

numerically the largest value of ↵ for which retrieval states (i.e. states with positive overlap

with one of the stored patterns, m > 0) exist. Fig. 3.5A shows how the overlap in retrieval

states m varies as a function of the storage load ↵, computed using both MFT (solid line)

and simulations (symbols with errorbars) when parameters of the functions � and f are

taken to be the median best-fit parameters, and those of the function g (except qg, that

is set by the balance condition, Eq. 3.56) are taken to be identical to f . It shows that m

gradually decreases with ↵, due to more ‘noise’ in the retrieval due to other stored patterns,

until it drops abruptly to zero at a value of ↵c = 0.56. This value is remarkably close to the

maximal capacity of the sparsely connected Hopfield model of binary neurons storing binary

patterns, for which ↵c = 0.64 (Derrida et al. 1987).
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Figure 3.5: Storage capacity of the network, and its dependence on g. (A) Overlap as
a function of memory load ↵ (number of patterns stored divided by average number of
connections per neuron). Grey: MFT. Red circles: Numerical simulations (average and
standard deviations computed from 100 realizations with N = 5 · 104). The overlap stays
positive until ↵ ⇠ 0.56. Parameters of g are chosen to be identical to those of f . (B)
Capacity vs �g. The capacity is maximized for �g ⇠ �f (dashed red line �g = �f ). (C)
Capacity vs xg. The capacity is close to being maximized for xf ⇠ xg (dashed red line
xg = xf ). Other parameters as in Fig. 3.4.

We then explored how the capacity depends on the parameters of the function g, that

describes the dependence of the learning rule on the presynaptic firing rate. Fig. 3.5B and
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C show that the capacity is close to being maximized when these parameters match those of

the function f , i.e. xg = xf and �g = �f . Fig. 3.5B shows that the capacity is non-zero only

when the g is su�ciently non-linear, i.e. �g > 0.1. It peaks around �g = �f , but remains

high in the �g ! 1 limit when the function g becomes a step function. Fig. 3.5C shows

that the capacity is non-zero only in a finite range of xf , between 10 and 30/s. It shows

again that capacity peaks when xg is close to xf .

3.7 Learning rules inferred from ITC data are close to

maximizing memory storage

The storage capacity of the network with median parameters is in the same range or higher

than the capacity of classic associative memory models of binary neurons - for instance, the

Hopfield model has a capacity of ↵c ⇠ 0.14 (Amit et al. 1987), while its sparsely connected

variant has a capacity of ↵c ⇠ 0.64 (Derrida et al. 1987). The next question we addressed is

how this capacity depends on the parameters of this learning rule. We have already discussed

above the dependence of the capacity on xg and �g. Here, we explore the dependence on

the four remaining parameters characterizing the learning rule - A, xf , �f and qf . Using

MFT, we explored systematically the space of these four parameters, and plot in Fig. 3.6

all possible cuts of this four dimensional space, in which 2 of the 4 parameters are varied,

while the other 2 are set to the median values. In all these plots, the maximal capacity ↵c

is plotted as a function of two parameters, using a gray scale (white indicate high capacity,

black low capacity). The yellow dashed line indicates the line for which the function f is

‘balanced’ (i.e. its average across the distribution of patterns is zero). It marks the border

between a depression-dominated region, for which learning leads to a decrease in average

responses, and a potentiation-dominated region, for which learning leads to an increase of

such responses. The red cross mark indicates the median parameters, while the dashed red

rectangle indicates the interquartile range.
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Figure 3.6: Inferred learning rules from ITC are close to maximizing memory storage. Con-
tour plots for the capacity of the network as a function of two parameters. In each plot, two
parameters are set to the median best-fit parameters, and the other two are varied. The
yellow dashed line indicates the curve where potentiation and depression are balanced in av-

erage (i.e.
R

d⇠ e
�⇠

2
/2p

2⇡
f(�(⇠))) = 0). It separates the potentiation (i.e.

R

d⇠ e
�⇠

2
/2p

2⇡
f(�(⇠))) > 0

) and depression (i.e.
R

d⇠ e
�⇠

2
/2p

2⇡
f(�(⇠))) < 0) regions. The parameter region corresponding

to the interquartile range is indicated with a red dashed rectangle. The median best-fit
parameters are shown as a red cross mark. The parameters of g: xg = xf and �g = �f .
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Fig. 3.6 shows that the median parameters are close to maximizing storage capacity. In

fact, we found that the maximal capacity over this space is ↵c ⇡0.85 (see Fig. 3.7 and 3.8

for details). These figures show also that most (but not all) of the interquartile range lie in

a high-capacity region. It also shows that some parameter variations lead to little changes

in capacity, while others lead to a drastic drop. Decreasing the learning strength A from its

optimal value leads to an abrupt drop in capacity, while increasing it leads to a much gentler

decrease (see Fig. 3.6D-F). A similar e↵ect is observed for the slope of f ; decreasing the slope

(i.e. making f more linear) leads to an abrupt decrease in capacity, while increasing it beyond

the median value leads to very little change in capacity (see Fig. 3.6B-D). Thresholds xf for

which high capacities are obtained are much higher than the mean response to novel visual

stimuli (Fig. 3.6A,B and D), leading to a sparsening of the representations of the patterns

by the network. Finally, the optimal o↵set is close to the ‘balanced’ line, but slightly on the

depression-dominated region, as the median parameter (Fig. 3.6A,C and F).

3.8 A chaotic phase with associative memory properties

Are fixed point attractors the only possible dynamical regime in this network? Firing rate

models with asymmetric connectivity have been shown to exhibit strongly chaotic states

(Sompolinsky et al. 1988, Tirozzi & Tsodyks 1991). Varying parameters of the learning

rule, we found parameter regions in which background and/or retrieval fixed point attractor

states destabilize and the network settle into strongly chaotic states. Fig. 3.9A shows an

example of such chaotic states, obtained for the median parameters as in Fig. 3.4, except

for the learning rate which is three times its median best-fit value (A = 10.65). For such

parameters, the background state is strongly chaotic. Presentation of a familiar stimulus

leads to a transition to another chaotic state, in which all neurons fluctuate chaotically

around stimulus-specific firing rates, such that the mean overlap with the corresponding

pattern remains high (see Fig. 3.9 B). Remarkably, chaotic retrieval states remain strongly
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Figure 3.7: MFT limits and capacity. (A) Overlap vs load ↵ in the limit qg ! qf and
Ā ! 1 (see (3.39) and (3.40) on Methods) for p = 0, 0.2, 0.4, 0.6, 0.8, 1 (p = 1 � qg). In
this limit, the mean field equations (see Eq. (20) and (21) in Tsodyks (1988)) with ✓

0

= 0

are recovered. ↵c ⇡ ✓20
2p log(1/p)

is not attainable since ✓
0

= 0. The capacity is ↵c = 1/⇡ for

all p. (B) Capacity vs p for Ā = 5, 6.1, 6.95, 8, 10, 20, 100, 1000 (see Eq. (3.39) and (3.40)
on Methods). For a fixed Ā ⇠ O(1), capacity is maximized in the sparse coding limit (i.e.
p ! 0). Ā ⇡ 6.95 and p ! 0 leads to the maximal capacity in the Ā-p plane, with ↵c ⇡ 0.85
(see green curve). For Ā ! 1, which implies r

m

p(1�p)
⌧ A, the capacity is ↵c = 1/⇡ for all p

(see gray curve and dashed red line) as shown in panel A. (C) Capacity vs Ā for p = 10�3 and
�q = qg � qf = 0, 0.02, 0.05 (see Eq. (33) and (34) on section 3 of Methods S1). For �p = 0

the mean field equations are the same as in panel B with p = 10�3, showing the maximal
capacity ↵c ⇡ 0.85 at Ā ⇡ 6.95. Increasing �q, which implies qf < qg, produces a rapid
decrease in the capacity (see orange and green curves). For Ā ! 1 the capacity decreases
rapidly as ↵c = ⌘2/⇡ (see dashed red lines) as shown on Methods (see Eq. (3.44)). (D)
Capacity vs p for Ā = 6.95 and �q = 0, 0.02, 0.05 (see Eq. (3.37) and (3.38) on Methods).
As in panel C, the capacity decreases rapidly as �q increases. For 0 < �q the maximal
capacity occurs at non-zero p (the capacity curve becomes concave). This is similar to what
is observed for sigmoidal f and g (see Fig. 3.6), where the maximal capacity is obtained for
a finite threshold and therefore a non-zero value of p.
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Figure 3.8: Maximal capacity in the (xf , �f , qf , A) parameter space. Numerical search of the
maximal capacity using the Nelder-Mead algorithm for sigmoidal f and g (see Eq. (3.13)
and (3.13)) with xg = xf and �g = �f . For four representative values of the slope �f
(�f = {0.05, �̃f , 0.5, 5} where �̃f is the median of the best-fit slopes), the maximal capacity
was searched in the (xf , qf ) parameter space for fixed values of A in a grid. Starting with the
largest value of A in the grid, we used the previous maximal capacity point (xmax

f , qmax
f ) as

the initial condition for searching the maximal capacity of the next value of A. In this way, we
smoothly followed the maximal capacity in the (xf , qf , A) parameter space. The maximal
capacity increases monotonically with �f . (A) Maximal capacity (↵c) vs A for di↵erent
values of �f . The maximal capacity approaches asymptotically the value found in Fig. 3.7.B
(i.e. ↵c ⇡ 0.85, see dashed red line). The capacity for the median best-fit parameters
(see red square) is smaller but comparable with the maximal capacity in the (xf , �f , qf , A)
parameter space. (B) Optimal threshold (xf ) vs A. Red square: Median best-fit threshold.
(C) Optimal saturation (qf ) vs A. Red square: Median best-fit saturation.
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correlated with the corresponding patterns (see Fig. 3.9B), so that the network can still

perform as an associative memory in spite of the chaotic fluctuations of network activity.

Interestingly, the storage capacity for such parameters is larger than the capacity estimated

from the static MFT (see Fig. 3.9C).

In such chaotic retrieval states, single neuron activity exhibit strong firing rate fluctu-

ations which vary from trial to trial (see thin colored lines in Fig. 3.9D-F showing three

randomly selected neurons), but trial-averaged firing rates show systematic temporal pat-

terns. For instance, the activity of the neuron shown in Fig. 3.9D ramps up in the first

second of the delay period, before this activity plateaus at a rate of about 20/s. The neuron

shown in Fig. 3.9F shows a rapid activity increase during the presentation period, followed

by a trough, followed by a second increase during the delay period. These temporal patterns

of the trial-averaged firing rate, together with a strong irregularity within trials, are remi-

niscent of observations by multiple groups in primate PFC during delay periods (Shafi et al.

2007, Brody et al. 2003, Murray et al. 2017).

To check whether these states are truly chaotic, we computed the temporal evolution of

the distance between two network states with slightly di↵erent initial conditions (see Meth-

ods). Fig. 3.9G shows that an initial distance between two initial conditions of 4.5 · 10�6Hz

exponentially grows and then plateaus to an average of ⇠ 13Hz. This sensitivity to initial

conditions, and initial exponential growth of the distance between perturbed and unper-

turbed network states is the defining feature of a chaotic system (Guckenheimer & Holmes

2013). The divergence of the network states starts to be noticeable in the single neuron dy-

namics in about ⇠1s (see Fig. 3.9H). However, the overlap with the stored pattern remains

high in both networks states (see Fig. 3.9I). Therefore, despite the growth of the distance

between the two network states, their dynamics keep aligned to the 1-dimensional subspace

(of the full N-dimensional network space) spanned by the retrieved memory, providing a low

dimensional representation of each memory.
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Figure 3.9: Chaotic background and retrieval states, for a network with parameters as in
Fig. 3.4, except for the learning rate (A = 10.65) and memory load (↵ = 0.48 in all panels
except in C). (A) Firing rate dynamics for a randomly sampled subset of 10 neurons of a
simulated network when a familiar stimulus (i.e. one of the stored patterns) is presented.
(B) Dynamics of the overlaps before, during and after the presentation of a familiar stimu-
lus. Green traces shown all the overlaps computed numerically from the network simulation
corresponding to each of the stored patterns except the one with the presented pattern,
shown in blue. (C) Overlap vs memory load. Gray curve: MFT. Red circles: simulations in
which the dynamics converge to fixed point attractors. Blue square: simulations in which
the dynamics converge to chaotic states. (D-F) Dynamics of the firing rate of three example
neurons in 10 di↵erent trials (random initial conditions - transparent traces). Trial-averaged
firing rate (over 20 trials) is shown with an opaque trace. (G) Light gray traces: exponential
initial growth followed by saturation of the distance between pairs of retrieval states corre-
sponding to the same stored pattern but slightly di↵erent initial conditions (see Methods).
Red curve: average distance between pairs of retrieval states with slightly di↵erent initial
conditions. (H) Firing rate of a single neuron starting from two slightly di↵erent initial
conditions (continuous vs dashed). (I) Overlaps with the retrieved pattern (blue) and all
other stored patterns (green) again for a pair of initial conditions (continuous vs dashed).
As in Fig. 3.4, in A, B and D-F vertical dashed lines indicate the beginning and the end of
the presentation period.
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Figure 3.10: Statistical properties of the chaotic background and retrieval states, for a
network with parameters as in Fig 3.9. (A) Red: background state. Black: retrieval state.
Thick traces: mean autocorrelation (AC) functions across 100 randomly sampled neurons
with mean firing rate between 1Hz and half of the maximal firing rate (low mean firing rates;
dashed) and between half of the maximal firing rate and 65Hz (high mean firing rates; solid).
Light traces: AC function for neurons with the fastest and slowest decays, showing a broad
range of individual AC timescales. (B) Mean cross-correlation (CC) functions across 200
randomly chosen pairs of neurons with high (i.e. high-high), low (i.e. low-low) and with
one neuron high and the other low (i.e. high-low) mean firing rates. Same color code than
panel A. (C) Distribution of mean firing rates during the presentation (red) and delay (blue)
periods for novel (dashed) and familiar (solid) stimuli.
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Across neurons, for both the background and retrieval state, the chaotic fluctuations in

the rates have a distinctive times scale of about 100ms (see Fig. 3.10A). However, there

is a broad diversity of time scales for individual neurons, ranging from about ⇠ 50ms to

⇠ 500ms (see Fig. 3.10A, light traces). Neurons are weakly correlated, for both background

and retrieval states (see Fig. 3.10B). Lastly, the distributions of the mean firing rates are

qualitatively similar to the ones described for the fixed-point attractor scenario (compare

Fig. 3.4C and F with Fig. 3.10C), but with a higher proportion of neurons at very low

rates.

3.9 Methods

3.9.1 Static mean field theory

The Model

We consider a network of N neurons with firing rates represented by a vector of analog vari-

ables ~r. Standard normal patterns of current {~⇠k}pk=1

with ⇠ki
iid⇠ N (0, 1) are imprinted in

the connectivity matrix as the corresponding firing rates elicited by these current patterns,

neglecting contributions of the recurrent connections. Hence, the firing rate patterns corre-

sponding to these current patterns are given by �(⇠ki ), where � is the static transfer function

of single neurons. In other words, the stored firing rate patterns are standard normal pat-

terns of current {~⇠k}pi=1

passed through the static transfer function �. Note that in the limit

where h
0

is large (see Fig 3.3 B and Eq. (3.48)), these firing rate patterns become dis-

tributed according to a log-normal distribution, since the transfer function is exponential in

that limit. The rate dependent learning rule is given by two firing rate dependent functions:

1) g which characterizes the dependence on the firing rate of the pre synaptic neuron; 2)f

which characterizes the dependence on the firing rate of the post synaptic neuron. With this

learning rule, assuming a linear summation of terms corresponding to the di↵erent patterns,
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as in the Hopfield model (Hopfield 1982) and many of its generalizations, the connectivity

matrix is given by

Jij =
Acij
cN

p
X

k=1

f [�(⇠ki )]g[�(⇠ki )], (3.3)

where cij is a sparse directed Erdős-Rényi structural connectivity with each synapse present

with probability c, and the pair of functions f and g define together the learning rule.

This is a generalization of classical Hebbian learning rules such as the covariance (Sejnowski

1977) and BCM (Bienenstock et al. 1982) since the synaptic strength of the connections

between pre and post synaptic neurons is proportional to the product of two functions of

their activities. This feature allows a nonlinear dependence of the synaptic strength with

the pre and post synaptic activity, but maintains the separability of the learning rule. The

operation of f and g under a vector ~r, i.e. f(~r) or g(~r), is element-wise. We assume that

Z 1

�1
Dzg(�(z)) = 0 (3.4)

which ensures that the average change in connection strength due to learning of a single

pattern is zero. This could be enforced by a homeostatic mechanism that controls the mean

changes in the incoming inputs due to learning (Toyoizumi et al. 2014, Vogels et al. 2011).

In our model we assume that both functions f and g are bounded above and below by qf/qg

and qf � 1/qg � 1, respectively, where 0 < qf < 1, 0 < qg < 1. The constant A in Eq. (3.3)

controls the strength of the changes in the connectivity due to the learning rule.

The firing rate ri(t) of each neuron evolve according to standard rate equations (Grossberg

1969, Hopfield 1984), i.e.

⌧ ṙi = �ri + �

0

@Ii +
N
X

i 6=j

Jijrj

1

A . (3.5)
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Thus, the steady or attractor state for the dynamics is given by

ri = �

0

@

N
X

i 6=j

Jijrj

1

A i = 1, . . . , N. (3.6)

Order parameters - delay period

Throughout this chapter, we will perform a mean field analysis of the steady states of the

network in the limits N , cN and p going to infinity, 1 ⌧ Nc ⌧ N and p = ↵/cN where ↵

remains of order 1. We consider exclusively steady states that are correlated with a single

pattern ~⇠1 but uncorrelated with all other patterns ~⇠µ for µ > 1. States with a non-zero

correlation with one of the patterns are termed ‘retrieval states’, while the state with no

correlation with any of the patterns is termed ‘background state’. The steady state ~r given

by Eq. (3.6) depends on the pattern being retrieved ~⇠1 (the ‘signal’) but also on two sources

of frozen noise: 1) the disorder due to the random patterns stored in the connectivity; 2)

the disorder given by the structural connectivity C (where C is a binary matrix with entries

cij 2 {0, 1}). The goal of the mean-field analysis is to compute whether and how the network

state ~r is correlated with ~⇠1, together with other quantities of interest such as the distribution

of firing rates.

The first step in the mean field analysis consists in computing the statistics of the synaptic

inputs,

hi = Ii +
N
X

i 6=j

Jijrj , (3.7)

where the connectivity matrix Jij is given by Eq. (3.3). We first start by the situation in

which there are no external inputs, Ii = 0. In a delay match to sample experiment, this

describes the intervals before presentation of the stimulus, and after this presentation (delay

period)

To compute the statistics of synaptic inputs, it is useful to separate the contribution due
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to the first pattern ⇠1i that the network is trying to retrieve, with the contributions of all

other patterns, which will act as noise on the retrieval of the first pattern,

hi = Af(⇠1i )
1

cN

X

j

cijg(�(⇠1j ))rj + Yi (3.8)

where Yi describes the ‘noise’ term,

Yi =
A

cN

X

µ>1

X

j

cijf(⇠µi )g(�(⇠µj ))rj

In the large cN limit, due to the law of large numbers, the first term in Eq. (3.8) converges

in probability to Af(⇠1i )q, where q is given by

q =
1

N

X

i

g(�(⇠1i ))ri. (3.9)

q is our first order parameter (recall that cij and ⇠j are independent). It describes how

correlated the network state is with a non-linear transformation of the stored pattern ⇠1i ,

g(�(⇠1i )). This is a natural generalization of the overlap defined in classical models (Amit

et al. 1985) for networks with generalized Hebbian learning rules.

It is instructive to consider first the case in which ⇠1 is the only stored pattern in the

connectivity matrix. In this case, the synaptic input to neuron i is uniquely determined

by the learning rate A, the post-synaptic function f taken at the firing rate induced by

the pattern �(⇠1i ), and q. To compute q, we can use Eq. (3.9), replace ri by �(hi) where

hi = Af(⇠1i )q, and replace 1/N
P

i by an integral over the distribution of ⇠i,

q =

Z

D⇠g(�(⇠))�(Af(�(⇠))q), (3.10)

where D⇠ denotes the Gaussian measure d⇠e�⇠2/2/
p

2⇡. Eq. (3.10) can be solved to obtain
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the possible values of q given f , g and A. Note that q = 0 (corresponding to the background

state) is always a solution to this equation, due to Eq. (3.4).

In the case in which many patterns are stored in the connectivity matrix, we need to

compute the statistics of the noise term Yi. In the large p, N limits, this term becomes

distributed according to a Gaussian distribution with zero mean (since the average of g(�(⇠))

over the distribution of ⇠s is zero) and a variance given by

Var(Yi) = ↵�M

where

� ⌘ A2

Z 1

�1
D⇠f2(�(⇠)))

Z 1

�1
D⇠g2(�(⇠))), (3.11)

and M is our second order parameter, which is equal to the average squared firing rate over

the network,

M =
1

N

X

i

r2

i . (3.12)

In this calculation the independence between ⇠j from rj is assumed. The final step is to

compute the order parameters self-consistently. For this, we use the fact that Yi is a Gaussian

random variable with zero mean and variance ↵�M , replace ri by �(qAf(�(⇠1i )) + Yi) in

Eqs. (3.9,3.12) and replace the sums over i by a double integral over the distributions of ⇠i

and Yi, leading to

q =

Z 1

�1

Z 1

�1
DzDyg(�(z))�(qAf(�(z)) +

p

↵�My) (3.13)

M =

Z 1

�1

Z 1

�1
DzDy�2(qAf(�(z)) +

p

↵�My). (3.14)

The overlap m, which corresponds to the correlation between g(�(⇠)) and the firing rates
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r, is given by

m =
q

(M � R2)
q

R1
�1 Dzg(�(z))2

, (3.15)

where R is the mean firing rate in the attractor state given by

R =

Z 1

�1

Z 1

�1
DzDy�(qAf(�(z)) +

p

↵�My). (3.16)

Distributions of firing rates - delay period

To compute the distribution of firing rates, we use the fact that the distribution of synaptic

inputs conditioned on the pattern being retrieved is Gaussian,

p
⇣

h|⇠1 = z
⌘

= N (Af(�(z))q,↵�M) , (3.17)

where the order parameters q and M are determined by the self-consistent equations (3.13)

and (3.14).

Using the fact that the transfer function is non-decreasing, we obtain the distribution of

steady state firing rates conditional to the pattern ~⇠1 presented during the delay period

pr(r|⇠1 = z) =
1p

2⇡↵�M
exp

 

�
�

��1(r) � Af(z)q
�

2

2↵�M

!

d��1(r)

dr
. (3.18)

From this conditional probability distribution, we obtain the marginal distribution of

firing rates at the steady state, r,

pr(r) =

Z 1

�1
Dz

1p
2⇡↵�M

exp

 

�
�

��1(r) � Af(z)q
�

2

2↵�M

!

d��1(r)

dr
. (3.19)
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Order parameters and distributions of firing rates - presentation period

A similar analysis can be done in the situation when an external stimulus is presented to

the network. We consider here two scenarios, one in which the presented stimulus is one of

the stored patterns, Ii = ⇠1i (a ‘familiar’ stimulus), and the other in which the stimulus is

uncorrelated with the stored patterns (a ‘novel’ stimulus).

In the ‘novel’ case, the synaptic inputs are

hi = Ii + Yi (3.20)

where the external stimulus {Ii} is independently sampled from a normal distribution with

mean zero and variance I
0

(i.e. Ii
iid⇠ N (0, I2

0

)), where I
0

is the amplitude of the stimulation.

For consistency reasons we use I
0

= 1 in all the results shown in this chapter, but show here

calculations for arbitrary I
0

. The stimulus ~I is independent of all the previous patterns

learned {~⇠k}pk=1

. Therefore, the synaptic inputs are the sum of two uncorrelated Gaussian

random variables, one with variance I2

0

, the other with variance ↵�M . Hence, they are

distributed according to a Gaussian of variance
q

I2

0

+ ↵�M .

Since the stimulus is uncorrelated with all stored patterns, the overlap q is equal to zero,

while the other order parameter M is given by

M =

Z 1

�1
Dz�2(

q

I2

0

+ ↵�Mz). (3.21)

The distribution of firing rates during the presentation period for a novel stimulus is

a distribution of a Gaussian of mean zero and variance
q

I2

0

+ ↵�M passed through the

non-linear function � and is therefore given by

pnov

pres

(r) =
1

q

2⇡(I2

0

+ ↵�M)

d��1(r)

dr
exp

 

� (��1(r))2

2(I2

0

+ ↵�M)

!

. (3.22)
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In the ‘familiar’ case, the synaptic inputs during presentation of the pattern become

hi = I
0

⇠1i + qAf(�(⇠1i )) + Yi (3.23)

where the first term in the r.h.s. of Eq. (3.23) is due to the external input, and the two other

terms are identical to the situation analyzed in the previous section. Again, we use in all

results shown in this chapter I
0

= 1 but show the calculations for arbitrary I
0

.

The distribution of the synaptic inputs, conditioned on the pattern ⇠1i , has now a mean

I
0

⇠1i + qAf(�(⇠1i )), and a variance ↵�M . This leads to the following equations for the order

parameters q and M ,

q =

Z 1

�1

Z 1

�1
DzDyg(�(z))�(I

0

z + Af(�(z))q +
p

↵�My) (3.24)

M =

Z 1

�1

Z 1

�1
DzDy�2(I

0

z + Af(�(z))q +
p

↵�My), (3.25)

while the distribution of firing rates is

pfam

pres

(r) =
1p

2⇡↵�M

d��1(r)

dr

Z 1

�1
Dz exp

✓

�(��1(r) � I
0

z � Af(�(z))q)2

2↵�M

◆

. (3.26)

MFT when f and g are step functions

Here we take f and g to be step functions (i.e. �f , �g ! 1) with the same threshold, i.e.:

f(⌘) =

8

>

>

<

>

>

:

qf ⌘ � xf

�(1 � qf ) ⌘ < xf

(3.27)

and

g(⌘) =

8

>

>

<

>

>

:

qg ⌘ � xf

�(1 � qg) ⌘ < xf .

(3.28)
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The condition
R1
�1 D⇠g(�(⇠))) = 0 implies that

qg =

Z x
f

�1
dr

d��1
(r)

drp
2⇡

e� (��1(r))2

2 .

The mean field equations simplify to

q = qg(1 � qg)

⇢
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M = (1 � qg)
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�̃


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✓

1 � qfp
�̃

◆

q +
p
↵My

�◆

(3.30)

where

�̃ =

Z 1

�1
D⇠
⇣

g(�(⇠))2
⌘

Z 1

�1
D⇠
⇣

f(�(⇠))2
⌘

= qg(1 � qg)
h

q2

f (1 � qg) + (1 � qf )2qg
i

.

Defining

m
0

⌘ q

rmqg(1 � qg)
(3.31)

M
0

⌘ M

r2

m
(3.32)

Ā ⌘ Arm
p

�̃ (3.33)

 (x) ⌘ �(x)

rm
(3.34)

p ⌘ 1 � qg (3.35)

⌘ ⌘
s

qg(1 � qg)

q2

f (1 � qg) + (1 � qf )2qg
, (3.36)
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we obtain

m
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0
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(3.37)

M
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Ā
h

qf⌘m0

+
p

↵M
0

y
i⌘

+(1 � p)

Z 1
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⇣

Ā
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. (3.38)

When qf = qg, the mean field equations read

m
0
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�1
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⇣

Ā
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(3.39)

M
0

= p
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Ā
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p
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0
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Dy 2

⇣

Ā
h

�pm
0

+
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↵M
0
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. (3.40)

Solutions to this equation are numerically explored in Fig. 3.7C and D.

In the limit Ā ! 1, the function  (Āx) become a step (Heaviside) function,  (Āx) ! 1

if x > 0, 0 otherwise. Consequently, the mean field equations become

m
0

= �

✓�(1 � p)m
0p

↵M
0

◆

� �

✓

pm
0p

↵M
0

◆

(3.41)

M
0

= p�

✓�(1 � p)m
0p

↵M
0

◆

+ (1 � p)�

✓

pm
0p

↵M
0

◆

, (3.42)

where �(x) =
R1
x dxe�x2/2/

p
2⇡. These equations are identical to equations (20) and (21)

derived by Tsodyks (1988) in a sparsely connected network of binary 0,1 neurons (with a

threshold ✓
0

) storing binary random patterns with coding level p, with ✓
0

= 0. Note that

the full equations derived by Tsodyks can be recovered when the threshold of the transfer

function scales as h
0

= Ā✓
0

.
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Using these equations, Tsodyks found that the capacity diverges in the sparse coding

limit as ↵c ⇡ ✓20
2p log(1/p)

(Tsodyks 1988). In our network, the capacity cannot diverge in the

p ! 0 limit due to the fact that ✓
0

= 0, since h
0

is a fixed parameter and therefore does

not scale with Ā. However, optimizing the threshold of the transfer function together with

the parameters of the learning rule would allow one to reach the same scaling as the one

obtained by Tsodyks (1988). This would require setting h
0

= Ā✓
0

.

To obtain the capacity of our network, i.e. the largest value of ↵ for which we can find

a solution of Eqs. (3.41,3.42) with m
0

> 0, we analyze the Jacobian of the right side of

equations (3.41) and (3.42) in the limit m
0

! 0+ (i.e. when the overlap approaches to zero)

which gives

J =

0

B

@

1p
⇡↵

0

0 0

1

C

A

.

By you doing a linear expansion around m
0

= 0+, we study the stability of retrieval

states close to capacity. For equations (3.41) and (3.42) to have a stable solution in the limit

m
0

! 0, the eigenvalues of the Jacobian have to be less than one. This leads to the maximal

capacity

↵c =
1

⇡
⇡ 0.318, (3.43)

for all p.

Since the trace of the Jacobian is zero at the critical point, then the phase transition is

of the second order (see Fig. 3.7 A and B). The parameter p has no e↵ect on the capacity for

this limit and the capacity is much lower than what has been found for the best-fit median

parameters. For qf 6= qg, it is straightforward to show that the capacity is

↵c =
⌘2

⇡
(3.44)

for all p.
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This is always lower or equal than what is found in Eq. (3.43) since maxq
f

2[0,1]

(⌘) = 1

with argmaxq
f

2[0,1]

(⌘) = qg = 1 � p.

3.9.2 Simulations

For most simulations shown in this chapter, the probability of connections was set to 0.5%

(i.e. c = 0.005) and the number of neurons to N = 50000, which implies an average number

of connections per neuron of Nc = 250. The choice of a low connection probability was

motivated by the fact that the MFT is exact in the sparse connectivity limit (see static mean

field theory and Derrida et al. (1987), Kree & Zippelius (1987)). We have also simulated

networks with with various values of N and c (see Fig. 3.11). These simulations show

that our theory gives good quantitative predictions for denser connectivities. The single

neuron time constant was chosen as ⌧ = 20ms, similar to time constants of single neurons

(McCormick et al. 1985) and synapses (Destexhe et al. 1998), and with the decay time

constant of cortical activity as measured in vivo (Reinhold et al. 2015). Open source built-in

linear algebra methods in scipy and numpy Python packages suited for sparse matrices were

used to generate the connectivity matrix. For simulating the networks dynamics, the Euler

method was used with a time step size of 0.5ms. For a few parameter sets, we checked that

results are unchanged when a smaller value of dt = 0.1ms is used. In the simulations, the

background state was sometimes unstable, and the dynamics in this case converged to one

of the ‘memory states’. This tended to happen in particular for small values of ↵.

In Fig. 3.9 G-I, the Runge-Kutta fourth-order method with dt = 0.1ms was used. In

Fig. 3.10 the auto- and cross-correlation functions are computed over 100 realizations of a

8s network simulation. For retrieval states, in each realization the input current is given

by the current corresponding to the stored pattern plus a random vector whose entries are

i.i.d. random Gaussian variables with zero mean and S.D. 0.2. For the background state, the

initial condition of the dynamics are the firing rates obtained from passing an i.i.d. standard
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Figure 3.11: Finite size e↵ects. Our MFT is valid in the large population size (N ! 1) and
large mean in-degree (Nc ! 1) limit, such that the number of neurons is much larger than
the average number of synapses per neuron (1 ⌧ Nc ⌧ N). Here we explore the e↵ects of
varying the population size (N) and mean in-degree (Nc) on the overlap in retrieval states.
(A) Overlap as a function of memory load ↵ for various values of N , at fixed cN = 250.
Grey curve: MFT. Symbols: average overlap (computed from 50 realizations) in simulations
with population sizes N = 5000, 25000, 50000, 100000. (B) Overlap as a function of memory
load ↵ for various mean in-degrees, for N = 25000. Grey curve: MFT. Symbols: average
overlap in simulations with average mean in-degrees Nc = 25, 100, 250, 500. Parameters for
�, f and g are chosen as in Fig. 3.5A on the main text.

104



normal vector through the transfer function �. The first second of simulation is not taken

into account to compute auto and cross-correlation functions. Only neurons with mean firing

rates between 1Hz and 65Hz are selected in order to avoid numerical artifacts arising from

neurons whose mean firing rates stay close to zero or to the maximum firing rate during

most of the simulation.

To measure the sensitivity of the network dynamics to small perturbations, we choose

two slightly di↵erent initial conditions and follow the dynamics of the network following

both initial conditions, to investigate whether these two initial conditions converge to the

same state (indicating non-chaotic dynamics), or vice versa diverge exponentially (indicating

chaotic dynamics). These two slightly di↵erent initial conditions are generated as follows

~r
(1)

k (0) = �(~⇠k) (3.45)

~r(2)(0) = �(~⇠k) + ~⌘
�

k~⌘k
2

. (3.46)

where the index k corresponds to one of the p stored patterns (i.e. k 2 {1, 2, . . . , p}),

� = 10�3 is the distance between the initial conditions and ~⌘ is an independent and identically

distributed Gaussian vector. Thus, ~r
(1)

k (0) is the firing rate produced by the kth stored

pattern, while ~r(2)(0) is a slightly perturbed version of this pattern. We define the distance

between the two network states during the time evaluation of the dynamics by

dk(t) =

�

�

�

~r
(1)

k (t) � ~r
(2)

k (t)
�

�

�

2p
N

. (3.47)

This distance gives the typical di↵erence between the firing rates of a single neuron between

two network states produced by slightly di↵erent initial conditions at time t, for the retrieval

state corresponding to pattern k, and has units of Hz.

105



3.9.3 Data analysis

We reanalyze the data recorded by Luke Woloszyn and David Sheinberg (Woloszyn & Shein-

berg 2012) using the method described in Lim et al. (2015). This data consists in trial-

averaged firing rates of individual neurons in ITC (in a time window between 75 ms and 200

ms after stimulus onset) in response to 125 novel and 125 familiar stimuli measured, during

a passive fixation task. We focused on the 30 putative excitatory neurons whose distribu-

tions of visual responses for novel and familiar stimuli were significantly di↵erent, using the

Mann-Whitney U test at 5 significance level. In these neurons, the postsynaptic dependence

of the learning rule, was inferred using the method described in Lim et al. (2015). In this

subset of neurons, we focused on 14 excitatory neurons, the ones that show negative input

changes for low firing rates and positive input changes for high firing rates. For these 14

neurons, the transfer function �, and the postsynaptic dependence of the learning rule, f ,

are inferred using the method described in Lim et al. (2015).

The first step is to infer the transfer function �. We assume that inputs to neurons

during presentation of novel stimuli have a Gaussian distribution. The transfer function is

then obtained as the function � that maps a standard Gaussian to the empirical distribution

of firing rates for novel stimuli (Lim et al. 2015). In practice, the function is obtained by

building a quantile-quantile plot between the distribution of firing rates for novel stimuli

and the assumed standard normal distribution of inputs (see Fig. 3.3 A and B; Fig. A.1 and

A.2). The obtained transfer function (blue circles in Fig. 3.3) was fitted with the sigmoidal

function

�i(⇠) =
r
(i)
m

1 + e��
(i)
T

(⇠�h
(i)
0 )

(3.48)

where r
(i)
m is the maximal firing rate, �

(i)
T measures the slope at the inflection point, and h

(i)
0

is the location of this inflection point. h
0

is also the current leading to half maximal firing

rate. These parameters were obtained by minimizing the squared error. We thus obtained
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for each of the 14 neurons the best estimators r
(i)
m , �

(i)
T and h

(i)
0

with i = 1, 2, . . . , 14 whose

statistics are summarized in Fig. 3.3D.

The next step is to infer the postsynaptic dependence of the learning rule, f . For this, we

use the di↵erence between the distributions of visual responses to novel and familiar stimuli

(Lim et al. 2015). In the model, learning of a novel stimulus defined by inputs ⇠ki that leads

to firing rates rki = �(⇠ki ) leads to changes in recurrent inputs, due to changes in synaptic

inputs

�Jij =
Acij
cN

f(rki )g(rkj ) (3.49)

This leads to a change in total inputs to neurons that is proportional to

�hi = Af(rki )
1

cN

X

j

cijg(rkj )rkj (3.50)

In the large N limit, Eq. (3.50) becomes

�hi = Af(rki )

Z 1

�1
Dzg(�(z))�(z). (3.51)

where Dz is the standard Gaussian measure, Dz = dze�z2/2/
p

2⇡. Eq. (3.51) give us

the relationship between changes of total inputs to a neuron with learning of a particular

stimulus, and the firing rate of the neuron upon presentation of that stimulus for the first

time. This relationship can be inferred from the data by computing the di↵erence between

the quantile function of visual responses to familiar stimuli and the quantile function of visual

responses to novel stimuli, and by plotting this di↵erence as a function of visual response to

novel stimuli (Lim et al. 2015). We then fitted the input change with a sigmoidal function

given by

�hfiti (r) =
C(i)

2

h

2q
(i)
f � 1 + tanh(�

(i)
f (r � x

(i)
f ))

i

. (3.52)

where C(i) gives the amplitude of the total changes, qif measures the vertical o↵set of the
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curve (for qf = 1, �h is non-negative at all rates, while for qf = 0 it is non-positive at all

rates), �
(i)
f measures the slope at the inflection point, and x

(i)
f is the rate at the inflection

point. In the following, we refer to x
(i)
f as the threshold since it is typically very close to the

rate at which �h changes sign. For each of the 14 neurons, the parameters C(i), q
(i)
f , �

(i)
f

and x
(i)
f with i = 1, 2, . . . , 14 were estimated by minimizing the squared error. The inferred

function f for each neuron is given by

fi(r) =
�hfiti (r)

C(i)
=

1

2

h

2q
(i)
f � 1 + tanh(�

(i)
f (r � x

(i)
f ))

i

. (3.53)

The parameter A is then obtained as

A(i) =
C(i)

R1
�1 Dzg(�̃(z))�̃(z)

, (3.54)

where �̃ is the sigmoidal transfer function in Eq. (3.54) whose parameters are the medians

of the fitted parameters. The function g was also chosen to be a sigmoid, given by

g(r) =
1

2

⇥

2qg � 1 + tanh(�g(r � xg))
⇤

, (3.55)

with qg set such that the average change in connection strength due to learning of a single

pattern is zero, i.e.
Z 1

�1
Dzg(�̃(z)) = 0. (3.56)

Note that g is unconstrained by data. For most of the paper, we set the slope and the

threshold for g to the median of the fitted parameters for f , i.e. �g = �̃f and xg = x̃f . We

also explored how the capacity depends on �g and xg, as shown in Fig. 3.5.
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3.10 Discussion

We have shown that a learning rule inferred from data generate attractor dynamics, without

any need for parameter adjustment or tuning, except for the condition that the dependence

of the learning rule on the presynaptic rate should be ‘balanced’ (i.e. have a zero average over

the distribution of visual responses, see below). Furthermore, this rule produces a storage

capacity that is close to the maximal capacity, in the space of unsupervised Hebbian learning

rules with sigmoidal dependence on both pre and post-synaptic firing rates. Remarkably,

similar to the learning rules inferred from ITC recordings, learning rules derived from memory

storage maximization depress the bulk of the distribution of the learned inputs (those that

lead to low to intermediate firing rates) while potentiating outliers (those that lead to high

rates), leading to a sparse representation of stored memories. The attractor states generated

by our model are characterized by graded activity with a continuous range of firing rates

(Treves 1990a,b, Festa et al. 2014). Most of the distribution lies in the low rate region of the

neuronal transfer function, leading to a strongly skewed distribution, with a small fraction

of neurons firing at higher rates. These observations are consistent with the available data

in ITC during delay match to sample experiments (Miyashita 1988, Nakamura & Kubota

1995a).

For a range of parameters values consistent with learning rules inferred from data, our

model presents irregular temporal dynamics for retrieval states, similar to the temporal

and across trial variability observed during delay periods in multiple studies (Murray et al.

2017). In this regime, retrieval states are chaotic, yet they maintain non-zero overlap with

the corresponding memories. Thus, the network performs robustly as an associative memory

device, even though strong fluctuations are internally generated by its own chaotic dynamics.
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3.10.1 Distribution of firing rates

Our model naturally gives rise to highly skewed distributions of firing rates, consistent with

those that have been observed during presentation of visual stimuli in ITC (Lehky et al.

2011, Lim et al. 2015) and during delay periods of DMS tasks (Miyashita 1988, Nakamura &

Kubota 1995a). By construction of the model, it also reproduces the decrease in the mean

response with familiarity, and the increase in selectivity with familiarity. Our model shows

for most of the explored parameter space a weak bimodality in the distribution of firing rates

due to neuronal saturation in response to familiar stimuli, with a tiny peak close to neuronal

saturation, when the network is homogeneous. When heterogeneity in maximal firing rates

is implemented in the network, the peak at high firing rates disappears and the distribution

of firing rates becomes unimodal.

3.10.2 Learning rule

The learning rule we have used in our network model was inferred from ITC data (Lim

et al. 2015). It is an unsupervised Hebbian rule, as it only depends on the pre and post-

synaptic firing rates, and it leads to potentiation for large pre and post-synaptic rates. As

other popular examples of Hebbian rules such as the covariance rule (Sejnowski 1977) or

the BCM rule (Bienenstock et al. 1982), it is separable in pre and post-synaptic rates.

Unlike the covariance rule, but similar to other Hebbian rules (Bienenstock et al. 1982,

Senn et al. 2001, Pfister & Gerstner 2006), it is strongly non-linear as a function of the

post-synaptic firing rate. It reproduces some of the phenomenology of the dependence of

synaptic plasticity on pre and post-synaptic firing rates in cortical slices; in particular, large

pre and post-synaptic firing rates lead to LTP (Sjöström et al. 2001). Large pre-synaptic

firing rate in conjunction with low post-synaptic firing rate, lead to depression, consistent

with ‘pairing’ experiments in which LTD is triggered by pre-synaptic activity, together with

intermediate values of the membrane potential (Ngezahayo et al. 2000). Plasticity at low
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pre-synaptic firing rates could be due to plasticity mechanisms leading to ‘normalization’

or homeostasis. Indeed, our plasticity rule could be written as �Jij = �JHebb
ij + �Jhom

ij

where �JHebb
ij = Af(ri)(g(rj) � g(0)), �Jhom

ij = Af(ri)g(0). The ‘homeostatic’ component

�Jhom
ij leads to a decrease in the e�cacy of all synapses onto a post-synaptic neuron when

the neuron is firing at high rates, while it leads to an increase when the neuron fires at low

rates (since g(0) < 0). Note that such a homeostatic mechanism would also automatically

lead to a ‘balanced’ dependence of the rule of the pre-synaptic firing rate, which is necessary

for the network to be able to store a large nuber of patterns. The analysis described in the

Supplementary Material shows that if g has a non-zero average, then the mean of the noise

term due to other patterns stored in the connectivity matrix would no longer be zero, but

rather scale as ↵cNhgi, where hgi is the average of g over the distribution of visual responses.

This has the consequence that the network would be able to store only a finite number of

patterns. A precise balance could be restored by the homeostatic mechanism mentioned

above - for a non-zero hgi, this homeostatic term would become �Jhom
ij = Af(ri)(g(0)�hgi),

which would ensure that the average synaptic strength (and consequently mean firing rate)

onto a neuron remains constant with learning.

The synaptic connectivity matrix we used is assumed to be generated through multiple

presentations of initially novel patterns. The simplest implementation of this plasticity rule

consists in adding a term �Jij to the current matrix, as described above, but only when a

novel pattern is presented to the network. This would require a novelty detector that would

gate plasticity, perhaps through neuromodulators. An interesting hypothesis is that novelty

detection could be generated by the network itself, through its mean activity (which is

significantly higher for novel than for familiar stimuli). This novelty signal could in principle

then be used to trigger learning.

To derive the learning rule, we used a subset of the data recorded by Woloszyn & Shein-

berg (2012), i.e. excitatory neurons that show negative changes at low rates and positive
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changes at high rates. Those neurons are approximately half (14/30) of the neurons that

showed significant di↵erences between the distributions of visual responses for familiar and

novel stimuli. Out the remaining 16 neurons, 10 showed negative changes for all rates, while

6 showed the opposite pattern of positive changes for all rates. This heterogeneity in inferred

learning rules could be due to a heterogeneity in neuronal properties - for instance, it could

be that the ‘putative’ excitatory neurons recorded in this study form a heterogeneous group

of cells, some of which might actually be inhibitory. Consistent with this, some inhibitory

neuron classes have electrophysiological properties (and in particular, spike width) that are

closer to pyramidal cells that to fast-spiking interneurons. Another possibility is that part of

the apparent heterogeneity stems form the same underlying learning rule, but with hetero-

geneous parameters. For instance, inferred learning rules with negative changes at all rates

are consistent with a sigmoidal post-synaptic dependence f , but with a high threshold xf

that lies above the range of firing rates elicited in that particular experiment. Elucidating

which of these scenarios hold in IT cortex will need recordings from more neurons, as well

as recordings of single neurons with more stimuli.

Our approach is complementary to other studies that have inferred learning rules from

in vitro studies, and then shown that these rules lead to attractor dynamics in large net-

works of spiking neurons (Litwin-Kumar & Doiron 2014b, Zenke et al. 2015). In contrast

to these studies, we showed that a network with a learning rule inferred from in vivo data

can achieve a high storage capacity, and generate graded distributions of firing rates dur-

ing visual presentation and delay periods. An important di↵erence between the studies of

Litwin-Kumar & Doiron (2014b) and Zenke et al. (2015) is that they used an online learning

rule that is constantly active, while our connectivity matrix is assumed to be frozen following

the learning process. It will be interesting to investigate whether, and in which conditions

spike-timing and voltage based learning rules used in such studies can produce a firing rate

dependence that is consistent with the rule used here.
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3.10.3 Time-varying neural representations

In recent years, the standard attractor network scenario has been challenged by multiple

observations of strong variability and non-stationarity during the delay period in prefrontal

cortex (Compte et al. 2003, Shafi et al. 2007, Barak et al. 2010, Barak & Tsodyks 2014,

Kobak et al. 2016, Murray et al. 2017). Statistical analysis of recordings in this area during

two di↵erent working memory tasks has shown that variability observed during delay periods

is consistent with static coding of the stimulus kept in memory (Murray et al. 2017). Various

models have been proposed to account for variability and/or non-stationarity (Barbieri &

Brunel 2007, Mongillo et al. 2008, Lundqvist et al. 2010, Mongillo et al. 2012, Druckmann

& Chklovskii 2012).

Here we propose an alternative mechanism where chaotic attractors with associative

memory properties naturally generate the time-varying irregular activity observed during

delay periods in associative memory tasks. In this state, chaotic attractors correspond to

internal representations of stored memories. Each chaotic attractor state maintains a positive

overlap with the corresponding stored memory. In this scenario, the network performs as an

associative memory device where temporal variability is generated internally by chaos. This

model naturally exhibits the combination of strong temporaly dynamics yet stable memory

encoding which has been demonstrated in PFC by various groups (Druckmann & Chklovskii

2012, Murray et al. 2017). It will be interesting to compare this model to existing data,

using for instance methods used in Murray et al. (2017).

There has been a longstanding debate whether the type of chaotic states seen in firing

rate models can be seen also in spiking network models under the form of ‘rate chaos’. Re-

cent studies indicate that this type of chaos can be observed provided coupling is su�ciently

strong, as in firing rate models Ostojic (2014), Harish & Hansel (2015), Kadmon & Som-

polinsky (2015). Thus, it is reasonable to expect that the type of retrieval chaotic states we

observed in our network can also be realized in networks of spiking neurons.
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3.10.4 Optimality criteria for information storage

Here, we have argued that learning rules that are inferred from electrophysiological record-

ings in ITC of behaving primates are close to optimizing information storage, in the space

of unsupervised Hebbian learning rules that have a sigmoidal dependence on both pre and

post-synaptic firing rates. Such learning rules are appealing because synapses do not need

to know anything beyond the firing rates of pre and post-synaptic neurons to form mem-

ories, two quantities that are easily available at a synapse. However, one cannot exclude

that the dependence of plasticity on neuronal activity takes other forms than the one in-

vestigated here. In particular, a potentially more powerful approach proposed by Gardner

(1987) relies in maximizing the number of attractors in the space of all possible synaptic

matrices. Unsurprisingly, this approach leads in general to a larger capacity than the ones

that can be achieved by unsupervised Hebbian rules, but it turns out that in sparse coding

limit, the covariance rule reaches asymptotically the Gardner bound (Tsodyks & Feigel’Man

1988, Tsodyks 1988). These results have been obtained in networks of binary neurons, and it

remains to be investigated whether similar results could be obtained in networks of analog fir-

ing rate neurons. An additional challenge in comparing the two approaches in such networks

is that the stored attractors are in our case not identical to the pattern that was initially

shown to the network, while in the standard Gardner approach, the two were constrained to

be identical.

Another motivation for considering the Gardner approach is provided by a recent study

that showed that synaptic connectivity in a network of excitatory binary neurons that max-

imizes storage capacity in the space of all possible matrices reproduces a number of basic

experimental facts on cortical excitatory connectivity (Brunel 2016): Low connection prob-

ability (Markram, Lübke, Frotscher, Roth & Sakmann 1997, Sjöström et al. 2001, Lefort

et al. 2009), in spite of full potential connectivity (Kalisman et al. 2005); And strong over-

representation of bidirectionnally connected pairs of neurons compared to a random Erdos-
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Renyi network (Sjöström et al. 2001). In contrast with the network studied by Brunel (2016),

the synaptic connectivity of the model proposed here has the unrealistic feature that it does

not obey Dale’s law. One could reconcile the present model with cortical connectivity by

using a connectivity matrix that is a rectified version of Eq. (3.2) - such a connectivity matrix

would then obey Dale’s law, be sparse and be more symmetric than a random Erdos-Renyi

network, making it therefore consistent with slice data. Such a generalization is beyond the

scope of the present paper and will be the subject of a future study.

Altogether, our results strongly reinforce the link between attractor network theory and

electrophysiological data during delayed response tasks in primates. Furthermore, they sug-

gest that learning rules in association cortex are close to maximizing the number of possible

internal representations of memories as attractor states.
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CHAPTER 4

MEMORY AND CHAOS IN NEURONAL NETWORKS

4.1 Contribution

The work presented in this chapter is part of a manuscript in preparation for publication. The

authors are Ulises Pereira, Yonatan Aljade↵ and Nicolas Brunel. U.P. and N.B. designed

the research. U.P. and Y.A. performed the mean field theory (MFT) calculations. U.P.

performed the the numerical solutions to the MFT and the network simulations. U.P. wrote

the manuscript with inputs from Y.A. and N.B..

4.2 Introduction

Attractor networks are an influential theory for memory storage in brain systems (Hopfield

1982, Amit et al. 1985, Amit 1992, Brunel 2005). In this theory, memories correspond to

fixed-point attractors states, which are stable patterns of network activity representing the

stored memoranda. When a memory is learned, changes in the connectivity through synaptic

plasticity driven by an external input to the network produce a distributed connectivity

pattern of synaptic modifications. These changes in the connectivity create a fixed-point

attractor corresponding to the neural representation of the learned memorandum. In the

attractor state, the network activity is correlated with, but not identical to, the original

external input to the network. Upon an external cue correlated with the stored memorandum

that is being retrieved, the network autonomously relaxes to the corresponding attractor

state, and the identity of the memorandum can be easealy decoded by downstream circuitry.

The theory parsimoniously reproduces selective persistent activity (Goldman-Rakic 1995),

i.e. stable elevated activity during delay periods, which is a salient feature observed in neural

recordings in monkeys (Fuster et al. 1971, Miyashita 1988, Funahashi et al. 1989, Goldman-

Rakic 1995) and rodents (Liu et al. 2014, Guo et al. 2014, Inagaki et al. 2017) during delay
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response tasks. However, the role of persistent activity as the activity subserving mnemonic

representations has been recently challenged, and with this the role of attractor networks

as viable theory for memory storage. In prefrontal cortex, during delay periods, it has been

observed high degree of temporal irregularity, variability across trials for single memoranda

and heterogeneity across neurons (Compte et al. 2003, Shafi et al. 2007, Barak et al. 2010,

Barak & Tsodyks 2014, Kobak et al. 2016, Murray et al. 2017). There is an ongoing debate

on whether this kind of activity is consistent with attractor dynamics (Lundqvist et al. 2018,

Constantinidis et al. 2018). Various models have been proposed to account for this extra

variability in attractor networks (Barbieri & Brunel 2007, Mongillo et al. 2008, Lundqvist

et al. 2010, Mongillo et al. 2012, Druckmann & Chklovskii 2012). Recently, we have pro-

posed a new alternative scenario to account for the observed variability in an attractor

network whose learning rules are inferred from in vivo data (Pereira & Brunel 2018a). In

this scenario, chaotic attractors (in contrast to fixed-point attractors as in classical attrac-

tor networks (Hopfield 1982, Amit et al. 1985, Tsodyks & Feigel’Man 1988)) correspond to

neural representations of stored memories. Neural activity presents strong temporal fluc-

tuations that are internally generated by the network’s chaotic dynamics, but maintains a

positive correlation with the stored pattern. Therefore, the network behaves as an asso-

ciative memory device in which chaotic attractors correspond to internal representations of

memories. Using a dynamic mean field theory (DMFT) (Sompolinsky et al. 1988, Crisanti

& Sompolinsky 2018) Tirozzi and Tsodyks predicted the existence of this chaotic associative

memory phase in the sparse version of the Hopfield model (Tirozzi & Tsodyks 1991). The

transition to chaos is extensive, i.e. all fixed-point attractor memory states transition to

chaos at once, which it has been found to be also the case in networks constrained by in

vivo data (Pereira & Brunel 2018a). Furthermore, consistent of what Tirozzi and Tsodyks

predicted for the sparse Hopfield model (Tirozzi & Tsodyks 1991), it has also been found in

this model that the capacity (i.e. the maximum number of memory states the network can
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store) for chaotic attractors is larger than what is predicted by a static mean field theory

(SMFT) for fixed-point attractors as memory states (Pereira & Brunel 2018a). However, a

theory for chaotic memory states in networks constrained by data is lacking.

A well known phenomena in attractor networks is catastrophic forgetting (Amit et al.

1985). It refers to the observation that when the number of stored patterns is larger than the

network’s capacity, all memories are forgotten and consequently no memory can be retrieved

from the network. The basic recipe for catastrophic forgetting is based in the statistical

symmetry between stored patterns: when all patterns are identical and independently dis-

tributed as in classical attractor network models (Hopfield 1982, Amit et al. 1985, Tsodyks &

Feigel’Man 1988) forgetting one pattern is statistically equivalent to forgeting all. For large

networks, their behavior converges to their average behavior, and when one pattern is for-

gotten then all patterns are forgotten at once. The recipe for fixing catastrophic forgetting is

also well known: by introducing a forgetting process the notion of age breaks the statistical

symmetry between patterns and newer patterns are remembered while older patterns are

forgotten in an online process of learning (and forgetting) (Parisi 1986, Amit & Fusi 1994).

Recently, the question of the optimal forgetting process for maximizing capacity have been

explored for networks of binary neurons, and optimal forgetting kernels and bounds for the

memory storage have been derived (Amit & Huang 2010, Huang & Amit 2011, Lahiri &

Ganguli 2013, Benna & Fusi 2016). Importantly, the memory states analyzed in the above

studies are fixed-point attractors, and the e↵ect of online learning for networks endowed with

chaotic memory states is unknown. Furthermore, a theory for attractor networks in such

scenario is lacking.

In this paper we provide general theory for a family of attractor networks with unsuper-

vised Hebbian learning rules as the ones inferred from in vivo data (Lim et al. 2015, Pereira

& Brunel 2018a) and online learning of memories. In section 4.3 we introduce the family

of attractor network models. In section 4.4 we provide a dynamic mean field theory for the

118



network’s dynamics. In section 4.5 and 4.6 we derived the general curves for the transition

to chaos and capacity, and show that memory states lay in a continuum of di↵erent sta-

tistical properties depending on age. In section 4.7 we recapitulate the results of Tirozzi

and Tsodyks (Tirozzi & Tsodyks 1991), providing numerical solutions for the mean field

equations and contrasting the results with simulations of large networks. In section 4.8, we

show that when forgetting is included in this model memories stored as both fixed point and

chaotic attractors co-exist. Depending on the pattern age, its retrieval state is a fixed-point

(newer patterns) or chaotic attractor (older patterns), leading to a continuum of di↵erent

retrieval states. Additionally, we found the optimal forgetting time-scale for an exponential

forgetting kernel.

4.3 The Model

In this model, the network is composed of N neurons whose input current are described by

analog variables hi, where i = 1, 2, . . . , N represents the neuron index. The instantaneous

firing rates of neurons are given by the the input-output single neuron transfer function (or

f-I curve) �. Input currents obey the standard current-based version of the rate equations

(Grossberg 1969, Hopfield 1984) (which are equivalent to the rate-based version, see Miller

& Fumarola (2012))

ḣi = �hi +
N
X

i 6=j

Jij�(hj). (4.1)

Here Jij is the strength of the synapse connecting neuron j to neuron i. The connectivity

matrix is sparse, and existing connections are shaped by external inputs (‘patterns’) through

a non-linear unsupervised Hebbian synaptic plasticity rule. In this rule, firing rate patterns

⌘µi of neuron i during presentation of pattern µ (i = 1, 2, . . . , N and µ = 1, 2, . . . , p) are

generated randomly and independently from some distribution p⌘ (i.e. ⌘µj
iid⇠ p⌘(⌘)). The

119



firing rate patterns shape the connectivity matrix through two non-linear functions f and

g that characterize the dependence of the learning rule on the post-synaptic rate (f) and

pre-synaptic rate (g), respectively. Patterns recently learned are strongly imprinted in the

connectivity than older patterns according to a ‘forgetting kernel’, ⇥(µ), in analogy to what

has been proposed in palimpsest models for attractor neural networks of binary neurons

(Mézard et al. 1986b, Parisi 1986, Amit & Fusi 1994, Romani et al. 2008, Amit & Huang

2010, Huang & Amit 2011, Dubreuil et al. 2014). The idea is that recent stored patterns

partially erase the traces of older ones in the connectivity matrix, and the function ⇥(µ)

gives to what degree a particular pattern of age µ has been forgotten. When p patterns are

learned by the network, the connectivity after learning gets structured as

Jij =
Acij
K

p
X

µ=1

⇥(µ)f
⇥

⌘µi
⇤

g
h

⌘µj

i

, (4.2)

where cij is a sparse random (Erdos-Renyi) structural connectivity matrix (cij = 1 with

probability K/N , cij = 0 with probability 1�K/N). The sparsity in the connectivity models

the low connection probabilities reported in cortical (⇠10%) (Mason et al. 1991, Markram,

Lübke, Frotscher, Roth & Sakmann 1997, Holmgren et al. 2003, Thomson & Lamy 2007,

Lefort et al. 2009) and hippocampal (⇠1%) (Guzman et al. 2016) microcircuits. The learning

rule is a generalization of the unsupervised Hebbian rule used in chapter 3 (compare Eq. (4.2)

with Eq. (3.2)) with two important di↵erences: 1) The assumption of starting from an initial

tabula rasa connectivity Jij = 0 is not necessary, and can be dropped. Depending of the learn-

ing kernel, the synaptic connectivity matrix can be obtained by learning a continuous stream

of patterns (i.e. online learning) where recent ones ones can be retrieved and older ones are

forgotten; 2) The distribution of firing rates patterns p⌘ is left unspecified. The model in

chapter 3 is a particular case when ⌘ = �(⇠) and ⇠ is a standard normal random variable (see

section 3.9.3, Eq. (3.48)), and therefore p⌘(x) = (e�(��1
(x))

2/2/
p

2⇡)(d��1(x)/dx). Besides

the addition of a forgetting process ⇥(µ), further di↵erences with classic models such as the
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Hopfield model (Hopfield 1982) or the Tsodyks-Feigel’man model (Tsodyks & Feigel’Man

1988) are: patterns can have a continuous distribution instead of binary; and the dependence

of the rule on firing rates is non-linear instead of linear.

In chapter 3 we have shown that both the transfer function (�) and the post-synaptic

dependence of the learning rule f can be inferred from electrophysiological data (see section

3.9.3 and (Lim et al. 2015)). As in chapter 3, we constrain g by the condition that the

average of the function g across the distribution of patterns is zero, i.e. hg(⌘)i⌘ = 0, which

ensures that the average change in connection strength due to learning of a single pattern is

zero. This could be enforced by a homeostatic mechanism that controls the mean changes

in the incoming inputs due to learning (Toyoizumi et al. 2014, Vogels et al. 2011).

4.4 Dynamic mean field theory

In the limit of infinitely large number of neurons (i.e. N ! 1), synapses per neuron (i.e.

K ! 1), and strongly sparsely connected network (i.e. K/N ! 0) a dynamical mean field

theory can be developed using functional integration as in Sompolinsky & Zippelius (1982),

Kree & Zippelius (1987), Tirozzi & Tsodyks (1991). In this limit Eq. (4.1) is reduced to

ḣi(t) = �h(t) + µi + ⇢i(t), (4.3)

where

µi = A
s
X

µ=1

f(⌘µi )⇥(µ)mµ, (4.4)

corresponds to the average input current to neurons i. As in classical mean field theories

for attractor neuronal network models (Amit et al. 1985, Tsodyks & Feigel’Man 1988) we

define the order parameters
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mµ ⌘ hg(⌘µ)�(h)ih,⌘µ . (4.5)

Here the average is over the distribution of the synaptic input current h and of the stored

pattern ⌘µ. Eq (4.5) corresponds to the overlap between the network state and a non-

linear transformation of the stored pattern. In our theory we assumed that the overlaps

do not depend on time (i.e. mµ(t) = mµ), which is trivially true for fixed-point attractor

memory states, and a good approximation for chaotic attractor memory states. These order

parameters are a natural extension for analog neurons and nonlinear learning rules of the

overlaps used in classic attractor neural network models. In our theory the number of re-

trieved patterns s are of order s ⇠ O(1), and therefore just a finite number of patterns have

an non-negligible overlap with neural activity. The variable ⇢i(t) is a random gaussian field

with zero mean and auto-covariance given by

Cov (⇢i(t), ⇢i(t + ⌧)) = �A2h�(h(t))�(h(t + ⌧))ih, (4.6)

where

 =
1

K

p
X

µ=1

⇥2(µ). (4.7)

We explore the scenario in which an infinite stream of pattern is presented to the network,

and therefore p ! 1. Each pattern is presented once for learning, and then gradually

forgotten due to the learning of the subsequent patterns in the stream. We define the

learning rule dependent constant � = hf2(⌘)ihg2(⌘)i. The dynamics of the field can be

approximated by the following time dependent Gaussian random field

ḣi = �hi + Af(⌘µi )⇥(µ)mµ + A
p
�y(t). (4.8)
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Where y(t) is a gaussian random field with auto-covariance function

C(⌧) = hy(t)y(t + ⌧)iy = h�(h(t))�(h(t + ⌧))ih, (4.9)

which is calculated self-consistently. By defining the local currents ui(t) = hi(t) �
Af(⌘µi )⇥(µ)mµ then Eq (4.8), (4.5) and (4.9) can be re-written as

u̇ = �u + A
p
�↵y(t) (4.10)

mµ = hg(⌘)�(u(t) + Af(⌘)⇥(µ)mµ)iu,⌘, (4.11)

and

C(⌧) = h� �u(t) + Af(⌘)⇥(µ)mµ
�

�
�

u(t + ⌧) + Af(⌘)⇥(µ)mµ
�iu,⌘. (4.12)

In Eq. (4.10) we assume a translation invariance of the auto-covariance. As in (Som-

polinsky et al. 1988) we introduce the local-field auto-covariance function

�(⌧) = hu(t)u(t + ⌧)iu. (4.13)

Analogous to the derivation in Crisanti & Sompolinsky (2018), Schücker et al. (2016) we

derive a self-consistent equation for the local-field auto-covariance

d2�(⌧)

d2⌧
= �(⌧) � A2�C(⌧). (4.14)

See appendix B for a version of the derivation. Analogously to Sompolinsky et al. (1988),

Tsodyks & Feigel’Man (1988), the auto-covariance in Eq. (4.12) can be written as
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C(⌧) =

Z

D⌘Dz



Z

Dx�
⇣

A
h

p

�
0

� |�(⌧)|x +
p

|�(⌧)|z + f(⌘)⇥(µ)mµ

i⌘

�

2

, (4.15)

where D⌘ = p⌘(⌘)d⌘ (distribution of the stored patterns). For the proof of this, analogous

equations to Eqs. (B.7,B.8) for ui(t) should be inserted in Eq. (4.12). For the equation above

we further assume that 0  �(⌧). We also re-scaled �(⌧) as �(⌧) ! A2�(⌧) for ease some

of the algebra. In analogy with Sompolinsky et al. (1988) Eq. (4.14) can be re-written as

d2�

d2⌧
= �@V (�, �

0

)

@�
, (4.16)

by defining the following potential

V (�, �
0

) = ��2

2
+
↵�

A2

Z

D⌘Dz



Z

Dx�
⇣

A
h

p

�
0

� |�|x +
p

|�|z + f(⌘)⇥(µ)mµ

i⌘

�

2

,

(4.17)

where �(x) =
R x
0

dr�(r). Notice that analogous to mµ, the auto-covariance of the local

fields �
0

also depends on the age of the retrieved memory µ, however we choose to not make

explicit this dependency in order to simplify the notation.

4.5 Transition to chaos

In this section we determine the location in the parameters space where fixed-point attractors

transition to chaotic attractors. We distinguish two qualitatively di↵erent attractor states

depending on the overlap with the stored memory: 1) states with order one overlap (i.e.

mµ ⇠ O(1)) we call memory states; 2) states with negligible overlaps (i.e. mµ ⌧ 1 8µ) we

call the background state.
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4.5.1 Transition to chaos of fixed-point attractor memory states

For fixed-point attractors there are no temporal fluctuations in the input currents. Then the

auto-covariance of the local fields in Eq. (4.13) is equal to the variance of the local currents

at all times (i.e. �(⌧) = �
0

), which leads to

mµ =

Z

D⌘Dxg(⌘)�
⇣

A
h

p

�
0

x + f(⌘)⇥(µ)mµ

i⌘

(4.18)

�
0

= �

Z

D⌘Dx�2

⇣

A
h

p

�
0

x + f(⌘)⇥(µ)mµ

i⌘

. (4.19)

The above equation give the overlap with the memory µ for fixed-point attractors. These

fixed-point memory states may become chaotic depending on the parameters. In this sce-

nario, the model presents chaotic dynamics with associative memory properties. Importantly,

in this model the chaotic properties of the attractors depends on the age of the patterns. As

we will discuss in the next sections, recent memory states are fixed-point and older memory

states are chaotic. Analogous to Sompolinsky et al. (1988), to find the transition to chaos

of memory states, it is necessary to find the point in parameter space where the static so-

lution �(⌧) = �
0

becomes unstable. At this point the auto-covariance of the local-field

�(⌧) transition from stationary to time-depend, and in the large K limit our theory predicts

that the network becomes chaotic. Since the dependence on time of the auto-covariance of

the local fields is ruled by the newton equation in Eq. (4.14), finding the transition point

is equivalent to find the critical point �chaos

0

where the potential in Eq. (4.17) changes its

concavity. After this point, solutions for the auto-covariance of the local field starting at �
0

relax to lim⌧!1 �(⌧) ⌘ �
1

. The transition point is given by

A2�

Z

D⌘Dz
n

�
0 ⇣

A
h

p

�
0

z + f(⌘)⇥(µ)mµ

i⌘o

2

= 1. (4.20)

Equation (4.20) in addition to Eqs. (4.18,4.19) describe the curve in the parameter space
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that separates fixed-point from chaotic memory states.

4.5.2 Transition to chaos of the background state

In the background state, all the overlaps with the stored memories are zero, i.e. mµ = 0, in

the thermodynamic limit. The critical line in the space of parameters for its transition to

chaos is given by

A2�

Z

Dz
n

�
0 ⇣

A
p

�
0

z
⌘o

2

= 1 (4.21)

�
0

= �

Z

Dz�2

⇣

A
p

�
0

z
⌘

(4.22)

4.6 Capacity

4.6.1 Capacity for chaotic memory states

Analogously to the static mean field theory derived in section 3.9.1 of chapter 3, the capacity

of fixed-point attractor states are given by the curve in the parameter space when the overlap

is zero, that is the smaller µ in which mµ = 0 is the only solution of Eqs. (4.18,4.19). In this

scenario the underling assumption is that memory states are fixed-points. However, in this

model chaotic memory states may undergo a transition to having zero overlap with the stored

pattern. To calculate the capacity for chaotic attractors, we first assume that the network

is in a regime in which the static solution is no longer stable. That is when the potential

defined in Eq. (4.17) is no longer convex (i.e. @2V
@2�

> 0), and the auto-covariance of the

local currents in Eq. (4.13) are time dependent. Additionally, as is explained in the previous

section, a chaotic solution will have an aperiodic decreasing solution for the potential. This

correspond to the condition lim⌧!1 V (�(⌧)) = V (�
0

), which is equivalent to
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D⌘Dx�2

⇣

A
h

p

�
0

x + f(⌘)⇥(µ)mµ

i⌘
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2
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A2

Z
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

Z

Dx�
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A
h
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0
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1

|x +
p

|�
1

|z + f(⌘)⇥(µ)mµ

i⌘

�

2

.

(4.23)

Here �
1

corresponds to �(t)
t!1���! �

1

. Therefore, @V/@�|
�=�1

= 0, which is equiva-

lent to

�
1

= �

Z

D⌘Dz



Z

Dx�
⇣

A
h

p

�
0

� |�
1

|x + s
p

|�|z + f(⌘)⇥(µ)mµ

i⌘

�

2

. (4.24)

Lastly, Eq. (4.36) for the overlap also holds. Therefore, Eqs (4.36,4.23,4.24) above give

the overlap curve for chaotic attractors.

4.7 The sparsely connected Hopfield model

In this chapter we will briefly recapitulate the results of Tirozzi and Tsodyks (Tirozzi &

Tsodyks 1991) where they study a sparse version of the Hopfield model for analog neurons.

Using the generating functional method, it can be shown that that in the highly sparse limit

the theory presented in (Tirozzi & Tsodyks 1991) is exact (Kree & Zippelius 1987). The

connectivity in this network is given by

Jij =
Acij
Nc

p
X

µ=1

⌘µi ⌘
µ
j . (4.25)

Here ⌘ki 2 {�1, 1} and iid with probability 0.5. The dynamics of the network is given by

Eq. (4.1) with �(x) = tanh(x). In this model ⇥(µ) = 1, then
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A B C

Figure 4.1: DMFT vs SMFT for sparsely connected Hopfield model. (A) Overlap vs memory
load. Circle and square markers correspond to the average overlap calculated from network
simulations of N = 50000 and N = 160000 neurons. The average was taken over 1000 times
steps. The dashed line corresponds transition to chaos memory load. (B) �

0

and �
1

vs
memory load. (C) Average overlap vs time for a memory load of ↵ = 0.6 and network sizes
of N = 20000, 40000, 80000, 160000. The average is taken over 12 network realizations but
for N = 160000 which corresponds to just one realization. The displayed dynamics is for
the 500-2500ms time interval. In A-C the sparsity level is c = 1/

p
N and A = 5.5.

 = lim
K!1

1

K

↵K
X

µ=1

⇥2(µ) = ↵. (4.26)

Furthermore, for this network � = 1. Lastly, the mean field Eq. (4.4) is given by

⇢i = A⇠im. (4.27)

Here the index of the pattern µ is omitted since when any of the patterns is retrieved it

produces the same mean field. Plugging-in these parameters in the equations of sections ??,

?? and ?? we obtain the mean field equations in (Tirozzi & Tsodyks 1991). As in Hopfield

model, when the memory load ↵ increases the overlap m decreases due to the increase in

the number of stored patterns, increasing in turn the variance of the fields �
0

(see Fig 4.1 A

and B respectively). Interestingly, the capacity computed using the SMFT is smaller than

the capacity computed using the DMFT (compare red and black lines in Fig 4.1 A). Since

in the SMFT memory states are assumed to be fixed-points attractors while in the DMFT
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may be both fixed-point and chaotic attracors, the disagreement between the two theories

begins after the transition to chaos (dashed lines in Fig 4.1).The agreement between the

numerical simulations is good for high overlaps (low loads) and deteriorates rapidly close to

the transition to chaos. Increasing the network size and sparsity improves the agreement

between the theory and numerical simulations, suggesting these are finite size e↵ects.

We numerically solved the mean field equations for the transitions described in sections

4.5 and 4.6, obtaining the complete network’s bifurcation diagram (see Fig 4.2). For small

values A (i.e. weak connectivity) there are no memory states (red region in Fig 4.2). For

larger values of A and low memory loads, the background and the memory states are fixed-

point attractors (region bellow the red dashed line and blue region in Fig 4.2 respectively).

When the memory load increases, the background state transition to chaos (region above

the red dashed line in Fig 4.2 ) and memory states are fixed-point attractors (blue region in

Fig 4.2). Larger memory loads lead to the memory states to transit to chaos (green region

in Fig 4.2) reaching a phase when the dynamics is chaotic but the network retains a finite

overlap with the stored memory. Finally, if the memory load further increases the network

reaches its capacity and then memories are forgotten (gray region in Fig 4.2) .

4.8 Fixed-point and chaotic attractors co-exist due to forgetting

Here we consider a scenario in which random binary patterns {⌘ki }pk=1

are stored by a network

using a Hebbian learning rule, with ⌘ki 2 {�1, 1} and iid with probability 0.5. We assume

the following forgetting kernel:

⇥(µ) = e
� µ

⌧

f

Nc

⇣ µ

Nc
+ 1
⌘a

. (4.28)

Here patterns indexes begin at µ = 0. We choose this kernel in order to explore mono-

tonically decreasing (a  0) and non-monotonic (0 < a) forgetting scenarios. Notice that
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Figure 4.2: Center: Bifurcation diagram for the sparsely connected Hopfield model. Sur-
rounding plots: Overlaps (top row) and activations (bottom row) for retrieval states of
networks with parameters indicated with markers in the left panel. The rest parameter
values are A = 5.5, N = 50000 and c = 0.005.
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when a = 0 and ⌧f ! 1 this model is equivalent to the sparse Hopfield model presented in

the previous section. The connectivity is given by

Jij =
Acij
Nc

p
X

µ=1

⌘µi ⌘
µ
j e

� µ

⌧

f

Nc

⇣ µ

Nc
+ 1
⌘a

. (4.29)

The mean field in Eq. (4.4) is given by

µi = A⌘µi e
� µ

⌧

f

Nc

⇣ µ

Nc
+ 1
⌘a

mµ. (4.30)

The auto-covariance function in Eq. (4.7) is given by

Cov (⇢i(t), ⇢i(t + ⌧)) =
A2

Nc

p
X

µ=1

⇥(⇢)2C(⌧). (4.31)

In the limit Nc ! 1 and p ! 1 we obtain

1

Nc

p
X

µ=0

⇥(µ)2
p!1�����!
Nc!1

e
2
⌧

f

Z 1

1

dxe
� 2x

⌧

f x2a ⌘ �(a, ⌧f ) (4.32)

Notice that here we used the fact that tanh(x) is an odd function and patterns are binary

{�1, 1}. Then Eq. (4.8) for this network reads

ḣi = �hi + A⌘si e
� s

⌧

f (s + 1)a m + A
p

�(a, ⌧)y(t). (4.33)

Here s = µ/Nc which is the continuous version of µ when Nc ! 1. As is described

in section 4.4 (see Eq. (4.9)) y(t) is a gaussian random field with auto-covariance function

given by

C(⌧) =

Z

Dz



Z

Dx�

✓

A



p

�
0

� �(⌧)x +
p

�(⌧)z + e
� s

⌧

f (s + 1)a m

�◆�

2

, (4.34)

131



The potential defined in Eq. (4.17) in this case is given by

V (�, �
0

) = ��2

2
+�(a, ⌧)A2

Z

Dz



Z

Dx�

✓

A



p

�
0

� �x +
p

�z + e
� s

⌧

f (s + 1)a m

�◆�

2

.

(4.35)

4.8.1 Transitions

Overlap of fixed-point attractors with memories

For fixed-point attractors Eqs. (4.18,4.19) become

m =

Z

Dx�

✓

A



p

�
0

x + e
� s

⌧

f (s + 1)a m

�◆

(4.36)
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�
0

x + e
� s

⌧

f (s + 1)a m

�◆

.

(4.37)

Notice the overlap curve depends on the age s of the pattern.

Transition to Chaos for Fixed-Point Attractors

Let us write first the second derivative of the potential

�1 + �(a, ⌧)A2

Z

Dz



Z

Dx�
0
✓

A



p

�
0

� �x +
p

�z + e
� s

⌧

f (s + 1)a m

�◆�

2

(4.38)

For a fixed-point attractor the equation above becomes

132
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�◆�
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As explained in section 4.5, we need to find the value of �
0

where the potential changes

from convex to concave. In this case, Eq. (4.20) becomes

Z
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0

z + e
� s

⌧

f (s + 1)a m

�◆�

2

=
1
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. (4.40)

Transition to Chaos for Retrieval Fixed-points (0 < m)

For retrieval states the equations for finding the critical line in the space of parameters are

Z

Dz
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
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�
0

z + e
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(4.41)
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Transition to Chaos for Background Fixed-point (m = 0)

For the background state (i.e. m = 0) the equations for finding the critical line in the space

of parameters are

�(a, ⌧)A2

Z

Dz
n

�
0 ⇣

A
p

�
0

z
⌘o

2

= 1 (4.44)
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. (4.45)
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4.8.2 Capacity

Analogous to the capacity calculation in the previous section, in this section we want to

find the pattern age sc where the network cannot work as an associative memory device.

Equalizing the potential we obtain

��2
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The derivative of the potential equal to zero becomes
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(4.47)

Notice Eq. (4.47) is zero for �
1

= 0 since �(x) = ��(�x). Then the capacity is given by

Eq. (4.47)

�(a, ⌧f ) =
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obtaining

Ae
� s

c

⌧

f (sc + 1)a
Z

Dx�
⇣

A
h

q

�c
0

x
i⌘

= 1. (4.49)

Then, Eqs, (4.48,4.49) provide the capacity curve (⌧ cf , ac, sc).

We numerically solved the mean field equations for the transitions described above, ob-

taining the complete network’s bifurcation diagram (see Fig 4.3). For small value of ⌧ (i.e.
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Figure 4.3: Left: Bifurcation diagram for the sparsely connected Hopfield model with ex-
ponential forgetting. Right: Retrieval states for the 10th, 35th and 112th memories for the
same realization of the connectivity matrix.

fast forgetting) and age s (i.e. newer patterns), memory states are fixed-point attractors (see

the region the below red line in the left panel of Fig 4.3). For example, the 10th stored mem-

ory in Fig 4.3 corresponds to a fixed-point. Older memory states are chaotic, the transition

transition line between fixed-point and chaotic memory states is given by Eqs (4.41-4.43),

see Fig. (4.3) red line. Above this line memory states are chaotic attractors, as for example

the 35th stored memory in Fig 4.3, . When the age of the pattern further increases above the

capacity line given by Eqs. (4.46,4.47) (green line in left panel of Fig 4.2) memories cannot

be retrieved, as for example the 112th memory in Fig 4.3. For larger values of ⌧ (i.e. slow

forgetting) all memory states are chaotic for this particular value of A.

4.8.3 Optimal forgetting

We study the optimal forgetting time scale ⌧ for the exponential forgetting kernel exp(�s/⌧).

Large gain limit

Let us start for the case A ! 1 making the following approximations
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and
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For the SMFT we get the following MF equations:
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Here  (x) =
R1
x dz e

�z

2
/2p

2⇡
. Applying a derivative to equation (4.52) and setting m = 0

we get

1 =
2e� s
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2⇡ ⌧
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=) ⌧ =
4e�2s

⌧

⇡

Hence, the capacity curve for A ! 1 is given by

sc = �⌧
2

log
⇣⇡⌧

4

⌘

. (4.54)

And the optimal ⌧ is given by

⌧fixed�points
max =

4

e⇡
⇡ 0.47 (4.55)

For chaotic attractors we first derivate equation (4.52) and setting m = 0 we get
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By calculating these integrals
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Then Eq. (4.48) becomes
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Hence, the optimal ⌧ for A ! 1 predicted for chaotic attractors is given by

sc = �⌧
2

log
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(⇡ � 2) ⌧

2

◆

. (4.57)

And the optimal critical ⌧ is given by

⌧ chaosmax =
2

e(⇡ � 2)
⇡ 0.64. (4.58)

In Fig. 4.4 the results above are contrasted with numerical solutions of the mean field

equations for finite values of A.

4.9 Discussion

Attractor networks (Hopfield 1982, Amit et al. 1985, Amit 1992) are a class of recurrent

connected networks that have been influential in neuroscience by providing a mechanistic

model for associative memory. In this class of models, memory states correspond to fixed-
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Figure 4.4: Capacity vs Forgetting time-scale. Left: Capacity calculated from the static
MFT, see Eq. (4.36) and (4.40). Right: Capacity calculated from the dynamic MFT, see
Eq. (4.48) and (4.49). In dashed black are the analytical capacity curves for the static and
dynamic MFT, see Eq. (4.54) and (4.57) respectively.
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point attractors in the network dynamics. When a memory is retrieved, the network reaches

a fixed-point attractor and its activity is constant in time and correlated with the retrieved

memory. Randomly connected recurrent networks (Sompolinsky et al. 1988, Van Vreeswijk

et al. 1996, Brunel 2000) have been also influential in neuroscience by providing a network

mechanism for explaining the strong temporal variability observed in cortical networks. In

these networks, the activity fluctuate chaotically, but the scenario in which memories are

stored as chaotic attractors have been seldom explored. Here we connect these two class

of models, showing that in attractor networks memory states can be both fixed-point and

chaotic attractors depending on parameters. Strikingly, we show that when the online learn-

ing scenario is considered, the network presents a continuum of memory states in which

fixed-points and chaotic attractors co-exist.
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CHAPTER 5

UNSUPERVISED LEARNING OF SEQUENTIAL ACTIVITY

WITH TEMPORALLY ASYMMETRIC HEBBIAN LEARNING

RULES

5.1 Contribution

The work presented in this chapter is part of a manuscript in preparation for publication. The

authors are Maxwell Gillet, Ulises Pereira and Nicolas Brunel. M.G., U.P. and N.B. designed

the research. U.P. and M.G. performed the mean field theory and capacity calculations. M.G.

performed the numerical simulations and data comparison. M.G., U.P. and N.B. wrote the

manuscript.

5.2 Introduction

Sequential activity has been observed across multiples species in a number of behaviors such

as spatial navigation (Foster & Wilson 2006, Harvey et al. 2012, Grosmark & Buzsáki 2016)

and bird song generation (Hahnloser et al. 2002, Amador et al. 2013, Okubo et al. 2015).

Experimental evidence shows that sequential activity can be learned throughout experience

(Okubo et al. 2015, Grosmark & Buzsáki 2016). Several theoretical network models have

been able to produce sequential activity (Abeles 1991, Amari 1972, Kleinfeld & Sompolinsky

1988, Diesmann et al. 1999, Izhikevich 2006, Liu & Buonomano 2009, Fiete et al. 2010,

Waddington et al. 2012, Cannon et al. 2015). In these models, the connectivity contains a

feed-forward structure - neurons active at a given time in the sequence project in a feed-

forward manner to the group of neurons which are active next.

As we have described in chapter 2, models for learning sequential activity in networks

with plastic synapses can be roughly divided in two categories: models with supervised and
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unsupervised plasticity rules. In models with supervised plasticity rules, the synapses are

updated according the activity of the network and an error signal that carries information

about the di↵erence between the current network dynamics and the target dynamics (Sussillo

& Abbott 2009, Memmesheimer et al. 2014, Laje & Buonomano 2013, Rajan et al. 2016).

However, it is not clear that in cortex such error signal drives synaptic modifications, and

learning of sequences may occur without supervision by the solely exposure of the network to

sensory inputs. In models with unsupervised plasticity rules, sequential dynamics is shaped

by external stimulation without an error signal (Jun & Jin 2007, Liu & Buonomano 2009,

Fiete et al. 2010, Waddington et al. 2012, Okubo et al. 2015, Veliz-Cuba et al. 2015). In

those models sequential activity is generated spontaneously, and the temporal statistics of

the stimulation shapes the specific timing of the sequences. While these networks possess

a high degree of biological realism, few quantitative results exist governing their storage

and retrieval properties. Here we study a network of rate neurons in which sequences are

learned without supervision from external inputs. In our model, sequential activity is learned

by an asymmetric Hebbian learning rule that transforms temporally ordered random input

patterns into synaptic weight updates. Learned patterns can be sequentially retrieved in the

order that they were presented in an stereotypical and reliable manner. Importantly, during

retrieval the network presents transient sequential dynamics both in its correlation with the

stored patterns and activations. We developed a mean field theory for stored patterns with

Gaussian statistics, obtaining dynamical equations for the transient correlation between

the network activity and the stored patterns throughout the sequence. We compute the

sequential capacity of these networks, that is the number of sequences that can be stored as

a function of network size, and show that it grows linearly with network size, comparable to

that found in networks storing fixed-point attractors.
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5.3 The model

We consider a learning process that converts successive patterns of stimulation into synaptic

weight changes. In our setting the network learns P sequences of S input patterns as we

describe below. At time t an input pattern that belongs to the pth sequence is presented,

eliciting a corresponding pattern of neural activity ⇠p,1i at neuron i (see Fig 5.1 left column).

At time t+1 an uncorrelated input pattern that also belongs to the pth sequence is presented,

eliciting the pattern of neural activity ⇠p,2i (see Fig 5.1 middle column). For each successive

pair of presented inputs in a sequence, the strength Jij of a synaptic connection from neuron

j to neuron i is modified according to a temporally asymmetric Hebbian learning rule. In

this rule, synaptic connections are modified according to the product of two functions of the

pre and postsynaptic firing rates:

�Jij / f(⇠p,2i )g(⇠p,1j ), (5.1)

see Fig 5.1 right column. As in chapter 3, the functions f and g correspond to the post

and pre synaptic dependence of the learning rule respectively. If the presynaptic neuron

activation is ⇠p,1j when the first pattern is presented, and the postsynaptic neuron activation

is ⇠p,2i for the the next pattern, then the synapse between neuron i and j is potentiated

(depressed) according to Eq. (5.1) (see Fig 5.1 right column). For simplicity, as in chapter

3, we assume that learning starts from a tabula rasa, i.e. Jij = 0. After learning S sequences

of P patterns each the connectivity is sculptured by the learning process taking the form:

Jij =
cij
Nc

P
X

p=1

S
X

µ=1

f(⇠p,µ+1

i )g(⇠p,µj ). (5.2)

Here cij is a Bernoulli random variable with probability c encoding the presence or

absence of a synaptic connection, N is the number of neurons and Nc represents the av-

erage in-degree of a neuron. We are agnostic about the source of these patterns. They
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may originate from external inputs projecting to the network, or from internally-generated

fluctuations. As in chapter 2, firing rates obey standard rate equations

dri
dt

= �ri + �

0

@

X

j 6=i

Jijrj

1

A . (5.3)

When the network is initialized with the first pattern in a given sequence, it presents

a transient sequential dynamics. Interestingly, single neurons take approximately the same

sequence of values that the learned patterns throughout the dynamics. For example, as shown

in Fig 5.2a, neuron i takes values that are often close ⇠p,1i , ⇠p,2i , · · · , ⇠p,Si when the network is

initialized with pattern ~⇠p,1. The transient dynamics elicited is robust against perturbations

in the initial conditions (see Fig 5.2b). The correlations between the network activity and the

learned patterns (i.e. overlaps) throughout the sequence also depict a transient sequential

dynamics. Unlike the dynamics of single neuron, the sequential dynamics of the overlaps

is characterized by the rise of one overlap after another in a stereotyped sequence (see

Fig 5.2c). This is consistent with the fact that single neurons take approximately the same

corresponding values of the learned patterns throughout the sequence.

5.4 Gaussian patterns

5.4.1 Mean field theory

In this section we will derive a mean field theory for a network where stored patterns are

Gaussian and the learning rule is linear, i.e. f(x) = x and g(y) = y. As is described above,

after learning the connectivity matrix is given by

Jij =
cij
Nc

P
X

p=1

S
X

µ=1

⇠p,µ+1

i ⇠p,µj . (5.4)

Here µ corresponds to the index of a particular concatenated pair of patterns, i.e.
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Figure 5.1: Learning and retrieval in recurrent neural networks with asymmetric unsuper-
vised Hebbian learning rules. At time t a novel pattern is presented to the network, synaptic
inputs to each neuron in the network (⇠1l , for neurons l = 1, . . . , N) are drawn randomly and
independently from a Gaussian distribution. Some neurons respond strongly (yellow circles)
and other weakly (white circles). At the next time t + 1 a di↵erent pattern with the same
statistics is presented to the network, and a di↵erent assembly of neurons than at time t is
activated. Activity that is contiguous in time produced by the synaptic input currents mod-
ifies the network connectivity according to an asymmetric unsupervised Hebbian learning
rule. Connections between neurons that are activated contiguously in time get modified (see
red arrows). The connection strength is represented by the thickness of the corresponding
arrow (the thicker the arrow the stronger the connection).
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Figure 5.2: Sequence retrieval. a,b. Representative sample of single unit activity. Solid lines
represent the trajectory of single unit activity in time. Discrete points correspond to stored
sequential patterns. c. Overlap of network activity with each stored pattern. Light-colored
lines show activity in response to a perturbation at the start of the trial.
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⇠p,µ+1

i ⇠p,µj , while p corresponds to the index of a particular sequence of concatenated pat-

terns of length S, i.e. ⇠p,2i ⇠p,1j + ⇠p,3i ⇠p,2j + · · · + ⇠p,S+1

i ⇠p,Sj . The patterns are identically

and independently distributed (i.i.d.) as ⇠p,µi
iid⇠ N (0, 1). The input current to neuron i at

a given time t is given by the synaptic currents contributed by all the connected neurons:

hi(t) =
X

j 6=i

Jijrj(t). (5.5)

In this analysis we assume the dynamics starts with an initial condition that is correlated

with the first pattern of sequence p, i.e. ~⇠p,1. The input current can be re-written as

hi(t) =
S
X

µ=1

⇠µ+1,p
i

1

Nc

N
X

j 6=i

cij⇠
µ,p
j rj(t) + Yi(t) (5.6)

where Yi describes the ‘noise’ term,

Yi(t) =
1

Nc

P
X

l 6=p

S
X

µ=1

⇠l,µ+1

i

N
X

j 6=i

cij⇠
l,µ
j rj(t). (5.7)

In the large cN limit, due to the law of large numbers, the first term in Eq. (5.6) converges

in probability to

S
X

µ=1

⇠µi qpµ(t), (5.8)

where the qpµs are given by

qpµ(t) =
1

N

N
X

j=1

⇠µ,pj rj(t). (5.9)

Here {qpµ(t)}Sµ=1

are our first S order parameters. They described how correlated the

network state is with the stored patterns ~⇠1,p, ~⇠2,p, · · · , ~⇠S,p respectively. We assume that

the network state is uncorrelated with the rest of stored patterns since qlµ(t) ⇠ O(1/
p

N)
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for l 6= p. Then the ‘noise term’ Yi has mean zero and variance

V ar (Yi) = ↵M(t), (5.10)

where the sequential load is defined by

↵ ⌘ ps

Nc
, (5.11)

and M , the mean of the squared firing rate, is an additional order parameter defined by

M(t) =
1

N

N
X

j=1

r2

j (t). (5.12)

In this theory we assume that the number of stored patterns is much larger than the

number of patterns in a sequence, i.e. s ⌧ ↵Nc. Then, we can approximate the dynamics

in Eq. (5.3) as

dri
dt

= �ri + �

0

@

S
X

µ=1

⇠µ+1

i qµ(t) +
p

↵M(t)yi

1

A . (5.13)

Since all sequences are statistically equivalent we dropped the index p corresponding

to the particular sequence of concatenated patterns. The variable yi corresponds to the

quenched noise produced by the stored patterns that do not belong to the sequence that is

being retrieved (i.e. sequence p). By the central limit theorem the variable yi is approximatly

i.i.d. normally distributed across neurons, i.e. yi
iid⇠ N (0, 1). For simplicity, we take a static

mean field theory approach, where yi is assumed to be constant in time, and therefore its

auto-covariance is equal to its variance. Using equation (5.9) we get the following dynamical

equations for the overlaps
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dql
dt

= �ql +

Z

D~⇠Dz⇠l�
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X

µ=1
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i qµ(t) +
p

↵M(t)yi

1

A l = 2, . . . , S, (5.14)

where Dz = e�x2/2/
p

2⇡ and D~⇠ =
QS

i=2

D⇠i. Now we define

r2

l (t) =
S
X

k 6=l

q2

k(t) + ↵M(t). (5.15)

Since the stored patterns are gaussian we write Eq. (5.14) as

dql
dt

= �ql +

Z

D⇠lDz⇠l�
⇣

⇠lql�1

(t) + rl�1

(t)x
⌘

l = 2, . . . , S. (5.16)

Notice that ⇠l and x are independent standard normal random variables. Using the

transformation

v =
⇠lql�1

+ xrl�1

q

q2

l�1

+ r2

l�1

u =
⇠lrl�1

� xql�1

q

q2

l�1

+ r2

l�1

,

where u and v are also uncorrelated standard normal random variables, equation (5.16)

becomes

dql
dt

= �ql + ql�1

G(k~q(t)k2

2

, M(t)) l = 2, . . . , S, (5.17)

where we define
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, M(t)) ⌘
R Dvv�
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k~q(t)k2
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+ ↵M

◆

q

k~q(t)k2

2

+ ↵M(t)
. (5.18)

Notice that the dynamical equation for the first overlap (i.e. q
1

) is given by

dq
1

dt
= �q

1

. (5.19)

Then by defining the ‘delay line’ matrix as

L =

2
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. (5.20)

We finally can write equation (5.18) in a vectorial form

d~q

dt
= �~q + G(k~q(t)k2

2

, M(t))L~q. (5.21)

Now we derive an approximate dynamical equation for M . From Eq. (5.3) we obtain

the following two equations:

dr2

i

dt
= �2r2

i + 2ri�

0

@

X

j 6=i

Jijrj

1

A (5.22)

✓

dri
dt

◆

2

= r2

i + �2

0

@

X

j 6=i

Jijrj

1

A� 2ri�

0

@

X

j 6=i

Jijrj

1

A . (5.23)

Considering the following fact
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dt2
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+ ri
d2ri
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, (5.24)

and adding-up Eq. (5.22) and Eq. (5.23) we get

1

2

d2r2

i

dt2
+

dr2

i

dt
� ri

d2ri
dt2

= �r2

i + �2

0

@
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Jijrj
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A . (5.25)

From Eq. (5.3) we have that

ri
d2ri
dt2

= �r2

i

dt
+ ri�
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0

@
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Jijrj
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N
X

j=1

Jij ṙj . (5.26)

Then Eq. (5.25) becomes

1
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By averaging Eq (5.27) similarly as it was done for Eq. (5.21) we obtain

1
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By approximating the third term in the l.h.s as the product of independent terms, i.e.

*
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, (5.29)

we approximate Eq. (5.30) as
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(5.30)

Our mean field theory gives good quantitative predictions for the dynamics of the overlaps

when it is compared with numerical simulations a large networks (see Fig 5.2a). Interestingly,

the network can stored and successfully retrieve more than one sequence (see Fig 5.2 a). In

the next section, we will calculate the maximum number of sequences that a network can

store and successfully retrieve depending on the network parameters. We call this quantity

sequential capacity.

5.4.2 Sequential capacity

We define the sequential capacity as the maximum number of sequences the network can

store without decaying to zero in the limit of infinitely long sequences (i.e. S ! 1) and

time (i.e. t ! 1) when the network is initialized with the first pattern in the sequence (as in

Figs 5.2 and 5.3). The intuition for this definition is the following: for very long sequences,

if the network is below capacity, it can be still retrieved after a long time since maintains

finite overlaps with the stored patterns. On the other hand, if the network is above capacity,

the overlaps die away after some time and the retrieval of the sequence is not possible. For

finding the capacity of the network we will study the squared norm of the overlaps k~q(t)k2

2

.

If this quantity is finite, there is a set of overlaps that are also finite. On the other hand,

if this quantity is zero, all the overlaps are also zero. Therefore, the minimal value of the

sequential load ↵ in which k~q(t)k2

2

= 0 corresponds to the network capacity, analogous to the

capacity for attractor neuronal networks (Amit et al. 1985). Using Eq. (5.21) and noticing

that for P ! 1 we have that LTLs = Ls�1, then dynamical equations for the norm read
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Figure 5.3: Capacity. a. Sequential activations of two discrete sequences. Solid lines are full
network simulations, dashed lines are simulations of the mean-field description. b. Capacity
(black line) as a function of the gain of the neural transfer function (all other parameters
fixed). Insets display representative activity for network parameters above and below capac-
ity curve, where solid lines are full network simulations. c. The maximal overlap with the
final pattern in the stored sequence, for parameters corresponding to the yellow star in panel
(b). The vertical dashed lines marks the predicted capacity.
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d

dt
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2
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⌘

... =
...

By considering the fact that (I � L)�1 = I + L + L2 + L3 + · · · , we then add the above

equations obtaining:

d

dt
~qT (I � L)�1~q = �2~qT (I � L)�1~q + G(k~qk2

2

, M ;↵)
h

2~qT (I � L)�1~q � k~qk2

2

+ ~qTLT ~q
i

.

(5.31)

For very long times, the steady state of Eq. (5.31) is given by

G(k~qk2
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i
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(5.32)

Since (I � L)�1 is the lower triangular matrix
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then it is positive definite, which is by definition equivalent to

0 < ~qT (I � L)�1~q.

On the other hand, for a infinitely long sequence we have that

~qTLT ~q  k~qk2

2

. (5.33)

Therefore, for the equality in Eq. (5.32) to hold if

G(k~qk2

2

, M ;↵) < 1, (5.34)

then ~q = 0. In other words, if Eq. (5.34) holds then sequences decay after some finite

time, and therefore the network is above capacity. Then the capacity curve is given by

G(0, M ;↵) = 1. (5.35)

At capacity the critical load ↵c is given by

R Dvv�
�

v
p
↵cM

�

p
↵cM

= 1. (5.36)

On the other hand, using Eq. (5.30), the value of M is given by

M =

Z

Dv�2

⇣

v
p

↵cM
⌘

. (5.37)

By solving both Eqs (5.36,5.37) we obtain the network capacity ↵c. Our theory shows a

good quantitative agreement with numerical simulations of large networks (see Fig 5.3b,c).

The agreement is increasingly accurate as the size of the sequences increases (see Fig 5.3c).
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5.5 Discussion

We have shown that the family of unsupervised Hebbian learning rules previously described

for learning attractors (Pereira & Brunel 2018a) learn sequential activity when a temporal

asymmetry in the learning rule is introduced (i.e. Jij / f(⇠p,s+1

i )g(⇠p,sj ) instead of Jij /
f(⇠p,si )g(⇠p,sj )). This asymmetry naturally arises when a temporal delay as the time it takes

for calcium influx through NMDA receptors to reach its maximum (Sabatini et al. 2002,

Graupner & Brunel 2012) is considered (see Veliz-Cuba et al. (2015), Abbott & Blum (1996),

Gerstner & Abbott (1997), Mehta et al. (1997), Jahnke et al. (2015), Chenkov et al. (2017),

Theodoni et al. (2017), Pereira & Brunel (2018b) for models with temporally asymmetric

Hebbian learning rules). When this delay is much slower than the external stimulus driving

the network dynamics, patterns of activity of pre and post synaptic neurons in delayed times

are approximately uncorrelated, and Hebbian learning rules take an asymmetric form as in

Eq. (5.2).

The asymmetric learning rule analyzed in section 5.4 is well suited for storing sequences,

since its capacity scales with the network size. In contrast, in appendix C we show its sym-

metric version, i.e. the covariance rule, leads to zero capacity for attractor states correlated

with a single pattern. In this case, attractor states are correlated with multiple patterns,

and the retrieval of a single memory is not possible.

This learning rule recapitulates two important features of the sequential activity observed

in cortex: 1) stereotyped cue dependent sequential activity (see Fig 5.2 and 5.3b); 2) robust

to perturbations sequential activity (see Fig 5.2). Remarkably, the network dynamics can

be analyzed by a mean field theory, finding a low-dimensional description for the sequential

dynamics (the dynamics is described by S + 1 degrees of freedom instead of the original

N) in terms of the overlaps with the learned patterns. We show that the overlaps obey

a non-linear feed-forward dynamical system, and the network dynamics is e↵ectively feed-

forward in the linear space spanned by the patterns in the learned sequence (space spanned
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by ~⇠p,1, ~⇠p,2, · · · , ~⇠p,S). Using this theory, we compute the sequential capacity of the network,

showing that it grows linearly with network size, comparable to what is found in networks

storing fixed-point attractors.
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CHAPTER 6

CONCLUSIONS

In this thesis, I show that neural representations of memories in brain networks can be

learned as qualitatively di↵erent spatiotemporal attractors by a single class of unsupervised

learning rules in recurrent neuronal networks. Depending on the learning rule and the

statistical properties of the inputs, neural representations of memories can be fixed-point

attractors, chaotic attractors or sequences of activity. This model reproduces a wide range

of data sets and provides an unified framework for understanding unsupervised learning of

memories in brain networks. In the next sections, I will discuss outstanding questions and

future directions

6.1 Possible functional relevance of di↵erent neuronal

representations

What is the advantage (if any?) of having di↵erent representations of memories in brain net-

works? Memory capacity for fixed-point attractors, chaotic attractors and sequences scale

linearly with the average number of synaptic connections. Therefore, in terms of memory

capacity, there is no qualitative di↵erence between the three types of neural representations.

However, memories are encoded di↵erently for fixed-point and chaotic attractors from se-

quences. For fixed-point and chaotic attractors the code is static, that is, the activity of the

network lies in a single linear subspace which corresponds to the optimal decoder sub-space

during retrieval. In the case of sequences, the optimal decoder sub-space changes dynami-

cally, and the network optimally encodes di↵erent patterns at di↵erent times. Functionally,

the static code is optimal for holding a single item in memory while the dynamic code is op-

timal encoding information concatenated with a certain timing. These di↵erent codes might

be more favorable for di↵erent functions. For example, for encoding episodic memories a
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static code might be better suited, since the memory needs to be held for a period of time

for cognitive use. On the other hand, for encoding memories of motor actions, a dynamic

code might be a better strategy, since it can encode the specific sequence of actions and the

timing between them.

6.2 Online learning of memories in cortex

Neuronal responses of excitatory neurons to familiar images in the inferior temporal cortex

(ITC) have lower mean firing rates but higher maximum firing rates than to novel (Woloszyn

& Sheinberg 2012). These di↵erences can be accounted by learning in the ITC recurrent

microcircuit (Lim et al. 2015, Pereira & Brunel 2018a). The learning rules are inferred

from neuronal responses to a large number of familiar and novel images (Lim et al. 2015,

Pereira & Brunel 2018a). In these data, for a novel image to become familiar it is shown

to a monkey more than 5000 times. However, is still unknown how the dynamics of the

neuronal responses changes across presentations as well as the underpinning learning rule.

Preliminary data sheds light upon this question showing that learning occurs within 2-4

training sessions (i.e. 70-140 presentations) (Mohan & Freedman 2018). Interestingly, very

recently, similar timescales for learning familiar images in V2 (Huang et al. 2018) have been

observed. I participate in a collaborative research project led by professors Yali Amit, Nicolas

Brunel, and David Freedman with the aim to uncover the multiscale dynamics during visual

recognition and memory in cortical circuits. Our objective is to infer presentation-dependent

learning rules from in vivo recordings in ITC, similar to the online learning rules proposed in

chapter 4. In these inferred learning rules, patterns presented many times to the network are

gradually learned depending on the number of presentations, becoming progressively familiar

from novel. We plan to implement the inferred online learning rules in an attractor neuronal

network model analogously as in Pereira & Brunel (2018a). The objective is to reproduce

the dynamics of the changes of firing rates across presentations, as well as exploring the
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consequences for learning attractors in a network with online learning rules inferred from

data.

6.3 Diversity of time scales in the prefrontal cortex

In chapters 3 and 4 we have shown that fixed-point attractors transition to chaotic attractors

for strong synapses and high memory loads. They retain the information of the corresponding

stored memories, and the network performs as an associative memory device with internally

generated variability. We have proposed this scenario as an alternative mechanism for ex-

plaining the strong heterogeneity and temporal variability observed during delay response

tasks in the prefrontal cortex (PFC). This scenario is consistent with previous studies show-

ing that the coding of memories in the PFC is static (Murray et al. 2017), as is discussed

in section 6.1. However, a quantitative comparison contrasting this model with available

data is still lacking. Recent data from two di↵erent groups have shown that neurons in the

prefrontal cortex show a diversity of time scales (see Fig 6.1) with distributions close to

a log-normal (Cavanagh et al. 2018, Wasmuht et al. 2018). Interestingly, slow timescales

neurons are more infromative about the retrieved memoranda than fast timescale neurons.

Additionally, the coding of the memoranda by slow timescale neurons seems to be a combi-

nation of static and dynamic coding. In the model studied in chapters 3, the distribution of

timescales is skewed similar to a log-normal distributions observed in Cavanagh et al. (2018),

Wasmuht et al. (2018) but with narrower spread (compare Fig 6.1 A and B with Fig 6.1

C). This result is in apparent contradiction with the predictions of the theory in chapter 4,

where the single neuron autocorrelation function is the same for all neuron up to a di↵erence

of order 1/
p

N . In fact, we have shown that for the parameters inferred from data used in

chapter 3 the network is in a mixed state in which has a large overlap with the retrieved

memory and very small (but not negligible) overlap with all other stored memories. This

mixed state is a consequence of strong finite size e↵ects, and presents interesting properties
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summarized as following: 1) Much larger capacities than what is predicted by the theory

in chapter 4; 2) Non-self-averaging autocorrelation function (these results are not shown in

this thesis). In the future, I would like to perform a quantitative comparison of the network

model in chapter 3 using similar analyses as in Murray et al. (2017), Cavanagh et al. (2018),

Wasmuht et al. (2018). Additionally, it will be ideal to also perform these analyses for the

delay activity of the same neurons where the learning rules and transfer functions of the

model in chapter 3 are inferred.
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Figure 6.1: Diversity of time scales in PFC and in a chaotic attractor network model. (A)
Distribution of time scales of dorsolateral and ventrolateral PFC neurons, adapted from
Cavanagh et al. (2018). (B) Distribution of time scales in lateral PFC neurons, adapted
from Wasmuht et al. (2018). (C) Distribution of time scales for 200 neurons in the attractor
neuronal network model in chapter 3 for parameters shown in Figs 3.9 and 3.10. Time scales
were computed as in Cavanagh et al. (2018).

160



6.4 Reinforcement learning of sequences

In chapter 5 we show that patterns of activity can be learned using an asymmetric unsuper-

vised Hebbian learning rule. Since the stored patterns are random, the neuronal activations

throughout the sequence are unstructured (see Fig 5.1). The sequences match well activ-

ity observed in posterior parietal cortex, hippocampus, and HVC. Nevertheless, when this

model is assigned with the task of matching a particular sequence it fails. The reason is that

in this model learning is unsupervised, therefore no error signal provides information to the

network for precisely matching the target activity sequence. Supervised settings have been

very successful for learning given sequences (Sussillo & Abbott 2009, Rajan et al. 2016).

However the learning rules used (Sussillo & Abbott 2009, DePasquale et al. 2018, Rumel-

hart et al. 1985) are not biologically realistic. Furthermore, most models lack a theoretical

understanding of their capacity and robustness. In numerical experiments, I have explored

introducing arbitrary correlations between patterns in the model discussed in chapter 5 for

matching a particular sequence of activity, with anecdotal success. An interesting scenario

to explore is to combine unsupervised learning as in 5 with reinforcement learning in order

to learn particular sequences of activity. The basic idea is the following: 1) random pat-

terns of activity are learned using the unsupervised learning setting studied in chapter 5;

2) these patterns are then refined in a reinforcement learning setting using neuromodulator

dependent learning rules (Frémaux et al. 2010, Frémaux & Gerstner 2016, Kuśmierz et al.

2017) for learning a particular sequence. The advantage of this model is twofold: 1) the

unsupervised and reinforcement learning rules are biologically plausible and it is likely that

the two class of learning happen concurrently in a single microcircuit in the cortex; 2) the

network model is amenable to be theoretically analyzed using mean field techniques as in

chapter 5.
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APPENDIX A

ATTRACTOR DYNAMICS IN NETWORKS WITH

LEARNING RULES INFERRED FROM IN VIVO DATA

Figure A.1: Inferred static transfer functions. The static transfer function � is derived
from the distribution of visual responses for novel stimuli for 14 di↵erent ITC neurons using
the procedure described in Lim et al. (2015). The data (blue circles) was fitted using a
sigmoidal function (red line; see Methods, Eq. (3.48)). Cyan vertical dashed lines indicate
the parameter h

0

of the sigmoidal fit. For details, see Methods main text.
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Figure A.2: Distributions of firing rates for novel stimuli. Distributions of firing rates in
response to 125 novel stimuli for 14 ITC neurons. The firing rate histogram (blue) is plot-
ted together with the distribution of firing rates (red line) obtained when standard normal
patterns of current (i.e. ⇠ ⇠ N (0, 1)) are transformed using the static sigmoidal transfer
function fitted in Fig. A.1 (i.e. �(⇠); see Eq. (3.48) in Methods). The gray and green vertical
dashed lines indicate the mean of the fitted firing rate distribution and the parameter xf of
the plasticity rule (see Fig. A.3).
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Figure A.3: Inferred dependence on the postsynaptic firing rate of the learning rule. The
dependence of synaptic plasticity rule on the postsynaptic firing rate (i.e. f(r)) is inferred
for 14 ITC neurons. The data is indicated with black circles and the sigmoidal fit with a
blue line. The red line indicates the threshold between long term potentiation (LTP) and
long term depression (LTD). As in Fig. A.2, the gray and green vertical dashed lines indicate
the mean of the fitted firing rate distribution and the parameter xf of the learning rule.
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APPENDIX B

LOCAL-FIELD AUTO-COVARIANCE CALCULATION

B.1 Local-field auto-covariance calculation

Let us consider the auto-covariance of the fields in Eq. (4.13)

�(⌧) = Cov(h(t)h(t + ⌧)). (B.1)

Using the properties of the auto-covariance we obtain

�̈(⌧) = Cov(ḣ(t)ḣ(t + ⌧)). (B.2)

In our dynamic mean field theory, the dynamics of the network is approximated by a

random gaussian field given by Eq. (4.8), i.e.:

ḣi = �hi + Af(⌘µi )⇥(µ)mµ + A
p
�y(t), (B.3)

where

C(⌧) = Covy(y(t)y(t + ⌧)) = Covh(�(h(t))�(h(t + ⌧))). (B.4)

Here for simplicity we will set A = 1 and ⇥(µ) = 1. The later implies that  = ↵ = p/Nc.

By using Eq. (B.3,B.4) we obtain
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�̈(⌧) = Covh([�hi(t) + f(⌘i)m +
p
↵�y(t)] [�hi(t + ⌧) + f(⌘i)m +

p
↵�y(t + ⌧)])

= �(⌧) + Var⌘(f(⌘))m2 + ↵�C(⌧) � mCovh(hi(t), f(⌘i)) � mCovh(hi(t + ⌧), f(⌘i))

�p
↵�Covh(yi(t + ⌧), h(t)) � p

↵�Covh(yi(t), h(t + ⌧))

+mCovh(yi(t + ⌧), f(⌘i)) + mCovh(yi(t), f(⌘i)) (B.5)

In our theory, the random variable y(t) represents the variability in the synaptic input

current. For large networks, the synaptic input currents are uncorrelated with the par-

ticular pattern that is being retrieved. Therefore we have that Covh(yi(t + ⌧), f(⌘i)) =

Covh(yi(t), f(⌘i)) = 0. On the other hand,

Covh(yi(t + ⌧), h(t)) = Covh(yi(t + ⌧),
p
↵�y(t) + f(⌘i) � ḣi(t))

=
p
↵�C(⌧) � Covh(yi(t + ⌧), ḣi(t)).

Similarly

Covh(yi(t), h(t + ⌧)) = Covh(yi(t),
p
↵�y(t + ⌧) + f(⌘i) � ḣi(t + ⌧))

=
p
↵�C(⌧) � Covh(yi(t), ḣi(t + ⌧)).

Lastly, considering

Covh(yi(t), ḣi(t + ⌧)) + Covh(yi(t + ⌧), ḣi(t)) = Covh(yi(t), ḣi(t + ⌧)) + Covh(yi(t
0
), ḣi(t

0 � ⌧))

= Covh(yi(t), ḣi(t + ⌧)) � Covh(yi(t
0
), ḣi(t

0
+ ⌧))

= 0,
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then Eq. (B.5) becomes

�̈(⌧) = �(⌧) + Var⌘(f(⌘))m2 � ↵�C(⌧) � mCovh(hi(t), f(⌘i)) � mCovh(hi(t + ⌧), f(⌘i)).

(B.6)

In Eq. (B.3) the synaptic input currents hi(t) are described by a gaussian random field,

therefore can be written as

hi(t) =
p

�
0

� |�(⌧)|x + sgn(�(⌧))
p

|�(⌧)|z + f(⌘i)m (B.7)

hi(t + ⌧) =
p

�
0

� |�(⌧)|y +
p

|�(⌧)|z + f(⌘i)m, (B.8)

where, x, y, z are independent standard normal random variables. This implies

hhi(t)2i = �
0

(B.9)

hhi(t + ⌧)2i = �
0

(B.10)

hhi(t)hi(t + ⌧)i = �(⌧). (B.11)

(B.12)

Then Covh(hi(t), f(⌘i)) = Covh(hi(t + ⌧), f(⌘i)) = mVar⌘(f(⌘)), obtaining

�̈(⌧) = �(⌧) � Var⌘(f(⌘))m2 � ↵�C(⌧). (B.13)

Finally, by doing the following translation �(⌧) ! �(⌧)�Var⌘(f(⌘))m2 we obtain Eq. (4.14).
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APPENDIX C

UNSUPERVISED LEARNING OF SEQUENTIAL ACTIVITY

WITH TEMPORALLY ASYMMETRIC HEBBIAN LEARNING

RULES

C.1 Mixed States

Here we show that recurrent networks endowed with the covariance rule (Sejnowski 1977)

learn attractor states correlated with multiple memories (i.e. mixed state) when the stored

patterns are normally distributed. In this state, the retrieval of a single memory is not

possible. This results was first found in the Hopfield model by Amit et al. (1985).

C.1.1 Pure state

We will first start analyzing the case of just one condensed pattern. When the network is in

its steady state the incoming current to neuron i is given by

hi =
1

Nc

N
X

j 6=i

p
X

k=1

cij⇠
k
i ⇠

k
j rj . (C.1)

The mean field over the disorder produced by all the patterns and the structural connec-

tivity (i.e. C, ~⇠2, . . . , ~⇠p), conditional on the first pattern (i.e. ~⇠1 = ~z) is given by

E⇠

⇣

hi|~⇠ = ~z
⌘

= ziE⇠,⇠1

⇣

⇠1r
⌘

. (C.2)

The conditional variance of the field over the disorder produced by all the patterns and

the structural connectivity, conditional on the first pattern is given by

Var⇠

⇣

hi|~⇠ = ~z
⌘

= ↵E⇠,⇠1

⇣

r2

⌘

. (C.3)
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For computing Eq.(C.3) we use the fact that c ⌧ 1 to neglect correlations between

neurons. As in the main text, we refer to the parameter ↵ ⌘ p
Nc as the memory load,

which corresponds to the number of pattern per average number of synapses. We define the

following order parameters

m = E⇠,⇠1

⇣

⇠1r(⇠, ⇠1)
⌘

(C.4)

M = E⇠,⇠1

⇣

r2(⇠, ⇠1)
⌘

. (C.5)

Where m, that we call the overlap, corresponds to the covariance between the first pattern

and the steady state of the network, while M corresponds to the second moment of the steady

state of the network. We compute the order parameters self-consistently by using the mean

Eq. (C.2) and variance Eq. (C.3) of the field

m =

Z 1

�1

Z 1

�1
DzDyzF (mz +

p
↵My) (C.6)

M =

Z 1

�1

Z 1

�1
DzDyF 2(mz +

p
↵My). (C.7)

Where Dz = dze� z

2
2 /

p
2⇡ and similarly for Dy. By defining the following quantity

b2 ⌘ m2 + ↵M these equations simplify to

b =

Z 1

�1
DvvF (bv) (C.8)

M =

Z 1

�1
DvF 2(bv). (C.9)

Computing the order parameters m and M can be done as following: first b is calculated
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self-consistently by using Eq. (C.8); second M is calculated by using Eq. (C.9) and finally

m is calculated by

m =
p

b2 � ↵M. (C.10)

When we compare our mean field equations with numerical simulations we find that

the retrieval of one pattern (i.e. the steady state of the network is correlated with just

one pattern) is not possible for a large parameter exploration. In contrast, our numerical

simulations show that only mixed states where the steady of the network is correlated with

a finite number of patterns is prevalent. In Fig. C.1 A it is shown the overlaps dynamics

of a network with two-patterns-stored connectivity. After transients, the steady state of

the network is correlated with both patterns for the four realizations depicted. In the next

section, we will show that this is generic for any realization as it is shown in Fig. C.1 B.

C.1.2 Finite Number of Condensed Patterns

To understand this discrepancy between our previous MFT and the numerical simulations,

we now assume that the steady state of the networks is correlated with the q first pattern

learned with q finite i.e. m
1

, m
2

, . . . , mq. In other words, we assume that the steady state

of the networks depends on the q first pattern learned, and on the rest uncondensed p � q

patterns only depend indirectly through the field h that they produce. Since in our analysis,

the number of patterns is assumed to be large q ⌧ p. Then the steady state of the network

in this case is approximated by

r = F (h|⇠1, . . . , ⇠q). (C.11)

Then, the conditional mean field over the disorder produced by the last (p � q) patterns

and the structural connectivity (i.e. C, ~⇠q+1, . . . , ~⇠p), conditional on the first q pattern (i.e.
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Figure C.1: (A) Numerically computed overlaps vs time for a two-patterns-stored connec-
tivity (i.e. p = 2). Four di↵erent realizations of the network are shown in yellow, gray, red
and maroon. In dashed and continuous lines are shown respectively the overlaps with the
fist and second pattern. In these four realizations, after transients, the steady state of the
network is correlated with both patterns. (B) In solid circles, it is shown the numerically
computed overlaps after transients placed in the m

1

-m
2

plane for one hundred realizations
of the network. Circumferences with the radius given by Eq. C.19-C.21 are the manifolds
where lie the overlaps in the m

1

-m
2

plane predicted by our MFT for a two-patterns-stored
connectivity. In green, blue and magenta solid circles (numerical simulations) and circum-
ferences (MFT) are shown the results for three di↵erent parameters used � = 10 and h

0

= 0,
� = 5 and h

0

= 0 and � = 5 and h
0

= 0.15 respectively, with r
max

= 1. In yellow, gray, red
and maroon squares are placed in the m

1

-m
2

plane the overlaps depicted in Fig. C.1 A. For
these simulations the network parameters were c = 0.005 and N = 5 · 105.
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~⇠1 = ~z
1

, ~⇠2 = ~z
2

, . . . , ~⇠q = ~zq) is given by

E⇠

⇣

hi|~⇠1 = ~z1, . . . , ~⇠q = ~zq
⌘

=
q
X

k=1

mkz
k
i . (C.12)

With the order parameter mk defined by

mk = E⇠1,...,⇠q,⇠(⇠
kr). (C.13)

On the other hand, the conditional variance of the field over the disorder produced by

the last (p � q) patterns and the structural connectivity (i.e. C, ~⇠q+1, . . . , ~⇠p), conditional

on the first q pattern (i.e. ~⇠1 = ~z
1

, ~⇠2 = ~z
2

, . . . , ~⇠q = ~zq) is given by

Var⇠

⇣

hi|~⇠1 = ~z1, . . . , ~⇠q = ~zq
⌘

= ↵M. (C.14)

With the order parameter M given by

M = E⇠1,...,⇠q,⇠

⇣

r2(⇠1, . . . , ⇠q, h)
⌘

. (C.15)

Using the central limit theorem, we approximate the distribution of the field over the

disorder produced by the last (p� q) patterns and the structural connectivity conditional to

the q condensed patterns to

p(h|⇠1 = z1, . . . , ⇠q = zq) = N
 q
X

l=1

zlml,
p
↵M

!

, (C.16)

with ⇠k
iid⇠ N (0, 1). By using the fact in the steady state ri = F (hi), we write the

self-consistent mean field equations for the order parameters as following
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mk = E⇠1,...,⇠q,y(⇠
kF (m

1

⇠1 + m
2

⇠2 + · · · + mq⇠
q +

p
↵My)) k = 1, . . . , q (C.17)

M = E⇠1,...,⇠q,y(F
2(m

1

⇠1 + m
2

⇠2 + · · · + mq⇠
q +

p
↵My)), (C.18)

where y is a standard normal random variable. These q + 1 equations can be reduced to

three equations given by

b =
1p
2⇡

Z 1

�1
dve�v

2
2 vF (bv) (C.19)

M =
1p
2⇡

Z 1

�1
dve�v

2
2 F 2(bv) (C.20)

q
X

l=1

m2

l = b2 � ↵M. (C.21)

Equations (C.19) and (C.20) are equivalent to equations (C.8) and (C.9) obtained in the

one-condensed-pattern case analyzed in the previous section. On the other hand, Eq. (C.10)

is the one-pattern version of Eq. (C.21). This analysis shows that for the covariance rule,

retrieval states which are correlated with a finite number of patterns exist. Moreover, there is

a continuum of such states, that lie on a manifold described by the surface of the hypersphere
Pq

l=1

m2

l = b2 � ↵M . Thus, ‘pure’ retrieval states (i.e. states correlated with just a single

stored pattern) are only marginally stable. In finite networks, numerical simulations find

only mixed states, consistent with symmetry breaking that lead to a discrete set of mixed

states as the only possible attractors of the system. Therefore, with this rule retrieval of

a single memory is not possible. In figure Fig. C.1 B it is shown the circumference where

the overlaps are predicted to lie by our MFT (i.e. Eq. C.19-C.21) for a two-patterns-stored

network. There is a good agreement between our theory and numerical simulations for

multiples realizations of the network.
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Haydon, P. G., Hübener, M., Lee, H.-K. et al. (2017), ‘Integrating hebbian and homeostatic

plasticity: the current state of the field and future research directions’, Phil. Trans. R.

Soc. B 372(1715), 20160158.

Kempter, R., Gerstner, W. & Van Hemmen, J. L. (1999), ‘Hebbian learning and spiking

neurons’, Physical Review E 59(4), 4498.

Kiani, R., Esteky, H., Mirpour, K. & Tanaka, K. (2007), ‘Object category structure in

response patterns of neuronal population in monkey inferior temporal cortex’, Journal of

neurophysiology 97(6), 4296–4309.

185



Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. (2017), ‘Ring attractor dynamics

in the drosophila central brain’, Science 356(6340), 849–853.

Kleinfeld, D. (1986), ‘Sequential state generation by model neural networks’, Proceedings of

the National Academy of Sciences 83(24), 9469–9473.

Kleinfeld, D. & Sompolinsky, H. (1988), ‘Associative neural network model for the generation

of temporal patterns. theory and application to central pattern generators.’, Biophysical

Journal 54(6), 1039.

Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen, Z. F.,

Qi, X. L., Romo, R., Uchida, N. & Machens, C. K. (2016), ‘Demixed principal component

analysis of neural population data’, Elife 5.

Kobatake, E., Wang, G. & Tanaka, K. (1998), ‘E↵ects of shape-discrimination training

on the selectivity of inferotemporal cells in adult monkeys’, Journal of Neurophysiology

80(1), 324–330.

Koch, K. & Fuster, J. (1989a), ‘Unit activity in monkey parietal cortex related to haptic

perception and temporary memory’, Experimental Brain Research 76(2), 292–306.

Koch, K. W. & Fuster, J. M. (1989b), ‘Unit activity in monkey parietal cortex related to

haptic perception and temporary memory’, Exp. Brain Res. 76, 292–306.

Kree, R. & Zippelius, A. (1987), ‘Continuous-time dynamics of asymmetrically diluted neural

networks’, Phys Rev A Gen Phys 36, 4421–4427.

Kriegeskorte, N., Mur, M., Ru↵, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K. &

Bandettini, P. A. (2008), ‘Matching categorical object representations in inferior temporal

cortex of man and monkey’, Neuron 60(6), 1126–1141.

186



Kuhn, R. & van Hemmen, J. L. (1991), Temporal association, in E. Domany, J. L. van

Hemmen & K. Schulten, eds, ‘Models of Neural Networks’, Springer, pp. 221–285.
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